Supporting InformationSynthesis of $\boldsymbol{\beta}$-Amino Diaryldienones Using the Mannich Reaction

N. G. R. Dayan Elshan, ${ }^{*}{ }^{\dagger}$ Matthew B. Rettig, ${ }^{\ddagger, 5}$ and Michael E. Jung ${ }^{*, \dagger}$
${ }^{\dagger}$ Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States.
${ }^{\text {D Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, }}$ California 90073, United States.
${ }^{\S}$ Departments of Medicine and Urology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States.

Table of Contents

General materials and methods S2
Stereochemistry of the diaryl-substituted enone versus the NMR chemical shift of the enone proton S4
Experimental procedures S5
Crystal structures S29
Substrate scope for β-amino diaryldienone synthesis S32
Characterization data for β-amino diaryldienones S33
Key NOE data for $\boldsymbol{E}-\mathbf{6}$ vs. Z-6 S42
2D-NMR Spectra S44
${ }^{1} \mathrm{H},{ }^{2} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S48
References S116

General Materials and Methods

All solvents and reagents were purchased from commercial sources and used without further purification unless otherwise noted. Acetonitrile (MeCN), toluene, dichloromethane (DCM), diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), and THF (THF) used for the reactions were dried by distillation over calcium hydride (MeCN , toluene, DCM) or sodium $\left(\mathrm{Et}_{2} \mathrm{O}, \mathrm{THF}\right)$. All reactions were performed under an inert atmosphere of dry argon and monitored by thin layer chromatography (TLC) on pre-coated EMD silica gel $60 \mathrm{~F}_{254}$ TLC aluminum sheets and visualized with a UV lamp. Flash column chromatography was performed on SiliaFlash P60 (SiliCycle Inc.) silica gel (40-63 $\mu \mathrm{m}$, 60 Å pore size). NMR spectra were obtained on Bruker AV400 and AV500 instruments at the UCLA MIC Magnetic Resonance Laboratory. NMR data were analyzed using the MestReNova NMR software (Mestrelab Research S. L., version 11.0.2). Chemical shifts (δ) are expressed in ppm and are internally referenced for ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CHCl}_{3} 7.26 \mathrm{ppm}\right.$, DMSO- $\left.d_{6} 2.50 \mathrm{ppm}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} 77.16 \mathrm{ppm}$, DMSO- $\left.d_{6} 39.52 \mathrm{ppm}\right)$. DART-MS spectra were collected on a Thermo Exactive Plus MSD (Thermo Scientific) equipped with an ID-CUBE ion source and a VAPUR Interface (IonSense). Both the source and MSD were controlled by Excalibur, version
3.0. The analyte was spotted onto OpenSpot sampling cards (IonSense) using DCM or chloroform as the solvent. Ionization was accomplished using He plasma with no additional ionization agents. Melting points were recorded on a $\mathrm{Büchi}^{\circledR}$ B- 545 melting point apparatus. Analytical HPLC was performed on a $2.0 \times 50 \mathrm{~mm}$ Waters Corp. $1.5 \mu \mathrm{~m} \mathrm{C}_{18}$ analytical HPLC column. A linear gradient of mobile phase was used over 5 min from $5-95 \% \mathrm{MeCN} /$ water containing $0.2 \% \mathrm{HCOOH}$. The flow rate was $0.4 \mathrm{~mL} / \mathrm{min}$ and the peaks were detected by a LCTPremier ESI-TOF mass spectrometer in the positive ion mode. X-ray single crystal analysis was
performed on a Bruker dual source (micro-focus Cu and Mo) single crystal x-ray diffractometer with an Apex-11 detector (more information on p. S29).

Table S1. Stereochemistry of the diaryl-substituted enone versus the NMR chemical shift of the enone proton.

Entry	Compound	${ }^{1} \mathrm{H}$ chemical shift of enone proton $(\mathrm{ppm})^{\dagger}$	Structure ${ }^{\text { }}$
i	E-SI-1	7.34	
ii	Z-SI-1	7.78	
iii*	4 (E)	7.58	
iv	E-6	7.40	
v	Z-6	7.10	
vi*	E-8	7.11	
vii	Z-8	7.02	
viii	E-SI-2	6.71	
ix*	Z-SI-2	6.87	
x*	SI-3 (E)	7.61	
xi*	E-SI-4	7.88	
xii*	Z-SI-4	6.88	

*Stereochemistry confirmed by x-ray crystallography (see pp. S29 - S31). \dagger All measurements in CDCl_{3}. \ddagger Corresponding stereoisomer shown for ii, v, vii, ix, and xii.

For acrylaldehyde systems ${ }^{1}$ of structure SI-1 and for dienol systems with structure SI-2, the alkene proton for the Z isomer appears downfield of that of the E isomer. However, when the alkene is conjugated to a ketone or an imide (entries iv - vii, xi, and xii), an opposite trend is observed. A clear downfield shift is observed for the alkene proton in the E-isomer, which reaches almost a 1 ppm difference in the imide systems of structure SI-4. This may be the result of a deshielding magnetic anisotropic effect by the carbonyl groups towards the enone proton in these systems.

Experimental Procedures

Z-1

(Z)-3-(4-Chlorophenyl)-2-phenylacrylonitrile (Z-1) ${ }^{2}$

To a mixture of benzyl cyanide ($10.0 \mathrm{~mL}, 84.9 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 4-chlorobenzaldehyde (12.1 g , $84.9 \mathrm{mmol}, 1.0 \mathrm{eq}$) in absolute ethanol at $23^{\circ} \mathrm{C}$ was added a freshly prepared solution of sodium ethoxide in ethanol (100 mL of a 1.27 M solution, $127.0 \mathrm{mmol}, 1.5 \mathrm{eq}$). The resultant mixture was heated at reflux for 1.5 h , and then gradually cooled to $0^{\circ} \mathrm{C}$. The resultant precipitate was filtered, washed with ice-cold absolute ethanol, and dried in vacuo to yield the acrylonitrile $\mathbf{Z - 1}$ $(11.9 \mathrm{~g}, 49.6 \mathrm{mmol}, 58 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2H), $7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.8,136.6$, $134.3,132.3,130.6,129.6,129.4,129.3,126.1,117.9,112.4$.

(Z)-3-(4-Chlorophenyl)-2-phenylacrylaldehyde (Z-SI-1)

To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of the acrylonitrile $\boldsymbol{Z} \mathbf{- 1}(10.0 \mathrm{~g}, 41.7 \mathrm{mmol}, 1.0 \mathrm{eq})$ in toluene was added a 1.0 M solution of DIBAL-H ($43.8 \mathrm{~mL}, 43.8 \mathrm{mmol}, 1.05 \mathrm{eq})$. The resultant suspension was stirred for 2 h at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched by the addition of 5 mL of $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (aq) at $-78^{\circ} \mathrm{C}$, and the reaction allowed to warm to $0^{\circ} \mathrm{C}$ while stirring. To this was added a
further $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}, 145 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, and the mixture stirred vigorously for 30 \min at $0{ }^{\circ} \mathrm{C}$. After separating the layers, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine (300 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude material was purified by column chromatography on silica gel, using a mobile phase gradient of 0 to 5% of EtOAc/hexanes to yield the enal Z-SI-1 $(6.2 \mathrm{~g}, 25.6 \mathrm{mmol}, 61 \%)$ as a pale yellow solid. Melting point $90.7-91.7^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}} 0.52(10 \%$

EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.09(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 7 \mathrm{H})$, $7.37-7.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.8,145.5,141.7,136.1,136.0,132.6$, 131.6, 123.0, 128.9, 128.7, 128.6; HRMS m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+} 243.0571$, found 243.0565.

(E)-3-(4-Chlorophenyl)-2-phenylacrylic acid (SI-6) ${ }^{3}$

To phenylacetic acid ($8.0 \mathrm{~g}, 58.2 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 4-chlorobenzaldehyde ($8.3 \mathrm{~g}, 58.2 \mathrm{mmol}$, 1.0 eq) in a flask was added a mixture of acetic anhydride and triethylamine ($\mathrm{v} / \mathrm{v} 1: 1,15 \mathrm{~mL}$ each). The resultant suspension was stirred at $120^{\circ} \mathrm{C}$ for 6 h . Then it was cooled to $23{ }^{\circ} \mathrm{C}$ and conc. $\mathrm{HCl}(15 \mathrm{~mL})$ and water $(45 \mathrm{~mL})$ were added whilst stirring. The flask was then left in a fridge overnight, and the resultant precipitate filtered and washed with water. The crude product was recrystallized from ethanol/water to yield the acrylic acid SI-6 as an off-white solid (12.6 g, $48.7 \mathrm{mmol}, 84 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22$ $7.17(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
(126 MHz, DMSO- d_{6}) $\delta 170.2,144.3,140.3,136.1,131.1,130.8,129.5,129.3,127.9,127.6$, 125.9.

(E)-3-(4-Chlorophenyl)-2-phenylprop-2-en-1-ol (SI-7)

To a solution of the acrylic acid SI-6 ($5.1 \mathrm{~g}, 19.7 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added lithium aluminum hydride ($1.58 \mathrm{~g}, 39.4 \mathrm{mmol}, 2.0 \mathrm{eq}$) in small portions. The resultant solution was stirred at $23^{\circ} \mathrm{C}$ for 1.5 h and then quenched by the slow addition of water (8 mL). To this flask was added $\mathrm{Et}_{2} \mathrm{O}, 15 \%$ aq. NaOH solution and water (50 mL each), and the solution stirred for 15 min at $23^{\circ} \mathrm{C}$. It was then filtered through a plug of celite, and the celite washed with further $\mathrm{Et}_{2} \mathrm{O}$. Layers were separated in the filtrate, and the aqueous layer extracted with further $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine $(150 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, filtered, and volatiles removed in vacuo to yield the α-hydroxy alkene SI-7 (4.81 g, 19.7 mmol , quant.) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.30(\mathrm{~m}$, 3H), 7.20 (dd, $J=7.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.4,138.2,135.1$, 132.6, 130.6, 129.1, 128.8, 128.3, 127.9, 125.2, 68.4; HRMS m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClO}[\mathrm{M}-\mathrm{OH}]^{+}$ 227.0622, found 227.0616.

(E)-3-(4-Chlorophenyl)-2-phenylacrylaldehyde (E-SI-1) ${ }^{4}$

To a cooled solution (ice-water bath) of the α-hydroxy alkene SI-7 ($4.57 \mathrm{~g}, 18.7 \mathrm{mmol}, 1.0 \mathrm{eq}$) dissolved in DCM (90 mL) was added Dess-Martin periodinane ($8.80 \mathrm{~g}, 20.5 \mathrm{mmol}, 1.1 \mathrm{eq}$) in three portions. The resultant mixture was stirred at $4{ }^{\circ} \mathrm{C}$ for 2.5 h . Then 20 mL of saturated aq. NaHCO_{3} solution was added to the flask and stirred for 5 min . Flask contents were then partitioned between further $\mathrm{DCM}(60 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(\mathrm{aq}, 80 \mathrm{~mL})$. The organic layer was removed and washed with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq}, 50 \mathrm{~mL} \times 3)$ and brine $(50 \mathrm{~mL})$. It was then
dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel using a mobile phase gradient of $3-10 \% \mathrm{EtOAc} / \mathrm{hexanes}$ to give the enal \boldsymbol{E}-SI-1 ($2.79 \mathrm{~g}, 11.5 \mathrm{mmol}, 61 \%$) as a yellowish solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.16$ (m, 2H), $7.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.8,148.5,142.3,136.4$, 133.1, 132.6, 132.0, 129.4, 129.1, 129.0, 128.7.

(Z)-1-(4-Chlorophenyl)-2-phenylpenta-1,4-dien-3-ol (Z-SI-5)

A solution of enal Z-SI- $\mathbf{1}(5.78 \mathrm{~g}, 23.9 \mathrm{mmol}, 1.0 \mathrm{eq})$ in THF $(75 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. To this was added a solution of vinylmagnesium bromide (32.9 mL of a 0.80 M solution in THF, $26.3 \mathrm{mmol}, 1.1 \mathrm{eq})$ and the reaction left to stir for 30 min at $-78^{\circ} \mathrm{C}$. To this mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}, 2 \mathrm{~mL})$ and the mixture allowed to warm to $0{ }^{\circ} \mathrm{C}$. The contents were then partitioned between saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}, 145 \mathrm{~mL})$, water (50 mL), and DCM (200 mL). The aqueous layer was further extracted with $\mathrm{DCM}(150 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine (200 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude material was purified by column chromatography on silica gel, using a mobile phase gradient of 0 to 10% of EtOAc/hexanes to yield the alcohol Z-SI-5 (4.93 g, $18.2 \mathrm{mmol}, 76 \%$) as a pale yellow oil. $\mathrm{R}_{\mathrm{f}} 0.31$ ($10 \% \mathrm{EtOAc} / \mathrm{hexanes);}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.56(\mathrm{~m}$, 2H), $7.42-7.30(\mathrm{~m}, 7 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.07$ (ddd, $J=17.2,10.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{br} \mathrm{tt}, J=4.8$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dt}, J=17.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dt}, J=10.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=4.9 \mathrm{~Hz}$,
$1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 143.1,139.7,139.3,135.1,133.2,130.4,130.3,128.5$, 128.5, 128.1, 127.6, 116.1, 71.0; HRMS m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClO}[\mathrm{M}-\mathrm{H}]^{-} 269.0728$, found 269.0728.

(E)-1-(4-Chlorophenyl)-2-phenylpenta-1,4-dien-3-ol (E-SI-5)

A small amount of the \boldsymbol{E} isomer, \boldsymbol{E}-SI-5, was also isolated from the above synthesis of $\boldsymbol{Z} \mathbf{- S I - 5}$. $\mathrm{R}_{\mathrm{f}} 0.17$ (10% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.38-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.15$ $(\mathrm{m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{ddd}, J=17.1$, $10.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dt}, J=17.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dt}, J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.93(\mathrm{br}$ $\mathrm{m}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 144.0,138.6,137.9,135.0$, 132.7, 130.6, 129.4, 128.9, 128.2, 127.8, 126.1, 116.2, 78.0; HRMS m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}[\mathrm{M}-$ $\mathrm{OH}]^{+}$253.0778, found 253.0767.

(Z)-1-(4-Chlorophenyl)-2-phenylpenta-1,4-dien-3-one (Z-2)

A solution of the alcohol Z-SI-5 ($1.0 \mathrm{~g}, 3.7 \mathrm{mmol}, 1.0 \mathrm{eq})$ in DCM (30 mL) was cooled in an icewater bath. To this was added Dess-Martin periodinane ($1.7 \mathrm{~g}, 4.1 \mathrm{mmol}, 1.1 \mathrm{eq}$) and the reaction left to stir for 20 min at $0^{\circ} \mathrm{C}$. To this mixture was added a saturated $\mathrm{NaHCO}_{3}(\mathrm{aq}, 25 \mathrm{~mL})$ and the mixture stirred for 10 min . The contents were then partitioned between $\mathrm{DCM}(70 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(\mathrm{aq}, 75 \mathrm{~mL})$, and the layers were separated. The organic layer was washed with saturated $\mathrm{NaHCO}_{3}\left(\mathrm{aq}, 50 \mathrm{~mL} \times 2\right.$), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude material was purified by column chromatography on silica gel, using a mobile phase gradient of 0 to 3% of $\mathrm{EtOAc} /$ hexanes to yield the dienone $\mathbf{Z - 2}$ ($560.0 \mathrm{mg}, 2.1$
$\mathrm{mmol}, 56 \%)$ as a yellow oil. $\mathrm{R}_{\mathrm{f}} 0.38(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43$ $-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=17.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=$ $17.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=10.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 199.8, 141.6, 137.7, 137.1, 134.25, 134.19, 132.4, 130.2, 129.3, 128.97, 128.87, 128.6, 126.6; HRMS m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}$269.0728, found 269.0707.

(Z)-5-(Benzyl(methyl)amino)-1-(4-chlorophenyl)-2-phenylpent-1-en-3-one hydrochloride (Z-3.HCl)

To the dienone $\mathbf{Z - 2}(109.8 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.05 \mathrm{eq})$ in $\mathrm{DCM}(1.5 \mathrm{~mL})$ was added a solution of N benzylmethylamine (0.78 mL of a 0.50 M solution in $\mathrm{DCM}, 0.39 \mathrm{mmol}, 1.0 \mathrm{eq}$), and the resultant solution stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . Then the reaction mixture was diluted with 10 mL DCM and shaken with a 1 N solution of $\mathrm{HCl}(\mathrm{aq}, 10 \mathrm{~mL})$. The layers were immediately separated, and the aqueous layer extracted with $\mathrm{DCM}(5 \mathrm{~mL} \times 2)$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and volatiles removed in vacuo. The residue was triturated with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$ and dried in vacuo to yield the β-amino diarylenone hydrochloride salt Z-3.HCl ($147.0 \mathrm{mg}, 0.34 \mathrm{mmol}, 84 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 12.74(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.05$ $(\mathrm{m}, 4 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.3,143.6,135.9,134.8,134.1,131.2$, m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 390.1619$, found 390.1599.

(Z)-5-(Benzyl(methyl)amino)-1-(4-chlorophenyl)-2-phenylpent-1-en-3-one (Z-3)

The hydrochloride $\mathbf{Z - 3 . H C l}$ ($147.0 \mathrm{mg}, 0.34 \mathrm{mmol}$) from above was dissolved in 5 mL of DCM and stirred for 10 min at $23{ }^{\circ} \mathrm{C}$ with a solution of $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}, 5 \mathrm{~mL})$. The layers were separated, and the aqueous layer extracted with further $\operatorname{DCM}(5 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine (5 mL), dried over anhydrous MgSO_{4}, filtered, and the volatiles were removed in vacuo to yield the β-amino diarylenone $\mathbf{Z - 3}$ ($133.0 \mathrm{mg}, 0.34 \mathrm{mmol}$, quantitative) as a yellow waxy oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.38-$ $7.30(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.17(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 2.76$ - $2.60(\mathrm{~m}, 4 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.1,144.3,138.7,137.1,134.3$, 134.2, 130.1, 129.1, 129.0, 128.9, 128.6, 128.33, 128.30, 127.1, 126.8, 62.4, 52.0, 42.0, 41.9; HRMS m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}$390.1619, found 390.1593.

(E)-4-(4-Chlorophenyl)-3-phenylbut-3-en-2-one (4) ${ }^{5}$

Periodic acid ($21.50 \mathrm{~g}, 92.4 \mathrm{mmol}$, 1.1 eq) was added to $\mathrm{MeCN}(250 \mathrm{~mL})$ while stirring at $23^{\circ} \mathrm{C}$, and the suspension stirred vigorously for 15 min . Then the flask was placed in an ice-bath and 1-phenyl-2-propanol, ($12.0 \mathrm{~mL}, 84.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added. To this cooled solution was added pyridinium chlorochromate ($370.1 \mathrm{mg}, 1.7 \mathrm{mmol}, 0.02 \mathrm{eq}$) in $\mathrm{MeCN}(60 \mathrm{~mL})$, dropwise over 5 min . The resultant creamy yellow suspension was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at $23^{\circ} \mathrm{C}$ for 1 h . Then the reaction mixture was diluted with ethyl acetate (EtOAc, 300 mL) and washed with a mixture of brine/water (1:1, 200 mL). The organic layer was then washed with a saturated solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(200 \mathrm{~mL} \times 2)$ and brine $(200 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, filtered, and the solvent removed in vacuo to obtain 1-phenylacetone, ($11.2 \mathrm{~g}, 83.5 \mathrm{mmol}$, quantitative) as a yellow oil. $\mathrm{R}_{\mathrm{f}} 0.24$ ($10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 206.4,134.3,129.4,128.8,127.1,51.0,29.3$.

To a solution of phenylacetone ($5.0 \mathrm{~g}, 37.3 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 4-chlorobenzaldehyde (5.32 g , $37.3 \mathrm{mmol}, 1.0 \mathrm{eq})$ in toluene (120 mL) was added piperidine ($0.15 \mathrm{~mL}, 1.5 \mathrm{mmol}, 0.04 \mathrm{eq}$), and the resultant mixture heated at reflux for 24 h . Then the solvent was removed in vacuo and the residue purified by column chromatography using a mobile phase gradient of 0 to 10% EtOAc/hexanes to yield the diarylenone $4(5.3 \mathrm{~g}, 20.6 \mathrm{mmol}, 55 \%)$ as an off-white solid. $\mathrm{R}_{\mathrm{f}} 0.18$ (10\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.16$ $(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.2,141.4,137.4,136.7,135.3,133.2,132.1,129.5,129.3,128.7$, 128.3, 28.2.

(E)-5-(Benzyl(methyl)amino)-1-(4-chlorophenyl)-2-phenylpent-1-en-3-one (E-3)

Ketone 4 ($200.0 \mathrm{mg}, 0.78 \mathrm{mmol}, 1.0 \mathrm{eq}$) and N, N^{\prime}-dibenzyl- N, N^{\prime}-dimethylmethanediamine ${ }^{6}(0.25$ $\mathrm{mL}, 0.93 \mathrm{mmol}, 1.2 \mathrm{eq})$ were dissolved in $\mathrm{DCM}(5 \mathrm{~mL})$ and cooled in an ice-water bath. To this was slowly added TMSOTf $(0.17 \mathrm{~mL}, 0.93 \mathrm{mmol}, 1.2 \mathrm{eq})$, and the resultant mixture allowed to warm to $23^{\circ} \mathrm{C}$ and stir for 3 h . Then the reaction mixture was diluted with further DCM (10 mL), and washed with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq}, 10 \mathrm{~mL})$. The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel buffered with 1% triethylamine in hexanes, using a mobile phase gradient of $0-20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes to yield the β-amino diarylenone $\boldsymbol{E} \mathbf{- 3}(114.0 \mathrm{mg}, 0.29 \mathrm{mmol}$, 37%) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36-$ $7.27(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.2, $141.4,137.4$ (2C), 136.7, 135.2, 133.2, 132.1, 129.5, 129.3, 129.0, 128.7, 128.3, 128.3, 126.9, 59.5, 40.6, 28.2; HRMS m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 390.1619$, found 390.2527.

(E)-4-((Benzyl(methyl)amino)methyl)-1-(4-chlorophenyl)-2-phenylpenta-1,4-dien-3-one hydrochloride (E-6)

The enone 4 ($300.0 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.0 \mathrm{eq}$), paraformaldehyde ($222.9 \mathrm{mg}, 7.2 \mathrm{mmol}, 6.0 \mathrm{eq}$), and N-benzylmethylamine hydrochloride ($405.3 \mathrm{mg}, 2.6 \mathrm{mmol}, 2.2 \mathrm{eq}$) were dissolved in toluene (3 mL) and heated at reflux for 1 h . Then the reaction was quenched with the addition of 1 mL of $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ while stirring. The solution was then partitioned between $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}, 6 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with further $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine $(5 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel buffered with 1% triethylamine in hexanes, using a mobile phase gradient of 3:100 to $\mathbf{1 5 : 1 0 0} \mathrm{mL}^{2}$ of $\mathrm{Et}_{2} \mathrm{O} /$ hexanes to yield the free base of $\boldsymbol{E}-\mathbf{6}$ as a yellow colored oil ($330.9 \mathrm{mg}, 0.82 \mathrm{mmol}) . \mathrm{R}_{\mathrm{f}} 0.18\left(20 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes on silica buffered with 1% triethylamine in hexanes). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H})$, $7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.84(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.6,146.8,141.5,139.2,137.5,136.1,134.8,133.5,131.6,129.7,128.9$ (2C), 128.6, $128.3,128.2,127.1,125.0,62.1,59.3,42.5$.

A small amount of the Z-isomer of the free base $\mathbf{6}(\mathbf{Z - 6})$ was also obtained in this reaction as described below.

The free base of $\boldsymbol{E}-\mathbf{6}$ above was dissolved in $\mathrm{DCM}(7 \mathrm{~mL})$ and shaken vigorously with 1 N HCl (aq, 5 mL) to form the hydrochloride salt. The aqueous layer was extracted with further DCM (5 $\mathrm{mL} \times 2$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo to yield the diaryldienone hydrochloride $\boldsymbol{E} \mathbf{- 6}(327.0 \mathrm{mg}, 0.75 \mathrm{mmol}, 62 \%$ from 4) as a white solid. Melting point $165.8-166.0^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.76$ $(\mathrm{m}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.13$
$(\mathrm{m}, 4 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=13.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (dd, $J=13.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=13.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=13.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ $(\mathrm{d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8,139.8,139.5,138.4,136.6,135.6$, 135.6, 132.6, 132.0, 131.5, 130.4, 129.6, 129.4, 129.3, 128.8, 128.7, 128.5, 60.4, 53.9, 39.7; HRMS m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 402.1619$, found 402.1610; Analytical HPLC $\mathrm{t}_{\mathrm{R}}=$ 3.45 min .

(Z)-4-((Benzyl(methyl)amino)methyl)-1-(4-chlorophenyl)-2-phenylpenta-1,4-dien-3-one

 hydrochloride (Z-6)The free base of Z-6 was isolated from the same reaction that generated the free base of \boldsymbol{E} - $\mathbf{6}$ above, as an orange colored oil ($108.8 \mathrm{mg}, 0.27 \mathrm{mmol}) . \mathrm{R}_{\mathrm{f}} 0.32\left(20 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes on silica buffered with 1% triethyamine in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.38(\mathrm{~m}, 2 \mathrm{H})$, $7.38-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{~s}, 4 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.11(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{t}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 200.8,145.5,141.9,139.3,138.2,134.5,134.0,131.0,130.1,129.0,128.85,128.80$, $128.6,128.5,128.4,127.1,126.4,62.5,56.3,42.3$.

The free base above was converted to the hydrochloride using the procedure outlined for $\boldsymbol{E}-\mathbf{6}$, to obtain the diaryldienone hydrochloride Z-6 ($96.4 \mathrm{mg}, 0.22 \mathrm{mmol}, 18 \%$ from 4$)$ as a white solid. Melting point $162.0-162.3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.63(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}$, $2 H), 7.48-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 3 \mathrm{H})$, $6.72(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=13.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=13.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.85(\mathrm{~m}$, 2H), $2.47(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.5, 141.8, 140.7, 137.01, $136.98,134.7,134.2,131.4,130.4,130.1,129.9,129.6,129.3,129.1$ (2C), 128.3, 126.2, 60.1, 51.4, 39.1; HRMS m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 402.1619$, found 402.1613 .

1-(4-Chlorophenyl)-4-methyl-2-phenylpenta-1,4-dien-3-ol (SI-2)

To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of the acrylonitrile $\boldsymbol{Z}-\mathbf{1}(2.0 \mathrm{~g}, 8.3 \mathrm{mmol}, 1.0 \mathrm{eq})$ in toluene was added a 1.0 M solution of DIBAL-H ($10.0 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.2 \mathrm{eq})$. The resultant suspension was stirred for 1 h at $-78^{\circ} \mathrm{C}$. The reaction was allowed to warm to $0^{\circ} \mathrm{C}$ and quenched by the addition of 5 mL of $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ at $0{ }^{\circ} \mathrm{C}$. To this was added a further $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}, 45 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$ $(50 \mathrm{~mL})$, and the mixture stirred vigorously for 30 min at $0^{\circ} \mathrm{C}$. After separating the layers, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine (75 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude enal SI-1 (2:1, E:Z) thus obtained was used for the next step without further purification.

A solution of the crude enal SI-1 above ($8.3 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (40 mL) was cooled to $0^{\circ} \mathrm{C}$. To this was added a solution of isopropenylmagnesium bromide (18.3 mL of a 0.50 M solution in THF, $9.1 \mathrm{mmol}, 1.1 \mathrm{eq}$) and the reaction left to stir for 1 h at $0^{\circ} \mathrm{C}$. To this mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}, 5 \mathrm{~mL})$ and the reaction contents partitioned between saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}$, $50 \mathrm{~mL})$, water $(50 \mathrm{~mL})$, and $\mathrm{DCM}(100 \mathrm{~mL})$. The aqueous layer was further extracted with DCM ($100 \mathrm{~mL} \times 2$). The combined organic layers were washed with brine (150 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude material was purified by column chromatography on silica gel, using a mobile phase gradient of 0 to 10% of EtOAc/hexanes to yield the alcohols Z-SI-2 ($485.0 \mathrm{mg}, 1.7 \mathrm{mmol}, 21 \%$) and \boldsymbol{E}-SI-2 (364.4 mg , $1.3 \mathrm{mmol}, 15 \%)$.

Z-SI-2: Yellow Solid. Melting point $65.9-66.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34$ $(\mathrm{m}, 4 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{q}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 145.6,142.5,139.6$, 135.4, 133.3, 131.8, 130.3, 128.7, 128.3, 128.2, 127.8, 111.4, 73.2, 20.1; HRMS m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}[\mathrm{M}-\mathrm{OH}]^{+}$267.0935, found 267.0921.
\boldsymbol{E}-SI-2: Pale-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H})$, $7.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 4.89(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.86(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.5,142.9,138.0$, 135.1, 132.6, 130.6, 129.2, 128.8, 128.2, 127.8, 126.6, 113.3, 80.6, 18.4; HRMS m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}[\mathrm{M}-\mathrm{OH}]^{+}$267.0935, found 267.0920.

(Z)-1-(4-Chlorophenyl)-4-methyl-2-phenylpenta-1,4-dien-3-one (Z-8)

A solution of the alcohol Z-SI-2 $(450.9 \mathrm{mg}, 1.58 \mathrm{mmol}, 1.0 \mathrm{eq})$ in DCM $(10 \mathrm{~mL})$ was cooled in an ice-water bath. To this was added Dess-Martin periodinane ($738.7 \mathrm{mg}, 1.74 \mathrm{mmol}, 1.1 \mathrm{eq}$) and the reaction left to stir for 20 min at $0^{\circ} \mathrm{C}$. To this mixture was added a saturated NaHCO_{3} (aq, 3 mL) and the mixture stirred for 5 min . The contents were then partitioned between DCM $(40 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(\mathrm{aq}, 50 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with further DCM ($20 \mathrm{~mL} \times 2$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude material was purified by column chromatography on silica gel, using a mobile phase gradient of 0 to 3% of

EtOAc/hexanes to yield the dienone $\mathbf{Z - 8}(258.3 \mathrm{mg}, 0.91 \mathrm{mmol}, 58 \%)$ as a pale-yellow wax. ${ }^{1} \mathrm{H}$ NMR $\delta 7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 5.99$ $(\mathrm{s}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 201.5,144.4,141.8,138.2,134.6,134.0,130.3$, $130.0,129.0,128.9,128.5,128.4,126.3,17.0 ; \mathrm{HRMS} \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}$ 283.0884, found 283.0864.

(E)-1-(4-Chlorophenyl)-4-methyl-2-phenylpenta-1,4-dien-3-one (E-8)

Using the same procedure outlined for $\mathbf{Z - 8}$ above, the isomer $\boldsymbol{E}-\mathbf{8}$ was obtained as a white solid (54\%). Melting point $93.2-93.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.14$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{p}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{p}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=1.5,0.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 199.0,144.3,141.3,136.4,136.3,134.6$, 133.5, 131.5, 129.4, 129.0, 128.6, 128.2, 126.4, 18.8; HRMS m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}$ 283.0884, found 283.0863.

(Z)-1-(4-Chlorophenyl)-4-(methyl-d)-2-phenylpenta-1,4-dien-3-one (Z-8-d, H:D 0.84:1 mixture)

The enone 4 ($77.0 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0 \mathrm{eq}$), paraformaldehyde ($30.3 \mathrm{mg}, 0.98 \mathrm{mmol}, 3.3 \mathrm{eq}$), and N-methyl-1-phenylmethan- d_{2}-amine hydrochloride ${ }^{7}(100.0 \mathrm{mg}, 0.63 \mathrm{mmol}, 2.1 \mathrm{eq})$ were dissolved in dimethylformamide (1 mL) and heated at $125^{\circ} \mathrm{C}$ for 3 h . Then the volatiles were removed in vacuo and the remaining contents partitioned between $\mathrm{Et}_{2} \mathrm{O}(7 \mathrm{~mL})$ and $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ (aq, 7 mL). The layers were separated, and the aqueous layer was extracted with further $\mathrm{Et}_{2} \mathrm{O}$ (5 $\mathrm{mL} \times 2$). The combined organic layers were washed with brine (5 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel buffered with 1% triethylamine in hexanes, using a mobile phase gradient of 3:100 to $\mathbf{1 5 : 1 0 0} \mathrm{mL}^{2}$ of $\mathrm{Et}_{2} \mathrm{O} /$ hexanes to yield $\boldsymbol{Z}-\mathbf{8}-\boldsymbol{d}(\mathrm{H}: \mathrm{D} 0.84: 1$ mixture) as a yellow-colored wax ($28.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 33 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.31(\mathrm{~m}$, $5 \mathrm{H}), 7.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{t}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.83-5.80(\mathrm{~m}, 1 \mathrm{H}), 1.95\left(\mathrm{~s}, 1.34 \mathrm{H},-\mathrm{CH}_{3}\right), 1.94-1.92\left(\mathrm{br} \mathrm{m}, 1.07 \mathrm{H},-\mathrm{CH}_{2} \mathrm{D}\right) ;{ }^{2} \mathrm{H}$ NMR (77 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.94(\mathrm{t}, J=2.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.53,201.51,144.39$, 144.36, 141.9, 138.2, 134.6, 134.0, 130.3, 130.0, 129.0, 128.9, 128.5, 128.4, 126.3, $17.0\left(\mathrm{CH}_{3}\right)$, $16.7\left(\mathrm{t}, \mathrm{J}=19.7 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{D}\right)$; HRMS m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{DClO}[\mathrm{M}+\mathrm{H}]^{+}$284.0947, found 284.0935; HRMS m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}$283.0884, found 283.0873.

(Z)-1-(4-Chlorophenyl)-4-((methyl(phenylmethyl- d_{2})amino)methyl)-2-phenylpenta-1,4-

 dien-3-one ($Z-6-d_{2}$)From the same reaction (above) that yielded $\mathbf{Z - 8 - \boldsymbol { d }}$, compound $\boldsymbol{Z} \mathbf{- 6} \mathbf{-} \boldsymbol{d} \mathbf{2}$ was isolated as a paleyellow wax ($28.8 \mathrm{mg}, 71.3 \mu \mathrm{~mol}, 24 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.38$ $-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{~s}, 4 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{q}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{2} \mathrm{H} \operatorname{NMR}\left(77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.46(\mathrm{~s}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.9,145.5,141.9,138.2,134.5,134.0,131.0,130.1,129.0,128.84,128.82$,
$128.6,128.5,128.4,128.3,127.1,126.4,61.7$ (weak p, $J=19.2 \mathrm{~Hz}$), $56.2,42.2 ;$ HRMS m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{D}_{2} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 404.1745$, found 404.1740.

3-(4-Chlorophenyl)-5-methylene-2-phenylcyclopent-2-en-1-one (13)

The enone $4(1.0 \mathrm{~g}, 3.9 \mathrm{mmol}, 1.0 \mathrm{eq})$, paraformaldehyde ($0.72 \mathrm{~g}, 23.4 \mathrm{mmol}, 6.0 \mathrm{eq}$), and N benzylmethylamine hydrochloride ($1.36 \mathrm{~g}, 8.6 \mathrm{mmol}, 2.2 \mathrm{eq}$) were dissolved in toluene (8 mL) and heated at reflux for 1 h . Then the reaction was quenched with the addition of 1 mL of 10% $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ while stirring. The solution was then partitioned between $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and 10% $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}, 30 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with further $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine (30 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel buffered with 1% triethylamine in hexanes using a mobile phase gradient of 3:100 to $15: 100 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O} /$ hexanes. The fractions containing $\mathbf{1 3}$ were further purified by preparative TLC on silica gel using a mobile phase of $15 \% \mathrm{EtOAc} /$ hexanes to give cyclopentenone 13 as an off-white solid ($10.4 \mathrm{mg}, 37.0 \mu \mathrm{~mol}, 0.9 \%) . \mathrm{R}_{\mathrm{f}} 0.16(10 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 7 \mathrm{H}), 6.31-$ $6.26(\mathrm{~m}, 1 \mathrm{H}), 5.61-5.57(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.21(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 194.1, $160.5,142.0,141.3,136.2,133.7,132.3,129.8,129.5,129.0,128.8,128.4,117.6,35.2 ;$ HRMS m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}$281.0728, found 281.0716.

4-(4-Chlorophenyl)-3-phenylbutan-2-one (SI-8) ${ }^{8}$

To a flask containing phenylacetone ($0.52 \mathrm{~mL}, 3.9 \mathrm{mmol}, 1.0 \mathrm{eq}$) and sodium hydroxide $(0.17 \mathrm{~g}$, $4.3 \mathrm{mmol}, 1.1 \mathrm{eq})$ was added 1-(bromomethyl)-4-chlorobenzene ($964.0 \mathrm{mg}, 4.7 \mathrm{mmol}, 1.2 \mathrm{eq}$). To this was added 2 mL each of water and DCM. After commencing stirring, tetrabutylammonium bisulfate ($1.32 \mathrm{mg}, 3.9 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added and the resultant solution stirred overnight at $40^{\circ} \mathrm{C}$. The reaction mixture was then diluted with water $(5 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine (3 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel using a mobile phase gradient of $0-4 \% \mathrm{EtOAc} / \mathrm{hexanes}$ to give ketone SI-8 ($630.0 \mathrm{mg}, 2.4 \mathrm{mmol}, 62 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ $(\mathrm{dd}, J=13.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=13.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 207.5,138.3,138.2,132.0,130.5,129.1,128.5$ (2C), 127.7, 61.6, 37.8, 29.6.

2-((Benzyl(methyl)amino)methyl)-5-(4-chlorophenyl)-4-phenylpent-1-en-3-one (14)

The ketone SI-8 ($50.0 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0 \mathrm{eq}$), paraformaldehyde ($19.9 \mathrm{mg}, 0.64 \mathrm{mmol}, 3.3 \mathrm{eq}$), and N -benzylmethylamine hydrochloride ($67.8 \mathrm{mg}, 0.43 \mathrm{mmol}, 2.2 \mathrm{eq}$) were dissolved in anhydrous DMF (3 mL) and heated at $130^{\circ} \mathrm{C}$ for 1.5 h . Then volatiles were removed in vacuo and the residue partitioned between $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}, 6 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with further $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL} \times 2)$. The combined
organic layers were washed with brine (5 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by preparative scale TLC using a mobile phase of $\mathrm{Et}_{2} \mathrm{O}$:hexanes:triethyamine (25:75:2) to yield the β-aminoenone 14 ($15.1 \mathrm{mg}, 37.4 \mu \mathrm{~mol}, 20 \%$) as a pale-yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.54-12.45(\mathrm{~m}, 1 \mathrm{H}), 12.45-12.37(\mathrm{~m}$, $1 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.19-$ $7.09(\mathrm{~m}, 9 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 4 \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{dd}, J=8.4,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.00$ (ddd, $J=13.6,9.6,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.92-3.71(\mathrm{~m}, 6 \mathrm{H}), 3.38(\mathrm{dt}, J=13.7,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{dd}, J$ $=13.7,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.25(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 199.32,199.25,138.4,138.0,137.9,137.6,137.5,136.7,136.5,132.53,132.50,131.3$, $130.6,130.5,130.3,130.3,129.51,129.48,128.7,128.43,128.37,128.1,128.0,127.9,59.9$, $59.7,54.8,54.7,52.4,52.3,39.3,39.2,38.9,38.4 ; \mathrm{HRMS} \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}$ 404.1776, found 404.1767.

(E)-1-(4-Chlorophenyl)-2-phenylhexa-1,5-dien-3-one (SI-9)

The enal \boldsymbol{E}-SI-1 ($2.79 \mathrm{~g}, 11.5 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in 50 mL of $\mathrm{Et}_{2} \mathrm{O}$ and then cooled to $78{ }^{\circ} \mathrm{C}$. To this was slowly added a 1.0 M solution of allyl magnesium bromide in $\mathrm{Et}_{2} \mathrm{O}(14.9 \mathrm{~mL}$, 14.9 mmol 1.3 eq), and the solution stirred for 30 min at $-78^{\circ} \mathrm{C}$. Then 2.5 mL of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the solution allowed to warm to $23{ }^{\circ} \mathrm{C}$ whilst stirring. The reaction mixture was then diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}, 75 \mathrm{~mL})$, water (30 mL), and DCM (100 mL). After layer separation, the aqueous layer was extracted with further $\mathrm{DCM}(30 \mathrm{~mL} \times$ 2). The combined organic layers were washed with brine (100 mL), dried over anhydrous
MgSO_{4}, filtered, and the volatiles removed in vacuo to give the crude alcohol (2.77 g) as a yellowish solid.

The crude alcohol above ($2.72 \mathrm{~g}, 9.6 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in 70 mL of DCM, and the resultant solution cooled in an ice-water bath. To that was added Dess-Martin periodinane (4.91 $\mathrm{g}, 11.5 \mathrm{mmol}, 1.2 \mathrm{eq}$) in three portions, and the reaction mixture stirred at $0^{\circ} \mathrm{C}$ for 1 h . Then 30 mL of saturated aq. NaHCO_{3} solution was added to the flask and stirred for 5 min . Flask contents were then partitioned between further $\mathrm{DCM}(150 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(\mathrm{aq}, 150 \mathrm{~mL})$, and water (20 mL). The organic layer was removed and washed with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq}, 50 \mathrm{~mL}$ $\times 2$), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel using a mobile phase gradient of $0-3 \%$
$\mathrm{EtOAc} / \mathrm{hexanes}$ to give the alkene SI-9 ($1.98 \mathrm{~g}, 7.0 \mathrm{mmol}, 61 \%)$ as an off-white solid. Melting point $75.6-77.0{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{dd}, J$ $=7.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{ddt}, J=17.0,10.3$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dq}, J=10.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dq}, J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dt}, J=6.8,1.4$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.2,140.7,137.2,136.6,135.3,133.2,132.2,131.3$, 129.7, 129.4, 128.7, 128.4, 118.6, 45.0; HRMS m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}$283.0884, found 283.0877.

(E)-4-(4-Chlorophenyl)-1-(oxiran-2-yl)-3-phenylbut-3-en-2-one (SI-3)

To a solution of the alkene SI-9 in acetone/EtOAc/water (10:10:5 mL) cooled in an ice-water bath, was added $\mathrm{NaHCO}_{3}(5.21 \mathrm{~g}, 62.0 \mathrm{mmol}, 25 \mathrm{eq})$ whilst stirring. To this suspension was added oxone ($6.0 \mathrm{~g}, 9.8 \mathrm{mmol}, 3.93 \mathrm{eq}$) in three portions (2.0 g each, at 1 h intervals). After stirring the solution at $0^{\circ} \mathrm{C}$ for 3 hours, the reaction mixture was partitioned between $\mathrm{EtOAc}(80$ mL) and saturated sodium thiosulfate ($\mathrm{aq}, 100 \mathrm{~mL}$). The aqueous layer was extracted with further

EtOAc ($20 \mathrm{~mL} \times 2$). The combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq}, 100$ $\mathrm{mL} \times 2$), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude material was purified by column chromatography on silica gel using a mobile phase gradient of $10-20 \%$ EtOAc/hexanes. The product containing fractions were combined and volatiles removed in vacuo. Residue was dissolved in to chloroform and concentrated in vacuo to near dryness. Resultant concentrated solution was diluted with hexanes, and the flask left in a refrigerator, where the product crystallizes out. Filtration of the solution and washing the product with hexanes gives the oxirane SI-3 ($203.3 \mathrm{mg}, 0.68 \mathrm{mmol}, 27 \%$) as white needle-like crystals. Melting point $85.9-86.3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 3 \mathrm{H})$, $7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{tdd}, J=5.6,4.0,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.90-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{dd}, J=17.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=4.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.5,140.6,137.6,136.2,135.5,133.0,132.3,129.6,129.5,128.7$, 128.5, 48.5, 47.0, 43.6; HRMS m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$299.0833, found 299.0830;

Analytical HPLC $\mathrm{t}_{\mathrm{R}}=4.37 \mathrm{~min}$.

(E)-3-(4-Chlorophenyl)-2-(4-fluorophenyl)acrylic acid (SI-10) ${ }^{9}$

To 4-fluorophenylacetic acid ($15.0 \mathrm{~g}, 95.4 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 4-chlorobenzaldehyde (13.61 g , $95.4 \mathrm{mmol}, 1.0 \mathrm{eq}$) in a flask was added a mixture of acetic anhydride and triethylamine (v/v $1: 1$,
37.5 mL each). The resultant suspension was stirred at $120^{\circ} \mathrm{C}$ for 6 h . Then it was cooled to 23 ${ }^{\circ} \mathrm{C}$ and 75 mL of conc. HCl and 225 mL of water were added whilst stirring. The flask was then left at $23{ }^{\circ} \mathrm{C}$ overnight, and the resultant precipitate filtered and washed with water. This crude product was recrystallized from ethanol/water (left at $23^{\circ} \mathrm{C}$ overnight to complete precipitation) to yield acrylic acid SI-10 as a pale-brown solid ($15.50 \mathrm{~g}, 56.0 \mathrm{mmol}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 12.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 4 \mathrm{H})$, $7.07(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 168.0,161.7(\mathrm{~d}, J=244.4 \mathrm{~Hz})$, $138.1,133.6,133.3,133.0,131.8,131.7(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 128.5,128.14,128.08,115.5(\mathrm{~d}, J=21.3$ Hz).

(E)-3-(4-Chlorophenyl)-2-(4-fluorophenyl)- N -methacryloylacrylamide (E-SI-4)

The acrylic acid SI-10 ($15.0 \mathrm{~g}, 54.2 \mathrm{mmol}, 1.0 \mathrm{eq}$) was suspended in dichloromethane (225 mL) and the flask cooled to $0^{\circ} \mathrm{C}$. To this was added oxalyl chloride ($5.62 \mathrm{~mL}, 65.1 \mathrm{mmol}, 1.2 \mathrm{eq}$) followed by anhydrous DMF (1.0 mL , slowly), and the solution left to stir at $0^{\circ} \mathrm{C}$ for 4 h . Then the volatiles were removed in vacuo to yield the crude acid chloride as a brown waxy solid.

In a separate flask cooled in a Dry Ice-acetone bath, $n-\operatorname{BuLi}(21.5 \mathrm{~mL}$ of a 2.40 M solution in hexanes, $51.5 \mathrm{mmol}, 0.95 \mathrm{eq})$ was added to a suspension of methacrylamide $(4.47 \mathrm{~g}, 51.5 \mathrm{mmol}$, $0.95 \mathrm{eq})$ in tetrahydrofuran (250 mL), and stirring continued for further 4 h at $23^{\circ} \mathrm{C}$. Then the acid chloride synthesized above was slowly added to the flask as a solution in tetrahydrofuran $(50 \mathrm{~mL})$. The resultant mixture was stirred overnight at $23^{\circ} \mathrm{C}$, and then partitioned between EtOAc (500 mL) and saturated $\mathrm{NH}_{4} \mathrm{Cl} /$ water ($400: 100 \mathrm{~mL}$). The organic layer was separated and washed sequentially with saturated $\mathrm{NaHCO}_{3} /$ water $(200: 200 \mathrm{~mL})$ and brine $(300 \mathrm{~mL})$. Then it was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude residue was purified by column chromatography on silica gel using a mobile phase gradient of $0-20 \%$

EtOAc/hexanes, followed by a gradient of $15-20 \% \mathrm{EtOAc} / \mathrm{hexanes}$ containing 2\%
triethylamine additive. The isolated pale-yellow solid was then further purified by recrystallization in dichloromethane/hexanes to yield the N-methacryloylacrylamide \boldsymbol{E}-SI-4 as a white solid (4.04, $11.8 \mathrm{mmol}, 23 \%)$. Melting point $146.2-146.9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.6,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.83(\mathrm{t}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6,164.1,163.2(\mathrm{~d}, J=250.8 \mathrm{~Hz})$, 140.1, 140.0, 135.8, 133.2, 132.6, 131.9, $131.8(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 128.9$, 121.9, $117.6(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 18.2$; HRMS m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClFNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 344.0848$, found 344.0830 ; Analytical $H P L C t_{R}=4.26 \mathrm{~min}$.

(Z)-3-(4-Chlorophenyl)-2-(4-fluorophenyl)- N -methacryloylacrylamide (Z-SI-4)

The Z-isomer (Z-SI-4) can be isolated from the same reaction chromatographed above that gave \boldsymbol{E}-SI-4. Off-white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33$ (br s, 1 H), $7.48(\mathrm{dd}, J=8.9,5.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{q}$, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{dd}, J=1.6,0.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,165.1$, $163.1(\mathrm{~d}, J=248.6 \mathrm{~Hz}), 139.3,137.3,134.5,133.9,132.4(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 129.7,129.1,128.62$, $128.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 123.1,116.0(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 18.2 ; \mathrm{HRMS} \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClFNO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 344.0848$, found 344.0845 .

(E)-4-((Benzylthio)methyl)-1-(4-chlorophenyl)-2-phenylpenta-1,4-dien-3-one (15)

To a solution of the hydrochloride $\boldsymbol{E}-\mathbf{6}(60.0 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0 \mathrm{eq})$ in DCM (1.5 mL) was added a 1.0 M solution of benzyl mercaptan in $\operatorname{DCM}(0.08 \mathrm{~mL}, 82.0 \mu \mathrm{~mol}, 0.6 \mathrm{eq})$, and the solution stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . Then the volatiles were removed in vacuo, and the residue passed through silica gel (0 to $8 \% \mathrm{EtOAc} /$ hexanes). After concentrating the product containing fractions, it was purified by preparative scale TLC on silica gel using a mobile phase of 50% $\mathrm{DCM} /$ hexanes to give compound $15(28.2 \mathrm{mg}, 69.6 \mu \mathrm{~mol}, 85 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{q}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H})$, $3.37(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4,144.5,141.3,138.0,137.8$, $136.1,134.9,133.4,131.7,129.6,129.2,129.1,128.69,128.67,128.3,127.3,125.5,36.3,32.7$; HRMS m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClOS}[\mathrm{M}+\mathrm{H}]^{+} 405.1074$, found 405.1054.

(E)-3-(4-Chlorophenyl)-2-phenyl-1-(2-phenyl-1,4,5,6-tetrahydropyrimidin-5-yl)prop-2-en-

1-one (16)
Benzamidinium chloride (hydrate, $35.4 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.0 \mathrm{eq}$) and the diaryldienone hydrochloride $\boldsymbol{E}-6$ ($96.2 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.0 \mathrm{eq}$) were dissolved in to a $1: 1$ mixture of $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ $(3 \mathrm{~mL})$. To this was added triethylamine $(0.13 \mathrm{~mL}, 0.93 \mathrm{mmol}, 4.2 \mathrm{eq})$ and the mixture heated at reflux for 30 min . After cooling the reaction mixture back to $23^{\circ} \mathrm{C}$ volatiles were removed in vacuo and the residue partitioned between DCM and 10% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(4 \mathrm{~mL}$ each $)$. The aqueous layer was extracted with further DCM ($2 \mathrm{~mL} \times 2$). The combined organic layers were washed
with brine (5 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by preparative scale TLC using a mobile phase of MeOH : DCM:triethyamine (5:95:2). Thus obtained white solid was suspended in chloroform (1 mL), filtered, and volatiles removed in vacuo to yield the tetrahydropyrimidinyl derivative $16(5.7 \mathrm{mg}, 14.2 \mu \mathrm{~mol}, 6 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.45-$ $7.31(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.64(\mathrm{dd}, J=13.0,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{dd}, J=13.4,9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{tt}, J=9.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 201.7,154.5,140.8,137.9,136.13,136.09,135.5,133.1,132.2$, $130.2,129.6,129.5,128.7,128.60,128.58,126.3,45.0,39.2 ;$ HRMS m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 401.1415$, found 401.1399 .

Crystal Structures

$\underline{\text { X-ray Single Crystal Analysis }}$

In a typical experiment, a selected crystal of the compound was mounted on a Bruker dual source (micro-focus Cu and Mo) single crystal x-ray diffractometer with Apex-11 detector. The diffraction data were measured at 100(2) K.

The structures were solved and refined using the SHELXTL software package. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed at calculated positions. The deposition numbers (Cambridge structural database) and selected crystallographic parameters for all the compounds are compiled in Table S2, and the corresponding crystal structures tabulated in Table S3.

Table S2. Single-Crystal X-ray Diffraction Parameters and Crystal Data.

	4	E-8	Z-SI-2	SI-3	E-SI-4	Z-SI-4
Deposition Number	$\begin{gathered} \text { CCDC } \\ 1896680 \end{gathered}$	$\begin{gathered} \text { CCDC } \\ 1896679 \end{gathered}$	$\begin{gathered} \text { CCDC } \\ 1896681 \end{gathered}$	$\begin{gathered} \text { CCDC } \\ 1896682 \end{gathered}$	$\begin{gathered} \text { CCDC } \\ 1896684 \end{gathered}$	$\begin{gathered} \text { CCDC } \\ 1896683 \end{gathered}$
Formula	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClO}$	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClO}$	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClO}$	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClO}_{2}$	$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClFNO}_{2}$	$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClFNO}_{2}$
FW	256.71	282.75	284.76	298.77	343.78	343.78
Crystal System	Monoclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P $21 / \mathrm{n}$	P $21 / \mathrm{c}$	P $\overline{1}$	P $21 / \mathrm{n}$	P $21 / \mathrm{c}$	P 21/c
a (\AA)	5.9388(3)	5.8817(6)	14.2826(6)	5.76710(10)	8.5700(13)	8.7741(2)
b (${ }_{\text {a }}$)	22.8069(11)	28.002(3)	15.7328(6)	8.3553(2)	26.883(4)	17.0251(4)
c (\AA)	9.7824(5)	8.7384(8)	15.9073(6)	30.0196(7)	8.6441(14)	22.6707(5)
$\alpha\left({ }^{\circ}\right)$	90	90	105.171(2)	90	90	90
$\beta\left({ }^{\circ}\right.$)	105.541(3)	97.955(6)	91.882(3)	94.7320(10)	104.374(11)	91.4711(17)
$\gamma\left({ }^{\circ}\right)$	90	90	114.330(2)	90	90	90
$\mathrm{V}\left(\AA^{3}\right)$	1276.5(1)	1425.4(2)	3103.0(2)	1441.59	1929.15	3385.43
Z	Z: 4 Z': 0	Z: 4 Z': 0	Z: 8 Z': 0	Z: 4 Z': 0	Z: 4 Z': 0	Z: 8 Z': 0
R-Factor (\%)	5.63	7.58	5.16	4.3	5.8	4.11

Table S3. Crystal structures for the compounds 4, E-8, Z-SI-2, SI-3, and SI-4 (E/Z).

Compound	Crystal Structure

Substrate scope for $\boldsymbol{\beta}$-amino diaryldienone synthesis

*All compounds synthesized (from the corresponding methyl ketones) ${ }^{10,11}$ and purified according to the general procedure outlined for $\boldsymbol{E}-\mathbf{6}$ and Z-6. Unless otherwise specified, all are white to off-white solids isolated as the hydrochloride salt.

**Lack of Z isomer yields for some compounds in this figure does not necessarily represent lack of Z isomer formation.

Characterization data for $\boldsymbol{\beta}$-amino diaryldienones

Compound	NMR data ${ }^{1}$ and melting points ${ }^{2}$	Formula ${ }^{3}$ m/z (calc.)	$\begin{gathered} \mathrm{m} / \mathrm{z} \\ \text { (meas.) } \end{gathered}$
E-6	${ }^{1}$ H NMR $\delta 12.76(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.47$ $-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 3 \mathrm{H})$, $7.18-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.59$ (s, 1H), 4.28 (dd, $J=13.1,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.19 (dd, $J=13.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=13.1$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=13.1,6.8 \mathrm{~Hz}, 1 \mathrm{sH}), 2.65$ (d, $J=4.9 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 196.8,139.8,139.5$, 138.4, 136.6, 135.62, 135.55, 132.6, 132.0, 131.5, 130.4, 129.6, 129.4, 129.3, 128.8, 128.7, 128.5, 60.4, 53.9, 39.7; Melting point $165.8-166.0^{\circ} \mathrm{C}$.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClNO} \\ 402.1619 \end{gathered}$	402.1610
Z-6	${ }^{1} \mathrm{H}$ NMR $\delta 12.63(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.48$ $-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{dd}$, $J=13.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=13.0,5.7 \mathrm{~Hz}$, 1 H), $3.92-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.47$ (d, $J=4.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR δ 199.5, 141.8, 140.7, 137.01, 136.98, 134.7, 134.2, 131.4, 130.4, 130.1, 129.9, 129.6, 129.3, 129.1 (2C), 128.3, 126.2, 60.1, 51.4, 39.1; Melting point $162.0-162.3^{\circ} \mathrm{C}$.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{25 \mathrm{ClNO}} \\ 402.1619 \end{gathered}$	402.1613
E-SI-11	${ }^{1}$ H NMR $\delta 13.18(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.33$ ($\mathrm{s}, 1 \mathrm{H}$), $7.25(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{~d}, ~ J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.96(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.03-2.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 196.7, 139.5, 139.4 (2C), 135.7, 135.6, 135.5, 132.5, 131.9, 129.4, 129.2, 128.8, 128.8, (one low-field carbon is overlapped), 63.7, 55.7, 52.1; Melting point $171.5-172.1^{\circ} \mathrm{C}$.	$\begin{gathered} {[\mathrm{M}-\mathrm{H}]} \\ \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O} \\ 365.1426 \end{gathered}$	365.1175
E-SI-12	$\begin{aligned} & { }^{1} \mathrm{H} \text { NMR } \delta 12.22(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.31 \\ & (\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{~d}, J \\ & =8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), \\ & 3.46(\mathrm{br} \mathrm{~d}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 2 \mathrm{H}), \\ & 2.35-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.34 \\ & (\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C} \text { NMR } \delta 196.9,139.5,139.3,139.0, \\ & 136.1,135.6,135.5,132.6,131.9,129.3,129.2, \\ & 128.8,128.7,55.1,53.4,22.7,22.2 . \end{aligned}$	$\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{CINO} \\ 366.1619 \end{gathered}$	366.1608
Z-SI-12	$\begin{aligned} & { }^{1} \mathrm{H} \text { NMR } \delta 12.09(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.35 \\ & (\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{dd}, J=7.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J= \\ & 8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 3.83 \\ & (\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.54 \end{aligned}$	$\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{25 \mathrm{CINO}} \\ 366.1619 \end{gathered}$	366.1608

	$\begin{aligned} & (\operatorname{tdd}, J=12.3,8.9,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.12(\mathrm{~m}, 2 \mathrm{H}), \\ & 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.31(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C} \text { NMR } \delta \\ & \text { 199.5, 142.3, 140.9, 136.9, 136.7, 134.6, 134.4, } \\ & \text { 130.0, 129.8, 129.3, 129.1, 129.0, 126.2, 53.1, 52.3, } \\ & \text { 22.6, 22.1. } \end{aligned}$		
E-SI-13	${ }^{1} \mathrm{H}$ NMR $\delta 12.55(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.35$ $-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.11(\mathrm{~m}$, $3 \mathrm{H}), 6.63(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.57-3.49(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.22-$ $2.12(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 199.6$, 140.8, 140.2, 137.9, 137.0, 134.6, 134.4, 130.1, 129.9, 129.3, 129.10, 129.07, 126.2, 53.5, 50.8, 23.4.	$\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClNO} \\ 352.1463 \end{gathered}$	352.1442
E-SI-14	${ }^{1} \mathrm{H}$ NMR $\delta 12.68(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.47$ $-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.15(\mathrm{~m}$, $2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 4 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{dd}$, $J=13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=13.1,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.00(\mathrm{dd}, J=13.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=$ $12.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.65(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.28(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 197.0,142.0,140.3,138.1,137.7$, 136.7, 136.2, 131.5, 131.2, 130.9, 130.3, 129.5, 129.4, 129.3, 129.2, 128.6, 128.4, 60.2, 54.1, 39.5, 21.5.	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO} \\ 382.2165 \end{gathered}$	382.2143
Z-SI-14	${ }^{1} \mathrm{H}$ NMR $\delta 12.53(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.47$ $-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H})$, 7.07 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.73(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=13.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-$ 3.89 (m, 3H), 2.46 (d, J=4.6 Hz, 3H), 2.20 (s, 3H); ${ }^{13}$ C NMR $\delta 200.1,141.2,139.2,138.9,137.4,137.2$, 133.0, 131.7, 131.4, 130.3, 129.6, 129.5, 129.2, $128.8,128.6,126.3$, (one low-field carbon is overlapped), 59.8, 51.7, 39.2, 21.3.	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO} \\ 382.2165 \end{gathered}$	382.2144
E-SI-15	${ }^{1} \mathrm{H}$ NMR $\delta 12.71(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.49$ $-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.13$ (m, $2 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 6.57 (s, 1H), 4.29 (dd, $J=13.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (dd, $J=13.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ (dd, $J=13.3,3.3 \mathrm{~Hz}$, 1 H), 3.94 (dd, $J=13.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.65 (d, $J=3.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 196.8,163.25(\mathrm{~d}, J=251.8 \mathrm{~Hz})$, $140.4,138.7(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 138.0,136.7,135.7$, $132.9(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 131.5,130.4,130.31,130.28$, $129.6,129.4,129.3,128.6,115.7(\mathrm{~d}, J=21.6 \mathrm{~Hz})$, 60.3, 54.1, 39.6.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{25} \mathrm{FNO} \\ 386.1915 \end{gathered}$	386.1906
Z-SI-15	$\begin{aligned} & \text { Purity > 85\%. }{ }^{1} \mathrm{H} \text { NMR } \delta 12.59(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.56 \\ & (\mathrm{~m}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 6 \mathrm{H}), \\ & 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=8.6 \mathrm{~Hz}, \\ & 2 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=13.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}) \text {, } \end{aligned}$	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{25} \mathrm{FNO} \\ 386.1915 \end{gathered}$	386.1905

	4.02 (dd, $J=13.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.85(\mathrm{~m}, 2 \mathrm{H})$, 2.46 (d, $J=3.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 199.6, 162.6 (d, $J=250.0 \mathrm{~Hz}$), overlap of impurity peaks, 116.0 (d, J $=21.83 \mathrm{~Hz}$), $60.1,51.4,39.0$.		
E-SI-16	${ }^{1} \mathrm{H}$ NMR $\delta 12.77(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.47$ $-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ (s, $1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.19-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=13.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=13.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 196.7, 141.1, 139.1, 138.3, 137.7, 136.6, $135.2,131.5,130.9(\mathrm{q}, J=32.7 \mathrm{~Hz}), 130.7,130.4$, 129.6, 129.4, 129.2, 128.9, 128.5, 125.4 (q, $J=3.8$ $\mathrm{Hz}), 123.9(\mathrm{q}, J=272.2 \mathrm{~Hz}), 60.4,53.6,39.7$.	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO} \\ 436.1883 \end{gathered}$	436.1860
Z-SI-16	${ }^{1} \mathrm{H}$ NMR $\delta 12.68(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.52$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.47-7.43$ (m, 3H), $7.42-7.34$ (m, 6H), 7.32 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18 (s, 1H), 6.73 $(\mathrm{s}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=13.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=$ $13.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.84(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~d}, J=$ 4.7 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR δ 199.0, 142.18, 142.15 , 139.3, 137.0, 136.7, 131.4, 130.46, 130.46 (q, $J=$ $32.8 \mathrm{~Hz}), 129.7,129.6,129.42,129.41,128.9,128.2$, $126.3,125.8(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.8(\mathrm{q}, J=272.3 \mathrm{~Hz})$, 60.2, 51.3, 39.0.	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO} \\ 436.1883 \end{gathered}$	436.1860
Z-SI-17	${ }^{1} \mathrm{H}$ NMR $\delta 12.53(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.47$ $-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H})$, 7.12 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 6.74 (s, 1H), 4.16 (dd, $J=13.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-$ 3.91 (m, 3H), 3.70 (s, 3H), 2.49 (d, J=4.7 Hz, 3H); ${ }^{13}$ C NMR $\delta 200.3,159.9,141.1,138.2,137.6,137.2$, 131.4 (2C), 130.3, 130.1, 129.5, 129.2, 128.6, 128.5, 128.3, 126.2, 114.3, (one low-field carbon is overlapped), 59.9, 55.3, 51.7, 39.2.	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{2} \\ 398.2120 \end{gathered}$	398.2110
E-SI-18	${ }^{1} \mathrm{H}$ NMR $\delta 12.80(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.48$ $-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H})$, $7.22-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dt}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ ($\mathrm{s}, 1 \mathrm{H}$), 4.28 (dd, $J=13.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=$ $13.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=13.2,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.93(\mathrm{dd}, J=13.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, 3H); ${ }^{13} \mathrm{C}$ NMR δ 196.7, 140.3, 138.9, 138.8, 136.6, 136.0, 135.3, 134.4, 131.5, 130.4, 130.4, 129.7, $129.6,129.5,129.3,129.2,128.83,128.76,128.5$, $60.3,53.7,39.6$; Melting point $143.6-144.5^{\circ} \mathrm{C}$.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClNO} \\ 402.1619 \end{gathered}$	402.1599
E-SI-19	${ }^{1} \mathrm{H}$ NMR $\delta 12.76(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.48$ $-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.14(\mathrm{~m}$,	$\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{FNO}$	386.1895

	4H), 6.94 (dd, $J=8.6,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.72$ (dt, $J=$ $10.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=13.1$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (dd, $J=13.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ (dd, $J=13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (dd, $J=13.2,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.65(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 196.8$, $162.5(\mathrm{q}, J=246.2 \mathrm{~Hz}), 140.1,139.1(\mathrm{q}, J=2.6 \mathrm{~Hz})$, 138.8, 136.6, 136.3 (q, $J=7.8 \mathrm{~Hz}$), 135.3, 131.5, $130.4,130.0(\mathrm{q}, J=8.4 \mathrm{~Hz}), 129.6,129.4,129.2$, $128.8,128.5,126.8(\mathrm{q}, J=2.9 \mathrm{~Hz}), 116.9(\mathrm{q}, J=22.6$ $\mathrm{Hz}), 116.6(\mathrm{q}, J=21.4 \mathrm{~Hz}), 60.3,53.7,39.6$.	386.1915	
E-SI-20	${ }^{1} \mathrm{H}$ NMR $\delta 12.76(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.49$ $-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H})$, 7.21 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.08-$ $6.99(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=13.1,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.19$ (dd, $J=13.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=$ $13.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (dd, $J=13.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.64(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 196.7,140.3$, 138.9, 138.7, 136.6, 136.2, 135.3, 133.3, 132.4, $131.5,130.4,130.0,129.6,129.3,129.2,129.1$, 128.8, 128.5, 122.5, 60.3, 53.7, 39.6.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{25} \mathrm{BrNO} \\ 446.1114 \end{gathered}$	446.1118
Z-SI-20	${ }^{1} \mathrm{H}$ NMR $\delta 12.64(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.48$ $-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.30(\mathrm{~m}$, 4H), $7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H})$, 4.16 (dd, $J=13.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (dd, $J=13.0$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 199.4, 141.4, 141.3, 137.9, 137.2, $136.9,131.6,131.5,131.1,130.6,130.4,129.6$, 129.6, 129.3, 129.2, 128.4, 127.4, 126.3, 122.9, 60.3, 51.5, 39.1.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{25} \mathrm{BrNO} \\ 446.1114 \end{gathered}$	446.1118
E-SI-21	${ }^{1} \mathrm{H}$ NMR $\delta 12.80(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.49$ $-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 3 \mathrm{H})$, $7.32-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{~s}$, $1 \mathrm{H}), 4.29$ (dd, $J=13.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=$ $13.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=13.2,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.94 (dd, $J=13.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, 3H); ${ }^{13} \mathrm{C}$ NMR $\delta 196.6,140.7,139.0,138.4,136.6$, 135.1, 135.0, 133.8, 131.5, 130.9 (q, $J=32.4 \mathrm{~Hz}$), $130.4,129.6,129.4,129.1,129.0,128.9,128.5$, $127.1(\mathrm{q}, J=3.9 \mathrm{~Hz}), 125.9(\mathrm{q}, J=3.6 \mathrm{~Hz}), 123.7(\mathrm{q}$, $J=272.4 \mathrm{~Hz}$), 60.4, 53.7, 39.6; Melting point 136.4 $-136.9^{\circ} \mathrm{C}$.	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO} \\ 436.1883 \end{gathered}$	436.1884
Z-SI-21	${ }^{1}$ H NMR $\delta 12.65(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.51$ $-7.33(\mathrm{~m}, 13 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.16$ (dd, $J=13.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=13.0,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{dd}, J=13.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=$ $13.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO} \\ 436.1883 \end{gathered}$	436.1859

	$\begin{aligned} & \delta 199.4,141.8,141.7,137.1,136.8,136.5,132.0, \\ & 131.5,131.2(\mathrm{q}, J=32.4 \mathrm{~Hz}), 130.4,129.7,129.58, \\ & 129.56,129.4,129.3,128.3,126.3,125.2(\mathrm{q}, J=3.7 \\ & \mathrm{Hz}), 125.0(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.8(\mathrm{q}, J=272.6 \mathrm{~Hz}), \\ & 60.3,51.3,38.9 . \end{aligned}$		
E-SI-22	${ }^{1} \mathrm{H}$ NMR $\delta 12.78(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.47$ $-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}$, 1H), $7.30-7.27$ (m, 3H), $7.19-7.11$ (m, 3H), 6.94 (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79$ (s, 1H), 4.31 (dd, $J=13.1,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.16 (dd, $J=13.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (dd, $J=13.2$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.98 (dd, $J=13.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (d, $J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 196.8, 140.7, 139.9, 136.6, 135.9, 134.8, 134.8, 133.2, 131.5, 131.1, $130.4,130.1,129.7,129.6,129.4,129.0,128.6$, $128.5,126.5,60.1,53.2,39.2$; Melting point 155.7 $156.5^{\circ} \mathrm{C}$.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClNO} \\ 402.1619 \end{gathered}$	402.1600
E-SI-23	${ }^{1} \mathrm{H}$ NMR $\delta 12.72(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.47$ $-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H})$, $7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=13.1,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18$ (dd, $J=13.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=$ $13.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=13.1,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.65 (d, $J=4.3 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR δ 197.0, 141.2, 139.0, 138.2, 136.7, 135.9, 134.1, 131.5, 130.8, 130.3, 129.7, 129.6, 129.4, 129.2, 128.54, 128.52, 128.49, 60.2, 53.9, 39.5.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO} \\ 368.2009 \end{gathered}$	368.1998
Z-SI-23	Purity $>88 \%$. ${ }^{1} \mathrm{H}$ NMR $\delta 12.55(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.57$ (m, 2H), $7.46-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 7 \mathrm{H})$, $7.25-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 4.14$ (dd, $J=13.1$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=13.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-$ $3.84(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR δ 199.8, impurity overlap in the aromatic region, 60.0, 51.5, 39.0.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO} \\ 368.2009 \end{gathered}$	368.1998
E-SI-24	${ }^{1} \mathrm{H}$ NMR $\delta 12.79(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.49$ (s, 1H), $7.47-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2H), 7.18 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}$, $1 \mathrm{H}), 4.28(\mathrm{dd}, J=13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=$ $13.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=13.1,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.92 (dd, $J=13.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR δ 196.4, 140.9, 138.2, 138.1, 136.7, 136.0, 134.8, 133.9, 132.3, 132.0, 131.5, 130.9, $130.4,129.60,129.58,129.0,128.4,60.5,54.0,39.8$; Melting point $148.6-149.2^{\circ} \mathrm{C}$;	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{NO} \\ 436.1230 \end{gathered}$	436.1200

E-SI-25	${ }^{1} \mathrm{H}$ NMR $\delta 12.80(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.51$ $(\mathrm{s}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H})$, $7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m}$, $3 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=13.3,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.21 (dd, $J=13.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (dd, $J=13.1$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=13.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (d, $J=3.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 196.2, $141.2,138.2$, 137.8, 137.3, 136.6, 136.1, 135.1, 132.1, 132.0, $131.5,130.6,130.4,129.6,129.4,129.0,128.9$, $128.4,127.7,60.5,54.0,39.8$; Melting point 143.6 $143.8^{\circ} \mathrm{C}$.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{NO} \\ 436.1230 \end{gathered}$	436.1200
E-SI-26	${ }^{1} \mathrm{H}$ NMR $\delta 12.71(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.63$ (m, 2H), $7.48-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{td}, J=7.7,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.10 (dd, $J=7.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.22(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 3.99(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 195.8, 143.1, 137.9, 137.2, 136.3, 136.2, 135.3, 133.6, 132.3, 131.9, 131.8, 131.5, 130.29, 130.25, $130.1,129.5,128.9,128.6,127.7,60.3,54.3,39.7$; Melting point $194.3-194.6^{\circ} \mathrm{C}$.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{NO} \\ 436.1230 \end{gathered}$	436.1203
E-SI-27	${ }^{1} \mathrm{H}$ NMR $\delta 12.91-12.74(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}$, $2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.11-$ $7.03(\mathrm{~m}, 5 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=13.1,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{dd}, J=13.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=$ $13.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=13.0,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.66(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 196.7,162.8$ (d, $J=248.9 \mathrm{~Hz}$), 140.8, 138.3, 138.2, 136.7, 135.9, $132.4,132.0,131.5,131.4(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 131.3(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}), 130.5,129.6,128.9,128.4,116.5(\mathrm{~d}, J=$ 21.7 Hz), $60.5,54.1,39.8$; Melting point 160.6 $160.8^{\circ} \mathrm{C}$.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{ClFNO} \\ 420.1525 \end{gathered}$	420.1519
Z-SI-27	${ }^{1} \mathrm{H}$ NMR $\delta 12.77-12.55(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}$, $2 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.32$ (dd, $J=$ $8.5,5.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.14-$ $7.04(\mathrm{~m}, 5 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=13.0,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.02(\mathrm{dd}, J=13.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.47(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 199.3$, 163.2 (d, $J=250.0 \mathrm{~Hz}$), 141.7, 139.6, 137.0, 134.8, $134.1,133.1(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 131.5,130.5,130.2$, 129.9, 129.6, 129.2, 128.3, 128.2 (d, $J=8.4 \mathrm{~Hz}$), 116.4 (d, $J=21.8 \mathrm{~Hz}$), 60.2, 51.5, 39.2.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{ClFNO} \\ 420.1525 \end{gathered}$	420.1520
E-SI-28	${ }^{1} \mathrm{H}$ NMR $\delta 12.90-12.72(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}$, $2 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{td}, J=$ $8.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}$, $1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}$,	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{ClFNO} \\ 420.1525 \end{gathered}$	420.1520

	2H), 6.90 (dt, $J=9.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 4.28$ (dd, $J=13.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (dd, $J=13.1,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.01$ (dd, $J=13.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (dd, $J=$ $13.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 196.2,163.2(\mathrm{~d}, J=248.0 \mathrm{~Hz}), 141.0,138.3,138.0$ (d, $J=1.9 \mathrm{~Hz}$), $137.6(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 136.6,136.0$, $132.2,132.0,131.5,131.0(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 130.5$, 129.6, 129.0, 128.4, 125.2 (d, $J=3.1 \mathrm{~Hz}$), 116.5 (d, J $=21.9 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 60.5,54.0,39.8$.		
Z-SI-28	${ }^{1} \mathrm{H}$ NMR $\delta 12.74-12.62(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}$, $2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.31$ $(\mathrm{m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.09(\mathrm{~m}$, $4 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=$ $13.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ (dd, $J=13.0,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.89 (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.47 (d, $J=4.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 198.9,163.2(\mathrm{~d}, J=247.6 \mathrm{~Hz}), 141.9$, $139.4(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 139.0(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 137.0$, 135.0, 133.8, 131.4, 131.1, 131.0 (d, $J=8.3 \mathrm{~Hz}$), $130.5,129.9,129.6,129.2,128.3,122.0(\mathrm{~d}, J=2.9$ $\mathrm{Hz}), 116.1(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 113.3(\mathrm{~d}, J=22.8 \mathrm{~Hz})$, $60.2,51.4,39.1$; Melting point $65.1-66.9^{\circ} \mathrm{C}$.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{ClFNO} \\ 420.1525 \end{gathered}$	420.1521
E-SI-29	${ }^{1}$ H NMR $\delta 12.80-12.68(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.65(\mathrm{~m}$, $2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.34$ (m, 1H), $7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.08(\mathrm{~m}$, $5 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=13.1,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=13.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J$ $=13.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=13.1,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.66(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 195.9,159.9$ (d, $J=246.5 \mathrm{~Hz}$), 142.8, 137.9, 136.3, 136.1, 133.6, $132.4,131.7,131.6(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 131.5,131.0(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}), 130.4,129.6,129.0,128.5,125.0(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}), 123.7(\mathrm{~d}, J=15.9 \mathrm{~Hz}), 116.4(\mathrm{~d}, J=21.5$ Hz), 60.3, 54.2, 39.6; Melting point 173.2 - 173.8 ${ }^{\circ} \mathrm{C}$.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{ClFNO} \\ 420.1525 \end{gathered}$	420.1514
Z-SI-29	${ }^{1}$ H NMR $\delta 12.59-12.47(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.59(\mathrm{~m}$, 2H), $7.47-7.42$ (m, 4H), 7.35 (tdd, $J=7.7,5.3,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.26$ (dd, $J=13.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=13.1,6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 198.5,159.6(\mathrm{~d}, J=248.0 \mathrm{~Hz})$, $140.5,136.4(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 135.2(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, 134.7, 134.1, 131.5, $131.0(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 130.3$ (2C), 130.0, 129.9 (d, $J=3.2 \mathrm{~Hz}), 129.6,129.2$, $128.6,126.1(\mathrm{~d}, J=13.3 \mathrm{~Hz}), 125.2(\mathrm{~d}, J=3.2 \mathrm{~Hz})$, 116.3 (d, $J=22.1 \mathrm{~Hz}$), 59.9, 52.0, 38.9.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{ClFNO} \\ 420.1525 \end{gathered}$	420.1513

E-SI-30	${ }^{1} \mathrm{H}$ NMR $\delta 12.76(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.47$ $-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H})$, 7.22 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16 (dd, $J=6.6,2.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (dd, $J=10.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~m}$, 2H), $3.96(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 196.5$, 157.8 (d, $J=249.3 \mathrm{~Hz}$), 140.5, 138.8, 138.1, 136.6, $135.0,134.7(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 131.5,130.7,130.4$, $129.6,129.5,129.1,129.0,128.5,127.4$ (d, $J=3.5$ $\mathrm{Hz}), 122.3(\mathrm{~d}, J=17.8 \mathrm{~Hz}), 118.0(\mathrm{~d}, J=22.4 \mathrm{~Hz})$, $60.4,53.8,39.8$; Melting point $151.2-151.4^{\circ} \mathrm{C}$.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{ClFNO} \\ 420.1525 \end{gathered}$	420.1514
E-SI-31	${ }^{1} \mathrm{H}$ NMR $\delta 12.73(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.47$ $-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=9.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{dd}, J=9.9,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{t}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.65 (s, 1H), 4.29 (dd, $J=13.1,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17$ (dd, $J=13.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (dd, $J=$ $13.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=13.1,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.64(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 196.5,160.9(\mathrm{~d}$, $J=254.7 \mathrm{~Hz}), 141.2,139.6,136.5,136.2(\mathrm{~d}, J=10.6$ $\mathrm{Hz}), 135.1,131.5,131.2(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 130.4,130.1$ (d, $J=4.6 \mathrm{~Hz}$), 129.6, 129.3, 129.1, 128.9, 128.5, $124.5(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 121.1(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 116.7$ (d, $J=25.4 \mathrm{~Hz}$), 60.2, 53.3, 39.3; Melting point $167.8-168.0^{\circ} \mathrm{C}$.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{ClFNO} \\ 420.1525 \end{gathered}$	420.1510
E-SI-32	${ }^{1} \mathrm{H}$ NMR $\delta 12.77(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.48$ $-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H})$, $7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~s}$, $1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.27$ (dd, $J=13.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (dd, $J=13.1,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.00$ (dd, $J=13.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (dd, $J=$ $13.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 196.5,140.6,138.9,137.8,136.6,135.1,134.2$, $133.5,132.7,132.2,131.5,130.4,130.4,129.7$, 129.6, 129.5, 129.1, 129.0, 128.4, 60.4, 53.7, 39.7.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{NO} \\ 436.1230 \end{gathered}$	436.1220
Z-SI-32	${ }^{1} \mathrm{H}$ NMR $\delta 12.69(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.48$ $-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.27(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.71$ (s, 1H), 4.17 (dd, $J=13.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=12.9,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.97-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}$ C NMR $\delta 199.2,142.0,141.8,137.0,136.7,135.6$, 133.0, 132.9, 131.5, 131.0, 130.5, 130.0, 129.6, 129.4, 129.4, 128.6, 128.3, 128.0, 126.2, 60.3, 51.4, 39.1.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{NO} \\ 436.1230 \end{gathered}$	436.1219
E-SI-33	${ }^{1} \mathrm{H}$ NMR $\delta 12.79(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.48$ $-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.19(\mathrm{~m}$,	$\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{NO}$	436.1232

	2H), $7.19-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.62(\mathrm{~s}, 1 \mathrm{H}), 4.32-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=13.4$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.89(\mathrm{~m}$, $1 \mathrm{H}), 2.64$ (d, $J=4.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 196.4, 141.5, 139.4, 137.2, 136.7, 136.5, 135.0, 134.7, $131.5,130.4,129.6,129.5,129.1,129.0,128.6$ (one low-field carbon is overlapped), $128.4,60.4,53.5$, 39.7.	436.1230	
E-SI-34	${ }^{1} \mathrm{H}$ NMR $\delta 12.88-12.74(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.69$ $-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2H), $7.05(\mathrm{~s}, 1 \mathrm{H}), 6.92-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H})$, 4.29 (dd, $J=13.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (dd, $J=13.2$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ (dd, $J=13.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (dd, $J=13.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 195.9,163.4$ (dd, $J=251.67,11.87 \mathrm{~Hz}$), 160.1 (dd, $J=249.06,11.99 \mathrm{~Hz}$), 143.6, 137.9, $136.3,132.6,132.6(\mathrm{dd}, J=9.52,4.71 \mathrm{~Hz}), 132.2$, 131.7, 131.5, 130.4, 129.6, 129.1, 128.5, one carbon overlapped, 119.7 (dd, $J=16.24,4.11 \mathrm{~Hz}$), 112.4 (dd, $J=21.38,3.53 \mathrm{~Hz}$), 104.9 (t, $J=25.50 \mathrm{~Hz}$), $60.4,54.3,39.8$; Melting point $65.8-66.9^{\circ} \mathrm{C}$.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClF}_{2} \mathrm{NO} \\ 438.1431 \end{gathered}$	438.1418
Z-SI-34	${ }^{1} \mathrm{H}$ NMR $\delta 12.61-12.46(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}$, $2 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 6.95 (ddd, $J=9.0,6.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (td, $J=9.8$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.05-$ 3.96 (m, 1H), $3.87-3.80(\mathrm{~m}, 2 \mathrm{H}), 2.51$ (br s, 3H); ${ }^{13} \mathrm{C}$ NMR $\delta 198.4,163.4(\mathrm{dd}, J=252.71,12.77 \mathrm{~Hz})$, 159.8 (dd, $J=250.76,12.10 \mathrm{~Hz}$), 140.5, 136.4 , 135.3, 134.7, 134.2, 134.0, 131.4, 131.0 (m), 130.4, $130.0,129.6,129.2,128.5,122.5(\mathrm{~m}), 112.5(\mathrm{~d}, J=$ 24.32 Hz), $104.8(\mathrm{t}, J=25.93 \mathrm{~Hz}), 59.9,52.0,39.0$.	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClF}_{2} \mathrm{NO} \\ 438.1431 \end{gathered}$	438.1417

1. Unless otherwise specified, the NMR data are given in chloroform- d at 500 MHz for ${ }^{1} \mathrm{H}$ NMR, and at 126 MHz for ${ }^{13} \mathrm{C}$ NMR. 2. Some of these hydrochloride salts have amorphous characteristics (e.g., \boldsymbol{E}-SI-14, \boldsymbol{E}-SI-15, \boldsymbol{Z}-SI-15, \boldsymbol{Z}-SI-16), and some (e.g., \boldsymbol{E}-SI-20) were too hygroscopic to record melting point data. 3. Unless otherwise specified, formula is for $[\mathrm{M}+\mathrm{H}]^{+}$ where M represents the compound in its charge neutral form.

Key NOE Data for E-6 vs. Z-6

E-6

2D-NMR Spectra

HSQC - E-6

HSQC - Z-6

$\underline{\mathrm{HMBC}}-\boldsymbol{E - 6}$

HMBC - Z-6

${ }^{1} \mathrm{H},{ }^{2} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

[^0]

8

$1\|\|$

[^1]

$\begin{array}{ll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & & \end{array}$

$\begin{aligned} & \text { No } \\ & \text { O } \end{aligned}$	1

[^2]

References

1. Chuang, T. H.; Chang, W. Y.; Li, C. F.; Wen, Y. C.; Tsai, C. C., Substituent effects on the iodinecatalyzed thermal cyclization of 3,4-diphenylbuta-1,3-dienyl isocyanates: mechanistic studies. J Org Chem 2011, 76, 9678-86.
2. Alam, M. S.; Nam, Y. J.; Lee, D. U., Synthesis and evaluation of (Z)-2,3-diphenylacrylonitrile analogs as anti-cancer and anti-microbial agents. Eur J Med Chem 2013, 69, 790-7.
3. Pieroni, M.; Annunziato, G.; Azzali, E.; Dessanti, P.; Mercurio, C.; Meroni, G.; Trifiro, P.; Vianello, P.; Villa, M.; Beato, C.; Varasi, M.; Costantino, G., Further insights into the SAR of alpha-substituted cyclopropylamine derivatives as inhibitors of histone demethylase KDM1A. Eur J Med Chem 2015, 92, 377-86.
4. Zhang, W.; Ning, F.; Váradi, L.; Hibbs, D. E.; Platts, J. A.; Nyerges, M.; Anderson, R. J.; Groundwater, P. W., An investigation of the scope of the 1,7-electrocyclization of $\alpha, \beta: \gamma, \delta$-conjugated azomethine ylides. Tetrahedron 2014, 70, 3621-3629.
5. Hunsen, M., Pyridinium chlorochromate catalyzed oxidation of alcohols to aldehydes and ketones with periodic acid. Tetrahedron Letters 2005, 46, 1651-1653.
6. Bhat, A. R.; Bhat, A. I.; Athar, F.; Azam, A., Synthesis, Characterization, and Anti-amoebic Screening of Core-Modified 5,20-Bis\{2-\{[(alkyl)(alkyl')amino]methyl\}ferrocen-1-yl\}-10,15-diphenyl-21,23dithiaporphyrin (=1,1"-(10,15-Diphenyl-21,23-dithiaporphine-5,20-diyl)bis[2-
\{[(alkyl)(alkyl')amino]methyl\}ferrocene]) Derivatives. Helvetica Chimica Acta 2009, 92, 1644-1656.
7. Hendrick, C. E.; McDonald, S. L.; Wang, Q., Insertion of Arynes into N-Halo Bonds: A Direct Approach to o-Haloaminoarenes. Org Lett 2013, 15, 3444-3447.
8. Lin, L. S.; Lanza, T. J., Jr.; Jewell, J. P.; Liu, P.; Shah, S. K.; Qi, H.; Tong, X.; Wang, J.; Xu, S. S.; Fong, T. M.; Shen, C. P.; Lao, J.; Xiao, J. C.; Shearman, L. P.; Stribling, D. S.; Rosko, K.; Strack, A.; Marsh, D. J.; Feng, Y.; Kumar, S.; Samuel, K.; Yin, W.; Van der Ploeg, L. H.; Goulet, M. T.; Hagmann, W. K., Discovery of $\mathrm{N}-[(1 \mathrm{~S}, 2 \mathrm{~S})$-3-(4-Chlorophenyl)-2- (3-cyanophenyl)-1-methylpropyl]-2-methyl-2- \{[5-(trifluoromethyl)pyridin-2-yl]oxy\}propanamide (MK-0364), a novel, acyclic cannabinoid-1 receptor inverse agonist for the treatment of obesity. J Med Chem 2006, 49, 7584-7.
9. Fang, Y.; Xia, W.; Cheng, B.; Hua, P.; Zhou, H.; Gu, Q.; Xu, J., Design, synthesis, and biological evaluation of compounds with a new scaffold as anti-neuroinflammatory agents for the treatment of Alzheimer's disease. Eur J Med Chem 2018, 149, 129-138.
10. Zhang, Q. Q.; Xie, J. H.; Yang, X. H.; Xie, J. B.; Zhou, Q. L., Iridium-catalyzed asymmetric hydrogenation of alpha-substituted alpha,beta-unsaturated acyclic ketones: enantioselective total synthesis of (-)-mesembrine. Org Lett 2012, 14, 6158-61.
11. Rettig, M. B.; Jung, M. E.; N. G. Ralalage, D. E.; An, J. Inhibitors of the N-terminal Domain of the Androgen Receptor (PCT/US2018/014516). PCT/US2018/014516, 01/19/2018, 2018.

[^0]:

[^1]:

[^2]:

