Electronic Supplementary Information

Stereochemically active and inactive lone pairs in two room temperature phosphorescence coordination polymers of $\mathbf{P b}^{\mathbf{2 +}}$ with different tricarboxylic acids

Xu-Sheng Gao, ${ }^{*}{ }^{\mathrm{a}}$ Hai-Jie Dai, ${ }^{a}$ Mei-Juan Ding, ${ }^{\text {a }}$ Wen-Bo Pei, ${ }^{a}$ Xiao-Ming Ren* ${ }^{\text {a,b }}$

${ }^{\text {a }}$ State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry \& Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
${ }^{\mathrm{b}}$ State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China

Tel: +86 2558139527
Fax: +86 2558139988
Email: gaoxs@njtech.edu.cn (XSG)
xmren@njtech.edu.cn (XMR)

Contents

Table S1: Selected bond length (\AA) and bond angle $\left({ }^{\circ}\right)$ for 1 and 2
Fig. S1: IR spectrum of $\mathbf{1}$
Fig. S2: IR spectrum of 2
Fig. S3: (a) The powder X-ray diffraction patterns for 1. (b) Powder X-ray diffraction patterns of $\mathbf{2}$.

Fig. S4: Packing diagram of $\mathbf{1}$ viewed along c-axis.
Fig. S5: (a) Excited and emission spectra of $\mathrm{H}_{3} \mathrm{BTC}$ at ambient temperature. (b) Excited and emission spectra of $\mathrm{H}_{3} \mathrm{PTC}$ at ambient temperature.
Fig. S6: (a) Emission spectra of $\mathrm{H}_{3} \mathrm{BTC}$ and 1 at ambient temperature. (b) Emission spectra of $\mathrm{H}_{3} \mathrm{PTC}$ and 2 at ambient temperature. (c) Emission spectra of $\mathbf{1}$ and 2 at ambient temperature.

Fig. S7: Emission decay of (a) $\mathrm{H}_{3} \mathrm{BTC}$ and (b) $\mathrm{H}_{3} \mathrm{PTC}$ obtained at room temperature upon pulsed excitation at 340 nm and 352 nm , where the red lines and the black squares represent the fitting curves and the experimental data, respectively. Emission decay of (c) $\mathbf{1}$ and (d) 2 obtained at room temperature upon pulsed excitation at 355 nm , where the red lines and the black squares represent the fitting curves and the experimental data, respectively.

Table S1: Selected bond length (\AA) and bond angle $\left({ }^{\circ}\right)$ for $\mathbf{1}$ and 2

1			
Bond length / A			
Pb1\#3-O5	2.421(4)	$\mathrm{Pb} 1-\mathrm{O} 2$	2.560(3)
Pb1\#3-O6	2.610 (4)	Pb 1 \#2-O2	2.623(3)
Pb1\#1-O1	2.584(4)	$\mathrm{Pb} 1-\mathrm{O} 7$	2.749(12)
Bond angles $/{ }^{\circ}$			
O5\#4-Pb1-O2	83.69(12)	O5\#4-Pb1-O1\#2	73.97(13)
O5\#4-Pb1-O6\#4	51.98(12)	O2-Pb1-O6\#4	133.79(12)
O5\#4-Pb1-O2\#1	90.38(13)	O2-Pb1-O2\#1	114.45(8)
O6\#4-Pb1-O2\#1	81.93(11)	O5\#4-Pb1-O7	150.1(3)
O1\#2-Pb1-O7	78.6(3)	O6\#4-Pb1-O7	135.8(3)
$\mathrm{Pb} 1-\mathrm{O} 2-\mathrm{Pb} 1 \# 2$	108.84(12)	O1\#2-Pb1-O6\#4	82.96(11)
O2-Pb1-O1\#2	71.39(10)	O2\#1-Pb1-O7	118.1(3)
O2-Pb1-O7	76.4(3)	O1\#2-Pb1-O2\#1	162.91(12)
Symmetry codes: \#1 = 1/2-x, $-1 / 2+y, 1 / 2-z ; \# 2=1 / 2-x, 1 / 2+y, 1 / 2-z ; \# 3=+x, 2-y,-1 / 2+z ; \# 4=1-x,+y$, $1 / 2-z$			
2			
Bond length / A			
Pb1-O1	2.427(5)	Pb1-O2\#2	2.618(6)
Pb1-O5\#1	2.610(5)	$\mathrm{Pb} 1-\mathrm{O} 6$	2.567 (6)
$\mathrm{Pb} 1-\mathrm{N} 1$	2.452(7)		
Bond angles $/{ }^{\circ}$			
O1-Pb1-N1	66.2(2)	N1-Pb1-O5\#1	78.5(2)
O1-Pb1-O5\#1	78.29(19)	N1-Pb1-O2\#2	76.2(2)
O1-Pb1-O2\#2	103.82(18)	N1-Pb1-O6	64.70(19)
O5\#1-Pb1-O2\#2	150.91(19)	O6-Pb1-O5\#1	84.16(18)
O1-Pb1-O6	130.10(18)	O6-Pb1-O2\#2	72.28(18)

Fig. S1 IR spectrum of $\mathbf{1}$

Fig. S2 IR spectrum of $\mathbf{2}$

Fig. S3 (a) The powder X-ray diffraction patterns for 1. (b) Powder X-ray diffraction patterns of $\mathbf{2}$.

Fig. S4 Packing diagram of $\mathbf{1}$ viewed along c-axis.

Fig. S5 (a) Excited and emission spectra of $\mathrm{H}_{3} \mathrm{BTC}$ at ambient temperature. (b) Excited and emission spectra of $\mathrm{H}_{3} \mathrm{PTC}$ at ambient temperature.

Fig. S6 (a) Emission spectra of $\mathrm{H}_{3} \mathrm{BTC}$ and 1 at ambient temperature. (b) Emission spectra of $\mathrm{H}_{3} \mathrm{PTC}$ and $\mathbf{2}$ at ambient temperature. (c) Emission spectra of $\mathbf{1}$ and $\mathbf{2}$ at ambient temperature.

Fig. S7 Emission decay of (a) $\mathrm{H}_{3} \mathrm{BTC}$ and (b) $\mathrm{H}_{3} \mathrm{PTC}$ obtained at room temperature upon pulsed excitation at 340 nm and 352 nm , where the red lines and the black squares represent the fitting curves and the experimental data, respectively. Emission decay of (c) $\mathbf{1}$ and (d) $\mathbf{2}$ obtained at room temperature upon pulsed excitation at 355 nm , where the red lines and the black squares represent the fitting curves and the experimental data, respectively.

