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A Further details on numerical experiments

The data in Figures 1, 4, and 5 were generated as follows. We retrieved infrared reflection

spectra of caffeine, sucrose, lactose and trioctanoin from the NIST Chemistry WebBook

dataset [LM]. We restricted these spectra to the wavenumbers between 1186 cm−1 and

1530 cm−1, and denote by h0,1, . . . ,h0,4 ∈ Rd, d = 87 the vector representations of these

spectra. We then generated data xi ∈ Rd, i ≤ n = 250 by letting

xi =
4∑
`=1

wi,`h` + zi , (A.1)

where zi ∼ N(0, σ2Id) are i.i.d. Gaussian noise vectors. The weights wi = (wi,`)`≤4 were

generated as follows. The weight vectors {wi}1≤i≤9 are generated such that they have 2

nonzero entries. In other words, 9 data points are on one dimensional facets of the polytope

generated by h0,1, . . . ,h0,4. In order to randomly generate these weight vectors, for each
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1 ≤ i ≤ 9, a pair of indices (`1, `2) between 1 and 4 is chosen uniformly at random. Then

{w̃}1≤i≤9, w̃ ∈ R2 are generated as independent Dirichlet random vectors with parameter

(5, 5). Then we let wi,`1 = w̃i,1 and wi,`2 = w̃i,2 for 1 ≤ i ≤ 9. The weight vectors

{wi}10≤i≤20 each have 3 nonzero entries. Similar to above, for each of these weight vectors

a 3-tuple of indices (`1, `2, `3) between 1 and 4 is chosen uniformly at random. Then we

let wi,`1 = w̃i,1, wi,`2 = w̃i,2, wi,`3 = w̃i,4 for 10 ≤ i ≤ 20, where {w̃}10≤i≤20, w̃ ∈ R3 are

i.i.d. Dirichlet random vectors with parameter (5, 5, 5). The rest of the weight vectors have

cardinality equal to 4. Hence, for 21 ≤ i ≤ 250, wi are generated as i.i.d. Dirichlet random

vectors with parameter (5, 5, 5, 5).

B Proof of Theorem 1

In this appendix we prove Theorem 1. We start by recalling some notations already defined

in the main text, and introducing some new ones. We will then state a stronger form of

the theorem (with better dependence on the problem geometry in some regimes). Finally,

we will present the actual proof.

Throughout this appendix, we assume the square loss D(x,y) = ‖x− y‖2
2.

B.1 Notations and definitions

We use bold capital letters (e.g. A, B, C,. . . ) for matrices, bold lower case for vectors (e.g.

x, y, . . . ) and plain lower case for scalars (a, b, c and so on). In particular, ei ∈ Rd denotes

the i’th vector in the canonical basis, Er,d = {e1, e2, . . . , er} and for r ≤ d, Er,d ∈ {0, 1}r×d

is the matrix whose i’th column is ei, and whose columns after the r-th one are equal to

0. For a matrix X, X i,. and X .,i are its i’th row and column, respectively.

As in the main text, we denote by ∆m the (m − 1)-dimensional standard simplex, i.e.

2



∆m = {x ∈ Rm
≥0, 〈x,1〉 = 1}, where 1 ∈ Rm is the all ones vector. For a matrix H ∈ Rr×d,

we use σmax(H), σmin(H) to denote its largest and smallest nonzero singular values and

κ(H) = σmax(H)/σmin(H) to denote its condition number. We denote by conv(H), aff(H)

the convex hull and the affine hull of the rows of H , respectively. In other words,

conv(H) = {x ∈ Rd : x = HTπ,π ∈ ∆r}, (B.1)

aff(H) = {x ∈ Rd : x = HTα, 〈1,α〉 = 1}. (B.2)

We denote by Qr,n the set of r by n row stochastic matrices. Namely,

Qr,n =
{
Π ∈ Rr×n

≥0 : 〈Πi,.,1〉 = 1
}
. (B.3)

with use Qr ≡ Qr,r. Further, Sr is defined as

Sr = {Π ∈ Qr : Πi,j ∈ {0, 1}} . (B.4)

As a consequence, given X ∈ Rn×d, H1,H2 ∈ Rr×d, the loss functions D( · , · ) and

L ( · , · ) take the form

D(H1,X) = min
Π∈Qr,n

‖H1 −ΠX‖2
F , (B.5)

L (H1,H2) = min
Π∈Sr

‖H1 −ΠH2‖2
F . (B.6)

We use Bm(ρ) to denote the closed ball with radius ρ in m dimensions, centered at 0.

In addition, for H ∈ Rm×d we define the ρ-neighborhood of conv(H) as

Br(ρ;H) := {x ∈ Rd : D(x,H) ≤ ρ2}. (B.7)

For a convex set C we denote the set of its extremal points by ext(C) and the projection of

a point x ∈ Rd onto C by ΠC(x). Namely,

ΠC(x) = arg min
y∈C
‖x− y‖2. (B.8)
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Further, we use D(x, C) to denote the distance of x from C, i.e.

D(x, C) = ‖x−ΠC(x)‖2. (B.9)

Also, for a matrix X ∈ Rn×d, and a mapping (not necessarily linear) P : Rd → Rd,

P (X) ∈ Rn×d is the matrix whose i’th row is P (X i,.).

B.2 Theorem statement

The statement below provides more detailed result with respect to the one in Theorem 1.

Theorem 1. Assume X = W 0H0 + Z where the factorization X0 = W 0H0 satisfies

the uniqueness assumption with parameter α > 0, and that conv(X0) has internal radius

µ > 0. Consider the estimator Ĥ defined by Eq. (2.5), with D(x,y) = ‖x − y‖2
2 (square

loss) and δ = maxi≤n ‖Zi,·‖2. If

max
i≤n
‖Zi,·‖2 ≤

αµ

30r3/2
, (B.10)

then, setting δ = maxi≤n ‖Zi,·‖2 in the problem (2.5) we get

L (H0, Ĥ) ≤ C2
∗ r

5

α2
max
i≤n
‖Zi,·‖2

2 , (B.11)

where C∗ is a coefficient that depends uniquely on the geometry of problem data, H0, X0,

namely C∗ = 120(σmax(H0)κmax(H0)/µ).

Further, if

max
i≤n
‖Zi,·‖2 ≤

αµ

330κ(H0)r5/2
, (B.12)

then, setting δ = maxi≤n ‖Zi,·‖2 in the problem (2.5) we get

L (H0, Ĥ) ≤ C2
∗∗ r

4

α2
max
i≤n
‖Zi,·‖2

2 , (B.13)

where C∗∗ = 120κ(H0) max(κ(H0), (σmax(H0)/r + ‖z0‖2)/(µr1/2)).

4



B.3 Proof

B.4 Proof strategy

Before providing a detailed proof, let us explain the proof scheme and main intuition:

1. Notice that Ĥ minimizes the distance D(H ;X) from the data, among all the possible

sets of archetypes that can explain the data itself (in the sense that xi is close to

conv(H)), cf. Eq. (2.5). Using the fact that X is the perturbed version of X0, we

show in Lemma B.5 below that

D(Ĥ ,X0)1/2 ≤ D(H0,X0)1/2 + 3δ
√
r. (B.14)

2. In absence of separability, there might be multiple (non-equivalent) sets of archetypes

that minimize D(H ;X), and hence reconstruction is fundamentally non-unique. We

combine the separability assumption with the bound in step 1 to bound

α(D(Ĥ ,H0)1/2 + D(H0, Ĥ)1/2) (B.15)

in terms of δ, κ(Ĥ), σmax(Ĥ).

3. The last step gives us an error in terms of distances between convex hulls, D(Ĥ ,H0),

D(H0, Ĥ). Lemma B.2 translates this into an upper bound on L (H0, Ĥ) in terms

of δ, κ(Ĥ), σmax(Ĥ).

4. Finally, we want to translate this upper bound in terms of geometric properties of

the true archetypes (as opposed to properties of the estimated archetypes, namely

κ(Ĥ), σmax(Ĥ)). In Lemmas B.3, B.4 we bound the quantities κ(Ĥ), σmax(Ĥ) in

terms of D(Ĥ ,H0)1/2, D(H0, Ĥ)1/2 as well as κ(H0), σmax(H0)

5. Finally, we aggregate the last three steps to finish the proof.
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B.4.1 Lemmas

In the following two lemmas we bound the notion we use for estimation error L (H0, Ĥ),

that we defined in (3.2), in terms of D(Ĥ ,H0), D(H0, Ĥ).

Lemma B.1. Let R be a convex set and C be a convex cone. Define

γC = max
‖u‖2=1

min
v∈C,‖v‖2=1

〈u,v〉. (B.16)

We have

min
x∈R
‖x‖2 + (1 + γC) max

x∈ext(R)
‖x−ΠC(x)‖2 ≥ γC min

x∈ext(R)
‖x‖2. (B.17)

An illustration of this lemma in the case of R ⊂ C is given in Figure 1. Note that, γC

measures the pointedness of the cone C. Geometrically (for R ⊆ C) the lemma states that

the cosine of the angle between arg minx∈R ‖x‖2 and arg minx∈ext(R) ‖x‖2 is smaller than

γC.

Proof. Note that the claim is trivial in the case where γC ≤ 0, as by Cauchy-Schwarz

inequality γC ≥ −1 and hence the left hand side of (B.17) is nonnegative. Therefore, we

focus on the case where γC > 0, i.e. C∗, the dual cone of C has a nonempty interior. We

write

min
x∈R
‖x‖2 = min

x∈R
max
‖u‖2=1

〈u,x〉 ≥ max
‖u‖2=1

min
x∈R
〈u,x〉 = max

‖u‖2=1
min

x∈ext(R)
〈u,x〉. (B.18)

Replacing

x = ΠC(x) + (x−ΠC(x)) , (B.19)

we get

min
x∈R
‖x‖2 ≥ max

‖u‖2=1
min

x∈ext(R)
〈u,ΠC(x) + (x−ΠC(x))〉 (B.20)

≥ max
‖u‖2=1

min
x∈ext(R)

〈u,ΠC(x)〉 − max
x∈ext(R)

‖x−ΠC(x)‖2. (B.21)
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Figure 1: Picture of Lemma B.1, in the case, R ⊂ C.

Note that R̃∗, the dual cone of the set R̃ ⊆ C where R̃ := {ΠC(x) ;x ∈ ext(R)}, contains

C∗ and hence it has a nonempty interior. Therefore, the maximizer of the first term in the

right hand side of (B.21) is in R̃∗ and

min
x∈R
‖x‖2 ≥ max

u∈R̃∗;‖u‖2=1
min

x∈ext(R)
〈u,ΠC(x)〉 − max

x∈ext(R)
‖x−ΠC(x)‖2 (B.22)

= max
u∈R̃∗;‖u‖2=1

min
x∈ext(R)

[〈
u,

ΠC(x)

‖ΠC(x)‖2

〉
‖ΠC(x)‖2

]
− max
x∈ext(R)

‖x−ΠC(x)‖2.

(B.23)

Since for u ∈ R̃∗ ,x ∈ ext(R) we have 〈u,ΠC(x)〉 ≥ 0, using the definition of γC, we have

min
x∈R
‖x‖2 ≥ γC min

x∈ext(R)
‖ΠC(x)‖2 − max

x∈ext(R)
‖x−ΠC(x)‖2. (B.24)
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Note that

‖ΠC(x)‖2 ≥ ‖x‖2 − ‖x−ΠC(x)‖2. (B.25)

Therefore,

min
x∈R
‖x‖2 ≥ γC min

x∈ext(R)
‖x‖2 − (1 + γC) max

x∈ext(R)
‖x−ΠC(x)‖2, (B.26)

and this completes the proof.

The next lemma is a consequence of Lemma B.1.

Lemma B.2. Let H ,H0 ∈ Rr×d, r ≤ d, be matrices with linearly independent rows. We

have

L (H0,H)1/2 ≤
√

2κ(H0)D(H0,H)1/2 + (1 +
√

2)
√
rκ(H0)D(H ,H0)1/2 . (B.27)

Proof. Consider the cone C1 ⊂ Rd, generated by vectors e2 − e1, . . . , er − e1 ∈ Rd, i.e,

C1 =

{
v ∈ Rd;v =

r∑
i=2

vi(ei − e1), vi ≥ 0

}
. (B.28)

For v ∈ C1, ‖v‖2 = 1 we have

v = (−〈1,x〉,x, 0, 0, . . . , 0) , (B.29)

where x ∈ Rr−1
≥0 and

‖x‖2
2 + 〈1,x〉2 = 1. (B.30)

Since, 〈1,x〉 = ‖x‖1 ≥ ‖x‖2, we get 〈1,x〉 ≥ 1/
√

2. Thus, for u = −e1, we have

〈u,v〉 ≥ 1/
√

2. Therefore, for γC1 defined as in Lemma B.1, we have γC1 ≥ 1/
√

2. In

addition, by symmetry, for i ∈ {1, 2, . . . , r}, for the cone Ci ⊂ Rd, generated by vectors
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e1 − ei, e2 − ei, . . . , er − ei ∈ Rd we have γCi = γ ≥ 1/
√

2. Hence, using Lemma B.1 for

H ∈ Rr×d, R = conv(H)− ej (the set obtained by translating conv(H) by −ej), C = Cj
we get for j = 1, 2, . . . , r

min
q∈∆r
‖ej −HTq‖2 ≥ γ min

q∈Er,r
‖ej −HTq‖2

− (1 + γ) max
i∈[r]

min
q∈Rr≥0

‖HT
i,. − ej −ET

r,dq + ej〈1, q〉‖2 (B.31)

≥ γ min
q∈Er,r

‖ej −HTq‖2 − (1 + γ) max
i∈[r]

min
q∈∆r
‖HT

i,. −ET
r,dq‖2. (B.32)

Hence, for j = 1, 2, . . . , r

min
q∈∆r
‖ej −HTq‖2 + (1 + γ) max

i∈[r]
min
q∈∆r
‖HT

i,. −Er,d‖2 ≥ γ min
q∈Er,r

‖ej −HTq‖2. (B.33)

For simplicity, define a,b ∈ Rr
≥0, c ≥ 0 as

aj ≡ min
q∈∆r
‖ej −HTq‖2 , bj := γ min

q∈Er,r
‖ej −HTq‖2 , c := (1 + γ) max

i∈[r]
min
q∈∆r
‖HT

i,. −Er,d‖2 .

(B.34)

Using triangle inequality,

‖a‖2 + c
√
r ≥ ‖a+ c1‖2 . (B.35)

Using definition of a,b, c, (B.33) implies that aj + c ≥ bj. Therefore, since aj, bj, c ≥ 0,

‖a+ c1‖2 ≥ ‖b‖2. (B.36)

Hence, using (B.35)

‖a‖2 ≥ ‖b‖2 − c
√
r. (B.37)
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In other words,

min
Q∈Qr

‖Er,d −QH‖F ≥ γ min
Q∈Sr

‖Er,d −QH‖F − (1 + γ)
√
rmax
i∈[r]

min
q∈∆r
‖HT

i,. −ET
r,dq‖2.

(B.38)

Now consider H0 ∈ Rr×d where H0 = Er,dM , H = YM , where M ∈ Rd×d is invertible.

We have

D(H0,H)1/2 = min
Q∈Qr

‖H0 −QH‖F = min
Q∈Qr

‖(Er,d −QY )M‖F (B.39)

≥ σmin(M ) min
Q∈Qr

‖Er,d −QY ‖F (B.40)

≥ γσmin(M ) min
Q∈Sr

‖Er,d −QY ‖F

− σmin(M)
√
r(1 + γ) max

i∈[r]
min
q∈∆r
‖Y T

i,. −ET
r,dq‖2 (B.41)

= γσmin(M ) min
Q∈Sr

‖(H0 −QH)M−1‖F

− σmin(M)
√
r(1 + γ) max

i∈[r]
min
q∈∆r
‖(M−1)T(HT

i,. −HT
0 q)‖2. (B.42)

Thus, using the fact that σmax(M )/σmin(M ) = κ(M ) = κ(H0),

D(H0,H)1/2 ≥ γ

κ(H0)
L (H0,H)1/2 − (1 + γ)

√
r min
q∈∆r
‖HT

i,. −HT
0 q‖2 (B.43)

≥ γ

κ(H0)
L (H0,H)1/2 − (1 + γ)

√
r(H ,H0)1/2 . (B.44)

Therefore,

L (H0,H)1/2 ≤ κ(H0)

γ
D(H0,H)1/2 +

(1 + γ)κ(H0)
√
r

γ
D(H ,H0)1/2 . (B.45)

Finally, note that the function f(x) = (1 + x)/x is monotone decreasing over R>0. Hence,

for γ ≥ 1/
√

2, (1 + γ)/γ ≤ 1 +
√

2. Therefore, we get

L (H0,H)1/2 ≤
√

2κ(H0)D(H0,H)1/2 + (1 +
√

2)
√
rκ(H0)D(H ,H0)1/2 (B.46)

and this completes the proof.
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We continue with the following lemmas on the condition number of the matrix H .

Lemma B.3. Let H0,H ∈ Rr×d, r ≤ d,with H having full row rank. We have

σmax(H) ≤ D(H ,H0)1/2 +
√
rσmax(H0), . (B.47)

In addition, if

D(H0,H)1/2 ≤ σmin(H0)

2
, (B.48)

then

κ(H) ≤ 2rσmax(H0) + 2D(H ,H0)1/2
√
r

σmin(H0)
. (B.49)

Further, if

D(H ,H0)1/2 + D(H0,H)1/2 ≤ σmin(H0)

6
√
r

, (B.50)

then

σmax(H) ≤ 2σmax(H0), (B.51)

κ(H) ≤ (7/2)κ(H0). (B.52)

Proof. For the sake of simplicity, we will write D1 = D(H ,H0)1/2, D2 = D(H0,H)1/2

Note that using the assumptions of Lemma B.3 we have

H0 = PH +A2; ‖A2‖F = D2,

H = RH0 +A1; ‖A1‖F = D1,
(B.53)

where P ,R ∈ Rr×r
≥0 are row-stochastic matrices and A1,A2 ∈ Rr×d. Also, σmax(A1) ≤

‖A1‖F = D1, σmax(A2) ≤ ‖A2‖F = D2. Therefore,

σmax(P )σmin(H) ≥ σmin(PH) = σmin(H0 −A2)

≥ σmin(H0)− σmax(A2) ≥ σmin(H0)−D2. (B.54)
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In addition, note that for a row stochastic matrix P ∈ Qr, we have

σmax(P ) ≤ ‖P ‖F =

(
r∑
i=1

‖P i,.‖2
2

)1/2

≤

(
r∑
i=1

‖P i,.‖2
1

)1/2

≤
√
r. (B.55)

Hence, for D2 ≤ σmin(H0) we get

σmin(H) ≥ σmin(H0)−D2√
r

. (B.56)

In addition, using (B.53)

σmax(H) = σmax(RH0 +A1) ≤ σmax(RH0) + σmax(A1)

≤ σmax(R)σmax(H0) + D1 ≤
√
rσmax(H0) + D1. (B.57)

Hence, using (B.56), (B.57), for D2 ≤ σmin(H0) we have

κ(H) =
σmax(H)

σmin(H)
≤ rσmax(H0) + D1

√
r

σmin(H0)−D2

. (B.58)

Thus, for D2 ≤ σmin(H0)/2, by replacing D2 with σmin(H0)/2 in (B.58) we get Eqs. (B.47),

(B.49).

Now assume that D1 + D2 ≤ σmin(H0)/(6
√
r). In this case, using (B.53) we have

H0 = P (RH0 +A1) +A2. (B.59)

Therefore,

(I− PR)H0 = PA1 +A2, (B.60)

hence,

I− PR = (PA1 +A2)H†0 (B.61)
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and

PR = I− PA1H
†
0 −A2H

†
0. (B.62)

where H†0 is the right inverse of matrix H0. Note that

σmax(H†0) = σmin(H0)−1. (B.63)

By permuting the rows and columns of H0, without loss of generality, we can assume that

Rii = ‖R.,i‖∞. We can write

Rii = ‖R.,i‖∞ ≥ 〈P i,.,R.,i〉 = (PR)ii = 1− (PA1H
†
0)ii − (A2H

†
0)ii (B.64)

≥ 1− ‖(PA1H
†
0)i,.‖2 − ‖(A2H

†
0)i,.‖2 (B.65)

≥ 1− max
u∈∆r

‖AT
1u‖2σmax(H†0)− ‖(A2)i,.‖2σmax(H†0) (B.66)

≥ 1− max
u∈∆r

‖u‖2σmax(A1)σmax(H†0)− ‖A2‖Fσmax(H†0)

(B.67)

≥ 1− D1 + D2

σmin(H0)
. (B.68)

Hence, for all i, j ∈ [r], i 6= j, since R is row-stochastic,

Rji ≤
D1 + D2

σmin(H0)
. (B.69)

Thus,

〈P i,.,R.,i〉 = RiiPii +
∑
j 6=i

PijRji ≤ RiiPii +

(
max
j 6=i

Rji

)∑
j 6=i

Pij (B.70)

≤ Pii +
D1 + D2

σmin(H0)
(1− Pii). (B.71)

Therefore, using (B.68),

Pii ≥
σmin(H0)− 2(D1 + D2)

σmin(H0)− (D1 + D2)
. (B.72)
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Thus, we can write

P = I + ∆; ‖∆i,.‖1 ≤
2(D1 + D2)

σmin(H0)− (D1 + D2)
. (B.73)

Therefore,

σmax(∆) ≤ ‖∆‖F =

(
r∑
i=1

‖∆i,.‖2
2

)1/2

≤

(
r∑
i=1

‖∆i,.‖2
1

)1/2

≤ 2(D1 + D2)
√
r

σmin(H0)− (D1 + D2)
.

(B.74)

Hence,

σmax(P ) ≤ 1 +
2
√
r(D1 + D2)

σmin(H0)− (D1 + D2)
, σmin(P ) ≥ 1− 2

√
r(D1 + D2)

σmin(H0)− (D1 + D2)
. (B.75)

From (B.53) we have σmin(PH) ≥ σmin(H0) − D2. Using σmin(PH) ≤ σmax(P )σmin(H),

we get

σmin(H) ≥ (σmin(H0)−D2)(σmin(H0)− (D1 + D2))

σmin(H0)− (D1 + D2) + 2
√
r(D1 + D2)

. (B.76)

Further, from (B.53) we have σmax(PH) ≤ σmax(H0) + D2. Therefore, using the fact that

σmax(PH) ≥ σmin(P )σmax(H), we get

σmax(H) ≤ (σmax(H0) + D2)(σmin(H0)− (D1 + D2))

σmin(H0)− (D1 + D2)− 2
√
r(D1 + D2)

. (B.77)

Hence, for D1 + D2 ≤ σmin(H0)/(6
√
r), we have σmax(H) ≤ 35σmax(H0)/18 < 2σmax(H0).

In addition,

κ(H) ≤
(
σmax(H0) + D2

σmin(H0)−D2

)(
1 +

4
√
r(D1 + D2)

σmin(H0)− (D1 + D2)− 2
√
r(D1 + D2)

)
(B.78)

≤ 6κ(H0) + 1

5

(
1 +

4

3

)
≤ 42κ(H0) + 7

15
<

7κ(H0)

2
, (B.79)

and this completes the proof.
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Lemma B.4. Let X0 = W 0H0 ∈ Rn×d be such that conv(X0) has internal radius at least

µ > 0, and X = X0 +Z with maxi≤n ‖Zi,.‖2 ≤ δ. If H ∈ Rr×d,H i,. ∈ aff(H0) is feasible

for problem (2.5) and has linearly independent rows, then we have

σmin(H) ≥
√

2(µ− 2δ) . (B.80)

Proof. Let

X ′i,. = Πconv(H)(X i,·) ≡ arg min
x∈conv(H)

‖X i,· − x‖2 . (B.81)

Note that since H is feasible for problem (2.5) and maxi≤n ‖Zi,.‖2 ≤ δ

‖(X0)i,. −X ′i,.‖2 ≤ ‖(X0)i,. −X i,.‖2 + ‖X i,. −X ′i,.‖2 ≤ 2δ. (B.82)

Therefore, for any x0 ∈ conv(X0), writing x0 = XT
0a0, a0 ∈ ∆n, we have

D(x0,X
′)1/2 = min

a∈∆n

∥∥XT
0a0 −X ′Ta

∥∥
2
≤
∥∥XT

0a0 −X ′Ta0

∥∥
2

(B.83)

≤

(
n∑
i=1

(a0)i

)
‖(X0)i,. −X ′i,.‖2 ≤ 2δ. (B.84)

Since conv(X0) has internal radius at least µ, there exists z0 ∈ Rd, and an orthogonal

matrix U ∈ Rd×r′ , r′ = r − 1, such that z0 + UBr′(µ) ⊆ conv(X0). Hence, for every

z ∈ Rr′ , ‖z‖2 = 1 there exists a ∈ ∆n such that

µUz + z0 = XT
0a. (B.85)

Therefore, for any unit vector u in column space of U , for the line segment

lu,µ = {z : z = z0 + αu, |α| ≤ µ} ⊆ conv(X0) . (B.86)

Thus,

lu,µ ⊆ P u(conv(X0)) (B.87)
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where P u is the orthogonal projection onto the line containing lu,µ. Note that since P u(·)

is a nonexpansive mapping, using (B.84), for any x0 ∈ conv(X0) we have

D(P u(x0),P u(conv(X ′)))1/2 ≤ D(x0,X
′)1/2 ≤ 2δ. (B.88)

In other words, for any x0 ∈ P u(conv(X0)), D(x0,P u(conv(X ′))) ≤ 2δ. Therefore, using

(B.86) for any u in column space of U , we have

lu,µ−2δ ⊆ P u(conv(X ′)). (B.89)

This implies that

z0 +UBr′(µ− 2δ) ⊆ conv(X ′) ⊆ conv(H). (B.90)

Hence, for every z ∈ Rr′ , ‖z‖2 = 1 there exists a ∈ ∆r such that

(µ− 2δ)Uz + z0 = HTa. (B.91)

Note that HT has linearly independent columns. Multiplying the previous equation by

(HT)† the left inverse of HT, we get

(µ− 2δ)(HT)†Uz + (HT)†z0 = a. (B.92)

Let

a1 = (µ− 2δ)(HT)†Uv + (HT)†z0 , (B.93)

a2 = −(µ− 2δ)(HT)†Uv + (HT)†z0 , (B.94)

where v is the right singular vector corresponding to the largest singular value of (HT)†U .

Therefore, we have

a1 = (µ− 2δ)σmax((HT)†U)v + (HT)†z0, (B.95)

a2 = −(µ− 2δ)σmax((HT)†U)v + (HT)†z0. (B.96)
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Thus, for a1,a2 ∈ ∆r

‖a1 − a2‖2 = 2(µ− 2δ)σmax((HT)†U). (B.97)

Note that

‖a1 − a2‖2 ≤
√

2. (B.98)

Thus,

2(µ− 2δ)σmax((HT)†U) =
2(µ− 2δ)

σmin(H)
≤
√

2. (B.99)

Hence,

σmin(H) ≥
√

2(µ− 2δ). (B.100)

The following lemma states an important property of Ĥ the optimal solution of problem

(2.5).

Lemma B.5. If maxi ‖Zi,.‖2 ≤ δ and Ĥ is the optimal solution of problem (2.5), then we

have

D(Ĥ ,X0)1/2 ≤ D(H0,X0)1/2 + 3δ
√
r. (B.101)

Proof. First note that X = W 0H0 + Z and the rows of W 0H0 are in conv(H0). Thus,

since maxi ‖Zi,.‖2 ≤ δ, we have

max
i≤n

D(X i,.,H0)1/2 ≤ max
i≤n

∥∥∥(X0 −W 0H0)i,.

∥∥∥
2

= max
i≤n
‖Zi,.‖2 ≤ δ. (B.102)
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Hence, H0 is a feasible solution for the problem (2.5). Therefore, we have

D(Ĥ ,X) ≤ D(H0,X). (B.103)

Letting α̃i = arg minα∈∆n ‖Ĥ
T

i,. −XTα‖2, we have

D(Ĥ ,X) =
r∑
i=1

min
αi∈∆r

‖Ĥ
T

i,. −XTαi‖2
2 (B.104)

=
r∑
i=1

min
αi∈∆r

‖Ĥ
T

i,. −XT
0αi −ZTαi‖2

2 (B.105)

=
r∑
i=1

min
αi∈∆r

(
‖Ĥ

T

i,. −XT
0αi‖2

2 − 2
〈
ZTαi, Ĥ

T

i,. −XT
0αi

〉
+ ‖ZTαi‖2

2

)
(B.106)

=
r∑
i=1

(
‖Ĥ

T

i,. −XT
0 α̃i‖2

2 − 2
〈
ZTα̃i, Ĥ

T

i,. −XT
0 α̃i

〉
+ ‖ZTα̃i‖2

2

)
. (B.107)

Using the fact that (by triangle inequality) ‖ZTα̃i‖2 ≤ (maxi ‖Zi,.‖2) ‖α̃i‖1 ≤ δ, we have

D(Ĥ ,X) ≥
r∑
i=1

(
‖Ĥ

T

i,. −XT
0 α̃i‖2

2 − 2δ‖Ĥ
T

i,. −XT
0 α̃i‖2

)
(B.108)

≥ U2 − 2δ
√
rU (B.109)

where U2 =
∑r

i=1 ‖Ĥ
T

i,. −XT
0 α̃i‖2

2. In addition, since U ≥ 0, D(Ĥ ,X) ≥ 0,

D(Ĥ ,X) ≥ (U2 − 2δ
√
rU)IU≥2δ

√
r. (B.110)

Note that for U ≥ 2δ
√
r, the function U2 − 2δ

√
rU is increasing. Hence, since

U ≥

(
r∑
i=1

min
αi
‖Ĥ

T

i,. −XT
0αi‖2

2

)1/2

= D(Ĥ ,X0)1/2, (B.111)

we have

D(Ĥ ,X) ≥ (U2 − 2δ
√
rU)IU≥2δ

√
r ≥ D(Ĥ ,X0)− 2δ

√
rD(Ĥ ,X0)1/2. (B.112)
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Therefore, letting (x)+ := max{x, 0} be the positive part of x, using the fact that for all

x, a ≥ 0 we have (x2 − ax)
1/2
+ ≥ x− a, we have

D(Ĥ ,X)1/2 ≥
(
D(Ĥ ,X0)− 2δ

√
rD(Ĥ ,X0)1/2

)1/2

+
≥ D(Ĥ ,X0)1/2 − 2δ

√
r. (B.113)

In addition,

D(H0,X) =
r∑
i=1

min
αi∈∆n

‖(H0)i,. −XT
0αi −ZTαi‖2

2 (B.114)

≤
r∑
i=1

min
αi∈∆n

{
‖(H0)i,. −XT

0αi‖2 + ‖ZTαi‖2

}2
(B.115)

≤
r∑
i=1

{
min
αi∈∆n

‖(H0)i,. −XT
0αi‖2 + max

αi∈∆n
‖ZTαi‖2

}2

(B.116)

≤


(

r∑
i=1

min
αi∈∆n

‖(H0)i,. −XT
0αi‖2

2

)1/2

+ δ
√
r


2

(B.117)

≤
(
D(H0,X0)1/2 + δ

√
r
)2
. (B.118)

Hence,

D(H0,X)1/2 ≤ D(H0,X0)1/2 + δ
√
r. (B.119)

Combining equations (B.113), (B.119), and (B.103), we get

D(Ĥ ,X0)1/2 ≤ D(H0,X0)1/2 + 3δ
√
r. (B.120)

This completes the proof of lemma.

Lemma B.6. Let X0 be such that the uniqueness assumption holds with parameter α > 0,

and conv(X0) has internal radius at least µ > 0. In particular, we have z0 +UBr−1(µ) ⊆
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conv(X0) for z0 ∈ Rd, and an orthogonal matrix U ∈ Rd×(r−1). Finally assume that

maxi≤n ‖Zi,.‖2 ≤ δ. Then for Ĥ the optimal solution of problem (2.5), we have

α(D(Ĥ,H0)
1/2 + D(H0, Ĥ)1/2) ≤ 2(1 + 2α)

[
r3/2δκ(P 0(Ĥ)) +

δ
√
r

µ
σmax(Ĥ − 1zT0 )

]
+ 3δ
√
r

(B.121)

where P 0 : Rd → Rd is the orthogonal projector onto aff(H0) (in particular, P 0 is an affine

map).

Proof. Let H̃ be such that conv(X0) ⊆ conv(H̃). The uniqueness assumption implies

D(H̃ ,X0)1/2 ≥ D(H0,X0)1/2 + α
(
D(H̃ ,H0)1/2 + D(H0, H̃)1/2

)
. (B.122)

Note that Lemma B.5 implies

D(Ĥ ,X0)1/2 ≤ D(H0,X0)1/2 + 3δ
√
r. (B.123)

Therefore,

D(H̃ ,X0)1/2 ≥ D(Ĥ ,X0)1/2 − 3δ
√
r + α

(
D(H̃ ,H0)1/2 + D(H0, H̃)1/2

)
. (B.124)

Hence,

α
(
D(H̃ ,H0)1/2 + D(H0, H̃)1/2

)
≤ D(H̃ ,X0)1/2 −D(Ĥ ,X0)1/2 + 3δ

√
r. (B.125)

In addition, for a convex set S, by triangle inequality we have[
n∑
i=1

D(Ĥ i,., S)

]1/2

−

[
n∑
i=1

D(H̃ i,., S)

]1/2

≤

[
n∑
i=1

(
D(Ĥ i,., S)1/2 −D(H̃ i,., S)1/2

)2
]1/2

.

(B.126)
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In addition, note that for x ∈ Rd, S ⊆ Rd, D(x, S)1/2 = infz∈S ‖x − z‖2. Hence, Using

triangle inequality, for any x,y ∈ Rd, z ∈ S,

‖x− z‖2 ≤ ‖y − z‖2 + ‖x− y‖2. (B.127)

Taking infimum over z ∈ S above and rearranging terms, we get

D(x, S)1/2 −D(y, S)1/2 ≤ ‖x− y‖2. (B.128)

Similarly, by replacing the roles of x,y above we conclude that for all x,y ∈ Rd, S ⊆ Rd

∣∣D(x, S)1/2 −D(y, S)1/2
∣∣ ≤ ‖x− y‖2. (B.129)

In particular, we have

|D(H̃ i,., S)1/2 −D(Ĥ i,., S)1/2| ≤ ‖H̃ i,. − Ĥ i,.‖2. (B.130)

Therefore, using (B.126) we have[
n∑
i=1

D(Ĥ i,., S)

]1/2

−

[
n∑
i=1

D(H̃ i,., S)

]1/2

≤

[
n∑
i=1

‖Ĥ i,. − H̃ i,.‖2
2

]1/2

= ‖Ĥ − H̃‖F .

(B.131)

Hence,

|D(H̃ ,X0)1/2 −D(Ĥ ,X0)1/2| ≤ ‖H̃ − Ĥ‖F (B.132)

and

|D(H̃ ,H0)1/2 −D(Ĥ ,H0)1/2| ≤ ‖H̃ − Ĥ‖F . (B.133)
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In addition, similarly to the proof of Lemma B.5, we can write

D(H0, H̃) =
r∑
i=1

min
αi∈∆r

‖(H0)i,. − H̃
T
αi‖2

2 (B.134)

=
r∑
i=1

min
αi∈∆r

‖(H0)i,. − Ĥ
T
αi − (Ĥ − H̃)Tαi‖2

2 (B.135)

≤
r∑
i=1

min
αi∈∆r

{
‖(H0)i,. − Ĥ

T
αi‖2 + ‖(Ĥ − H̃)Tαi‖2

}2

(B.136)

≤
r∑
i=1

{
min
α∈∆r

‖(H0)i,. − Ĥ
T
α‖2 + max

α∈∆r
‖(Ĥ − H̃)Tα‖2

}2

(B.137)

≤


(

r∑
i=1

min
α∈∆r

‖(H0)i,. − Ĥ
T
αi‖2

2

)1/2

+
√
rmax
i∈[r]
‖Ĥ i,. − H̃ i,.‖2


2

(B.138)

≤
(

D(H0, Ĥ)1/2 +
√
rmax
i∈[r]
‖Ĥ i,. − H̃ i,.‖2

)2

. (B.139)

Thus,

|D(H0, H̃)1/2 −D(H0, Ĥ)1/2| ≤
√
rmax
i∈[r]
‖H̃ i,. − Ĥ i,.‖2 (B.140)

Therefore, combining (B.125), (B.132), (B.133), (B.140), we get

α
(
D(Ĥ ,H0)1/2 + D(H0, Ĥ)1/2

)
≤ (1 + α)‖H̃ − Ĥ‖F

+ α
√
rmax
i∈[r]
‖H̃ i,. − Ĥ i,.‖2 + 3δ

√
r. (B.141)

Now, we would like to bound the terms ‖H̃ − Ĥ‖F , maxi∈[r] ‖H̃ i,. − Ĥ i,.‖2. Note that

using the fact that Ĥ is feasible for Problem (2.5), we have

D(X i,., Ĥ) ≤ δ2 . (B.142)

Thus by triangle inequality,

D((X0)i,., Ĥ)1/2 ≤ ‖X i,. − (X0)i,.‖2 + D(X i,., Ĥ)1/2 ≤ 2δ. (B.143)
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In addition, we know that (X0)i,. ∈ aff(H0), where aff(H0) is a r − 1 dimensional affine

subspace. Therefore, conv(X0) ⊆ aff(H0) and, by convexity of Bd(2δ, Ĥ), we get

conv(X0) ⊆ Bd(2δ, Ĥ) ∩ aff(H0). (B.144)

First consider the case in which Ĥ i,. ∈ aff(H0). for all i ∈ {1, 2, . . . , r}. By a perturbation

argument, we can assume that the rows of Ĥ are linearly independent, and hence aff(Ĥ) =

aff(H0). Consider Q̃ ∈ Rr×d defined by

Q̃ii = 1 + ξ, if i = j ∈ {1, 2, . . . , r}, (B.145)

Q̃ij = − ξ

r − 1
, if i 6= j ∈ {1, 2, . . . , r}, (B.146)

Q̃ij = 0, if j ∈ {r + 1, r + 2, . . . , d} (B.147)

where ξ = 2rδ0. Note that for every y ∈ Bd(2δ0;Er,d) ∩ aff(Er,d), we have D(y,Er,d)
1/2 ≤

2δ0. In addition, since y ∈ aff(Er,d), 〈y,1〉 = 1. Hence, for y ∈ Bd(2δ0;Er,d) ∩ aff(Er,d),

we can write

y = π + x (B.148)

where π ∈ conv(Er,d), x ∈ Rd, 〈1,x〉 = 0, ‖x‖2 ≤ 2δ0. It is easy to check that for this y

we have

y =
r∑
i=1

βiQ̃i,. (B.149)

where β ∈ Rr is such that for i = 1, 2, . . . , r,

βi =
r − 1

r − 1 + ξr
(πi + xi) +

ξ

r − 1 + ξr
. (B.150)

Further, note that since π ∈ conv(Er,d), πi ≥ 0 and xi ≥ −‖x‖2 ≥ −2δ0, we have

πi + xi ≥ −2δ0. Hence, for i ∈ {1, 2, . . . , r},

βi ≥
−2δ0(r − 1) + ξ

r − 1 + ξr
=

2δ0

r − 1 + ξr
≥ 0. (B.151)
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In addition,

r∑
i=1

βi =
rξ

r − 1 + ξr
+

r − 1

r − 1 + ξr

(
r∑
i=1

(πi + xi)

)
= 1. (B.152)

Therefore, every y ∈ Bd(2δ0;Er,d) ∩ aff(Er,d) can be written as a convex combination of

the rows of Q̃. Hence,

Bd(2δ0;Er,d) ∩ aff(Er,d) ⊆ conv(Q̃). (B.153)

Let Ĥ = Er,dM , M ∈ Rd×d. Since aff(Ĥ) = aff(H0), by taking H̃ = Q̃M , we have

conv(H̃) ⊇
[
∪x∈conv(Er,d)M

TBd(2δ0;x)
]
∩ aff(Ĥ) (B.154)

⊇
[
∪x∈conv(Ĥ)Bd(2δ0σmin(M );x)

]
∩ aff(Ĥ) (B.155)

⊇ Bd(2δ; Ĥ) ∩ aff(H0), (B.156)

provided that δ0 = δ/σmin(M ) = δ/σmin(Ĥ). Hence, using (B.144) for this δ0, conv(X0) ⊆

conv(H̃). Note that for Q̃, we have ‖Q̃i,. − ei‖2 ≤ 2rδ0. Thus,

‖Q̃−Er,d‖F ≤ 2r3/2δ0. (B.157)

Therefore, there exists H̃ ∈ Rr×d such that conv(X0) ⊆ conv(H̃) and

‖H̃ − Ĥ‖F = ‖(Q̃−Er,d)M‖F ≤ 2r3/2δ0σmax(M) = 2r3/2δ0σmax(Ĥ) = 2r3/2δκ(Ĥ),

max
i∈[r]
‖H̃ i,. − Ĥ i,.‖2 = max

i∈[r]
‖(Q̃i,. − ei)M‖2 ≤ 2rδ0σmax(M) = 2rδ0σmax(Ĥ) = 2rδκ(Ĥ).

Now consider the general case in which aff(Ĥ) 6= aff(H0). Let H ′ ∈ Rr×d be such that

H ′i,. is the projection of Ĥ i,. onto aff(H0). Assuming that the rows of H ′ are linearly

independent, aff(H ′) = aff(H0). Note that since conv(X0) ∈ aff(H0), for every point

x ∈ conv(X0), D(x,H ′)1/2 ≤ D(x, Ĥ)1/2 ≤ 2δ. Thus,

(X0)i,. ∈ Bd(2δ,H
′) ∩ aff(H ′). (B.158)
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Therefore, using the above argument for the case where aff(Ĥ) = aff(H0), we can find H̃

such that conv(X0) ⊆ conv(H̃) and

‖H̃ −H ′‖F ≤ 2r3/2δκ(H ′), (B.159)

max
i∈[r]
‖H̃ i,. −H ′i,.‖2 ≤ 2rδκ(H ′). (B.160)

Hence, for every i = 1, 2, . . . , r,

‖H̃ i,. − Ĥ i,.‖2 ≤ ‖H̃ i,. −H ′i,.‖2 + ‖H ′i,. − Ĥ i,.‖2

≤ 2rδκ(H ′) + ‖P 0(Ĥ i,.)− Ĥ i,.‖2

(B.161)

where P 0 is the orthogonal projection onto aff(H0). We next use the assumption on the

internal radius of conv(X0) to upper bound the term ‖P 0(Ĥ i,.)− Ĥ i,.‖2. Note that since

conv(X0) ⊆ Bd(2δ, Ĥ), letting H̄ = Ĥ − 1zT0 , for some orthogonal matrix U ∈ Rd×r′ ,

r′ = r − 1, we have

max
‖z‖2≤µ

min
〈a,1〉=1,a≥0

‖Uz − H̄T
a‖2

2 = max
‖z‖2≤µ

min
〈a,1〉=1,a≥0

‖Uz − (Ĥ − 1zT0 )Ta‖2
2 (B.162)

≤ max
‖z‖2≤µ

min
〈a,1〉=1,a≥0

‖Uz + z0 − Ĥ
T
a‖2

2 ≤ 4δ2. (B.163)

Now, using Cauchy-Schwarz inequality we can write

max
‖z‖2≤µ

min
‖a‖2≤1

‖Uz − H̄T
a‖2

2 ≤ max
‖z‖2≤µ

min
〈a,1〉=1,a≥0

‖Uz − H̄T
a‖2

2 ≤ 4δ2. (B.164)

Note that,

min
‖a‖2≤1

‖Uz − H̄T
a‖2

2 = max
ρ≥0

min
a

{
‖z‖2

2 − 2
〈
z,UTH̄

T
a
〉

+
〈
a, (H̄H̄

T
+ ρI)a

〉
− ρ
}

(B.165)

= max
ρ≥0

{
‖z‖2

2 −
〈
H̄Uz, (H̄H̄

T
+ ρI)−1H̄Uz

〉
− ρ
}

(B.166)
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Hence, using (B.164)

µ2 max
ρ≥0

{
λmax(I−UTH̄

T
(H̄H̄

T
+ ρI)−1H̄U )− ρ

}
≤ 4δ2. (B.167)

In particular, for ρ = 0 we get

µ2λmax(I−UTH̄
T
(H̄H̄

T
)−1H̄U ) ≤ 4δ2. (B.168)

Taking H̄ = ŨΣṼ
T
, the singular value decomposition of H̄ , we have σmax(H̄) = σmax(Ĥ−

1zT0 ) = maxi Σii. Letting UTṼ = Q, we get

max
ρ≥0

λmax

(
I−QQT

)
≤ 4δ2

µ2
. (B.169)

Letting q = σmin(Q), this results in

1− q2 ≤ 4δ2

µ2
. (B.170)

In addition, note that, by the internal radius assumption, for any z ∈ Rr′ , z0 + Uz ∈

aff(H0). Further, since z0 ∈ aff(H0),

max
i∈[r]
‖P 0(Ĥ i,.)− Ĥ i,.‖2 = max

i∈[r]
‖PU (H̄ i,.)− H̄ i,.‖2 (B.171)

≤ max
‖a‖2≤1

‖PU (H̄
T
a)− H̄T

a‖2 (B.172)

≤ max
‖a‖2≤1

‖PU (H̄
T
a)− H̄T

a‖2 (B.173)

≤ max
‖a‖2≤1

min
z
‖Uz − H̄T

a‖2
2 (B.174)
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where PU is the projector onto the column space of U . Note that,

max
‖a‖2≤1

min
z
‖Uz − H̄T

a‖2
2 = max

‖a‖2≤1

{
−
〈
a, H̄UUTH̄

T
a
〉

+
〈
a, H̄H̄

T
a
〉}

(B.175)

= λmax(H̄H̄
T − H̄UUTH̄

T
) (B.176)

= λmax(Σ(I−QTQ)Σ) (B.177)

≤ σmax(H̄)2λmax(I−QTQ) (B.178)

≤ σmax(H̄)2(1− q2) ≤ 4σmax(H̄)2δ2

µ2
(B.179)

where the last inequality follows from (B.170). This results in

max
i∈[r]
‖P 0(Ĥ i,.)− Ĥ i,.‖2 ≤

2σmax(H̄)δ

µ
=

2σmax(Ĥ − 1zT0 )δ

µ
. (B.180)

Therefore, ‖P 0(Ĥ)− Ĥ‖F ≤ 2σmax(Ĥ − 1zT0 )δ
√
r/µ. Hence, using (B.161) we get

max
i∈[r]
‖Ĥ i,. − H̃ i,.‖2 ≤ 2rδκ(P 0(Ĥ)) +

2σmax(Ĥ − 1zT0 )δ

µ
, (B.181)

‖Ĥ − H̃‖F ≤ 2r3/2δκ(P 0(Ĥ)) +
2σmax(Ĥ − 1zT0 )δ

√
r

µ
. (B.182)

Replacing this in (B.141) completes the proof.

B.4.2 Proof of Theorem 1

For simplicity, let D = α(D(Ĥ ,H0)1/2 + D(H0, Ĥ)1/2). First note that under the as-

sumption of Theorem 1 we have

z0 +UBr′(µ) ⊆ conv(X0) ⊆ conv(H0). (B.183)

Therefore, using Lemma B.4 with H = H0 and δ = 0, we have

µ
√

2 ≤ σmin(H0) ≤ σmax(H0). (B.184)
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In addition, since z0 ∈ conv(H0) we have z0 = HT
0α0 for some α0 ∈ ∆r. Therefore,

‖z0‖2 ≤ σmax(H0)‖α0‖2 ≤ σmax(H0). (B.185)

Note that

σmax(Ĥ − 1zT0 ) ≤ σmax(Ĥ) + σmax(1zT0 ) = σmax(Ĥ) +
√
r‖z0‖2. (B.186)

Therefore, using Lemma B.6 we have

D ≤ 2(1 + 2α)

(
r3/2δκ(P 0(Ĥ)) +

σmax(Ĥ)δr1/2

µ
+
rδ‖z0‖2

µ

)
+ 3δr1/2. (B.187)

In addition, Lemma B.2 implies that

L (H0, Ĥ)1/2 ≤ κ(H0)

α
(1 +

√
2)
√
rD . (B.188)

Further, let P 0 denote the orthogonal projector on aff(H0). Hence, P 0 is a non-expansive

mapping: for x,y ∈ Rd, D(P 0(x),P 0(y)) ≤ D(x,y). Therefore, since conv(H0) ⊂

aff(H0), for any h ∈ Rd

D(P 0(h),H0) ≤ D(P 0(h),P 0(Πconv(H0)(h))) ≤ D(h,Πconv(H0)(h)) = D(h,H0).

(B.189)

Therefore,

D(P 0(Ĥ),H0) ≤ D(Ĥ ,H0). (B.190)

First consider the case in which

δ ≤ αµ

30 r3/2
. (B.191)
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Note that in this case δ ≤ µ/2. Hence, using Lemma B.3 to upper bound σmax(Ĥ),

σmax(P 0(Ĥ)) and Lemma B.4 to lower bound σmin(P 0(Ĥ)), by (B.190), we get

σmax(Ĥ) ≤ D(Ĥ ,H0)1/2 + r1/2σmax(H0) ≤ D

α
+ r1/2σmax(H0), (B.192)

κ(P 0(Ĥ)) =
σmax(P 0(Ĥ))

σmin(P 0(Ĥ))
≤ D(P 0(Ĥ),H0)1/2 + r1/2σmax(H0)√

2(µ− 2δ)

≤ D(Ĥ ,H0)1/2 + r1/2σmax(H0)√
2(µ− 2δ)

≤ D

α(µ− 2δ)
√

2
+
r1/2σmax(H0)

(µ− 2δ)
√

2
. (B.193)

Replacing these in (B.187) we have

D ≤ 2(1 + 2α)

[
r3/2Dδ

α(µ− 2δ)
√

2
+
r2σmax(H0)δ

(µ− 2δ)
√

2
+

Dr1/2δ

αµ

+
rσmax(H0)δ

µ
+
r‖z0‖2δ

µ

]
+ 3δ
√
r. (B.194)

Therefore,

D

[
1−
√

2(1 + 2α)r3/2δ

α(µ− 2δ)
− 2(1 + 2α)r1/2δ

αµ

]

≤ 2(1 + 2α)

[
r2σmax(H0)δ

(µ− 2δ)
√

2
+
rσmax(H0)δ

µ
+
r‖z0‖2δ

µ

]
+ 3δ
√
r (B.195)

Notice that condition (B.191) implies that µ− 2δ ≥ µ/2 and

√
2(1 + 2α)r3/2δ

α(µ− 2δ)
+

2(1 + 2α)r1/2δ

αµ
≤ 1

2
. (B.196)

Using the previous two equations, under condition (B.191) we have

D ≤ 4(1 + 2α)rδ

µ

[
5rσmax(H0)

2
+ ‖z0‖2

]
+ 3δ
√
r

≤ 4(1 + 2α)r2

µ

[
5σmax(H0)

2
+
‖z0‖2

r
+

3µ

4(1 + 2α)r3/2

]
δ. (B.197)
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Combining this with (B.188), and using the fact that 1 + 2α ≤ 3, we have under condition

(B.191)

L (H0, Ĥ)1/2 ≤ 12(1 +
√

2)r5/2κ(H0)

µα

(
5σmax(H0)

2
+
‖z0‖2

r
+

3µ

4(1 + 2α)r3/2

)
δ

(B.198)

≤ 29σmax(H0)κ(H0)r5/2

αµ

(
5

2
+

‖z0‖2

rσmax(H0)
+

3µ

4(1 + 2α)r3/2σmax(H0)

)
δ.

(B.199)

Note that using (B.184), (B.185) and since α ≥ 0

‖z0‖2

rσmax(H0)
≤ 1,

3µ

4(1 + 2α)r3/2σmax(H0)
≤ 3

4
√

2
. (B.200)

Therefore,

L (H0, Ĥ)1/2 ≤ 120σmax(H0)κ(H0)r5/2

αµ
δ. (B.201)

Thus,

L (H0, Ĥ) ≤ C2
∗ r

5

α2
max
i≤n
‖Zi,·‖2

2 , (B.202)

where C∗ is defined in Theorem 1.

Next, consider the case in which

δ = max
i≤n
‖Zi,·‖2 ≤

αµ

330κ(H0)r5/2
, (B.203)

Note that using (B.184),(B.185) and since 1 + 2α ≤ 3, this condition on δ implies that

δ ≤ αµσmin(H0)

12r(1 + 2α)(5r3/2σmax(H0) + 2‖z0‖2r1/2 + 3µ)
. (B.204)

In particular, condition (B.191) holds. Hence, using equation (B.197) we get

D ≤ 4(1 + 2α)r2

µ

[
5σmax(H0)

2
+
‖z0‖2

r
+

3µ

4(1 + 2α)r3/2

]
δ ≤ ασmin(H0)

6
√
r

. (B.205)
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Further, note that since P 0 is a projection onto an affine subspace, for x ∈ Rd, P 0(x) =

P̃ 0x + x0 for some P̃ 0 ∈ Rd×d,x0 ∈ Rd. Hence, for any π ∈ ∆r, h = Ĥ
T
π ∈ conv(Ĥ),

we have

P 0(h) = P̃ 0h+ x0 = P̃ 0Ĥ
T
π + x0 =

r∑
i=1

πi

(
P̃ 0Ĥ

T
ei + x0

)
=

r∑
i=1

πiP 0(ĥi) ∈ conv(P 0(Ĥ)) (B.206)

where ei is the i’th standard unit vector. Hence,

P 0(conv(Ĥ)) ⊆ conv(P 0(Ĥ)). (B.207)

Thus, for h0 ∈ Rd an arbitrary row of H0, we have

D(h0,P 0(Ĥ)) = D(h0, conv(P 0(Ĥ))) ≤ D(h0,P 0(conv(Ĥ)))

≤ D(h0,P 0(Πconv(Ĥ)(h0))). (B.208)

In addition, using non-expansivity of P 0, we have

D(h0,P 0(Πconv(Ĥ)(h0))) ≤ D(h0,Πconv(Ĥ)(h0)) = D(h0, conv(Ĥ)) = D(h0, Ĥ).

(B.209)

This implies that

D(H0,P 0(Ĥ)) ≤ D(H0, Ĥ). (B.210)

Therefore, using (B.190), (B.210) and (B.205) we get

D(H0,P 0(Ĥ))1/2 + D(P 0(Ĥ),H0)1/2 ≤ D(H0, Ĥ)1/2 + D(Ĥ ,H0)1/2

≤ D

α
≤ σmin(H0)

6
√
r

. (B.211)
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Hence, in this case Lemma B.3 implies that

σmax(Ĥ) ≤ 2σmax(H0), (B.212)

κ(P 0(Ĥ)) ≤ 7κ(H0)

2
. (B.213)

Replacing this in (B.187), we have

D ≤ (1 + 2α)r1/2

(
7rδκ(H0) +

4σmax(H0)δ + 2
√
r‖z0‖2δ

µ

)
+ 3δr1/2 (B.214)

≤ 3δ
√
r

(
8rκ(H0) +

4σmax(H0) + 2
√
r‖z0‖2

µ

)
(B.215)

Hence, using (B.188) under assumption (B.203), we have

L (H0, Ĥ)1/2 ≤ 3(1 +
√

2)κ(H0)r

(
8rκ(H0) +

4σmax(H0) + 2
√
r‖z0‖2

µ

)
δ

α
(B.216)

≤ 120κ(H0) max

{
rκ(H0),

σmax(H0) +
√
r‖z0‖2

µ

}
rδ

α
. (B.217)

Hence, for C ′′∗ as defined in the statement of the theorem, we get

L (H0, Ĥ)1/2 ≤ C ′′∗ r

α
max
i≤n
‖Zi,·‖2 (B.218)

This completes the proof.

C Proof of Proposition 4.2

The proof follows immediately from the following two propositions.

Proposition C.1. Let X ∈ Rn×d and D(x,y) = ‖x − y‖2
2. Then the gradient of the

function u 7→ D(u,X) is given by

∇uD(u,X) = 2(u−Πconv(X)(u)) . (C.1)
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Proof. Note that D(u,X) is the solution of the following convex optimization problem.

minimize ‖u− y‖2
2 ,

subject to y = XTπ,

π ≥ 0,

〈π,1〉 = 1.

(C.2)

The Lagrangian for this problem is

L(y,π,ρ, ρ̃,λ) = ‖u− y‖2
2 +

〈
ρ, (y −XTπ)

〉
− 〈λ,π〉+ ρ̃(1− 〈π,1〉). (C.3)

The KKT condition implies that at the minimizer (y∗,π∗,ρ∗, ρ̃∗,λ∗), we have

∂L
∂y

= 0 , (C.4)

and therefore

ρ∗ = 2(u− y∗) (C.5)

and the dual of the above optimization problem is

maximize − 1

4
‖ρ‖2

2 + 〈ρ,u〉+ ρ̃,

subject to λ ≥ 0,

Xρ+ ρ̃1 + λ = 0.

(C.6)

Note that since (C.2) is strictly feasible, Slater condition holds and by strong duality

the optimal value of (C.6) is equal to f(u). Hence, we have written f(u) as pointwise

supremum of functions. Therefore, subgradient of f(u) can be achieved by taking the

derivative of the objective function in (C.6) at the optimal solution (see Section 2.10 in

[MN13]). Note that the derivative of this objective function at the optimal solution is
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equal to ρ∗ = 2(u− y∗) = 2(u−Πconv(X)(u)) (where we used Eq. (C.5)). Since the dual

optimum is unique (by strong convexity in ρ), the function u 7→ D(u,X) is differentiable

with gradient given by Eq. (C.1).

Proposition C.2. Let u ∈ Rd and D(x,y) = ‖x − y‖2
2, and assume that the rows of

H0 ∈ Rr×d are affine independent. Then the function H 7→ D(u,H) is differentiable at

H0 with gradient

∇HD(u,H0) = 2π0(Πconv(H0)(u)− u)T, π0 = arg min
π∈∆r

∥∥HT
0π − u

∥∥2

2
. (C.7)

Proof. We will denote by G the right hand side of Eq. (C.7). For V ∈ Rr×d, we have

D(u,H0 + V ) = min
π∈∆r

∥∥(H0 + V )Tπ − u
∥∥2

2
. (C.8)

Note that (H0 +V ) has affinely independent rows for V in a neighborhood of 0, and hence

has a unique minimizer there, that we will denote by πV . By optimality of πV , we have

D(u,H0 + V )−D(u,H0) =
∥∥(H0 + V )TπV − u

∥∥2

2
−
∥∥(H0 + V )Tπ0 − u

∥∥2

2
(C.9)

≤
∥∥(H0 + V )Tπ0 − u

∥∥2

2
−
∥∥(H0 + V )Tπ0 − u

∥∥2

2
(C.10)

= 〈G,V 〉+ ‖V π0‖2
2. (C.11)

On the other hand, by optimality of π0,

D(u,H0 + V )−D(u,H0) ≥
∥∥(H0 + V )TπV − u

∥∥2

2
−
∥∥(H0 + V )TπV − u

∥∥2

2
(C.12)

= 〈2πV (Πconv(H0)(u)− u)T,V 〉+ +‖V πV ‖2
2 (C.13)

= 〈G,V 〉+ 2〈(πV − π0)(Πconv(H0)(u)− u)T,V 〉+ ‖V πV ‖2
2 .

(C.14)

Letting R(V ) = |D(u,H0 + V )−D(u,H0)− 〈G,V 〉| denote the residual, we get

R(V )

‖V ‖F
≤ ‖Πconv(H0)(u)− u‖2‖πV − π0‖2 + ‖V ‖F (‖πV ‖2 + ‖π0‖2) . (C.15)
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Note that πV must converge to π0 as V → 0 because π0 is the unique minimizer for

V = 0. Hence we get R(V )/‖V ‖F → 0 as ‖V ‖F → 0, which proves our claim.

D Proof of Proposition 4.1

We use the results of [BST14] to prove Proposition 4.1. We refer the reader to [BST14] for

the definitions of the technical terms in this section. First, consider the function

f(H) = λD(H ,X). (D.1)

Note that using the main theorem of polytope theory (Theorem 1.1 in [Zie12]), we can

write

conv(X) =
{
x ∈ Rd | 〈ai,x〉 ≤ bi for 1 ≤ i ≤ m

}
(D.2)

for some ai ∈ Rd, bi ∈ R and a finite m. Hence, using the definition of the semi-algebraic

sets (see Definition 5 in [BST14]), the set conv(X) is semi-algebraic. Therefore, the function

f(H) which is proportional to the sum of squared `2 distances of the rows of H from a

semi-algebraic set, is a semi-algebraic function (See Appendix in [BST14]). Further, the

function

g(W ) =
n∑
i=1

I (wi ∈ ∆r) (D.3)

is the sum of indicator functions of semi-algebraic sets (Note that using the same argument

used for conv(X), ∆r is semi-algebraic). Therefore, the function g is semi-algebraic (See

Appendix in [BST14]). In addition, the function

h(H ,W ) = ‖X −WH‖2
F (D.4)
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is a polynomial. Hence, it is semi-algebraic. Therefore, we deduce that the function

Ψ(H ,W ) = f(H) + g(W ) + h(H ,W ) (D.5)

is semi-algebraic. In addition, since ∆r is closed, Ψ is proper and lower semi-continuous.

Therefore, Ψ(H ,W ) is a KL function (See Theorem 3 in [BST14]).

Now, we will show that the Assumptions 1,2 in [BST14] hold for our algorithm. First,

note that since ∆r is closed, the functions f(H) and g(W ) are proper and lower semi-

continuous. Further, f(H) ≥ 0, g(W ) ≥ 0, h(H ,W ) ≥ 0 for all H ∈ Rr×d, W ∈ Rn×r.

In addition, the function h(H ,W ) is C2. Therefore, it is Lipschitz continuous over the

bounded subsets of Rr×d × Rn×r. Also, the partial derivatives of h(H ,W ) are

∇Hh(H ,W ) = 2W T(WH −X), (D.6)

∇Wh(H ,W ) = 2(WH −X)HT. (D.7)

It can be seen that for any fixed W , the function H 7→ ∇Hh(H ,W ) is Lipschitz con-

tinuous with moduli L1(W ) = 2‖W TW ‖F . Similarly, for any fixed H , the function

W 7→ ∇Wh(H ,W ) is Lipschitz continuous with moduli L2(H) = 2‖HHT‖F . Note that

since in each iteration of the algorithm the rows of W k are in ∆r. Hence,

inf
{
L1(W k) : k ∈ N

}
≥ λ−1 , sup

{
L1(W k) : k ∈ N

}
≤ λ+

1 (D.8)

for some positive constants λ−1 , λ
+
1 . In addition, note that because the PALM algorithm is

a descent algorithm, i.e., Ψ(Hk,W k) ≤ Ψ(Hk−1,W k−1) for k ∈ N, and since f(H)→∞

as ‖H‖F → ∞, the value of L2(Hk) = ‖HkHkT‖F remains bounded in every iteration.

Finally, note that by taking γk2 > max
{∥∥∥Hk+1Hk+1T

∥∥∥
F
, ε
}

for some constant ε > 0, we

make sure that the steps in the PALM algorithm remain well defined (See Remark 3(iii)

in [BST14]). Hence, we have shown that the assumptions of Theorem 1 in [BST14] hold.
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Therefore, using this theorem, the sequence
{
Hk, W k

}
k∈N generated by the iterations in

(4.7) - (4.9) has a finite length and it converges to a stationary point (H∗,W ∗) of Ψ.

E Other optimization algorithms

Apart from the proximal alternating linearized minimization discussed in Section 4.2, we

experimented with two other algorithms, obtaining comparable results. For the sake of

completeness, we describe these algorithms here.

E.1 Stochastic gradient descent

Using any of the initializations discussed in Section 4.1 we iterate

H(t+1) = H(0) − γtG(t) . (E.1)

The step size γt is selected by backtracking line search. Ideally, the direction G(t) can

be taken to be equal to ∇Rλ(H
(t)). However, for large datasets this is computationally

impractical, since it requires to compute the projection of each data point onto the set

conv(H(t)). In order to reduce the complexity of the direction calculation, we estimate

this sum by subsampling. Namely, we draw a uniformly random set St ⊆ [n] of fixed size

|St| = s ≤ n, and compute

G(t) =
2n

|St|
∑
i∈St

α∗i
(
Πconv(H) (xi)− xi

)
+ 2λ

(
H −Πconv(X) (H)

)
, (E.2)

α∗i = arg min
α∈∆r

∥∥HTα− xT
i

∥∥
2
. (E.3)
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E.2 Alternating minimization

This approach generalizes the original algorithm of [CB94]. We rewrite the objective as a

function of W = (wi)i≤n, wi ∈ ∆r,H = (hi)i≤r, hi ∈ Rd and A = (α`)`≤r, α` ∈ ∆n

Rλ(H) = min
W ,A

F (H ,W ,A) , (E.4)

F (H ,W ,A) =
n∑
i=1

∥∥∥xi − r∑
`=1

wi`h`

∥∥∥3

2
+ λ

r∑
`=1

∥∥∥h` − n∑
i=1

α`,ixi

∥∥∥2

2
. (E.5)

The algorithm alternates between minimizing with respect to the weights (wi)i≤n (this

can be done independently across i ∈ {1, . . . , n}) and minimizing over (h`,α`), which is

done sequentially by cycling over ` ∈ {1, . . . , r}. Minimization over wi can be performed

by solving a non-negative least squares problem. As shown in [CB94], minimization over

(h`,α`) is also equivalent to non-negative least squares. Indeed, by a simple calculation

F (H ,W ,A) = wtot
`

∥∥h` − v`∥∥2

2
+ λ
∥∥∥h` − n∑

i=1

α`,ixi

∥∥∥2

2
+ F̃ (H ,W ,A) (E.6)

= f`(h`,α`;H 6=`,W ,A) + F̃ (H ,W ,A) . (E.7)

where H 6=` = (hi)i 6=`,i≤r, F̃ (H ,W ,A) does not depend on (h`,α`), and we defined

wtot
` ≡

n∑
i=1

w2
i` , (E.8)

v` ≡
1

wtot
`

n∑
i=1

wi,`

{
xi −

∑
j 6=`,j≤r

wijhj

}
. (E.9)

It is therefore sufficient to minimize f`(h`,α`;H 6=`,W ,A) with respect to its first two

arguments, which is equivalent to a non-negative least squares problem. This can be seen

by minimizing f`(· · · ) explicitly with respect to h` and writing the resulting objective

function.

The pseudocode for this algorithm is given below.
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Alternating minimization

Input: Data {xi}i≤n, xi ∈ Rd; integer r; initial archetypes {h(0)
` }1≤`≤r;

number of iterations T ;

Output: Archetype estimates {h(T )
` }1≤`≤r;

1: For ` ∈ {1, . . . , r}:

2: Set α
(0)
` = arg minα∈∆n ‖h(0)

` −Xα`‖2;

3: For t ∈ {1, . . . , T}:

4: Set W t = arg minW F (H t−1,W ,At−1)

5: For ` ∈ {1, . . . , r}:

6: Set h
(t)
` ,α

(t)
` = arg minh`,α` f`(h`,α`;H

t
<`,H

t−1
>` ,W

t,At
<`,A

t−1
>` );

7: End For;

8: Return {ĥ
(T )

` }1≤`≤r;

Here H<` = (hi)i<`, H>` = (hi)`<i≤r, and similarly for A.

F Further simulation results

In this section, we evaluate the performances of the proposed method by comparing it with

a number of algorithms for non-negative matrix factorization under different settings.

F.1 Further comparisons with algorithms from the literature

Figures 2 to 7 extend the comparison of Figures 1, 4 and 5 to seven alternative reconstruc-

tion methods in the literature. Namely:

• No noise. Figures 2 and 3 repeat the experiment of Figure 1 for seven new methods.
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Figure 2: As in Figure 1 for three other methods.

• Low noise. Figures 4, 5 repeat the experiment of Figure 4 for the same seven new

methods.

• High noise. Figures 6, 7 repeat the experiment of Figure 5 for the same seven new

methods.

F.2 Simulations with non-Gaussian correlated noise

In order to show the robustness of the proposed method to the noise model, we have

repeated the experiments of Table 1 with dependent, non-Gaussian noise (see caption for

a definition of the noise model). In Table 1, we report the average reconstruction error

achieved by the same nine algorithms for non-negative matrix factorization. For each noise
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Figure 3: As in Figure 1 for four other methods.

41



C
a

ff
e

in
e

Original Spectra

S
u

c
ro

s
e

L
a

c
to

s
e

1200 1250 1300 1350 1400 1450 1500 1550

T
ri

o
c

ta
n

o
in

Spectra achieved by GNMF (F-norm formulation)

algorithm of Cai et al. (2011)

1200 1250 1300 1350 1400 1450 1500 1550

Wavenumber (cm
-1

)

Spectra achieved by GNMF (KL formulation)

algorithm of Cai et al. (2011)

1200 1250 1300 1350 1400 1450 1500 1550

0

0.01

0.02

0.03

Spectra achieved by block coordinate descent

algorithm of Gillis and Kumar (2014)

0

0.01

0.02

0.03

R
e

la
ti

v
e

 A
b

s
o

rb
a

n
c

e
 (

N
o

rm
a

li
z
e

d
)

0

0.01

0.02

0.03

1200 1250 1300 1350 1400 1450 1500 1550

0

0.01

0.02

0.03

Figure 4: As in Figure 4 for three other methods.

42



C
a

ff
e

in
e

Original Spectra

S
u

c
ro

s
e

L
a

c
to

s
e

1200 1250 1300 1350 1400 1450 1500 1550

T
ri

o
c

ta
n

o
in

Spectra achieved by hierarchical alternating

least squares (HALS) of Cichocki et al. (2007)

1200 1250 1300 1350 1400 1450 1500 1550

Wavenumber (cm
-1

)

Spectra achieved by multiplicative

updates of Lee and Seung (2001)

1200 1250 1300 1350 1400 1450 1500 1550

Spectra achieved by method

of Gillis and Vavasis (2014)

1200 1250 1300 1350 1400 1450 1500 1550

0

0.01

0.02

0.03

Spectra achieved by fast conical hull

algorithm of Kumar et al. (2013)

0

0.005

0.01

0.015

R
e

la
ti

v
e

 A
b

s
o

rb
a

n
c

e
 (

N
o

rm
a

li
z
e

d
)

0

0.01

0.02

0.03

1200 1250 1300 1350 1400 1450 1500 1550

0

0.01

0.02

0.03

Figure 5: As in Figure 4 for four other methods.
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Figure 6: As in Figure 5 for three other methods.
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Figure 7: As in Figure 5 for four other methods.
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level we run the various algorithms on 10 noise realizations for each noise level σ. We show

in bold the smallest achieved error and the smallest error with data driven choice of the

algorithm parameters.

σ 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Projected gradient [Lin07] 0.062 0.058 0.06 0.07 0.089 0.101 0.122 0.133 0.142 0.143 0.151

Multiplicative update[LS01] 0.069 0.062 0.069 0.078 0.092 0.114 0.125 0.136 0.145 0.143 0.15

Fast Anchor Words [AGH+13] 0.041 0.047 0.055 0.075 0.093 0.113 0.134 0.156 0.176 0.195 0.22

Block coordinate descent [GK15] 0.067 0.068 0.067 0.069 0.077 0.086 0.092 0.095 0.096 0.098 0.099

HALS [CZPA09] 0.073 0.077 0.074 0.077 0.95 0.112 0.117 0.131 0.140 0.145 0.151

GNMF [CHHH11] (Frobenius) 0.065 0.081 0.095 0.102 0.111 0.121 0.131 0.140 0.143 0.143 0.15

GNMF [CHHH11] (KL) 0.066 0.075 0.081 0.087 0.099 0.121 0.128 0.138 0.141 0.140 0.151

Recursive method [GV14] 0.034 0.04 0.053 0.068 0.089 0.111 0.13 0.15 0.17 0.19 0.21

Conical hull [KSK13] 0.034 0.04 0.052 0.068 0.088 0.111 0.13 0.15 0.17 0.19 0.21

Our method ( oracle λ) 0.005 0.015 0.039 0.06 0.081 0.091 0.102 0.113 0.122 0.132 0.14

Our method (data driven λ) 0.006 0.021 0.041 0.067 0.094 0.108 0.124 0.134 0.147 0.161 0.178

Table 1: Risk L (H0, Ĥ)1/2 for reconstruction of the 4 spectra in Figure 1 under dependent,

non-gaussian noise using some construction methods in different noise magnitudes. The

trivial estimator Ĥ = 0 achieves L (H0, Ĥ)1/2 = 0.231. For this table I have generated the

data asX = W 0H0+µQZ where Zij, 1 ≤ i, j ≤ n are i.i.d Laplace (0, 1) random variables

and Q ∈ Rn×n is a circulant matrix with first row equal to [1 ,0n−(n1+1)/2 , ρ1(n1−1)/2] and

µ = (σ/
√

2)(1 + (n1−1)ρ2/2)−1/2. In these simulations, I have taken ρ = 0.5, n1 = 21. For

the data driven row, parameter λ is chosen as in Section 4.3 with c0 = 1.2.

F.3 Simulations with other ground truth signals

We repeated the synthetic datasets experiments of Section 4 with using four other spectra

as the ground truth signals. In these experiments we have used the reflection spectra

of chalk, Maltose, Acetaminophen and baking soda from the NIST Chemistry WebBook

dataset [LM]. For these signals we have d = 107 and we generate n = 250 data points

as in Appendix A. We have also used different parameters to generate weight vectors in
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Figure 8: As in Figure 1 for four other ground truth spectra.

this case. Dirichlet parameters are chosen to be equal to one (instead of 5), the number of

weight vectors with cardinality equal to 2 is equal to 12 and the number of weight vectors

with cardinality equal to 3 is equal to 8. Other weight vectors have cardinality equal to

4. The recovered spectra of different algorithms in the noiseless and noisy settings are

reported in Figures 8 to 16.

In Table 2, we report the average reconstruction error achieved by the same nine algo-

rithms for non-negative matrix factorization on this dataset. For each noise level we use

10 noise realizations for each noise level σ.
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Figure 9: As in Figure 2 for four other ground truth spectra.
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Figure 10: As in Figure 3 for four other ground truth spectra.
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Figure 11: As in Figure 4 for four other ground truth spectra.
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Figure 12: As in Figure 4 for four other ground truth spectra.
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Figure 13: As in Figure 5 for four other ground truth spectra.

52



C
h

a
lk

Original Spectra

M
a

lt
o

s
e

A
c

e
ta

m
in

o
p

h
e

n

50 100 150 200 250 300 350 400

B
a

k
in

g
s

o
d

a

Spectra achieved by Lin (2007)

50 100 150 200 250 300 350 400

Wavenumber (cm
-1

)

Spectra achieved by Arora et al. (2013)

50 100 150 200 250 300 350 400

0

0.02

0.04

0.06
Spectra achieved by proposed method

0

0.02

0.04

0.06

R
e

la
ti

v
e

 A
b

s
o

rb
a

n
c

e
 (

N
o

rm
a

li
z
e

d
)

0

0.02

0.04

0.06

50 100 150 200 250 300 350 400

0

0.02

0.04

0.06

Figure 14: As in Figure 5 for four other ground truth spectra.
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Figure 15: As in Figure 6 for four other ground truth spectra.
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Figure 16: As in Figure 7 for four other ground truth spectra.
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σ 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Projected gradient [Lin07] 0.061 0.062 0.061 0.063 0.075 0.085 0.097 0.100 0.106 0.114 0.119

Multiplicative update [LS01] 0.064 0.064 0.064 0.069 0.075 0.086 0.092 0.099 0.110 0.115 0.119

Fast Anchor Words [AGH+13] 0.045 0.041 0.056 0.075 0.094 0.119 0.140 0.161 0.183 0.208 0.231

Block coordinate descent[GK15] 0.089 0.089 0.085 0.086 0.083 0.091 0.095 0.088 0.092 0.092 0.093

HALS [CZPA09] 0.0601 0.059 0.064 0.067 0.073 0.089 0.095 0.100 0.109 0.115 0.120

GNMF [CHHH11] (Frobenius) 0.057 0.081 0.089 0.109 0.121 0.133 0.123 0.125 0.123 0.125 0.123

GNMF [CHHH11] (KL) 0.066 0.078 0.092 0.097 0.107 0.115 0.123 0.126 0.132 0.131 0.136

Recursive method [GV14] 0.031 0.039 0.054 0.074 0.093 0.117 0.138 0.159 0.183 0.205 0.229

Conical hull [KSK13] 0.031 0.039 0.054 0.074 0.093 0.117 0.138 0.159 0.183 0.205 0.229

Our method (oracle λ) 0.002 0.007 0.014 0.023 0.040 0.049 0.068 0.064 0.068 0.072 0.076

Our method (Data driven λ) 0.003 0.009 0.014 0.027 0.052 0.06 0.075 0.087 0.095 0.114 0.133

Table 2: Risk L (H0, Ĥ)1/2 for reconstruction of the 4 spectra in Figure 8 using some

reconstruction methods in different noise magnitudes. The trivial estimator Ĥ = 0 achieves

L (H0, Ĥ)1/2 = 0.237. For the data driven row, parameter λ is chosen as in subsection 4.3

with c = 1.2 in {0.001, 0.002, 0.005, 0.007, 0.01, 0.03, 0.05, 0.07, 0.1, 0.2, 0.3, 0.5, 0.75, 1, 2, 5}.
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