
Python 101
Input and Output

Input and ouput channels

There are three input/output channels that allow the program to interact with the
environments and its users:

Standard input: From where the scripts reads the input data (default: computer
keyboard)

Standard output: Where the scripts directs the ouput data (default: computer terminal
screen)

Standard error: Where the scripts directs error messages during the execution of the
script (default: computer terminal screen)

DIOGO SILVA

Input from user/keyboard

Python has two built-in functions for reading data provided by the user via the
keyboard:

raw_input([prompt]): this function reads one line from the stadard input and returns
it as a string

sequence = raw_input("Please provide a DNA sequence:\n>")
print sequence

input([prompt]): this function is similar to raw_input(), except that it assumes the input
is a valid python expression and returns the evaluated result to you. It can interpret if
you are providing a string or a number, by using quotations marks or not.

sequence = input ("Please provide a DNA sequence:\n>")
n_loci = input ("Please provide the number of loci:\n>")

Printing the output on the terminal

The print keyword can be used to print any type of objects into the computer
terminal screen.

for species in Sample: print species
Sample = ["H.sapiens","C.lupus","M.musculus"]1

2

Python 101: for biologists, by biologists http://python.cobig2.com/day4_io

1 of 4 01/10/2014 10:42 AM

H.sapiens
C.lupus
M.musculus

Note that print adds a newline (\n) character at the end of the line. To avoid this, a
comma can be put after the object that you want to print.

H.sapiens C.lupus M.musculus

for species in Sample: print species,
Sample = ["H.sapiens","C.lupus","M.musculus"]

3

1
2
3

Dealing with files

Open and Create file objects

Open() returns a file object and may take two arguments: open(filename,mode),
where mode can be "r" (read), "w" (write), "rw" (both read and write) or "a"
(append)

Pay special attention that:

In modes "w" and "a", if the specified filename does not exist, the open() fuction
creates it automatically.

In mode "w", if an existent file is specified in the filename, the original file is
overwritten.

In mode "a", any data written to the file is automatically added to the end.

new_file = open("my_new_file.fas","w")
append_file = open("my_file_append.fas","a")

read_file = open("my_file.fas","r")1
2
3
5

Dealing with files

Methods for reading file objects

Python 101: for biologists, by biologists http://python.cobig2.com/day4_io

2 of 4 01/10/2014 10:42 AM

File objects can be read using several built-in methods

Note that all these methods exhaust the file contents, but these can still be assigned
to variables and used multiple times

read_file.read() # reads the whole file and returns the
content in one string
read_file.read([N]) # reads the file up to N bytes and
returns a string
read_file.readline() # reads a single line of the file and
returns a string
read_file.readlines() # reads all lines and returns a list
of lines

read_file = open("my_file.fas","r")

red_file.readlines()
print content

content = read_file.readlines() # Consumes lots of RAM
memory for large files

1
2

3

4

5
7

1

2
3
5

Dealing with files

Methods for reading file objects

Alternatively, the contents of a file can be read with a for loop in a line-by-line basis.

for line in read_data:
 print line

read_data = open("my_file.fas")1
2
3
5

Python 101: for biologists, by biologists http://python.cobig2.com/day4_io

3 of 4 01/10/2014 10:42 AM

Closing files

A file is automatically closed when the program ends. However, if you are done with a
file, you can close it and free up any system resources with the close() method

output_file.read() # The file object no longer exists
output_file.close()1

2
4

This is also much faster and memory efficient than assigning the whole content of a file
to a variable because only one line is actually stored in memory in each loop iteration

Dealing with files

Writing to files

To write data on a file, the write() method can be used

Using this method, you can only write string objects into a file. If you wish to write
something other than a string, it needs to be converted to a string first

output_file.write("Hello world!\nI am writing in a new
line!\n\tAnd now it's indented!")

output_file = open("New_file.fas","w")

data_str = str(data)

data = "The taxa",["H.sapiens","C.lupus"],"have",
(2,2),"stop and start codons, respectively"

1
2

4

1

2
4

Python 101: for biologists, by biologists http://python.cobig2.com/day4_io

4 of 4 01/10/2014 10:42 AM

