
Python 101
Functions

Purpose

Functions - pieces of code that are written one time and reused as much as desired
within the program. They:

Are the simplest callable object in python

Perfom single related actions that can handle repetitive tasks

Significantly reduce code redundancy and complexity, while providing a clean
structure

Decompose complex problems into simpler pieces

DIOGO SILVA
Day overview:

Functions

Purpose1.

The basic recipe and calling a function2.

Arguments3.

Variable scopes4.

Returning values from a function5.

Lambda (anonymous) function6.

I/O Input output

Input from user/keyboard1.

Reading files2.

Writing files3.

Closing files4.

Purpose

Supose you have a protein sequence and want to find out the frequency of the "W"
amino acid and all its positions in the sequence.

Python 101: for biologists, by biologists http://python.cobig2.com/day4_functions

1 of 13 01/10/2014 10:41 AM

The aa 'w' has a frequency of 0.058823529411764705 and is found in
 the following sites: 13 19

position_list = []
sequence_length = float(len(aa_sequence))
for i in range (sequence_length):
 if aa_sequence[i] == "w":
 position_list.append(str(i))

p_count = float(aa_sequence.count("w"))
p_frequency = p_count/sequence_length
print "The aa 'w' has a frequency of %s and is found in the
following sites: %s" % (p_frequency," ".join(position_list))

aa_sequence = "mgagkvikckaafwagkplwegevappkakapca"1
2
3
4
5
6
7
8
9

10

11

Purpose

Now you may want to know the same information about, say "P". You would need
to re-write your entire code again for "P"...

position_list = []
sequence_length = float(len(aa_sequence))
for i in range (sequence_length):
 if aa_sequence[i] == "p":
 position_list.append(str(i))

p_count = float(aa_sequence.count("p"))
p_frequency = p_count/sequence_length
print "The aa 'p' has a frequency of %s and is found in the
following sites: %s" % (p_frequency," ".join(position_list))

aa_sequence = "mgagkvikckaafwagkplwegevappkakapca"1
2
3
4
5
6
7
8
9

10

11

Python 101: for biologists, by biologists http://python.cobig2.com/day4_functions

2 of 13 01/10/2014 10:41 AM

The aa 'p' has a frequency of 0.11764705882352941 and is found in
the following sites: 17 25 26 31

And 19 more times to accomodate all other amino acids!!

Purpose

Using a function, the problem can be easily solved like this:

With only 7 lines of code, we are now able to provide the required information for all
amino acids and for any input sequence.

def aa_statistics(sequence,aa):
 sequence_length,aa_positions = len(sequence),[]
 aa_frequency = (lambda
count,length:float(count)/float(length))
 for i in range (sequence_length):
 if sequence[i] == aa:
 aa_positions.append(str(i))
 print
(aa_frequency(sequence.count(aa),sequence_length),aa_positio
ns)

aa_sequence = "mgagkvikckaafwagkplwegevappkakapca"1
2
3
4
5
6
7
8

9

The basic recipe

The basic steps when defining a function:

"def" - Functions must start with the "def" keyword.1.

 "Documentation string of the function"
 [statements]

def name ():1
2
3
4

Python 101: for biologists, by biologists http://python.cobig2.com/day4_functions

3 of 13 01/10/2014 10:41 AM

Function calling

After a function is defined, it represents nothing more than an idle piece of code,
unless called. It is only when we call a function that the statements inside the
function body are executed.

 "This function prints something"
 print "Hello World"

def print_me (): 1
2
3
4

"name" - The name of the function must not contain special characters or
whitespaces. (See the official Python style guide on how to appropriately name
functions)

2.

"()" - Parenthesis enclose input parameters or arguments3.

":" - The code block within every function starts with a colon and is indented4.

Documentation [optional] - It is good practice to document your function5.

"statements" - The actual code block of your function6.

Arguments

A function can be created without arguments,

Hello World

or using the following types of arguments:

Required arguments

Default arguments

Variable length arguments

 "Example of a simple function without arguments"
 print "Hello World"

print_me()

def print_me():1
2
3
4
5
6

Python 101: for biologists, by biologists http://python.cobig2.com/day4_functions

4 of 13 01/10/2014 10:41 AM

Arguments

Required arguments

When calling for a function with required arguments, the exact same number of
arguments must be specified, no more and no less.

0.125

 "This function takes exactly two arguments"
 sequence_length = len(sequence)
 aa_frequency =
float(sequence.count(aa))/float(sequence_length)
 print aa_frequency

def aa_frequency (sequence,aa):

aa_frequency ("AWKLCVPAMAKNENAW","K")
def aa_frequency (sequence,aa): #folded

1
2
3
4
5
6

1
6
7

▼

Arguments

Required arguments

It is also possible to provide previously named variables as arguments

0.125

If you specify a different number of arguments, however

def aa_frequency (sequence,aa): #folded
aa_frequency (H_sapiens_aa,"K")

H_sapiens_aa = "AWKLCVPAMAKNENAW"

def aa_frequency (sequence,aa): #folded
H_sapiens_aa = "AWKLCVPAMAKNENAW"

1
2
7
8

▼

1
2▼

Python 101: for biologists, by biologists http://python.cobig2.com/day4_functions

5 of 13 01/10/2014 10:41 AM

TypeError: aa_statistics() takes exactly 2 arguments (3 given)

aa_frequency (H_sapiens_aa,"K","G")7
9

Arguments

Variable length arguments

Placing an asterisk (*) before the variable name will store the arguments in a tuple

GTCCGAGTCGAGTAGAGTGA ('GTCCG', 'AGTCG')

 " This one can take a variable number of arguments,
even 0"
 concatenated_sequences = ""
 for i in sequences: # You can iterate over the tuple,
 concatenated_sequences += i
 if len(sequences) >= 2:
 first_sequences = sequences[:2] # and slice its
items
 print concatenated_sequences, first_sequences

concatenate("GTCCG","AGTCG","AGTAG","AGTGA")
concatenate() # In this case the tuple "sequences" is empty

def concatenate (*sequences):1
2
3
4
5
6
7
8
9

10
11
13

Arguments

Default arguments

Arguments can also have default values, by assigning those values to the argument
keyword with the assign ("=") symbol.

def codon_count (Sequence,
StopCodon="TAA",StartCodon="ATG"):

1
2

Python 101: for biologists, by biologists http://python.cobig2.com/day4_functions

6 of 13 01/10/2014 10:41 AM

The function will assume the default value if the argument keyword is not specified
when calling the function.

2 2

 stop_count = Sequence.count(StopCodon)
 start_count = Sequence.count(StartCodon)
 print stop_count, start_count

H_sapiens = "AGCTAGTCGTAGCATGATTAACGTAGGCTATACTACTAAATGRC"
codon_count (H_sapiens)

def codon_count (Sequence,
StopCodon="TAA",StartCodon="ATG"): #folded

3
4
5

1
5
6
7
8

▼

Arguments

Using argument keywords

When calling a function, the order of the arguments can be changed by using the
argument's keyword and the assign ("=") symbol.

0 2

Note that this is necessary if you would like to change only the second default
argument, and leave the first with the default value

def codon_count (Sequence,
StopCodon="TAA",StartCodon="ATG"): #folded

codon_count (StopCodon="UAG", Sequence=H_sapiens)

H_sapiens = "AGCTAGTCGTAGCATGATTAACGTAGGCTATACTACTAAATGRC"

def codon_count (Sequence,
StopCodon="TAA",StartCodon="ATG"): #folded

codon_count (H_sapiens,StartCodon="ATT")

H_sapiens = "AGCTAGTCGTAGCATGATTAACGTAGGCTATACTACTAAATGRC"

1
2
6
7
8

▼

1
2
6
7
8

▼

Python 101: for biologists, by biologists http://python.cobig2.com/day4_functions

7 of 13 01/10/2014 10:41 AM

2 1

Arguments

Considerations when combining different argument types

Default arguments should come after required arguments

Variable length arguments should be used only once and be always last. There is
also no point in using them with default arguments.

 [...code block...]

def name (required,required,
(...),default=value,default=value,(...)):

 [...code block...]
def name (required,required,(...),*varible_length):

1
2
4

1
2
4

Namespaces or scope of variables

When writting a program, it is extremely important to know the difference between the
local and global scope of the variables

Glogal variables

Variables defined outside functions or other objects (i.e., classes) are global
variables - they are accessible throughout most of the program, even by functions.

def print_me():
 print sequence

print_me()

sequence = "ACGTGTGC"1
2
3
4
5
6

Python 101: for biologists, by biologists http://python.cobig2.com/day4_functions

8 of 13 01/10/2014 10:41 AM

ACGTGTGC

To change the contents of a global variable in a function, we can use the global
keyword

TTTTTTT
TTTTTTT

def print_me():
 global sequence
 sequence = "TTTTTTT"
 print sequence

print_me()
print sequence # Because of the global keyword, the global
variable was changed

sequence = "ACGTGTGC"1
2
3
4
5
6
7
8

9

Namespaces or scope of variables

Local variables

By default, all variables defined inside a function (including argument keywords)
are local variables - they are not accessible by the whole program, only within the
function where they are declared.

NameError: name 'sequence' is not defined

 sequence = "ACGTGA"
 print sequence

print sequence

def print_me():1
2
3
4
5
6

Python 101: for biologists, by biologists http://python.cobig2.com/day4_functions

9 of 13 01/10/2014 10:41 AM

Note that without the global keyword, global variables are overwritten by local
variables with the same name defined in a function

AAAAAA

def print_me():
 sequence = "AAAAAA"
 print sequence

print_me()

sequence = "TTTTT"1
2
3
4
5
6
7

Return

The return keyword is used to return values from a function, which can then be
assigned to new variables that are accessible to the whole program

H_sapiens_lc2 =
"CGTAGTCGTAGTTTGCAGTGCGCTGATCGTAGTCGATGCTGTGT"

def concatenate (*sequences):
 concatenated_sequence = ""
 for i in sequences:
 concatenated_sequence += i
 return concatenated_sequence

new_sequence = concatenate(H_sapiens_lc1,H_sapiens_lc2)
 # And now we can use the output of a function, as the
input of another

def codon_count (Sequence,
StopCodon="TAA",StartCodon="ATG"):
 stop_count = Sequence.count(StopCodon)
 start_count = Sequence.count(StartCodon)
 print stop_count, start_count

codon_count (new_sequence)

H_sapiens_lc1 =
"AGCTAGTCGTAGCATGATTAACGTAGGCTATACTACTAAATGRC"

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19

Python 101: for biologists, by biologists http://python.cobig2.com/day4_functions

10 of 13 01/10/2014 10:41 AM

2 3

Return

Returning multiple values

Functions can return multiple values

And these values can be assigned to multiple variables

 stop_count = Sequence.count(StopCodon)
 start_count = Sequence.count(StartCodon)
 return stop_count, start_count # Returns a tuple with
two items
 # OR
 # return [stop_count, start_count] -> Returns a list
with two items

def codon_count (Sequence,
StopCodon="TAA",StartCodon="ATG"):

def codon_count (Sequence,
StopCodon="TAA",StartCodon="ATG"): #folded

stop,start = codon_count(H_sapiens)
print stop,start

start = codon_count(H_sapiens)[1] # You can even select the
variable(s) you want
print start

H_sapiens = "AGCTAGTCGTAGCATGATTAACGTAGGCTATACTACTAAATGRC"

1
2
3
4
5
6

7

1
2
6
7
8
9

10

11
12

▼

Python 101: for biologists, by biologists http://python.cobig2.com/day4_functions

11 of 13 01/10/2014 10:41 AM

Return

Functions always return something

If a function does not contain the return keyword, it will return None

True

 a = 2+2

print_me() == None

def print_me():1
2
3
4
6

2 2
2

Lambda (anonymous) functions

Lambda is an anonymous (unnamed) function that is used primarily to write very short
functions that are a hassle to define in the normal way. Where a regular function would
do:

7

a lambda function:

7

 print a+b

add(4,3)

def add(a,b):

print (lambda a,b: a+b)(4,3)

1
2
3
4
5

1
2

Python 101: for biologists, by biologists http://python.cobig2.com/day4_functions

12 of 13 01/10/2014 10:41 AM

Wrap up

So, we have covered thus far:

How to define functions using the def keyword

How to call a function

The three main types of arguments a function can take: Required , variable length
and arguments

The local and global scope of variables

The usage of the return keyword to return values from functions

Lambda functions

The lambda function can be used elegantly with other functional parts of the Python
language, like map(). In this example we can use it to convert a list of RNA sequences
into DNA sequences:

["ATGATT","AATCGATCG","ACTATG","ACTATG"]

DNA = map(lambda sequence: sequence.replace("U","T"), RNA)
print DNA

RNA = ["AUGAUU","AAUCGAUCG","ACUAUG","ACUAUG"]1
2
3
5

Python 101: for biologists, by biologists http://python.cobig2.com/day4_functions

13 of 13 01/10/2014 10:41 AM

