Human Structural Connectomes are Heritable

Carey E. Priebe 2 Benjamin D. Pedigo ¹ Joshua T. Vogelstein ¹ Jaewon Chung ¹

¹Department of Biomedical Engineering, Johns Hopkins University ²Department of Applied Mathematics and Statistics, Johns Hopkins University

Summary

- Understanding how brain connectivity is influenced by genetics can improve our understanding of brain function and diseases.
- Existing methods ignore spatial arrangement of the brain or are not statistically justified.
- Our random graph theory and statistical approach enable formulation and testing of different models of connectome heritability.
- We show that brain connectivity is more similar in monozygotic twins compared to those of dizigotic
- twins and siblings.
- Other frameworks (e.g. joint graph embeddings) can be used for vertex level analysis.

Data and Preprocessing

Human Connectome Project Young Adult study (HCP1200) [4].

Zygosity	Monozygotic	Dizygotic	Non-Twin siblings
N	250	259	476
Sex	167 F, 83 M	140 F, 119 M	223 F, 248 M
Age	29.6 (3.3)	28.9 (3.4)	28.3 (3.9)
Age range	22-36	22-36	22-37

Table 1. HCP 1200 Participants and their demographics

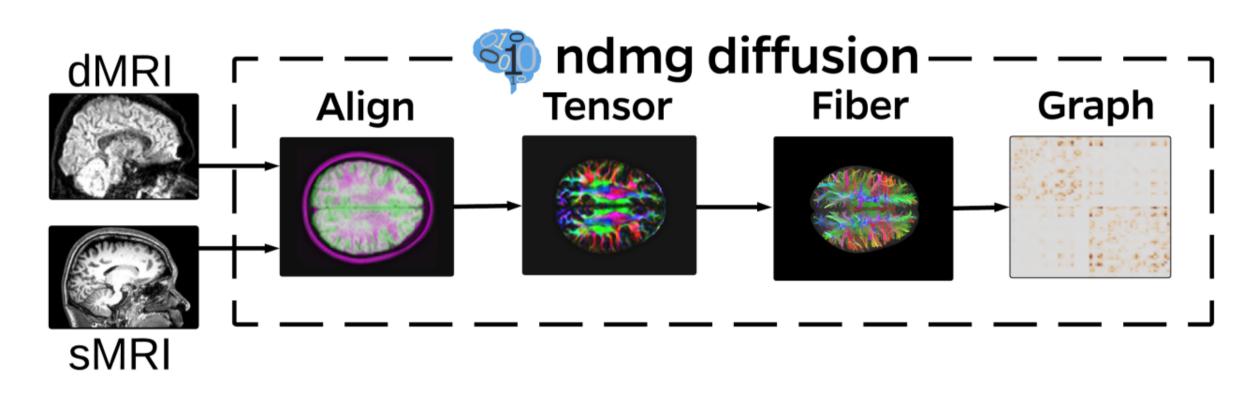


Figure 1. Outline of the *ndmg* (https://ndmg.neurodata.io) pipeline. Image taken from [2].

Estimating Heritability

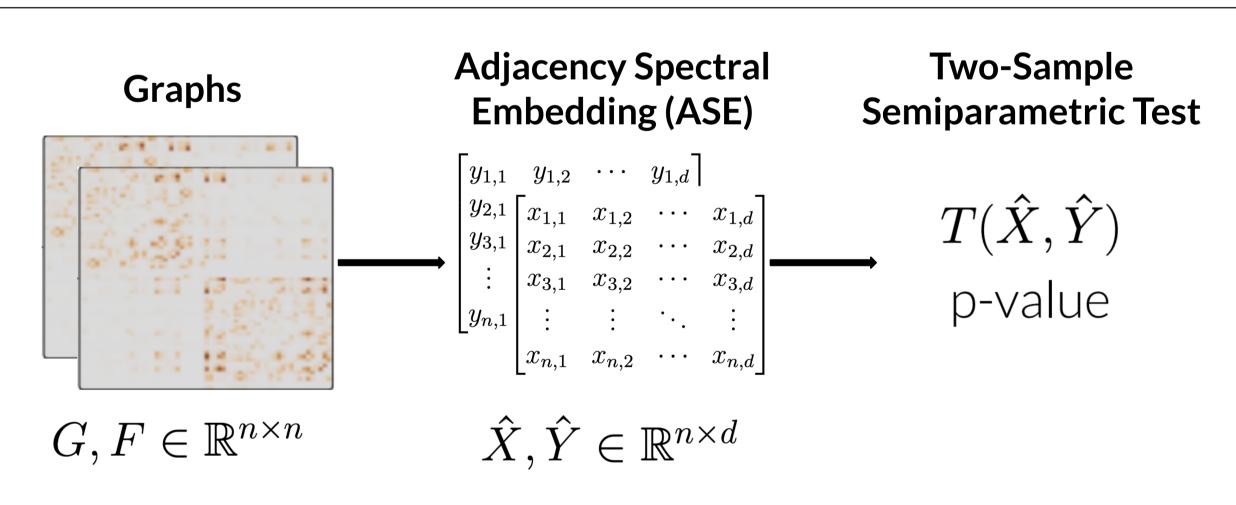


Figure 2. Outline of heritability estimation process.

For semiparametric testing, we consider the three **test cases**:

- Equality up to rotation: $H_0: X=WY$ against $H_a: X \neq WY$ where $W \in \mathbb{R}^{n \times n}$ and $WW^T=I$
- Equality up to scaling: $H_0: X = cWY$ for some c > 0 against $H_a: X \neq cWY$ for any c > 0
- Equality up to diagonal transformation: $H_0: X = DWY$ for some diagonal D against $H_a: X \neq WDY$ for any D

Two-Sample Semiparametric Test Results

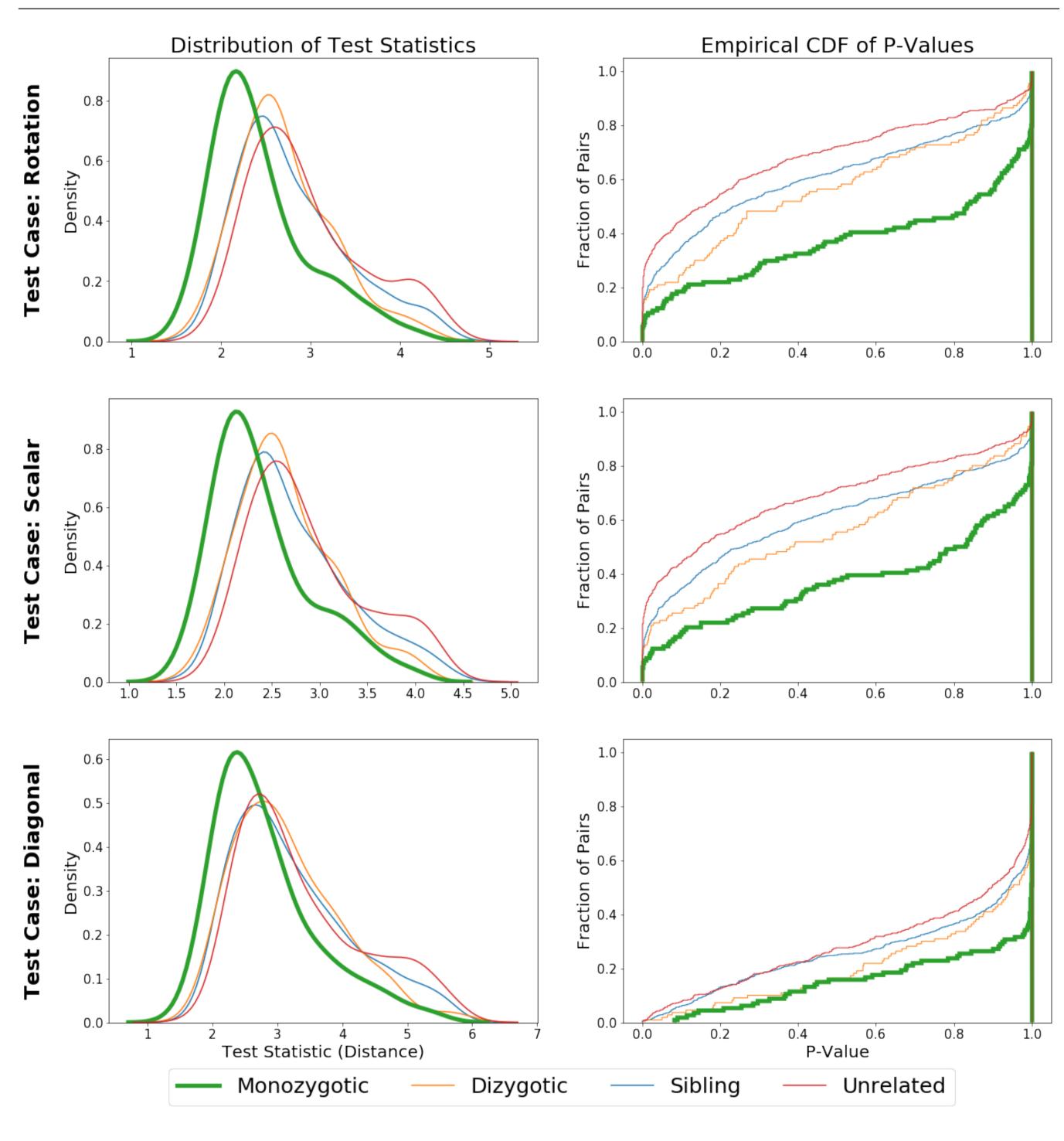


Figure 3. Kernel density estimates (KDEs) of the test statistics is shown on the left column, and the empirical cumulative distribution (eCDF) of associated p-value give by null-distribution is shown on the right column.

- 1. Kernel density estimates (KDEs) for *monozygotic twins* is different from those of dizygotic twins, sibling, and unrelated.
- 2. Distribution of test statistics for monozygotic twins is more positively skewed compared to others.
- 3. Empirical cumulative distribution function (eCDF) for monozygotic twins is more concentrated near 1 compared to others.
- 4. This empirical finding is validated through six statistical models and tested via two sample Kolmogrov-Smirnoff test (Table 2 and 3).

Two-Sample Kolmogrov-Smirnov (KS) Test Results

Null hypothesis is that the two samples are drawn from the same distribution.

Alternate Hypothesis	Test Cases		
	Rotation	Scalar	Diagonal
Monozygotic < Dizygotic	< .001 ***	< .001 ***	< .001 ***
Monozygotic < Sibling	< .001 ***	< .001 ***	< .001 ***
Monozygotic < Unrelated	< .001 ***	< .001 ***	< .001 ***
Dizygotic ≠ Sibling	0.353	0.337	0.750
Dizygotic ≠ Unrelated	0.009 **	0.009 **	0.169
Sibling ≠ Unrelated	< .001 ***	< .001 ***	0.100

Table 2. P-values for KS tests on **distributions of test statistics** from semiparametric tests.

Alternate Hypothesis	Test Cases		
	Rotation	Scalar	Diagonal
Monozygotic > Dizygotic	< .001 ***	< .001 ***	0.0012 **
Monozygotic > Sibling	< .001 ***	< .001 ***	< .001 ***
Monozygotic > Unrelated	< .001 ***	< .001 ***	< .001 ***
Dizygotic ≠ Sibling	0.120	0.109	0.199
Dizygotic \(\neq \text{Unrelated} \)	< .001 ***	< .001 ***	0.154
Sibling ≠Unrelated	< .001 ***	< .001 ***	0.025 *

Table 3. P-values for KS tests on **distributions of p-values** from semiparametric tests. Significance levels are marked with * (p < .05), ** (p < .01), and *** (p < .001).

What's Next?

- **Vertex importance** which vertex confers the most heritability?
- 2. Edge importance which edges are important?

Code and Data

All analysis was performed using an open-source package **GrasPy** (https://graspy.neurodata.io). All dMRI images are open-source and provided by the Human Connectome Project (https://www.humanconnectome.org/study/hcp-young-adult/overview).

References

- [1] Avanti Athreya, Donniell E. Fishkind, Minh Tang, Carey E. Priebe, Youngser Park, Joshua T. Vogelstein, Keith Levin, Vince Lyzinski, Yichen Qin, and Daniel L Sussman. Statistical inference on random dot product graphs: a survey.
- Journal of Machine Learning Research, 18(226):1–92, 2018.
- [2] Gregory Kiar, Eric Bridgeford, Will Gray Roncal, , Vikram Chandrashekhar, Disa Mhembere, Sephira Ryman, Xi-Nian Zuo, Daniel S Marguiles, R Cameron Craddock, Carey E Priebe, Rex Jung, Vince Calhoun, Brian Caffo, Randal Burns, Michael P Milham, and Joshua Vogelstein.
- A high-throughput pipeline identifies robust connectomes but troublesome variability. bioRxiv, 2018.
- [3] Minh Tang, Avanti Athreya, Daniel L. Sussman, Vince Lyzinski, Youngser Park, and Carey E. Priebe. A semiparametric two-sample hypothesis testing problem for random graphs. Journal of Computational and Graphical Statistics, 26(2):344-354, 2017.
- [4] David C Van Essen, Stephen M Smith, Deanna M Barch, Timothy EJ Behrens, Essa Yacoub, Kamil Ugurbil, Wu-Minn HCP Consortium, et al.
- The wu-minn human connectome project: an overview.
- Neuroimage, 80:62–79, 2013.