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BAYEsiAN orR MaxiMuMm LIKELIHOOD?
What's the difference?

Bayesian: Maximum Likelihood:
e estimates f(& | D) e maximizes f(D | 8)
® estimates a distribution ® point estimate
® parameters are random ® parameters are

variables fixed/unknown
® average over nuisance ® optimize nuisance
parameters parameters

© maximum likelihood
estimate

density
3

posterior density

parameter value

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



JoINT PRrROBABILITIES

Let's start with joint probability and the
simple example that Paul Lewis gives in his
lecture on Bayesian phylogenetics

Slides source: https://molevol.mbl.edu/index.php/Paul_Lewis

(photo of Paul Lewis by David Hillis)


http://phylogeny.uconn.edu/
https://molevol.mbl.edu/index.php/Paul_Lewis

Joint probabilities

White,Solid |0 marbles in a bag
Q P e Sampling with replacement
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Conditional probabillities
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What's the probability that a
marble is black given that it is
dotted?

5 marbles satisfy the

condition (D)

Pr(BID) =
r =
5

2 remaining marbles are black (B)



Marginal probabilities

Copyright © 2018 Paul O. Lewis

Marginalizing over color yields
the total probability that a
marble is dotted (D)

Pr(D) = Pr(B,D) + Pr(W,D)
=02+03
=0.5

Marginalization involves summing all
joint probabilities containing D



Marginalization

Copyright © 2018 Paul O. Lewis

B \WY
Pr(D,B) | Pr(D,W)
Pr(S,B) | Pr(S,W)




Marginalizing over colors

Marginal probability of
being dotted is the sum of

all joint probabilities
involving dotted marbles

Copyright © 2018 Paul O. Lewis



Joint probabilities

B W
D | P«DB) | Pr(D,W)
S | Pr(S,B) Pr(S,W)




Marginalizing over "dottedness”
B Y

Marginal
Pr(D’B) Pr(D, W) probability of

being a white

Prsp)y "~ prswy =




Bayes' rule

Copyright © 2018 Paul O. Lewis

The joint probability Pr(B,D)
can be written as the
product of a
conditional probability
and the
probability of that condition

Pr(B|D) Pr(D)

Either B or D

PF(B,D) can be the

condition

Pr(D|B) Pr(B)



Bayes' rule

Equate the two ways of
writing Pr(B,D)

Pr(B|D) Pr(D) = Pr(D|B) Pr(B)

Divide both sides by Pr(D)
Pr(B|D) BBY Pr(DIB) Pr(B)

BBy Pr(D)
Bayes' rule
Pr(B|D) = Pr(D|B) Pr(B)

Pr(D)



Bayes' rule (variations)

Pr(D|B) Pr(B)
Pr(D)
Pr(D|B) Pr(B)
Pr(B, D) + Pr(W, D)

Pr(B|D) =

Pr(D) is the marginal probability of being dotted
To compute it, we marginalize over colors



Bayes' rule (variations)

Pr(D|B) Pr(B)

S = e s

Pr(D|B) Pr(B)

% Pr(D|B)Pr(B) + Pr(D|W) Pr(W)

- Pr(D|B) Pr(B)
 Yoeqm.wy Pr(DI6) Pr()




Bayes' rule in statistics

Prior probability of
Likelihood of hypothesis 6 hypothesis 6

Pr(D|6) Pr(6)
Pr(6|D) = S, Pr(D|6) Pr(6)
S

Posterior probability Marginal probability
of hypothesis 6 of the data (marginalizing
over hypotheses)

Copyright © 2018 Paul O. Lewis



BAYESIAN INFERENCE

Estimate the probability of a hypothesis (model) conditional
on observed data.

The probability represents the researcher’s degree of belief.

Bayes' Rule (also called Bayes Theorem) specifies the
conditional probability of the hypothesis given the data.

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)


http://bit.ly/1Jz0Ta7

Baves' RuLE

The posterior probability of a discrete parameter &
conditional on the data D is

Pr(D | 8) Pr(d)
>_s Pr(D [ 6)Pr(5)

Pr(& | D) =

> s Pr(D|6)Pr(8) is the likelihood marginalized over all
possible values of 5.

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)


http://en.wikipedia.org/wiki/Marginal_distribution

Baves' RuLE

The posterior probability density a continuous parameter 8
conditional on the data D is

_ F(D|8)(6)
JEIR) = 15D ey (e)de

Jof(D | 6)f(6)d8 is the likelihood marginalized over all

possible values of 6.

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)


http://en.wikipedia.org/wiki/Marginal_distribution

Priors

Priors distributions are an important part of Bayesian
statistics

The the distribution of & before any data are collected is
the prior

f()

The prior describes your uncertainty in the parameters of
your model

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



Priors

Paul Lewis gives a clear example of a prior
in action...

Slides source: https://molevol.mbl.edu/index.php/Paul_Lewis

(photo of Paul Lewis by David Hillis)


https://molevol.mbl.edu/index.php/Paul_Lewis

If you had to guess...

Photo by Tracy Heath

Not knowing anything about my archery
abilities, draw a curve representing
your view of the chances of my arrow
landing a distance d centimeters from
the center of the target.

<—— 1 meter ——>

0.0 d (centimeters from target center)

Copyright © 2018 Paul O. Lewis



Case |:assume | have talent

An informative prior
(low variance) that
says most of my
arrows will fall within
20 cm of the center
(thanks for your
confidence!)

G E

==\

o 20.0 40.0 60.0 80.0
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Case 2:assume | have a talent for missing the target!

C—r—= 1 meter

Also an informative prior,
but one that says most of
my arrows will fall within
a narrow range just

outside the entire target!

—

0.0 20.0

Copyright © 2018 Paul O. Lewis

40.0

60.0




Case 3:assume | have no talent

This is a vague prior:

its high variance reflects
nearly total ignorance

of my abilities, saying
that my arrows could
land nearly anywhere!

w1 meter mre w2

0.0 20.0 40.0 60.0 80.0

Copyright © 2018 Paul O. Lewis



A matter of scale

Notice that | haven't provided a scale for
the vertical axis.

What exactly does the height of this
curve mean?

For example, does the height of the dotted
line represent the probability that my
arrow lands 60 cm from the center

of the target?

———— - - -
0.0 20.0 40.0

Copyright © 2018 Paul O. Lewis

(o)

_O - ooooooooooooooooooooooooooooooooom



Probabilities are associated with intervals ﬂ

Probabilities are attached to intervals
(i.e. ranges of values), not individual values

The probability of any given point (e.g.
d = 60.0) is zero!

However, we can ask about the probability
that d falls in a particular interval
e.g.50.0 <d < 65.0

0.0 20.0 40.0 60.0

Copyright © 2018 Paul O. Lewis



Priors: ARCHERY EXAMPLE

Let's continue with the archery example: we may assume a
gamma-prior distribution on my archery skill (distance from
bullseye = d) with a shape parameter a and a rate
parameter B.

0.25
|

0.20
L

0.15
L

d ~ Gamma(a, B)

density

0.10
L

Q_

f(d | a,B) = a)lgada_l P

0.05
L

0.00
L

r T T T T T T 1
0 10 20 30 40 50 60 70

distance in cm from target center (d)

This requires us to assign values for o and B based on our

prior belief

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



Priors: ARCHERY EXAMPLE

Let's assume that | will consistently miss the target, this
corresponds to a gamma distribution with a mean (m) of 60
and a variance (v) of 3.

0.25
|

o

0.20
L

0.15
L

mean = accuracy

density

0.10
L

variance = precision .

—— 1 meter ———>

0.05
L

0.00
L

r T T T T T T 1
0 10 20 30 40 50 60 70

distance in cm from target center (d)

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



Priors: ARCHERY EXAMPLE

If we have some prior knowledge of the mean (m) and
variance (v) of the gamma distribution, we can compute o

and B.

0.25
|

0.20
L

2
_a _m
]’n_'B, o= 327
‘@
_ « . m éo
V=g =7 R )

0.05
L

d ~ Gamma(a, B)

0.00
L

r T T T T T T 1
0 10 20 30 40 50 60 70

distance in cm from target center (d)

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



Priors: ARCHERY EXAMPLE

Let's assume that | will consistently miss the target, this
corresponds to a gamma distribution with a mean (m) of 60
and a variance (v) of 3.

0.25
|

o

0.20
L

a=5%% = 1200 .
z°
B= =20 g

d ~ Gamma(a, B)

0.05
L

—— 1 meter ———>

0.00
L

r T T T T T T 1
0 10 20 30 40 50 60 70

distance in cm from target center (d)

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



Priors: ARCHERY EXAMPLE

Another way of expressing d ~ Gamma(a, B) is with a
probabilistic graphical model

0.25

0.20

0.15

)
=
density

0.10

gamma b .
distribution
°
b ————— 1 meter ——>

r T T T T T T 1
0 10 20 30 40 50 60 70
distance in cm from target center (d)

0.05

0.00
L

This shows that our observed datum (d = a single observed
shot) is conditionally dependent on the shape (o) and rate
(B) of the gamma distribution.

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)


http://en.wikipedia.org/wiki/Graphical_model

Priors: ARCHERY EXAMPLE

We can parameterize the model using the mean (m) and
variance (v), where a and B are computed using m and v.

0.25

o

0.20
L

0.15
L

density

0.10
L

m? m °

°

gamma
distribution

0.05
L

—— 1 meter ———>

0.00
L

r T T T T T T 1
0 10 20 30 40 50 60 70

distance in cm from target center (d)

Sometimes it's better to use alternative parameterization.
We may have more intuition about mean and variance than

we have about shape and rate.
Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



Priors: ARCHERY EXAMPLE

If somehow we happened to know the true mean and
variance of my accuracy at the archery range, we can easily
calculate the likelihood of any observed shot:

‘KD\Q

fd|a.B)= a)lgada le

gamma
distribution

f(d=139.76 |a= 1200, = 20) = 7.8991 6e — 40

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



RevBayEs DEmo: ARcHERY AcCCURACY

RevBayes

Fully integrative Bayesian inference of
phylogenetic parameters using
probabilistic graphical models and an
interpreted language [,

http://RevBayes.com

Hohna, Landis, Heath, Boussau, Lartillot, Moore, Huelsenbeck, Ronquist.
2016. RevBayes: Bayesian phylogenetic inference using graphical
models and an interactive model-specification language. Systematic
Biology. (doi: 10.1093/sysbio/syu021)

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)


http://revbayes.github.io/
http://sysbio.oxfordjournals.org/content/65/4/726
http://sysbio.oxfordjournals.org/content/65/4/726

GraPHICAL MobpELs IN RevBAYEs

Graphical models provide tools for
visually & computationally representing
complex, parameter-rich probabilistic

models
We can depict the conditional \@/
dependence structure of various

parameters and other random variables

Hohna, Heath, Boussau, Landis, Ronquist, Huelsenbeck. 201 4.
Probabilistic Graphical Model Representation in Phylogenetics.

Systematic Biology. (doi: 10.1093/sysbio/syu039)

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)


http://sysbio.oxfordjournals.org/content/early/2014/07/26/sysbio.syu039

RevBayEs DEmo: MobeL oN ARCHERY SKiLL

The Rev language calculating the probability of 1 data
observation (observed_shot) given a mean and variance.

mean <- 60

var <- 3
alpha := (mean * mean) / var
beta := mean / var

observed_shot = 39.76

d ~ dnGamma(alpha,beta)
d.clamp (observed_shot)

d.1lnProbability()

-90.0366

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



ExampLE: MobpEL oN ARCHERY SKiLL

What if we do not know m and v?

We can use maximum likelihood or Bayesian methods to
estimate their values.

Maximum likelihood methods require us to find the values
of m and v that maximize f(d | m,v).

Bayesian methods use prior distributions to describe our
uncertainty in m and v and estimate f(m,v | d).

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



ExampLE: HierarcHIicAL ARCHERY MODEL

We must define prior
distributions for m and v to

account for uncertainty and
estimate the posterior densities iform AN
distribution @ @ distribution

of those parameters

Now x and y are the
parameters of the uniform h gamma’/

prior distribution on m and a ..
and b are the shape and rate

parameters of the gamma

prior distribution on v.

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



ExampLE: HierarcHIicAL ARCHERY MODEL

The values we choose for the parameters of these
hyperprior distributions should reflect our prior knowledge.
The previous observed shot was 39.76 cm, thus we may
use this to parameterize our hyperpriors for analysis of
future observations.

m ~ Uniform(x, y)

x=10.0
y= 500 uniform gamma
distribution @ @ distribution
‘ ...,.... ““‘,« }
4
m

E(m) = 30.0

v ~ Gamma(a, b) } Q ‘ .
a=200 /
b=2.0

E(v)=10.0

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



RevBayes Demo: HierarcHICAL ARcHERY MoDEL

The Rev language specifying a hierarchical model on shot
accuracy based on | new observation.

mean ~ dnUnif (10,50)
var ~ dnGamma(20,2)

alpha := (mean * mean) / var
beta := mean / var

observed_shot = 35.21

d ~ dnGamma(alpha,beta)
d.clamp (observed_shot)

d.1lnProbability()

depends on initial value of mean & var

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



ExampLE: HierarcHIicAL ARCHERY MODEL

Now that we have a defined model, how do we estimate
the posterior probability density?

m ~ Uniform(x, y)
v ~ Gamma(a, b)
d ~ Gamma(a, B)

f(myv|dabxy)xf(d|a=

uniform gamma
distribution @ @ distribution

distribution

m2
v

B ="M (m | xy)f(v|a,b)

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



Markov CHAIN MonTE CarLo (MCMC)

An algorithm for approximating the posterior distribution
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Metropolis, Rosenblusth, Rosenbluth, Teller, Teller. 1953. Equations of state calculations by fast computing

machines. J. Chem. Phys.
Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika.

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



Markov CHAIN MonTe CarLo (MCMC)

More on MCMC from Paul Lewis and his
lecture on Bayesian phylogenetics

Slides source: https://molevol.mbl.edu/index.php/Paul_Lewis

(photo of Paul Lewis by David Hillis)


https://molevol.mbl.edu/index.php/Paul_Lewis

Markov chain Monte Carlo (MCMC)

1

posterior ?Z

f

Copyright © 2018 Paul O. Lewis

0.6

For more complex problems,
we might settle for a

good approximation

to the posterior distribution



MCMC robots rules

Drastic “off the cliff”
downhill steps are almost
never accepted

Slightly downhill steps
are usually accepted

Uphill steps are
always accepted

Copyright © 2018 Paul O. Lewis



Actual rules (Metropolis algorithm)

10+
Slightly downhill steps are usually Drastic “off the cliff” downbill
8+ accepted because R is near | steps are almost never accepted
Currently at 62 m because R is near 0
Proposed at 5.7 m Currently at 6.2 m
6T R =5.7/6.2 =0.92 Proposed at 0.2 m
R =0.2/6.2 = 0.03
4 4
The robot
Currently at 1.0 m takes a step if
2+ Proposed at 2.3 m a Uniform(0,1)
R=23/1.0=23 random
deviate < R
0-

Uphill steps are always
accepted because R > |

Copyright © 2018 Paul O. Lewis

Metropolis et al. 1953. Equation of state calculations by fast
computing machines. J. Chem. Physics 21(6):1087-1092.




Cancellation of marginal likelihood

When calculating the ratio (R) of posterior densities, the marginal
probability of the data cancels.

pD|6*) p(6*)
pdtlDy . e pDo) o)

p@|D)  PPIOPO  p(D|6) p(d)
pby

Posterior Apply Bayes' rule to Likelihood Prior
odds both top and bottom ratio odds

Copyright © 2018 Paul O. Lewis



Target vs. Proposal Distributions

Tracer (app for generating trace plots from MCMC output):
https://github.com/beast-dev/tracer/releases/tag/vl.7.1

The proposal distribution

"good" proposal

is used by the robot to > l
distribution choose the next spot to il
step, and is separate from

the target distribution. -

-12

-13

log(posterior)

-14

0 trace plot

MCMC iteration

0 200 400 600 800 1000
The target is usually the posterior distribution Whlte nOIse appearance IS a
sign of good mixing

Copyright © 2018 Paul O. Lewis



Target vs. Proposal Distributions

-9

"baby steps"
proposal
distribution

-10

log(posterior)
-13 -12

14

-15

-16

7 MCMC iteration
T T T T T T
ta rget 0 200 400 600 800 1000

distribution

Big waves in trace plot indicate
robot is crawling around

Copyright © 2018 Paul O. Lewis



Target vs. Proposal Distributions

"overly bold" proposal distribution

-10

log(posterior)

-12

-13

MCMC iteration

T T T T T T
0 200 400 600 800 1000

target
distribution Plateaus in trace plot indicate

robot is often stuck in one place

Copyright © 2018 Paul O. Lewis



Metropolis-coupled Markov chain Monte Carlo
(EMEMG)

Sometimes the robot needs some help,

MCMCMC introduces helpers in the form of "heated
chain" robots that can act as scouts.

Geyer, C.J. 1991. Markov chain Monte Carlo maximum likelihood for dependent data. Pages 156-163 in Computing
Science and Statistics (E. Keramidas, ed.).

Copyright © 2018 Paul O. Lewis



Heated chains act as scouts for the cold
chain

Cold chain robot can
easily make this jump

cold ST 3
because it is uphill

Hot chain robot can also
make this jump with high
probability because it is only
slightly downhill

heated

N

Copyright © 2018 Paul O. Lewis



Heated chains act as scouts for the cold
chain

\ Swapping places means
old both robots can cross
the valley, but this is
more important for the
cold chain because its
valley is much deeper.

heated

~

Copyright © 2018 Paul O. Lewis



Markov CHAIN MonTe CarLo (MCMC)

Thanks, Paul!

Slides source: https://molevol.mbl.edu/index.php/Paul_Lewis

See MCMCRobot, a helpful
software program for learning

MCMC by Paul Lewis

https://phylogeny.uconn.edu/mcmc-robot

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)


https://molevol.mbl.edu/index.php/Paul_Lewis
https://phylogeny.uconn.edu/mcmc-robot/

RevBayes Demo: HierarcHICAL ARcHERY MoDEL

We can use MCMC to estimate m and v.

First, let's generate our observed data using simulation.

true_accuracy = 35.0

true_variance = 4.0

true_alpha = (true_accuracy~2) / true_variance
true_beta = true_accuracy / true_variance

n==6
observed_shots = rgamma(n, true_alpha, true_beta)

The values in observed_shots are data generated from the
true underlying distribution.

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



RevBayes Demo: HierarcHICAL ARcHERY MoDEL

Now we can specify the model for our new observations.
mean ~ dnUnif(10,50)
var ~ dnGamma(20,2)

alpha := (mean~2) / var
beta := mean / var

for(i in 1:n){
d[i] ~ dnGamma(alpha,beta)
d[i].clamp(observed_shots)

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



RevBayes Demo: HierarcHICAL ARcHERY MoDEL

The Rev language specifying the MCMC sampler for the
hierarchical model on archery accuracy.
mymodel = model (beta)

mvSlide (mean, weight=3.0)
mvScale(var, weight=3.0)

moves [1]
moves [2]

monitors[1] = mnModel(file="archery_mcmc_1.log", printgen=10)
monitors[2] = mnScreen(printgen=1000, mean, var)

mymcmc = mcmc (mymodel, monitors, moves)
mymcme . burnin (generations=10000, tuningInterval=1000)

mymcmc . run (generations=40000)

MCMC screen output

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



RevBayes Demo: HierarcHICAL ARcHERY MoDEL

Summary of the MCMC sample for the mean distance from
target center.

125

1004

Frequency
o
g

@
3

25

40

mean

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



RevBayes Demo: HierarcHICAL ARcHERY MoDEL

The trace-plot of the MCMC samples for the mean distance
from target center

5000 10000 15000 20000 25000 30000
State

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



ExampLE: HierarcHIicAL ARCHERY MODEL

Under this model, we do a good job of estimating the
mean, but when judging archery skill, precision (variance) is

as (if not more) important than accuracy
o|
@g?str‘ir{)‘;ion

uniform
distribution
ory, yot*
;-‘ﬁ"'n

gamma
distribution

Thus, it is also worth evaluating the estimated posterior
distribution for the variance component of our model

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



ExamMpLE: VARIANCE

025

0.20

posterior
The posterior estimate of l

the variance (v) is quite

different from the true
value (4.0) and from the °]
highest likelihood value |
found by our MCMC (MLE )
= 3.51374).

w

015

0.00
§

This indicates that the prior is having a strong influence on
the posterior. Why do you think that is?

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



ExamMpLE: VARIANCE

025

8 posterior l'tM
When the prior closely | N
matches the posterior, it can
indicate that the data are
not very informative for this
parameter.

015

0.10

0.05

0.00
§

Remember that our data were only 6 observed shots. What
would happen if | had 600 arrows?

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



ExampLE: WITH A LoT More DATA

With 100X more observations, we can estimate the mean
and variance with greater precision.

Marginal Posterior of the Variance (v) Marginal Posterior of the Mean (m)
&7 © -
o posterior
w posterior
«
2 2
Z o I
gi \
g , J " o - J -
" i T ) " T T T T T !
0 i 5 10 15 33.0 335 340 345 35.0 355 36.0
e variance (v) mean (m)

Tracy A. Heath (2019 Bayesian Phylogenetics & Macroevolution in RevBayes — Canberra, Australia)



BAYESIAN PHYLOGENETICS

How is this applied to phylogenetic inference?

Jukes-Cantor (1969) on an unrooted tree

for (i in 1:n_branches) {
bl[i] ~ dnExponential(10.0)

¥
topology ~ dnUniformTopology (taxa)
psi := treeAssembly(topology, bl)

Q <- £nJC(4)

seq ~ dnPhyloCTMC( tree=psi, Q=Q, type="DNA" )

seq.clamp( data )

PhyloCTMC

(image source RevBayes Substitution Models Tutorial)

We can assemble a phylogenetic model in the same way,
using previously described models and probability
distributions as priors.
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https://github.com/revbayes/revbayes_tutorial/blob/master/tutorial_TeX/RB_CTMC_Tutorial/RB_CTMC_Tutorial.pdf

BAYESIAN PHYLOGENETICS
With a defined model we simply then have to:

e draw starting values for every random variable in the
model

¢ define moves on each random variable that propose
new values
e then for each step in our MCMC, choose a parameter
and update it according to the correct proposal.
® propose a new tree topology and accept or reject
® propose a new model parameter value and accept or
reject
® save the current state of every random variable (tree,
branch lengths, base frequencies, etc.) after every k
number of states

e after n MCMC steps, evaluate the run for signs of
non-convergence

® summarize the tree and other parameters
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