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ABSTRACT 
 

In automatic chess problem composition, there may be a need to classify or label problems in terms of 
solvability (i.e. how difficult it is for the typical player to solve) for more efficient human consumption. 
Automatically classifying a chess problem as being easy, moderate or difficult therefore helps in that regard. 
In this article, we explain a formula for this that relies on five variables, i.e. chess engine solving time, total 
piece count, total piece value, move length and an adjusted number to represent the variations possible. The 
method was tested on samples of forced mates (3, 4 and 5-movers) including both published chess problems 
by human composers and computer-generated ones. Statistical analysis of the results was significant and as 
expected based on the groups tested. Such problems may therefore then be classified as ‘easy’, ‘moderate’ or 
‘difficult’ based on percentile. The lowest third of scores is considered easy, for example. Longer sequences 
that do not end in checkmate (such as studies) is still an open problem in terms of solvability using this 
approach mainly because even good chess engines often cannot solve them conclusively enough to establish 
the time variable and the number of variations possible.   
           

 
1 INTRODUCTION 
 
Chess problems or puzzles found online and published in books usually present potential solvers with a position 
and stipulation such as “White to Play and Mate in 3 Moves” or “White to Play and Draw”. The positions may 
not necessarily have been composed and could even have been taken from real games. The Wikipedia (2018a ) 
page on this topic provides some insight into a finer distinction by stating the following. 
 
While a chess puzzle is any puzzle involving aspects of chess, a chess problem is an orthodox puzzle in which 
one must play and win or draw a game, starting with a certain composition of pieces on the chess board, and 
playing within the standard rules of chess. 
 
The Wikipedia (2018b) page on ‘chess problem’ further states the following. 
 
The term “chess problem” is not sharply defined: there is no clear demarcation between chess compositions on 
the one hand and puzzles or tactical exercises on the other. 
 
The terms ‘chess problem’ and ‘chess puzzle’ are therefore used interchangeably in this article to mean 
orthodox puzzles and also include ‘chess constructs’ (Iqbal, 2014), a typically simpler form of the traditional 
chess problem. Chess problems are often classified in terms of difficulty so that solvers are better prepared when 
faced with them.  This is so that they are able to make more suitable choices relative to their playing or solving 
ability. Online chess communities may use a community ranking feature where players vote on how difficult a 
problem or puzzle was to them and with sufficient participation and time, a realistic estimate of the difficulty of 
a problem can be established. Others may rely on chess experts, masters or trainers to provide an estimated 
classification based on their experience. Some may even have their own Elo-like rating systems for problem 
solving, even though these would be difficult to validate outside of controlled conditions (such as a  problem 
solving contest) where solvers did not have access to chess engines. GameKnot (2018), for instance, presents 
puzzles as shown in Fig. 1 and has the following to say.  
 
The goal of all chess puzzles is to checkmate your virtual opponent no matter what moves they make (i.e. a 
forced mate), in the requested number of moves. Some chess puzzles are created from actual chess games played 
online, and some are purely composed chess problems, sometimes even with positions that cannot be reached in 
a real game of chess. All chess puzzles are automatically verified, so all solutions are guaranteed to be correct 
and complete. However, there is always a chance that a shorter solution exists, so if you believe you found a 
better solution to any of the chess puzzles, please use Options → Another solution in the bottom right corner of 
the puzzle window to enter it. 
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Figure 1: Chess puzzles presented at the GameKnot site. 
 
Chessgames.com (2018), on the other hand, presents puzzles as shown in Fig. 2 and has the following to say: 
 

 
 

Figure 2: A chess puzzle displayed at the main page of Chessgames.com. 
 
It’s impossible to satisfy everybody with every puzzle, for what is too easy for one person is too difficult for 
another. To enable everybody to enjoy the puzzles, we arrange them so that their difficulty increases throughout 
the week. Monday and Tuesday puzzles are the easiest puzzles of the week; Saturday and Sunday are the most 
difficult. 
 
Nearly everybody should be able to solve Monday and Tuesday puzzles, although beginners at chess might have 
to invest some time to see the solution. By Wednesday and Thursday even strong players are occasionally 



stumped. Friday and Saturday puzzles can be notoriously difficult, and Sunday puzzles are often impossible to 
solve below the master level. 
 
Note that the concept of “difficulty” with chess puzzles is very subjective. Don't be surprised if some weeks you 
spend more time on a Tuesday puzzle than on a Friday puzzle--the escalating difficulty is just a rough guideline 
which cannot possibly apply to everybody. For most people, there are only two or three days a week when the 
puzzles are easy enough to solve, yet difficult enough to be challenging. 
 
Suffice to say there is no official or standard method of classifying chess problems, even among major online 
chess communities. In section 2, we briefly review related work in the area. In section 3, we explain the 
methodology used. The article concludes with some experimental results and conclusions in section 4.   
 
 
2 REVIEW 
 
In the somewhat related psychology field, it has been known for over half a century that experts in chess likely 
have ‘selective heuristics’ that make it easier for them to solve chess problems rather than unusually large 
memories or ‘processing speed’ (Simon and Simon, 1962). The difficulty of (tactical) chess problems has also 
been considered with theories such as ‘knowledge spaces’ that relies on expert feedback and opinion (Albert et 
al., 1994). This, however, has little to do with automating the process of determining solvability (since human 
experts are required). More recent research (Bilalić et al., 2009) suggests further that experts in chess perform 
better when presented with problems within their area of specialization as opposed to those requiring general 
expertise; reinforcing and perhaps refining the ‘selective heuristic’ idea.  
 
Generally, in psychology, it would appear the reliance on just one or more chess experts to determine the 
‘objective’ difficulty of a chess problem persists even to the present year (Fuentes-García et al., 2019). We are 
of the opinion that this is quite possibly inaccurate and therefore inadvisable if used as a measure of how human 
players perceive such problems as a handful of experts hardly represent what the typical or even average chess 
player experiences when trying to solve a problem. More specific to the area of computer science or artificial 
intelligence (AI), Guid and Bratko (2013) proposed a measure of difficulty in chess that was based on ‘sensible 
solutions’ at increasing search depths using a chess engine. It was correlated well with errors made in world 
chess championship matches. However, in our view, the approach itself appears perhaps to depend a little too 
much on the choice of the engine (a critical factor overall?), the hardware it is running on and ultimately does 
not take into account the problem solving and perceptual ability of the vast majority of players and solvers, i.e. 
those who are not experts and more likely to benefit from trying to solve chess problems in the first place.  
 
As far as we could tell, it was also not tested on actual compositions but rather positions taken from expert 
games. Stoiljkovikj et. al (2015) proposed the use of ‘meaningful search trees’ in order to estimate difficulty in 
chess problems but in our view, it too appears to tend to focus more on the capabilities of experts or experienced 
solvers. Another limitation or issue that stood out to us is the assumption or arbitrariness of what are considered 
‘reasonable moves’. This is not to say that these methods cannot also work to an extent (they clearly do); 
nevertheless ours is therefore provided as an alternative, if not something complementary or better. Other 
research in this area was scarce or deemed not relevant enough to the present topic. The interested reader may, 
however, refer to the broader reference sections of the aforementioned citations for additional material related to 
issues not explored here.  
 
 
3 METHODOLOGY  
 
In order to estimate the solvability (S) of a chess problem, we propose the following formula. 
 

S = (EST x 1000 + PC + SV + V) – ML, [if V > 100 then V = 100 + V/100 - 1] 
 

EST = engine solving time (in seconds), PC = piece count, SV = Shannon value (of pieces), 
V = (adjusted number of) variations, ML = move length 

 
The Shannon (1950) values of the chess pieces (Q:9, R:5, B/N:3, P:1) is a commonly used measure of the value 
of the queen, rook, bishop, knight and pawn absent of positional considerations. In principle, any standardized 
measure of piece value could be applied. The ‘variations’ variable is significantly reduced if it exceeds 100 
based on the assumption that anything more than this would probably be beyond the capability of even expert 



players to have considered in totality in any given position. Analogously, the ‘engine solving time’ variable is 
multiplied by 1000 to make it more comparable to the other variables given that chess engines running on even 
home computers today often only need microseconds to solve a puzzle. The raw (though objective) breadth and 
depth of the game tree (to a point) branching from the initial position was seen as undesirable as factors in the 
formula because most engines traverse them quite selectively depending on how they evaluate the initial or root 
position; the total number of nodes or positions in the branch are therefore effectively irrelevant with regard to 
solvability. The subtraction of the move length was to compensate slightly for the fact that longer mates are 
likely to be inherently more difficult for humans to solve. A higher solvability (S) value or score would 
therefore suggest the increased likelihood of a problem being perceived as more difficult by most players or the 
typical or average player.  
 
We realize that alternatives to this formula and the proposed values or constants may also be just as viable (or 
perhaps even better) but we will leave that question to future work by researchers who may be interested in 
refining or improving upon the material we have presented here as a starting point. Fig. 3 shows a sample chess 
problem with its composition details, main line and solvability calculation to the left of the diagram, and its 
possible variations to the right.  
 

Chesthetica v10.57 
Selangor, Malaysia 

White to Play and Mate in 3 
2017.12.13 8:07:57 PM 

 
1. Qf6 Bb2 2. f8=N+ Kg8 3. h7# 

 
Solvability  
= (0.078 x 1000 + 6 + 14 + 14) - 3 
= 112 
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Figure 3: A sample chess problem, its solvability evaluation (left) and variations (right). 
 
The engine used in this particular case was ChestUCI v5.2 (Huber, 2018) running on an Intel(R) Core(TM) i5-
4570 CPU @ 3.20GHz desktop computer with Windows 10 Enterprise (64 bit) and 16 GB of RAM installed. 
The solving time was 0.078 seconds. As we can see, there are 6 pieces on the board worth 14 Shannon pawn 
units (Q = 9, B = 3, P = 1). There are also only 14 forced mate variations (including mates in 2 if Black did not 
play optimally). Finally, the number of moves is 3 given that the stipulation is mate in 3 (against any defense). 
The final solvability score for this chess problem is therefore 112. If the number of mate variations had been 
say, 165, then the ‘V’ value would have been calculated as 100 + 165/100 - 1 = 100.65. We have even come 
across problems seemingly just as difficult where the number of mate variations is in excess of 7,000. This is 
why the adjustment proposed seemed reasonable and even necessary at some cutoff point. This cutoff point, i.e. 
at which more possible variations no longer make a difference in terms of perceived difficulty to human players 
(of say, a particular playing strength), might be of interest to psychologists in some of their experiments and a 
worthy matter of investigation in itself.   
 
In order to test the proposed formula for viability in estimating the solvability of forced mates, we compared 
mate in 3 (#3, for brevity) compositions by human composers (selected based on no other criterion than being a 
published #3), randomly-selected #3 computer-generated compositions, randomly-selected #4 computer-
generated compositions and randomly-selected #5 computer-generated compositions. Each group contained 145 
compositions each. The ones by human composers were taken from the FIDE Album 2001-2003 (Avner, 2011) 
and is the only data set of its kind we happened to have access to. This is the reason 145 compositions were also 
used for the other groups. The computer-generated compositions were by the prototype computer program, 
Chesthetica (Iqbal et al., 2016). Real game sequences (such as forced mates from tournament games) were not 
used as all the additional pieces unnecessary to the mate would likely add too much noise to the evaluations for 
a proper comparison to be made. Compositions tend to be economical in terms of the pieces used. Due to 
potential copyright issues, the PGN (portable game notation) files for these are not made public but may be 
requested from us via e-mail for research purposes, if necessary. The chess engine used was ChestUCI v5.2 



running on an Intel(R) Core(TM) i5-6300HQ CPU @ 2.30GHz notebook computer with Windows 10 Home (64 
bit) and 12 GB of RAM installed. 
 
We did not test the formula against ratings by human experts because of what had already been alluded to in 
section 2, i.e. that expert opinions (usually just a handful anyway) do not represent in any objective sense the 
perceptual and cognitive difficulty experienced by the vast majority of chess players. In other words, if a 
handful of experts, even on average, say that problem A is more difficult than problem B, this is very unlikely to 
be the experience or opinion of the average or typical chess player (for whom an automatic estimator of 
solvability would be most beneficial). On the other hand, asking a certain number of average players (e.g. Elo 
around 1500) to evaluate or rank the difficulty of chess problems and using the average scores would likely 
suffer from a lack of understanding or knowledge that would also undermine any correlations or comparisons 
made to computational methods that depend on (strong) chess engines to assess the same chess problems.       
 
     
4 EXPERIMENTAL RESULTS & CONCLUSIONS 
 
The groups of chess compositions mentioned in the previous section would be expected to illustrate a varying 
level of difficulty, on average. This was the hypothesis, and the results based on the proposed formula are as 
shown in Table 1, rounded to one decimal place. 
 

Table 1: Average solvability scores for different groups of compositions. 
 

#3 Computer-Generated #4 Computer-Generated #5 Computer-Generated #3 Human 
116.3 148.0 225.4 233.8 

 
A single factor analysis of variance (ANOVA) test was performed across all the four groups comparing the means and 
the differences were found to be statistically significant: F (3, 576) = 137.1, p < 0.0001. The results suggest that 
difficulty increases as the forced mate sequences get longer, which is to be expected. More interestingly, however, is 
that #3 compositions by human composers are not only more difficult, on average, compared to #3 compositions by 
computer but also more difficult than longer mate compositions (i.e. #4 and #5) by computer. This too is to be 
expected or is at least reasonable given the many more conventions and constraints put on human composers for their 
compositions to be recognized and published. The proposed formula can therefore be used to classify forced mate 
chess problems based on their difficulty. While there are many methods of delineating between categories such 
as ‘easy’, ‘moderate’ and ‘difficult’, we suggest using the percentile. For instance, anything that is <=0.33 can 
be considered ‘easy’, between >0.33 and <=0.67 can be considered ‘moderate’, and >0.67 can be considered 
‘difficult’.  
 
In order for these values to be consistent or comparable across the chess problems, it is also important that the 
same chess engine and computer (i.e. the same software and processing power) be applied. The EST variable 
(see section 3) depends on this. The implication is that a different engine and different hardware could always be 
used with the same formula but doing so will call for a fresh evaluation of all the chess problems; therefore 
always using ‘the best’ or most up-to-date engine is not a necessity or a critical factor. Additionally, note that as 
new problems are added, some will likely shift from one category to the next but this will become less frequent 
over time as the database gets larger and the ranges stabilize. Table 2 and Fig. 4 depict how these values tend to 
adjust over time. The chess engine used was ChestUCI v5.2 running on an Intel(R) Celeron(R) N4000 CPU @ 
1.10GHz notebook computer with Windows 10 Home (64 bit) and 4 GB of RAM installed.  
 
A collection of the most recent 1,000 computer-generated chess problems, in chronological order, composed by 
Chesthetica were used. They contained #3s (35.5%), #4s (31.3%), #5s (25.1%) and studies (8.1%). The studies 
were automatically skipped by the engine in this case because the formula does not apply to them. They were 
not removed entirely from the start in order to more closely resemble a real-world application of the formula 
where a variety of chess problems may be collected or added from time to time (not all requiring a solvability 
estimate). This collection of 1,000 problems was broken into ten incrementing parts, i.e. 1-100, 1-200, 1-300 
and so forth until 1-1,000. This would illustrate how the 33rd and 67th percentile values changed as more chess 
problems were added. Given the variability of the EST value (i.e. for a more stable determination of solvability) 
each chess problem was evaluated five times and the lowest solvability value used as the final score. This step is 
optional and some may prefer using the average score instead. 
 
 
 



Table 2: Solvability score for mate (percentile) based on the ranges of compiled chess problems. 
 

 
1-100 1-200 1-300 1-400 1-500 1-600 1-700 1-800 1-900 1-1000 

#3 (33) 209.0 202.0 205.0 205.0 205.0 212.0 200.0 241.0 238.0 209.0 

#3 (67) 228.0 223.0 221.0 224.0 228.0 234.0 218.0 267.0 260.0 229.0 

#4 (33) 250.0 233.0 229.0 226.0 240.0 238.0 215.0 260.0 254.0 225.0 

#4 (67) 294.4 277.0 282.0 276.0 286.3 281.0 265.0 319.0 307.0 273.0 

#5 (33) 296.0 304.0 311.0 314.0 320.0 312.0 282.0 338.0 328.0 288.0 

#5 (67) 460.0 444.0 426.0 432.2 424.0 419.1 379.6 445.0 429.8 386.0 
 
 

 
Figure 4: 3D visualization of the data in Table 2. 

 
So, for example, we can see from Table 2 that after analyzing just 100 problems, the 33rd percentile for #3 had a 
solvability score of 209 whereas the 67th percentile had a solvability score of 228. This would mean that any 
new #3 problem evaluated could be classified as ‘easy’ if it scored <=209, ‘difficult’ if it was > 228 and 
‘moderate’ for all other scores. By the time 1,000 problems had been added to the collection, the 33rd percentile 
for #3 was 209 and the 67th percentile was 229, showing very little change from the beginning (but more 
changes between, actually). The changes at the end are more significant for #4 and #5, however. Also, from Fig. 
4, we can see a sudden rise or spike after adding problems 701-800 (i.e. between the 1-700 and 1-800 ranges). 
This can be expected to happen for whatever reason but then the values usually stabilize again.  
 
With a sufficiently large collection of problems (e.g. 3,000 or more) it should be safe to assume that there will 
be very minor changes given additional (similar) problems such that any problem already evaluated in terms of 
solvability would not shift (e.g. from ‘moderate’ to ‘easy’) if evaluated again based on the updated solvability 
scores in percentiles 33 and 67. The updated amounts would not be much, if anything. Note that the solvability 
scores in Table 2 should not be compared with the values in Table 1 because those were generated using 
different hardware. Also, the newer computer-generated chess problems used here may be of higher (or lower) 
quality than the ones used in that particular experiment. 
 



Ultimately, however, the perceived difficulty of a particular chess problem will depend on the solver, i.e. 
primarily their playing strength and experience (perhaps in solving chess puzzles or problems). The curious 
reader may peruse a growing collection of chess problems (Chess Intelligence, 2019) where the formula has 
been applied (using a consistent engine and hardware) to estimate solvability over the last few months. While 
studies (i.e. longer problems without a decisive result such as mate) may require a modification to the formula 
or different approach, we are fairly confident the formula as it stands should also work for forced mates longer 
than five moves, even though this was not explicitly tested here. 
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