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Goals

• Review	the	main	uses	of	applied	epidemiological	
modelling	

•  Introduce	our	conceptual	framework	for	applied	
modelling	

• Review	commonly	overlooked	assumpOons	that	
are	inherent	in	the	structure	of	simple	
compartmental	ODE	models	

• Discuss	when	these	assumpOons	might	be	
problemaOc,	and	when	they	may	be	desirable	

• Begin	to	explore	some	alternaOve	model	structures	
that	relax	the	assumpOons	
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Applied Epi. Modelling


The use of simplification to 
represent the key components 
of something you’re trying to 

understand more clearly   

Related to the distribution 
and determinants of health-

related states and events 

For application to the real 
world 
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Applied Epi. Modelling

•  Improving understanding of the dynamics of health and disease 

•  Translation of results into decision-making and communication tools 
Insight 

•  Improving measurement and interpretaiton of key health indicators at the 
population and individual levels Estimation 

•  Projection and forecasting of expected future trends Prediction 

•  Guiding study design and intervention roll-out 
•  Informing decisions through analysis and comparison of policy scenarios 

Planning 

•  Evaluating the impact of public health interventions 
•  Assessing risk of future public health events 

Assessment 
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Model Worlds


•  A model world is an abstraction of the 
world that is simple and fully specified, 
which we construct to help us understand 
particular aspects of the real world 

•  A mathematical model is formal 
description of the assumptions that 
define a model world 
•  We know exactly what assumptions we’ve made, and we can 

follow those assumptions to their logical conclusions to address 
research questions 
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The SIR Model World
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SIR: ODE Model


S	 I	 R	
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dS
dt

= −
βSI
N

dI
dt
=
βSI
N

−γ I dR
dt

= γ I



0
0	

SIR: Reed-Frost Model


S	 I	 R	

N=S+I+R	
	It+1 = St(1� qIt)

St+1 = St � It+1

Rt+1 = Rt + It
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SIR: Stochas.c Reed-Frost


S	 I	 R	
St+1 = St � It+1

Rt+1 = Rt + It



0
0	

SIR: Chain Binomial Model
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The SIR Model Family


S	 I	 R	

A mathematical model is formal 
description of the assumptions 

that define a model world	
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CONTINUOUS	TREATMENT	OF	INDIVIDUALS	
(averages,	proporOons,	or	populaOon	densiOes)	
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•  Ordinary differential equations 

•  Partial differential equations 
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Taxonomy of compartmental models


	
What	is	a	compartmental	model?	
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• Review	the	main	uses	of	applied	epidemiological	
modelling	

•  Introduce	our	conceptual	framework	for	applied	
modelling	
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Borchering	&	McKinley	(2018)	Mul$scale	Modeling	and	Simula$on	
DOI:	10.1137/17M1155259	
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Compartmental ODE models assume

•  Large	populaOon	size	
• DeterminisOc	progression	

•  for	a	given	set	of	iniOal	condiOons	and	parameter	
values,	a	determinisOc	model	always	gives	the	same	
outcome	

• Quickly	assess	what	model	outcomes	are	possible,	
and	when	
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Breaking	
Assump>ons!	

Discrete	Individuals	and	
Finite	Popula>ons	
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CONTINUOUS TIME  

•  Ordinary differential equations 
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Simple ODE models assume

•  Time	proceeds	in	a	conOnuous	manner	
• Parameter	values	remain	constant	
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Simple compartmental ODE models 
assume


• Homogeneity	within	compartments	
•  Large	populaOon	size	
• DeterminisOc	progression	
•  Time	proceeds	in	a	conOnuous	manner	
• Parameter	values	remain	constant	
• Memory-less	processes	
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Simple ODE models assume

• Memory-less	processes	
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EsOmate	based	on	data	from	Joshi	et	al.	(2009)	Transac$ons	of	the	Royal	Society	of	Tropical	Medicine	and	Hygiene		
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EsOmate	based	on	data	from	Joshi	et	al.	(2009)	Transac$ons	of	the	Royal	Society	of	Tropical	Medicine	and	Hygiene		
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Simple compartmental ODE models 
assume


• Homogeneity	within	compartments	
•  Large	populaOon	size	
• DeterminisOc	progression	
•  Time	proceeds	in	a	conOnuous	manner	
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Breaking	
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Summary

•  Simple	ODE	models	are	important	tools	for	building	
understanding	

41	

0 5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0

R0

p v

●● ●● ●●●●●●
●

●●●●●
●

●

●

●

●

●

●

measles
pertussis
chickenpox
diptheria
mumps
rubella
poliomyelitis

!! =
!! − 1
!!

!



0
0	

Summary

•  Simple	ODE	models	are	important	tools	for	building	
understanding	

•  It’s	important	to	recognize	the	assumpOons	built	
into	these	models	

• When	populaOons	are	small,	average	behaviors	can	be	
misleading	
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• When	rates	vary,	simple	ODEs	can	fail	to	reproduce	
important	(observed)	dynamics	
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Dushoff lecture on heterogeneity (Wed) 
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Summary

•  The	applied	epidemiological	modelling	process	
requires	

•  abstracOon	
•  specificaOon	and	implementaOon	
•  gaining	an	understanding	of	the	dynamics	
•  interpretaOon	
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