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Introduction 

Making decisions under uncertainty based on limited data is important and challenging.            
Decision theory provides a framework to reduce risks of decisions under uncertainty with             
typical frequentist test statistics being examples for controlling errors, e.g., Dudley (2003) or             
Rüschendorf (2014). This strong theoretical framework is mainly applicable to comparatively           
simple problems. For more complex problems and/or if there is only limited data, it is often                
not clear how to apply the strong framework to the actual problem at hand (e.g., Altonji,                
1996). In practice, careful iterative model building and checking seems to be the best what               
can be done - be it using Bayesian methods or applying frequentist approaches that were               
established for simpler problems or for the limit of large samples. 
 
This manuscript aims at expanding the armory for decision making under uncertainty with             
complex models, focusing on trying to expand the reach of decision theoretic, frequentist             
methods. In prior work (Bartels, 2015), an efficient integration method was re-evaluated for             
repeated calculation of statistical integrals for a set of of hypotheses (e.g., p-values,             
confidence intervals). Key to the method was the use of importance sampling. Subsequently,             
pointwise mutual information was proposed as an efficient test statistics and shown to be              
optimal under certain conditions. Here, proposals are made for optimal frequentist test            
statistics that can take into account prior knowledge. 

Proposal 

Essentially, it is re-proposed to use the Bayesian posterior distributions or alternatively and             
with the same result the pointwise mutual information as optimal frequentist test statistic​s.             
The resulting statistics give optimal equalizer (and thus minimax) decision rules with the             
same risk of erroneous decisions for all values of the parameter. Prior knowledge             
differentiating potential losses for different decisions is taken into account. Key to the             
derivation of these results is a change of perspective. Usually, one would postulate ​some              
loss function, and then try to determine the prior that gives a minimax rule (e.g., Dudley,                
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2003 or Rüschendorf, 2014). Here, the prior is assumed to be informative, e.g., to result from                
an evaluation process that is part of careful iterative model building (e.g., Gelman, 2014).              
The informative prior is then used to derive a loss function, such that the corresponding               
decision rule is an optimal equalizer rule. With both perspectives external knowledge has to              
be used to inform the decision process. Either the external knowledge is used to select a                
loss function, or it is used to select a prior. Having selected either the prior or the loss                  
function, the other is determined via an optimization of the resulting decision function. The              
change of perspective, pre-specifying the prior rather than the loss function, has the             
advantage of simplifying and rendering possible the required calculations, which otherwise           
would remain elusive. 
The proposed approach is positioned within decision theory (e.g., Dudley, 2003 or            
Rüschendorf, 2014; see also appendix). In decision theory, there is a measurable space of              
decisions called the decision space. A decision set that associates        δ (x, )d ∈ 0,[ 1]    
observation with decisions The rule expressed by the decision set says that if is x    .d            x   
observed, then the action should should be considered as a possible option with    d           
probability ; if , the decision should not be considered anymore; if δ (x, )d   δ (x, )d = 0    d        

, the decision should be considered as an option. In what follows, the decisionδ (x, )d = 1    d             
space is chosen to be the set of all possible parameters , and the decision rule,           θ = (μ, )σ      

, says whether or not parameters should still be considered as possibleδ (x, , )μ σ ∈ 0,[ 1]             
after having observed x. Other possible choices for the decision space are not considered              
here. 

Optimal decision sets  

Decision sets are considered that maintain the risk at or below a pre-specified level and               
have the smallest possible size (similar to Schafer, 2009). Typical examples are 95%             
confidence intervals or sets that maintain the risk of not including the true value of the                
parameter at or below 5%.  
Here, the risk for given parameters,  and , is given byμ σ  

νRμ,σ = ∫
 

 
l (x, , )μ σ {1 }− δ (x, , )μ σ f (x, , )μ σ d (x)  

Using as reference the total risk that does not depend on the decision set 

νTRμ,σ = ∫
 

 
l (x, , )μ σ f (x, , )μ σ d (x)  

this gives 

.νRμ,σ = TRμ,σ − ∫
 

 
l (x, , )μ σ δ (x, , )μ σ f (x, , )μ σ d (x)  

The size of the decision set is 

νSμ,σ = ∫
 

 
δ (x, , )μ σ d (x)  

To reduce the size of a decision for a given risk, data, , must preferentially be included in            x       
the decision set,  for which  is large.δ (x, , )μ σ l (x, , )μ σ f (x, , )μ σ  
If no nuisance parameters need to be eliminated, decision sets can be defined for each               
value of the parameters and may be adjusted to maintain the risk at a pre-specified limit.                



 

Such decision sets are referred to as equalizer rules since they have equal risk independent               
of the values of the parameters. 

Correspondence between prior distribution and loss function 

Two cases are considered to establish a correspondence between prior information encoded            
in a loss function and prior information encoded in an informative prior distribution. The first               
case considers an informative loss function together with a noninformative reference prior.            
The second case considers a non-informative 0-1 loss function together with an informative             
prior. Both cases consider the same conditional likelihood of the data given the parameters.              
For case 1, let denote the informative loss function, and the    l1 (x, , )μ σ        πd 1 (μ, )σ   
noninformative reference prior with and being the corresponding marginal    νd 1 (x)   f 1 (x, , )μ σ      
measures of the data and the pointwise mutual information, respectively. For case 2, the              
loss function is noninformative and equal to 1 for all combinations of parameters and data,               
and is the informative prior with corresponding and . This gives πd 2 (μ, )σ        νd 2 (x)   f 2 (x, , )μ σ    
for the two cases the risks 

 andνR1,μ,σ = ∫
 

 
l1 (x, , )μ σ {1 }− δ (x, , )μ σ f 1 (x, , )μ σ d 1 (x)   

.νR2,μ,σ = ∫
 

 
{1 }− δ (x, , )μ σ f 2 (x, , )μ σ d 2 (x)  

The same likelihood is used for both cases, implying 
,ν ν Pf 1 (x, , )μ σ d 1 (x) = f 2 (x, , )μ σ d 2 (x) = d μ,σ (x)  

and both expressions for the risks use the same probability measure for the integration.              
From optimality considerations above, optimal decision functions are constructed for any           
value of the parameters, by preferentially including data, , in the decision set,    ,μ σ      x      

for which is large. For case 1, data is included for whichδ (x, , )μ σ    l (x, , )μ σ f (x, , )μ σ            
is large. For case 2, data is included for which is large. Thel1 (x, , )μ σ f 1 (x, , )μ σ            f 2 (x, , )μ σ     

two cases include the same data preferentially in the decision set, if 
.l1 (x, , )μ σ f 1 (x, , )μ σ = f 2 (x, , )μ σ  

Substituting  by  using the equivalence of the likelihood, it follows thatf 1 (x, , )μ σ f 2 (x, , )μ σ  

l1 (x, , )μ σ = dν (x)2

dν (x)1  

Thus the informative prior defines a non-uniform loss function that depends on the data, .x  
In general, the risks and will be different for any given decision set .    R1,μ,σ   R2,μ,σ          δ (x, , )μ σ  
However, for any one given optimal decision set, , the risks can be made equal        δopt (x, , )μ σ        
by scaling the loss function with an appropriate constant . The resulting expression of         l1 (μ, )σ      

the loss function is .ll1 (x, , )μ σ = dν (x)2

dν (x)1
1 (μ, )σ  

Illustration 

The following examples illustrate the effect of using informative priors on the resulting             
decision rules. To facilitate illustration, a one-dimensional problem with known closed form            
solutions for the likelihood and the posteriors has been chosen: the data is assumed to be                
generated from a normal distribution with unknown mean, , and known standard deviation,        μ      

. I.e., numbers, , are drawn from a normal distribution . Firstσtrue   0n = 1   xi        N (μ, )σtrue   



 

confidence intervals (CI) are derived using a non-informative prior resulting in CI as they are               
usually defined . 1

The usual definition for this example of confidence intervals with a coverage of C (e.g.               
C=95%) is the central part of the normal distribution with mean, , standard     x ± z*

√n
σtrue       x   

deviation, , and the coverage C defining the critical value via . Or, √n
σtrue          z*   (y, )dy∫

+z*

y=−z*
N 0 = C   

written as a set  
x  CI  ∀ x = μ | { x| − μ| < z*

√n
σtrue}  

Non-informative loss function 

The same confidence interval is obtained with the proposed optimal decision rule using a              
non-informative, improper prior ( being the Lebesgue measure of the mean   π μd (μ) = d  μd         
parameter). With this prior, the marginal distribution of the observations is equal to the          νd (x)      
Lebesgue measure of the sufficiency statistics , and the conditional posterior probability  xd      x       

of the parameters given some data, , is equal to .      πf (x, , )μ σ d (μ, )σ     μ  N μ, ,( x √n
σtrue) d  

Independent of the prior, the conditional likelihood is equal to the normal       νf (x, , )μ σ d (x)       

distribution . The conditional posterior probability is used as test statistics to x  N x, ,( μ √n
σtrue) d            

select the data to be included by preference into the decision set. Data should be included                
by preference for which the test statistics is large, i.e., decision rules 

, if δz′ (x, )μ = 1 μ| − x| < z′  
, if δz′ (x, )μ = 0 μ| − x| ≥ z′  

are considered with being the parameter that specifies the size of the decision set. The   z′              

size, , is fixed to give the desired coverage .z′ = z*
√n

σtrue (μ , , ) dx∫
μ+z′

x=μ−z′
N − x 0 √n

σtrue = C   

Thus, the decision sets, areDSμ  

.μ  DS  ∀ μ = x | { x| − μ| < z*
√n

σtrue}  

This holds for any given , and may be written as a set of     μ          (x, ) | { μ  x| − μ| < z*
√n

σtrue}  

parameters, , and data, , included by the decision rule. Changing perspective, and μ    x          
looking at parameters included in the set for each value of the data, , gives the confidence             x     
intervals 

.x  CI  ∀ x = μ | { x| − μ| < z*
√n

σtrue}  

The decision sets and the confidence intervals are illustrated in Fig. 1. The decision sets,               
, defined to guarantee the desired coverage are shown as black lines. The yellow linesDSμ                

indicate the usual CI, . The two red arrows illustrate two CI’s defined as the    x ± z*
√n

σtrue            
parameters included in the decision sets for any given value, , of the data. The figure is          x        
entitled as being based on a non-informative loss function to emphasize that no prior              
information was used to differentiate different parameters. 

1 http://www.stat.yale.edu/Courses/1997-98/101/confint.htm 



 

Figure 1. Decision sets and confidence interval based on non-informative loss                     

function 

 

Informative loss function 

Confidence intervals with the same coverage can be derived for the same example using              
informative priors. As example, the prior is used, with .      π μ  d (μ) = N μ, ,( 0 sprior) d     .5sprior = 0  

Independent of the prior, the conditional likelihood is equal to the normal       νf (x, , )μ σ d (x)       

distribution . The conditional posterior probability of the parameters given x  N x, ,( μ √n
σtrue) d          

some data, , is equal to . The central value and the  πf (x, , )μ σ d (μ, )σ     μ  N μ, ,( mpost spost) d       

standard deviation of the posterior distribution are given by  

 spost = √ 1/s /σ( 2
prior + n 2

true)
−1

 

 with xmpost = α α = σ2
true

n×s2post  

The conditional posterior probability is used as test statistics to select the data to be included                
by preference into the decision set. Data should be included by preference for which the test                
statistics is large, i.e., decision rules 

, if δz′ (x, )μ = 1 μ x| − α | < z′  
, if δz′ (x, )μ = 0 μ x| − α | ≥ z′  

are considered with being the parameter that specifies the size of the decision set. The   z′              

size, , is fixed to give the desired coverage .z′ (μ , , ) dx∫
μ/α+z′

x=μ/α−z′
N − x 0 √n

σtrue = C   



 

The decision sets for fixed values of the parameter are illustrated in Figure 2 as black         μ         
lines. For equal to 0, the decision set is the same as the one derived for the case with an  μ                    
uninformative prior that is indicated by the yellow lines. For parameters smaller than 0, the           μ      
decision set starts and ends at smaller (more negative) values of than for the case with an           x        
uninformative prior. For parameters larger than 0, the decision set starts and ends at    μ            
larger values of than for the case with an uninformative prior. As a result, the CI at equal   x                x  
to 0 (red arrow) is smaller than the CI obtained with with an uninformative prior and does not                  
extend out to the yellow lines. At different from 0, the CI get larger and start to extend       x             
beyond one of the limits of the CI obtained with an uninformative prior. 

Figure 2. Decision sets and confidence interval based on an informative loss                       

function 

 
To evaluate the impact of the informative prior, one can evaluate the decisions that are               
taken, if the CI intervals would be used to test against the null hypothesis of the mean                 μ  
being equal to 1. If observations are made that have a high probability based on the prior,                 
i.e., close to zero, the confidence intervals based on the informative prior have a higher               
power to reject the null hypothesis than the CI intervals obtained with the non-informative              
loss function. If observations are made that have a lower probability based on the prior, e.g.,                

being equal to 2, then the confidence intervals based on the informative prior have a lowerx                  
power to reject the null hypothesis than the CI intervals obtained with the non-informative              
loss function. This illustrates how prior information may be used to set up decision functions               
with improved power. 



 

Bayesian excursion 

For completeness, Bayesian decision sets derived with the same optimality criteria and the             
same informative prior are presented in this section. The resulting credible intervals are             
consistent with the confidence intervals in that the same criterion is used to include decisions               
into the decision set. The question being asked is different, and the credible intervals are               
neither identical to the confidence intervals nor do they give guarantees on type I errors of                
decisions. The credible intervals are helpful in that they make statements about hypothetical             
objects that cannot be observed - the true value of the parameters. In the limit of a large                  
number of observations, confidence and credible intervals as defined here and as evaluated             
in detail by Evans (2016) are identical. 
Bayesian decision sets fix the coverage for integrals over parameters, ,          μ  N μ, x,( α spost) d  

given some observation, , and use the likelihood function, , as test function.   x       x  N x, ,( μ √n
σtrue) d     

The resulting Bayesian credible intervals are defined by the integrals  

 or (μ x, , ) dμ∫
x+z′

μ=x−z′
N − α 0 spost = C (μ, x, ) dμ∫

x+z′

μ=x−z′
N α spost = C  

The Bayesian decision sets are illustrated in Fig. 3 using red lines and compared to the                
corresponding frequentist decision sets illustrated by black lines. At or equal to 0, the         x   μ      
intervals coincide. At other values, the intervals and the regions covered by the two sets are                
similar but differ. 

Figure 3. Comparison of frequentist and Bayesian confidence and credible                   

intervals based on the same informative loss function 

 



 

Discussion 

Making decisions under uncertainty based on limited data is important and challenging.            
Combining the sampling scheme proposed in (Bartles, 2015) with the use of prior             
information as proposed here gives a method with a series of desired properties: 

- Generic: The approach is generic in that confidence intervals, credible intervals or            
p-values can be determined for any problem at hand as long as the likelihood              
function is defined 

- Practicable: even though the method relies on numerical evaluation of integrals via            
sampling, which inherently requires some computational resources, use of         
importance resampling lessens the computational burden sufficiently for it to be           
implemented and used on commonly available hardware. 

- Prior knowledge: an approach is proposed to use prior information for decision            
making within a frequentist framework. Use of prior information encoded as           
informative loss functions is an inherent part of decision theory. Translating this            
theoretical possibility into an implementation of an optimal frequentist decision          
method given informative loss functions is however at least challenging and tends not             
be done in practice.  

- Optimal: the confidence intervals and credible intervals are optimal in a sense similar             
to Stark and colleagues (Schafer, 2009) in that they have the smallest average size              
for any given coverage. Also, using the posterior distribution is equivalent to using             
the pointwise mutual information as test statistics. The latter can also be used as an               
optimal test statistics for Bayesian set selection and has been illustrated here for the              
simple example at hand. The pointwise mutual information is referred to as relative             
belief by Evans (2016) and argued to be an optimal measure of statistical evidence. 

- Exact: the approach is exact and does not rely on large sample approximations. Even              
if there is only very limited data, intervals to support the decisions will have the               
correct coverage. 

- Consistent: the approach gives confidence intervals and credible intervals that are           
consistent with each other in that the same criterion is used to prioritize inclusion of               
parameters or data into the decision sets. For both questions, confidence intervals            
and credible intervals, the pointwise mutual information is used as criterion.  

An important limitation of the proposed approach is that the decision space is set equal to                
the space of the possible parameters. Other choices are not discussed. Also, it has not been                
described how to handle nuisance parameters. In principle, this can be handled via an              
integrated likelihood approach. Integrating the joint distribution over the nuisance parameters           
gives a joint distribution without nuisance parameters from which the corresponding           
conditional or marginal distributions may be derived. 

Conclusions 

An approach for frequentist decisions making has been presented that takes into account             
prior knowledge on the decision to be taken. The approach has been positioned within              
decision theory (e.g., Dudley, 2003; Rüschendorf, 2014). The approach limits type I errors             
and confidence intervals have the correct coverage. The approach makes optimal decisions            
given an informative loss function with the loss function being encoded via the specification              



 

of a prior distribution on the parameters. Taking into account appropriate prior information             
may increase the power of frequentist tests.  
Given the prior, the posterior distribution is used as test statistics to define observations to               
be included by preference into the decision sets, and the size of the decision sets is adjusted                 
to give the desired frequentist coverage. Nuisance parameters could be handled by            
integrating them out.  
The approach has been illustrated with a simple example taking advantage of simple closed              
form solutions that exist for this example. The illustration focused on exemplifying the effect              
of using prior information - confidence intervals got smaller for observations that were             
consistent with the prior information. The proposed approach can also be implemented using             
numerical integration methods (Bartels 2015). As such the approach is generic and can be              
applied whenever a likelihood function is defined. 
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Appendix 

Nomenclature 

Parameters and observations 

Set selection and interval selection are considered. The parameter of interest is , e.g., the            μ    
mean of a normal distribution or a discrete variable differentiating between two or more              
alternative hypotheses. Nuisance parameters are denoted by . Observations are denoted       σ     
by , and the actually observed data by .x x0   

Probability distributions 

The joint probability of the parameters and the observations, , is assumed to exist,         Pd (x, , )μ σ      
and to be factorizable into the product of the marginal distribution of the observations, ,              νd (x)  

http://hdl.handle.net/1721.1/103814


 

the marginal distribution of the parameters, , and the pointwise mutual information      πd (μ, )σ       
. This notation is special in that the marginal distribution of the observations is usedf (x, , )μ σ                

as reference measure. This results in simple, symmetric expressions for the different            
distributions: 

●  - joint distribution ν πf (x, , )μ σ d (x) d (μ, )σ Pd (x, , )μ σ  
●  - conditional likelihood of the observations given the parametersνf (x, , )μ σ d (x)  
● - conditional posterior probability of the parameters given someπf (x, , )μ σ d (μ, )σ           

data 

Decision Theory 

The proposed approach is positioned within decision theory (e.g., Dudley, 2003 or            
Rüschendorf, 2014). In decision theory, there is a measurable space of decisions called the              
decision space. A decision set that associates observation with decisions     δ (x, )d ∈ 0,[ 1]     x    

The rule expressed by the decision set says that if is observed, then the action.d            x       d  
should should be considered as a possible option with probability ; if , the          δ (x, )d   δ (x, )d = 0   
decision should not be considered anymore; if , the decision should be d        δ (x, )d = 1    d    
considered as an option. In what follows, the decision space is chosen to be the set of all                  
possible parameters , and the decision rule, , says whether or not  θ = (μ, )σ      δ (x, , )μ σ ∈ 0,[ 1]      
parameters should still be considered as possible after having observed x. 

Decision functions into the space of possible parameters 

Decisions are made on the associations of outcomes with model parameters: Should a             
parameter or hypothesis be considered still as possible after having observed the data ?             x0  
Nuisance parameters are considered as parameters that are required to fully specify the             
model but that are not of interest for the decision. A special case of this setup are hypothesis                  
tests where the parameter of interest is a binary indicator that distinguishes between two              
disjunct sets of the values of nuisance parameters with the disjunct sets referred to as               
hypotheses. Decision functions, are use to denote the association with 0   δ (x, , )μ σ ∈ 0,[ 1]          
indicating that the particular association should not anymore be considered, 1 indicating that             
the association should still be considered. Values between 0 and 1 may be used and are                
often more of theoretical and the practical relevance; they indicate that a random experiment              
should be carried out that accepts the association with a probability equal to the value               

.δ (x, , )μ σ  
If is handled as nuisance parameter, the decision function may not depend on it, σ               

. Associations are made between the parameter of interest, , and theδ (x, , )μ σ ≡ δ (x, )μ          μ    
observations irrespective of the value of the nuisance parameter which is neither known nor              
of interest. 

Losses, risks and sizes 

Identification of optimal decision functions requires, as input, information on the value of             
different correct or wrong decisions. Commonly, losses of wrong decisions, , are          l (x, , )μ σ   
considered. 
With these definitions risk can be defined as integrals of the probability of making certain               
decisions and their associated loss. E.g., assuming that the parameter values and           μ   σ
correspond to the truth, the risk of making a wrong decision is  



 

.νRμ,σ = ∫
 

 
l (x, , )μ σ {1 }− δ (x, , )μ σ f (x, , )μ σ d (x)  

With nuisance parameters, one usually considers the maximal risk over all possible values of              
the nuisance parameter 

 RRμ = supσ μ,σ  
Similarly, if evaluating decision rules that are to be applied for different possible values of the                
parameter of interest (rather than evaluating separate decision functions for each of the             
values of the parameter of interest), one may use the maximal risk over these values to                
assess the risk of the rule. 
Risks of decision functions may not be sufficient to identify optimal decision functions and              
sizes may have to be used as additional optimality criteria or as constraints. This is the case,                 
in particular, also for set and interval estimation, as considered here, and for confidence and               
credible intervals, respectively. 


