Supporting information

High efficient lignin depolymerization via effective inhibition of condensation during polyoxometalate mediated oxidation

Weisheng Yang ‡,b , Xu Du $^{\ddagger b}$, Wei Liu b, Andrew W. Tricker b , Hongqi Dai $^{a^*}$ and Yulin Deng $^{b^*}$

Table of contents

- S1. Regenaration of polyoxometalate
- S2. Lignin model compounds synthesis and its characterization
- S3. Selective oxidation of lignin model compounds
- S4. 2D-NMR spectra of raw lignin
- S5. Chemical composition of lignin oil and gas products
- **S5.1** Gas products analysis
- **S5.2** Possible formation processes of aliphatic compounds
- S5.3 GPC analysis of lignin oil

S1. Regenaration of polyoxometalate

Fig. S1 UV-vis absorbance spectra of POM_{ox} and $H-POM_{red}$ solution, and the insert digital photograph of the original POM_{ox} (left), $H-POM_{red}$ (middle), re-oxidation POM_{ox} (right).

S2. Lignin model compounds synthesis and their characterization

To synthesize 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl) ethanone, 2-Bromo-4'methoxyacetophenone (1.7 g), Guaiacol (1.1 g) and potassium hydroxide (0.5 g) were dissolved in 35 mL DMF(dimethylformamide) and stirred at room temperature for 12 h. After reaction, the reaction mixture was poured into water and extracted with 2V ethyl ether for 3 times. After drying of ethyl ether phase with sodium sulfate, 2-(2methoxyphenoxy)-1-(4-methoxyphenyl) ethanone was recrystallized from ethanol. Then the products were analyzed by GC-MS and ¹H-NMR.

To synthesize 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, a solution of 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl) ethanone (0.49 g) in methanol (20 mL) was treated with sodium borohydride (0.07 g) and stirred 12 h. A saturated solution of ammonium sulphate (20 mL) followed by chloroform (20 mL) was added to the reaction mixture. The organic layer was separated, and washed with water for three times. Organic phase was dried with sodium sulfate, then the organic solvent was removed via rotary evaporators to obtain residual products. Finally, the residual products were recrystallized from ethanol to obtain pure 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl) ethanol. The final products were analyzed by GC-MS and ¹H-NMR.

Fig. S2 GC-MS pattern of the 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl) ethanone (β -O-4-K).

Fig. S3 GC-MS pattern of the 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl) ethanol (β -O-4-A).

¹H-NMR (700 MHz, DMSO-d) δ = 8.03-7.99 (m, 2H), 7.09-6.81 (m, 6H), 5.45 (s, 2H), 3.86 (s, 3H), 3.78 (s, 3H).

Fig. S4 ¹H-NMR pattern of the 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl) ethanone (β -O-4-K).

¹H-NMR (700 MHz, DMSO-d) δ = 7.37 (t, 2H), 7.37-6.84 (m, 6H), 5.49 (t, 1H), 4.87 (dd, 1H), 3.95 (ddd, 2H), 3.74 (t, 6H).

Fig. S5 ¹H-NMR pattern of the 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl) ethanol (β -O-4-A).

S3. Selective oxidation of lignin model compounds

To a 50 mL bottle, 200 mg of lignin model compounds (2-(2-methoxyphenoxy)-1-(4-methoxyphenyl) ethanol (β -O-4-A)) and 6 mg TEMPO were added. 10 mL acetonitrile (containing 100 µL H₂O), 6 µL of hydrochloric acid (37%) in 1.5 mL acetonitrile and 9 µL of nitric acid (67%) in 1.5 mL acetonitrile were injected respectively. The reaction mixture was stirred at 65 °C with 1 atm. O₂ for 24 h.

Fig. S6 GC-FID pattern of products derived from selective oxidation of lignin model compounds

Compound	Structure	Retention time (min)	Area	Content (%)
M1	H ₃ CO OCH ₃	33.972	3.1610	88%
M2	OH OCH3	33.009	0.4403	12%

Table S1 Products derived from selective oxidation of lignin model compounds

S4. 2D-NMR spectra of raw lignin

Fig. S7 Aliphatic regions and aromatic regions of the raw lignin obtained with (HSQC) NMR. And the main structures presented in the raw lignin.

S5. Composition of lignin oil and gas products **S5.1** Gas products analysis

Entry	Blocking	Gas	Gas	Solvent	Temperature	Time	Gas products composition (Vol %)		Gas
	Са-ОН		pressure		(°C)	(h)			products yield ^a
			(bar)						
							CO_2	CO	(C %)
1	Without	O ₂	10	Methanol/Water	150	4	2.68	0.30	11.64
				(18 mL/2 mL)					
2	Without	N_2	10	Methanol/Water	150	4	0.3	0.02	1.25
				(10 mL/10 mL)					
3	Without	Air	Atmospheric	Water	150	4	0.27	0.02	1.13
			pressure	(20 mL)					
4	Without	N_2	Atmospheric	Methanol/Water	150	4	0.24	0.02	1.01
			pressure	(18 mL/2 mL)					
5	Without	O_2	10	Methanol/Water	150	4	2.01	0.16	16.70
				(18 mL/2 mL)					
6	Without	O_2	10	Methanol/Water	150	4	2.00	0.16	16.68
				(18 mL/2 mL)					
7	With	O_2	10	Methanol/Water	150	2	2.52	0.18	10.53
				(18 mL/2 mL)					
8	With	O_2	10	Methanol/Water	150	4	3.47	0.48	15.41
				(18 mL/2 mL)					
9	With	O_2	10	Methanol/Water	150	6	5.01	0.56	21.71
				(18 mL/2 mL)					
10	With	O_2	10	Methanol/Water	150	8	6.55	0.64	28.03
				(18 mL/2 mL)					
11	With	O_2	10	Methanol/Water	100	4	2.12	0.11	7.11
				(18 mL/2 mL)					

Table S2 Analysis of the gas phase under vary conditions.

S5.2 Possible formation processes of aliphatic compounds

Fig. S8 scheme representing 1) oxidation, depolymerization, and demethylation and 2) ring opening, leading to unsaturated aliphatic and hydroxylated carboxylic acid containing structure C^[1].

Fig. S9 Proposed reaction pathways for the production of unsaturated aliphatic carboxylic acid^[2].

S5.3 GPC analysis of lignin oil and raw lignin

•

Fig. S10 GPC analysis of lignin and lignin oil obtained from the depolymerization of the lignin with and without blocking active C_{α} -OH.

Fig. S10 GPC analysis of the lignin oil obtained from the depolymerization of the lignin with vary temperatures 100°C, 150°C.

- [1] aD. C. Waggoner, H. Chen, A. S. Willoughby, P. G. Hatcher, *Organic Geochemistry* 2015, *82*, 69-76; bA. C. S. ‡, †,, A. G. M. And, †, §, W. T. C. †, *Analytical Chemistry* 2003, *75*, 1275-1284.
- [2] R. Ma, M. Guo, Prof., #x, D. X. Zhang, *Chemsuschem* **2014**, *7*, 412-415.