
Smoothing with Couplings of Conditional
Particle Filters: supplementary materials

Before proving Theorem 3.1 of the main document, we introduce an intermediate result

on the probability of the chains meeting at the next step, irrespective of their current states.

For convenience, we first recall the three assumptions of the main document.

Assumption 1 The measurement density of the model is bounded from above: there exists

ḡ <∞ such that, for all y ∈ Y and x ∈ X, g(y|x) ≤ ḡ.

Assumption 2 The resampling probability matrix P , with rows summing to w1:N and

columns summing to w̃1:N , is such that, for all i ∈ {1, . . . , N}, P ii ≥ wiw̃i. Furthermore,

if w1:N = w̃1:N , then P is a diagonal matrix with entries given by w1:N .

Assumption 3 Let (X(n))n≥0 be a Markov chain generated by the conditional particle fil-

ter and started from π0, and h a test function of interest. Then E
[
h(X(n))

]
−−−→
n→∞

π(h).

Furthermore, there exists δ > 0, n0 < ∞ and C < ∞ such that, for all n ≥ n0,

E
[
h(X(n))2+δ

]
≤ C.

1 Intermediate result on the meeting probability

The result provides a lower-bound on the probability of meeting in one step, for coupled

chains generated by the coupled conditional particle filter (CCPF) kernel.

Lemma 1.1 Let N ≥ 2 and T ≥ 1 be fixed. Under Assumptions 1 and 2, there exists

ε > 0, depending on N and T , such that

∀X ∈ XT+1, ∀X̃ ∈ XT+1, P(X ′ = X̃ ′|X, X̃) ≥ ε,
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where (X ′, X̃ ′) ∼ CCPF((X, X̃), ·). Furthermore, if X = X̃, then X ′ = X̃ ′ almost surely.

The constant ε depends on N and T , and on the coupled resampling scheme being used.

Lemma 1.1 can be used, together with the coupling inequality (Lindvall, 2002), to prove the

ergodicity of the conditional particle filter kernel, which is akin to the approach of Chopin

and Singh (2015). The coupling inequality states that the total variation distance between

X(n) and X̃(n−1) is less than 2P(τ > n), where τ is the meeting time. By assuming X̃(0) ∼ π,

X̃(n) follows π at each step n, and we obtain a bound for the total variation distance

between X(n) and π. Using Lemma 1.1, we can bound the probability P(τ > n) from above

by (1 − ε)n, as in the proof of Theorem 3.1 below. This implies that the computational

cost of the proposed estimator has a finite expectation for all N ≥ 2 and T ≥ 1.

Proof of Lemma 1.1. We write Px0:t,x̃0:t and Ex0:t,x̃0:t for the conditional probability and

expectation, respectively, with respect to the law of the particles generated by the CCPF

procedure conditionally on the reference trajectories up to time t, (x0:t, x̃0:t). Furthermore,

let Ft denote the filtrations generated by the CCPF at time t. We denote by xk0:t, for

k ∈ 1 : N , the surviving trajectories at time t. Let It ⊆ 1 : N − 1 be the set of common

particles at time t defined by It = {j ∈ 1 : N − 1 : xj0:t = x̃j0:t}. The meeting probability

can then be bounded by:

Px0:T ,x̃0:T (x′0:T = x̃′0:T ) = Ex0:T ,x̃0:T
[
1
(
xbT0:T = x̃b̃T0:T

)]
≥

N−1∑
k=1

Ex0:T ,x̃0:T [1(k ∈ IT )P kk
T ]

= (N − 1)Ex0:T ,x̃0:T [1(1 ∈ IT )P 11
T ] ≥ N − 1

(Nḡ)2
Ex0:T ,x̃0:T [1(1 ∈ IT ) gT (x1T )gT (x̃1T )], (1)

where we have used Assumptions 1 and 2.
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Now, let ψt : Xt 7→ R+ and consider

Ex0:t,x̃0:t [1(1 ∈ It)ψt(x10:t)ψt(x̃10:t)] = Ex0:t,x̃0:t [1(1 ∈ It)ψt(x10:t)2], (2)

since the two trajectories agree on {1 ∈ It}. We have

1(1 ∈ It) ≥
N−1∑
k=1

1(k ∈ It−1)1
(
a1t−1 = ã1t−1 = k

)
, (3)

and thus

Ex0:t,x̃0:t [1(1 ∈ It)ψt(x10:t)2]

≥ Ex0:t,x̃0:t [
N−1∑
k=1

1(k ∈ It−1)Ex0:t,x̃0:t [1
(
a1t−1 = ã1t−1 = k

)
ψt(x

1
0:t)

2 | Ft−1]]

= (N − 1)Ex0:t,x̃0:t [1(1 ∈ It−1)Ex0:t,x̃0:t [1
(
a1t−1 = ã1t−1 = 1

)
ψt(x

1
0:t)

2 | Ft−1]]. (4)

The inner conditional expectation can be computed as

Ex0:t,x̃0:t [1
(
a1t−1 = ã1t−1 = 1

)
ψt(x

1
0:t)

2 | Ft−1]

=
N∑

k,`=1

P k`
t−11(k = ` = 1)

∫
ψt((x

k
0:t−1, xt))

2f(dxt|xkt−1)

= P 11
t−1

∫
ψt((x

1
0:t−1, xt))

2f(dxt|x1t−1)

≥
gt−1(x

1
t−1)gt−1(x̃

1
t−1)

(Nḡ)2

(∫
ψt((x

1
0:t−1, xt))f(dxt|x1t−1)

)2

, (5)

where we have again used Assumptions 1 and 2. Note that this expression is independent

of the final states of the reference trajectories, (xt, x̃t), which can thus be dropped from
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the conditioning. Furthermore, on {1 ∈ It−1} it holds that x10:t−1 = x̃10:t−1 and therefore,

combining Eqs. (2)–(5) we get

Ex0:t,x̃0:t [1(1 ∈ It)ψt(x10:t)ψt(x̃10:t)]

≥ (N − 1)

(Nḡ)2
Ex0:t−1,x̃0:t−1

[
1(1 ∈ It−1) gt−1(x1t−1)

∫
ψt((x

1
0:t−1, xt))f(dxt|x1t−1)

× gt−1(x̃1t−1)
∫
ψt((x̃

1
0:t−1, xt))f(dxt|x̃1t−1)

]
. (6)

Thus, if we define for t = 1, . . . , T − 1, ψt(x0:t) = gt(xt)
∫
ψt+1(x0:t+1)f(dxt+1|xt), and

ψT (x0:T ) = gT (xT ), it follows that

Px0:T ,x̃0:T (x′0:T = x̃′0:T ) ≥ (N − 1)T

(Nḡ)2T
Ex0,x̃0 [1(1 ∈ I1)ψ1(x

1
1)ψ1(x̃

1
1)]

=
(N − 1)T

(Nḡ)2T
Ex0,x̃0 [ψ1(x

1
1)

2] ≥ (N − 1)T

(Nḡ)2T
Z2 > 0,

where Z > 0 is the normalizing constant of the model, Z =
∫
m0(dx0)

∏T
t=1 gt(xt)f(dxt|xt−1).

This concludes the proof of Lemma 1.1.

For any fixed T , the bound goes to zero when N → ∞. The proof fails to capture

accurately the behaviour of ε in Lemma 1.1 as a function of N and T . Indeed, we observe

in the numerical experiments of Section 6 that meeting times decrease when N increases.

2 Proof of Theorem 3.1

The proof is similar to those presented in Rhee (2013), in McLeish (2011), Vihola (2017),

and Glynn and Rhee (2014). We can first upper-bound P (τ > n), for all n ≥ 2, using
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Lemma 1.1 (e.g. Williams, 1991, exercise E.10.5). We obtain for all n ≥ 2,

P (τ > n) ≤ (1− ε)n−1 . (7)

This ensures that E[τ ] is finite; and that τ is almost surely finite. We then introduce the

random variables Zm =
∑m

n=0 ∆(n) for all m ≥ 1. Since τ is almost surely finite, and since

∆(n) = 0 for all n ≥ τ , then Zm → Zτ = H0 almost surely when m → ∞. We prove that

(Zm)m≥1 is a Cauchy sequence in L2, i.e. supm′≥m E [(Zm′ − Zm)2] goes to 0 as m → ∞.

We write

E[(Zm′ − Zm)2] =
m′∑

n=m+1

m′∑
`=m+1

E[∆(n)∆(`)]. (8)

We use Cauchy-Schwarz inequality to write (E[∆(n)∆(`)])2 ≤ E[(∆(n))2]E[(∆(`))2], and we

note that (∆(n))2 = ∆(n)1(τ > n). Together with Hölder’s inequality with p = 1+ δ/2, and

q = (2 + δ)/δ, where δ is as in Assumption 3, we can write

E
[
(∆(n))2

]
≤ E

[
(∆(n))2+δ

]1/(1+δ/2) (
(1− ε)δ/(2+δ)

)n−1
.

Furthermore, using Assumption 3 and Minkowski’s inequality, we obtain the bound

∀n ≥ n0, E
[
(∆(n))2+δ

]1/(1+δ/2) ≤ C1,

where C1 is independent of n. The above inequalities lead to the terms E[∆(n)∆(`)] being

upper bounded by an expression of the form C1η
nη`, where η ∈ (0, 1). Thus we can compute

a bound on Eq. (8), by computing geometric series, and finally conclude that (Zm)m≥1 is

a Cauchy sequence in L2.
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By uniqueness of the limit, since (Zm)m≥1 goes almost surely to H0, (Zm)m≥1 goes to

H0 in L2. This shows that H0 has finite first two moments. We can retrieve the expectation

of H0 by

EZm =
m∑
n=0

E[∆(n)] = E
[
h(X(m))

]
−−−→
m→∞

π(h),

according to Assumption 3. This concludes the proof of Theorem 3.1 for Hk with k = 0,

and a similar reasoning applies for any k ≥ 0.
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