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Summary

Brains represented as connectomes (brain region = node, connections =

edges).

Almost perfectly cluster test-retest scans from same subject into own

group for 30 subjects using populations of connectomes from various

neuroimaging data modalities (dMRI, fMRI).

Twomodels for representing population of graphs: 1) RandomDot Product

Graphs (RDPG), 2) Common Subspace Independent Edge Graph (COSIE).

Novel embedding methods for fitting themodels from population of

connectomes: 1) omnibus embedding for RDPG, 2)multiple adjacency

spectral embedding for COSIE.

Learn features at connectome level and node level.

GraSPy- open-source Python package all algorithms implemented. neurodata.io/graspy

Model: Random Dot Product Graphs (RDPG)

Intuition:

1. Each vertex has latent position vector inRd

2. Probability of edge occurring = dot product of two latent position vectors

Parameters:

Latent position matrixXi ∈ Rn×d ∀ i ∈ [m]

Estimation: Omnibus Embedding

Figure 1. Givenmultiple connectomes, an omnibus matrix combining all graphs is

generated. The omnibus matrix is then decomposed using eigendecomposition to obtain a

latent position matrix for each input connectome. Omnibus embedding provides a

consistent estimate of latent positions.

Model: Common Subspace Independent Edge Graph (COSIE)

Intuition:

1. Each vertex has latent position vector inRd.

2. All graphs share a common vertex latent position matrix.

3. Individual graph is a transformation of latent position matrix.

Parameters:

1. Latent position matrix V ∈ Rn×d

2. Individual matrixRi ∈ Rd×d ∀ i ∈ [m]

Estimation: Multiple Adjacency Spectral Embedding (MASE)

Figure 2. Each connectome is decomposed via eigendecomposition, and its results are

concatenated to yield theMASEmatrix. TheMASEmatrix is then decomposed via singular

value decomposition to yield a latent position matrix that is shared among all input

connectomes and subject matrix that is unique to each connectome. MASE provides a

consistent estimate of common latent position matrix, and individual matrices.
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Figure 3. Given populations of graph from different modalities, graphs from eachmodality

is embedded separately. The resulting subject matrices are then concatenated, form a

dissimiliarity matrix via Euclidean distances, then embedded via classical MDS (cMDS).

This results in a feature vector for each subject, which can be clustered via gaussian

mixture models.

HNU1 Dataset and Preprocessing

Dataset:

30 subjects

Scanned once every 5 days, 10 total scans per subject

Preprocessed using ndmg.

Figure 4. Outline of the ndmg (https://ndmg.neurodata.io) pipeline. Image taken from [3].

Clustering Results

(a) Adjusted rand index (ARI) measures the goodness
of estimated clusters given ground truth. ARI of 0

means chance clustering, and ARI of 1means perfect

clustering. Dashed vertical line represents 30

clusters. At 30 clusters, ARI is at about 0.9, meaning

that the each of the resulting clusters almost perfectly

resemble scans from the same subject.

(b) Bayesian information criterion (BIC) measures
the goodness of model by penalizing the number of

estimated parameters. BIC allows for automated

cluster selection by choosing themodel with lowest

BIC. Dashed vertical line represents 30 clusters. BIC

for Omni is minimized at 29 clusters and BIC for

MASE is minimized at 34 clusters. Minimized BIC

around 30 cluster means that our method forms

correct number of clusters, and each cluster is

meaningful.

Figure 5. Clustering results fromHNU1 dataset using 30 subjects with Omni andMASE.

Visualizations of Intermediate Steps

(a) Dissimilarity matrix computed via Euclidean
distances of subject matrices from omnibus

embedding for 3 out of 30 subjects. Matrix is

subsampled only for visualization purposes. Diagonal

blocks corresponds to test-retest scans for a subject

and have lower dissimilarity. Off-diagonal blocks

correspond to test-retest scans across subjects and

have higher dissimilarity.

(b) Visualization of embedding of dissimilarity matrix.
Same 3 subjects are subsampled for visualization

purposes. Each point represent a feature vector for a

scan. Points from the same subject are closer together

suggesting that test-retest scans from same subject

are very similar to each other.

Figure 6. Visualizations of outputs fromClassical MDS. The resulting feature vectors from

Classical MDS is used for clustering.

Conclusion

Two newmodels for representing population of connectomes (RDPG, COSIE).

Omnibus embedding andmultiple adjacency spectral embedding for estimating

parameters of RDPG and COSIE, respectively.

Estimated parameters can be used for any downstream tasks (e.g. hypothesis testing,

clustering, classification).

Clustering on HNU1 data shows near perfect clustering of test-retest scans into correct

subject cluster.

Can be applied to any population of connectomes.

Code and Data

All analysis was performed using an open-source package GrasPy (https://graspy.neuro-

data.io). All dMRI images are open-source and provided by Hangzhou Normal University

(http://fcon_1000.projects.nitrc.org/indi/CoRR/html/hnu_1.html).

NeuroDataWorkshop

NeuroData is hosting a week long workshop for all of our

neuroscience and statistical tools.

Date Tool Description

8/19 mgc High dimensional hypothesis testing

8/20 RerF Decision forest for classification, regression

8/21 GraSPy Statistical Inference on graphs

8/22 reggie Non-linear registration

8/23 ndmg fMRI and dMRI processing

Come join us at Baltimore, MDUSA!

neurodata.io/workshop
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