
Robust Adaptation to Multi-Scale Climate Variability
James Doss-Gollin1 David J. Farnham2 Scott Steinschneider3 Upmanu Lall1

1Department of Earth and Environmental Engineering Columbia University 2Carnegie Institution for Science 3Department of Biological and Environmental Engineering,
Cornell University

At a Glance
Assessing the utility of a particular risk mitigation instrument
involves projecting the climate hazard against which the
instrument protects over the M-year planning period.
▶ Climate risk varies in time over a project’s finite planning

period, M, which may be 1-5 years for a financial risk
mitigation instrument and 30-100 years for a structural
instrument.

▶ Cyclical climate variability (anthropogenic climate change)
dominates near-term (long-term) climate risk

▶ Successful climate adaptation requires prediction of short- and
long-term climate variability over the finite planning period M

An often neglected point is that the sources of predictability
differ between projects with long and short planning periods.
We present a set of stylized experiments to assess how well
one can identify and predict risk associated with cyclical
and secular climate signals for the design life (M years) and
the probability of over- or under-design of a climate
adaptation strategy based on these projections.

Observed LFV
Our analysis is motivated by analysis of historical and paleo
records of hydroclimate systems, which often show key modes of
variability on interannual to multidecadal time scales [6, 9]. The
following time series and wavelet global spectra are
representative of this low-frequency climate variability (LFV).
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Figure 1: Hydroclimate time series vary on many time scales. (a) A 100 year
record of annual-maximum streamflows for the American River at Folsom. (b)
A 500 year reconstruction of summer rainfall over Arizona from the living
blended drought analysis (LBDA) [1]. (c) the wavelet global (average)
spectrum of the LBDA time series (a). (d) like (c), for the LBDA data.

Secular Change
Risk, defined as the product of hazard and exposure, is
changing (“nonstationarity”):
▶ anthropogenic climate change (ACC) affects the intensity,

location, and frequency of hydroclimate extremes [2, 7]
▶ changes in land use, river channels, and water use affect local

hydrologic cycles [6]
▶ urbanization and development drive increasing exposure to

floods [5] and hurricanes [8]
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Figure 2: A stylized illustration of (a) irreducible and (b) estimation
uncertainty.

Irreducible uncertainty cannot be resolved with better models or
data and is dominated in the short term by chaotic
behavior of the climate, and in the long term by the
uncertainty in future anthropogenic climate change (fig. 2a)

estimation uncertainty: the length of a historical record limits the
potential to identify different climate signals (fig. 2b)

Estimation Bias and Variance
The insurance premium for a financial risk mitigation
instrument on event X can be parameterized as

P = E[X] + λσ[X]

Thus, if an estimate has a positive bias and overestimates
uncertainty, the instrument may be too expensive for the user.
Conversely, if an estimate has negative bias and underestimates
uncertainty, it will be likely to fail (fig. 3). A key question is
thus whether the limited information in an N-year
observational record permits the identification and
projection of cyclical climate variability and secular change,
and what the resulting bias and uncertainty portends for
risk mitigation instruments with a planning period ranging
from a few years to several decades.
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Figure 3: Consequences of model bias or incorrect model representation of
uncertainty.

Experiment Design
Stylized experiment design:

1. For each, generate many synthetic streamflow sequences
embedded with one of

1.1 Secular trend only
1.2 LFV from the El Niño-Southern Oscillation (ENSO) only
1.3 both LFV and secular trend
plus stochastic variability.

2. Fit using probabilistic model:
2.1 Bayesian log-normal model
2.2 Bayesian log-normal model with linear trend
2.3 Two-state hidden Markov model (HMM)

3. Evaluate estimation bias and variance across all synthetic
streamflow sequences

4. Repeat for many combinations of N (length of historical
record: proxy for informational uncertainty) and M (project
planning period)

This approach is illustrated in fig. 4
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Figure 4: An illustration of the estimation procedure. A single streamflow
sequence with N = 50 and M = 100 is shown for each of the three cases
(secular only, LFV only, and secular plus LFV) considered. The blue line
shows the observed sequence. The gray shading indicates the 50% and 95%
confidence intervals using each of the three fitting methods discussed. The
horizontal black line indicates the flood threshold.

Key Findings

Depending on the specific climate mechanisms that
impact a particular site, and the predictability
thereof, the cost and risk associated with a sequence
of short-term adaptation projects may be lower than
with building a single, permanent structure to
prepare for a worst-case scenario far into the future:

▶ If uncertainty increases into future then adaptation
strategies with short planning periods are preferred

▶Risk profile of short-M projects dominated by
low-frequency climate variability [3, 4]

▶Even though the HMM is an imperfect analog for
ENSO, it performs well for short planning periods

▶When the planning period is long, trends must be
estimated explicitly (requiring more data)

Experiment Results
We evaluate bias and variance as a function of M, N, and
estimation method for three scenarios.

10
0

50
30

20
10

5
2

M

Hidden Markov Model LN2 Linear Trend LN2 Stationary

20 25 30 50 75 100 150 250
N

10
0

50
30

20
10

5
2

M

20 25 30 50 75 100 150 250
N

20 25 30 50 75 100 150 250
N

0.08

0.04

0.00

0.04

0.08

Ex
pe

ct
ed

 B
ia

s

4.8

4.0

3.2

2.4

1.6

0.8

Ex
pe

ct
ed

 L
og

 S
td

. D
ev

.

Va
ria

nc
e

Bi
as

Figure 5: Expected estimation bias and variance for sequences with secular
change only (no LFV).
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Figure 6: As fig. 5 but for sequences generated with zero secular change and
LFV from the ENSO index.

10
0

50
30

20
10

5
2

M

Hidden Markov Model LN2 Linear Trend LN2 Stationary

20 25 30 50 75 100 150 250
N

10
0

50
30

20
10

5
2

M

20 25 30 50 75 100 150 250
N

20 25 30 50 75 100 150 250
N

0.08

0.04

0.00

0.04

0.08

Ex
pe

ct
ed

 B
ia

s

4.8

4.0

3.2

2.4

1.6

0.8

Ex
pe

ct
ed

 L
og

 S
td

. D
ev

.

Va
ria

nc
e

Bi
as

Figure 7: As fig. 5 but for sequences generated from the NINO3 model with
both LFV and secular change.
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