Supplementary Material

In this section we will prove that under a special case of the null hypothesis the test statistic (5) with scoring function $S_{i}(t)= \pm 1$ given in (7) has an asymptotic normal distribution. To show this we will use several theorems and definitions from Fleming and Harrington [10]. Let $\lambda_{i}(t)$ be the hazard rate for species i at time t. We shall assume a strong version of our null hypothesis given by

$$
\begin{equation*}
H_{0}: \lambda_{i}(t)=\lambda(t) \text { for } i=1, \ldots, n \text { and } \forall t \in R^{+} \tag{22}
\end{equation*}
$$

This amounts to assuming that there are no age effects (the Red Queen hypothesis) or covariate effects on species extinction. I will prove that:

$$
\begin{equation*}
\frac{J}{\sqrt{V}} \stackrel{D}{\longrightarrow} N(0,1) \tag{23}
\end{equation*}
$$

This will be shown by applying a martingale central limit theorem to statistic J [10]. Using the univariate case of theorem 5.3.4 of Fleming and Harrington we have the following central limit theorem:

Theorem 6.1 Let W be a Brownian motion process and f be a measurable nonnegative function such that $\alpha(t)=\int_{0}^{t} f^{2}(s) d s<\infty, \forall t>0$.
Suppose,
(1) $\left\{N_{i}(t): i=1, \ldots, n\right\}$ is a counting process with stochastic basis $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}: t>0\right\}, P\right)$
(2) The compensator $A_{i}(t)$ of $N_{i}(t)$ is continuous.
(3) $H_{i}(t)$ is a locally bounded \mathcal{F}_{t}-predictable process.

Define

$$
\begin{align*}
M_{i}(t) & \equiv N_{i}(t)-A_{i}(t) \tag{24}\\
U_{i}(t) & =\int_{0}^{t} H_{i}(s) d M_{i}(s), U(t)=\sum_{i=1}^{n} U_{i}(t), \tag{25}
\end{align*}
$$

and for any $\epsilon>0$

$$
\begin{gathered}
U_{i, \epsilon}(t)=\int_{0}^{t} H_{i}(s) I_{\left\{\left|H_{i}(s)\right| \geq \epsilon\right\}} d M_{i}(s), \\
U_{\epsilon}(t)=\sum_{i=1}^{n} U_{i, \epsilon}(t) .
\end{gathered}
$$

Assume for any $t \in[0, \eta]$ as $n \rightarrow \infty$
i. $\langle U, U\rangle(t) \xrightarrow{p} \int_{0}^{t} f^{2}(s) d s$
and
ii. $\left\langle U_{\epsilon}, U_{\epsilon}\right\rangle(t) \xrightarrow{p} 0$ for any $\epsilon>0$

Then $U \xrightarrow{D} \int f d W$ in $D[0, \eta]$ as $n \rightarrow \infty$.

Proof of (23):

Before showing that i. and i. hold, I will show conditions 1-3 for the situation of our statistic J :
(1) Show $N_{i}(t)$ is a counting process.

The relevant definitions are:

Definition 6.2 A counting process is a stochastic process $\{N(t): t>0\}$ adapted to a filtration $\left\{\mathcal{F}_{t}: t>0\right\}$ with $N(0)=0$ and $N(t)<\infty$ a.s. and whose paths are with probability one right-continuous, piecewise constant, and have only jump discontinuities, with jumps of size +1 .

Definition 6.3 A stochastic process $\{X(t): t \geq 0\}$ is adapted to a filtration if, for every $t \geq 0, X(t)$ is \mathcal{F}_{t}-measurable, i.e., $\{\omega: X(t, \omega) \leq x\} \in \mathcal{F}_{t}$.

In our situation

$$
N_{i}(t)=I_{\left\{R_{i} \leq t\right\}}=\left\{\begin{array}{l}
0, t<R_{i} \tag{26}\\
1, t \geq R_{i}
\end{array}\right.
$$

where $R_{i}>0$. This clearly satisfies $N(0)=0$ and $N(t)<\infty$, and has paths which are right-continuous and piecewise constant, with a single jump of size 1. The filtration we use throughout this work is

$$
\begin{equation*}
\mathcal{F}_{t}=\sigma\left\{N_{i}(u), N_{i}^{L}(u): 0 \leq u \leq t\right\}, \text { where } N_{i}^{L}(u)=I_{\left\{L_{i} \leq u\right\}} \tag{27}
\end{equation*}
$$

Since $N_{i}(t) \in\left\{N_{i}(u), N_{i}^{L}(u): 0 \leq u \leq t\right\}$, it is clear that $N_{i}(t)$ is $\mathcal{F}_{t^{-}}$ measurable.
(2) Now I will show that the continuous compensator of $N_{i}(t)$ is $A_{i}(t) \equiv$ $\int_{\gamma}^{t} Y_{i}(u) \lambda_{i}(u) d u$, that is $A_{i}(t)$ is increasing, continuous and \mathcal{F}_{t}-predictable and $M_{i}(t)=N_{i}(t)-A_{i}(t)$ is an \mathcal{F}_{t}-martingale, where

$$
\begin{equation*}
\lambda_{i}(t)=\lim _{h \rightarrow 0} \frac{1}{h} P\left(t<R_{i}<t+h \mid L_{i}<t<R_{i}\right) \tag{28}
\end{equation*}
$$

To show this I will need to establish the following:
a) $A_{i}(t)$ is continuous, increasing, and \mathcal{F}_{t}-predictable.
b) $M_{i}(t)$ is adapted to \mathcal{F}_{t}.
c) $E\left|M_{i}(t)\right|<\infty$
d) $E\left(M_{i}(t+s) \mid \mathcal{F}_{t}\right)=M_{i}(t)$
a) Show $A_{i}(t)$ is increasing, continuous and \mathcal{F}_{t}-predictable.
$A_{i}(t)$ is continuous and increasing since it is the cumulative integral of a non-negative integrand. Define

$$
\Lambda_{i}(t)=\int_{\gamma}^{t} \lambda_{i}(u) d u
$$

$A_{i}(t)$ is adapted since

$$
A_{i}(t)=\int_{\gamma}^{t} I\left(L_{i}<u \leq R_{i}\right) \lambda_{i}(u) d u=\Lambda_{i}\left(t \wedge R_{i}\right)-\Lambda_{i}\left(t \wedge L_{i}\right)
$$

and both $t \wedge R_{i}$ and $t \wedge L_{i}$ are easily seen to be adapted. Now, since $A_{i}(t)$ is continuous and adapted, we conclude (from Lemma 1.4.1 of Fleming and Harrington) that $A_{i}(t)$ is predictable.
b) Show $M_{i}(t)$ is adapted to \mathcal{F}_{t}.

It suffices to show that $N_{i}(t)$ and $A_{i}(t)$ are adapted to \mathcal{F}_{t}, but these were shown earlier.
c) Show $E\left|M_{i}(t)\right|<\infty$.

$$
\begin{aligned}
E\left|M_{i}(t)\right| & \leq E\left(N_{i}(t)\right)+E \int_{\gamma}^{t} Y_{i}(u) \lambda_{i}(u) d u \\
& \leq 1+\int_{\gamma}^{t} P\left(L_{i}<u \leq R_{i}\right) \lambda_{i}(u) d u \\
& \leq 1+\int_{\gamma}^{t} \lambda_{i}(u) d u \\
& <\infty
\end{aligned}
$$

d) Show $E\left(M_{i}(t+s) \mid \mathcal{F}_{t}\right)=M_{i}(t)$ a.s. $\forall s, t \geq 0$.

$$
\begin{aligned}
E\left(M_{i}(t+s) \mid \mathcal{F}_{t}\right)= & E\left\{N_{i}(t+s)-\int_{\gamma}^{t+s} Y_{i}(u) \lambda_{i}(u) d u \mid \mathcal{F}_{t}\right\} \\
= & N_{i}(t)-\int_{\gamma}^{t} Y_{i}(u) \lambda_{i}(u) d u+E\left\{N_{i}(t+s)-N_{i}(t) \mid \mathcal{F}_{t}\right\} \\
& -E\left\{\int_{t}^{t+s} Y_{i}(u) \lambda_{i}(u) d u \mid \mathcal{F}_{t}\right\} \\
= & M_{i}(t)+E\left\{N_{i}(t+s)-N_{i}(t) \mid \mathcal{F}_{t}\right\}-E\left\{\int_{t}^{t+s} Y_{i}(u) \lambda_{i}(u) d u \mid \mathcal{F}_{t}\right\}
\end{aligned}
$$

Thus it suffices to show that

$$
\begin{equation*}
E\left\{N_{i}(t+s)-N_{i}(t) \mid \mathcal{F}_{t}\right\}=E\left\{\int_{t}^{t+s} Y_{i}(u) \lambda_{i}(u) d u \mid \mathcal{F}_{t}\right\} \tag{29}
\end{equation*}
$$

For the remainder of the proof we will suppress the use of i in the notation. Let us start by noting that $\mathcal{F}_{t}=\sigma\left\{L^{(t)}, R^{(t)}\right\}$ where

$$
\begin{aligned}
L^{(t)} & =\left\{\begin{array}{r}
L, L \leq t \\
\infty, L>t
\end{array}\right. \\
R^{(t)} & =\left\{\begin{array}{r}
R, R \leq t \\
\infty, R>t
\end{array}\right.
\end{aligned}
$$

Removing the i notation from the left hand side of the equation (29) we have:

$$
\begin{align*}
E\left(N(t+s)-N(t) \mid \mathcal{F}_{t}\right) & =P\left(t<R \leq t+s \mid \mathcal{F}_{t}\right) \\
& =E\left(I_{\{t<R \leq t+s\}} \mid \mathcal{F}_{t}\right) \\
& =\left\{\begin{array}{lr}
0, & \text { if } R \leq t \\
P(t<R \leq t+s \mid L>t), & \text { if } L>t \\
1-e^{-\int_{t}^{t+s} \lambda(u) d u,} & \text { if } L \leq t<R
\end{array}\right. \tag{30}
\end{align*}
$$

When $L>t$ equation (30) follows from $\{\omega: L(\omega)>t\}=$ $\left\{\omega: L^{(t)}(\omega)=R^{(t)}(\omega)=\infty\right\}$.
Now we will evaluate the right hand side of equation (29) and show that it is equal to the left.

$$
\begin{equation*}
E\left(\int_{t}^{t+s} Y(u) \lambda(u) d u \mid \mathcal{F}_{t}\right)=\int_{t}^{t+s} E\left(Y(u) \mid \mathcal{F}_{t}\right) \lambda(u) d u \tag{31}
\end{equation*}
$$

For $t<u<t+s$, let's consider equation (31) on the 3 sets: $\{R \leq t\}$, $\{L>t\}$, and $\{L \leq t<R\}$. By definition we know that

$$
E\left(Y(u) \mid \mathcal{F}_{t}\right)=P\left(L<u \leq R \mid \mathcal{F}_{t}\right)
$$

For $\omega \in\{R \leq t\}, P\left(L<u \leq R \mid \mathcal{F}_{t}\right)=0$. Thus,

$$
\begin{equation*}
\int_{t}^{t+s} E\left(Y(u) \mid \mathcal{F}_{t}\right) \lambda(u) d u=0 \tag{32}
\end{equation*}
$$

on $\{R \leq t\}$. For $\omega \in\{L \leq t<R\}$,

$$
P\left(L<u \leq R \mid \mathcal{F}_{t}\right)=P(R \geq u \mid L, R>t)=e^{-\int_{t}^{u} \lambda(z) d z}
$$

Thus, if $L \leq t<R$,

$$
\begin{align*}
\int_{t}^{t+s} E\left(Y(u) \mid \mathcal{F}_{t}\right) \lambda(u) d u & =\int_{t}^{t+s} e^{-\int_{t}^{u} \lambda(z) d z} \lambda(u) d u \\
& =-\left.e^{-\int_{t}^{u} \lambda(z) d z}\right|_{u=t} ^{u=t+s} \\
& =1-e^{-\int_{t}^{t+s} \lambda(z) d z} \tag{33}
\end{align*}
$$

For $\omega \in\{L>t\}$,

$$
\begin{align*}
E\left(Y(u) \mid \mathcal{F}_{t}\right) & =P(L<u \leq R \mid L>t)=P(t<L<u \leq R \mid L>t) \\
& =\frac{P(t<L<u \leq R)}{P(L>t)} \\
& =\frac{\int_{t}^{u} P(R \geq u \mid L=z) d F_{L}(z)}{P(L>t)} \\
& =\frac{\int_{t}^{u} e^{-\int_{z}^{u} \lambda(w) d w} d F_{L}(z)}{P(L>t)} \tag{34}
\end{align*}
$$

Thus by equation (34) we have,

$$
\begin{align*}
\int_{t}^{t+s} E\left(Y(u) \mid \mathcal{F}_{t}\right) \lambda(u) d u & =\int_{t}^{t+s} \lambda(u)\left(\frac{\int_{t}^{u} e^{-\int_{z}^{u} \lambda(w) d w} d F_{L}(z)}{P(L>t)}\right) d u \\
& =\frac{1}{P(L>t)} \int_{t}^{t+s} d F_{L}(z) \int_{z}^{t+s} e^{-\int_{z}^{u} \lambda(w) d w} \lambda(u) d u \\
& =\frac{\int_{t}^{t+s} d F_{L}(z)}{P(L>t)}\left(-\left.e^{-\int_{z}^{u} \lambda(w) d w}\right|_{z} ^{t+s}\right) \\
& =\frac{\int_{t}^{t+s} d F_{L}(z)}{P(L>t)}\left(1-e^{-\int_{z}^{t+s} \lambda(w) d w}\right) \\
& =\frac{P(R \leq t+s, L>t)}{P(L>t)} \\
& =P(R \leq t+s \mid L>t) \\
& =P(t<R \leq t+s \mid L>t) \tag{35}
\end{align*}
$$

Now by equations (31), (32), (33), and (35) we have,

$$
\int_{t}^{t+s} E\left(Y(u) \mid \mathcal{F}_{t}\right) \lambda(u) d u=\left\{\begin{array}{lr}
0, & \text { if } R \leq t \tag{36}\\
P(t<R \leq t+s \mid L>t), & \text { if } L>t \\
1-e^{-\int_{t}^{t+s} \lambda(z) d z}, & \text { if } L \leq t<R
\end{array}\right.
$$

This is equivalent to equation (30).
(3) Show that $H_{i}(t)=S_{i}(t) Y_{i}(t)$ is locally bounded.

We will show this for the particular score function $S_{i}(t)$ which takes the values +1 or $-1(7)$. This score function is actually bounded globally:

$$
\begin{equation*}
\left|H_{i}(t)\right|=\left|S_{i}(t) Y_{i}(t)\right| \leq Y_{i}(t) \leq 1 \forall t \geq 0 \tag{37}
\end{equation*}
$$

i. Show $\langle J, J\rangle(t) \xrightarrow{p} \int_{0}^{t} f^{2}(s) d s$.

Let's first break down Statistic J.

$$
\begin{align*}
J(t) & \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) d N_{i}(u) \\
& =\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) d M_{i}(u)+\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) d \Lambda_{i}(u) \\
& =\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) d M_{i}(u)+\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) \lambda_{i}(u) d u \\
& =\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) d M_{i}(u)+\frac{1}{\sqrt{n}} \int_{\gamma}^{t} \sum_{i=1}^{n} S_{i}(u) Y_{i}(u) \lambda_{i}(u) d u \\
& \left.=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) d M_{i}(u)+\frac{1}{\sqrt{n}} \int_{\gamma}^{t} \sum_{i=1}^{n} S_{i}(u) Y_{i}(u) \lambda(u) d u \text { (by } H_{0}\right) \\
= & \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) d M_{i}(u) \tag{38}\\
\langle J, J\rangle(t) & =\left\langle\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) d M_{i}(u), \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) d M_{i}(u)\right\rangle \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\langle\int_{\gamma}^{t} S_{i}(u) Y_{i}(u) d M_{i}(u), \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) d M_{i}(u)\right\rangle \\
& =\frac{1}{n} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}^{2}(u) Y_{i}(u) d\left\langle M_{i}, M_{i}\right\rangle(u) \\
& =\frac{1}{n} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}^{2}(u) Y_{i}(u) d \Lambda_{i}(u) \\
& =\frac{1}{n} \sum_{i=1}^{n} \int_{\gamma}^{t} Y_{i}(u) d \Lambda(u) \text { by }(7) \\
& =\int_{\gamma}^{t} \frac{1}{n} \sum_{i=1}^{n} Y_{i}(u) \lambda(u) d u
\end{align*}
$$

Now we will show a.s. uniform convergence of $\frac{1}{n} \sum_{i=1}^{n} Y_{i}(u)$.

$$
\frac{1}{n} \sum_{i=1}^{n} Y_{i}(u)=\frac{1}{n} \sum_{i=1}^{n} I_{\left\{R_{i} \geq u\right\}}-\frac{1}{n} \sum_{i=1}^{n} I_{\left\{L_{i} \geq u\right\}} \stackrel{\text { a.s. }}{\rightarrow} \text { uniformly } S_{R}(u)-S_{L}(u)
$$

as $n \rightarrow \infty$ by the Glivenko-Cantelli Theorem. Here we are assuming the pairs $\left(L_{i}, R_{i}\right), i=1, \ldots, n$ are i.i.d. and denote the survival functions of L_{i} and R_{i}
by S_{L} and S_{R}, respectively. This implies that

$$
\begin{equation*}
\lambda(u)\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}(u)\right) \xrightarrow{\text { a.s. }} \text { uniformly } \lambda(u)\left(S_{R}(u)-S_{L}(u)\right) \text { as } n \rightarrow \infty . \tag{39}
\end{equation*}
$$

Since

$$
\sup _{u}\left|\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}(u)\right) \lambda(u)-\left(S_{R}(u)-S_{L}(u)\right) \lambda(u)\right| \xrightarrow{\text { a.s. }} 0,
$$

integration leads to

$$
\langle J, J\rangle(t) \xrightarrow{\text { a.s. }} \int_{\gamma}^{t} f^{2}(u) d u
$$

for all t where $f^{2}(u)=\left(S_{R(u)}-S_{L(u)}\right) \lambda(u)$.

$$
\begin{aligned}
J_{\epsilon}(t)=\frac{1}{\sqrt{n}} & \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) I_{\left\{\left|S_{i}(u) Y_{i}(u) \frac{1}{\sqrt{n}}\right|>\epsilon\right\}} d M_{i}(u) \\
\left\langle J_{\epsilon}, J_{\epsilon}\right\rangle(t) & =\frac{1}{n} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}^{2}(u) I_{\left\{\left|S_{i}(u) Y_{i}(u) \frac{1}{\sqrt{n}}\right|>\epsilon\right\}} d \Lambda(u) \\
& =\frac{1}{n} \sum_{i=1}^{n} \int_{\gamma}^{t} I_{\left\{\left|\frac{Y_{i}(u)}{\sqrt{n}}\right|>\epsilon\right\}} d \Lambda(u) \\
& =\frac{1}{n} \sum_{i=1}^{n} \int_{\gamma}^{t} I_{\left\{Y_{i}(u)>\sqrt{n} \epsilon\right\}} d \Lambda(u) \\
& =0 \text { for } n>1 / \epsilon^{2} .
\end{aligned}
$$

