Supporting Information

Single-Molecule Sensing Using Nanopores in Two-Dimensional Transition Metal Carbide (MXene) Membranes

Mehrnaz Mojtabavi ^{1,#}, Armin VahidMohammadi ^{2,#}, Wentao Liang ³, Majid Beidaghi ^{2,*}, Meni Wanunu ^{4,5,*}

¹ Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.

² Department of Materials Engineering, Auburn University, Auburn, AL 36849, USA.

³ Kostas Advanced Nano-Characterization Facility, Northeastern University, Burlington Campus, 141 South Bedford Street, Burlington, MA 01803

⁴ Department of Physics, Northeastern University, Boston, MA 02115, USA.

⁵ Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA

[#] These authors contributed equally to the work.

* Corresponding authors: <u>mzb0088@auburn.edu</u>; <u>wanunu@neu.edu</u>

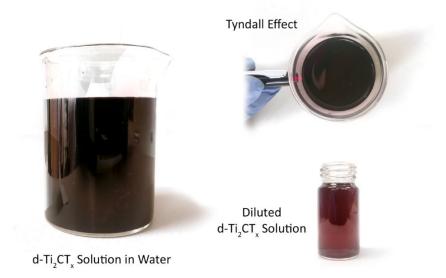


Figure S1. Water dispersion of single/few layers delaminated Ti₂CT_x (d-Ti₂CT_x) flakes.

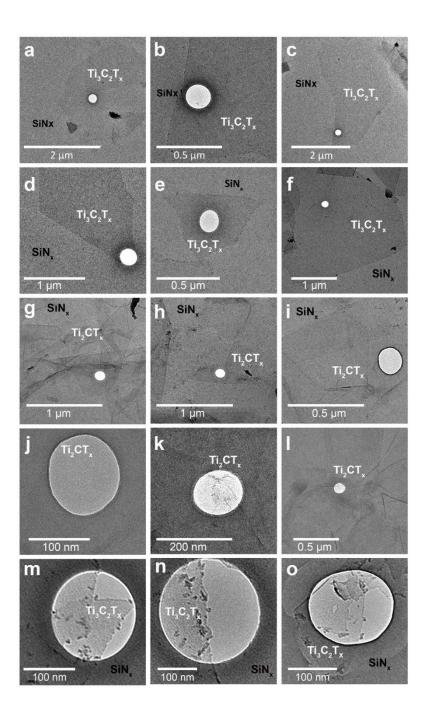


Figure S2. Examples of transferred $Ti_3C_2T_x$ (a-f) and Ti_2CT_x (g-l) flakes on SiN_x membrane with prefabricated holes using liquid-liquid interface method. (m-o) Unsuccessful transferred $Ti_3C_2T_x$ flakes on SiN_x membrane with pre-fabricated holes using same method. Thickness variation of flakes assembly on SiN_x membrane contributes to contrast in the images. Darker areas indicate thicker assembly of flakes.

Figure S3. Examples of SiN_x membrane coverage by MXene flakes after transfer of flakes from water dispersion by liquid-liquid interface method (white circles show pre-fabricated holes). (a-c) Transferred $Ti_3C_2T_x$ flakes. (d-e) Transferred Ti_2CT_x flakes. The different contrasts in the images are due to different TEM magnifications used to obtain the images.

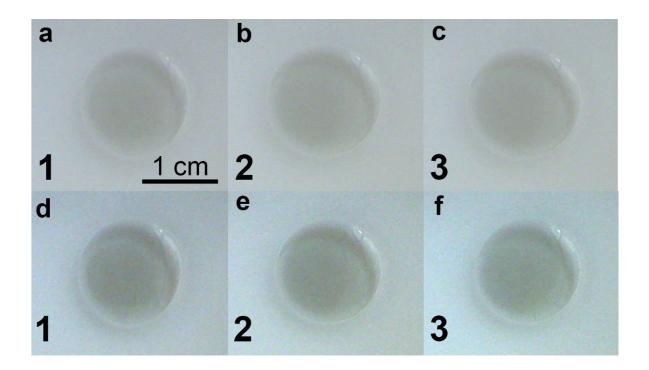


Figure S4. Snapshots of flake self-assembly at liquid-liquid interface using a 5-fold diluted $Ti_3C_2T_x$ dispersion (~0.02 mg/ml). (a-c) original images. (d-e) same images with higher contrast for visualization purposes.

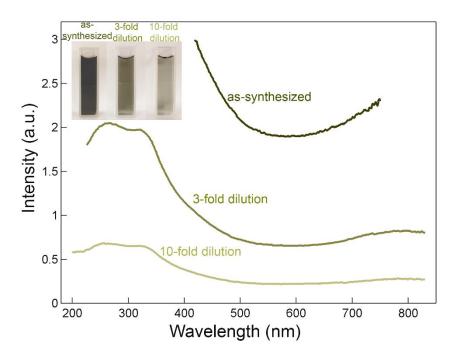


Figure S5. UV-VIS absorbance spectra of an as-synthesized $Ti_3C_2T_x$ dispersion, a 3-fold, and a 10-fold diluted dispersions. The inset shows photographs of the dispersions. Due to high concentration of as-synthesized dispersion, absorbance measurement was not possible in some wavelengths.

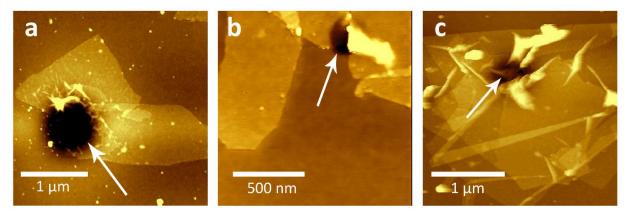


Figure S6. $Ti_3C_2T_x$ flakes drop-casted on SiN_x membranes with pre-fabricated holes. Arrows show flakes being pulled and bent into the hole during the drying process.

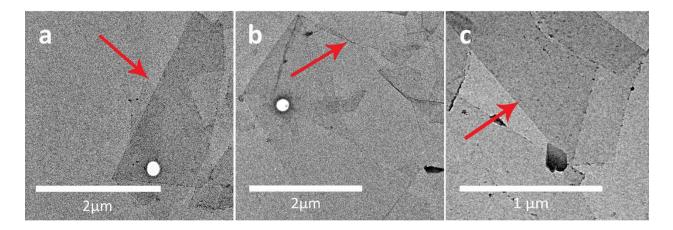


Figure S7. $Ti_3C_2T_x$ flakes transferred on SiN_x membrane with arrows showing the folded area of the flakes. In (a) and (b) white circles are pre-fabricated holes made by FIB.

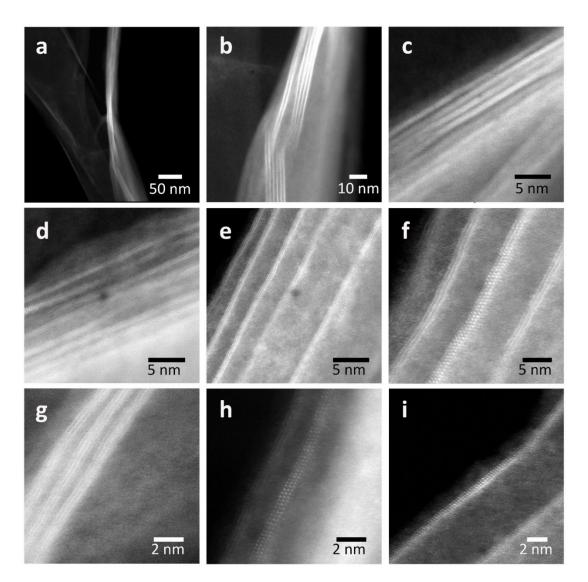


Figure S8. HAADF STEM images show sectional-view of $Ti_3C_2T_x$ flakes transferred onto a holey carbon filmed TEM grid using the liquid-liquid interface method. Number of layers in each case is (b) 6 layers. (c) 10 layers. (d) 8 layers. (e) 5 layers. (f) 4 layers. (g) 3 layers. (h) 2 layers. (i) 2 layers.

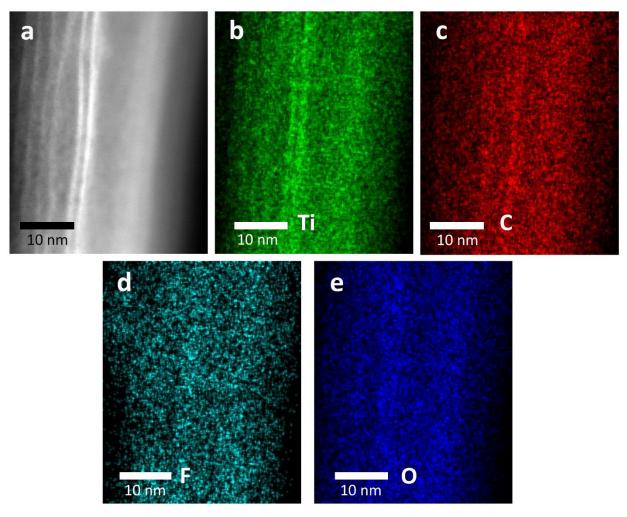
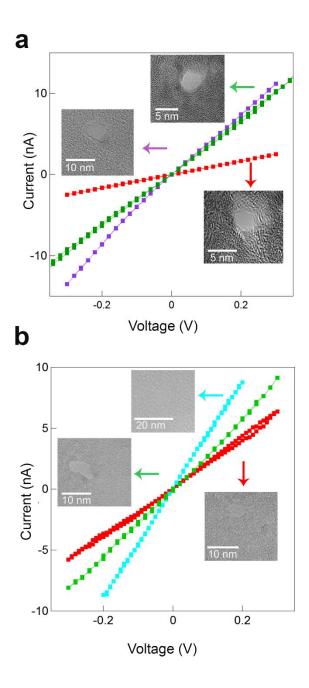



Figure S9. EDS mapping of folded area of $Ti_3C_2T_x$ flakes. (a) HAADF STEM image of a sectional view of a multilayer flake. (b) Green shows the density of Ti atoms. (c) Red shows the density of C atoms. (d) Aqua shows the density of F atoms. (e) Blue shows the density of O atoms.

Figure S10. Example current-voltage curves. (a) Three $Ti_3C_2T_x$ pores. Buffer used: 0.4 M KCl, 10 mM Tris pH 7.5 (red), 1 M KCl, 10 mM Tris pH 7.5 (green), 0.6 M NaCH₃COO pH 5.5 (purple). (b) Three Ti_2CT_x pores. Buffer used: 0.4 M KCl, 10 mM Tris pH 7.5. TEM images of the corresponding pores are shown next to each I-V curve.

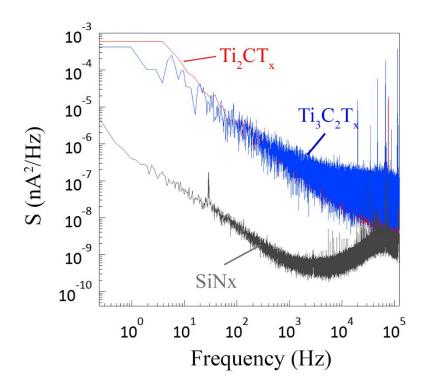
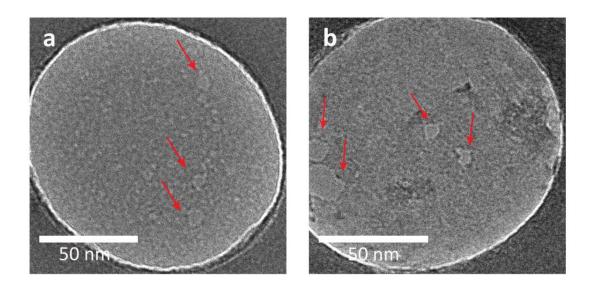



Figure S11. Power spectral densities obtained from 1.5- second -long current traces at 200 mV for a $Ti_3C_2T_x$ (blue), Ti_2CT_x (red), and a SiN_x (gray) pore (time-domain traces are shown in Figure 3d). Buffer: 400 mM KCl, 10 mM Tris pH 7.5.

Figure S12. Freestanding MXene flakes on a 100 nm pre-fabricated hole. Arrows show small pores emerged as a result of electron beam exposure during nanopore drilling (beam current density: 0.5-1 nA.nm⁻²) or imaging (beam current density: 0.02-0.15 pA.nm⁻²)

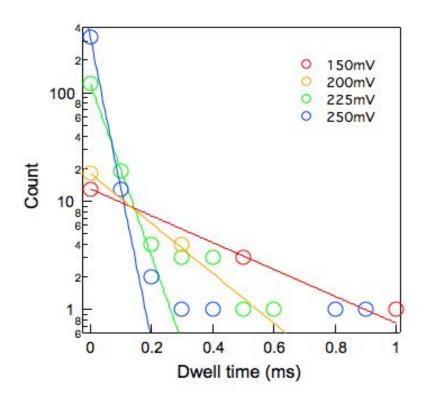


Figure S13. Dwell time histogram at four different voltages for 4 kbp dsDNA translocation through a 7.2 nm Ti_2CT_x pore (Figure 4). Lines show the corresponding exponential fit to the data. Buffer: 400 mM KCl, 10 mM Tris pH 7.5.

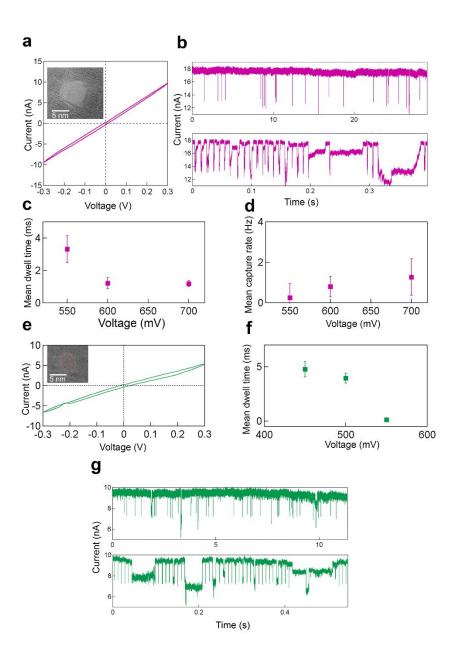


Figure S14. DNA translocation through Ti_2CT_x nanopore using 2 M LiCl, 20 mM Tris pH 7.5 buffer (a)Currentvoltage curve of 6.4 nm diameter (by TEM) pore. (b) Top panel: current vs. time traces at 700mV after 4 nM 6 kbp dsDNA added. Bottom panel: concatenated traces at 700 mV. (c) Mean DNA translocation dwell time as a function of voltage. (d) Mean DNA capture rate as a function of voltage. (e) Current-voltage curve of 4.5 nm pore (by TEM).. (f) Mean DNA translocation dwell time as a function of voltage after adding 50 nM 2 kbps dsDNA. (g) Top panel: current vs. time traces at 550 mV. Bottom panel: concatenated traces at 550 mV. All traces shown were acquired at a 250 kHz sampling rate and low-pass filtered to 100 kHz.

				Biomolecule Detection						
Pore Number	Pore Diameter	Buffer	Pore Thickness (nm)	dsDNA Length (kbp)	DNA Con.	Voltage (mV)	Translocation Dwell Time (ms)	Capture Rate ((s ⁻ ¹nM⁻¹))	SNR (@10kHz)	Total Number of Events
1 (manuscript)	7.2	0.4 M KCI 20 mM Tris pH 7.5	16	4	3	250	0.031	1.23	~10	535
2 (SI)	6.4	2 M LiCl 20 mM Tris pH 7.5	9	6	4	700	1.18	0.31	>10	112
3 (SI)	4.5	2 M LiCl 20 mM Tris pH 7.5	8	2	50	550	0.128	0.09	>10	266

Table 1. Comparison between 3 different Ti₂CT_x pores used for DNA translocation