
Supplementary Material for ‘Matching Using Sufficient

Dimension Reduction for Causal Inference’

A Order determination

As mentioned in the main text, we use the ladle estimator proposed in Luo and Li

(2016) to determine the dimensions of the central subspaces. As an illustration, we

consider the central subspace SY (0)|X in the control group, and denote its dimension

by d for simplicity of notation.

Under the linearity condition (7) in the main text, the column space of matrix-

valued parameter M0 defined in Step 1 of the implementation procedure of the pro-

posed method is identical to SY (0)|X, so d can be equivalently treated as the rank of

M0. The ladle estimator uses the information contained in both the eigenvectors and

eigenvalues of M̂0 about the rank of M0. It constructs an objective function, which

we denote by g(·), of the candidate rank k ranged from 0 to p − 1. The function is

a summation of two parts, fn(k), the bootstrap variation of the linear space spanned

by the first k eigenvectors of M̂0, and φn(k) = λ̂k+1/(1 +
∑p

i=1
λ̂i), where λ̂i denotes

the ith largest eigenvalue of M̂0.

For a working dimension k, if k > d, then the space spanned by the first k

eigenvectors of M̂0 always contains some direction that falls in the null space of M0

at the population level. Under some general regularity conditions, this direction will

be arbitrarily selected from the null space of M0 asymptotically, leading to a large

variation of the space spanned by the first k eigenvectors of M̂0. Using bootstrap re-

sampling and applying M̂0 on each bootstrap sample, fn(·), the bootstrap variation of

the k-dimensional spaces, mimics the variation in the full-sample level and has a large

value. When k = d, the space spanned by the first k eigenvectors of M̂0 consistently

estimates SY (0)|X, so it has a small variation. Thus fn(d) is small.

On the other hand, λ̂k conveys the scree plot, which means φn(k) is large if k < d

and small otherwise. Consequently, g(k) = fn(k) + φn(k) is large when k < d due to
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the large φn(k), small when k = d, and large again when k > d due to the large fn(k).

Thus, the ladle estimator, defined as the minimizer of g(·), consistently estimates d.

More details can be found in Luo and Li (2016).

B Proof of theorems

B.1 Proof of Theorem 1

Without loss of generality, we denote f(y(t)|X,T = t) as the density function of

the conditional distribution Y (t)|(X,T = t) with respect to a σ-finite measure ν, for

t = 0, 1. For any random element R, denote Ω(R|T = t) and Ω(R) as the support

of R|T = t and R, respectively. For any a ∈ Ω(X ′βt), if a 6∈ Ω(X ′βt|T = t), then

X ′βt = a implies that T = 1− t almost surely, which automatically implies that

Y (t) ⊥⊥ T |X ′βt = a. (1)

Thus we only need to show (1) for any a ∈ Ω(X ′βt|T = t). That is, f(y(t)|X ′βt =

a, T = t) = f(y(t)|X ′βt = a). By the definition of βt, we have

Y (t) ⊥⊥ X |X ′βt,

which means that f(y(t)|X) = f(y(t)|X ′βt). For any x ∈ Ω(X|T = t) such that

X ′βt = a, f(y(t)|X = x, T = t) = f(y(t)|X = x) = f(y(t)|X ′βt = a), where the first

equality is due to the ignorability assumption. Thus we have

f(y(t)|X ′βt = a, T = t) = E{f(y(t)|X = x, T = t)|X ′βt = a, T = t}

= E{f(y(t)|X ′βt = a)|X ′βt = a, T = t}

= f(y(t)|X ′βt = a).

This completes the proof.

B.2 Proof of Theorem 2

For simplicity, we only prove the theorem for t = 0. The case for t = 1 can be shown

in the same manner. First, we show that SDY (0)|X ⊆ SY (0)|X, which is equivalent to that

Y (0) ⊥⊥ X | (X ′β0, T = 0) (2)
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Following the notations in the proof of Theorem 1, we denote f(·|X) as the conditional

density function of Y (0)|X and f(·|X,T = 0) as the conditional density function of

Y (0)|X when T = 0. (2) is equivalent to that f(·|X = x, T = 0) = f(·|X ′β0 =

x′β0, T = 0) for any x ∈ Ω(X|T = 0). By the ignorability assumption, f(·|X = x, T =

0) = f(·|X = x), and by the definition of SY (0)|X, f(·|X = x) = f(·|X ′β0 = x′β0).

Thus f(·|X = x, T = 0) is measurable with respect to x′β0, which means that

f(·|X = x, T = 0) = E{f(·|X,T = 0)|X ′β0 = x′β0, T = 0}

= f(·|X ′β0 = x′β0, T = 0).

Hence (2) holds. Conversely, to show that SY (0)|X ⊆ SDY (0)|X, note that it is equivalent

to

Y (0) ⊥⊥ X |X ′β
D

0 , (3)

which holds if f(·|X = x) = f(·|X ′βD0 = x′βD0 ) for any x ∈ Ω(X). Because

Ω(X ′β0|T = 0) = Ω(X ′β0), there exists x∗ ∈ Ω(X|T = 0) such that x′β0 = x∗′β0.

By the definition of SY (0)|X, we have

f(·|X = x) = f(·|X ′β0 = x′β0) = f(·|X ′β0 = x
∗′
β0) = f(·|X = x

∗
).

Since x∗ ∈ Ω(X|T = 0), by the ignorability assumption, f(·|X∗ = x∗) = f(·|X∗ =

x∗, T = 0), which, by the definition of SDY (0)|X, further implies that f(·|X∗ = x∗) =

f(·|X∗′βD0 = x∗′βD0 , T = 0). Thus f(·|X∗ = x∗) is measurable with respect to x∗′βD0 ,

which, similar to the above, implies that f(·|X∗ = x∗) = f(·|X∗′βD0 = x∗′βD0 ). Because

SDY (0)|X ⊆ SY (0)|X, we have x′βD0 = x∗′βD0 . Hence f(·|X = x) = f(·|X ′βD0 = x′βD0 ), which

implies (3). This completes the proof.

B.3 Proof of Theorem 3

We first show a mathematical property that will be used in the proof. Let r, s > 0

be arbitrary positive real numbers. We show that, as n→∞,

n
[
{1− (r + s)n

−1}n − (1− rn−1
)
n
(1− sn−1

)
n
]
→ −rs exp{−(r + s)}, (4)
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which is a complement of the well known result limn→∞(1− rn−1)n = e−r. To see why

it holds, re-write the left-hand side as

n[{1− (r + s)n
−1}n − {1− (r + s)n

−1
+ rsn

−2}n],

and divide it by {1 − (r + s)n−1}n, which converges to exp{−(r + s)}. Then (4) is

equivalent to

n
[
1− [1 + rsn

−2{1− (r + s)n
−1}−1]

n
]
→ −rs.

Denote the left-hand side above by εn. By simple algebra,

lim
n→∞

(1− εn/n)
n

= e
rs
,

which means that εn → −(rs), and (4) holds. For simplicity, we prove the theorem

for µ̂X and m = 1, and denote J1(i) by J(i) for each subject i. The general case can

be shown similarly. Denote n0 and n1 as the number of control and treated subjects,

respectively. As we regard T to be random, so are n0 and n1. By the law of large

numbers, for t = 0, 1, ntn
−1 → (1− t)+(2t−1)P (T = 1) in probability. Thus, for any

w ∈ R, OP (nwt ) = OP (nw). For efficiency of presentation, without loss of generality,

we treat each T (i) as given, as well as n0 and n1, in the rest of the proof. Following

equation (7) in Abadie and Imbens (2006), let K(i) be the number of times subject

i is used to match the others. µ̂X can be decomposed as

µ̂X − µ = n−1
∑n

i=1
[E{Y (1)|X (i)} − E{Y (0)|X (i)} − µ]

+ n−1
∑n

i=1
(2T (i) − 1){1 +K(i)}[Y (i)(T (i))− E{Y (T )|X (i)}]

+ n−1
∑n

i=1
(2T (i) − 1)[E{Y (1− T )|X (i)} − E{Y (1− T )|X (J(i))}],

in which the first two terms on the right hand side are seen to be OP (n−1/2) with mean

zero (Abadie and Imbens, 2006). The third term represents the bias in matching,

which we denote by Bn. To show the result about µ̂X, it suffices to show that E(Bn) =

O(n−2/p) and var(Bn) = O(n−min{1+2/p,6/p}). By Assumption 1 in the main text and

Taylor’s expansion,

E{Y (1− T )|X (i)} − E{Y (1− T )|X (J(i))} = (X
(i) −X (J(i))

)′g
(i)

i

+ (X
(i) −X (J(i))

)′g
(i)

2 (X
(i) −X (J(i))

) + g
(i,J(i))

3 ‖X (i) −X (J(i))‖3,
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where g(i)

1 and g(i)

2 are the gradient and the Hessian matrix of E{Y (1 − T ) | X} at

X (i), and g(i,J(i))

3 is a bounded random element. Thus, for the desired result about

E(Bn) and var(Bn), it suffices to show that, for an arbitrary pair of subjects (i, j),

X
(J(i)) −X (i)

= OP (n
−1/p

), E(X
(J(i)) −X (i)

) = O(n
−2/p

),

cov{(X (J(i)) −X (i)
)
⊗k
, (X

(J(j)) −X (j)
)
⊗l} = O(n

−1−2/p
). (5)

in which k, l ∈ {1, 2}, and v⊗1 = v and vv⊗2 = vvT for any real vector v. To show (5),

we first suppose that both i and j belong to the same treatment group T = t. For

any a, b ∈ Ω(X|T = t), let (u, v) = n1/p

1−t(X
(J(a))− a,X (J(b))− b), in which J(a) denotes

the subject whose covariates are closest to a, and J(b) likewise. From the proof of

Theorem 1 in Abadie and Imbens (2006), let f(·) be the density function of random

elements measurable with respect to {X (i), i = 1, . . . , n}, we have

f(u) = f(a+ un
−1/p

1−t ){1− P (‖X − a‖ ≤ ‖u‖n−1/p

1−t )}n1−t−1

= {f(a) + f
∗′
(a, u)un

−1/p

1−t }{1− P (‖X − a‖ ≤ ‖u‖n
−1/p

1−t )}n1−t−1
, (6)

in which f ∗(a, u) is defined so as to make the equation holds. By Assumption 1,

f ∗(a, u) is bounded. As shown in Abadie and Imbens (2006), {1 − P (‖X − a‖ ≤

‖u‖n−1/p

1−t )}n1−t converges to exp[−2πp/2‖u‖pf(a)/{pΓ(p/2)}]. Thus u = OP (1), which

implies that X (J(a)) − a = OP (n−1/p). Using the symmetry of {1 − P (‖X − a‖ ≤

‖u‖n−1/p

1−t )}n1−t about the origin in Rp, Abadie and Imbens (2006) further showed that

E(X (J(a))− a) = O(n−2/p). By the compactness of Ω(X), such convergence is uniform

for a, thus X (J(i))−X (i) = OP (n−1/p) and E(X (J(i))−X (i)) = O(n−2/p). Similar to (6),

we further have

f(u, v) = {n1−t(n1−t − 1)}n−2

1−tf(a+ un
−1/p

1−t )f(b+ vn
−1/p

1−t )

{1− P (‖X − a‖ ≤ ‖u‖n−1/p

1−t or ‖X − b‖ ≤ ‖v‖n−1/p

1−t )}n1−t−2

in which P (‖X − a‖ ≤ ‖u‖n−1/p

1−t or ‖X − b‖ ≤ ‖v‖n−1/p

1−t ) can be written as

P (‖X − a‖ ≤ ‖u‖n−1/p

1−t ) + P (‖X − b‖ ≤ ‖v‖n−1/p

1−t )

−P (‖X − a‖ ≤ ‖u‖n−1/p

1−t and ‖X − b‖ ≤ ‖v‖n−1/p

1−t )

≡ I + II + III
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We have III = 0 for all large n. Let rn = n1−tP (‖X − a‖ ≤ ‖u‖n−1/p

1−t ), and sn =

n1−tP (‖X − b‖ ≤ ‖v‖n−1/p

1−t ). Then

f(u, v) = (1− n−1

1−t)f(a+ un
−1/p

1−t )f(b+ vn
−1/p

1−t )(1− rnn−1

1−t − snn−1

1−t)
n1−t−2

for all large n, and rn → r and sn → s, in which r = 2πp/2‖u‖pf(a)/{pΓ(p/2)} and

s = 2πp/2‖v‖pf(b)/{pΓ(p/2)}. Since

f(u)f(v) = f(a+ un
−1/p

1−t )f(b+ vn
−1/p

1−t )(1− rnn−1

1−t)
n1−t−1

(1− snn−1

1−t)
n1−t−1

,

we have, for k, l ∈ {1, 2},

E{u⊗k(v⊗l)′} − E(u
⊗k

)E ′(v
⊗l

)

=
∫
Rp×Rp

u⊗k(v⊗l)′{f(u, v)− f(u)f(v)}dudv

=
∫
Rp×Rp

u⊗k(v⊗l)′f(a+ un−1/p

1−t )f(b+ vn−1/p

1−t )ηa,bdudv +O(n−1),

in which ηa,b = {1 − rnn−1
1−t − snn−1

1−t}
n1−t − (1 − rnn−1

1−t)
n1−t(1 − snn−1

1−t)
n1−t . By (4),

ηa,b → −n1−t
−1rs exp{−(r + s)}. Since ‖u‖2‖v‖2rs exp{−(r + s)} is integrable on

(u, v) ∈ Rp × Rp, similar to Abadie and Imbens (2006), we have E{u⊗k(v⊗l)′} −

E(u⊗k)E ′(v⊗l) = O(n−1). Next, suppose that i and j are control and treated subjects,

respectively. Conditioning on (X (i), X (j)) = (a, b), let u = n1/p

1 (X (J(a)) − a) and v =

n1/p

0 (X (J(b)) − b), we have

f(u, v) = I(max{n−1/p

1 ‖u‖, n−1/p

0 ‖v‖} < ‖a− b‖)(1− n−1

1 )(1− n−1

0 )

f(a+ un
−1/p

1 )f(b+ vn
−1/p

0 )(1− rn)n1−2
(1− sn)n0−2

+ I(n
−1/p

1 ‖u‖ < ‖a− b‖)δ‖a−b‖(‖v‖)(1− n−1

1 )n−1

0 f(a+ un
−1/p

1 )

(1− rn)n1−2
(1− sn)n0−1

+ I(n
−1/p

0 ‖v‖ < ‖a− b‖)δ‖a−b‖(‖u‖)(1− n−1

0 )n−1

1 f(b+ vn
−1/p

0 )

(1− sn)n0−2
(1− rn)n1−1

+ δ(‖a−b‖,‖a−b‖)((‖u‖, ‖v‖))n−1

1 n
−1

0 (1− rn)n1−1
(1− sn)n0−1

,

in which δw(x) is the Dirac function of x such that it is zero whenever x 6= w and∫
Rdim(x) δw(x)h(x)dx = h(w) for any function h of x. Similar to the above, we can show
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that cov(u⊗k, v⊗l) = O(n−1). By the compactness of Ω(X), this convergence is uniform

on (a, b), which means that cov{(X (J(i)) − X (i))⊗k, (X (J(j)) − X (j))⊗l} = O(n−1−2/p).

Hence (5) holds, which completes the proof.

B.4 Proof of Theorem 4

The form of the variance follows directly from Theorem 5 of Abadie and Imbens

(2006) and the sufficiency of X ′βt for Y (t)|X. Let σ2

t (R) = var{Y (t)|R} for any

random element R. To see that var(µ̂π) ≥ var(µ̂r) for all large n, following Theorem

5 of Abadie and Imbens (2006), under Assumption 2 in the main text, we have

nvar(µ̂π)→ Vπ(X) +

1∑
t=0

[
E

{
σ2

t (π(X))

h(π(X), t)

}
+

1

2m
E

[{
1

h(π(X), t)
− h(π(X), t)

}
σ

2

t (π(X))

]]
.

We write nvar(µ̂π) = Vπ + Iπ + IIπ and nvar(µ̂π) = VX + Ir + IIr, and additionally
introduce IX and IIX, in which

Iπ = E

{
σ2

1(π(X))

π(X)
+
σ2

0(π(X))

1− π(X)

}
IIπ =

1

2m
E

[{
1

π(X)
− π(X)

}
σ

2

1(π(X)) +

{
1

1− π(X)
− {1− π(X)}

}
σ

2

0(π(X))

]
Ir = E

{
σ2

1(X)

π(X ′β1)
+

σ2

0(X)

1− π(X ′β0)

}
IIr =

1

2m
E

[{
1

π(X ′β1)
− π(X ′β1)

}
σ

2

1(X) +

{
1

1− π(X ′β0)
− {1− π(X ′β0)}

}
σ

2

0(X)

]
.

IX = E

{
σ2

1(X)

π(X)
+

σ2

0(X)

1− π(X)

}
IIX =

1

2m
E

[{
1

π(X)
− π(X)

}
σ

2

1(X) +

{
1

1− π(X)
− {1− π(X)}

}
σ

2

0(X)

]
.

Then the inequality nvar(µ̂π) ≥ nvar(µ̂r) can be implied if

Vπ + Iπ ≥ VX + IX, IIπ ≥ IIX, IX ≥ Ir, IIX ≥ IIr. (7)

Let µc,t(X) = E{Y (t)|X} − E{Y (t)|π(X)} for t = 0, 1. By definition,

VX − Vπ = var[E{Y (1)− Y (0)|X}]− var[E{Y (1)− Y (0)|π(X)}]

= E{µc,1(X)}2 + E{µc,0(X)}2 − 2E{µc,1(X)µc,0(X)}. (8)
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Let π∗(X) = π(X)/{1−π(X)}, the logit function of π(X). By the triangle inequality,

−2E{µc,1(X)µc,0(X)} = −2E
[
[µc,1(X){π∗(X)}−1/2

] [µc,0(X){π∗(X)}1/2]
]

≤ E{µ2

c,1(X)/π
∗
(X)}+ E{µ2

c,0(X)π
∗
(X)}.

By plugging it back to (8), we have

VX − Vπ ≤ E[µc,1(X)
2
/π(X)] + E[µc,0(X)

2
/{1− π(X)}]

On the other hand, we have

Iπ − IX = E[{σ2

1(π(X))− σ2

1(X)}/π(X)] + E[{σ2

0(π(X))− σ2

0(X)}/{1− π(X)}]

= E[µ
2

c,1(X)/π(X)] + E[µ
2

c,0(X)/{1− π(X)}].

Hence VX−Vπ ≤ Iπ−IX, which implies the first inequality in (7). BecauseE{σ2

1(X)|π(X)} =

E[var{Y (1)|X}|π(X)] ≤ var{Y (1)|π(X)} = σ2

1(π(X)), we have

E[{π(X)−1 − π(X)}σ1(X)] ≤ E[{π(X)−1 − π(X)}σ1(π(X))].

Similarly, we can show the corresponding inequality for the part when t = 0 with

1 − π(X) in place of π(X). Thus IIπ ≥ IIX. Next, let φ : R+ → R+ be that

φ(x) = x−1. Then φ is a convex function. By Jensen’s inequality, we have π(X ′β1)
−1 =

[E{π(X)|X ′β1}]−1 ≤ E{π−1(X)|X ′β1}, which, together with that σ2

1(X) = σ2

1(X
′β1),

implies that

E{σ2

1(X)/π(X ′β1)} ≤ E[σ
2

1(X
′β1)E{π−1(X)|X ′β1}] = E{σ2

1(X)/π(X)}.

Similarly, we can show the corresponding inequality for the part when t = 0 with

1 − π(X) in place of π(X). Hence IX ≥ Ir. Finally, let ψ : R+ → R be that

ψ(x) = x−1 − x, then ψ is also a convex function. Thus the fourth inequality in (7)

can be shown similarly. From the arguments above, the equality between the limits

of nvar(µ̂π) and nvar(µ̂r) holds if and only if all the four equalities in (7) hold, which

means that

(a) µc,1(X)π∗(X)
−1/2

= −µc,0(X)π∗(X)
1/2

,
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(b) E{Y (t)|X} = E{Y (t)|π(X)} for t = 0, 1,

(c) π(X) = π(X ′β1) = π(X ′β0).

Note that (b) is equivalent to that µc,t(X) = 0 for t = 0, 1, which implies (a).

If SY (0)|X = SY (1)|X, then (c) is equivalent to that π(X) = π(X ′β1). Otherwise, it

means that π(X) is a constant, which, together with (b), indicates that E{Y (t)|X} ≡

E{Y (t)} for t = 0, 1. This completes the proof.

C More simulation results

The simulation results for estimating ACET in Case 1 and Case 3 are displayed in

Table 1 and Table 2 respectively, and the notations in these tables follow those in

Table 1 of the main text.

D R codes for data analysis

##### Prepare the data

library(MatchIt)

data(lalonde)

lalonde$u74<-ifelse(lalonde$re74>0,0,1)

lalonde$u75<-ifelse(lalonde$re75>0,0,1)

attach(lalonde)

W<-cbind(age,educ,black,hispan,married,nodegree,re74,re75,u74,u75)

Y <- lalonde$re78

Tr <- lalonde$treat

##### Perform dimension reduction on the covariates

library(dr)

s0<-dr(Y[Tr==0]~W[Tr==0,],method="sir",nslices=5)

s1<-dr(Y[Tr==1]~W[Tr==1,],method="sir",nslices=5)
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Table 1: Simulation Results for ACET in Case 1
I II III IV V

BIAS
Abadie-Imbens

Ambient 0.4877 0.0815 0.3602 0.0513 0.0020
Estimated PS 0.0305 0.0206 0.0089 -0.0030 0.0010
True PS 0.0680 0.0097 0.0125 -0.0019 0.0041
Prognostic Score 0.0231 0.0018 0.0153 0.0034 -0.0029
Active Set (Oracle) 0.0230 0.0152 0.0875 0.0513 -0.0005
SDR (Oracle) 0.0230 0.0001 0.0086 0.0025 -0.0005
Proposed 0.0294 0.0026 0.0139 0.0043 0.0014

Genetic Matching 0.3668 0.0263 0.2158 0.0257 0.0046
Entropy Balancing -0.0081 0.0115 0.0010 -0.0011 0.0009
Double Robust 0.0161 -0.0100 0.0190 -0.0005 0.0000
TMLE -0.0163 0.0182 -0.0012 -0.0003 0.0004

SD
Abadie-Imbens

Ambient 0.5050 0.1025 0.1612 0.0631 0.0799
Estimated PS 0.6378 0.1203 0.2033 0.0640 0.1448
True PS 1.1372 0.2007 0.2520 0.0607 0.1477
Prognostic Score 0.2446 0.0645 0.1224 0.0606 0.0756
Active Set (Oracle) 0.2250 0.0642 0.1218 0.0631 0.0574
SDR (Oracle) 0.225 0.0593 0.1161 0.0610 0.0574
Proposed 0.2432 0.0654 0.1224 0.0603 0.0737

Genetic Matching 0.4000 0.0777 0.1509 0.0630 0.1047
Entropy Balancing 0.3783 0.0625 0.1110 0.0472 0.0887
Double Robust 0.2800 0.0666 0.1241 0.0507 0.0786
TMLE 0.2205 0.0670 0.1137 0.0512 0.0886

RMSE
Abadie-Imbens

Ambient 0.7019 0.1309 0.3946 0.0813 0.0798
Estimated PS 0.6382 0.1220 0.2034 0.0641 0.1447
True PS 1.1386 0.2009 0.2521 0.0607 0.1477
Prognostic Score 0.2456 0.0645 0.1233 0.0606 0.0756
Active Set (Oracle) 0.2261 0.0659 0.1499 0.0813 0.0574
SDR (Oracle) 0.2261 0.0592 0.1164 0.0610 0.0574
Proposed 0.2448 0.0655 0.1231 0.0604 0.0737

Genetic Matching 0.5426 0.0820 0.2633 0.0680 0.1048
Entropy Balancing 0.3783 0.0635 0.1110 0.0472 0.0887
Double Robust 0.2803 0.0673 0.1255 0.0507 0.0786
TMLE 0.2209 0.0694 0.1137 0.0511 0.0886
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Table 2: Simulation Results for ACET in Case 3
A B C D E F G

BIAS
Abadie-Imbens

Ambient 0.0557 0.0487 0.0484 0.0578 0.0484 0.0600 0.0510
Estimated PS 0.0044 0.0039 -0.0128 -0.0072 -0.0042 -0.0071 -0.0113
True PS 0.0053 0.0025 0.0033 0.0053 0.0043 0.0064 -0.0038
Prognostic Score 0.0071 0.0062 0.0055 0.0095 0.0079 0.0092 0.0060
SDR (Oracle) 0.0024 0.0016 0.0020 0.0022 0.0016 0.0019 0.0017
Active Set (Oracle) 0.0257 0.0195 0.0155 0.0304 0.0238 0.0325 0.0200
Proposed 0.0035 0.0015 0.0028 0.0041 0.0036 0.0047 0.0018

Genetic Matching 0.0299 0.0216 0.0202 0.0291 0.0199 0.0340 0.0251
Entropy Balancing 0.0013 0.0098 0.0017 0.0018 0.0011 0.0017 0.0010
Double Robust -0.0129 -0.0058 -0.0408 -0.0086 -0.0015 -0.0060 -0.0092
TMLE 0.0012 0.0005 0.0012 0.0015 0.0007 -0.0003 0.0025

SD
Abadie-Imbens

Ambient 0.0521 0.0525 0.0515 0.0554 0.0550 0.0538 0.0542
Estimated PS 0.0902 0.0877 0.0896 0.0947 0.0955 0.0948 0.0886
True PS 0.1159 0.1117 0.1432 0.1196 0.1189 0.1202 0.1468
Prognostic Score 0.0465 0.0462 0.0450 0.0492 0.0472 0.0483 0.0463
SDR (Oracle) 0.0367 0.0379 0.0372 0.0368 0.0376 0.0375 0.0379
Active Set (Oracle) 0.0680 0.0668 0.0667 0.0702 0.0705 0.0744 0.0754
Proposed 0.0449 0.0414 0.0414 0.0448 0.0438 0.0457 0.0431

Genetic Matching 0.0639 0.0631 0.0660 0.0663 0.0661 0.0643 0.0607
Entropy Balancing 0.0393 0.0371 0.0358 0.0416 0.0403 0.0409 0.0371
Double Robust 0.0418 0.0404 0.0488 0.0438 0.0440 0.0437 0.0484
TMLE 0.0392 0.0388 0.0468 0.0423 0.0423 0.0425 0.0471

RMSE
Abadie-Imbens

Ambient 0.0762 0.0716 0.0706 0.0801 0.0733 0.0806 0.0744
Estimated PS 0.0902 0.0877 0.0905 0.0950 0.0956 0.0950 0.0893
True PS 0.1159 0.1117 0.1432 0.1197 0.1189 0.1203 0.1468
Prognostic Score 0.0470 0.0466 0.0453 0.0500 0.0478 0.0491 0.0466
SDR (Oracle) 0.0368 0.0379 0.0372 0.0369 0.0376 0.0376 0.0379
Active Set (Oracle) 0.0726 0.0696 0.0685 0.0765 0.0744 0.0812 0.0780
Proposed 0.0450 0.0414 0.0415 0.0449 0.0439 0.0459 0.0431

Genetic Matching 0.0706 0.0666 0.0690 0.0724 0.0690 0.0727 0.0657
Entropy Balancing 0.0393 0.0371 0.0359 0.0417 0.0403 0.0409 0.0371
Double Robust 0.0437 0.0408 0.0635 0.0446 0.0440 0.0441 0.0493
TMLE 0.0392 0.0388 0.0468 0.0424 0.0423 0.0425 0.0471
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##### To obtain the dimension of the central subspaces by ladle (Luo and Li, 2016),

please contact the authors of Luo and Li (2016) for the R codes. For this dataset,

we find that the dimension of the central subspaces in both treatment and control

groups is 2.

rx0<-W%*%s0$evectors[,1:2]

rx1<-W%*%s1$evectors[,1:2]

##### Plot Figure 1 in the main text

par(mfrow=c(1,2))

plot(rx0[Tr==0,1],Y[Tr==0],xlab="1st reduced covariate",ylab="Y")

l1<-loess(Y[Tr==0]~rx0[Tr==0,1])

p1<-predict(l1,se=TRUE)

f1<-p1$fit

f1u<-f1+p1$se.fit*2

f1l<-f1-p1$se.fit*2

rx00<-rx0[Tr==0,1]

lines(rx00[order(rx00)],f1[order(rx00)],col=2)

lines(rx00[order(rx00)],f1u[order(rx00)],col=4,lty="dashed")

lines(rx00[order(rx00)],f1l[order(rx00)],col=4,lty="dashed")

plot(rx0[Tr==0,2],Y[Tr==0],xlab="2nd reduced covariate",ylab="Y")

l1<-loess(Y[Tr==0]~rx0[Tr==0,2])

p1<-predict(l1,se=TRUE)

f1<-p1$fit

f1u<-f1+p1$se.fit*2

f1l<-f1-p1$se.fit*2

rx00<-rx0[Tr==0,2]

lines(rx00[order(rx00)],f1[order(rx00)],col=2)

12



lines(rx00[order(rx00)],f1u[order(rx00)],col=4,lty="dashed")

lines(rx00[order(rx00)],f1l[order(rx00)],col=4,lty="dashed")

##### Plot Figure 2 in the main text

par(mfrow=c(1,2))

boxplot(rx0[,1]~Tr,ylab="1st reduced covariate")

boxplot(rx0[,2]~Tr,ylab="2nd reduced covariate")

##### Plot Figure 3 in the main text

par(mfrow=c(2,1))

hist(rx0[Tr==1,1],xlab="1st reduced covariate",ylim=c(0,200),main="Histogram")

hist(rx0[Tr==0,1],add=TRUE,lty="dashed")

legend(6.5,150,c("Treat","Control"),lty=c("solid","dashed"))

par(mfrow=c(2,1))

hist(rx0[Tr==1,1],xlab="1st reduced covariate",ylim=c(0,200),main="Histogram")

hist(rx0[Tr==0,1],add=TRUE,lty="dashed")

legend(6.5,200,c("Treat","Control"),lty=c("solid","dashed"))

hist(rx0[Tr==1,2],xlab="2nd reduced covariate",ylim=c(0,250),main="Histogram")

hist(rx0[Tr==0,2],add=TRUE,lty="dashed")

legend(-0.9,250,c("Treat","Control"),lty=c("solid","dashed"))

##### Estimate average causal effect among the treated

library(Matching)

Match(Y=Y, Tr=Tr, X=rx0,estimand="ATT", M=1,replace=TRUE)$est
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