Molecular Modifiers Suppress Nonclassical Pathways of Zeolite Crystallization

Wei Qin, Ankur Agarwal, Madhuresh K. Choudhary, Jeremy C. Palmer, and Jeffrey D. Rimer* Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, TX 77204 USA
*Correspondence sent to: jrimer@central.uh.edu

List of Figures

Figure S1. Mass spectra of an alkaline D-Arg solution before and after heating.
Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of an alkaline D-Arg solution before and after heating.
Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum of ornithine-lactam (Racemic-OL).
Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of an alkaline urea solution before and after heating.
Figure S5. ${ }^{13} \mathrm{C}$ NMR spectrum of an alkaline D-ornithine solution before and after heating.
Figure S6. Measurements of pH changes in solution $\mathrm{S}(\mathrm{I})$ as a function of R-OL concentration.
Figure S7. Silicalite-1 surfaces used in USMD simulations to investigate R/S-OL adsorption.
Figure S8. Powder XRD patterns of extracted solids from syntheses in S(II) growth solution.
Figure S9. Effect of R-OL on the morphology of ZSM-5 crystals.

Figure S1. Mass spectra of a solution containing D-arginine and $\mathrm{NaOH}(\mathrm{pH} 12.3)$ that was measured (A) before and (B) after hydrothermal treatment at $160^{\circ} \mathrm{C}$ for 72 h . The m / z ratios correspond to D -arginine and (R)-ornithine-lactam, respectively.

Figure S2. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum in DMSO of (A) D-Arg and (B) organics that were extracted from a solution containing D -arginine and $\mathrm{NaOH}(\mathrm{pH} 12.3)$ after heating at $160^{\circ} \mathrm{C}$ for 72 h . The pattern matches that of ornithine-lactam (see Figure S3).

Figure S3. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of ornithine-lactam (R/S-OL) in DMSO. The reagent was purchased from AK Scientific Inc. to confirm the product of D-Arg. thermal decomposition.

Figure S4. ${ }^{13} \mathrm{C}$-NMR spectrum of urea measured in alkaline solution (A) without heating (i.e. as received reagent from EMD Chemicals Inc.), and after hydrothermal treatment at $160^{\circ} \mathrm{C}$ for (B) 4 h and (C) 8 h . The final product of urea decomposition is carbonate.

Figure S5. ${ }^{13} \mathrm{C}$-NMR spectrum of D-ornithine measured in alkaline solution (A) without heating (i.e. as received reagent from Sigma Aldrich), and (B) after hydrothermal treatment at $160^{\circ} \mathrm{C}$ for 8 h . The pattern matches that of ornithine-lactam (see Figure S3).

Figure S6. Measurements of pH for silicalite-1 growth solution $\mathrm{S}(\mathrm{I})$ prior to $\left(\mathrm{pH}_{\mathrm{i}}\right.$, open symbols) and after $\left(\mathrm{pH}_{0}\right.$, solid symbols) hydrothermal treatment at $160^{\circ} \mathrm{C}$ for 65 h as a function of R-OL weight percentage. The dashed lines are interpolated to help guide the eye.

Figure S7. Model (hkl) surfaces of silicalite-1 used in the USMD simulations to investigate R/SOL adsorption.

Figure S8. Powder XRD patterns of extracted solids from S(II) growth solutions after 4, 12, 24, and 65 h of hydrothermal treatment at $160^{\circ} \mathrm{C}$.

Growth modification of ZSM-5. The effect of R-OL on ZSM-5 (MFI type) crystal morphology and size was assessed by bulk crystallization studies in both the absence of modifier and in the presence of varying R-OL weight fraction. We added aluminum sulfate $\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)$ to solution S (II)' to make an initial gel $\mathrm{Si} / \mathrm{Al}$ ratio of 50 . The majority of aluminosilicate species are in the form of nanoparticle precursors. ZSM-5 crystals produced from growth solution S(II)' (containing Al) in the absence of modifier exhibit a typical ZSM-5 morphology (Figure S9A). A systematic study of varying modifier content (Figure S9C) reveals little change in crystal thickness, while crystal length increases monotonically with increasing D-Arg concentration. The aspect ratio of length over thickness increases with increasing modifier concentration (Figure S9B). This agrees with the observations for silicalite-1 crystals synthesized in solution S(II).

Figure S9. Effect of R-OL (i.e. the decomposition product of D-Arg) on the morphology of ZSM-5 crystals synthesized from growth solutions with molar composition $157 \mathrm{SiO}_{2}: 1.57$ $\mathrm{Al}_{2} \mathrm{O}_{3}: 47$ TPAOH. Scanning electron micrographs of ZSM-5 crystals prepared with the following synthesis conditions: (A) control (absence of D-Arg) and (B) $3 \mathrm{wt} \% \mathrm{D}-\mathrm{Arg}$. (C) Plot of crystal length (red squares) and thickness (blue triangles) of ZSM-5 crystals as a function of modifier concentration. Crystal dimensions are obtained from SEM images and each value is the
average of more than 50 measurements from a single crystal batch. Dashed lines are interpolated to help guide the eye, and error bars equal two standard deviations.

