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Supporting Information 

 

Figure S1. Structure of bovine serum albumin (BSA) at pH = 7. Locations of the “Asp fragment” 

(Asp1-Thr2-His3-) at the N-terminus, and Cys34, are indicated. The commonly used domain names are 

also shown. PDB ID: 4F5S. 
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Figure S2. Dithiothreitol (DTT), a Cys-Cys disulfide bond-cleaving agent, readily quenched the red flu-

orescence of BSA-Au complex. (A) BSA-Au complex was prepared using the standard protocol (BSA : 

Au = 1 : 13). (B) The UV (λ = 365 nm)-excited red fluorescence of the BSA-Au complex. (C) BSA-Au 

complex was treated with 10 mM DTT and 1% SDS and was incubated for 30 minutes at 37oC, follow-

ing the commonly-used protocol for protein gel electrophoresis sample preparation. (D) The red fluores-

cence of the DTT-treated BSA-Au complex was readily quenched. The blue fluorescence is from the 

aromatic residues of BSA at pH = 12. We note that this blue fluorescence is identical to that of BSA at 

pH = 12, without the addition of Au (Dixon and Egusa, J. Am. Chem. Soc. 2018, 140, 2265 – 2271). 

 The quenching of red fluorescence in this compound was also observed by others (Shu et al., 

Anal. Chem. 2016, 88, 11193 – 11198) using another disulfide bond-cleaving agent, tris(2-carboxy-

ethyl)phosphine (TCEP) at room temperature. They did not observe the quenching of red fluorescence 

by the simple addition of DTT at room temperature. TCEP is a strong reducer that cleaves all disulfide 

bonds of proteins readily. It is well-known that DTT is a milder agent that does not cleave the internal 

disulfide bonds of proteins, unless 1% SDS and incubation at 37oC is added to the protocol. 
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Figure S3. Comparison of the commercially available BSA’s with different purities (all are fraction V), 

and the synthesized BSA-Au complex compounds. All BSA’s, used as received, showed aggregation 

with the present gel electrophoresis protocol (without denaturing agent). Dimer (66.4 × 2 = 132.8 kDa) 

and trimer (66.4 × 3 = 199.2 kDa) bands were consistently observed with all the commercial BSA’s we 

tested. 
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Figure S4. Reactivity of individual amino acid residues in the synthesis of BSA-Au complex. HAuCl4 

was mixed with the twenty common amino acids individually, followed by the pH adjustment to 12, 

mimicking the synthesis of BSA-Au complex with BSA-to-Au molar ratio = 1 : 13. The total number of 

amino acid residues in BSA is 583. An individual amino acid (with X residues in BSA) was mixed with 

HAuCl4, with the amino acid-to-Au molar ratio =  � 583� ∶ 13. For example, there are 35 Cysteine resi-

dues in BSA: therefore, Cysteine was mixed with HAuCl4 with the Cys-to-Au molar ratio = 35 583� ∶ 13.  

Top, left to right: Isoleucine, Leucine, Proline, Valine, Aspartic Acid, Glutamic Acid, Arginine, 

Methionine, Alanine, Glycine.  

Bottom, left to right: Tryptophan, Tyrosine, Histidine, Lysine, Serine, Phenylalanine, Cysteine, 

Threonine, Asparagine, Glutamine.  

The ruby-red color of the solution indicate the formation of Au nanoparticles. TEM image of Tyr-Au 

nanoparticles shown as a representative. 
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Figure S5. The temperature-dependent kinetics of the red fluorophore formation in BSA-Au complex, at 

the BSA-to-Au molar ratio of 1 : 7, and at a pH of 11.5. The red fluorescence peak of the BSA-Au complex 

is plotted over the time course. 
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Figure S6. The cascaded energy transfer within BSA-Au complex. The peaks at λex /λem = 370/400 nm 

(peak a); 400/460 nm (peak b); 400/640 nm (peak c’); 470/640 nm (peak c) suggest the possible energy 

transfer pathways, � → �, � → �′, and	� → �. 
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