Supporting Information

Optical Contrast of Atomically-thin Films

Fumin Huang*

School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, U.K.

The reflectivity of a homogeneous thin film on a stratified planar substrate

For a stratified structure composed of M homogeneous planar layers (the M-th layer is a semiinfinite substrate) as depicted in the Figure 1 in the main text, the reflectivity of a TM polarization plane wave (with a time-dependent term of $e^{-i \omega t)}$) is, ${ }^{1}$

$$
\begin{align*}
r & =\frac{K_{0}-Z_{1}}{K_{0}+Z_{1}} \tag{A1}\\
Z_{1} & =K_{1} \frac{Z_{2}+K_{1} \tanh \left(-i \beta_{1}\right)}{K_{1}+Z_{2} \tanh \left(-i \beta_{1}\right)} \tag{A2}\\
Z_{j} & =K_{j} \frac{Z_{j+1}+K_{j} \tanh \left(-i \beta_{j}\right)}{K_{j}+Z_{j+1} \tanh \left(-i \beta_{j}\right)} \tag{A3}\\
Z_{M-1} & =K_{M-1} \frac{K_{M}+K_{M-1} \tanh \left(-i \beta_{j}\right)}{K_{M-1}+K_{M} \tanh \left(-i \beta_{j}\right)} \tag{A4}\\
K_{j} & =\frac{\mu_{j}}{c} \frac{\cos \theta_{j}}{n_{j}} \tag{A5}\\
\beta_{j} & =n_{j} k_{0} h_{j} \cos \theta_{j} \tag{A6}
\end{align*}
$$

$\mu_{j}, n_{j}, \theta_{j}, h_{j}$ are the relative permeability, refractive index, refraction angle and thickness of the j-th layer film, respectively. c is the speed of light in free space. Z_{1} is called the surface impedance, being the ratio of the tangential fields at the air-substrate interface, $Z_{1}=\left.\frac{E_{t}}{H_{t}}\right|_{z=0} .{ }^{1}$

With the addition of a thin film on top of the substrate, the reflectivity becomes

$$
\begin{align*}
& r^{\prime}=\frac{K_{0}-Z_{f}}{K_{0}+Z_{f}} \tag{A7}\\
& Z_{f}=K_{f} \frac{Z_{1}+K_{f} \tanh (-i \beta)}{K_{f}+Z_{1} \tanh (-i \beta)} \tag{A8}
\end{align*}
$$

The subscript f refers to the thin film layer, $\beta=n k_{0} h \cos \theta_{f}$.

From eq A1, it is inferred

$$
\begin{equation*}
Z_{1}=K_{0} \frac{1-r}{1+r} \tag{A9}
\end{equation*}
$$

Inputting the above formula of Z_{1} into eq A8, eq A7 can be rewritten as

$$
\begin{equation*}
r^{\prime}=\frac{K_{0}-K_{f} K_{f_{0} \frac{1-r}{1+r}+K_{f} \tanh (-i \beta)}^{K_{f}+K_{1} \frac{1-r}{1+r} \tanh (-i \beta)}}{K_{0}+K_{f} \frac{K_{0} \frac{1-r}{1+r}+K_{f} \tanh (-i \beta)}{K_{f}+K_{0} \frac{1-r}{1+r} \tanh (-i \beta)}} \tag{A10}
\end{equation*}
$$

Let $\xi=\frac{K_{f}}{K_{0}}=\frac{n_{0} \mu_{f} \cos \theta_{f}}{n_{f} \mu_{0} \cos \theta_{0}}=\frac{n_{0} \cos \theta_{f}}{n_{f} \cos \theta_{0}}$ (for non-magnetic materials, $\mu_{f}=1$), we have

$$
\begin{equation*}
r^{\prime}=\frac{\frac{2 \xi r}{1+r}+\left[\frac{1-r}{1+r}-\xi^{2}\right] \tanh (-i \beta)}{\frac{\frac{2}{\xi}}{1+r}+\left[\frac{1-r}{1+r}+\xi^{2}\right] \tanh (-i \beta)} \tag{A11}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi \equiv 1-\frac{r^{\prime}}{r}=\frac{\frac{1+r}{r}\left[\xi^{2}-\left(\frac{1-r}{1+r}\right)^{2}\right] \tanh (-i \beta)}{\frac{2 \xi}{1+r}+\left[\frac{1-r}{1+r}+\xi^{2}\right] \tanh (-i \beta)} \tag{A12}
\end{equation*}
$$

For TE-polarization, replacing ζ with $\zeta=\frac{n_{f} \cos \theta_{f}}{n_{o} \cos \theta_{0}}$.

Corresponding Author

Email: f.huang@qub.ac.uk

References
(1) Wait, J. R. Electromagnetic waves in stratified media; Pergamon Press Ltd.: Oxford, UK, 1970.

