Kinetics of the Fluorophore Formation in Bovine Serum AlbuminGold Complex

Jacob M. Dixon and Shunji Egusa*
Department of Physics and Optical Science, Center for Biomedical Engineering \& Science, The University of North Carolina, Charlotte, North Carolina 28223, United States
*To whom correspondence should be addressed: segusa@uncc.edu

Supporting Information

Figure S1. Structure of bovine serum albumin (BSA) at $\mathrm{pH}=7$. Locations of the "Asp fragment"
(Asp1-Thr2-His3-) at the N-terminus, and Cys34, are indicated. The commonly used domain names are also shown. PDB ID: 4F5S.

Figure S2. Dithiothreitol (DTT), a Cys-Cys disulfide bond-cleaving agent, readily quenched the red fluorescence of BSA-Au complex. (A) BSA-Au complex was prepared using the standard protocol (BSA : $\mathrm{Au}=1: 13$). (B) The $\mathrm{UV}(\lambda=365 \mathrm{~nm})$-excited red fluorescence of the BSA-Au complex. (C) BSA-Au complex was treated with 10 mM DTT and 1% SDS and was incubated for 30 minutes at $37^{\circ} \mathrm{C}$, following the commonly-used protocol for protein gel electrophoresis sample preparation. (D) The red fluorescence of the DTT-treated BSA-Au complex was readily quenched. The blue fluorescence is from the aromatic residues of BSA at $\mathrm{pH}=12$. We note that this blue fluorescence is identical to that of BSA at $\mathrm{pH}=12$, without the addition of Au (Dixon and Egusa, J. Am. Chem. Soc. 2018, 140, 2265 - 2271). The quenching of red fluorescence in this compound was also observed by others (Shu et al., Anal. Chem. 2016, 88, 11193 - 11198) using another disulfide bond-cleaving agent, tris(2-carboxyethyl)phosphine (TCEP) at room temperature. They did not observe the quenching of red fluorescence by the simple addition of DTT at room temperature. TCEP is a strong reducer that cleaves all disulfide bonds of proteins readily. It is well-known that DTT is a milder agent that does not cleave the internal disulfide bonds of proteins, unless 1% SDS and incubation at $37^{\circ} \mathrm{C}$ is added to the protocol.

(A) BSA (used in the present investigation), heat-shock-fractionated, lyophilized powder, essentially IgG free, $\geq 96 \%$
(B) BSA-Au complex (BSA: Au = 1: 10) synthesized with (A)
(C) BSA, ethanol- and heat-shock-fractionated, lyophilized powder, essentially fatty acid free and essentially globulin free, $\geq 99 \%$
(D) BSA-Au complex (BSA:Au=1:10) synthesized with (B)
(E) BSA, heat-shock-fractionated, 30% in saline, IgG free, aseptically filled
(F) BSA-Au complex (BSA : Au = 1: 10) synthesized with (C)

Figure S3. Comparison of the commercially available BSA's with different purities (all are fraction V), and the synthesized BSA-Au complex compounds. All BSA's, used as received, showed aggregation with the present gel electrophoresis protocol (without denaturing agent). Dimer $(66.4 \times 2=132.8 \mathrm{kDa})$ and trimer $(66.4 \times 3=199.2 \mathrm{kDa})$ bands were consistently observed with all the commercial BSA's we tested.

Figure S4. Reactivity of individual amino acid residues in the synthesis of BSA-Au complex. HAuCl_{4} was mixed with the twenty common amino acids individually, followed by the pH adjustment to 12 , mimicking the synthesis of BSA-Au complex with BSA-to-Au molar ratio $=1: 13$. The total number of amino acid residues in BSA is 583. An individual amino acid (with X residues in BSA) was mixed with HAuCl_{4}, with the amino acid-to-Au molar ratio $=X / 583: 13$. For example, there are 35 Cysteine residues in BSA: therefore, Cysteine was mixed with HAuCl_{4} with the Cys-to-Au molar ratio $=35 / 583: 13$.

Top, left to right: Isoleucine, Leucine, Proline, Valine, Aspartic Acid, Glutamic Acid, Arginine, Methionine, Alanine, Glycine.

Bottom, left to right: Tryptophan, Tyrosine, Histidine, Lysine, Serine, Phenylalanine, Cysteine, Threonine, Asparagine, Glutamine.

The ruby-red color of the solution indicate the formation of Au nanoparticles. TEM image of Tyr-Au nanoparticles shown as a representative.

Figure S5. The temperature-dependent kinetics of the red fluorophore formation in BSA-Au complex, at the BSA-to-Au molar ratio of $1: 7$, and at a pH of 11.5. The red fluorescence peak of the BSA-Au complex is plotted over the time course.

Figure S6. The cascaded energy transfer within BSA-Au complex. The peaks at $\lambda_{\mathrm{ex}} / \lambda_{\mathrm{em}}=370 / 400 \mathrm{~nm}$ (peak a); 400/460 nm (peak b); 400/640 nm (peak c^{\prime}); 470/640 nm (peak c) suggest the possible energy transfer pathways, $a \rightarrow b, a \rightarrow c^{\prime}$, and $b \rightarrow c$.

