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Appendix A. Multivariate skew-t distribution

Different versions of the multivariate skew-t (ST) distribution has been considered and
used in the literature (Arellano-Valle and Genton, 2005; Azzalini and Capitanio, 2003; Ho
and Lin, 2010; Sahu et al., 2003) and among others. A new class of distributions by intro-
ducing skewness in multivariate elliptically distributions were developed in publication.®
The class, which is obtained by using transformation and conditioning, contains many
standard families including the multivariate ST distribution. For completeness, this ap-
pendix briefly summarizes the multivariate ST distribution that will be used in this paper.
Assume an m-dimensional random vector Y follows an m variate ST distribution with
location vector p, m x m positive (diagonal) dispersion matrix 3, m x m skewness ma-
trix A(8) = diag(dy,0s,...,0,) and the degree of freedom v, where § = (0y,...,0,,)7
is a vector of skewness parameters. In what follows, we briefly discuss multivariate ST
distribution introduced by Sahu et al.(2003) which is suitable for a Bayesian inference
since it is built using conditional method. For detailed discussions on properties of ST
distribution, see Reference (Sahu et al., 2003).

An m-dimensional random vector Y follows an m-variate ST distribution if its prob-

ability density function (pdf) is given by

fylp, 2, A(8),v) = 2"t (y|u, A)P(V > 0), (A1)
where A = ¥ 4 A%(§), we denote the m-variate ¢ distribution with parameters p, A and
degrees of freedom v by t,,, (i, A) and the corresponding pdf by t,,,(y|p, A) henceforth,
the random vector V' follows the multivariate ¢ distribution ¢, ,+m(-). We denote this
distribution by ST,,, (@, X, A(4)). In particular, when ¥ = 021, and A(d) = §1,,, the
equation (A.1) simplifies to
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where T}, ,+m(+) denotes the cumulative distribution function (cdf) of ¢,, (0, I,,,). How-
ever, unlike in the SN distribution discussed by Huang and Dagne (2011), the ST density
can not be written as the product of univariate ST densities. Here Y are dependent but
uncorrelated.

The mean and covariance matrix of the ST distribution ST, (&, 0*I,,, A(d)) are

given by
I'((v—1)/2
E(Y) = p+ (v/m) 2H 028, 2 "
con(Y) = [o* L + A*8)] 525 — £ [HEGR ] A%6).

It is noted that when & = 0, the ST distribution reduces to usual t distribution.
In order to have a zero mean vector, we should assume the location parameter pu =
—(V/ﬁ)1/2%5, which is what we assume in the paper.

By the proposition discussed by Sahu et al.(2003) and Ho and Lin (2010) the ST

distribution of Y has a convenient stochastic representation as follows.

Y = p+ A(6)| X+ 22X, (A.4)
where X and X are two independent random vectors following ¢,,,(0, I,,,). Note that
the expression (A.4) provides a convenience device for random number generation and
for implementation purpose. Let w = |X|; then w follows an m-dimensional standard

half-¢ distribution. Thus, a hierarchical representation of (A.4) is given by

Y w~t,,(p+Ab)w,cX), w~t,,(0,1,)I(w > 0), (A.5)

where ¢ = (v + wlw)/(v +m).
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Appendix B: WinBUGS code of ST Model 1 for the analysis of AIDS data

## Begin of Model
modelq{
for (i in 1:n) # n=number of subjects
{
## Random-Effects with Normal Distribution
b0O[i,1]<-0
b0 [i,2]<-0
b0 [i,3]<-0
b0 [i,4]<-0
b[i,1:4] “dmnorm(bO[i,1:4],0megall,])
a0[i,1]<-0
a0[i,2]<-0
a0[i,3]<-0
ali,1:3] dmnorm(a0[i,1:3],0mega2[,])
L44[i]l<-betal[2]+b[i,2]
}

for (j in 1 : M) # M= total number of measurements
{
## CD4 Measurement Errors Model with ST Distribution
## Z[,]= values of spline basis function
w2[j17dt(0,1,nu2)I1(0,)
c2[jl<-(nu2+w2[jl*w2[j]l)/n2
aau2[jl<-1/(c2[jl*tau2*tau2)
z.star[jl<-(alphal[l]+aly([j,2],1])+(alphal[2]+aly[j,2],2]1)*Z[],2]

+(alpha[3]+aly[j,2],3])*Z[j,3] # ylj,2]=id
z.mean[jl<-z.star[jl+delta2*(w2[j]-mue2) # ST distribution
y[j,3] “dt(z.mean[j],aau2[j],n2) # y[j,3]=Standardized cd4

## Viral Load Response NLME Model with ST Distribution
piljl<-betal1] +bly[j,2],1]
p2[jl<-betal3] +bly[j,2],3]
lambdal[jl<-beta[2] +b[y[j,2],2]
lambda2[jl<-beta[4]+beta[5]*z.mean[]j]

+betal6]*y[j,4]1+bly[j,2],4] # ylj,4]=drug efficacy
dml[jl<-p1[j]l-step(lambdal[jl-lambda2[j])*lambdal[jl*y[j,5] # y[j,5]=time

dm2[jl<-p2[j]l-step(lambdal[jl-lambda2[j])*1lambda2[j]l*y[j,5]
dm3[j]<-exp(dm1[j])

dm4 [j]<-exp(dm2[j])

dm5[j]1<-dm3[j]+dm4 [j]

w1[j]1~dt(0,1,nu1)I1(0,)

c1[jl<-(nu+twi[jl*w1[j])/n1

aaul[jl<-1/(c1[jl*tau*xtau)

mu[jl<-log(dmb5[j]l)+ delta*x(wl[j]-muel) # ST distribution
y[j,6] dt(mulj],aaul[j]l,n1) # y[j,6]1=log(RNA)
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## Fitted Values and Residuals
fit[jl<-mul[j]
resid[jl<-y[j,6]1-fit[j]

}

## Prior Distributions of the Hyperparameters
#(1) Degree of freedom
nu0<-0.5
nu~dexp (nu0)I(2,)
ni<-nu+i
muel<-exp(loggam(0.5%(nu-1.))-loggam(0.5%nu))*sqrt(nu/3.14159)

nu20<-0.5

nu2~dexp(nu20)I(2,)

n2<-nu2+1
mue2<-exp(loggam(0.5%(nu2-1.))-loggam(0.5%nu2))*sqrt (nu2/3.14159)

#(2) Coefficients
for (1 in 1:6){betal[l] “dnorm(0,1.0E-2)}
for (k in 1:3){alphalk] “dnorm(0,1.0E-2)}

#(3) Skewness parameters
delta~dnorm(0.0, 0.01)
delta2~dnorm(0.0, 0.01)

#(4) Variance-covariance matrices
Omegal[1:4,1:4] dwish(R1[,],5)
v1[1:4,1:4]<-inverse(Omegall,])
Omega2[1:3,1:3]“dwish(R2[,],5)
v2[1:3,1:3]<-inverse(Omega2[,])

#(5) Precision parameters
tau~dunif (0,100)
sigma.tau<-tauxtau
tau2~dunif (0,100)
sigma.tau2<-tau2*xtau2

+
##End of model
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