Supplement 4

Analysis of the primary outcome

Peter Kamerman and Tory Madden

07 May 2019

Contents

Import and sort data	1
Quick look	2
BOCF data processing and analysis	3
Per protcol data processing and analysis	8
Treatment dose	13
Number of assessments attended on average	13
Relationship between treatment session attendance (Group P) and outcome	14
Session information	15

The primary outcome was the reduction in pain severity score (PSS) between week 0 (BL) and week 48 (Wk48). The PSS is a composite measure of the mean of: pain at the assessment, and worst, least, and average pain in the last week.

The baseline observation carried forward (BOCF) analysis used data from week 0 to interpolate missing week 48 data. Some participants did not arrive for their week 0 appointment and therefore did not have data at baseline. These missing data were interpolated using the week 0 study site average PSS. No heed was paid to whether data were available at intermediate time points between week 0 and week 48.

The per protocol (PP) analysis included all individuals with complete data (i.e., no interpolation required).

Statistical significance was assessed using a permutation test that tested the independence of the therapeutic relationship only group (T, control) and the P groups (positive-living programme and therapeutic relationship). The conditional null distribution of the test statistic was calculated using Monte Carlo resampling (n = 100000).

Dosage was calculated as the number of assessments attended, on average) by participants in each group, and the number of intervention sessions attended by participasnts in group P and the change in NRS. *Note that the latter analysis expludes site U1 because the data were inadvertantly destroyed.*

Import and sort data

```
# Get BPI data
## BPI
bpi <- read_rds('data-cleaned/bpi.rds') %>%
        select(ID, contains('Pain'))
```

```
## Demographics
```

```
demo <- read_rds('data-cleaned/demographics.rds') %>%
    select(ID, Study_site, Group)
## Dosage
dosage <- read_rds('data-cleaned/dosage.rds')
## Join BPI and demographics
data <- demo %>%
    left_join(bpi)
## Add dosage data
data %<>% left_join(dosage)
## Primary outcome
primary <- data %>%
```

```
select(-contains('present'))
```

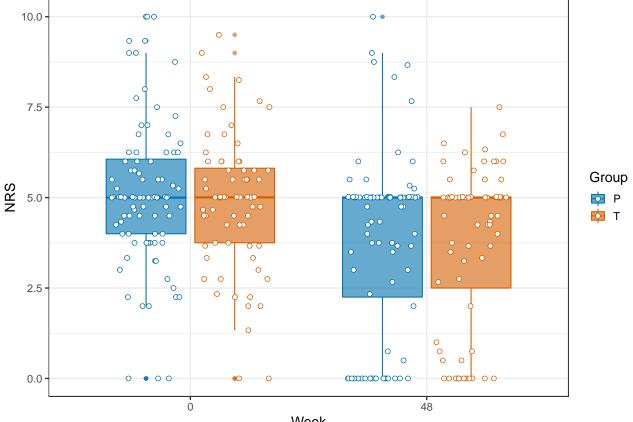
Quick look

```
glimpse(primary)
```

```
## Observations: 160
## Variables: 28
                      <chr> "J1", "J3", "J4", "J5", "J6", "J7", "J9", "J...
## $ ID
                      <chr> "U1", "U1", "U1", "U1", "U1", "U1", "U1", "U1...
## $ Study_site
                      <chr> "P", "T", "P", "P", "T", "T", "T", "P",...
## $ Group
                      <int> 8, 9, 5, 7, 7, 8, 10, 10, 9, 0, 10, NA, 9, 8...
## $ Worst_pain.BL
## $ Worst pain.Wk4
                      <int> NA, NA, 3, NA, NA, 8, 8, 9, 8, NA, NA, NA, 8...
                      <int> NA, NA, O, NA, NA, NA, 8, 9, 10, 4, NA, NA, ...
## $ Worst_pain.Wk8
## $ Worst_pain.Wk12
                      <int> NA, NA, 3, NA, NA, NA, 7, 9, 10, 7, 10, NA, ...
## $ Worst_pain.Wk24
                      <int> NA, NA, 6, NA, NA, NA, 7, 9, NA, 6, NA, NA, ...
## $ Worst_pain.Wk48
                      <int> NA, NA, 6, NA, NA, NA, 7, 8, NA, 8, NA, NA, ...
## $ Least_pain.BL
                      <int> 4, 1, 1, 10, 2, 3, 3, 5, 3, 0, 3, NA, 3, 3, ...
## $ Least_pain.Wk4
                      <int> NA, NA, 1, NA, NA, 3, 5, 4, 2, NA, NA, NA, 3...
                      <int> NA, NA, O, NA, NA, NA, 3, 4, 5, 1, NA, NA, 4...
## $ Least_pain.Wk8
## $ Least_pain.Wk12
                      <int> NA, NA, 1, NA, NA, NA, 3, 6, 5, 4, 5, NA, NA...
## $ Least_pain.Wk24
                      <int> NA, NA, 2, NA, NA, NA, 3, 5, NA, 2, NA, NA, ...
## $ Least_pain.Wk48
                      <int> NA, NA, 2, NA, NA, NA, 3, 5, NA, 2, NA, NA, ...
                      <int> 4, 4, 3, 5, 4, 6, 6, 7, 6, 0, 6, NA, 6, 6, 5...
## $ Average_pain.BL
## $ Average_pain.Wk4
                      <int> NA, NA, 1, NA, NA, 5, 5, 6, 5, NA, NA, NA, 5...
## $ Average_pain.Wk8
                      <int> NA, NA, O, NA, NA, NA, 5, 7, 8, 2, NA, NA, 6...
## $ Average_pain.Wk12 <int> NA, NA, 2, NA, NA, NA, 4, 7, 7, 6, 8, NA, NA...
## $ Average pain.Wk24 <int> NA, NA, 4, NA, NA, NA, 5, 7, NA, 4, NA, NA, ...
## $ Average_pain.Wk48 <int> NA, NA, 4, NA, NA, NA, 5, 7, NA, 5, NA, NA, ...
## $ Pain now.BL
                      <int> 6, 4, 0, 5, 2, 9, 0, 0, 9, 0, 3, NA, 0, 8, 6...
## $ Pain_now.Wk4
                      <int> NA, NA, O, NA, NA, 8, 8, 4, 6, NA, NA, NA, O...
## $ Pain_now.Wk8
                      <int> NA, NA, O, NA, NA, NA, 3, 5, 10, 1, NA, NA, ...
## $ Pain_now.Wk12
                      <int> NA, NA, 2, NA, NA, NA, 8, 5, 10, 3, 8, NA, N...
## $ Pain now.Wk24
                      <int> NA, NA, 2, NA, NA, NA, 3, 8, NA, 3, NA, NA, ...
                      <int> NA, NA, 4, NA, NA, NA, 3, 2, NA, 5, NA, NA, ...
## $ Pain_now.Wk48
## $ dosage
```

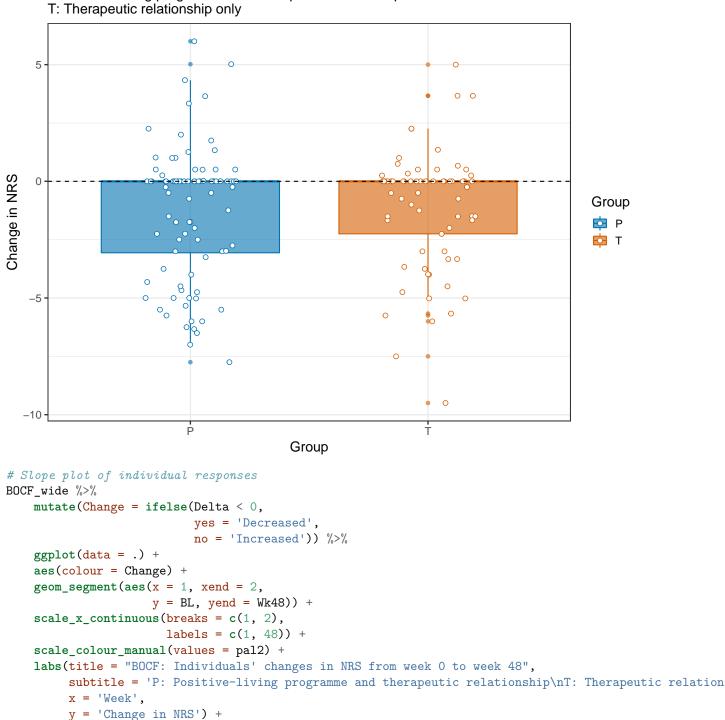
BOCF data processing and analysis

```
# Calculate Pain Severity Score (PSS) for weeks 0 (BL) and 48 (Wk48)
BOCF <- primary %>%
    gather(key = 'Time',
           value = 'NRS',
           - ID, -Study_site, -Group) %>%
    separate(col = Time,
             into = c('Pain', 'Period'),
             sep = '\\.') %>%
    group_by(ID, Study_site, Group, Period) %>%
    nest() %>%
    mutate(PPS = map(.x = data,
                     ~ summarise(.x, Mean = mean(NRS, na.rm = TRUE)))) %>%
    select(-data) %>%
    unnest() %>%
    filter(Period %in% c('BL', 'Wk48')) %>%
    mutate(Mean = ifelse(is.nan(Mean),
                         yes = NA,
                          no = Mean))
# Missing baseline data
BOCF[is.na(BOCF$Mean) & BOCF$Period == 'BL', ]
## # A tibble: 16 x 5
            Study_site Group Period Mean
##
      ID
##
      <chr> <chr>
                       <chr> <chr> <dbl>
## 1 J18
            U1
                       Т
                             BL
                                        NA
## 2 J29
                       Т
            U1
                             BL
                                        NA
## 3 J59
                       Т
                             BL
            U1
                                        NA
## 4 J67
                       Т
            U1
                             BL
                                        NA
## 5 M1
                       Т
            R1
                             BL
                                        NA
## 6 M8
                       Т
                             BL
            R1
                                        NA
## 7 M9
            R1
                       Т
                             BL
                                        NA
## 8 M12
                       Т
                             BL
            R1
                                        NA
## 9 M20
                       Ρ
                             BL
                                        NA
            R1
                       Ρ
## 10 M21
            R1
                             BL
                                        NA
## 11 M23
            R1
                       Ρ
                             BL
                                        NA
## 12 M25
            R1
                       Ρ
                             BL
                                        NA
            R1
## 13 M29
                       Ρ
                             BL
                                        NA
## 14 M38
            R1
                       Ρ
                             BL
                                        NA
## 15 M41
                       Ρ
                             BL
                                        NA
            R.1
## 16 M45
            R1
                       Т
                             BL
                                        NA
# Number of participants with missing baselines
nrow(BOCF[is.na(BOCF$Mean) & BOCF$Period == 'BL', ])
## [1] 16
# Calculate baseline mean for study sites R1 and U1 (sites with missing data)
R1 <- mean(BOCF$Mean[!is.na(BOCF$Mean) &
```


BOCF\$Study_site == 'R1' &

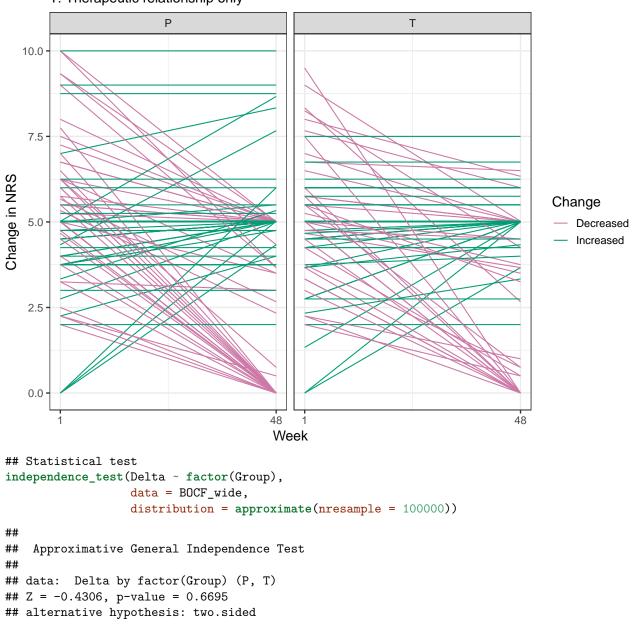
```
BOCF$Period == 'BL'])
U1 <- mean(BOCF$Mean[!is.na(BOCF$Mean) &
                         BOCF$Study_site == 'U1' &
                         BOCF$Period == 'BL'])
# Substitute missing baselines with Study site means
BOCF %<>%
    mutate(Mean = ifelse(is.na(Mean) & Study_site == 'R1',
                         yes = R1,
                         no = Mean),
           Mean = ifelse(is.na(Mean) & Study_site == 'U1',
                         yes = U1,
                         no = Mean))
# Spread data
BOCF_wide <- BOCF %>%
    spread(key = Period,
           value = Mean)
# Number of participants
BOCF_wide %>%
    summarise(Count = n())
## # A tibble: 1 x 1
   Count
##
##
     <int>
## 1
     160
# Number with missing data at week 48
BOCF_wide %>%
    filter(is.na(Wk48)) %>%
    summarise(Count = n())
## # A tibble: 1 x 1
   Count
##
##
     <int>
## 1
       35
# Number with missing data at week 48 (by intervention)
BOCF_wide %>%
    filter(is.na(Wk48)) %>%
    group by(Group) %>%
    summarise(Count = n())
## # A tibble: 2 x 2
##
   Group Count
   <chr> <int>
##
## 1 P
              20
## 2 T
              15
# Create BOCF dataframe
BOCF_wide %<>%
    mutate(Wk48 = ifelse(is.na(Wk48),
                         yes = BL,
                         no = Wk48))
```

```
# Plot of BOCF NRS data at weeks 0 and 48 (by intervention)
BOCF_wide %>%
   gather(key = Period,
           value = NRS,
           BL, Wk48) %>%
   ggplot(data = .) +
    aes(x = Period),
        y = NRS,
        colour = Group,
        fill = Group) +
   geom_boxplot(alpha = 0.6) +
   geom_point(position = position_jitterdodge(jitter.height = 0,
                                                jitter.width = 0.3),
               shape = 21,
               fill = '#FFFFFF',
               size = 2) +
   labs(title = 'BOCF: NRS at week 0 and week 48',
         subtitle = 'P: Positive-living programme and therapeutic relationship\nT: Therapeutic relation
         x = 'Week') +
    scale fill manual(values = pal) +
    scale_colour_manual(values = pal) +
    scale_x_discrete(labels = c(0, 48))
```


BOCF: NRS at week 0 and week 48

P: Positive-living programme and therapeutic relationship T: Therapeutic relationship only

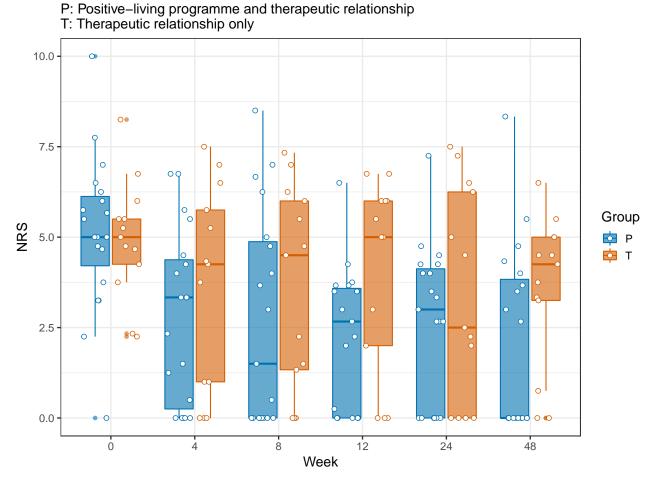
Week


```
# Calculate change from baseline to Wk48
BOCF_wide %<>%
    mutate(Delta = Wk48 - BL)
# Compare the P and T groups
## Plot of BOCF change in NRS between week 0 and 48 (by intervention)
ggplot(data = BOCF_wide) +
    aes(x = Group,
       y = Delta,
       fill = Group,
       colour = Group) +
    geom_boxplot(alpha = 0.6) +
    geom_point(position = position_jitterdodge(jitter.height = 0,
                                               jitter.width = 0.4),
               shape = 21,
               size = 2,
               fill = '#FFFFFF') +
    geom_hline(yintercept = 0,
               linetype = 2) +
    labs(title = 'BOCF: Change in NRS from week 0 to week 48',
         subtitle = 'P: Positive-living programme and therapeutic relationship\nT: Therapeutic relation
         y = 'Change in NRS') +
    scale_fill_manual(values = pal) +
    scale_colour_manual(values = pal)
```


BOCF: Change in NRS from week 0 to week 48 P: Positive–living programme and therapeutic relationship

7

facet_wrap(~ Group)

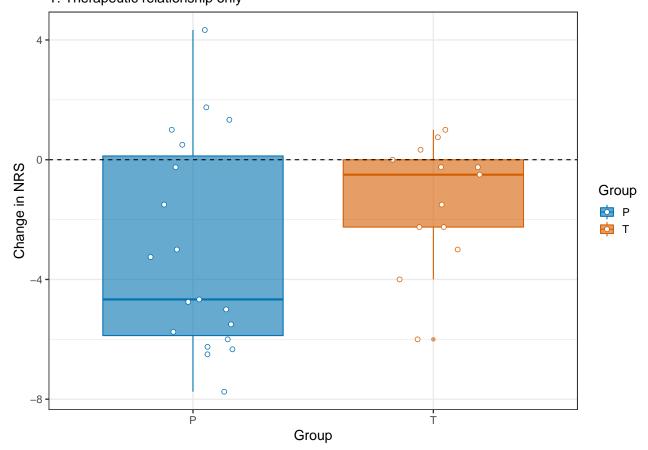


BOCF: Individuals' changes in NRS from week 0 to week 48 P: Positive–living programme and therapeutic relationship T: Therapeutic relationship only

Per protcol data processing and analysis

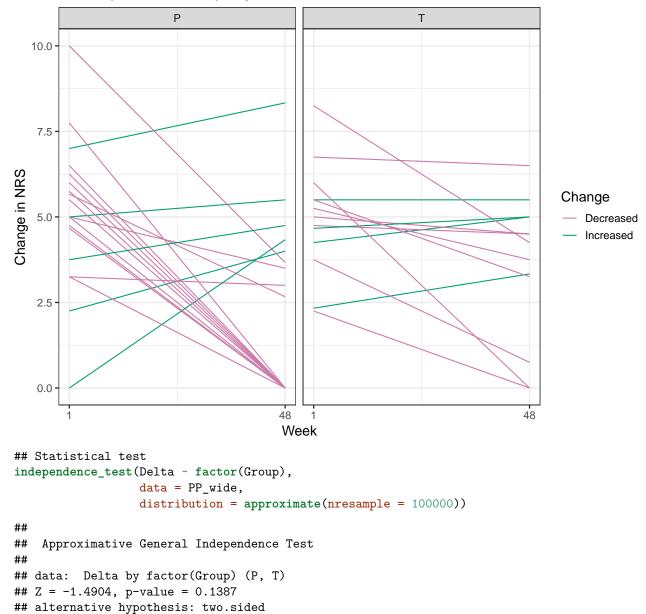
```
into = c('Pain', 'Period'),
             sep = '\\.') %>%
    group_by(ID, Study_site, Group, Period) %>%
    nest() %>%
    mutate(PPS = map(.x = data,
                    ~ summarise(.x, Mean = mean(NRS, na.rm = TRUE)))) %>%
    select(-data) %>%
    unnest() %>%
    mutate(Mean = ifelse(is.nan(Mean),
                         yes = NA,
                         no = Mean)) %>%
    mutate(Period = case_when(
        Period == 'BL' ~ 'TOO',
        Period == 'Wk4' ~ 'T04',
        Period == 'Wk8' ~ 'T08',
        Period == 'Wk12' ~ 'T12',
        Period == 'Wk24' ~ 'T24',
        Period == 'Wk48' ~ 'T48'
    )) %>%
    spread(key = Period,
           value = Mean) %>%
    select(- `<NA>`)
# PP cohort
PP_wide %<>%
    filter(complete.cases(.))
# Number of participants with complete data
PP_wide %>%
    summarise(Count = n())
## # A tibble: 1 x 1
##
   Count
##
     <int>
## 1
        32
# Number of participants with complete data (by intervention)
PP wide %>%
    group_by(Group) %>%
    summarise(Count = n())
## # A tibble: 2 x 2
##
   Group Count
     <chr> <int>
##
## 1 P
              19
## 2 T
              13
# Plot of BOCF NRS data at weeks 0 and 48 (by intervention)
PP_wide %>%
    gather(key = Period,
           value = NRS,
           -ID, -Study_site, -Group) %>%
    ggplot(data = .) +
    aes(x = Period),
        y = NRS,
        colour = Group,
```

PP: NRS at weeks 0 through to 48



Calculate change from baseline to Wk48
PP_wide %<>%
 mutate(Delta = T48 - T00)

```
# Compare the P and T groups
## Plot of BOCF change in NRS between week 0 and 48 (by intervention)
ggplot(data = PP_wide) +
    aes(x = Group,
        y = Delta,
```


PP: Change in NRS from week 0 to week 48

P: Positive–living programme and therapeutic relationship T: Therapeutic relationship only

PP: Individuals' changes in NRS from week 0 to week 48

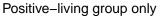
P: Positive–living programme and therapeutic relationship

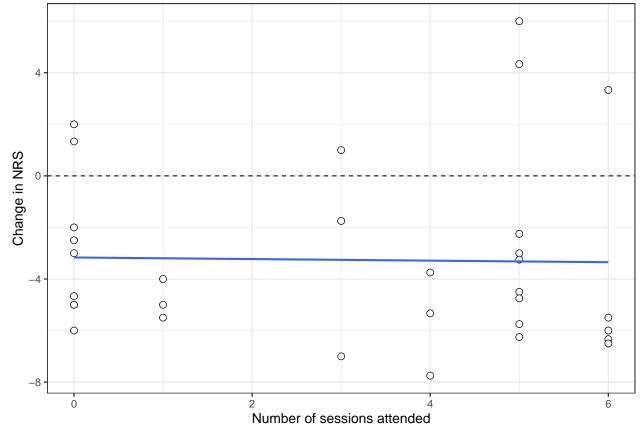
T: Therapeutic relationship only

Treatment dose

Number of assessments attended on average

```
dose <- primary %>%
   gather(key = 'Time',
          value = 'NRS',
          - ID, -Study_site, -Group) %>%
    separate(col = Time,
            into = c('Pain', 'Period'),
            sep = '\\.') %>%
   group_by(ID, Study_site, Group, Period) %>%
   nest() %>%
   mutate(PPS = map(.x = data,
                    ~ summarise(.x, Mean = mean(NRS, na.rm = TRUE)))) %>%
   select(-data) %>%
   unnest() %>%
   mutate(Mean = ifelse(is.nan(Mean),
                        yes = NA,
                        no = Mean)) %>%
   mutate(Period = case_when(
       Period == 'BL' ~ 'TOO',
       Period == 'Wk4' ~ 'T04',
       Period == 'Wk8' ~ 'T08',
       Period == 'Wk12' ~ 'T12',
       Period == 'Wk24' ~ 'T24',
       Period == 'Wk48' ~ 'T48'
   ))
# Calculate dose per individual
dose_b <- dose %>%
   mutate(Mean = ifelse(is.na(Mean),
                        yes = 0,
                        no = 1)) \% > \%
   group_by(Group, Study_site, ID) %>%
   summarise(Count = sum(Mean))
# Calculate summary stat for dose
dose_b %>%
   ungroup() %>%
   summarise(Median = median(Count),
             q25 = quantile(Count, probs = 0.25),
             a75 = quantile(Count, probs = 0.75),
             min = min(Count),
             \max = \max(Count))
## # A tibble: 1 x 5
##
    Median q25 a75 min max
     ##
## 1
         5
               3
                    6
                          0
                                7
# Calculate summary stat for dose (by intervention)
dose_b %>%
   group_by(Group) %>%
```


```
summarise(Median = median(Count),
           q25 = quantile(Count, probs = 0.25),
           a75 = quantile(Count, probs = 0.75),
           min = min(Count),
           \max = \max(Count))
## # A tibble: 2 x 6
## Group Median q25 a75 min
                               max
  ##
## 1 P
             5
                  3
                       6
                          1
                                 7
                  2
## 2 T
             4
                       5
                            0
                                 6
```


Relationship between treatment session attendance (Group P) and outcome

```
Excludes site U1 (data missing).
```

```
# Spread dose data
dose %<>%
    spread(key = Period,
           value = Mean)
# Calculate change from baseline to Wk48, PL group only
dose %<>%
   mutate(Delta = T48 - T00) %>%
   left_join(dosage) %>%
   filter(Group == 'P') %>%
   filter(Delta != 'NA') %>%
   filter(dosage != 'NA') # filters out 5 participants all from J site
# Plot of P group's change in NRS between week 0 and 48
# (by PL session attendance)
ggplot(data = dose) +
   aes(x = dosage)
       y = Delta) +
   geom_point(shape = 21,
               fill = '#FFFFFF',
               size = 3) +
   geom_hline(yintercept = 0,
               linetype = 2) +
   geom_smooth(method = 'lm',
                se = FALSE) +
   labs(title = 'Change in NRS from week 0 to week 48\nby number of sessions attended',
         subtitle = 'Positive-living group only',
         y = 'Change in NRS',
         x = 'Number of sessions attended')
```

Change in NRS from week 0 to week 48 by number of sessions attended

Session information

```
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Mojave 10.14.4
##
## Matrix products: default
## BLAS:
           /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats
                graphics grDevices utils
                                               datasets methods
                                                                   base
##
## other attached packages:
  [1] coin_1.3-0
                          survival_2.44-1.1 forcats_0.4.0
##
##
  [4] stringr_1.4.0
                          dplyr_0.8.0.1
                                            purrr_0.3.2
  [7] readr_1.3.1
                          tidyr_0.8.3
                                            tibble_2.1.1
##
```

## ##	[10]	ggplot2_3.1.1	tidyverse_1.2.1 m	agrittr_1.5
##	loade	ed via a namespace	(and not attached):	
##	[1]	Rcpp_1.0.1	lubridate_1.7.4	mvtnorm_1.0-10
##	[4]	lattice_0.20-38	zoo_1.8-5	$assertthat_0.2.1$
##	[7]	digest_0.6.18	utf8_1.1.4	R6_2.4.0
##	[10]	cellranger_1.1.0	plyr_1.8.4	backports_1.1.4
##	[13]	stats4_3.6.0	evaluate_0.13	httr_1.4.0
##		pillar_1.3.1	rlang_0.3.4	<pre>lazyeval_0.2.2</pre>
##	[19]	multcomp_1.4-10	readxl_1.3.1	rstudioapi_0.10
##	[22]	Matrix_1.2-17	rmarkdown_1.12	labeling_0.3
##	[25]	splines_3.6.0	munsell_0.5.0	broom_0.5.2
##	[28]	compiler_3.6.0	modelr_0.1.4	xfun_0.6
##	[31]	pkgconfig_2.0.2	libcoin_1.0-4	htmltools_0.3.6
##	[34]	tidyselect_0.2.5	codetools_0.2-16	matrixStats_0.54.0
##	[37]	fansi_0.4.0	crayon_1.3.4	withr_2.1.2.9000
##	[40]	MASS_7.3-51.4	grid_3.6.0	nlme_3.1-139
##	[43]	jsonlite_1.6	gtable_0.3.0	scales_1.0.0
##	[46]	cli_1.1.0	stringi_1.4.3	xml2_1.2.0
##	[49]	generics_0.0.2	<pre>sandwich_2.5-1</pre>	TH.data_1.0-10
##	[52]	tools_3.6.0	glue_1.3.1	hms_0.4.2
##	[55]	parallel_3.6.0	yaml_2.2.0	colorspace_1.4-1
##	[58]	rvest_0.3.3	knitr_1.22	haven_2.1.0
##	[61]	modeltools_0.2-22		