Python 101: for biologists, by biologists http://python.cobig2.com/day4 functions

Python 101
Functions

. DIOGO SILVA
Day overview:

Functions

Purpose

The basic recipe and calling a function
Arguments

Variable scopes

Returning values from a function

SR

Lambda (anonymous) function

I/0 Input output

1. Input from user/keyboard
2. Reading files
3. Writing files
4. Closing files

Purpose

Functions - pieces of code that are written one time and reused as much as desired
within the program. They:

¢ Are the simplest callable object in python

¢ Perfom single related actions that can handle repetitive tasks

e Significantly reduce code redundancy and complexity, while providing a clean
structure

e Decompose complex problems into simpler pieces

Purpose

¢ Supose you have a protein sequence and want to find out the frequency of the "W"
10of13 amino acid and all its positions in the sequence. 01/10/2014 10:41 AM

Python 101: for biologist&dhyp ®AoRfSts "mgagkvikckaafwagkplwegeapplakaieh' cobig2.com/day4 functions
position_list = []
sequence_length = float(len(aa_sequence))
for 1 in range (sequence_length):
if aa_sequence[i] == "w":
position_list.append(str(i))

p_count = float(aa_sequence.count("w"))

p_frequency = p_count/sequence_length

print "The aa 'w' has a frequency of %s and is found in the
following sites: %s" % (p_frequency," ".join(position_list))

cwoo~NoOouh~ WN

—_

—_
—_

The aa 'w' has a frequency of 0.058823529411764705 and is found in
the following sites: 13 19

Purpose

e Now you may want to know the same information about, say "P". You would need
to re-write your entire code again for "P"...

aa_sequence = "mgagkvikckaafwagkplwegevappkakapca"
position_list = []
sequence_length = float(len(aa_sequence))
for 1 in range (sequence_length):
if aa_sequence[i] == "p":
position_list.append(str(i))

p_count = float(aa_sequence.count("p"))

p_frequency = p_count/sequence_length

print "The aa 'p' has a frequency of %s and is found in the
following sites: %s" % (p_frequency," ".join(position_list))

CQuwoo~NOOULLE WN =

—_

—_
—_

20f13 01/10/2014 10:41 AM

Python 101: for biologists, by biologists http://python.cobig2.com/day4 functions

The aa 'p' has a frequency of 0.11764705882352941 and is found in
the following sites: 17 25 26 31

And 19 more times to accomodate all other amino acids!!

Purpose

¢ Using a function, the problem can be easily solved like this:

1 aa_sequence = "mgagkvikckaafwagkplwegevappkakapca"
2 def aa_statistics(sequence,aa):
3 sequence_length,aa_positions = len(sequence),[]
4 aa_frequency = (lambda
5 count,length:float(count)/float(length))
6 for 1 in range (sequence_length):
7 if sequence[i] == aa:
8 aa_positions.append(str(i))
print
9 (aa_frequency(sequence.count(aa),sequence_length),aa_positio
ns)

With only 7 lines of code, we are now able to provide the required information for all
amino acids and for any input sequence.

The basic recipe

e The basic steps when defining a function:

1 def name ():

2 "Documentation string of the function™
3 [statements]
4

1. "def" - Functions must start with the "def" keyword.

30f13 01/10/2014 10:41 AM

Python 101: fr 'hiaingistsT'hy hantegifthe function must not contain spédial: (pytdciarsavig2.com/day4_functions

whitespaces. (See the official Python style guide on how to appropriately name
functions)

"()" - Parenthesis enclose input parameters or arguments
":" - The code block within every function starts with a colon and is indented
Documentation [optional] - It is good practice to document your function

"statements" - The actual code block of your function

SR

Function calling

o After a function is defined, it represents nothing more than an idle piece of code,

unless called. It is only when we call a function that the statements inside the
function body are executed.

1 def print_me ():

2 "This function prints something"
3 print "Hello World"

4

Arguments

A function can be created without arguments,

def print_me():

"Example of a simple function without arguments"
print "Hello World"

print_me()

oulh WN —

Hello World

or using the following types of arguments:

¢ Required arguments
¢ Default arguments
¢ Variable length arguments

4 0f 13 01/10/2014 10:41 AM

Python 101: for biologists, by biologists http://python.cobig2.com/day4 functions

Arguments

Required arguments

def aa_frequency (sequence,aa):
"This function takes exactly two arguments"
sequence_length = len(sequence)
aa_frequency =
float(sequence.count(aa))/float(sequence_length)
print aa_frequency

oulh wWN =

e When calling for a function with required arguments, the exact same number of
arguments must be specified, no more and no less.

v 1 def aa_frequency (sequence,aa): #folded
6 aa_frequency ("AWKLCVPAMAKNENAW","K")
7

0.125

Arguments

Required arguments

e It is also possible to provide previously named variables as arguments

1 H_sapiens_aa = "AWKLCVPAMAKNENAW"

v 2 def aa_frequency (sequence,aa): #folded
7 aa_frequency (H_sapiens_aa,"K")
8

0.125

e If you specify a different number of arguments, however

1 H_sapiens_aa = "AWKLCVPAMAKNENAW"
v 2 def aa_frequency (sequence,aa): #folded

50f13 01/10/2014 10:41 AM

Python 101: for biblogis?s, Iy asREs(H_sapiens_aa,"K","G") http://python.cobig2.com/day4 functions
9

TypeError: aa_statistics() takes exactly 2 arguments (3 given)

Arguments

Variable length arguments

e Placing an asterisk (*) before the variable name will store the arguments in a tuple

1 def concatenate (*sequences):

2 " This one can take a variable number of arguments,
3 even 0"

4 concatenated_sequences = ""

5 for i in sequences: # You can iterate over the tuple,
6 concatenated_sequences += 1

7 if len(sequences) >= 2:

8 first_sequences = sequences[:2] # and slice its
9 items

10 print concatenated_sequences, first_sequences
11

13 concatenate("GTCCG", "AGTCG", "AGTAG", "AGTGA")

concatenate() # In this case the tuple "sequences" is empty

GTCCGAGTCGAGTAGAGTGA ('GTCCG', 'AGTCG")

Arguments

Default arguments

e Arguments can also have default values, by assigning those values to the argument
keyword with the assign ("=") symbol.

1 def codon_count (Sequence,
2 StopCodon="TAA",StartCodon="ATG"):

6 of 13 01/10/2014 10:41 AM

Python 101: for biologists, by biti8gisUnt = Sequence.count(StopCodefi}y.//python.cobig2.com/day4 functions
4 start_count = Sequence.count(StartCodon)

5 print stop_count, start_count

o The function will assume the default value if the argument keyword is not specified
when calling the function.

v 1 def codon_count (Sequence,
5 StopCodon="TAA",StartCodon="ATG"): #folded
6
7 H_sapiens = "AGCTAGTCGTAGCATGATTAACGTAGGCTATACTACTAAATGRC"
8 codon_count (H_sapiens)
2 2
Arguments

Using argument keywords

e When calling a function, the order of the arguments can be changed by using the
argument's keyword and the assign ("=") symbol.

1 H_sapiens = "AGCTAGTCGTAGCATGATTAACGTAGGCTATACTACTAAATGRC"
v 2 def codon_count (Sequence,

6 StopCodon="TAA" ,StartCodon="ATG"): #folded

7

8 codon_count (StopCodon="UAG", Sequence=H_sapiens)
02

o Note that this is necessary if you would like to change only the second default
argument, and leave the first with the default value

H_sapiens = "AGCTAGTCGTAGCATGATTAACGTAGGCTATACTACTAAATGRC"
def codon_count (Sequence,

StopCodon="TAA",StartCodon="ATG"): #folded

OO N =

codon_count (H_sapiens,StartCodon="ATT")

7 of 13 01/10/2014 10:41 AM

Python 101: for biologists, by biologists http://python.cobig2.com/day4 functions
21

Arguments

Considerations when combining different argument types

¢ Default arguments should come after required arguments

1 def name (required,required,
2 (...),default=value,default=value,(...)):
4 [...code block...]

¢ Variable length arguments should be used only once and be always last. There is
also no point in using them with default arguments.

1 def name (required,required,(...),*varible_length):
2 [...code block...]
4

Namespaces or scope of variables

When writting a program, it is extremely important to know the difference between the
local and global scope of the variables

Glogal variables

o Variables defined outside functions or other objects (i.e., classes) are global
variables - they are accessible throughout most of the program, even by functions.

sequence = "ACGTGTGC"
def print_me():
print sequence

1
2
3
4
5 print_me()
6

8 of 13 01/10/2014 10:41 AM

Python 101: for biologists, by biologists http://python.cobig2.com/day4 functions

ACGTGTGC

o To change the contents of a global variable in a function, we can use the global
keyword

sequence = "ACGTGTGC"
def print_me():
global sequence
sequence = "TTTTTTT"
print sequence

print_me()
print sequence # Because of the global keyword, the global
variable was changed

0N UDAWN =

[te]

TTTTTTT
TTTTTTT

Namespaces or scope of variables

Local variables

¢ By default, all variables defined inside a function (including argument keywords)
are local variables - they are not accessible by the whole program, only within the
function where they are declared.

def print_me():

sequence = "ACGTGA"
print sequence

print sequence

ook, WN =

NameError: name 'sequence' is not defined

90f13 01/10/2014 10:41 AM

Python 101: for biologists; By4igiuigigesthe slobal keyword, global variables are ovegytiiishByittein. cobig2.com/day4_functions

e same name defined in a function

sequence = "TTTTT"

def print_me():
sequence = "AAAAAA"
print sequence

print_me()

NoubwN =

AAAAAA

Return

The return keyword is used to return values from a function, which can then be
assigned to new variables that are accessible to the whole program

1 H_sapiens_lc1 =

2 "AGCTAGTCGTAGCATGATTAACGTAGGCTATACTACTAAATGRC"

3 H_sapiens_lc2 =

4 "CGTAGTCGTAGTTTGCAGTGCGCTGATCGTAGTCGATGCTGTGT"

5

6 def concatenate (*sequences):

7 concatenated_sequence = ""

8 for i in sequences:

9 concatenated_sequence += i

10 return concatenated_sequence
11

new_sequence = concatenate(H_sapiens_lc1,H_sapiens_lc2)

12 # And now we can use the output of a function, as the
13 input of another
14
15 def codon_count (Sequence,
16 StopCodon="TAA",StartCodon="ATG"):
17 stop_count = Sequence.count(StopCodon)
18 start_count = Sequence.count(StartCodon)
19 print stop_count, start_count

codon_count (new_sequence)

10 of 13 01/10/2014 10:41 AM

Python 101: for biologists, by biologists http://python.cobig2.com/day4 functions

Return

Returning multiple values

e Functions can return multiple values

1 def codon_count (Sequence,
2 StopCodon="TAA",StartCodon="ATG"):
3 stop_count = Sequence.count(StopCodon)
4 start_count = Sequence.count(StartCodon)
5 return stop_count, start_count # Returns a tuple with
6 two items
OR
7 # return [stop_count, start_count] -> Returns a list

with two items

e And these values can be assigned to multiple variables

H_sapiens = "AGCTAGTCGTAGCATGATTAACGTAGGCTATACTACTAAATGRC"
def codon_count (Sequence,
StopCodon="TAA",StartCodon="ATG"): #folded

stop,start = codon_count(H_sapiens)
print stop,start

start = codon_count(H_sapiens)[1] # You can even select the
1 variable(s) you want
12 print start

11 of 13 01/10/2014 10:41 AM

Python 101: for biologists, by biologists http://python.cobig2.com/day4 functions

22
2

Return

Functions always return something

If a function does not contain the return keyword, it will return None

1 def print_me():
2 a = 2+2
3
4 print_me() == None
6
True

Lambda (anonymous) functions

Lambda is an anonymous (unnamed) function that is used primarily to write very short
functions that are a hassle to define in the normal way. Where a regular function would
do:

def add(a,b):
print a+b

ubwN =

add(4,3)

7

a lambda function:

1 print (lambda a,b: a+b)(4,3)
2

12 of 13 01/10/2014 10:41 AM

. . . The lambda fungction can be used elegantly with other functional pargs of the Pytho . .
Python 101: for blOlOngtS, beaﬁ%’aQ@QE@ﬂiﬁg). In this example we can use it to convert a list ohﬁmﬁiggﬁbson(:()blgz .com/day47funct10ns
into DNA sequences:

1 RNA = ["AUGAUU", "AAUCGAUCG", "ACUAUG", "ACUAUG"]
2 DNA = map(lambda sequence: sequence.replace("U","T"), RNA)
3 print DNA
5

["ATGATT", "AATCGATCG", "ACTATG", "ACTATG"]

Wrap up

So, we have covered thus far:

¢ How to define functions using the def keyword

e How to call a function

e The three main types of arguments a function can take: Required , variable length
and arguments

e The local and global scope of variables
e The usage of the return keyword to return values from functions

e LLambda functions

13 of 13 01/10/2014 10:41 AM

