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Motivating case study

What to do after Sandy? (City of New York, 2013)
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Today

My perspective: sequential planning under uncertainty

1. How does organized variability in the climate inform this
planning?

2. Observations⇒ notice three interesting things about the world
3. Stylized computational experiments⇒ understand implications
in an idealized system

Paper submitted to Earth’s Future; all codes are available at
http://github.com/jdossgollin/
2018-robust-adaptation-cyclical-risk
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Hypotheses



Idea 1: Risk Estimates over Finite Future Periods

Typical Approach:
Cost-Benefit Analysis (CBA), probably with discounting, over a finite
planning horizon of M years.

Project success depends on climate conditions over this finite
planning period:

• For dam, storm barrier: M ≥ 50 years
• For cat bond, zoning change: M ≤ 5 years

Small M: defer large investment and allow some uncertainties to be
resolved
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Idea 2: Hydroclimate Systems Vary on Many Scales

Inter-annual to multi-decadal cyclical variability key (for small M)
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(d) Living Blended Drought Analysis
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Figure 1: (a) 500 year reconstruction of summer rainfall over Arizona from LBDA (Cook et al., 2010).
(b) A 100 year record of annual-maximum streamflows for the American River at Folsom. (c),(d):
wavelet global (average) spectra.
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Idea 3: Physical Drivers of Risk Depend on M

The physical drivers of hazard depend on the projection horizon (M),

but our ability to identify these mechanisms depends on information
available (e.g., the length of an N-year observational record).
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Stylized Experiments



Experiment Setup

Research Objective
How well can one identify & predict cyclical and secular climate
signals over a finite planning period (M), given limited information?

Let P∗ = P(X > X∗).

We consider

• 3 idealized scenarios of climate change
• 3 simple models for projecting risk

Measure bias and variance of P∗.

Don’t use these models for actual estimation!

James Doss-Gollin (james.doss-gollin@columbia.edu) 7

james.doss-gollin@columbia.edu


Experiment Setup

Research Objective
How well can one identify & predict cyclical and secular climate
signals over a finite planning period (M), given limited information?

Let P∗ = P(X > X∗). We consider

• 3 idealized scenarios of climate change
• 3 simple models for projecting risk

Measure bias and variance of P∗.

Don’t use these models for actual estimation!

James Doss-Gollin (james.doss-gollin@columbia.edu) 7

james.doss-gollin@columbia.edu


Experiment Setup

Research Objective
How well can one identify & predict cyclical and secular climate
signals over a finite planning period (M), given limited information?

Let P∗ = P(X > X∗). We consider

• 3 idealized scenarios of climate change
• 3 simple models for projecting risk

Measure bias and variance of P∗.

Don’t use these models for actual estimation!

James Doss-Gollin (james.doss-gollin@columbia.edu) 7

james.doss-gollin@columbia.edu


How it works
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Stationary Scenario (LFV Only)

With limited data, the uncertainties caused by extrapolating from
complex models lead to poor performance.
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Nonstationary Scenario I (Secular Change Only)

Long planning periods need trend estimation, but this demands lots
of information. For short planning periods, simple models may be
better.
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Nonstationary Scenario II (Secular Change + LFV)

As the system becomes more complex, more data is needed to
understand it.
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Discussion



Summary

• Investment evaluation
depends on climate
condition over finite
planning period

• Physical hydroclimate
systems vary on many
scales

• Physical drivers of risk
depend on planning
period
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Conclusions

• Quasi-periodic and secular climate signals, with different
identifiability and predictability, control future uncertainty and
risk

• Adaptation strategies need to consider how uncertainties in risk
projections influence success of decision pathways

• Stylized experiments reveal how bias and variance of climate
risk projections influence risk mitigation over a finite planning
period
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Next steps
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Thanks for your attention!

Interested in making these ideas more
concrete? I’d love to collaborate!

, @jdossgollin
james.doss-gollin@columbia.edu
www.jamesdossgollin.me
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Supplemental Discussion



Idealized Experiments ⇐⇒ Real World

The idealized models used here are analogs:

Analysis Real World

N-year record Total informational uncertainty of
an estimate

Statistical models of
increasing complexity and #
parameters

Statistical and dynamical model
chains of increasing complexity and
# parameters

Linear trends Secular changes of unknown form

low-frequency climate
variability (LFV) from the El
Niño-Southern Oscillation
(ENSO)

LFV from many sources

LFV and trend additive LFV and trend interact



Generating Synthetic Streamflow
Sequences



Equations for Synthetic Streamflow Generation

First
logQ(t) ∼ N (µ(t), σ(t)). (A1)

Where σ(t) = ξµ(t), with σ(t) ≥ σmin > 0. Then,

µ(t) = µ0 + βx(t) + γ(t− t0), (A2)

and where x(t) is NINO3.4 index from realistic ENSO model (Ramesh
et al., 2016; Zebiak and Cane, 1987)



Spectrum of LFV Used

Figure A1: Wavelet spectrum of (sub-set of) ENSO model used to embed synthetic streamflow
sequences with low-frequency variability. ENSO data from Ramesh et al. (2016).



Climate Risk Estimation



Stationary LN2 Model

Treat the N historical observations as independent and identically
distributed (IID) draws from stationary distribution

logQhist ∼ N (µ, σ)

µ ∼ N (7, 1.5)
σ ∼ N+(1, 1)

(A3)

where N denotes the normal distribution and N+ denotes a
half-normal distribution. Fit in Bayesian framework using stan
(Carpenter et al., 2017).



Trend LN2 Model

Treat the N historical observations as IID draws from log-normal
distribution with linear trend

µ = µ0 + βµ(t− t0)
logQhist ∼ N (µ, ξµ)

µ0 ∼ N (7, 1.5)
βµ ∼ N (0, 0.1)

log ξ ∼ N (0.1, 0.1)

(A4)

where ξ is an estimated coefficient of variation. Also fit in stan.



Hidden Markov Model

Two-state Hidden Markov Model (HMM) (see Rabiner and Juang,
1986) implemented using pomegranate python package (Schreiber,
2017). See package documentation for reference.
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