
Minimal information for reusable scientific software
Neil Chue Hong

Software Sustainability Institute
JCMB, Mayfield Road

Edinburgh, EH9 3JZ, UK
N.ChueHong@software.ac.uk

ABSTRACT

One of the biggest challenges for developers of scientific software
is understanding how best to make the software reusable. A
particular problem is that the concept of reusability combines
many different concerns, including whether the software can be
reused, how it can be reused, and by whom. This paper looks at
the concept of software reusability from the perspective of the
software engineer and the researcher. It proposes a multi-level
framework for improving the reusability of scientific software,
which minimises the information and effort required such that it is
easier for scientific software developers, who are often
researchers, to provide appropriate levels of information to
support reuse.

Keywords
Scientific software, research software, software reuse, software
reusability, software sustainability, minimal information
standards.

1. INTRODUCTION
Software underpins much of the scientific research undertaken
today. As well as the “traditional” use of software for modelling
and simulation, it is used to manage and control instruments, and
analyse and visualise data. An incredible amount of investment of
effort and money is put into scientific software. In the UK, the
Engineering and Physical Sciences Research Council (EPSRC)
estimated that it had invested approximately £9m per annum on
scientific software [1]. A major concern for funders is the amount
of reuse of software developed under their investment: given the
cost of software production there is an onus on it being usable by
the widest possible set of users. Yet each year, researchers and
developers will choose to create a piece of software from scratch
rather than reuse an existing one. How can we address this issue?

1.1 Challenges and perceptions
One of the biggest challenges for developers of scientific software
is understanding how best to make the software reusable. A
particular problem is that the concept of reusability combines
many different concerns, including whether the software can be
reused, how it can be reused, and by whom.

Whether a piece of software can be reused depends on three
things: the “quality” of the software, the “ability” of the re-user,
and any restrictions placed on the software. In software
engineering terms [2], the quality of the software encompasses
both quality of design (the degree to which the software meets the
functional requirements) and quality of conformance (the degree
to which the software as implemented meets the non-functional
requirements such as robustness and maintainability). The ability
of the re-user is goes hand in hand with the quality of the software
Restrictions on the software include things like the license the
software has been released under, but also whether the software

can be discovered and understood to meet the re-users’
requirements.

Additionally, there are many motivations that disbenefit reuse. In
the research sector, there is a focus on novelty and originality,
such that maintenance, improvement and even quality are not seen
as priorities for a developer. As a researcher, you may not want to
use someone else’s code because you do not believe it does
everything you want, or even because you would prefer the fun of
developing it yourself. What is more, the diversity and variety of
software used in a research environment often mean that personal
recommendations and demonstrations at conferences are often the
only way to get a sense of the reusability of the software.
Therefore a major challenge is the provision of adequate levels of
information to support discovery and understanding of the
capabilities of the software, without placing an undue burden on
the developer.

Ultimately, software reusability is important not just for
correctness: it enables improved efficiency and productivity,
ability to link related outputs, and a more sustainable research
software ecosystem. Researchers should be able to understand
which software they should choose to reuse or modify for their
work. What is required is a simple way of describing a piece of
software to let others reuse it.

2. SOFTWARE REUSE
2.1 The software engineering perspective
The topic of software reuse has been considered from a software
engineering perspective for many decades. From the first cost
model for software reuse [3] developed at CMU's Software
Engineering Institute by Holibaugh et al in 1989 , there have been
successive iterations of research (Koltan and Hudson's Reuse
Maturity Model, the reuse model for DARPAs STARS program
[4], the CMMI [5], the SSMM [6], QSOS1) into improving the
reusability of software code and developing maturity models to
describe the code.

Reusability can be applied at many layers: software, platforms,
libraries, components, APIs, code, formats, models. Most models
concentrate on defining a process for assessing the reusability of
the code itself. One of the best known examples is the NASA
Reuse Readiness Levels [7][8]. This allows others to easily assess
the reuse potential (from limited reusability to having
demonstrated extensive reusability) across a number of topics
(including documentation, packaging, licensing and portability).
This gives a comprehensive and comparative framework for
assessing the reusability of scientific codes. However this is not a
small undertaking, and it is still aimed at the software engineer
rather than all researchers that develop software.

1 http://www.qsos.org/

2.2 The researchers perspective
The difference between scientific software development and
general software development can be illustrated by one
fundamental characteristic: in general, software is written by a
developer for others to use, however with scientific software it is
often (initially) written by a researcher to use themselves. Further,
whilst there are various incentives for developers in general to
make their software reusable (e.g. commercial returns, reputation)
there are currently few for researchers who develop software.
There are exceptions to this of course: larger projects which hire
research software engineers because they recognise the need to
share software with collaborators; “cottage industry” developers
seeking to capitalise by producing software based around a new
research technology or technique that they can sell to researchers.

In all cases, the “economics” of reusability are different: because
the incentives are fewer and because the developer of research
software is often primarily developing it for use in their own
research, the cost benefit analysis would suggest that the software
should be made only as good and as reusable as necessary to get
to the next publication. Nevertheless, given the increased
emphasis on open science and reproducible research, many
researchers would like something that provides an answer to C.
Titus Brown's idea of the Ladder of Academic Software
Reusability + Sustainability2, or this author’s own Five Stars of
Research Software3.

In recent years, various suggestions and discussion around the
topic of the information required for reusability, each with an
emphasis on the unique issues of scientific software, have taken
place. Notably, these include the Significant Properties of
Software study4 [9], the Science Code Manifesto5, Code as a
Research Object6, and the 1st WSSSPE workshop7 [10][11]. The
NSF has encouraged new initiatives in this area8 through a Dear
Colleague letter on Supporting Scientific Discovery through
Norms and Practices for Software and Data Citation and
Attribution. The Journal of Open Research Software9 publishes
software metapapers which contain basic information about pieces
of scientific software. Each of these seek to reach a pragmatic
balance between reducing the effort of the developer to make the
software reusable and the effort of the user to reuse it. However,
thus far there has not been an attempt to create a multi-level
framework that gives the developer a choice of information to
provide, along with the corresponding benefit for reuse.

2 http://ivory.idyll.org/blog/ladder-of-academic-software-

notsuck.html
3 http://www.software.ac.uk/blog/2013-04-09-five-stars-research-

software
4 http://www.stfc.ac.uk/e-Science/projects/medium-term/software-

preservation/22428.aspx
5 http://sciencecodemanifesto.org/
6 https://github.com/mozillascience/code-research-object/issues/2
7 http://wssspe.researchcomputing.org.uk/wssspe1/
8 http://www.nsf.gov/pubs/2014/nsf14059/nsf14059.jsp
9 http://openresearchsoftware.metajnl.com/

3. A FRAMEWORK FOR INFORMING
THE REUSE OF SCIENTIFIC SOFTWARE
To promote the reuse of scientific software, whilst balancing the
amount effort available to most developers of scientific software, I
have defined a framework for informing the reuse of scientific
software. This framework is split into four levels (Levels 1-4)
which I consider to be what all developers of scientific software
should be aiming to meet. Each level builds on the one below, to
gradually build up the information that is required to promote
reusability. Therefore a developer can start at level 1 and progress
to more advanced levels if additional time and effort are available,
if they perceive the need to promote reuse, or there is evidence of
issues coming from others attempting to reuse the software. I also
note two additional levels (Level 0 and Level 5) which I consider
not to be useful as they represent, respectively, the theoretical
minimum and idealistic minimum which either provide
insufficient information for the user or place too high a barrier on
the developer.

The different pieces of information are split into five categories:

• LICENSE: the legal constraints on reusability on the
software

• AVAILABILITY: information relating to the discovery
and accessibility of the software

• QUALITY: information relating to understanding the
functional and non-functional requirements fulfilled by
the software

• SUPPORT: information relating to how the user may
communicate with the developers

• INCENTIVE: information that enables developers and
users to be rewarded for reuse

3.1 Level 0: Theoretical Minimum
This is the theoretical minimum requirement for reusability, but
would not be considered to promote reusability.

• LICENSE: the software has a license.
• AVAILABILITY: the software is available via some

mechanism.

3.2 Level 1: Absolute Minimum
This is a practical absolute minimum requirement that places no
barrier on the developer. It should also be considered the absolute
minimum information to be provided by any researcher who has
published a paper that includes results produced by software they
have written:

• LICENSE: the software has a license that allows reuse
(this can include non-Open Source licences that allow
reuse under academic or commercial terms).

• AVAILABILITY: the software has been published
somewhere such that people can find it (this could be as
a tarball on a website).

• QUALITY: the software has some minimal indication
of what it is supposed to do (e.g. "This software finds
and sorts variants in a file containing genetic
modifiers"), normally as part of a README.

• SUPPORT: the software indicates some way of
contacting the original/current developer (in lieu of
good documentation), normally as part of a README.

3.3 Level 2: Useful Minimum
This is a useful minimum level of information which does not
place significant additional effort over what might be expected to
support their own use of the software.

• All of the information from Level 1, plus:
• AVAILABILITY: the software is in a repository of

some form, including the source code in a code
repository if this is made available.

• QUALITY: the software has enough documentation to
understand how to run it without contacting the original
developer. This would normally include sample input
and output files, and basic options/parameters.

• QUALITY: the documentation says what combination
of dependencies (software and hardware) the developer
believes the software requires.

• INCENTIVE: some way of citing/attributing the
developers is provided.

3.4 Level 3: Pragmatic Minimum
This is a pragmatic level of information which I consider most
developers should strive to provide. It requires some additional
effort over the previous levels, but not significantly more than
would be required if simply collaborating on the code
development with another developer.

• All of the information from Level 2, plus:
• LICENSE: the software has a licence that allows

modification as well as reuse.
• AVAILABILITY: source code for the software should

be in a code repository under version control and
commit messages should be minimally useful.

• AVAILABILITY: the software is published via a
website which includes details of what the software
does and is indexed by search engines.

• QUALITY: the software describes some form of
running tests in an automated fashion.

• QUALITY: the software provides at least one
automated "system test" including input, output and
parameter data which enable a user to run the software
through a complete pipeline/workflow example.

• QUALITY: each major package / subroutine should
have some documentation. Code documentation should
be about design and scientific purpose, not the
mechanics of the code.

• SUPPORT: the software has an associated mailing list,
issue tracker, or similar mechanism for raising and
resolving issues.

• INCENTIVE: there is a DOI attached to the software / a
paper about the software that enables it to be cited using
traditional mechanisms.

3.5 Level 4: Good Minimum
This is a good minimum level of information which actively
encourages reuse of software but requires a slightly higher level of
curation of the information.

• All of the information from Level 3, plus:
• LICENSE: the software has an OSI approved open

source licence that allows modification as well as reuse.
• LICENSE: any data accompanying the software is

released under a Creative Commons license that allows
reuse.

• AVAILABILITY: the reuse information defined in this
framework is presented in a machine readable form.

• QUALITY: the software uses an automated test
framework and has reasonable test coverage.

• QUALITY: the software lists dependencies including
languages, versions, operating systems and formats.
Links to dependencies are provided if not bundled with
software.

• QUALITY: the documentation describes the type of
people that would be expected to use the software, and
provides step-by-step examples and screenshots of how
they would use it.

• SUPPORT: the documentation includes basic
information on how to extend and modify the software.

• SUPPORT: the software can be built and/or installed
using simple, automated procedures.

• SUPPORT: the software documentation includes the
developers own perceived definition of reusability.

• INCENTIVE: all contributors to the software are
acknowledged.

3.6 Level 5: Idealistic “Minimum”
In discussions, various other suggestions have been made which
have been advocated as “minimum” requirements for reuse. In
each case, they represent the ideal implementation of some
software engineering practice. However I believe these not only
place such a demand on the developer that they will chose not to
make any concessions for reusability but are also are not required
by most users reusing the software.
Examples include:

• 100% unit test coverage
• Automatic binary installers for multiple platforms
• Use of a dependency manager

It should also be noted that these are not strictly information, but
rather requirements on the project. It is important that we do not
expect every project to reach the idealistic minimum or none will
reach the useful minimum.

4. CONCLUSIONS
Scientific software is increasingly important for all areas of
research, and significant investment is made to support its
development. Yet often software is not reused by others who
could benefit which means the value of the investment is
diminished, and the total investment required increases. Whilst
many proposals have been made to define a set of information that
should be provided to enable reusability, these are often aimed at
a single level or fail to take into account the required balance
between the effort required of the developer to make the software
reusable and the effort required of the user to understand how to
reuse it.

By providing a multi-level framework for defining the
information that needs to be provided to promote reuse of
scientific software, I hope that this paper provides a pragmatic
way of encouraging developers of all levels to improve the
reusability of their software.

5. ACKNOWLEDGMENTS
My thanks to Kevin Ashley, Martin Fenner, Ross Gardler, David
Shotton, Kenji Takeda, and people at the EPSRC Software
Strategy Town Meeting who inspired the original idea behind the
Five Stars of Research Software; to Caitlin Bentley, Adam
Crymble, Barry Rowlingson, Robin Wilson, and Mark
Woodbridge who contributed refinements to the Five Stars; to
Carl Boetigger, C. Titus Brown, Robert Davidson, Konrad
Hinsen, Karthik Ram, Kaitlin Thaney, Greg Wilson and the other
contributors to the Code as a Research Object project for helping
to shape my thinking around the framework; to Arfon Smith for
his ideas around README files; and finally my colleagues at the
Software Sustainability Institute for providing the inspiration and
examples that informed the development of the framework, in
particular Steve Crouch, Mike Jackson, Simon Hettrick and
Aleksandra Pawlik. The Software Sustainability Institute is
supported by EPSRC grant EP/H043160/1.

6. REFERENCES
[1] EPSRC. 2012. Software as an Infrastructure. Accessed on

19th July 2014 from:
http://www.epsrc.ac.uk/newsevents/pubs/software-as-an-
infrastructure/

[2] Pressman, S. 2010. Software Engineering: A Practitioners
Approach (7th Edition). p398-406.

[3] Holibaugh, R et al. 1989. Reuse: where to begin and why.
Proceedings of the conference on Tri-Ada '89: Ada
technology in context: application, development, and
deployment. p266-277. DOI: 10.1145/74261.74280.

[4] Frazier, T.P., and Bailey, J.W. 1996. The Costs and Benefits
of Domain-Oriented Software Reuse: Evidence from the
STARS Demonstration Projects. Accessed on 21st July 2014
from: http://www.dtic.mil/dtic/tr/fulltext/u2/a312063.pdf

[5] CMMI Product Team, 2006. CMMI for Development,
Version 1.2. SEI Identifier: CMU/SEI-2006-TR-008.

[6] Gardler, R. 2013. Software Sustainability Maturity Model.
Accessed on 21st July 2014 from: http://oss-
watch.ac.uk/resources/ssmm

[7] NASA Earth Science Data Systems Software Reuse Working
Group (2010). Reuse Readiness Levels (RRLs), Version 1.0.
April 30, 2010. Accessed from:
http://www.esdswg.org/softwarereuse/Resources/rrls/

[8] Marshall, J.J., and Downs, R.R. 2008. Reuse Readiness
Levels as a Measure of Software Reusability. In proceedings
of Geoscience and Remote Sensing Symposium. Volume 3.
P1414-1417. DOI: 10.1109/IGARSS.2008.4779626.

[9] Matthews, B. et al. 2010. A Framework for Software
Preservation. International Journal of Digital Curation. DOI:
10.2218/ijdc.v5i1.145

[10] Stodden, V and Miguez, S 2014. Best Practices for
Computational Science: Software Infrastructure and
Environments for Reproducible and Extensible Research.
Journal of Open Research Software 2(1):e21, DOI:
10.5334/jors.ay

[11] Venters, C.C., Lau, L, Griffiths, M.K., Holmes, V, Ward,
R.R., Jay, C, Dibsdale, C.E. and Xu, J 2014. The Blind Men
and the Elephant: Towards an Empirical Evaluation
Framework for Software Sustainability. Journal of Open
Research Software 2(1):e8, DOI: 10.5334/jors.ao

[12] Chue Hong, N., Hole, B. and Moore, S. 2013. Software
Papers: improving the reusability and sustainability of
scientific software. Contribution to 1st Workshop on
Sustainable Scientific Software: Practice and Experience.
DOI: 10.6084/m9.figshare.795303

