
Python 101
Modules

Day Overview:

Today we will be speaking about python modules:

What are modules?

How do they work?

Writing a module

Some of the most popular/usefull modules
The sys (system) module

The re (regular expressions) module

The os (operating system) module

The subprocess (spawn new processes) module

The Bio (BioPython) module

PYTHON 101 TEAM

What are modules?

Python 101: for biologists, by biologists http://python.cobig2.com/day5_modules_and_diy

1 of 15 01/10/2014 10:45 AM

What are modules?

A module is a file containing Python definitions and statements. The file name is the
module name with the suffix .py appended.

A module can contain statements as well as function definitions.

Python has several default modules, which are present in any complete python
install, such as re, sys or os. Consult here for a complete index

sequence_list = ["AGCTG","AGCTG","AGCTG"]

species_dictionary =
{"Hs":"Homo_sapiens","Mm":"Mus_musculus"}

def print_function (print_this):
 print print_this

#Contents of module test.py1
2
3
4
5
6
7
8

How do modules work?

Importing modules:

In order to use the contents of a specific module, you must use the import command.

import «module»
import «module» as «other_name»
from «module» import «something»
from «module» import «something» as «other_name»
from «module» import *

Using the contents of a module:

After importing a module, we can use it's contents in different ways depending on how

Python 101: for biologists, by biologists http://python.cobig2.com/day5_modules_and_diy

2 of 15 01/10/2014 10:45 AM

The sys module

The sys.argv function:

Among many other advanced features, sys contains a very useful method: argv. This
method allows aditional arguments to be passed and used when invoking the script:

python my_script.py first_argument second_argument third_argument

After the module has been imported into the script, the aditional arguments are
stored in a list, which can be accessed in a simple way:

["my_scripts.py","first_argument","second_argument","third_argumen
t"]

print str(sys.argv) # Note that the first argument in the
list is the name of the script

import sys1
2

4

the module was imported:

import sys
print(sys.argv[0])

from sys import argv
print(argv[0])

Writing a module

In order to write a module, you just have to write a script that can be as simple as
declaring some variables.

Afterwards, just import it into your main program and they will be ready for use.

However, it is a good practice, to add the following if statement to your code:

if __name__ == "__main__":
 «Program»

This will ensure that any code inside the conditional will only be run if the script is
being run as a standalone program.

Python 101: for biologists, by biologists http://python.cobig2.com/day5_modules_and_diy

3 of 15 01/10/2014 10:45 AM

Calling external programs

os.popen(command[, mode[, bufsize]])

Deprecated since version 2.6: This function is obsolete. Use the subprocess module.
Check especially the Replacing Older Functions with the subprocess Module section.

Python Documentation

The subprocess module

subprocess.check_output(args, *, stdin=None, stderr=None, shell=False, univers
al_newlines=False)

Run command with arguments and return its output as a byte string.

'Hello World!\n'

check_output(["echo", "Hello World!"])
from subprocess import check_output1

2
4

The subprocess module

Shell pipe example

[bruno@laptop ~]$ ls -l | grep py
-rw-r--r-- 1 bruno cobig2 0 May 31 19:21 script1.py
-rw-r--r-- 1 bruno cobig2 0 May 31 19:21 script2.py

-rw-r--r-- 1 bruno cobig2 0 May 31 19:21 script1.py
-rw-r--r-- 1 bruno cobig2 0 May 31 19:21 script2.py

More information

Python Documentation

check_output("ls -l | grep py", shell=True)
from subprocess import check_output1

2
3
5

Python 101: for biologists, by biologists http://python.cobig2.com/day5_modules_and_diy

4 of 15 01/10/2014 10:45 AM

The re module

The re module

About re:

Regular expressions (RE) are a very large topic. A whole course could be had on
them.

They are very useful when our code starts getting full of endswith() and startswith()
and lot's of conditionals all over.

RE can make our lives a lot easier, but they take a lot of getting used to and even
then, they produce hard to read code. But even despite these shortcomings, they are
awesome!

If you look here you can see that this section of python's documentation is as large

Python 101: for biologists, by biologists http://python.cobig2.com/day5_modules_and_diy

5 of 15 01/10/2014 10:45 AM

as say - the whole control flow section. But fear not, the docs are there to help you
and you don't have to learn everything about RE today. The goal here is to let you
know what can be done.

Later you may want to go here to learn more. It is an introductory tutorial to RE.

The re module

What is a RE?

A RE specifies a set of strings that match it; the functions in the re module let you
check if a particular string matches a given regular expression.

This often requires the use of special characters - AKA metacharacters.

The metacharacters

 . -> Matches any character
 ^ -> Matches the beginning of a string (not a character)
 $ -> Matches the end of a string (also, not a character)
 * -> Matches the preceeding character 0 or more times
 + -> Matches the preceeding character 1 or more times
 ? -> Matches the preceeding character 0 or 1 times
{x} -> Matches exactly _x_ copies of the preceeding character

{x,y} -> Matches _x_ to _y_ copies of the preceeding character
 \ -> Escapes the following character (for matching things like *)
[XYZ] -> Indicates a set of characters - in this case X, Y or Z
 | -> Separates 2 or more REs, and matches either of them

There are, however, many more here

Using these metacharacters we can use the re module to perform useful operations,
using re.search, re.sub and re.compile to name a few.

re.search

We will use re.search() as an example.

This function will look for an expression in a string and is invoked like this:

re.search(pattern, string, flags=0)

re.search will search a given string for a given pattern, and return it. If the pattern is not
found, it returns None:

test = "Python rules."
start = re.search("^.* ", test, flags=0)
print(start)

import re1
2
3
4
6

Python 101: for biologists, by biologists http://python.cobig2.com/day5_modules_and_diy

6 of 15 01/10/2014 10:45 AM

The os module

Miscellaneous operating system interfaces

Provides a portable way of using operating system dependent functionality.

Some methods are only available on some OS

Some methods return different results depending on the OS

More information

Python Documentation

Python

You must test this code in IDLE or equivalent.

The os module

os.chdir(path)

Change the current working directory to path.

Availability: Unix, Windows.

os.getcwd()

Return a string representing the current working directory.

Availability: Unix, Windows.

print os.getcwd()
os.chdir("Scripts")
print os.getcwd()
os.chdir("..")
print os.getcwd()

import os1
2
3
4
5
6
8

Python 101: for biologists, by biologists http://python.cobig2.com/day5_modules_and_diy

7 of 15 01/10/2014 10:45 AM

'/home/bruno'
'/home/bruno/Scripts'
'/home/bruno'

The os module

os.listdir(path)

Return a list containing the names of the entries in the directory given by path. The list
is in arbitrary order.

Availability: Unix, Windows.

'/home/bruno'
['script1.py', 'script2.py']
['Documents', 'Music', 'Movies', 'Scripts']
['bruno', 'diogo', 'francisco']

print os.getcwd()
print os.listdir("Scripts")
print os.listdir(".")
print os.listdir("..")

import os1
2
3
4
5
7

The os module

os.mkdir(path[, mode])

Create a directory named path. If the directory already exists, an error is raised.

Availability: Unix, Windows.

['Documents', 'Music', 'Movies', 'Scripts']
['Documents', 'Music', 'Movies', 'NewDir', 'Scripts']

print os.listdir(".")
os.mkdir("NewDir")
print os.listdir(".")

import os1
2
3
4
6

Python 101: for biologists, by biologists http://python.cobig2.com/day5_modules_and_diy

8 of 15 01/10/2014 10:45 AM

The os module

os.makedirs(path[, mode])

Recursive directory creation function. Like mkdir(), but makes all intermediate-level
directories needed to contain the leaf directory. Raises an error exception if the leaf
directory already exists or cannot be created.

'/home/bruno'
['Project1']
['testing']

print os.getcwd()
os.makedirs("Scripts/Project1/testing")
print os.listdir("Scripts")
print os.listdir("Scripts/Project1")

import os1
2
3
4
5
7

The os module

os.remove(path)

Remove (delete) the file path. If path is a directory, an error is raised. For directories,
use rmdir() instead.
Availability: Unix, Windows.

['script1.py', 'script2.py']
['script1.py']

print os.listdir("Scripts")
os.remove("Scripts/script2.py")
print os.listdir("Scripts")

import os1
2
3
4
5
7

The os module

Python 101: for biologists, by biologists http://python.cobig2.com/day5_modules_and_diy

9 of 15 01/10/2014 10:45 AM

The os module

os.rename(src, dst)

Rename the file or directory src to dst. If dst is a directory, an error will be raised.

Unix: if dst exists and is a file, it will be replaced silently if the user has permission.
Windows: if dst already exists, an error will be raised even if it is a file.

Availability: Unix, Windows.

os.rmdir(path)

Remove (delete) the directory path. Only works when the directory is empty, otherwise,
an error is raised.
Availability: Unix, Windows.

['Documents', 'Music', 'Movies', 'NewDir', 'Scripts']
['Documents', 'Music', 'Movies', 'Scripts']

os.removedirs(path)

Remove directories recursively. Works like rmdir() except that, if the leaf directory is
successfully removed, removedirs() tries to successively remove every parent directory
mentioned in path until an error is raised.

print os.listdir(".")
os.remove("NewDir")
print os.listdir(".")

import os

os.remove("NewDir/SubDir")
import os

1
2
3
4
5
7

1
2
4

The BioPython (Bio) module

The Biopython module, is a collection of tools and modules that have been developed

Python 101: for biologists, by biologists http://python.cobig2.com/day5_modules_and_diy

10 of 15 01/10/2014 10:45 AM

focusing on bioinformatic and computational biology problems. It has numerous
functionalities such as:

Parsing several bioinformatic file types (FastA, Clustalw, GenBank, PubMed,
ExPASy, among others) into utilizable data structures that ease the processing of the
data;

Tools that easily perform common operations on sequences, such as translation,
transcription, reverse complement.

Interfaces (both local and remote) to common bioinformatic programms, such as
NCBI's BLAST and Clustalw alignment program.

Downloading files from public resources, such as NCBI databases

The BioPython (Bio) module

Whetting Your Appetite

The Seq class adds a layer of information to the tradicional sequence strings through
the inclusion of an alphabet that specifies the kind of sequence stores
(ambiguous/unambiguous DNA, RNA and protein).

Seq('AGTGTCGATGTCGTGCTAGCTAGCTG', IUPACUnambiguousDNA())

In most ways, my_sequence behaves like a regular sequence string and most basic
string methods still apply

1| Seq('agtgtcgatgtcgtgctagctagctg', DNAAlphabet())
2| Seq('TCGATGTCGTG', IUPACUnambiguousDNA())
3| 4

from Bio.Alphabet import IUPAC
my_sequence =
Seq.Seq("AGTGTCGATGTCGTGCTAGCTAGCTG",IUPAC.unambiguous_dna)
my_sequence

from Bio import Seq

my_sequence[4:15]
my_sequence.count("G")

my_sequence.lower()

1
2
3

4
6

1
2
3
5

Python 101: for biologists, by biologists http://python.cobig2.com/day5_modules_and_diy

11 of 15 01/10/2014 10:45 AM

The BioPython (Bio) module

Whetting Your Appetite

However, it is now possible to easily perform basic sequence manipulations

1| Seq('CAGCTAGCTAGCACGACATCGACACT', IUPACUnambiguousDNA())
3| Seq('AGUGUCGAUGUCGUGCUAGCUAGCUG', IUPACUnambiguousRNA())
5| Seq('SVDVVLAS', IUPACProtein())

And even to create mutable sequence strings

MutableSeq('TTTTTTTTTTTTGTGCTAG', IUPACUnambiguousDNA())

RNA = my_sequence.transcribe()
RNA
Protein = RNA.translate(table="Standard")
Protein

my_sequence.reverse_complement()

mutable_sequence[:12] = "TTTTTTTTTTTT"
mutable_sequence

mutable_sequence = Seq.MutableSeq
("AGTGTCGATGTCGTGCTAG",IUPAC.unambiguous_dna)

1
2
3
4
5
7

1

2
3
5

The BioPython (Bio) module

Whetting Your Appetite

The SeqRecord class allows identifiers and features to be associated with a sequence,
creating sequence records much more richer in information:

seq: The sequence itself

id: A unique sequence identifier. Typically an accession number.

name: A "common" name/id for the sequence as a string.

annotations: A dictionary with additional information about the sequence

These features can be created manually, or imported directly from a database record

Python 101: for biologists, by biologists http://python.cobig2.com/day5_modules_and_diy

12 of 15 01/10/2014 10:45 AM

(GenBank).

The BioPython (Bio) module

Whetting Your Appetite

The SeqRecord class:

ID: TG123989
Name: Made upinus
Description: My beloved sequence
Number of features: 0
/phred scores=[20, 30, 20, 50, 10, 23]
Seq('ACGTAT', Alphabet())

my_sequence = Seq("ACGTAT")
from Bio.SeqRecord import SeqRecord
my_sequence_rec = SeqRecord(my_sequence)

my_sequence_rec.id = "TG123989"
my_sequence_rec.description = "My beloved sequence"
my_sequence_rec.name = "Made upinus"
my_sequence_rec.annotations["phred scores"] =
[20,30,20,50,10,23]
print my_sequence

from Bio.Seq import Seq1
2
3
4
5
6
7
8
9
10
12

The BioPython (Bio) module

Whetting Your Appetite

SeqIO is a module that provides a simple interface for working with assorted
sequence file formats, but will only deal with sequences as SeqRecord objects. The
most useful function is the Bio.SeqIO.parser() that can read sequence data as
SeqRecord objects.

for seq_record in SeqIO.parse("My_fasta.fas","fasta")
print seq_record
print seq_record.id

from Bio import SeqIO1
2
3
4

Python 101: for biologists, by biologists http://python.cobig2.com/day5_modules_and_diy

13 of 15 01/10/2014 10:45 AM

print seq_record.seq

for seq_record in SeqIO.parse("My_genbank.gb","genbank")
print seq_record
print seq_record.id
print seq_record.description

5
6
7
8
9

10
12

The BioPython (Bio) module

Whetting Your Appetite

SeqIO:

The SeqIO.write() funtion can write a set of SeqRecord objects into a new file in a
format specified by the user. You only need (i) one or more SeqRecord objects, a
filename to write to, and a sequence format.

from Bio.SeqRecord import SeqRecord
from Bio.Alphabet import generic_dna
Seq1 = SeqRecord(Seq("ACGTGA",generic_dna),id="first
sequence")
Seq2 = SeqRecord(Seq("CGTGTA",generic_dna),id="second
sequence")
Seq3 = SeqRecord(Seq("CTGTGA",generic_dna),id="third
sequence")
Records = [Seq1,Seq2,Seq3]

from Bio import SeqIO
output_fasta = open("My_new_fasta.fas","w")
SeqIO.write(Records,output_fasta,"fasta")

from Bio.Seq import Seq1
2
3
4
5
6
7
8
9
10
11
13

Python 101: for biologists, by biologists http://python.cobig2.com/day5_modules_and_diy

14 of 15 01/10/2014 10:45 AM

Python 101: for biologists, by biologists http://python.cobig2.com/day5_modules_and_diy

15 of 15 01/10/2014 10:45 AM

