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A Operator Splitting Methods for Convex Clustering

A.1 ADMM for Convex Clustering

In this section, we derive and give the full form of the ADMM presented in Algorithm 1 for

the convex clustering problem (1). We begin by noting that, in typical applications, most

of the weights wij are zero and hence do not enter into the optimization problem. We can

omit the
�

n
2

�

-term sum and instead write the convex clustering problem (1) as

argmin
U2Rn⇥p

1

2
kX �Uk2F + �

0

@

X

((i,j),w)2E

wijkUi· �Uj·kq
1

A

where E is the set of directed edges with non-zero weights w connecting i to j.

In this form, it is clear that the convex clustering problem is amenable to operator splitting

methods; in particular, Chi and Lange (2015) showed that the Alternating Direction Method

of Multipliers (ADMM) (Glowinski and Marroco, 1975; Gabay and Mercier, 1976; Boyd et

al., 2011) works particularly well for this problem. Algorithm A1 di↵ers from the ADMM

derived in Chi and Lange (2015) in two significant ways: firstly, we only consider edges

with non-zero weights, thereby greatly reducing storage requirements of the algorithm; and

secondly, we implement the algorithm in “matrix-form” rather than in a fully vectorized form.

These di↵erences make the resulting algorithm both easier to derive and to read, as well as

more able to take advantage of highly optimized numerical linear algebra libraries.

We note that while we are solving a matrix-valued problem, it is not a semi-definite program,

and the additional complexity typically associated with matrix-valued optimization does not

apply here. Because we are optimizing over the space of all matrices of a certain size,
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the underlying problem is essentially Euclidean in geometry and standard (vector-valued)

optimization techniques can be applied, replacing the (squared) Euclidean norm with the

(squared) Frobenius norm and the standard Euclidean inner product with the Frobenius

inner product as necessary.

The derivation of the ADMM for convex clustering 1 is relatively straight-forward. We begin

by introducing an auxiliary variable V containing the pairwise di↵erences between connected

rows of U . The problem then becomes

argmin
U2Rn⇥p

1

2
kU �Xk2F + �

0

@

X

(el,wl)2E

wlkVl·kq
1

A

| {z }

P (V ;w,q)

subject to DU � V = 0.

From here, we use the scaled form of the ADMM as given by a matrix version of Equations

(3.5) to (3.7) of Boyd et al. (2011):

U

(k+1) = argmin
U2Rn⇥p

1

2
kU �Xk2F +

⇢

2

�

�

DU � V

(k) +Z

(k)
�

�

2

F

V

(k+1) = argmin
V 2R|E|⇥p

�P (V ;w, q) +
⇢

2

�

�

DU

(k+1) � V +Z

(k)
�

�

2

F

Z

(k+1) = Z

(k) +DU

(k+1) � V

(k+1)

where the dual variable is denoted by Z. The analytical solution to the first subproblem is

given by:

U

(k+1) = (I + ⇢DT
D)�1

�

X + ⇢DT (V (k) �Z

(k))
�

This update is the most expensive step in the ADMM, though it can be significantly sped

up by pre-calculating caching the Cholesky factorization of I + ⇢DT
D and using it at each

U -update:

U

(k+1) = L

�T
L

�1
�

X + ⇢DT (V (k) �Z

(k))
�

where LL

T = I + ⇢DT
D
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To solve the second subproblem, we note that it can be written as a proximal operator:

argmin
V 2R|E|⇥n

�P (V ;w, q) +
⇢

2

�

�

�

DU

(k+1) � V +Z

(k)
�

�

�

2

F
= argmin

V 2R|E|⇥n

�

⇢
P (V ;w, q) +

⇢

2

�

�

�

V �
⇣

DU

(k+1) +Z

(k)
⌘

�

�

�

2

F

= prox�
⇢P (·;w,q)

⇣

DU

(k+1) +Z

(k)
⌘

We note that, due to the row-wise structure of P , this proximal operator can be computed

separately across the rows of its argument. In the cases q = 1 or q = 2, the proximal operator

reduces to element-wise (q = 1) or group (q = 2) soft-thresholding row l at the level wl�/⇢.

If q = 1, Moreau’s decomposition (Moreau, 1962) can be combined with the the e�cient

projection onto the `1 ball developed by Duchi et al. (2008) to evaluate the prox in O(p log p)

steps. For other values of q, an iterative algorithm must be used.

Several stopping criteria for the ADMM have been proposed in the literature. We have found

a simple stopping rule based on the change in U being small su�cient in all cases. While

some authors report speed-ups due to varying the ADMM relaxation parameter ⇢, we have

found that fixing ⇢ and re-using the Cholesky factor L to be more e�cient. Combining these

steps, we obtain Algorithm A1.

A.2 Algorithmic Regularization for Convex Clustering

In this section, we give a the full version of the CARP algorithm presented in Algorithm

2. CARP can be obtained from the standard ADMM for convex clustering (Algorithm A1)

by replacing the inner ADMM loop with a single iteration. This modification gives CARP

(Algorithm A2). As with Algorithm A1, we prefer to use a matrix formulation, instead

of a fully vectorized formulation, to simplify the implementation and to take advantage of

high-performance numerical linear algebra libraries.
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Algorithm A1 Warm-Started ADMM for the Convex Clustering Problem (1)
1. Input:

• Data Matrix: X 2 Rn⇥p

• Weighted Directed Edge Set: E = {(el, wl)}
• Relaxation Parameter: ⇢ 2 R>0

• Initial Regularization Parameter ✏ and Multiplicative Step-Size t
2. Precompute:

• Di↵erence Matrix: D 2 R|E|⇥n where Dij is 1 if edge i begins at node j, �1 if
edge i ends at node j, and 0 otherwise

• Cholesky Factor: L = chol(I + ⇢DT
D) 2 Rn⇥n

3. Initialize:
• U

(0) = X

• V

(0) = Z

(0) = DX

• l = 0, �0 = ✏, k = 0,
4. Repeat until kV (k)k = 0:

• Repeat until convergence:
(i) U

(k+1) = L

�T
L

�1
�

X + ⇢DT (V (k) �Z

(k)
�

(ii) V

(k+1) = prox�l/⇢P (·;w,q)

�

DU

(k+1) +Z

(k)
�

(iii) Z

(k+1) = Z

(k) +DU

(k+1) � V

(k+1)

(iv) k := k + 1
• Store Û�l

= U

(k)

• Update Regularization Parameter l := l + 1; �l := �l�1 ⇤ t
5. Return

n

Û�i

ol�1

i=0
as the regularization path
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Algorithm A2 CARP: Convex Clustering via Algorithmic Regularization Paths
1. Input:

• Data Matrix: X 2 Rn⇥p

• Weighted Directed Edge Set: E = {(el, wl)}
• Relaxation Parameter: ⇢ 2 R>0

• Initial Regularization Parameter ✏ and Multiplicative Step-Size t
2. Precompute:

• Di↵erence Matrix: D 2 R|E|⇥n where Dij is 1 if edge i begins at node j, �1 if
edge i ends at node j, and 0 otherwise

• Cholesky Factor: L = chol(I + ⇢DT
D) 2 Rn⇥n

3. Initialize:
• U

(0) = X

• V

(0) = Z

(0) = DX

• k = 0, �(0) = ✏
4. Repeat until kV (k)k = 0:

(i) U

(k+1) = L

�T
L

�1
�

X + ⇢DT (V (k) �Z

(k)
�

(ii) V

(k+1) = prox�(k)/⇢P (·;w,q)

�

DU

(k+1) +Z

(k)
�

(iii) Z

(k+1) = Z

(k) +DU

(k+1) � V

(k+1)

(iv) k := k + 1, �(k) = �(k�1) ⇤ t
5. Return

�

U

(k)
 k

i=0
as the CARP algorithmic regularization path
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A.3 AMA for Convex Clustering

In addition to the AMA, Chi and Lange (2015) also show that the convex clustering problem

(1) can be e�ciently solved using the Alternating Minimization Algorithm (AMA) of Tseng

(1991). In our notation, the AMA becomes

U

(k+1) = argmin
U2Rn⇥p

1

2
kU �Xk2F + hZ(k),DU � V

(k)i

V

(k+1) = argmin
V 2R|E|⇥n

�P (V ;w, q) + hZ(k),DU

(k+1) � V

(k)i+ ⇢

2

�

�

DU

(k+1) � V

�

�

2

F

Z

(k+1) = Z

(k) + ⇢(DU

(k+1) � V

(k+1))

(Note that we use the unscaled updates for V ,Z here as the AMA uses di↵erent values of

the relaxation parameter in the U and V updates. In particular, this means that the dual

variables Z from the ADMM are not the same as those from the AMA.) Simplifying these

updates as before, the AMA becomes:

U

(k+1) = X �D

T
Z

(k)

V

(k+1) = prox�
⇢P (·;w,q)

�

DU

(k+1) +Z

(k)/⇢
�

Z

(k+1) = Z

(k) + ⇢(DU

(k+1) � V

(k+1))

Chi and Lange (2015) note that a clever application of Moreau’s decomposition (Moreau,

1962) allows the V -updates to be elided and for the AMA to be simplified into a two-

step scheme. The V

(k) iterates are key to dendrogram reconstruction, however, so such a

simplification could not be used in an AMA-based CARP variant.

In our experiments, this elision is necessary for the AMA to outperform the ADMM and

so, without it, the AMA does not appear to be a promising basis for an algorithmic regu-

larization scheme. In general, the ADMM appears to converge more rapidly per iteration

than the AMA, while the simplified AMA has much faster updates, allowing better overall
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computational performance in a standard optimization scheme. Since CARP performs only a

single iteration per regularization level, however, the faster per iteration convergence of the

ADMM is more important to us than the faster calculation of the AMA.

Finally, Chi and Lange (2015) also discuss the use of accelerated variants of the ADMM

and AMA (Goldstein et al., 2014) to improve convergence. Because CARP uses only a single

iteration for each regularization level, it is not amenable to acceleration.

B Proof of Theorem 1

In this section we prove Theorem 1 on the Hausdor↵ convergence of CARP to the convex clus-

tering regularization path. We begin with 3 technical lemmas which may be of independent

interest: Lemma 1 provides a convergence rate for the optimization step embedded within

a CARP iteration; Lemma 2 establishes a form of Lipschitz continuity for convex clustering

regularization paths; Lemma 3 provides a global bound for the approximation error induced

by CARP at any iteration. In one step, our results are stated and proven for CARP with an

`2-fusion penalty, but can be easily extended to other `q-fusion penalties.

Lemma 1 (Q-Linear Error Decrease). At each iteration k, the CARP approximation error

decreases by a factor c < 1 not depending on t or ✏. That is,

kU (k) � Û�(k)k+ kZ(k) � Ẑ�(k)k < c
h

kU (k�1) � Û�(k)k+ kZ(k�1) � Ẑ�(k)k
i

for some c strictly less than 1.

Proof. By construction, each CARP step is a single iteration of the ADMM for the convex

clustering problem (Algorithm A1) initialized at (U (k�1),V (k�1),Z(k�1)). Hence it su�ces

to analyze the convergence of the ADMM for the convex clustering problem and to establish

linear convergence.
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The convex clustering problem (1) is strongly convex due to squared Frobenius norm term.

Linear convergence of the standard ADMM for strongly convex problems was first shown by

Lions and Mercier (1979) and has since been refined by several other authors including Shi

et al. (2014), Nishihara et al. (2015), Deng and Yin (2016), and Yang and Han (2016).

In vectorized form, with x = vec(X), u = vec(U ), and v = vec(V ), the convex clustering

problem (1) can be expressed as:

argmin
u2Rnp,v2R|E|p

kx� uk22
2

+ �kvkvec(`q) subject to (I ⌦D)u = v

where k ·kvec(`q) is an appropriately vectorized version of the row-wise `q norm (a standard `1

norm in the case q = 1 and a mixed `q/`1 norm otherwise) and we have omitted the fusion

weights for brevity.

In the notation of Hong and Luo (2017), the constraint matrix for the convex clustering

problem is given by E =

✓

I ⌦D �I

◆

, for appropriately sized identity matrices, which is

clearly row-independent, yielding linear convergence of the primal and dual variables at a

rate c� < 1 which may depend on �. (We do not need to verify their additional technical

assumptions as we are only using a two-block ADMM instead of the more general multi-block

ADMM which is the focus of their paper.) Taking c = sup��
max

c�, we observe that the

CARP iterates are uniformly Q-linearly convergent at a rate c.

Remark. Recently, Deng and Yin (2016) gave a readable and precise analysis of the linear

convergence of the ADMM, including estimates of the convergence rate c. The specific proof

technique they employ does not strictly apply to the convex clustering problem 1, however,

as the D matrix is rank-deficient (excluding their Scenario 1) and the norm used for the

fusion penalty is non-di↵erentiable at the origin (excluding their Scenario 3). If an estimate

of the convergence rate is required, the analysis of Deng and Yin (2016) can be applied to the

convex clustering problem 1 by re-parameterizing the problem to address the rank-deficiency

of D. In particular, if the redundant rows of D are combined (eliminating the nullspace
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of D), the resulting matrix will be full-row rank, allowing Scenario 1 and Case 2 of Deng

and Yin (2016) to be applied. This re-parameterization results in di↵erent split and dual

variables (V and Z, corresponding to the D matrix), however, so we do not pursue that

approach here. The primal variable, U , remains unchanged under this re-parameterization.

Lemma 2 (Lipschitz Continuity of Solution Paths). (Û�, Ẑ�) is L-Lipschitz with respect to

�. That is,

kÛ�
1

� Û�
2

k+ kẐ�
1

� Ẑ�
2

k  L ⇤ |�1 � �2|

for some L > 0.

We note that this not the only form of Lipschitz continuity commonly considered for regular-

ized estimation problems. In particular, Lipschitz continuity of the solution with respect to

the data is a key element of various consistency results, while Lipschitz continuity of the ob-

jective function with respect to the parameters is a key assumption used to prove convergence

of many optimization schemes.

Proof. It su�ces to prove Lipschitz continuity of Û� and Ẑ� separately and then take the

sum of their Lipschitz moduli as the joint Lipschitz modulus.

We first show that Û� is Lipschitz. In vectorized form, the convex clustering problem is

û� = argmin
u2Rnp

1

2
ku� xk22 + �fq(D̃u)

where u = vec(U ), x = vec(X), fq is a convex function, and D̃ = I ⌦D is a fixed matrix

(cf. Tan and Witten, 2015).

The KKT conditions give

0 2 u� � x+ �D̃T@fq(D̃u�)

where @fq(·) is the subdi↵erential of fq. Since fq is convex, it is di↵erentiable almost every-
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where (Rockafellar, 1970, Theorem 25.5), so the following holds for almost all u�:

0 = u� � x+ �D̃Tf 0
q(D̃u�)

Di↵erentiating with respect to �, we obtain (c.f. Rosset and Zhu, 2007)

0 = u� � x+ �D̃Tf 0
q(D̃u�)

@

@�
[0] =

@

@�

h

u� � x+ �D̃Tf 0
q(D̃u�)

i

0 =
@u�

@�
� 0 + �

@

@�

h

D̃

Tf 0
q(D̃u�)

i

+ D̃

Tf 0
q(D̃u�)

0 =
@u�

@�
+ �D̃Tf 00

q (D̃u�)D̃
@u�

@�
+ D̃

Tf 0
q(D̃u�)

=) @u

@�
= �[I + �D̃Tf 00

q (D̃u)D̃]�1
D

Tf 0
q(D̃u).

Note that u� depends on � so the chain rule must be used here. From here, we note

�

�

�

�

@u�

@�

�

�

�

�

1
=

�

�

�

�[I + �D̃Tf 00
q (D̃u�)D̃]�1

D̃

Tf 0
q(D̃u�)

�

�

�

1
 k�[I+0]�1

D̃

Tf 0
q(D̃u�)k1 = kD̃Tf 0

q(D̃u�)k1.

For the convex clustering problem, we recall that fq(·) is a norm and hence has bounded

gradient; hence f 0
q(D̃u�) is bounded so the gradient of the regularization path is bounded and

exists almost everywhere. This implies that the regularization path is piecewise Lipschitz.

Since the solution path is constant for � � �max and is continuous (Chi and Lange, 2015,

Proposition 2.1), the solution path is globally Lipschitz with a Lipschitz modulus equal to

the maximum of the piecewise Lipschitz moduli.

A similar argument shows Lipschitz continuity of Ẑ� or one can use the relationships between

Û� and Ẑ� discussed in Section 2.1 of Tan and Witten (2015).

Lemma 3 (Global Error Bound). The following error bound holds for all k:
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kU (k) � Û�(k)k+ kZ(k) � Ẑ�(k)k  ckL✏+ L(t� 1)✏tk
k�1
X

i=1

⇣c

t

⌘i

Proof. Throughout, we let

⌥̂� =

0

B

@

Û�

Ẑ�

1

C

A

and ⌥̂(k) =

0

B

@

U

(k)

Z

(k)

1

C

A

.

Our proof proceeds by induction on k. First note that, at initialization:

k⌥(0) � ⌥̂✏k  L✏

by Lemma 2.

Next, at k = 1, we note that

k⌥(1) � ⌥̂t✏k  ck⌥(0) � ⌥̂t✏k

by Lemma 1. We now the triangle inequality to split the right hand side:

k⌥(0) � ⌥̂t✏k  k⌥(0) � ⌥̂✏k
| {z }

RHS-1

+ k⌥̂✏ � ⌥̂t✏k
| {z }

RHS-2

From above, we have RHS-1  L✏. Using Lemma 2, RHS-2 can be bounded by

k⌥̂✏ � ⌥̂t✏k  L |t✏� ✏| = L(t� 1)✏.

Putting these together, we get

k⌥(1) � ⌥̂t✏k  c [RHS-1 + RHS-2]  c [L✏+ L(t� 1)✏] = cLt✏
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Repeating this argument for k = 2, we see

k⌥(2) � ⌥̂t2✏k  ck⌥(1) � ⌥̂t2✏k

 c
h

k⌥(1) � ⌥̂t✏k+ k⌥̂t✏ � ⌥̂t2✏k
i

 c
⇥

cLt✏+ L
�

�t2✏� t✏
�

�

⇤

= c2Lt✏+ cL(t� 1)✏ ⇤ t

= c2Lt✏+ L✏(t� 1)t2 ⇤
⇣c

t

⌘

= c2Lt✏+ L✏(t� 1)t2 ⇤
k�1
X

i=1

⇣c

t

⌘i

We use this as a base case for our inductive proof and prove the general case:

k⌥(k) � ⌥̂tk✏k  ck⌥(k�1) � ⌥̂tk✏k

 c
h

k⌥(k�1) � ⌥̂tk�1✏k+ k⌥̂tk�1✏ � ⌥̂tk✏k
i

 c

"

ck�1Lt✏+ L✏(t� 1)tk�1

k�2
X

i=1

⇣c

t

⌘i

+ L
�

�tk✏� tk�1✏
�

�

#

= ckLt✏+ cL✏(t� 1)tk�1

k�2
X

i=1

⇣c

t

⌘i

+ cL✏(tk � tk�1)

= ckLt✏+ L✏(t� 1)tk
"

c

t

k�2
X

i=1

⇣c

t

⌘i

+
c

t

#

= ckLt✏+ L✏(t� 1)tk
"

k�1
X

i=2

⇣c

t

⌘i

+
c

t

#

= ckLt✏+ L✏(t� 1)tk
k�1
X

i=1

⇣c

t

⌘i

Expanding the definitions of ⌥(k), ⌥̂�, we get the desired result.

With these results, we are now ready to prove Theorem 1:
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Theorem 1. As (t, ✏) ! (1, 0), where t is the multiplicative step-size update and ✏ is the

initial regularization level, the primal and dual CARP paths converge to the primal and dual

convex clustering paths in the Hausdor↵ metric: that is,

dH({U (k)}, {Û�}) ⌘ max

⇢

sup
�

inf
k

�

�

�

U

(k) � Û�

�

�

�

, sup
k

inf
�

�

�

�

U

(k) � Û�

�

�

�

�

(t,✏)!(1,0)������! 0

dH({Z(k)}, {Ẑ�}) ⌘ max

⇢

sup
�

inf
k

�

�

�

Z

(k) � Ẑ�

�

�

�

, sup
k

inf
�

�

�

�

Z

(k) � Ẑ�

�

�

�

�

(t,✏)!(1,0)������! 0

where U

(k),Z(k) are the values of the kth CARP iterate and Û�, Ẑ� are the exact solutions to

the convex clustering problem (1) and its dual at �.

Proof of Theorem 1. It su�ces to show that {⌥(k)}, {⌥̂�} converge in the Hausdor↵ metric

to show that the primal and dual paths converge separately. We break our proof into three

steps:

i. sup� infk
�

�

�

⌥(k) � ⌥̂�

�

�

�

! 0;

ii. ✏tk
⇤
remains bounded as t, ✏ decrease and k⇤ increases, where k⇤ is the iteration at which

CARP terminates; and

iii. supk inf�
�

�

�

⌥(k) � ⌥̂�

�

�

�

! 0.

Together, these give the desired result.

Step i. We first show that

sup
�

inf
k

�

�

�

⌥(k) � ⌥̂�

�

�

�

tends to zero. We begin by fixing temporarily � and bounding

inf
k

�

�

�

⌥(k) � ⌥̂�

�

�

�

The infimum over all k is less than the distance at any particular k, so it su�ces to choose

a value of k which gives convergence to 0. Let k̃ be the value of k which gives the closest
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value of �(k) to � along the CARP path; and let �̃ = �(k̃) = ✏tk̃. That is,

k̃ = argmin
k

|�(k) � �| and �̃ = �(k̃)

Then

inf
k

�

�

�

⌥(k) � ⌥̂�

�

�

�

 k⌥(k̃) � ⌥̂�k  k⌥(k̃) � ⌥̂�̃k
| {z }

RHS-1

+ k⌥̂�̃ � ⌥̂�k
| {z }

RHS-2

Using Lemma 2, we can bound RHS-2 as

RHS-2  L|�̃��|  L|�(k̃+1)��(k̃�1)| = L⇤✏tk̃�1⇤[t2�1] = L⇤✏tk̃�1⇤[t2�1]  L⇤�max⇤[t2�1]

Using Lemma 3, we can bound RHS-1 as

RHS-1 = k⌥(k̃) � ⌥̂�̃k

= k⌥(k̃) � ⌥̂�(

˜k)k

= ck̃L✏+ L(t� 1) ⇤ ✏tk̃
k�1
X

i=1

✓

c

1 + t

◆i

 ck̃L✏+ L(t� 1) ⇤ ✏tk̃ ⇤ C (A1)

where C =
P1

i=1

�

c
1+t

�i
is large but finite. Since c < 1 and �̃ = ✏tk̃  �max, we can replace

the k-dependent quantities to get

RHS-1 = k⌥(k̃) � ⌥̂�̃k  L✏+ C ⇤ L(t� 1) ⇤ �max

Putting these together, we have

inf
k
k⌥(k) � ⌥̂�k  RHS-1 + RHS-2  L✏+ C ⇤ L(t� 1) ⇤ �max + L ⇤ �max ⇤ [t2 � 1]
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Since the right-hand side doesnt’ depend on �, we have

sup
�

inf
k
k⌥(k) � ⌥̂�k  L✏+ C ⇤ L(t� 1) ⇤ �max + L ⇤ �max ⇤ [t2 � 1]

As (t, ✏) ! (1, 0), we have that the right-hand side converges to zero and hence

sup
�

inf
k
k⌥(k) � ⌥̂�k ! 0

as desired.

Step ii. Before showing the other half of Hausdor↵ convergence, we pause to prove an

intermediate result: As (t, ✏) ! (1, 0), ✏tk
⇤
remains bounded, where k⇤ = k⇤(t, ✏) is the

iteration at which CARP halts. For this step, we specialize to the `2-case for concreteness,

though our results are easily generalized.

CARP terminates when kV (k+1)k1,q = maxi,j kU (k+1)
i· �U

(k+1)
j· kq = 0; that is, CARP terminates

when all of the pairwise di↵erences have gone to zero and the data has been fused into a

single cluster.

Note that the update

V

(k+1)
i =



1� wi�(k)

k(DU

(k+1) +Z

(k))ik2

�

(DU

(k+1) +Z

(k))i

will set V (k+1)
i to zero when

k(DU

(k+1) +Z

(k))ik2 < wi�
(k)
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Letting (j, k) be the endpoints of edge i, we find

k(DU

(k+1) +Z

(k))ik2 = kU (k+1)
j· �U

(k+1)
k· +Z

(k)
i· k2

=
�

�

�

(U (k+1)
j· � x)� (U (k+1)

k· � x) +Z

(k)
i·

�

�

�

2


�

�

�

U

(k+1)
j· � x

�

�

�

2
+
�

�

�

U

(k+1)
k· � x

�

�

�

2
+
�

�

�

Z

(k)
i·

�

�

�

2

where x is the column-wise mean of X.

Our strategy will be to show that this quantity is less that wi�(k) for some k > k⇤ small

enough that ✏tk remains bounded and hence ✏tk
⇤
remains bounded. Let

k̃ =

⇠

log(�max/✏)

log(t)

⇡

= dlogt(�max/✏)e

be the first value of k such that �(k) > �max, i.e., the value of � such that all of the

pairwise di↵erences have gone to zero and the data has been fused into a single cluster in

the regularization path (k̃ is to the regularization path as k⇤ is to the CARP path).

Using the bound from Equation (A1), we have that

kU (k+1)
j· � xk = ku(k+1)

l � (Û�
max

)j·k < L✏+ C ⇤ L(t� 1) ⇤ �max

so

kU (k+1)
j· � xk+ kU (k+1)

k· � xk < 2 (L✏+ C ⇤ L(t� 1) ⇤ �max)

Bounding kZ(k)
i k2 is more subtle, but a rough bound can be obtained again using Equation

(A1) to obtain:

kZ(k)
i· � (Ẑ�

max

)i·k2 < L✏+ C ⇤ L(t� 1) ⇤ �max

so

kZ(k)
i· k  k(Ẑ�

max

)i·k2 + L✏+ C ⇤ L(t� 1) ⇤ �max
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Putting these together, we obtain

ku(k+1)
l � u

(k+1)
m � z

(k)
l,mk2  k(ẑ�

max

)l,mk2 + 3 (L✏+ C ⇤ L(t� 1) ⇤ �max)

To stop, we require that

k(Ẑ�
max

)i·k2 + 3 (L✏+ C ⇤ L(t� 1) ⇤ �max) < wl,m ✏tk
|{z}

�(k)

which occurs when

k > logt
k(Ẑ�

max

)i·k2 + 3(L✏+ C ⇤ L(t� 1) ⇤ �max)

wl,m✏

Taking the max over all (l,m)-pairs we find

k⇤  max
l,m

logt
k(ẑ�

max

)l,mk2 + 3(L✏+ C ⇤ L(t� 1) ⇤ �max)

wl,m✏

Hence it su�ces to note

✏tk
⇤  ✏tmaxi logt

k( ˆZ�
max

)i·k2+3(L✏+C⇤L(t�1)⇤�
max

)

wi✏  max
i

k(Ẑ�
max

)i·k2 + 3(L✏+ C ⇤ L(t� 1) ⇤ �max)

wi

which clearly remains bounded as t, ✏ ! (1, 0).

Step iii. With this result in hand, the proof is similar to the first half. Again, we can invoke

Lemma 3 to find that

inf
�
k⌥(k) � ⌥̂�k  k⌥(k) � ⌥̂✏tkk  ckL✏+ CL ⇤ (t� 1) ⇤ ✏tk
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With the result from above, ✏tk remains bounded above by some B < 1, so

sup
k

inf
�
k⌥(k)�⌥̂�k = sup

1kk⇤
inf
�
k⌥(k)�⌥̂�k  sup

1kk⇤
ckL✏+CL⇤(t�1)⇤✏tk  L✏+CL⇤(t�1)⇤B

As (t, ✏) ! (1, 0), the right hand-side goes to zero so

sup
k

inf
�
k⌥(k) � ⌥̂�k ! 0

Combining this with step i, we have

dH({⌥(k)}, {⌥̂�}) = max

⇢

sup
�

inf
k

�

�

�

⌥(k) � ⌥̂�

�

�

�

, sup
k

inf
�

�

�

�

⌥(k) � ⌥̂�

�

�

�

�

(t,✏)!(1,0)������! 0

as desired.

C CBASS: Algorithmic Regularization Paths for Convex

Bi-Clustering

Having explored the computational, theoretical, and practical advantages of CARP, we now

turn to the closely related problem of bi-clustering. Bi-clustering refers to the simultaneous

clustering of rows and columns. Building on the convex clustering formulation (1), Chi et al.

(2017) propose the following convex formulation of bi-clustering:

Û� = argmin
U2Rn⇥p

1

2
kU �Xk2F + �

0

B

B

@

n
X

i,j=1
i 6=j

wijkUi· �Uj·kq +
p

X

k,l=1
k 6=l

w̃klkU·k �U·lkq

1

C

C

A

. (A2)

The second penalty term induces row fusions, similarly to how the first term induces column

fusions. The resulting Û� has a ‘checkerboard’ pattern where groups of rows and columns
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are clustered together. Note that for bi-clustering the centroids are scalars instead of vectors

as in the clustering case.

Despite their relatively similar appearances, the convex bi-clustering problem (A2) is sig-

nificantly more complicated than the convex clustering problem (1) and cannot be directly

solved directly using an operator splitting method. Chi et al. (2017) propose the use of the

Dykstra-Like Proximal Algorithm (DLPA) of Bauschke and Combettes (2008) to solve the

convex bi-clustering problem (A2) and refer to the resulting algorithm as COBRA (Convex

Bi-ClusteRing Algorithm). COBRA works by alternating solving row- and column-wise con-

vex clustering problems until convergence. As with convex clustering, calculating the bi-

clustering solution path with su�cient accuracy to accurately reconstruct both row and col-

umn dendrograms poses significant computational burden, which is exacerbated by COBRA’s

requirement to evaluate several convex clustering subproblems for each value of �. While

CARP could be used to solve each subproblem quickly, we would still have to run CARP many

times, incurring a non-trivial total cost.

Instead, we apply the technique of algorithmic regularization to COBRA directly: we take

only a single DLPA step and, within that step, we take only a single ADMM step for

each of the row- and column-subproblems. We refer to the resulting algorithm as CBASS–

Convex Bi-clustering via Algorithmic Regularization with Small Steps. Details of the CBASS

algorithm are given in Algorithm A6 below. Our clustRviz software implements CBASS with

and without a back-tracking step to ensure exact recovery or both the row- and column-

dendrograms.

C.1 Algorithms for Convex Bi-Clustering

The DLPA can be used to solve problems of the form

prox(f+g)(·)(r) = argmin
x

1

2
kx� rk22 + f(x) + g(x)
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where f and g are proximable but f + g is not using the following iterative algorithm (see

also Algorithm 10.18 in Combettes and Pesquet (2011)):

Algorithm A3 DLPA: Dykstra-Like Proximal Algorithm

1. Initialize: x(0) = r, p(0) = q

(0) = 0, k = 0
2. Repeat until convergence:

• y = proxf (x
(k) + p

(k))
• p

(k+1) = p

(k) + x

(k) � y

• x

(k+1) = proxg(y
(k+1) + q

(k))
• q

(k+1) = q

(k) + y � x

(k+1)

• k := k + 1
3. Return x

(k)

To apply Algorithm A3 to convex bi-clustering (A2), we note that the problem can be

rewritten as:

argmin
U2Rn⇥p

1

2
kU �Xk2F + �

0

@

X

(el,wl)2Erow

wlk(DrowU )l·kq
1

A

| {z }

f(U)=P
row

(U ;w
row

,q)

+�

0

@

X

(el,wl)2Ecol

wlk(UDcol)·lkq
1

A

| {z }

g(U)=P
col

(U ;w
col

,q)

and apply the DLPA with f(U ) = Prow(U ;wrow, q) and g(U ) = Pcol(U ;wcol, q). We note

that proxf is a standard convex clustering problem and can be evaluated using the ADMM

or AMA approaches described above. To evaluate proxg, we note that k(UDcol)l·kq =

k(DT
colU

T )·lkq so we simply need to perform standard convex clustering on transposed data.

The DLPA then becomes:

Algorithm A4 DLPA for Convex Bi-Clustering

1. Initialize: U (0) = X, P (0) = Q

(0) = 0, k = 0
2. Repeat until convergence:

• T = Convex-Clustering(U (k) + P

(k); Erow)
• P

(k+1) = P

(k) +X

(k) � T

• U

(k+1) = Convex-Clustering((Q(k) + T )T ; Ecol)T
• Q

(k+1) = Q

(k) + T �U

(k+1)

• k := k + 1
3. Return U

(k)

Expanding the Convex-Clustering steps with the ADMM from Algorithm A1 yields Algorithm
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A5. To obtain CBASS from Algorithm A5, we replace the inner row- and column-subproblem

loops with a single iteration of the convex clustering ADMM. Additionally, we do not reset the

auxiliary U ,P ,Q variables, instead carrying forward their values from each CBASS iteration

to the next. These two modifications yield CBASS (Algorithm A6).
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Algorithm A5 Warm-Started DLPA + ADMM for the Convex Bi-Clustering Problem (A2)

1. Input:

• Data Matrix: X 2 Rn⇥p

• Weighted Directed Edge Sets: E
row

= {(el, wl)}, Ecol = {(el, wl)}
• Relaxation Parameter: ⇢ 2 R>0

• Initial Regularization Parameter ✏ and Multiplicative Step-Size t

2. Precompute:

• Di↵erence Matrices: D
row

2 R|E
row

|⇥n and D

col

2 Rp⇥|E
col

|

• Cholesky Factors: L
row

= chol(I+⇢DT
row

D

row

) 2 Rn⇥n and L

col

= chol(I+⇢D
col

D

T
row

) 2 Rp⇥p

3. Initialize:

• U

(0) = X

• V

(0)

row

= Z

(0)

row

= D

row

X

• V

(0)

col

= Z

(0)

col

= (XD

col

)T = D

T
col

X

T

• P

(0) = Q

(0) = 0

• l = 0, �
0

= ✏, k = 0,

4. Repeat until kV (k)
row

k = kV (k)
col

k = 0:

• Repeat Until Convergence:

– Row Sub-Problem – Repeat Until Convergence:

(i) T = L

�T
row

L

�1

row

⇣

U

(k) + P

(k) + ⇢DT
row

(V
(k)
row

�Z

(k)
row

⌘

(ii) V

(k+1)

row

= prox�l/⇢P (·;w
row

,q)

⇣

D

row

T +Z

(k)
row

⌘

(iii) Z

(k+1)

row

= Z

(k)
row

+DT � V

(k+1)

row

– P

(k+1) = P

(k) +U

(k�1) � T

– Column Sub-Problem – Repeat Until Convergence:

(i) S = L

�T
col

L

�1

⇣

(T +Q

(k))T + ⇢D
col

(V
(k)
col

�Z

(k)
col

⌘

(ii) V

(k+1)

col

= prox�l/⇢P (·;w
col

,q)

⇣

D

T
col

S +Z

(k)
col

⌘

(iii) Z

(k+1)

col

= Z

(k) +D

T
col

S � V

(k+1)

col

– U

(k+1) = S

T

– Q

(k+1) = Q

(k) + T �U

(k+1)

– k := k + 1

• Store Û�l = U

(k)

• Reset Auxiliary Variables: U (k+1) = X, P (k+1) = Q

(k+1) = 0

• Update Regularization Parameter �l := �l�1

⇤ t, l := l + 1

5. Return
n

Û�i

ol�1

i=0

as the regularization path

49



Algorithm A6 CBASS: Convex Bi-Clustering via Algorithmic regularization with Small
Steps

1. Input:
• Data Matrix: X 2 Rn⇥p

• Weighted Directed Edge Sets: Erow = {(el, wl)}, Ecol = {(el, wl)}
• Relaxation Parameter: ⇢ 2 R>0

• Initial Regularization Parameter ✏ and Multiplicative Step-Size t
2. Precompute:

• Di↵erence Matrices: Drow 2 R|E
row

|⇥n and Dcol 2 Rp⇥|E
col

|

• Cholesky Factors: Lrow = chol(I + ⇢DT
rowDrow) 2 Rn⇥n and Lcol = chol(I +

⇢DcolD
T
row) 2 Rp⇥p

3. Initialize:
• U

(0) = X

• V

(0)
row = Z

(0)
row = DrowX

• V

(0)
col = Z

(0)
col = (XDcol)T = D

T
colX

T

• P

(0) = Q

(0) = 0
• k = 0, �(0) = ✏

4. Repeat until kV (k)
rowk = kV (k)

col k = 0:
• Row Updates:

(i) T = L

�T
rowL

�1
row

⇣

U

(k) + P

(k) + ⇢DT
row(V

(k)
row �Z

(k)
row

⌘

(ii) V

(k+1) = prox�(k)/⇢P (·;w
row

,q)

�

DrowT +Z

(k)
�

(iii) Z

(k+1)
row = Z

(k)
row +DrowT � V

(k+1)
row

• P

(k+1) = P

(k) +U

(k�1) � T

• Column Updates:

(i) S = L

�T
col L

�1
⇣

(T +Q

(k))T + ⇢Dcol(V
(k)
col �Z

(k)
col

⌘

(ii) V

(k+1)
col = prox�(k)/⇢P (·;w

col

,q)

⇣

D

T
colS +Z

(k)
col

⌘

(iii) Z

(k+1)
col = Z

(k) +D

T
colS � V

(k+1)
col

• U

(k+1) = S

T

• Q

(k+1) = Q

(k) + T �U

(k+1)

• k := k + 1, �(k) = �(k�1) ⇤ t
5. Return

�

U

(k)
 k

i=0
as the CBASS algorithmic regularization path
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C.2 Visualizations for Convex Bi-Clustering

While it is possible to construct row- and column-wise CBASS analogues of the CARP dendro-

gram and path plots discussed above, the primary visualization associated with bi-clustering

is the cluster heatmap, which combines a heatmap visualization of the raw data with in-

dependent row- and column-dendrograms (Wilkinson and Friendly, 2009). We modify the

standard cluster heatmap by creating dendrograms using the fusions identified by CBASS. As

Chi et al. (2017) argue, the joint estimation of dendrograms provided by convex bi-clustering

often produces better results than independent dendrogram construction.

We applied CBASS to the Presidents data and show the resulting cluster heatmap in Figure

A1. A close examination reveals several interesting patterns. This data clearly exhibits

a bi-clustered structure, with certain words being strongly associated with certain groups

of presidents. Examining the two clear bi-clusters on the left, we see that words such as

“billion,” “soviet,” and “technology” are frequently used by modern presidents and rarely

used by pre-modern presidents. Conversely, we see that words which may be considered

somewhat antiquated, such as “vessel” or “shall,” are associated with pre-modern presidents.

For data with less clear structure, the interpretability of the cluster heatmap can sometimes

be increased by plotting the smoothed estimates U (k) rather than the raw data.

In simulation studies, CBASS appears to converge to the exact regularization path as t !
1. While this is consistent with both our theory and observations for CARP, we leave the

theoretical analysis of CBASS to future work. As far as we know, a rate of convergence

has not been established for the DLPA in the optimization literature, without which the

techniques used to prove Theorem 1 cannot be applied to CBASS.
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Jimmy Carter
Harry S. Truman
Donald J. Trump
George Bush
Ronald Reagan
William J. Clinton
George W. Bush
Barack Obama
Lyndon B. Johnson
John F. Kennedy
Gerald R. Ford
Dwight D. Eisenhower
Richard Nixon
Franklin D. Roosevelt
Warren G. Harding
William Henry Harrison
James A. Garfield
Thomas Jefferson
James Madison
John Adams
George Washington
Calvin Coolidge
Woodrow Wilson
Herbert Hoover
Chester A. Arthur
Theodore Roosevelt
William Howard Taft
Grover Cleveland
William McKinley
Benjamin Harrison
Ulysses S. Grant
Rutherford B. Hayes
James K. Polk
Zachary Taylor
Franklin Pierce
John Tyler
Millard Fillmore
Abraham Lincoln
John Quincy Adams
James Monroe
Martin van Buren
Andrew Johnson
James Buchanan
Andrew Jackson

Figure A1: Cluster heatmap of the Presidents data, with row and column dendrograms
jointly estimated by CBASS. The partitions estimated by CBASS clearly associated modern
words with modern presidents and old-fashioned words with pre-modern presidents.
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D Additional Comparisons

Figure A2 compares the accuracy of CARP, CBASS, hierarchical clustering, and K-means

clustering on the TCGA and Authors data sets discussed in Section 4. While certain forms of

hierarchical clustering perform well on this data, CARP achieves superior performance without

requiring the user to select a distance or linkage.

Figure A3 compares the performance of CARP, hierarchical clustering with Euclidean distance

and Ward’s, complete, and single linkage, and K-means on data simulated from a Gaussian

mixture model. The cluster centroids were equally spaced on a 2-dimensional subspace

and n = 54 observations were generated from a Gaussian distribution with unit variance

centered at the cluster centroid. Each of the clustering methods exhibit similar behaviors,

with improved performance as the inter-cluster distance increases and decreased performance

with higher ambient dimensionality or more clusters. Because these data were generated

from isotropic Gaussians, all methods except single linkage hierarchical clustering perform

well.

Figure A4 compares the performance of the same methods on non-convex clusters. In partic-

ular, we consider a version of the “half-moons” example proposed by Hocking et al. (2011).

(See also Figure A5.) The data were generated on a two-dimensional subspace with n = 50

observations from each cluster and Gaussian noise orthogonal to the signal subspace were

added. Not surprisingly, the performance of all methods degrades as the degree of noise and

the ambient dimensionality are increased. Despite this, we see that CARP and single-linkage

hierarchical clustering clearly outperform other methods, with CARP being more robust to

the presence of noise.

Comparing these two simulations, we see that only convex clustering (CARP) is able to consis-

tently perform well on both the convex and non-convex simulated data without requiring the

user to select a distance metric or linkage. This is in large part due to the sparse weighting
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scheme used in the clustRviz package, which is able to flexibly and robustly adapt to the

observed data distribution. Our findings should be contrasted with those of Tan and Witten

(2015) who focus only on the case of uniform weights and show that, without informative

weights, convex clustering performs similarly to single linkage convex clustering.

E Back-Tracking, Post-Processing, and Dendrogram

Construction

The CARP-VIZ variant of our CARP algorithm implements a back-tracking scheme in order

to improve dendrogram recovery. Because a relatively large value of � is typically required

for any fusions to occur in convex clustering (1), CARP-VIZ begin with a large step-size (by

default, t = 1.1) and performs standard CARP iterations until the first fusion is identified

(i.e., a row of V (k) is set to zero). After the first fusion is identified, CARP-VIZ switches to a

smaller step-size (by default, t = 1.01) for the remainder of the algorithm. At each iteration,

CARP-VIZ counts the number of fusions that occur. If more than one fusion occurs, instead

of proceeding, CARP-VIZ attempts to determine which fusion occurred first. It does so using

a back-tracking scheme, similar to those used in optimization methods. CARP-VIZ discards

the iteration with multiple fusions, halves the step-size, and performs another iteration. If

this half-step iteration has only one fusion, CARP-VIZ accepts it and continues as before.

Otherwise, CARP-VIZ again halves the step-size and repeats this process until the correct

order of fusions is identified (or a limit on the number of back-tracking steps is hit). Once

the first fusion is identified, CARP-VIZ resets t and continues. CBASS-VIZ uses essentially

the same scheme, though it checks for both row and column fusions. We have found that,

because it only uses a small step-size at “interesting” parts of the solution space, this back-

tracking scheme typically produces more accurate dendrogram recovery at less expense than

running standard CARP with a very small step-size.
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Figure A2: Accuracy of convex clustering (CARP, red), convex bi-clustering (CBASS, yellow,
discussed in Section C), Hierarchical Clustering (HC, blue), and K-means Clustering (teal) on
the TCGA data set. CARP and CBASS consistently outperform both hierarchical and K-means
clustering, as measured by the Rand (Rand, 1971), Adjusted Rand (Hubert and Arabie,
1985), and Jaccard indices. CARP and CBASS were run using clustRviz’s default settings
(t = 1.05 and t = 1.01 respectively).
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Figure A3: Accuracy of convex clustering, hierarchical clustering with Euclidean distance and
several linkages, and K-means clustering (teal) on data simulated from a Gaussian mixture
model, as measured by the Adjusted Rand (Hubert and Arabie, 1985) index. Because these
clusters are spherical, with su�cient inter-cluster separation all methods except hierarchical
clustering with single linkage perform well.
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Figure A4: Accuracy of convex clustering, hierarchical clustering with Euclidean distance
and several linkages, and K-means clustering (teal) on data simulated from a the two-circles
and two-half-moons model, as measured by the Adjusted Rand (Hubert and Arabie, 1985)
index. Note that only CARP and single linkage hierarchical clustering are able to adapt to
the non-convex cluster shapes.
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Figure A5: A sample realization of the interlocking half moons test data of Hocking et
al. (2011) used for Figure A4. Data were generated from these clusters along a random
two-dimensional subspace and Gaussian noise orthogonal to the signal subspace was added
to increase the di�culty of the clustering problem. CARP and single-linkage hierarchical
clustering are able to exactly recover the true clustering in the noiseless case; the performance
of hierarchical clustering quickly degrades as more noise is added, however, while CARP is
more robust.
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Once CARP or CARP-VIZ terminate, clustRviz performs an additional post-processing step

to isolate individual fusions. clustRviz reviews the fusions at each iteration and, if an it-

eration has multiple fusions, linearly interpolates between U

(k) and U

(k+1) to determine the

approximate regularization level at which each fusion occurred. The interpolated iterate is

only approximate, but is necessary for dendrogram construction. We note that no interpo-

lation is typically needed for CARP-VIZ results, due to the back-tracking step used to isolate

individual fusions, but, by default, clustRviz post-processes both CARP and CARP-VIZ out-

put. The same post-processing scheme is applied separately to the row and column fusions

from CBASS.

Once post-processing is performed, a dendrogram is constructed from the interpolated iter-

ates. The dendrogram construction proceeds in the opposite order as hierarchical clustering:

we begin with the fully fused data and decrease �(k), noting the order in which centroids

were fused. (We use the reverse ordering so that, in the rare case where the path contains

fissions, the final fusion is reflected in the resulting dendrogram.) The dendrogram height

associated with each fusion is the �(k) at which that fusion is first observed. Finally, we

check whether fusions are more uniformly distributed on the �(k) scale or the log(�(k)) and

adjust the dendrogram height accordingly to provide less cluttered visualizations.

Since the weight selection, post-processing, and dendrogram reconstruction steps could po-

tentially be applied to any convex clustering algorithm, they are omitted from all timing

results shown in this paper.

F Additional Related Work

Following its original introduction by Pelckmans et al. (2005) and popularization by Hocking

et al. (2011) and Lindsten et al. (2011), convex clustering has been the subject of much

methodological and theoretical research. In this section, we review some of this related
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work which, while not directly relevant to the computational or visualization strategies we

propose, may be of interest to readers interested in convex clustering.

The convex clustering problem can be generalized as

Û� = argmin
U2Rn⇥p

1

2
kX �Uk2F + �

n
X

i,j=1
i<j

wijp (Ui· �Uj·)

where p(·) is any sparsity-inducing function. The choice of an `q-norm (p(·) = k · kq) gives
standard convex clustering as considered in this paper. Pan et al. (2013), Marchetti and

Zhou (2014), Wu et al. (2016), and Shah and Koltun (2017) have all considered the use of

non-convex choices of p(·), typically using the popular SCAD or MCP penalty functions to

reduce bias and improve estimation performance (Fan and Li, 2001; Zhang, 2010). We do

not consider non-convex p(·) in this paper, though the computational techniques and visual-

izations we propose could be adapted to non-convex penalties in a relatively straightforward

manner.

Restricting our attention to standard convex clustering (p(·) = k ·kq), several useful method-

ological extensions have been proposed in the literature. For example, Wang et al. (2016)

augment the convex clustering problem (1) with an additional sparse component to add

robustness to outliers, similar to the robust PCA formulation of Candès et al. (2011), while

Wang et al. (2018) propose a variant which incorporates feature selection into the cluster-

ing objective using an `1 penalty (Tibshirani, 1996). As discussed in Section C, Chi et al.

(2017) extend convex clustering to the bi-clustering setting, where rows and columns are

simultaneously clustered. Building on this work, Chi et al. (2018) extend bi-clustering to

general co-clustering of k-order tensors, where they note several surprising theoretical advan-

tages. The recent paper by Park et al. (2018+) extends convex clustering to histogram-valued

data by replacing the Euclidean distance with an appropriate metric on the space of his-

tograms.
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The squared Frobenius loss function of the convex clustering problem may be interpreted

as an isotropic Gaussian likelihood, suggesting another avenue for generalization. Sui et al.

(2018) replace the Frobenius loss with a squared Mahalanobis distance to improve perfor-

mance on non-spherical clusters. If the metric (inverse covariance matrix) is known, simple

variants on the techniques used in this paper may be used; if the metric must be estimated

from the data, the resulting problem is bi-convex and an alternating minimization scheme

must be used, only guaranteeing convergence to a stationary point.

The use of a convex formulation allows the sophisticated tools of modern high-dimensional

statistics to be brought to bear (Bühlmann and Geer, 2011; Hastie et al., 2015). In addition

to the work of Tan and Witten (2015) proving a form prediction consistency and of Rad-

chenko and Mukherjee (2017) proving asymptotic dendrogram recovery, Zhu et al. (2014)

give su�cient conditions for exact cluster recovery in the two-cluster case. The results of

Zhu et al. (2014) were later extended by Panahi et al. (2017) and by Sun et al. (2018) to the

more general multi-cluster case.

In addition to the general purpose operator-splitting algorithms proposed by Chi and Lange

(2015), specialized algorithms have been proposed for convex clustering in the “large n”

(many observations) setting. Panahi et al. (2017) propose a stochastic incremental algorithm

based on the framework of Bertsekas (2011), while Sun et al. (2018) propose a semi-smooth

Newton algorithm based on the framework of Li et al. (2016). Chen et al. (2015) propose

a proximal distance-based algorithm (Lange and Keys, 2014) and provide a GPU-based

implementation. Recently, Ho et al. (2019) proposed a generalized dual gradient ascent

algorithm with linear convergence, though their approach only works for the q = 1 case;

their approach is likely amenable to algorithmic regularization schemes similar to those we

have propose for the ADMM.

The special case of convex clustering in R has been studied under various names, including

total variation denoising (Rudin et al., 1992), the edge lasso (Sharpnack et al., 2012) and the
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graph-fused lasso (Hoefling, 2010), or as a special case of the generalized lasso (Tibshirani

and Taylor, 2011). When the underlying graph is a chain graph, convex clustering simplifies

to the well-studied fused lasso problem (Tibshirani et al., 2005; Rinaldo, 2009; Johnson,

2013).

Convex clustering has not yet seen significant adoption outside of the statistics and machine

learning communities, though Chen et al. (2015) discuss applications to human genomics.

Nagorski and Allen (2018) propose an alternative weighting scheme based on genetic dis-

tances which they use to perform genomic region segmentation.
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