
Jupyter for Accelerator Physics 

Jupyter for Science User Facilities and High Performance 
Computing 2019 

11 June 2019  –  Berkeley 

Robert Nagler   Paul Moeller   David Bruhwiler     

Chris Hall    Nathan Cook 

rsl.link/jcw19 

This work is supported by the U.S. Department of Energy, Office of 
Science, Office of Basic Energy Sciences, under Award #DE-SC0011340. 



11 June 2019 – Berkeley # 2 

Overview 

•  Why RadiaSoft uses Jupyter/Hub 
•  RadiaSoft implementation 
•  Wish list 



11 June 2019 – Berkeley # 3 

Use Case: Comparing Two Codes 

•  SynRad and COMSOL 
•  Heat Load 
•  Note: Living Code 



11 June 2019 – Berkeley # 4 

“This is my most common working arrangement, as I am 
consistently running simulations in one panel while running 
analysis in a notebook in another.” 

Use Case: In Situ Analysis 



11 June 2019 – Berkeley # 5 

“Allow user to vary witness bunch charge and study the 
linear response function with the loaded plasma wave, 
and compare this to the unloaded, linear response 
regime.” 

Use Case: Documentation 



11 June 2019 – Berkeley # 6 

Use Case: Teaching 

•  Fermilab scientist learned Synergia via example 
notebooks running on jupyter.radiasoft.org 

•  UCLA undergrad learned FBPIC via example notebook 
in order to complete work study under James 
Rosenzweig 

•  Grad student at UCLA learned Warp through example 
RadiaSoft notebooks 

•  Jan 2018 session of US Particle Accelerator School used 
jupyter.radiasoft.org to teach Synergia to 20 students 

•  ICFA ML Workshop in CH used jupyter.radiasoft.org to 
teach ML for accelerator physics to 60 participants 



11 June 2019 – Berkeley # 7 

Why RadiaSoft Uses Jupyter/Hub 

•  In general, Jupyter 
–  makes it easy to edit and to test models, easier than an IDE like 

PyCharm (in situ analysis is easier) 
–  allows us to run and to develop HPC jobs simultaneously 
–  allows us to develop Python/Fortran/C/C++ code or Python 

notebooks seamlessly (workflow modularization) 

•  RadiaSoft Jupyter environment 
–  has all the codes and tools we need to run jobs immediately 
–  enables technology transfer (teaching, customer deliverables) 
–  provides easy access to enough cores to run jobs effectively in 

real-time 

 



11 June 2019 – Berkeley # 8 

RadiaSoft Jupyter/Hub Environment 

•  14 staff users and 46 public users (in last 2 months) 
•  7TB used 
•  Pools: 1 public node, 4 internal nodes 
•  MPI: 13 nodes (pool nodes for workshops) 
•  Nginx proxy 
•  Dev, Alpha, Beta, Prod configurations 
 



11 June 2019 – Berkeley # 9 

RadiaSoft Jupyter Docker Image 

•  JupyterHub compatible to support: 
–  Accelerator Phyics: elegant, EPICS, FBPIC, JSPEC, OPAL, Radia, 

Shadow3, SRW, Synergia, Warp, Zgoubi 
–  Machine Learning: GPy, Keras, scikit-learn, Tensorflow 
–  Visualization: Pydicom, PyMesh, SciPy, Seaborn, TeX Live, YT  
–  Integrated Python Environment (pyenv py2:py3) 

•  Takes a long time to build and to pull (10GB) 
•  Supports both Docker and Virtualbox/Vagrant 
•  Curl installer to download and start in single user mode 
•  Jupyter Lab is default GUI 
•  GitHub for authentication 



11 June 2019 – Berkeley # 10 

MPI Jobs 

•  Started by user from Jupyter just like mpiexec 
•  ~/jupyter mounted in MPI containers 
•  Users make requests for allocations (infrequently) 
•  Most users only want one or two nodes 
•  Admins run configuration manager for all hosts 
•  Containers running SSHD on MPI nodes 
•  Per user/node SSH/D config for security 
•  Docker host networking with separate VLAN 
•  MPI MCA network config (avoids MPI confusion) 
•  Wrapper abstracts hosts and SSH config for user 

–  rsmpi –n 10 <command> 
–  rsmpi –h 1,2 <command> 



11 June 2019 – Berkeley # 11 

RSDockerSpawner 

•  DockerSpawner subclass 
•  Managed server pools 
•  Automatic server reallocation 
•  CPU and memory limits 
•  Static port range (iptables) 
•  Host networking (MPI) 
•  mkdir for bind mounts 
•  Multi-CA Docker TLS config 
•  State snapshot log 
 

pools: 
  default: 
    cpu_limit: 0.5 
    hosts: [ v3.radia.run ] 
    mem_limit: 1G 
    min_activity_hours: 1 
    servers_per_host: 4 
    users: [ ] 
  internal: 
    hosts:  
      - v2.radia.run 
      - v5.radia.run 
    servers_per_host: 1 
    users:  
      - bruhwiler 
      - robnagler 
port_base: 8888 
tls_dir: /srv/jupyterhub/tls 



11 June 2019 – Berkeley # 12 

User Customizations 

•  github.com/radiasoft/jupyter.radiasoft.org 
–  Executes radia-run.sh inside container before Jupyter starts 
–  Copies template notebooks and other files 
–  Used for patches in between releases  
–  Runs git config user.name and credential.helper 
–  If user has jupyter.radiasoft.org repo, it runs after global repo 

•  ~/jupyter/bashrc runs after container’s bashrc 
•  ~/jupyter/bin in path lets users persist commands 



11 June 2019 – Berkeley # 13 

Sharing 

•  ~/jupyter (NFS) is user’s home (shared with MPI nodes) 
•  ~/jupyter/workshop-name for tutorials 
•  Tried ~/public but is too open esp. for public server 
•  Users share with each other via GitHub and Email 
•  CPU/memory limits allow host (node) sharing 
•  Single notebook server for real-time workspace sharing 



11 June 2019 – Berkeley # 14 

Wish List 

•  Storage limits (quotas) 
•  User/group file sharing 
•  Real-time collaboration/debugging (like CoCalc) 
•  Better user notifications (server restarts, long operations, 

no more servers) 
•  Hub admin page spawner-specific output 



11 June 2019 – Berkeley # 15 

Takeaways 

•  Users love Jupyter 
•  Users want all codes pre-installed 
•  Users will consume all available resources 
•  Jupyter/Hub is easily customizable 



11 June 2019 – Berkeley # 16 

Thank You! 

Questions? 

rsl.link/jcw19 


