Supporting Information

Two Ce³⁺-Substituted Selenotungstates Regulated by N,Ndimethylethanolamine and Dimethylamine Hydrochloride

Hai-Lou Li,^{†‡} Chen Lian,^{†‡} Li-Juan Chen,^{*†} Jun-Wei Zhao,^{*†} and Guo-Yu Yang^{*‡}

[†] Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China

[‡] MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China

Figure S1. (a-b) Comparison of PXRD patterns of **1** and **2** with the simulated X-ray diffraction patterns derived from single-crystal structural analyses.

Figure S2. (a) Ball-and-stick view of the trimeric $[Ce_2(H_2O)_6(DMEA)W_4O_9(\alpha-SeW_9O_{33})_3]^{12-}$ entity in **1**. (b) Ball-and-stick view of the trimeric $[Ce_2W_4O_9(H_2O)_7(\alpha-SeW_9O_{33})_3]^{12-}$ entity in **2**. W (blue balls), Ce (brilliant yellow balls), O (red balls), Se (fuchsia balls), C (black balls), N (mazarine balls).

Figure S₃. IR spectra of 1, 2 and SeO₂.

Figure S4. TG -DTA and DSC curves of 1 and 2.

Figure S₅. ESI-MS patterns of 1 at different pH values in aqueous solution.

Figure S6. ESI-MS patterns of 2 at different pH values in aqueous solution.

Figure S₇. ESI-MS patterns of 1 at different time in aqueous solution of pH = 5.0.

Figure S8. ESI-MS patterns of **1** at different time in aqueous solution of pH = 6.0.

Figure S9. ESI-MS patterns of **2** at different time in aqueous solution of pH = 5.0.

Figure S10. ESI-MS patterns of 2 at different time in aqueous solution of pH = 6.0.

Figure S11. MS spectra for the products of DPS and dodecane and GC trace of the catalytic results for the DPSO₂.

Figure S12. MS spectra for the products of 4-methoxyphenylmethylsulfide and dodecane and GC trace of the catalytic results for 4-methoxyphenylmethylsulfone.

Figure S13. MS spectra for the products of 4-nitrophenylmethylsulfide and dodecane and GC trace of the catalytic results for 4-nitrophenylmethylsulfone.

Figure S14. (a) IR spectra of fresh catalyst and recycled catalyst of **1**. (b) IR spectra of fresh catalyst and recycled catalyst of **2**.

Table S1. Crystallographic Data and Structure Refinements for 1 and 2.

Table S2. Bond Valence Sum (BVS) Calculations of All the W, Se, Ce and O Atoms in 1.

Table S3. Bond Valence Sum (BVS) Calculations of All the W, Se, Ce and O Atoms in 2.

Materials and methods. All chemicals were commercially purchased and used without further purification. Elemental analyses were measured with a Vario EL Cube super user V4.0.0 CHNS analyzer. IR spectra were recorded from solid samples palletized with KBr on a Perkin–Elmer FT–IR spectrometer in the range 400–4000 cm⁻¹. Powder X-ray diffraction (PXRD) patterns were collected on a Bruker D8 ADVANCE instrument with Cu Kα radiation ($\lambda = 1.54056$ Å). TG analyses were performed under a N₂ atmosphere on a Mettler–Toledo TGA/SDTA 851^e instrument with a heating rate of 10 °C min ⁻¹ from25 to 800 °C. The GC chromatogram was obtained on a SHIMADZU GC-2014C. Electrospray ionization mass spectrometry (ESI-MS) was performed using a Triple TOF 4600-1 mass spectrometer.

X-ray Crystallography. A suitable single crystal of 1 or 2 was picked under an optical microscope and sealed to a glass tube closed at both ends. Single-crystal X-ray diffraction intensity data for 1 or 2 were collected on a Bruker APEXII CCD detector at 296(2) K with Mo K α monochromated radiation (λ = 0.71073 Å). Direct methods were used to solve their structures and locate the heavy atoms using the SHELXTL-97 program package.¹⁻² The remaining atoms were found from successive full-matrix least-squares refinements on F^2 and Fourier syntheses. Lorentz polarization and SADABS corrections were applied. All hydrogen atoms attached to carbon and nitrogen atoms were geometrically placed and refined isotropically as a riding model using the default SHELXTL parameters. No hydrogen atoms associated with water molecules were located from the difference Fourier map. All non-hydrogen atoms were refined anisotropically except for some sodium, oxygen, nitrogen and carbon atoms and water molecules. During the course of structural refinements, seven lattice water molecules for and twenty five lattice water molecules for 2 molecule were found from the Fourier maps. But, there are still solvent accessible voids in the check cif reports of crystal structures, indicating that some lattice water molecules should exist in the structures that can't be found from the weak residual electron peaks. These water molecules are highly disordered and attempts to locate and refine them were unsuccessful. Based on TG analyses and elemental analyses, four Na⁺ ions and nineteen lattice water molecules were directly added to the molecular formula of 1 whereas ten Na⁺ ions and thirty-eight lattice water molecules were directly added to the molecular formula of 2. The crystallographic data and structural refinements for 1 and 2 are listed in Table S1.

¹ Sheldrick, G. M. SHELXL97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997.

2 Sheldrick, G. M. SHELXS97, Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1997.

Figure S1. (a-b) Comparison of PXRD patterns of **1** and **2** with the simulated X-ray diffraction patterns derived from single-crystal structural analyses.

Figure S2. (a) Ball-and-stick view of the trimeric $[Ce_2(H_2O)_6(DMEA)W_4O_9(\alpha-SeW_9O_{33})_3]^{12-}$ entity in **1**. (b) Ball-and-stick view of the trimeric $[Ce_2W_4O_9(H_2O)_7(\alpha-SeW_9O_{33})_3]^{12-}$ entity in **2**. W (blue balls), Ce (brilliant yellow balls), O (red balls), Se (fuchsia balls), C (black balls), N (mazarine balls).

Figure S₃. IR spectra of 1,2 and SeO₂.

IR spectra. IR spectra of 1 and 2 have been recorded between 4000–400 cm⁻¹ on a Nicolet 170 SXFT–IR spectrometer by utilizing KBr pellets (Figure S₃). In the low-wavenumber region, IR spectra of 1 and 2 show four characteristic vibration absorption bands attributable to ν (W–O_t), ν (Se–O), ν (W–O_b) and ν (W–O_c) are observed at 968, 892, 856 and 790 cm⁻¹ for 1, and 969, 889, 851 and 795 cm⁻¹ for 2,

respectively. Additionally, the appearance of 889-891 cm⁻¹ vibration bands in the IR spectrum of SeO₂ for reference performed under the same conditions further confirms the corresponding vibration v(Se–O) in **1** and **2**. In the high-wavenumber region, the vibration absorption band at 3402 cm⁻¹ for **1**, 3415 cm⁻¹ for **2** and an intense absorption band centered at 1628 cm⁻¹ for **1**, 1632 cm⁻¹ for **2** are respectively attributed to the stretching and bending absorption vibrations of O–H groups of water molecules. The three weak absorption bands emerging at 3128, 2772 and 1464 for **1**, 3147, 2792 and 1471 cm⁻¹ for **2** are attributed to the N–H, C–H and C–N stretching vibrations, respectively, meaning the presence of organic molecules.

Figure S4. TG –DTA and DSC curves of 1 and 2.

Thermogravimetric (TG) analysis. For purpose of exploring the thermal stability of 1 and 2 and ascertain their number of lattice water molecules, the TG analyses have been investigated under the flowing N₂ atmosphere from 25 to 800 °C. As exhibited in Figure S4, 1 and 2 both display the two-step weight loss process. The first step occuring between 25 and 250 °C with the weight loss of 5.10% (calcd. 5.21%) for 1 and 6.25% (calcd. 6.31%) for 2 are approximately assinged to the release of twenty-six lattice water molecules of 1 and sixty-three lattice water molecules of 2 respectively. The second weight loss of 6.03% (calcd. 5.99%) for 1 and 4.54% (calcd. 4.61%) for 2 appears in the range of 250 to 600 °C, owing to the loss of six coordination water molecules, eight protons, two DMEA groups and four dimethylamine groups of 1, the removal of fourteen coordination water molecules, fourteen protons and ten dimethylamine groups of 2. The total weight loss is 11.20% (calcd.11.13%) for 1 and 10.79% (calcd. 10.92%) for 2. Clearly, the experimental values agree well with the theoretical values.

Figure S₅. ESI-MS patterns of 1 at different pH values in aqueous solution.

Figure S6. ESI-MS patterns of 2 at different pH values in aqueous solution.

Figure S7. ESI-MS patterns of **1** at different time in aqueous solution of pH = 5.0.

Figure S8. ESI-MS patterns of 1 at different time in aqueous solution of pH = 6.0.

Figure S9. ESI-MS patterns of **2** at different time in aqueous solution of pH = 5.0.

Figure S10. ESI-MS patterns of **2** at different time in aqueous solution of pH = 6.0.

Figure S11. MS spectra for the products of DPS and dodecane and GC trace of the catalytic results for the DPSO₂. Reactions conditions: DPS (0.5 mmol), $_{30}\%$ H₂O₂(1.5mmol) and catalyst (1.0µmol) in CH₃CN (3 mL) at 40 °C, 60 min.

Figure S12. MS spectra for the products of 4-methoxyphenylmethylsulfide and dodecane and GC trace of the catalytic results for 4-methoxyphenylmethylsulfone. Reactions conditions: 4-methoxyphenylmethyl sulfide (0.5 mmol), 30% H₂O₂ (1.5 mmol) and catalyst (1.0 µmol) in CH₃CN (3 mL) at 40 °C, 60 min.

Figure S13. MS spectra for the products of 4-nitrophenylmethylsulfide and dodecane and GC trace of the catalytic results for 4-nitrophenylmethylsulfone. Reactions conditions: 4-nitrophenylmethylsulfide (0.5 mmol), 30% H₂O₂ (1.5 mmol) and catalyst (1.0 µmol) in CH₃CN (3 mL) at 40 °C, 60 min.

Figure S14. (a) IR spectra of fresh catalyst and recycled catalyst of 1. (b) IR spectra of fresh catalyst and recycled catalyst of 2.

	1	2	
Empirical formula	$C_{16}H_{122}Ce_2N_6Na_4O_{142}Se_3W_{31}$	$C_{20}H_{238}Ce_4N_{10}Na_{10}O_{293}Se_6W_{62}$	
Fw	8979.63	17971.04	
Crystal system	Triclinic	Triclinic	
Space group	Р-1	<i>P</i> -1	
a, Å	18.967(7)	19.710(5)	
<i>b</i> , Å	19.027(7)	20.975 (5)	
<i>c,</i> Å	27.182(10)	23.579 (6)	
α, deg	86.512(7)	65.660(4)	
β,deg	76.698(6)	77.174 (5)	
γ,deg	60.394(6)	67.978(5)	
V, Å ⁻³	8284(5)	8207(4)	
Ζ	2	1	
μ, mm ⁻¹	22.734	22.950	
F(000)	7904	7906	
Т, К	296(2)	296(2)	
Limiting indices	-22 h ≤ 22	$-23 \le h \le 23$	
	-22 <i>k</i> ≤ 22	$-15 \le k \le 24$	
	$-32 l \le 20$	$-17 \le l \le 28$	
No. of reflections collected	42693	41979	
No. of independent reflections	28883	28576	
R _{int}	0.0538	0.1168	
Data/restrains/parameters	strains/parameters 28883 / 34 / 1516 28576 / 332 / 1365		
Goodness-of-fit on F ²	1.029	1.015	
Final <i>R</i> indices $[I>2\sigma(I)]$	$R_1 = 0.0556$	$R_1 = 0.1062$	

Table S1. Crystallographic Data and Structure Refinements for 1 and 2.

	$wR_2 = 0.1252$	$wR_2 = 0.2208$
R indices (all data)	$R_1 = 0.0959$	$R_1 = 0.2043$
	$wR_2 = 0.1384$	$wR_2 = 0.2519$

Table S2. Bond Valence Sum (BVS) Calculations of All the W, Se, Ce and O Atoms in 1.

Atom	BVS	Atom	BVS	Atom	BVS
W1	5.753	W2	5.876	W3	6.246
W4	5.899	W5	6.063	W6	6.103
W7	5.974	W8	6.162	W9	5.755
W10	5.929	W11	6.363	W12	6.169
W13	6.205	W14	5.967	W15	6.393
W16	6.154	W17	6.175	W18	5.930
W19	5.748	W20	6.093	W21	5.931
W22	5.740	W23	5.921	W24	6.047
W25	6.057	W26	5.950	W27	5.921
W28	6.264	W29	6.161	W30	6.217
W31	5.927				
Ceı	2.993	Ce2	3.013		
Seı	4.024	Se2	3.968	Se ₃	3.804
O1	1.937	O2	1.821	03	1.785
04	2.055	O5	1.759	O6	1.934
O ₇	1.842	O8	1.956	09	1.926
O10	1.947	O11	1.985	O12	2.010
013	1.793	O14	1.908	O15	1.944
O16	1.791	O17	1.871	O18	1.898
019	1.882	O20	1.950	O21	1.982
022	1.974	O23	2.030	O24	1.921
025	2.054	O26	2.051	O27	1.877
O28	1.965	O29	1.960	O30	1.799
031	1.788	O32	2.068	O ₃₃	1.935
034	1.903	O ₃₅	1.658	O36	1.943
O ₃₇	1.896	O38	1.998	O ₃₉	2.001
040	1.934	O41	1.913	042	2.009
043	2.173	O ₄₄	1.952	O ₄₅	1.821
O46	2.006	O ₄₇	1.953	O48	1.867
049	1.882	O50	1.860	O51	1.842
052	1.822	O ₅₃	0.407	O ₅₄	1.875

O ₅₅	2.011	O56	1.885	O ₅₇	1.792
O58	1.920	O59	1.712	O60	1.635
O61	1.807	062	1.789	063	1.994
064	1.932	O65	1.662	O66	1.973
O67	2.075	O68	0.983	O69	1.570
070	1.978	O71	1.988	072	1.740
073	1.970	O ₇₄	1.919	O ₇₅	1.842
076	1.275	O ₇₇	1.862	O ₇ 8	1.946
079	1.662	O80	1.887	O81	1.826
082	1.973	083	1.958	O84	1.774
085	1.671	O86	2.005	O87	0.315
O88	2.000	O89	1.782	O90	2.080
091	1.989	092	1.852	O93	2.030
094	1.613	O95	2.006	O96	1.736
097	1.778	O98	1.649	O99	1.905
O100	1.694	O101	2.003	O102	1.712
0103	1.812	0104	2.004	O105	1.849
0106	1.600	O107	1.506	O108	1.911
0109	1.882	O110	1.694	O111	1.759

Table S₃. Bond Valence Sum (BVS) Calculations of All the W, Se, Ce and O Atoms in 2.

Atom	BVS	Atom	BVS	Atom	BVS
W1	5.733	W2	6.247	W3	6.290
W4	6.438	W5	6.832	W6	6.649
W ₇	6.665	W8	6.184	W9	6.275
W10	6.637	W11	6.160	W12	6.659
W13	6.464	W14	6.114	W15	5.877
W16	6.420	W17	6.141	W18	6.474
W19	6.391	W20	6.572	W21	6.206
W22	6.753	W23	5.966	W24	6.579
W25	5.992	W26	5.992	W27	6.606
W28	6.461	W29	6.513	W30	6.343
W31	6.189				
Ceı	3.175	Ce2	2.849		
Se1	4.121	Se2	3.931	Se ₃	4.093
O1	2.254	O2	2.007	03	1.835
04	2.015	O5	1.823	O6	1.976

07	2.044	08	2.019	09	1.967
010	1.979	O11	1.915	012	2.115
013	2.308	O14	1.960	O15	2.136
016	2.020	O17	1.924	O18	1.897
019	2.131	O20	2.081	O21	1.977
022	1.977	023	2.028	O24	2.003
O25	2.080	O26	2.133	O27	2.277
O28	1.992	029	2.023	O30	2.079
O31	2.018	032	2.075	O ₃₃	1.990
O ₃₄	2.016	O ₃₅	2.082	O36	2.066
O ₃₇	2.028	O ₃ 8	2.138	O39	2.116
O40	2.071	O41	2.000	O42	2.017
O ₄₃	2.082	O ₄₄	1.926	O ₄₅	2.015
O46	1.976	O ₄₇	2.068	O48	1.707
O49	2.015	050	1.998	O51	2.073
052	1.662	O ₅₃	2.026	O ₅₄	1.961
O ₅₅	2.075	O56	0.450	O ₅₇	2.232
O ₅ 8	2.087	O59	2.213	O60	0.351
O61	2.152	062	2.004	063	2.102
064	2.058	O65	1.831	O66	1.707
O67	2.084	O68	2.142	O69	1.671
O70	2.075	O71	1.528	O72	2.201
O ₇₃	1.960	O ₇₄	2.083	O ₇₅	1.850
O76	1.958	O ₇₇	1.676	O78	2.037
O79	1.792	O80	2.030	O81	1.797
O82	2.052	O83	1.912	O84	1.657
O85	1.812	O86	1.958	O87	1.944
O88	1.657	O89	2.020	O90	1.832
O91	1.960	O92	2.052	O93	2.033
O94	1.689	O95	1.635	O96	2.007
O97	1.837	O98	1.703	O99	2.022
O100	1.975	O101	1.675	O102	1.549
O103	1.764	0104	1.847	O105	1.960
O106	1.703	0107	2.002	O108	2.091
O109	2.038	O110	1.817		