Supporting Information

Organocatalytic Nucleophilic Substitution Reaction of gem-Difluoroalkenes with Ketene Silyl Acetals

Azusa Kondoh, ${ }^{b}$ Kazumi Koda, ${ }^{a}$ and Masahiro Terada* ${ }^{a}$${ }^{a}$ Department of Chemistry, Graduate School of Science Tohoku University, Sendai 980-8578, Japan${ }^{b}$ Research and Analytical Center for Giant Molecules, Graduate School of Science, TohokuUniversity,Sendai 980-8578, Japan
Contents
General Information S1
Experimental Procedure S2
Analytical Data S5
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 - 1 0}$ S13

General Information

Unless otherwise noted, the reactions were carried out with dried glassware under argon atmosphere. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL JNM-ECA600 (600 MHz) spectrometer. Chemical shifts are reported in ppm from the solvent resonance or tetramethylsilane (TMS) as the internal standard ($\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}$, TMS: 0.00 ppm). Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{sep}=$ septet, $\mathrm{m}=$ multiplet), coupling constants (Hz) and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-ECA600 $(150 \mathrm{MHz})$ spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance as the internal standard ($\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}$). ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a JEOL JNM-ECA600 $(565 \mathrm{MHz})$ spectrometer. Chemical shifts are reported in ppm from the $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{CF}_{3}(-67.2 \mathrm{ppm})$ resonance as the external standard. Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel $60 \mathrm{GF}_{254}, 0.25 \mathrm{~mm}$). Flash column chromatography was performed on silica gel 60 N (spherical, neutral, $40-50 \mu \mathrm{~m}$; Kanto Chemical Co., Inc.). High resolution mass spectra analysis was performed on a Bruker Daltonics solariX 9.4T FT-ICR-MS spectrometer at the Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University.

Materials: Unless otherwise noted, materials were purchased from Wako Pure Chemical Industries, Ltd., Tokyo Chemical Industry Co., LTD., Aldrich Inc., and other commercial suppliers and were used without purification. Dimethylketene Methyl Trimethylsilyl Acetal (2a) was purchased from Tokyo Chemical Industry Co., LTD. Dichloromethane, tetrahydrofuran, diethyl ether and toluene were supplied from Kanto Chemical Co., Inc. as "Dehydrated solvent system" (water content: dichloromethane $<10 \mathrm{ppm}$; tetrahydrofuran $<10 \mathrm{ppm}$; diethyl ether $<50 \mathrm{ppm}$; toluene $<1 \mathrm{ppm}$). Other solvents were purchased from commercial suppliers as dehydrated solvents, and used under argon atmosphere.

Experimental Procedure

Procedure for Preparation of gem-Difluoroalkenes 1.

Synthesis of gem-Difluoroalkenes 1a-1k. ${ }^{1}$

Synthesis of 1a is representative.
A solution of sodium chlorodifluoroacetate ($4.6 \mathrm{~g}, 30 \mathrm{mmol}$) in DMF (10 mL) was added dropwise to a solution of 2-naphthaldehyde ($3.1 \mathrm{~g}, 20 \mathrm{mmol}$) and triphenylphosphine ($6.3 \mathrm{~g}, 24 \mathrm{mmol}$) in DMF (30 mL) at $100{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at that temperature for 5 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mixture was purified by silica-gel column chromatography (hexane) to provide $\mathbf{1 a}(3.0 \mathrm{~g}, 16 \mathrm{mmol}, 78 \%)$ as a white solid.
$\underline{\text { Synthesis of 11. }{ }^{2}}$
Synthesis of S2.

A mixture of benzophenone $(1.1 \mathrm{~g}, 6.0 \mathrm{mmol})$, hydrazine monohydrate $(2.9 \mathrm{~mL}, 60 \mathrm{mmol})$, and acetic acid (0.10 $\mathrm{mL}, 1.8 \mathrm{mmol}$) was stirred at $100^{\circ} \mathrm{C}$ for 21 h . After cooled to room temperature, solvent and volatile materials were removed under reduced pressure to afford $\mathbf{S} \mathbf{1}(1.2 \mathrm{~g}, 6.0 \mathrm{mmol}$, quant) as a white solid. S1 was used without further purification in the next step.

To a mixture of $\mathbf{S 1}(1.1 \mathrm{~g}, 5.4 \mathrm{mmol})$ and $\mathrm{MgSO}_{4}(0.48 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ was added $\mathrm{MnO}_{2}(1.4 \mathrm{~g}, 16 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was then allowed to warm to room temperature and stirred for 10 h . After filtration followed by concentration under reduced pressure, the residue was purified by silica-gel column chromatography (hexane/AcOEt $=50: 1$ with $5 \% \mathrm{Et}_{3} \mathrm{~N}$) to provide $\mathbf{S} 2(0.59 \mathrm{~g}, 3.1 \mathrm{mmol}, 57 \%)$ as a purple solid.

Synthesis of 11 .

Trimethyl(trifluoromethyl)silane ($1.1 \mathrm{~mL}, 7.5 \mathrm{mmol}$) was added to a mixture of $\mathbf{S} 2(0.59 \mathrm{~g}, 3.1 \mathrm{mmol})$ and NaI

[^0]$(0.18 \mathrm{~g}, 1.2 \mathrm{mmol})$ in THF (31 mL). After stirred at room temperature for 20 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the product was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mixture was purified by silica-gel column chromatography (hexane with $5 \% \mathrm{Et}_{3} \mathrm{~N}$) to provide $1 \mathrm{a}(0.36 \mathrm{~g}, 1.7 \mathrm{mmol}, 55 \%)$ as a colorless oil.

Synthesis of 1m.

To a solution of 2,2,2-trifluoroacetophenone ($2.5 \mathrm{~mL}, 18 \mathrm{mmol}$) and diethyl phosphite ($2.4 \mathrm{~mL}, 19 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ $(25 \mathrm{~mL})$ was added a solution of NaHMDS in THF ($1.9 \mathrm{M}, 11 \mathrm{~mL}, 20 \mathrm{~mL}$) at $0{ }^{\circ} \mathrm{C}$. The resulting solution was allowed to warm to room temperature and stirred at that temperature for 16 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mixture was purified by silica-gel column chromatography (hexane/AcOEt $=3: 2$) to furnish $\mathbf{1 m}(2.0 \mathrm{~g}, 7.0 \mathrm{mmol}, 39 \%)$ as a colorless oil.

General Procedure for Organocatalytic Nucleophilic Substitution of gem-Difluoroalkenes with Ketene Silyl Acetals.

The reaction of $\mathbf{1 a}$ with $\mathbf{2 a}$ is representative (Table 1, entry 1).
To a solution of $\mathbf{1 a}(18 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathbf{2 a}(23 \mu \mathrm{~L}, 0.11 \mathrm{mmol})$ in toluene $(1.0 \mathrm{~mL})$ was added a solution of $\mathrm{P} 4-t \mathrm{Bu}$ in hexane $(0.80 \mathrm{M}, 13 \mu \mathrm{~L}, 0.010 \mathrm{mmol})$. The resulting mixture was stirred at room temperature for 13 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mixture was purified by silica-gel column chromatography (hexane/ $\mathrm{AcOEt}=10: 1$) to provide $\mathbf{3 a a}(23 \mathrm{mg}, 0.096 \mathrm{mmol}, 96 \%)$ as a white solid.

Gram-Scale Synthesis of 3aa

To a solution of $\mathbf{1 a}(2.9 \mathrm{~g}, 15.5 \mathrm{mmol})$ and $\mathbf{2 a}(3.6 \mathrm{~mL}, 17.8 \mathrm{mmol})$ in toluene $(25 \mathrm{~mL})$ was added a solution of $\mathrm{P} 4-t \mathrm{Bu}$ in hexane $(0.80 \mathrm{M}, 0.70 \mathrm{~mL}, 0.56 \mathrm{mmol})$. The resulting mixture was stirred at room temperature for 12 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mixture was purified by silica-gel column chromatography (hexane/AcOEt $=10: 1$) to provide (Z)-3aa ($3.9 \mathrm{~g}, 14.5 \mathrm{mmol}, 93 \%$) as a white solid.

Procedure for Transformation of (Z)-3aa into 8 (Scheme 5a).

To a solution of (Z)-3aa ($1.4 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (8.0 mL) was added dropwise a solution of $\mathrm{LiAlH}_{4}(0.20 \mathrm{~g}, 5.3$ mmol) in THF (16 mL) at $-40^{\circ} \mathrm{C}$. After stirred at that temperature for 1 h , the reaction was quenched with sat. aq. potassium sodium tartrate, and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mixture was purified by silica-gel column chromatography (hexane/ $\mathrm{AcOEt}=4: 1$) to provide $\mathbf{8}(1.1 \mathrm{~g}, 4.7 \mathrm{mmol}, 93 \%)$ as a white solid.

Procedure for Transformation of 8 into 9 (Scheme 5b).

A mixture of $\mathbf{8}(24 \mathrm{mg}, 0.097 \mathrm{mmol})$ and iodine $(0.13 \mathrm{~g}, 0.50 \mathrm{mmol})$ in DMF $(1.0 \mathrm{~mL})$ was stirred at $110^{\circ} \mathrm{C}$ for 3 h . After cooled to room temperature, the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mixture was purified by silica-gel column chromatography (hexane/ $\mathrm{AcOEt}=10: 1$) to provide 9 ($26 \mathrm{mg}, 0.069 \mathrm{mmol}, 71 \%$) as a white solid.

Procedure for Transformation of 3ma into 10 (Scheme 5c).

A mixture of 3ma ($35 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathrm{CsF}(76 \mathrm{mg}, 0.50 \mathrm{mmol})$ in 1,4-dioxane (1.0 mL) was stirred at $70^{\circ} \mathrm{C}$ for 11 h . After cooled to room temperature, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mixture was purified by silica-gel column chromatography (hexane/ $\mathrm{AcOEt}=$ 10:1) to provide $\mathbf{1 0}(21 \mathrm{mg}, 0.087 \mathrm{mmol}, 87 \%)$ as a yellow oil.

Analytical Data

(Z)-Methyl 3-fluoro-2,2-dimethyl-4-(naphthalene-2-yl)but-3-enoate (3aa):

$26 \mathrm{mg}, 96 \%$; white solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.53$ (s, 6H), 3.75 (s, 3 H), $5.84(\mathrm{~d}, J=40.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.5(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}), 46.9(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 52.6,105.4(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 125.9,126.1,126.7(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 127.5,127.8(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}), 127.9,128.0,130.6,132.4,133.4,162.3(\mathrm{~d}, J=266.4 \mathrm{~Hz}), 174.5 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-106.3$ (d, $J=40.1 \mathrm{~Hz}$); IR (ATR): 3057, 2986, 2952, 2851, 1739, 1683, 1630, 1598, 1508, 1255, 1149, 1074, $864 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$295.1105, Found 295.1105; m.p. 62.5-63.5 ${ }^{\circ} \mathrm{C}$.

(Z)-Methyl 4-(4-bromophenyl)-3-fluoro-2,2-dimethylbut-3-enoate (3ba):

$25 \mathrm{mg}, 84 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.48(\mathrm{~s}, 6 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 5.62$ (d, $J=39.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 46.9(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 52.7,104.4(\mathrm{~d}, J=8.2 \mathrm{~Hz})$, $121.0(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 131.5,132.0,162.6(\mathrm{~d}, J=267.2 \mathrm{~Hz}), 174.3 ;{ }^{19} \mathrm{~F}$ NMR $(565 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-105.5(\mathrm{~d}, J=38.2 \mathrm{~Hz}$); IR (ATR): 2990, 2952, 1743, 1687, 1490, 1254, 1195, 1150, 1075, 1011,868 cm^{-1}; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrFO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 323.0053$, Found 323.0054.

(Z)-Methyl 3-fluoro-2,2-dimethyl-4-(4-(trifluoromethyl)phenyl)but-3-enoate (3ca):

$24 \mathrm{mg}, 81 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.51(\mathrm{~s}, 6 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 5.72$ $(\mathrm{d}, J=39.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 46.9(\mathrm{~d}, J=25.8 \mathrm{~Hz}), 52.7,104.3(\mathrm{~d}, J=8.6 \mathrm{~Hz})$ $124.1(\mathrm{q}, ~ J=271.5 \mathrm{~Hz}), 125.3(\mathrm{q}, ~ J=3.6 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 129.0(\mathrm{q}, J=34.5 \mathrm{~Hz}), 136.7,163.7(\mathrm{~d}, J=$ 270.0 Hz), 174.2; ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-103.5$ (d, $J=38.4 \mathrm{~Hz}, 1 \mathrm{~F}$), -62.5 ($\mathrm{s}, 3 \mathrm{~F}$); IR (ATR): 2989, 2957, $1741,1685,1618,1323,1255,1113,1067,1016,864 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~F}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 313.0822$, Found 313.0822.
(Z)-Methyl 4-(4-cyanophenyl)-3-fluoro-2,2-dimethylbut-3-enoate (3da):

$20 \mathrm{mg}, 80 \%$; white crystal; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.50(\mathrm{~s}, 6 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $5.71(\mathrm{~d}, J=38.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.3(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 47.0(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 52.8,104.3(\mathrm{~d}, J=7.1$ $\mathrm{Hz}), 110.4(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 118.9,129.1(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 132.2,137.8,164.6(\mathrm{~d}, J=272.3 \mathrm{~Hz}), 173.9 ;{ }^{19} \mathrm{~F}$ NMR $(565$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-101.3(\mathrm{~d}, J=37.9 \mathrm{~Hz}$); IR (ATR): 2991, 2954, 2914, 2843, 2226, 1743, 1686, 1606, 1507, 1255, 1151, 1078, $870 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 270.0901$, Found 270.0901; m.p. $89.5-90.5^{\circ} \mathrm{C}$.

(Z)-Methyl 4-(3-fluoro-4-(4-methoxycarbonyl)phenyl)-2,2-dimethylbut-3-enoate (3ea):

$20 \mathrm{mg}, 72 \%$; white solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.50(\mathrm{~s}, 6 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}), 5.73(\mathrm{~d}, J=39.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 47.0(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 52.1$, $52.7,104.7(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 128.5,128.6(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 129.7,137.7(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 163.7(\mathrm{~d}, J=270.8 \mathrm{~Hz}), 166.8$, $174.2 ;{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-102.9(\mathrm{~d}, J=37.9 \mathrm{~Hz}$); IR (ATR): 2953, 1745, 1723, 1681, 1610, 1508, 1434, 1281, 1187, 1150, 1111, 1077, $871 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{FO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 303.1003$, Found 303.1003; m.p. 63.5-64.5 ${ }^{\circ} \mathrm{C}$.

Methyl 3-fluoro-4-(4-methoxyphenyl)-2,2-dimethylbut-3-enoate (3fa):

$22 \mathrm{mg}, 89 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (Z)-isomer $\delta 1.48(\mathrm{~s}, 6 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 5.61(\mathrm{~d}, J=40.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), \quad(\boldsymbol{E})$-isomer $\delta 1.38(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $6.30(\mathrm{~d}, J=24.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (Z)-isomer $\delta 23.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 46.7(\mathrm{~d}, J=25.8 \mathrm{~Hz}), 52.5,55.2,104.6(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 113.8,125.8,129.9(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}), 158.6,160.7(\mathrm{~d}, J=264.3 \mathrm{~Hz}), 174.7$, (\boldsymbol{E})-isomer $\delta 24.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 46.1(\mathrm{~d}, J=27.3 \mathrm{~Hz}), 52.0,55.2$, $108.1(\mathrm{~d}, J=31.5 \mathrm{~Hz}), 113.4,125.2(\mathrm{~d}, J=14.4 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 158.6,161.0(\mathrm{~d}, J=249.9 \mathrm{~Hz}), 174.3(\mathrm{~d}$, $J=5.7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{Z})$-isomer $\delta-109.6(\mathrm{~d}, J=40.7 \mathrm{~Hz}),(\boldsymbol{E})$-isomer $\delta-104.6(\mathrm{~d}, J=23.7$ Hz); IR (ATR): 2991, 2953, 2839, 1740, 1609, 1514, 1253, $1149 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$ 275.1054, Found 275.1054.

(Z)-Methyl 3-fluoro-4-(3-fluorophenyl)-2,2-dimethylbut-3-enoate (3ga):

$20 \mathrm{mg}, 83 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.49(\mathrm{~s}, 6 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 5.66$ $(\mathrm{d}, J=39.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (dddd, $J=8.4,8.4,3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$,
7.26-7.30 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 46.9(\mathrm{~d}, J=24.5$ $\mathrm{Hz}), 52.7,104.5(\mathrm{dd}, J=8.6,2.9 \mathrm{~Hz}), 114.1(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 115.4(\mathrm{dd}, J=21.6,10.1 \mathrm{~Hz}), 124.5(\mathrm{dd}, J=7.2,2.9$ $\mathrm{Hz}), 129.7(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 135.2(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 162.8(\mathrm{~d}, J=242.7 \mathrm{~Hz}), 162.9(\mathrm{~d}, J=268.5 \mathrm{~Hz}), 174.3 ;{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.2(\mathrm{~m}),-104.6(\mathrm{~d}, J=38.4 \mathrm{~Hz}$); IR (ATR): 2990, 2954, 1742, 1685, 1615, 1584 , 1445, 1259, 1151, 1075, $862 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$263.0854, Found 263.0854.
(Z)-Methyl 4-(2-chlorophenyl)-3-fluoro-2,2-dimethylbut-3-enoate (3ha):

$23 \mathrm{mg}, 91 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.52(\mathrm{~s}, 6 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 6.11(\mathrm{~d}$, $J=39.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{ddd}, J=7.8,7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.4(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}), 47.1(\mathrm{~d}, J=24.3 \mathrm{~Hz}), 52.6,101.4(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 126.7,128.3,129.4,130.4(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}), 132.9,163.1(\mathrm{~d}, J=269.4 \mathrm{~Hz}), 174.3 ;{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.5$ (d, $J=37.9 \mathrm{~Hz}$); IR (ATR): 3068, 2987, 2952, 2882, 2844, 1739, 1684, 1469, 1439, 1252, 1147, 1076, $870 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClFO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 279.0559$, Found 279.0559.

(Z)-Methyl 3-fluoro-2,2-dimethyl-4-(naphthalen-1-yl)but-3-enoate (3ia):

$24 \mathrm{mg}, 87 \%$; white solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.59(\mathrm{~s}, 6 \mathrm{H}), 3.78$ (s, 3 H), 6.33 $(\mathrm{d}, J=37.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (ddd, $J=8.4,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.52 (ddd, $J=8.4,7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.86(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.5(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 47.0(\mathrm{~d}$, $J=25.8 \mathrm{~Hz}), 52.6,102.1(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 124.1,125.4,125.6,126.0,127.3(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 127.8,128.6,129.2$, $131.4,133.6,162.5(\mathrm{~d}, J=264.3 \mathrm{~Hz}), 174.6 ;{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-107.6(\mathrm{~d}, J=35.6 \mathrm{~Hz}$); IR (ATR): 2987, 2952, 1742, 1688, 1542, 1508, 1261, 1150, 1089, $1072 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 295.1105, Found 295.1105; m.p. 34.5-35.5 ${ }^{\circ} \mathrm{C}$.

(Z)-Methyl 3-fluoro-2,2-dimethyl-4-(thiophen-2-yl)but-3-enoate (3ja):

$19 \mathrm{mg}, 84 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.48(\mathrm{~s}, 6 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 6.01(\mathrm{~d}, J$ $=38.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.3(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 46.4(\mathrm{~d}, J=24.3 \mathrm{~Hz}), 52.7,100.2(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 125.7(\mathrm{~d}, J=8.6 \mathrm{~Hz})$, $126.6(\mathrm{~d}, ~ J=8.6 \mathrm{~Hz}), 126.7(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 135.3(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 160.7(\mathrm{~d}, J=265.7 \mathrm{~Hz}), 174.3 ;{ }^{19} \mathrm{~F}$ NMR (565 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-103.7$ (d, $J=38.4 \mathrm{~Hz}$); IR (ATR): 2986, 2952, 1741, 1682, 1472, 1259, 1149, $865 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$251.0513, Found 251.0512.

(Z)-Methyl 4-(benzofuran-2-yl)-3-fluoro-2,2-dimethylbut-3-enoate (3ka):

$22 \mathrm{mg}, 83 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.51$ ($\mathrm{s}, 6 \mathrm{H}$), 3.75 (s, 3 H), 5.92 $(\mathrm{d}, J=37.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{ddd}, J=7.2,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{ddd}, J=$ $7.2,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 46.7(\mathrm{~d}, J=23.1 \mathrm{~Hz}), 52.8,96.8(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 106.0(\mathrm{~d}, J=$ 11.4 Hz), 110.9, 120.9, 122.9, 124.3, 129.0, 150.2, 153.9, 163.6 (d, $J=271.5 \mathrm{~Hz}$) 174.0 ; ${ }^{19} \mathrm{~F}$ NMR (565 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$-98.1 (d, $J=37.9 \mathrm{~Hz}$); IR (ATR): 2988, 2953, 1742, 1685, 1452, 1258, 1149, 1077, $962,865 \mathrm{~cm}^{-1} ;$ HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$285.0897, Found 285.0897.

Methyl 3-fluoro-2,2-dimethyl-4,4-diphenylbut-3-enoate (3la):

 $28 \mathrm{mg}, 95 \%$; white solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.38(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H})$, 7.17-7.24 (m, 5H), 7.26-7.33 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.1(\mathrm{~d}, J=3.6 \mathrm{~Hz})$, $47.1(\mathrm{~d}, J=28.7 \mathrm{~Hz}), 52.0,121.3(\mathrm{~d}, J=18.8 \mathrm{~Hz}), 127.0,127.6,127.9,128.1,129.4(\mathrm{~d}, J=4.4$ $\mathrm{Hz}), 130.7(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 137.2(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 138.4,157.2(\mathrm{~d}, J=257.7 \mathrm{~Hz}), 174.5(\mathrm{~d}, J=5.7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F} \operatorname{NMR}$ ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-106.9 (s); IR (ATR): 2925, 2854, 1742, 1654, 1494, 1468, 1460, 1388, 1272, 1195, 1150 cm^{-1}; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$321.1261, Found 321.1261; m.p. 76.5-77.5 ${ }^{\circ} \mathrm{C}$.
(E)-Methyl 4-((dimethoxyphosphoryl)oxy)-3-fluoro-2,2-dimethyl-4-phenyl-3-enoate (3ma):

$30 \mathrm{mg}, 87 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.55(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.55(\mathrm{~d}$, $J=11.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 7.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52$
$(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.4(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 45.3(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 52.5,54.7(\mathrm{~d}, J=5.7$ $\mathrm{Hz}), 128.0,128.6(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 129.0,131.3,134.2(\mathrm{dd}, J=50.3,7.2 \mathrm{~Hz}), 154.7(\mathrm{dd}, J=249.9,11.2 \mathrm{~Hz}), 174.5$ (d, $J=4.2 \mathrm{~Hz}$); ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-138.2$ (d, $J=9.6 \mathrm{~Hz}$); IR (ATR): 2990, 2957, 2857, 1739, 1446, 1281, 1135, 1044, 899, $852 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{FO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}$369.0874, Found 369.0874.

(E)-Methyl 4-((diethoxyphosphoryl)oxy)-3-fluoro-2,2-dimethyl-4-phenyl-3-enoate (3ma'):

$31 \mathrm{mg}, 83 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.15$ (td, $J=7.2,1.2 \mathrm{~Hz}, 6 \mathrm{H}$), $1.56(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 6 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{ddq}, J=10.2,7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{ddq}, J=$ $10.2,7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.8(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 23.5(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 45.4(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 52.5$, $64.3(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 127.8,128.7(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 128.8,131.6(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 134.3(\mathrm{dd}, J=48.9,7.2 \mathrm{~Hz}), 154.7$ $(\mathrm{dd}, J=249.9,10.1 \mathrm{~Hz}), 174.5(\mathrm{~d}, J=4.2 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-138.1(\mathrm{~d}, J=6.8 \mathrm{~Hz}) ;$ IR (ATR): 2986, 2952, 1739, 1445, 1273, 1134, 1024, 984, $889 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{FO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}$397.1187, Found 397.1187.

Determination of the Configuration of Alkenylphosphate 3ma

In this substitution reaction, alkenylphosphate 3ma and its analog 3ma' were obtained as a single isomer (Table 2, entry 12, and Scheme S1a). The NOE analysis of those compounds did not give any information about the configuration. Therefore, we attempted the synthesis of a mixture of stereoisomers of $\mathbf{3 m a}$, from ketone $\mathbf{1 0}$ by treating with diethyl chlorophosphate in the presence of $t \mathrm{BuOK}$ or $\mathrm{P} 4-t \mathrm{Bu}$ in DMF or THF (Scheme S1b). However, under these reaction conditions, only the identical isomer of 3ma' was obtained.

Scheme S1.

a)

We assumed that the obtained isomer would be formed from the thermodynamically favored enolate of ketone $\mathbf{1 0}$, and thus compared the Gibbs free energy of (E) - and (Z)-enolates of $\mathbf{1 0}$ by using DFT calculation. As a result, the Gibbs free energy difference $(\Delta \mathrm{G})$ between (E) - and (Z)-enolates was found to be $11.5 \mathrm{kcal} / \mathrm{mol}$, suggesting (E)-enolate would be energetically favored. Based on the experimental evidence and the result of DFT calculation, we concluded the configuration of alkenylphosphate 3ma would be E (Scheme S 2).

Scheme S2.

The geometries were fully optimized using the B3LYP/6-31G(d) methods in gas-phase. A variety of initial structures generated from a series of conformation of enolate were thoroughly explored (Figure S1).

Figure S1.
(E)-enolate

$(E)-1$
(+1.7)

(E)-4
(+1.7)
(Z)-enolate

(Z)-1
(+12.2)

(Z)-4
(+11.5)

$(Z)-2$
$(+11.5)$

$(Z)-5$
$(+13.0)$
(+13.0)

(+0.0)

$(E)-6$
$(+1.0)$

(Z) -3
(+14.6)

(Z)-6
(+12.2)

Complete References of Gaussian 16

Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

Cartesian coordinates

(E) -2

B3LYP/6-31g (d); E(RB3LYP) $=-829.346156$ hartree
Sum of electronic and thermal Free Energies=-829. 146868 hartree Thermal correction to Gibbs Free Energy= 0. 199287 hartree

Center Number	Atomic Number	Atomic Type	Coordinates X (Angstroms)		
1	6	0	4.055967	-0.775655	-0.851187
2	6	0	2.676909	-0.874689	-0.651298
3	6	0	1.984752	0.069088	0.135147
4	6	0	2.748050	1.109310	0.702094
5	6	0	4.123100	1.207759	0.503137
6	6	0	4.793388	0.262377	-0.278014
7	1	0	4.559457	-1.522422	-1.465207
8	1	0	2.133732	-1.687894	-1.110141
9	1	0	2.197452	1.826724	1.301915
10	1	0	4.678798	2.027192	0.959277
11	1	0	5.868526	0.333065	-0.438110
12	6	0	0.492582	0.116464	0.455322
13	8	0	0.098863	1.117891	1.166540
14	6	0	-0.382078	-0.853512	-0.002525
15	9	0	0.084633	-1.942138	-0.737771
16	6	0	-1.872010	-0.842510	0.309131
17	6	0	-2.073728	-0.873358	1.853997
18	1	0	-3.132208	-0.988180	2.108542
19	1	0	-1.482092	-1.710564	2.231126
20	1	0	-1.693004	0.051001	2.305832
21	6	0	-2.531576	-2.117158	-0.301266
22	1	0	-1.938445	-2.968595	0.043131
23	1	0	-3.574807	-2.213142	0.016851
24	1	0	-2.498429	-2.078541	-1.397380
25	6	0	-2.720866	0.336491	-0.182010
26	8	0	-3.927266	0.393372	-0.005107
27	8	0	-2.060012	1.356999	-0.784153
28	6	0	-2.883270	2.447598	-1.195668
29	1	0	-3.399428	2.899218	-0.342681
30	1	0	-2.203403	3.168671	-1.653525
31	1	0	-3.637858	2.123397	-1.919089

(E) -3

B3LYP/6-31g (d); E(RB3LYP) $=-829.346156$ hartree
Sum of electronic and thermal Free Energies=-829. 146867 hartree Thermal correction to Gibbs Free Energy= 0.199289 hartree

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	-4. 090878	-0.877768	-0.596133
2	6	0	-2. 706922	-0. 983441	-0. 437823
3	6	0	-1. 956011	0. 066141	0. 130335
4	6	0	-2. 666966	1. 215837	0. 528905
5	6	0	-4. 046770	1. 321334	0. 370635
6	6	0	-4. 775167	0. 271817	-0.196092
7	1	0	-4. 640610	-1. 708397	-1. 038890
8	1	0	-2. 206451	-1.886707	-0.754871
9	1	0	-2. 072247	2. 011474	0. 965825
10	1	0	-4. 560712	2. 227691	0. 691126
11	1	0	-5. 854430	0. 347166	-0. 322840
12	6	0	-0. 450534	0. 120964	0. 379045
13	8	0	-0.012125	1. 186430	0. 958944
14	6	0	0. 386897	-0.918200	0. 012497
15	9	0	-0.116687	-2.038943	-0.646177
16	6	0	1. 892560	-0. 889647	0. 234552
17	6	0	2. 560422	-2. 000081	-0.630980
18	1	0	3. 627676	-2. 085565	-0. 402904
19	1	0	2. 032017	-2.930293	-0.410373
20	1	0	2. 437063	-1. 776429	-1.697895
21	6	0	2. 193733	-1. 184874	1. 736043
22	1	0	1. 652261	-2. 101008	1. 986769
23	1	0	3. 268306	-1. 306580	1. 906995
24	1	0	1. 825504	-0.367560	2. 368863
25	6	0	2. 663930	0. 393885	-0.096137
26	8	0	3. 864575	0.503816	0. 094386
27	8	0	1. 958075	1. 401434	-0.668287
28	6	0	2. 720866	2. 563929	-0.989622
29	1	0	3. 520600	2. 330247	-1.699400
30	1	0	2. 010894	3. 263981	-1. 434218
31	1	0	3. 175154	2. 999647	-0.094289

(Z) -2

B3LYP/6-31g (d) ; E (RB3LYP) $=-829.327938$ hartree
Sum of electronic and thermal Free Energies= -829. 128546 hartree Thermal correction to Gibbs Free Energy= 0. 199392 hartree

| Center
 Number | Atomic
 Number | Atomic
 Type | Coordinates (Angstroms) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6 | 0 | -2.672550 | -1.895614 | -0.404933 |
| 2 | 6 | 0 | -1.615534 | -1.003547 | -0.613921 |
| 3 | 6 | 0 | -1.737081 | 0.358025 | -0.296463 |

4	6	0	-2.974774	0.804723	0.196613
5	6	0	-4.025661	-0.080387	0.424838
6	6	0	-3.880258	-1.441104	0.125900
7	1	0	-2.555104	-2.946085	-0.668727
8	1	0	-0.680270	-1.349267	-1.046814
9	1	0	-3.090144	1.869577	0.378509
10	1	0	-4.968317	0.287876	0.828044
11	1	0	-4.705148	-2.132322	0.290703
12	6	0	-0.675004	1.392800	-0.623990
13	8	0	-1.095780	2.379285	-1.304223
14	6	0	0.653414	1.145697	-0.285533
15	9	0	1.550547	2.123179	-0.775275
16	6	0	1.363391	0.448867	0.855411
17	6	0	0.363458	0.075982	1.976296
18	1	0	0.819798	-0.561845	2.744586
19	1	0	-0.002719	0.996285	2.444825
20	1	0	-0.488163	-0.458931	1.549192
21	6	0	2.563317	1.198109	1.474239
22	1	0	2.234885	2.102157	1.991198
23	1	0	3.061715	0.551401	2.209391
24	1	0	3.290408	1.488485	0.713014
25	6	0	1.918603	-0.876330	0.285634
26	8	0	1.606786	-2.000243	0.630076
27	8	0	2.850581	-0.663727	-0.682602
28	6	0	3.349735	-1.840863	-1.309015
29	1	0	2.539032	-2.402403	-1.783882
30	1	0	4.061685	-1.497145	-2.062843
31	1	0	3.848387	-2.497064	-0.586191

(Z) -4

B3LYP $/ 6-31 \mathrm{~g}(\mathrm{~d}) ;$ E(RB3LYP) $=-829.343199$ hartree
Sum of electronic and thermal Free Energies= 0.199027 hartree
Thermal correction to Gibbs Free Energy $=-829.144172$ hartree

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	-3. 605116	-1. 337235	-0.573437
2	6	0	-2. 409041	-0.677536	-0.875010
3	6	0	-1.970167	0. 419043	-0. 117161
4	6	0	-2. 797466	0. 861854	0. 928804
5	6	0	-3. 980388	0. 198999	1. 246903
6	6	0	-4. 392421	-0.909474	0. 496186
7	1	0	-3. 927589	-2. 180219	-1. 183567
8	1	0	-1.803209	-0.994134	-1.720214
9	1	0	-2. 490730	1. 751420	1. 471845
10	1	0	-4. 593387	0. 549484	2. 076472
11	1	0	-5. 323687	-1. 420639	0. 734597
12	6	0	-0. 753737	1. 253573	-0. 477572
13	8	0	-0.985005	2. 497407	-0.588538
14	6	0	0. 451018	0. 620613	-0.774614
15	9	0	1. 455079	1. 506223	-1. 230380
16	6	0	1. 167103	-0.619203	-0.283215
17	6	0	1. 768262	-1.410672	-1. 469585
18	1	0	2. 419601	-2. 228862	-1. 135424
19	1	0	0. 950434	-1.825062	-2. 069585
20	1	0	2. 357040	-0.740643	-2. 100625
21	6	0	0.343612	-1.579382	0. 602253
22	1	0	-0. 457901	-2. 049268	0. 028492
23	1	0	0.995322	-2. 376169	0. 986291
24	1	0	-0. 107145	-1.056923	1. 448598
25	6	0	2. 351824	-0.130808	0. 581053
26	8	0	2. 281528	0. 526089	1. 602129
27	8	0	3. 551120	-0. 510970	0. 062949
28	6	0	4. 686025	-0. 162889	0. 849097
29	1	0	4. 625053	-0.617562	1. 842889
30	1	0	5. 552132	-0. 552364	0. 309246
31	1	0	4. 770161	0. 923418	0. 969870

(Z)-Methyl 1-(1-fluoro-2-(naphthalen-2-yl)vinyl)cyclohexanecarboxylate (3ab):

$18 \mathrm{mg}, 58 \%$; white solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.38-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.58$ $(\mathrm{m}, 3 \mathrm{H}), 1.66-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.88(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.28(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 5.83$ $(\mathrm{d}, J=40.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.80(\mathrm{~m}$, $3 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.7,25.5,31.6$ (d, $J=2.9 \mathrm{~Hz}$), 51.5 $(\mathrm{d}, J=23.0 \mathrm{~Hz}), 52.5,106.9(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 125.9,126.1,126.7(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 127.5,127.7(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 127.9$, $128.0,130.8,132.4,133.4,161.1(\mathrm{~d}, J=270.0 \mathrm{~Hz}), 173.5 ;{ }^{19} \mathrm{~F}$ NMR ($\left.565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-108.3(\mathrm{~d}, J=40.7 \mathrm{~Hz})$; IR (ATR): $3058,2940,2860,1735,1677,1454,1311,1222,1132,1016 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{FO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 335.1418$, Found 335.1418; m.p. 67.5-68.5 ${ }^{\circ} \mathrm{C}$.

(Z)-Methyl 3-fluoro-2-methyl-4-(naphthalen-2-yl)-2-phenoxybut-3-enoate (3ac):

$22 \mathrm{mg}, 62 \%$; green oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.79(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 6.26$ $(\mathrm{d}, J=39.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=$ $8.4,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.83(\mathrm{~m}, 3 \mathrm{H})$, $7.97(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.8,53.2,81.6(\mathrm{~d}, J=30.2 \mathrm{~Hz}), 108.5(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 121.3,123.9$, $126.25,126.31,126.7(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 127.5,128.1,128.2,128.5(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 129.3,129.7(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 132.7$, 133.3, 154.1, $156.7(\mathrm{~d}, J=267.2 \mathrm{~Hz}), 170.6 ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-113.6(\mathrm{~d}, J=40.7 \mathrm{~Hz})$; IR (ATR): 3059, 2952, 1693, 1656, 1595, 1489, 1455, 1285, 1223, $1116 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$ 373.1210, Found 373.1211.
(Z)-3-Fluoro-2-methyl-4-(naphthalen-2-yl)-2-phenylbut-3-enenitrile (5):

$7.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.8,45.7(\mathrm{~d}, J=30.5 \mathrm{~Hz}), 108.4(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 120.3(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 126.2$, 126.3 (d, J, 7.2 Hz), 126.4, 126.5, 127.6, 128.1, 128.2, 128.5 (d, $J=7.2 \mathrm{~Hz}$), 128.8, 129.2, 129.3 (d, $J=3.0 \mathrm{~Hz}$), $132.8,133.2,136.8,156.5(\mathrm{~d}, J=268.7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.9$ (d, $J=38.4 \mathrm{~Hz}$); IR (ATR): 3060, 2998, 1683, 1599, 1505, 1495, 1448, 1377, 1367, 1062, $901 \mathrm{~cm}^{-1}$; HRMS (APCI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{FN}$ $[\mathrm{M}+\mathrm{Na}]^{+} 324.1159$, Found 324.1159 ; m.p. $92.5-93.5^{\circ} \mathrm{C}$.

(E)-2-Fluoro-3-(naphthalen-2-yl)acrylonitrile (7):

 $J=7.2,7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{ddd}, J=7.8,7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 112.7(\mathrm{~d}, J=47.4 \mathrm{~Hz}), 124.1,125.5(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 126.2(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 127.0,127.7,127.8,128.4$, $129.1,129.5(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=237.0 \mathrm{~Hz}), 133.0,134.0 ;{ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-121.9(\mathrm{~d}, J=$ 17.0 Hz); IR (ATR): 3063, 3031, 2925, 2857, 2224, 1454, 1362, 1274, 1185, 1142, 1071, 912, $818 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FN}[\mathrm{M}]^{+}$197.0635, Found 197.0635; m.p. 87.5-88.5 ${ }^{\circ} \mathrm{C}$.

(Z)-3-Fluoro-2,2-dimethyl-4-(naphthalen-2-yl)but-3-en-1-ol (8):

$23 \mathrm{mg}, 93 \%$; white solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.26(\mathrm{~s}, 6 \mathrm{H}), 1.50(\mathrm{br}, 1 \mathrm{H})$, $3.62(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~d}, J=41.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{dd}, J=7.2$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.3(\mathrm{~d}, J$ $=2.1 \mathrm{~Hz}), 41.4(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 69.1,106.0(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 125.8,126.1,126.7(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 127.50,127.52(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}), 127.9,128.0,131.0,132.3,133.4,164.6(\mathrm{~d}, J=267.2 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-110.5(\mathrm{~d}, J$ $=42.9 \mathrm{~Hz}$); IR (ATR): 3280, 3055, 2973, 2935, 2877, 2368, 2340, 1506, 1464, 1392, 1362, 1317, 1055, 898, 857, $827 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FO}[\mathrm{M}+\mathrm{Na}]^{+}$267.1156, Found 267.1155; m.p. 99.5-100.5 ${ }^{\circ} \mathrm{C}$.

($2 R^{*}, 3 S^{*}$)-3-Fluoro-3-iodo-4,4-dimethyl-2-(naphthalen-2-yl)tetrahydrofuran (9):

$26 \mathrm{mg}, 71 \%$; white solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=27.6 \mathrm{~Hz}, 1 \mathrm{H}) 7.48-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 18.2(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 30.0(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 50.0(\mathrm{~d}, J=17.3 \mathrm{~Hz}) 75.4,89.6(\mathrm{~d}, J=20.1 \mathrm{~Hz}), 101.6(\mathrm{~d}, J=$ 265.7 Hz), 126.0, 126.17, 126.19, 127.5, 127.7, 128.2 (2C), 132.0 (d, $J=2.9 \mathrm{~Hz}$), 132.9, 133.6; ${ }^{19} \mathrm{~F}$ NMR (565 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-118.4(\mathrm{~d}, J=26.0 \mathrm{~Hz}$); IR (ATR): 3056, 2972, 2937, 2878, 1603, 1509, 1466, 1393, 1371, 1055 cm^{-1}; HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FIO}[\mathrm{M}+\mathrm{Na}]^{+}$393.0122, Found 393.0122; m.p. 149.5-150.5 ${ }^{\circ} \mathrm{C}$.

Figure S2. ORTEP diagram of 9. CCDC No. 1890181. Recrystallization from $\mathrm{CH}_{3} \mathrm{CN} /$ ethanol.

Methyl 3-fluoro-2,2-dimethyl-4-oxo-4-phenylbutanoate (10):

$25 \mathrm{mg}, 87 \%$; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 5.74(\mathrm{~d}, J=46.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.4,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.1(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 23.0$ $(\mathrm{d}, J=4.2 \mathrm{~Hz}), 45.6(\mathrm{~d}, J=20.1 \mathrm{~Hz}), 52.2,96.2(\mathrm{~d}, J=188.3 \mathrm{~Hz}), 128.5,129.3(\mathrm{~d}, J=4.4 \mathrm{~Hz}) 133.7,135.6,175.0$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}), 195.7(\mathrm{~d}, J=21.6 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($\left.565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-194.0(\mathrm{~d}, J=47.5 \mathrm{~Hz}$); IR (ATR): 3063, 2989, 2952, 2882, 1741, 1697, 1598, 1449, 1272, 1250, 1155, 1136, $1034 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{FO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}$261.0897, Found 261.0897.

[^0]: ${ }^{1}$ Sakaguchi, H.; Uetake, Y.; Ohashi, M.; Niwa, T.; Ogoshi, S.; Hosoya, T. J. Am. Chem. Soc. 2017, 139, 12855.
 ${ }^{2}$ Tang, H.-J.; Lin, L.-Z.; Feng, C.; Loh, T.-P. Angew. Chem., Int. Ed. 2017, 56, 9872.

