
Day 4: Functions and Input/Output practicals

Let's start by importing from the data module:

In [1]:

Problem 1:

The human_sequence variable imported from the data module is a cDNA sequence string resembling a typical aligned sequence, with gaps
spread throughout.

a) Define a function capable of taking any sequence string as input, and that prints a new sequence without gaps. The function must be able
to take the gap symbol as an argument (e.g., "-" or "?", etc)

In []:

b) Define a function similar to the one created for a), but capable of printing a new sequence without gaps entirely OR without gaps only at the
3' and 5' extremities of the sequence.

Tips:

You can use a boolean-like variable as an argument of the function, e.g. "zero_gaps = True" for when you want the function to
remove gaps from both ends, and "zero_gaps = Right/Left" when, you want to remove them from only one side).

In []:

c) Define a function capable of finding any motif in a sequence, and returning a tuple with the starting and ending positions of its first
appearance. If the motif does not exist, print an error message. Find the following motifs in the human_sequence variable:

"GGGTTCACTT"
"GATCA"
"AACAT"
"GGTGTGGGGGG"

Tips:

The function can be defined with two arguments: One for the sequence, and another for the motif

In []:

d) Modify the function created in c), so that it can take a variable number of motifs as arguments and return a dictionary with the motifs as
keys and the tuple with the positions as values.

(This is a tough one)

In []:

Problem 2

The list blast_out from the examples module contains a short table of blast results in a simplified tabular format with the following fields per hit:

query sequence \t subject sequence \t identification percentage \t e-value

a) Define a function that returns a list containing only the blast hits with an e-value below . This e-value cut-off should be the
default, but the function must be flexible enough to be called with different cut-off values.

Tips:

Python is able to recognize and interpret numbers in scientific notation when converted with float(), e.g. float(1e-7);
Define the function using two arguments: one for a list, and the other for the e-value number;
You can use the .split() method of strings to separated the different field in each blast hit)

from data import blast_out,human_sequence,IUPAC_codes

1 × 10−5

day4_functions_and_io_exercises 05/31/2012 01:11 PM

© 2012 Diogo Silva CC BY 3.0 1 of 3

In []:

b) Based on the list returned by the function in a), define a function that sorts the blast hits according to their identification percentage into
three lists of high (100-90%), moderate (90-60%) and low (below 60%) identity percentage. Return those lists as separate variables and
compute the number of hits in each identity percentage class.

Tips:

Once again you can use the .split() method of strings, but now we are interested in the "identification percentage" field, instead of the
"e-value" field);
Remember that functions can return multiple values (separated by commas)

In []:

c) Modify the function in a) so that it can take a file object as an argument, instead of a list.

In []:

c) Open the "blast_out.txt" file in read mode and use the previous function to return a list of blast hits with e-values below .

In []:

d) Create a script that includes the function defined in a). When executed through the terminal, the script should prompt the user for:

the path and filename of the blast output file that is going to be read
the desired e-value cutoff
the name of the output filename

The script must open and read the provided input file, and write all blast hits above the desired e-value cutoff to a new file with the name
provided by the user.

Tips:

Use the raw_input() and input() functions to collect information from the user/keyboard - Their values can be stored in variables to be
used latter;

In []:

Problem 3:

Use python to open the "My_fasta.fas" file in read mode.

a) Define a function that returns a dictionary with the fasta headers as keys and their sequence as the corresponding value.

Tips:

For this exercise, we ran out of tips. Sorry.

In []:

b) Define a function that performs some quality checks for each sequence. Check if:

all sequences are of the same size. If not, the function should print a message informing which taxa have sequences of different
length.
there are no illegal characters in each sequence. If there are, the function should print a message informing which taxon's sequence
has problems and what is the illegal character. Use the IUPAC_codes list from the data module to check for illegal characters.

In []:

c) Create a function that uses the dictionary created in a) and collapses taxa with identical sequences into the same haplotype. Write these
unique haplotypes to a new file (My_fasta_collapsed.fas) in fasta format, and write the correspondance between haplotype and taxon name in

1 × 10−15

day4_functions_and_io_exercises 05/31/2012 01:11 PM

© 2012 Diogo Silva CC BY 3.0 2 of 3

another file (My_haplotype_list.txt).

In []:

day4_functions_and_io_exercises 05/31/2012 01:11 PM

© 2012 Diogo Silva CC BY 3.0 3 of 3

