
Let's start by importing from the data module:

In [1]:

Problem 1:

The human_sequence variable imported from the data module is a cDNA sequence string resembling a typical aligned sequence, with gaps
spread throughout.

a) Define a function capable of taking any sequence string as input, and that prints a new sequence without gaps. The function must be able
to take the gap symbol as an argument (e.g., "-" or "?", etc)

In [45]:

b) Define a function similar to the one created for a), but capable of printing a new sequence without gaps entirely OR without gaps only at the
3' and 5' extremities of the sequence.

Tips:

You can use a boolean-like variable as an argument of the function, e.g. "zero_gaps = True" for when you want the function to
remove gaps from both ends, and "zero_gaps = Right/Left" when, you want to remove them from only one side).

In [4]:

c) Define a function capable of finding any motif in a sequence, and returning a tuple with the starting and ending positions of its first
appearance. If the motif does not exist, print an error message. Find the following motifs:

"GGGTTCACTT"
"GATCA"
"AACAT"
"GGTGTGGGGGG"

Tips:

The function can be defined with two arguments: One for the sequence, and another for the motif

from data import blast_out,human_sequence,IUPAC_codes

First method
def gap_cutter (sequence,gap_symbol):
 new_sequence = sequence.lower().replace(gap_symbol.lower(),"") # Using the .lower() or .upper() string method,
 print new_sequence # the function is insensitive to characters' capi

gap_cutter(human_sequence,"-")

Second method
def gap_cutter2 (sequence,gap_symbol):
 new_sequence = ""
 for character in sequence:
 if character.upper() != gap_symbol.upper():
 new_sequence += character
 else:
 pass
 print new_sequence

gap_cutter2(human_sequence,"-")

def gap_cutter3 (sequence,gap_symbol,zero_gaps):
 if zero_gaps == True:
 new_sequence = sequence.lower().replace(gap_symbol,"")
 print new_sequence
 elif zero_gaps == False:

new_sequence = sequence.upper().strip(gap_symbol)
 print new_sequence

gap_cutter3 (human_sequence,"-",True)
gap_cutter3 (human_sequence,"-",False)

day4_functions_and_io_exercises_solved 05/31/2012 01:14 PM

© 2012 Diogo Silva CC BY 3.0 1 of 6

In [38]:

(366, 376) GGGTTCACTT
(253, 258) GATCA
(159, 164) AACAT
The motif GGTGTGGGGGG does not exist
None

d) Modify the function created in c), so that it can take a variable number of motifs as arguments and return a dictionary with the motifs as
keys and the tuple with the positions as values.

(This is a tough one)

In [44]:

GGGTTCACTT (366, 376)
AACAT (159, 164)
GATCA (253, 258)
GGTGTGGGGGG This motif does not exist

Problem 2

The list blast_out from the examples module contains a short table of blast results in a simplified tabular format with the following fields per hit:

query sequence \t subject sequence \t identification percentage \t e-value

a) Define a function that returns a list containing only the blast hits with an e-value below . This e-value cut-off should be the
default, but the function must be flexible enough to be called with different cut-off values.

Tips:

Python is able to recognize and interpret numbers in scientific notation when converted with float(), e.g. float(1e-7);
Define the function using two arguments: one for a list, and the other for the e-value number;
You can use the .split() method of strings to separated the different field in each blast hit)

def motif_finder (motif,sequence):
 motif,sequence = motif.upper(),sequence.upper()
 start_position = sequence.find(motif)
 if start_position >= 0:
 end_position = sequence.find(motif)+len(motif)
 return (start_position,end_position)
 else:
 print "The motif %s does not exist" % (motif)

motif1 = motif_finder ("GGGTTCACTT",human_sequence)
print motif1,human_sequence[motif1[0]:motif1[1]]

motif2 = motif_finder ("GATCA",human_sequence)
print motif2,human_sequence[motif2[0]:motif2[1]]

motif3 = motif_finder ("AACAT",human_sequence)
print motif3,human_sequence[motif3[0]:motif3[1]]

motif4 = motif_finder ("GGTGTGGGGGG",human_sequence)
print motif4

def motif_finder2 (sequence,*motifs):
 motifs_dic = {}
 for motif in motifs:
 motif,sequence = motif.upper(),sequence.upper()
 start_position = sequence.find(motif)
 if start_position >= 0:
 end_position = sequence.find(motif)+len(motif)
 motifs_dic[motif] = (start_position,end_position)
 else:
 motifs_dic[motif] = "This motif does not exist"
 return motifs_dic

motifs = motif_finder2 (human_sequence,"GGGTTCACTT","GATCA","AACAT","GGTGTGGGGGG")

for key,value in motifs.items():
 print key, value

1 × 10−5

day4_functions_and_io_exercises_solved 05/31/2012 01:14 PM

© 2012 Diogo Silva CC BY 3.0 2 of 6

In [52]:

['gnl|SpeciesA|80761\tgnl|SpeciesC|BC1T_16434\t77.78\t3e-10\n', 'gnl|SpeciesA|80761\tgnl|SpeciesC|BC1T_16393\t77

b) Based on the list return by the function in a), define a function that sorts the blast hits according to their identification percentage into three
lists of high (100-90%), moderate (90-60%) and low (below 60%) identity percentage. Return those lists into separate variables and calculate
the number of hits in each identity percentage class.

Tips:

Once again you can use the .split() method of strings, but now we are interested in the "identification percentage" field, instead of the
"e-value" field);
Remember that functions can return multiple values (separated by commas)

In [61]:

There are a total of 23 hits in the original dataset:
- 12 hits presented high identity scores
- 11 hits presented moderate identity scores
- 0 hits presented low identity scores

c) Modify the function in a) so that it can take a file object as input, instead of a list.

def blast_parser (blast_list,evalue_threshold=1e-5):
 new_list = []
 for hit in blast_list:
 hit_fields = hit.split("\t")
 evalue = hit_fields[3].strip("\n")
 evalue = float(evalue)
 if evalue <= evalue_threshold:
 new_list.append(hit)
 else:
 pass
 return new_list

Blast_hits_1E7 = blast_parser (blast_out)
print Blast_hits_1E7

def blast_parser2 (blast_list):
 new_list,high_list,moderate_list,low_list = [],[],[],[]
 for hit in blast_list:
 hit_fields = hit.split("\t")
 id_percentage = hit_fields[2].strip("\n")
 id_percentage = float(id_percentage)
 if id_percentage <= 60:
 low_list.append(hit)
 elif id_percentage > 60 and id_percentage <= 89:
 moderate_list.append(hit)
 elif id_percentage > 90:
 high_list.append(hit)
 return high_list, moderate_list, low_list

high_list, moderate_list, low_list = blast_parser2 (Blast_hits_1E7)
print """There are a total of %s hits in the original dataset:
- %s hits presented high identity scores
- %s hits presented moderate identity scores
- %s hits presented low identity scores
""" % (len(Blast_hits_1E7),len(high_list),len(moderate_list),len(low_list))

day4_functions_and_io_exercises_solved 05/31/2012 01:14 PM

© 2012 Diogo Silva CC BY 3.0 3 of 6

In [44]:

c) Open the "blast_out.txt" file in read mode and use the previous function to return a list of blast hits with e-values below .

In [47]:

['gnl|SpeciesA|56811\tgnl|SpeciesL|1074362\t96.08\t1e-20\n', 'gnl|SpeciesA|56811\tgnl|SpeciesN|176791\t94.12\t2e

d) Create a script that includes the function defined in a). When executed through the terminal, the script should prompt the user for:

the path and filename of the blast output file that is going to be read
the desired e-value cutoff
the name of the output filename

The script must open and read the provided input file, and write all blast hits above the desired e-value cutoff to a new file with the name
provided by the user.

Tips:

Use the raw_input() and input() functions to collect information from the user/keyboard - Their values can be stored in variables to be
used latter;

First method: Loads the whole file into the memory. Not recommended for very large files.
def blast_parser3 (blast_infile,evalue_threshold=1e-7):
 infile = open(blast_infile)
 blast_list = infile.readlines()
 new_list = []
 for hit in blast_list:
 hit_fields = hit.split("\t")
 evalue = hit_fields[3].strip("\n")
 evalue = float(evalue)
 if evalue =< evalue_threshold:
 new_list.append(hit)
 else:
 pass
 return new_list

#Second method: Loads only one line of the file into the memory each time. Much more memory efficient but the loop
#only be performed once before the file object is exhausted.
def blast_parser4 (blast_infile,evalue_threshold=1e-7):
 infile = open(blast_infile)
 new_list = []
 for hit in infile:
 hit_fields = hit.split("\t")
 evalue = hit_fields[3].strip("\n")
 evalue = float(evalue)
 if evalue =< evalue_threshold:
 new_list.append(hit)
 else:
 pass
 return new_list

1 × 10−15

Blast_hits_1E5 = blast_parser3 ("blast_out.txt",evalue_threshold=1e-15)
print Blast_hits_1E5

day4_functions_and_io_exercises_solved 05/31/2012 01:14 PM

© 2012 Diogo Silva CC BY 3.0 4 of 6

In [50]:

Problem 3:

Use python to open the "My_fasta.fas" file in read mode.

a) Define a function that returns a dictionary with the fasta headers as keys and their sequence as the corresponding value.

Tips:

For this exercise, we ran out of tips. Sorry.

In [21]:

b) Define a function that performs some quality checks for each sequence. Check if:

all sequences are of the same size. If not, the function should print a message informing which taxa have sequences of different
length.
there are no illegal characters in each sequence. If there are, the function should print a message informing which taxon's sequence
has problems and what is the illegal character. (Tip: Use the IUPAC_codes list from the data module to check for illegal characters)

#!/usr/bin/python

infile = raw_input("Please provide the path to the input file:\n>")
evalue = input("Please provide the e-value cutoff:\n>")
outfile = raw_input("Pleave provide the name of the output file:\n>")

def blast_parser5 (input_file,evalue_threshold,output_file):
 infile = open(input_file)
 outfile = open(output_file,"w")
 new_list = []
 for hit in infile:
 hit_fields = hit.split("\t")
 evalue = hit_fields[3].strip("\n")
 evalue = float(evalue)
 if evalue =< evalue_threshold:
 outfile.write(hit)
 else:
 pass

blast_parser5 (infile,evalue,outfile)

def fasta_parser (fasta_file):
 fasta_dic = {}
 infile = open(fasta_file)
 for line in infile:
 if line.startswith(">"):
 header = line[1:].strip("\n")
 fasta_dic[header] = ""
 else:
 fasta_dic[header] += line.strip("\n")
 return fasta_dic

fasta_dic = fasta_parser ("My_fasta.fas")

day4_functions_and_io_exercises_solved 05/31/2012 01:14 PM

© 2012 Diogo Silva CC BY 3.0 5 of 6

In [23]:

The taxon Clupus_63137 has a different sequence size: 610

c) Create a function that uses the dictionary created in a) and collapses taxa with identical sequences into the same haplotype. Write these
unique haplotypes to a new file (My_fasta_collapsed.fas) in fasta format, and write the correspondance between haplotype and taxon name in
another file (My_haplotype_list.txt).

In [35]:

def quality_check (fasta_dic):
 sequence_sizes = []
 for taxon, sequence in fasta_dic.items():
 if sequence_sizes == [] and len(sequence) not in sequence_sizes:
 sequence_sizes.append(len(sequence))
 elif sequence_sizes != [] and len(sequence) not in sequence_sizes:
 sequence_sizes.append(len(sequence))
 print "The taxon %s has a different sequence size: %s" % (taxon,len(sequence))
 for nucleotide in sequence:
 if nucleotide not in IUPAC_codes:
 print "The taxon %s has an illegal character: %s" % (taxon,nucleotide)

quality_check (fasta_dic)

def collapse_sequences (fasta_dic):
 Collapsed_dic = {}
 for taxon, sequence in fasta_dic.items():
 if sequence in Collapsed_dic:
 Collapsed_dic[sequence] += "%s; " % (taxon)
 else:
 Collapsed_dic[sequence] = taxon+"; "
 return Collapsed_dic

def file_writer (sequence_dic,sequence_outfile,haplotype_outfile):
 outfile_fasta = open(sequence_outfile,"w")
 outfile_haplotypes = open(haplotype_outfile,"w")
 Haplotype = 1
 for sequence, taxa in sequence_dic.items():
 outfile_fasta.write(">Haplotype%s\n%s\n" % (Haplotype,sequence))
 outfile_haplotypes.write("Haplotype %s: %s \n)" % (Haplotype,taxa))
 Haplotype += 1

collapsed_dic = collapse_sequences (fasta_dic)
file_writer (collapsed_dic,"My_fasta_collapsed.fas","My_haplotype_list.txt")

day4_functions_and_io_exercises_solved 05/31/2012 01:14 PM

© 2012 Diogo Silva CC BY 3.0 6 of 6

