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B  M L?
What’s the difference?

Bayesian:

• estimates f(θ | D)
• estimates a distribution
• parameters are random
variables

• average over nuisance
parameters

Maximum Likelihood:

• maximizes f(D | θ)
• point estimate
• parameters are
fixed/unknown

• optimize nuisance
parameters
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Let’s start with joint probability and the
simple example that Paul Lewis gives in his
lecture on Bayesian phylogenetics

Slides source: https://molevol.mbl.edu/index.php/Paul_Lewis

(photo of Paul Lewis by David Hillis)

http://phylogeny.uconn.edu/
https://molevol.mbl.edu/index.php/Paul_Lewis
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Joint probabilities

10 marbles in a bag
Sampling with replacement

Pr(B,S) = 0.4

Pr(W,S) = 0.1

Pr(B,D) = 0.2

Pr(W,D) = 0.3

White,Solid

White,Dotted

Black,Solid
Black,Dotted
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Conditional probabilities
What's the probability that a 
marble is black given that it is 

dotted?

Pr(B|D) = 
2
5

2 remaining marbles are black (B)

5 marbles satisfy the 
condition (D)
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Marginal probabilities

Marginalizing over color yields 
the total probability that a 

marble is dotted (D)

Pr(D) = Pr(B,D) + Pr(W,D) 

= 0.2 + 0.3 

= 0.5 B,D

W,D

Marginalization involves summing all 
joint probabilities containing D
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Marginalization

B W

Pr(D,B)D

S Pr(S,B) Pr(S,W)

Pr(D,W)
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Marginalizing over colors
B

W

Pr(D,B)

D

S

Pr(S,B) Pr(S,W)

Pr(D,W
)

Marginal probability of 
being dotted is the sum of 

all joint probabilities 
involving dotted marbles
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Joint probabilities

B W

Pr(D,B)D

S Pr(S,B) Pr(S,W)

Pr(D,W)
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Marginalizing over "dottedness"
B W

Pr(D,B)

D

S

Pr(S,B) Pr(S,W)

Pr(D,W)
Marginal 

probability of 
being a white 

marble
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Bayes' rule

Pr(B,D)

Pr(B|D) Pr(D)

Pr(D|B) Pr(B)

The joint probability Pr(B,D) 
can be written as the 

product of a 
conditional probability 

and the 
probability of that condition

Either B or D 
can be the 
condition
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Bayes' rule
=Pr(B|D) Pr(D) Pr(D|B) Pr(B)

Equate the two ways of 
writing Pr(B,D)

Pr(D)Pr(D)
=

Pr(B|D) Pr(D) Pr(D|B) Pr(B)

Divide both sides by Pr(D)

=Pr(B|D)
Pr(D|B) Pr(B)

Pr(D)

Bayes' rule
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Pr(D) is the marginal probability of being dotted 
To compute it, we marginalize over colors

Bayes' rule (variations)

<latexit sha1_base64="S7y8+uJO/amURWQP2SijLa1uubo="></latexit>
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Bayes' rule (variations)

<latexit sha1_base64="y059Rfl5nFG3zPwjLzhPUA3XHQs="></latexit>

<latexit sha1_base64="KJjBwoqyakZJYzW73XqVMrGU2+I=">AAACcXicbVDLSgMxFM2M7/qquhJBQotgKZQZERREKNWFywrWFtpSMumdGkwyQ5IRytiP8Wvc6tLv8AfMtF041QOBk3PP5d57gpgzbTzvy3GXlldW19Y3Cptb2zu7xb39Rx0likKLRjxSnYBo4ExCyzDDoRMrICLg0A6eb7J6+wWUZpF8MOMY+oKMJAsZJcZKg+LVNe6FitC011Snt6+NCs5IozJZFHAVz5T2TGlXJoNi2at5U+C/xJ+TMpqjOdhzjnvDiCYCpKGcaN29jE0/JcowymFS6CUaYkKfyQi6lkoiQPfT6ZETfGKVIQ4jZZ80eKr+7kiJ0HosAusUxDzpxVom/lfrJia87KdMxokBSWeDwoRjE+EsMTxkCqjhY0sIVczuiukTsZkZm2tuSraYjoHmLkkDYf8ajCBMZo70gdm78h5KJAWeJeov5veXPJ7VfK/m35+X6415tuvoCJXQKfLRBaqjO9RELUTRG3pHH+jT+XYPXeyWZlbXmfccoBzc6g/IILw9</latexit>

<latexit sha1_base64="acYVTjyLED8gklbeDcecy4WozWM=">AAACgnicbVBNaxsxEJW3aZOmH3HaYyCImEJSitltA82hheD0kEMODsRxwDJGK8/GIpJ2kWYLRt0/1V/THttfUq13D3HSAcHTe2+YmZcWSjqM49+d6MnG02ebW8+3X7x89Xqnu/vm2uWlFTASucrtTcodKGlghBIV3BQWuE4VjNO7s1offwfrZG6ucFnAVPNbIzMpOAZq1r34SllmufBsaA+//Rgc0RoMjirPXKlnnuECkFMmDWV+8GHMqqpxNkJjb3E16/bifrwq+hgkLeiRtoaz3c4+m+ei1GBQKO7c5KTAqecWpVBQbbPSQcHFHb+FSYCGa3BTv7q6ou8CM6dZbsMzSFfs/Q7PtXNLnQan5rhwD7Wa/J82KTE7mXppihLBiGZQViqKOa0jpHNpQaBaBsCFlWFXKhY8hIgh6LUp9WKuALF2iU91+DtAzaWpHf5KhrvWPYIbAapONHmY32Nw/bGfxP3k8rh3Omiz3SJ75IAckoR8JqfknAzJiAjyk/wif8jfaCN6HyXRp8Yaddqet2Stoi//ABzxxNM=</latexit>
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Posterior probability 
of hypothesis θ

Marginal probability 
of the data (marginalizing 

over hypotheses)

Prior probability of 
hypothesis θLikelihood of hypothesis θ

Pr(�|D) =
Pr(D|�) Pr(�)�
� Pr(D|�) Pr(�)

Bayes’ rule in statistics
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Estimate the probability of a hypothesis (model) conditional
on observed data.

The probability represents the researcher’s degree of belief.

Bayes’ Rule (also called Bayes Theorem) specifies the
conditional probability of the hypothesis given the data.

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)

http://bit.ly/1Jz0Ta7
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The posterior probability of a discrete parameter δ
conditional on the data D is

Pr(δ | D) = Pr(D | δ) Pr(δ)∑
δ Pr(D | δ) Pr(δ)

∑
δ Pr(D | δ) Pr(δ) is the likelihood marginalized over all
possible values of δ.

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)

http://en.wikipedia.org/wiki/Marginal_distribution
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The posterior probability density a continuous parameter θ
conditional on the data D is

f(θ | D) = f(D | θ)f(θ)∫
θ f(D | θ)f(θ)dθ

∫
θ f(D | θ)f(θ)dθ is the likelihood marginalized over all
possible values of θ.

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)

http://en.wikipedia.org/wiki/Marginal_distribution


P

Priors distributions are an important part of Bayesian
statistics

The the distribution of θ before any data are collected is
the prior

f(θ)

The prior describes your uncertainty in the parameters of
your model

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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Paul Lewis gives a clear example of a prior
in action...

Slides source: https://molevol.mbl.edu/index.php/Paul_Lewis

(photo of Paul Lewis by David Hillis)

https://molevol.mbl.edu/index.php/Paul_Lewis
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If you had to guess...

0.0

1 meter 

Not knowing anything about my archery 
abilities, draw a curve representing 
your view of the chances of my arrow 
landing a distance d centimeters from 
the center of the target.

d

Ph
ot

o 
by

 T
ra

cy
 H

ea
th

(centimeters from target center)
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Case 1: assume I have talent

0.0

1 meter

20.0 40.0 60.0 80.0

An informative prior 
(low variance) that 
says most of my  
arrows will fall within 
20 cm of the center 
(thanks for your 
confidence!)
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Case 2: assume I have a talent for missing the target! 

0.0

1 meter

20.0 40.0 60.0

Also an informative prior, 
but one that says most of  
my arrows will fall within 
a narrow range just 
outside the entire target!
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Case 3: assume I have no talent

0.0

1 meter

20.0 40.0 60.0 80.0

This is a vague prior: 
its high variance reflects 
nearly total ignorance 
of my abilities, saying  
that my arrows could  
land nearly anywhere!
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A matter of scale

∞

Notice that I haven't provided a scale for
the vertical axis.

What exactly does the height of this
curve mean?

For example, does the height of the dotted
line represent the probability that my 
arrow lands 60 cm from the center 
of the target?

0.0 20.0 40.0 60.0
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Probabilities are associated with intervals

Probabilities are attached to intervals
(i.e. ranges of values), not individual values

The probability of any given point (e.g. 
d = 60.0) is zero!

However, we can ask about the probability 
that d falls in a particular interval 
e.g. 50.0 < d < 65.0

0.0 20.0 40.0 60.0
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Let’s continue with the archery example: we may assume a
gamma-prior distribution on my archery skill (distance from
bullseye = d) with a shape parameter α and a rate
parameter β.

d ∼ Gamma(α, β)

f(d | α, β) = 1
Γ(α)βαdα−1e

− dβ
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This requires us to assign values for α and β based on our
prior belief

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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Let’s assume that I will consistently miss the target, this
corresponds to a gamma distribution with a mean (m) of 60
and a variance (v) of 3.

mean = accuracy

variance = precision
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Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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If we have some prior knowledge of the mean (m) and
variance (v) of the gamma distribution, we can compute α
and β.

m = α
β , α = m

2

v

v = α
β2 , β = mv

d ∼ Gamma(α, β)
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Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



P: A E

Let’s assume that I will consistently miss the target, this
corresponds to a gamma distribution with a mean (m) of 60
and a variance (v) of 3.

α = 60
2

3
= 1200

β = 60
3

= 20

d ∼ Gamma(α, β)
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Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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Another way of expressing d ∼ Gamma(α, β) is with a
probabilistic graphical model

d

α β

gamma
distribution
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This shows that our observed datum (d = a single observed
shot) is conditionally dependent on the shape (α) and rate
(β) of the gamma distribution.

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)

http://en.wikipedia.org/wiki/Graphical_model
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We can parameterize the model using the mean (m) and
variance (v), where α and β are computed using m and v.

d

α β

gamma
distribution

m v

β = m
vα = m2

v
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Sometimes it’s better to use alternative parameterization.
We may have more intuition about mean and variance than
we have about shape and rate.

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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If somehow we happened to know the true mean and
variance of my accuracy at the archery range, we can easily
calculate the likelihood of any observed shot:

f(d | α, β) = 1
Γ(α)βαdα−1e

− dβ

d

α β

gamma
distribution

m v

β = m
vα = m2

v

f(d = 39.76 | α = 1200, β = 20) = 7.89916e− 40

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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RevBayes

Fully integrative Bayesian inference of
phylogenetic parameters using
probabilistic graphical models and an
interpreted language

http://RevBayes.com

d

α β

gamma
distribution

m v

β = m
vα = m2

v

Höhna, Landis, Heath, Boussau, Lartillot, Moore, Huelsenbeck, Ronquist.

2016. RevBayes: Bayesian phylogenetic inference using graphical
models and an interactive model-specification language. Systematic
Biology. (doi: 10.1093/sysbio/syu021)

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)

http://revbayes.github.io/
http://sysbio.oxfordjournals.org/content/65/4/726
http://sysbio.oxfordjournals.org/content/65/4/726
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Graphical models provide tools for
visually & computationally representing
complex, parameter-rich probabilistic
models

We can depict the conditional
dependence structure of various
parameters and other random variables

d

α β

gamma
distribution

m v

β = m
vα = m2

v

Höhna, Heath, Boussau, Landis, Ronquist, Huelsenbeck. 2014.
Probabilistic Graphical Model Representation in Phylogenetics.
Systematic Biology. (doi: 10.1093/sysbio/syu039)

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)

http://sysbio.oxfordjournals.org/content/early/2014/07/26/sysbio.syu039
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The Rev language calculating the probability of 1 data
observation (observed_shot) given a mean and variance.

mean <- 60
var <- 3

alpha := (mean * mean) / var
beta := mean / var

observed_shot = 39.76

d ~ dnGamma(alpha,beta)
d.clamp(observed_shot)

d.lnProbability()

-90.0366

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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What if we do not know m and v?

We can use maximum likelihood or Bayesian methods to
estimate their values.

Maximum likelihood methods require us to find the values
of m and v that maximize f(d | m, v).

Bayesian methods use prior distributions to describe our
uncertainty in m and v and estimate f(m, v | d).

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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We must define prior
distributions for m and v to
account for uncertainty and
estimate the posterior densities
of those parameters

Now x and y are the
parameters of the uniform
prior distribution on m and a
and b are the shape and rate
parameters of the gamma
prior distribution on v.

d

α β

gamma
distribution

m v

β = m
vα = m2

v

x y a b

uniform
distribution

gamma
distribution

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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The values we choose for the parameters of these
hyperprior distributions should reflect our prior knowledge.
The previous observed shot was 39.76 cm, thus we may
use this to parameterize our hyperpriors for analysis of
future observations.

m ∼ Uniform(x, y)
x = 10.0
y = 50.0

E(m) = 30.0

v ∼ Gamma(a , b)
a = 20.0
b = 2.0

E(v) = 10.0
d

α β

gamma
distribution

m v

β = m
vα = m2

v

x y a b

uniform
distribution

gamma
distribution

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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The Rev language specifying a hierarchical model on shot
accuracy based on 1 new observation.

mean ~ dnUnif(10,50)
var ~ dnGamma(20,2)

alpha := (mean * mean) / var
beta := mean / var

observed_shot = 35.21

d ~ dnGamma(alpha,beta)
d.clamp(observed_shot)

d.lnProbability()

depends on initial value of mean & var

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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Now that we have a defined model, how do we estimate
the posterior probability density?

m ∼ Uniform(x, y)
v ∼ Gamma(a , b)
d ∼ Gamma(α, β)

d

α β

gamma
distribution

m v

β = m
vα = m2

v

x y a b

uniform
distribution

gamma
distribution

f(m, v | d, a , b, x, y) ∝ f(d | α =
m2
v , β =

m
v )f(m | x, y)f(v | a , b)

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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An algorithm for approximating the posterior distribution

Metropolis, Rosenblusth, Rosenbluth, Teller, Teller. 1953. Equations of state calculations by fast computing
machines. J. Chem. Phys.

Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika.

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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More on MCMC from Paul Lewis and his
lecture on Bayesian phylogenetics

Slides source: https://molevol.mbl.edu/index.php/Paul_Lewis

(photo of Paul Lewis by David Hillis)

https://molevol.mbl.edu/index.php/Paul_Lewis
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Markov chain Monte Carlo (MCMC)

For more complex problems, 
we might settle for a 

good approximation
prior

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

posterior

to the posterior distribution
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MCMC robot’s rules

Uphill steps are 
always accepted

Slightly downhill steps
are usually accepted

Drastic “off the cliff”
downhill steps are almost
never accepted

With these rules, it 
is easy to see why the

robot tends to stay near 
the tops of hills
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Actual rules (Metropolis algorithm)

Uphill steps are always 
accepted because R > 1

Slightly downhill steps are usually 
accepted because R is near 1

Drastic “off the cliff” downhill 
steps are almost never accepted 

because R is near 0

6

8

4

2

0

10

The robot 
takes a step if 
a  Uniform(0,1) 

random 
deviate ≤ R

Currently at 6.2 m
Proposed at 5.7 m
R = 5.7/6.2 =0.92

Currently at 1.0 m
Proposed at 2.3 m
R = 2.3/1.0 = 2.3

Currently at 6.2 m
Proposed at 0.2 m
R = 0.2/6.2 = 0.03

Metropolis et al. 1953. Equation of state calculations by fast 
computing machines. J. Chem. Physics 21(6):1087-1092.
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Cancellation of marginal likelihood

When calculating the ratio (R) of posterior densities, the marginal 
probability of the data cancels.

Posterior
odds

Likelihood
ratio

Prior
odds

Apply Bayes' rule to 
both top and bottom

p(θ* |D)
p(θ |D) =

p(D |θ*) p(θ*)
p(D)

p(D |θ) p(θ)
p(D)

= p(D |θ*) p(θ*)
p(D |θ) p(θ)
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Target vs. Proposal Distributions

0 200 400 600 800 1000
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0

−9

White noise appearance is a 
sign of good mixing

"good" proposal 
distribution

target trace plot

MCMC iteration

lo
g(

po
st

er
io

r)

Tracer (app for generating trace plots from MCMC output):
https://github.com/beast-dev/tracer/releases/tag/v1.7.1

distribution

The target is usually the posterior distribution

The proposal distribution 
is used by the robot to 
choose the next spot to 
step, and is separate from 
the target distribution.
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Target vs. Proposal Distributions

Big waves in trace plot indicate 
robot is crawling around

"baby steps" 
proposal 

distribution

target 
distribution

MCMC iteration

lo
g(

po
st

er
io

r)
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Target vs. Proposal Distributions

Plateaus in trace plot indicate 
robot is often stuck in one place

"overly bold" proposal distribution

target 
distribution

MCMC iteration

lo
g(

po
st

er
io

r)

0 200 400 600 800 1000
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Metropolis-coupled Markov chain Monte Carlo 
(MCMCMC)

Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood for dependent data. Pages 156-163 in Computing 
Science and Statistics (E. Keramidas, ed.).

Sometimes the robot needs some help,

MCMCMC introduces helpers in the form of "heated 
chain" robots that can act as scouts.
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Heated chains act as scouts for the cold 
chain

cold

heated

Cold chain robot can 
easily make this jump 
because it is uphill

Hot chain robot can also 
make this jump with high 

probability because it is only 
slightly downhill
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Heated chains act as scouts for the cold 
chain

cold

heated

Swapping places means 
both robots can cross 
the valley, but this is 

more important for the 
cold chain because its 
valley is much deeper.
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Thanks, Paul!

Slides source: https://molevol.mbl.edu/index.php/Paul_Lewis

See MCMCRobot, a helpful
software program for learning
MCMC by Paul Lewis

https://phylogeny.uconn.edu/mcmc-robot

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)

https://molevol.mbl.edu/index.php/Paul_Lewis
https://phylogeny.uconn.edu/mcmc-robot/
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We can use MCMC to estimate m and v.

First, let’s generate our observed data using simulation.

true_accuracy = 35.0
true_variance = 4.0
true_alpha = (true_accuracy^2) / true_variance
true_beta = true_accuracy / true_variance

n = 6
observed_shots = rgamma(n, true_alpha, true_beta)

The values in observed_shots are data generated from the
true underlying distribution.

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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Now we can specify the model for our new observations.

mean ~ dnUnif(10,50)
var ~ dnGamma(20,2)

alpha := (mean^2) / var
beta := mean / var

for(i in 1:n){
d[i] ~ dnGamma(alpha,beta)
d[i].clamp(observed_shots)

}

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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The Rev language specifying the MCMC sampler for the
hierarchical model on archery accuracy.

mymodel = model(beta)

moves[1] = mvSlide(mean, weight=3.0)
moves[2] = mvScale(var, weight=3.0)

monitors[1] = mnModel(file="archery_mcmc_1.log", printgen=10)
monitors[2] = mnScreen(printgen=1000, mean, var)

mymcmc = mcmc(mymodel, monitors, moves)

mymcmc.burnin(generations=10000,tuningInterval=1000)

mymcmc.run(generations=40000)

MCMC screen output

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)
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Summary of the MCMC sample for the mean distance from
target center.
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RB D: H A M
The trace-plot of the MCMC samples for the mean distance
from target center
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E: H A M
Under this model, we do a good job of estimating the
mean, but when judging archery skill, precision (variance) is
as (if not more) important than accuracy
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Thus, it is also worth evaluating the estimated posterior
distribution for the variance component of our model
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E: V

The posterior estimate of
the variance (v) is quite
different from the true
value (4.0) and from the
highest likelihood value
found by our MCMC (MLE
= 3.51374).
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This indicates that the prior is having a strong influence on
the posterior. Why do you think that is?
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E: V

When the prior closely
matches the posterior, it can
indicate that the data are
not very informative for this
parameter.
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Remember that our data were only 6 observed shots. What
would happen if I had 600 arrows?
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With 100X more observations, we can estimate the mean
and variance with greater precision.
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B P

How is this applied to phylogenetic inference?

Jukes-Cantor (1969) on an unrooted tree

seq

PhyloCTMC

Q

JC

 

Tree

bli ⌧
Exponential Uniform

10 N

i 2 2N � 3

for (i in 1:n_branches) {
bl[i] ⇠ dnExponential(10.0)

}
topology ⇠ dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)

Q <- fnJC(4)

seq ⇠ dnPhyloCTMC( tree=psi, Q=Q, type="DNA" )

seq.clamp( data )

(image source RevBayes Substitution Models Tutorial)

We can assemble a phylogenetic model in the same way,
using previously described models and probability
distributions as priors.
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B P
With a defined model we simply then have to:

• draw starting values for every random variable in the
model

• define moves on each random variable that propose
new values
• then for each step in our MCMC, choose a parameter
and update it according to the correct proposal.
• propose a new tree topology and accept or reject
• propose a new model parameter value and accept or
reject

• save the current state of every random variable (tree,
branch lengths, base frequencies, etc.) after every k
number of states

• after n MCMC steps, evaluate the run for signs of
non-convergence

• summarize the tree and other parameters
Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)


