Supporting Information

[3+2]-Annulation of Azaoxyallyl Cations and Thiocarbonyls for the Assembly of Thiazolidin-4-ones

Vandana Jaiswal[†], Biplab Mondal[†], Kuldeep Singh[†], Dinabandhu Das[‡] and Jaideep Saha^{*†}

Table of Contents

Entry	Description	Page
1	General Experimental	2
2	Preparation of Starting Materials	3-8
3	General Procedure for the Preparation of Thiazolidin-4-one	
	Compounds (3)	9
4	Characterization of Compounds 3	10-22
5	General Procedure for the Preparation of Thiazolidin-4-one	
	Compounds (5)	23
6	Characterization of Compounds 5	24-31
7	Procedures for Gram Scale Preparation	32
8	Preparation of Compound 6	33-34
9	General Procedure for C2 Modifications of Thiazolidin-4-one by	
	Various Nucleophiles	35
10	Characterization of Compounds 7-19	36-42
11	Further Studies	43-44
12	Controll Experiments	45
13	NMR Spectra of New Compounds	46-112
14	Crystallographic Data	113-116
15	References	117

[†]Division of Molecular Synthesis and Drug Discovery, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow 226014, Uttar Pradesh. India.

[‡]School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.

1. General Experimental.

Unless otherwise noted, all the reactions were conducted under an inert atmosphere (nitrogen or argon) using oven or flame-dried glassware. Solvents were dried following the standard procedures and for THF, it was freshly distilled before use. Unless otherwise mentioned, all reagents or catalysts were purchased from commercial sources and used without any further purification. Reactions were monitored by TLC, using Merck silica gel 60 F 254 plates. Visualization of the TLC plates were performed either under UV light (254 nm) or by using 10% ethanolic phosphomolybdic acid (PMA) or 1% aqueous KMnO₄ or iodine. Flash column chromatography was performed using silica gel (230-400 mesh). 1 H, 13 C and 19 F NMR spectra were recorded on Avance III, Bruker at 400 MHz, 100 MHz and 376 MHz spectrometers respectively using CDCl₃. 1 H NMR chemicals shift are expressed in ppm (δ) relative to δ = 7.26 for CDCl₃. 13 C NMR chemical shift are expressed in ppm (δ) relative to δ = 77.16 for CDCl₃ resonance. FT-IR experiments were performed on PerkinElmer Spectrum Version 10.03.08. HRMS and Electron Spray Ionization (ESI) (m/z) spectra were recorded on Agilent Technologies 6530 Accurate- Mass Q-TOF LC/MS.

2. Preparation of starting materials.

2.1 Thioketones

(a) Following Thioketone (**Figure S1**) were used in the study and were prepared according to the literature procedure.¹

Figure S1: List of thioketones used in the study.

(b) General Procedure for the Preparation of Thioketones.

$$R^{1} R^{2} = \frac{\text{Lawesson's reagent}}{\text{toluene, } 90 \text{ °C}} R^{1} R^{2}$$
for cyclic and acyclic ketones
$$R^{1}, R^{2} = \text{alkyl, aryl}$$

Respective ketone (0.60 mmol, 1.0 equiv) and Lawesson's reagent (0.36 mmol, 0.6 equiv) were suspended in dry toluene (10 ml). The reaction mixture was then heated to reflux for 8-12 h. The solvent was removed in *vacuo* and the colored residue was then passed through a short silica gel column and eluted with DCM-hexane mixture. The colored fractions (blue) were quickly collected, and the solvent was removed under reduced pressure to give the crude thioketone as a strong-smelling oil, which was immediately used in the reaction without further characterizations.

2.2 Thioamides

(a) Following thioamides (**Figure S2**) were used in the study and were prepared according to the literature procedure.²

Figure S2: List of thioamide derivatives used in the study.

(b). General Procedure for the Preparation of Thioamides.

$$R^1$$
 R^2
 R^3
 R^3
 R^4
 R^3
 R^4
 R^5
 R^5

Respective amide (0.60 mmol, 1.00 equiv) and Lawesson's reagent (0.30 mmol, 0.5 equiv) were suspended in dry THF (2 ml). The reaction mixture was then heated to 50 °C for 6-8 h. After complete consumption of the amide (TLC controlled), the solvent was removed in vacuo and the crude product was purified by column chromatography (ethyl acetate/hexane) to afford the corresponding thioamide products. Compounds 4a-4c, 4e-4f, 4i, 4n are known compounds and prepared following the reported method. Other compounds were prepared following the similar method describes above.

(c) Characterization of newly synthesized thioamides:

morpholino(phenyl)methanethione (4d):

Following the general procedure, reaction between morpholino(phenyl)methanone (0.120 g, 0.62 mmol, 1.0 equiv) and lawsson's reagent (0.127 g, 0.31 mmol, 0.5 equiv) afforded the corresponding thioamide **4d**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as yellow oil in 78% (0.102 g) yield. R_f 0.2 (1:9 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.33 (m, 3H), 7.28-7.26 (m, 2H), 4.44 - 4.42 (m, 2H), 3.89-3.86 (m, 2H), 3.63-3.62 (m, 2H), 3.60-3.58 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 201.0, 142.5, 128.9, 128.6, 125.9, 66.8, 66.6, 52.5, 49.6; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for $C_{11}H_{14}NOS$ 208.0796 mass found 208.0785.

4-methoxy-N,N-dimethylbenzothioamide (4g):

Following the general procedure, reaction between 4-methoxy-N,N-dimethylbenzamide (0.090 g, 0.5 mmol, 1.0 equiv) and Lawesson's reagent (0.101 g, 0.25 mmol, 0.5 equiv) afforded the corresponding thioamide **4g**, which was purified by silica gel column chromatography (3:97 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 71% (0.070 g) yield. R_f 0.3 (1:9 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 3.82 (s, 3H), 3.59 (s, 3H), 3.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.4, 160.1, 135.9, 128.0, 113.6, 55.5, 44.4, 43.7; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for $C_{10}H_{14}NOS$ 196.0796, mass found 196.0783.

3-methoxy-N,N-dimethylbenzothioamide (4h):

Following the general procedure, reaction between 3-methoxy-N,N-dimethylbenzamide (0.120 g, 0.67 mmol, 1.0 equiv) and Lawesson's reagent (0.134 g, 0.33 mmol, 0.5 equiv) afforded the corresponding thioamide 4h, which was purified by silica gel column chromatography (3:97 EtOAc:Hexane as eluent) to give the title compound as yellow oil in 83% (0.108 g) yield. R_f 0.3 (1:9 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.24 (m, 1H), 6.87-6.84 (m, 3H), 3.81 (s, 3H), 3.60 (s, 3H), 3.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.0, 159.5, 144.7, 129.6, 117.9, 114.5, 111.4, 55.5, 44.2, 43.2; **HRMS (ESI-TOF)** m/z: [M+H]⁺ calculated for C₁₀H₁₄NOS 196.0796, mass found 196.0783.

4-chloro-N,N-dimethylbenzothioamide (4j):

Following the general procedure, reaction between 4-chloro-N,N-dimethylbenzothioamide (0.135 g, 0.0.73 mmol, 1.0 equiv) and Lawesson's reagent (0.147 g, 0.36 mmol, 0.5 equiv) afforded the corresponding thioamide 4j, which was purified by silica gel column chromatography (3:97 EtOAc:Hexane as eluent) to give the title compound as yellow oil in 73% (0.106 g) yield. R_f 0.35 (1:9 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H), 3.53 (s, 3H), 3.11 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 141.8, 134.7, 128.7, 128.4, 127.4, 125.8, 44.3, 43.4; **HRMS (ESI-TOF)** m/z: [M+H]⁺ calculated for C₉H₁₁CINS 200.0301, mass found 200.0281.

2-chloro-N,N-dimethylbenzothioamide (4k):

Following the general procedure, reaction between 2-chloro-N,N-dimethylbenzothioamide (0.060 g, 0.32 mmol, 1.0 equiv) and Lawesson's reagent (0.066 g, 0.16 mmol, 0.5 equiv) afforded the corresponding thioamide 4k, which was purified by silica gel column

chromatography (3:97 EtOAc:Hexane as eluent) to give the title compound as yellow oil in 73% (0.048 g) yield. R_f 0.35 (1:9 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 7.6 Hz, 1H), 7.29 - 7.18 (m, 3H), 3.57 (s, 3H), 3.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 142.1, 129.7, 129.5, 128.3, 127.8, 127.4, 43.0, 42.5; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C_9H_{11} CINS 200.0301, mass found 200.0286.

pyrrolidin-1-yl(thiophen-2-yl)methanethione(4l):

Following the general procedure, reaction between pyrrolidin-1-yl(thiophen-2-yl)methanone (0.90 g, 0.50 mmol, 1.0 equiv) and Lawesson's reagent (0.100 g, 0.25 mmol, 0.5 equiv) afforded the corresponding thioamide **4l**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as yellow oil in 75% (0.074 g) yield. R_f 0.2 (1:9 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 5.2 Hz, 1H), 7.27 (d, J = 4.0 Hz, 1H), 6.99 (t, J = 4.8 Hz, 1H), 3.99 (t, J = 6.4 Hz, 2H), 3.86 (t, J = 6.4 Hz, 2H), 2.08-2.01 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 186.8, 146.5, 130.5, 127.0, 55.3, 54.4, 26.9, 24.5; **HRMS (ESI-TOF)** m/z: [M+H]⁺ calculated for C₉H₁₂NS₂ 198.0411, mass found 198.0398.

furan-2-yl(pyrrolidin-1-yl)methanethione(4m):

Following the general procedure, reaction between furan-2-yl(pyrrolidin-1-yl)methanone (0.122g, 0.73 mmol, 1.0 equiv) and Lawesson's reagent (0.149 g, 0.37mmol, 0.5 equiv) afforded the corresponding thioamide **4m**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as yellow oil in 72% (0.096 g) yield. R_f 0.2 (1:9 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.29 (d, J = 3.2 Hz, 1H), 6.47-6.46 (m, 1H), 4.00 (q, J = 7.2 Hz, 4H), 2.11 - 1.97 (m, 4H) ¹³C NMR (100 MHz, CDCl₃) δ 180.5, 153.0, 143.8, 118.9, 112.2, 55.0, 53.6, 27.0, 23.9; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for $C_9H_{12}NOS$ 182.0640, mass found 182.0626.

2.3α -Halohydroxamate derivatives.

Following haloamides (**Figure S3**) were used in the study and were prepared according to the literature procedure.³

Figure S3: List of α -halo hydroxamate derivatives used in the study.

3. General procedure for [3+2]-annulation of α -halo hydroxamates (precursor to azaoxyallyl cation) and thioketones.

To a solution of α -bromo hydroxamate (1, 1.0 equiv) and thioketone (2, 1.0 equiv) in $(CF_3)_2CHOH$ (0.4 M), was added DIPEA (2.0 equiv) dropwise. The reaction mixture was stirred at room temperature and the reaction progress was monitored by thin layer chromatography (TLC). Upon completion of the reaction (*ca.* 0.5-1 h), HFIP was removed under reduced pressure and the crude was purified by silica gel column chromatography (using ethyl acetate-hexane mixture as eluent) to afford the corresponding thiazolidin-4-one products (3).

4. Characterization of thiazolidin-4-one products (3)

3-(benzyloxy)-5, 5-dimethyl-2, 2-diphenylthiazolidin-4-one (3aa):

Following the general procedure, reaction between diphenylmethanethione **2a** (0.042 g, 0.2 mmol, 1.0 equiv) and α-bromo hydroxamate **1a** (0.055 g, 0.2 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3aa**, which was purified by silica gel column chromatography (using 3:97 EtOAc:Hexane as eluent) to give the title compound as white solid in 80% (0.068 g) yield. R_f 0.2 (1:9 EtOAc:Hexane); **mp** 127.0 - 128.5 °C; **FT-IR** (v cm⁻¹): 2971, 2926, 1703, 1493, 1446, 1382, 1215, 1134, 1002; ¹**H NMR** (400 MHz, CDCl₃) δ 7.49-7.47 (m, 4H), 7.29-7.25 (m, 6H), 7.18-7.14 (m, 3H), 6.99-6.98 (m, 2H), 4.26 (s, 2H), 1.45 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.1, 141.8, 134.1, 129.8, 129.1, 128.7, 128.4, 128.3, 128.2, 78.0, 74.3, 46.7, 29.0; **HRMS** (**ESI-TOF**) m/z: [M+Na]⁺ calculated for $C_{24}H_{23}NNaO_2S$, 412.1347, mass found 412.1340.

3-(benzyloxy)-2-(4-methoxyphenyl)-5, 5-dimethyl-2-phenylthiazolidin-4-one (3ab):

Following the general procedure, reaction between (4-methoxyphenyl)(phenyl)methanethione **2b** (0.046 g, 0.2 mmol, 1.0 equiv) and α -bromo hydroxamate **1a** (0.055 g, 0.2 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3ab**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as white solid in 87% (0.074 g) yield. R_f 0.3 (1:4 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.43 (m, 4H), 7.29-7.24 (m, 3H), 7.21-7.17 (m, 3H), 7.04 (dd, J= 7.6 Hz, 2.4 Hz, 2H), 6.84-6.80 (m, 2H), 4.42 (d, J= 8.8 Hz, 1H), 4.21 (d, J= 8.8 Hz, 1H), 3.76 (s, 3H), 1.51 (s, 3H), 1.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃)

 δ 172.1, 159.7, 142.7, 134.2, 133.1, 130.8, 129.8, 128.7, 128.6, 128.3, 128.1, 113.4, 78.0, 74.1, 55.41, 46.6, 29.0, 28.8; **HRMS (ESI-TOF)** m/z: [M+H]⁺ calculated for C₂₅H₂₆NO₃S 420.1633, mass found 420.1625.

3-(benzyloxy)-5, 5-dimethyl-2-phenyl-2-(3,4,5-trimethoxyphenyl)thiazolidin-4-one (3ac):

Following the general procedure, reaction between phenyl (3,4,5-trimethoxyphenyl) methanethione **2c** (0.058 g, 0.20 mmol, 1.0 equiv) and α-bromo hydroxamate **1a** (0.055 g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3ac**, which was purified by silica gel column chromatography (1:9 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 64 % (0.068 g) yield. R_f 0.2 (1:4 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 7.6, 1.6 Hz, 2H), 7.40 (m, 2H), 7.35-7.29 (m, 6H), 6.78 (s, 2H), 5.08 (s, 2H), 3.84 (s, 3H), 3.76 (s, 6H), 1.50 (s, 3H), 1.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 152.9, 142.6, 138.4, 138.3, 138.0, 128.6, 128.3, 128.3, 127.8, 127.1, 104.6, 97.6, 76.5, 61.0, 56.2, 54.5, 29.9; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₇H₂₉NNaO₅S 502.1664, mass found 502.1657.

3-(benzyloxy)-2-(3-methoxyphenyl)-5, 5-dimethyl-2-phenylthiazolidin-4-one (3ad):

Following the general procedure, reaction between (3-methoxyphenyl)(phenyl)methanethione **2d** (0.046 g, 0.20 mmol, 1.0 equiv) and α-bromo hydroxamate **1a** (0.055 g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3ad**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 70% (0.054 g) yield. R_f ,0.3 (1:4 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.51 (m, 2H), 7.34-7.30 (m, 3H), 7.24-7.20 (m, 4H), 7.12-7.07 (m, 2H), 7.05 (dd, J = 7.2, 2.4 Hz, 2H) 6.87-6.85 (m, 1H), 4.35 (d, J = 8.8 Hz, 1H), 4.31 (d, J = 8.8 Hz, 1H), 3.72 (s, 3H), 1.52 (s, 3H), 1.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 159.4, 143.5, 141.9, 134.3, 129.8, 129.2, 129.1, 128.8, 128.4, 128.3,

128.2, 121.6, 115.2, 113.8, 78.0, 74.3, 55.4, 46.7, 29.1, 29.0; **HRMS (ESI-TOF)** m/z: $[M+H]^{+}$ calculated for $C_{25}H_{26}NO_{3}S$, 420.1633, mass found 420.1617.

3-(benzyloxy)-2-(4-(tert-butyl) phenyl)-5,5-dimethyl-2-phenylthiazolidin-4-one (3ae):

Following the general procedure, reaction between (4-(tert-butyl) phenyl)(phenyl) methanethione **2e** (0.050 g, 0.20 mmol,1.0 equiv) and α-bromo hydroxamate **1a** (0.055 g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3ae**, which was purified by silica gel column chromatography (5:95: EtOAc:Hexane as eluent) to give the title compound as colorless oil in 67% (0.060 g) yield. R_f 0.3 (1:4 EtOAc:Hexane); ¹**H NMR** (400 MHz, CDCl₃) δ 7.61-7.57 (m, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.44-7.37 (m, 5H), 7.32-7.25 (m, 3H), 7.06 (d, J = 6.8 Hz, 2H), 4.53 (d, J = 8.8 Hz, 1H), 4.29 (d, J = 8.8 Hz, 1H), 1.63 (s, 3H), 1.55 (s, 3H), 1.39 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.0, 151.7, 142.5, 138.2, 134.2, 129.9, 129.2, 128.9, 128.8, 128.3, 128.2, 128.2, 125.6, 78.1, 74.2, 46.7, 34.7, 31.4, 29.1, 29.0; **HRMS** (**ESI-TOF**) m/z: [M+H]⁺ calculated for C₂₈H₃₂NO₂S 446.2154, mass found 446.2142.

3-(benzyloxy)-2-(4-bromophenyl)-5,5-dimethyl-2-phenylthiazolidin-4-one (3af):

Following the general procedure, reaction between (4-bromophenyl)(phenyl)methanethione **2f** (0.055 g, 0.20 mmol, 1.0 equiv) and α-bromo hydroxamate **1a** (0.055 g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3af**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 54% (0.054 g) yield. R_f 0.4 (1:4 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, J = 6.0, 2.8 Hz, 2H), 7.44 (d, J = 8.8 Hz, 2H), 7.38-7.33 (m, 5H), 7.25-7.21 (m, 3H), 7.05 (s, 1H), 7.033 (d, J = 1.6 Hz, 1H), 4.46 (d, J = 8.8 Hz, 1H), 4.24 (d, J = 8.8 Hz, 1H), 1.54 (s, 3H), 1.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 141.6, 141.0, 134.0, 131.4, 130.6, 129.8, 129.3, 128.9, 128.8, 128.4, 128.4, 122.5, 78.2, 73.9, 46.8, 29.0; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₄H₂₃BrNO₂S, 470.0612, mass found 470.0603.

3-(benzyloxy)-2-(4-fluorophenyl)-5, 5-dimethyl-2-phenylthiazolidin-4-one (3ag):

Following the general procedure, reaction between (4-fluorophenyl)(phenyl)methanethione 2g (0.044 g, 0.20 mmol, 1.0 equiv) and α-bromo hydroxamate 1a (0.055g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one 3ag, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 72% (0.059 g) yield. R_f 0.4 (1:4 EtOAc:Hexane); 1H NMR (400 MHz, CDCl₃) δ 7.48-7.44(m, 4H), 7.29-7.24 (m, 3H), 7.19-7.15 (m, 3H), 7.00 (dd, J = 6.8,1.2 Hz,2H), 6.98-6.92 (m, 2H), 4.30 (s, 2H), 1.45 (s, 3H), 1.44 (s, 3H). ^{13}C NMR (100 MHz, CDCl₃) δ 172.0, 162.5 (d, J = 247.2 Hz), 141.7, 137.6 (d, J = 3.2 Hz) 134.0, 131.1 (d, J = 8.2 Hz), 129.7, 128.9, 128.8, 128.5, 128.3, 128.2, 115.0 (d, J = 21.4 Hz),, 78.1, 73.8, 46.7, 29.0, 28.9; HRMS (ESI-TOF) m/z: [M+Na][†]calculated for $C_{24}H_{22}FNNaO_2S$ 430.1253, mass found 430.1244.

3-(benzyloxy)-5, 5-dimethyl-2-phenyl-2-(o-tolyl) thiazolidin-4-one (3ah):

Following the general procedure, reaction between phenyl(o-tolyl)methanethione **2h** (0.042g, 0.20 mmol,1.0 equiv) and α -bromo hydroxamate **1a** (0.055 g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3ah**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 74% (0.060 g) yield. R_f 0.2 (1:9 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.41 (m, 4H), 7.30-7.18 (m, 6H), 7.15 (t, J=7.6 Hz 2H), 7.10-7.06 (m, 2H), 4.85 (d, J = 8.8 Hz, 1H), 3.49 (d, J = 8.8 Hz, 1H), 1.88 (s, 3H), 1.74 (s, 3H), 1.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 142.0, 138.7, 135.8, 134.1, 132.3, 129.9, 129.1, 128.8, 128.5, 128.3, 127.9, 125.8, 77.8, 74.2, 46.4, 29.5, 28.9, 21.9; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for $C_{25}H_{25}NNaO_2S$ 426.1504, mass found 426.1501.

3-(benzyloxy)-5,5-dimethyl-2-(naphthalen-1-yl)-2-phenylthiazolidin-4-one (3ai):

Following the general procedure, reaction between naphthalen-1-yl(phenyl)methanethione **2i** (0.050, 0.20 mmol, 1.0 equiv) and α -bromo hydroxamate **1a** (0.055 g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3ai**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as white solid in 68% (0.063 g) yield. R_f 0.5 (1:4 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 13.2, 8.0 Hz, 2H), 7.65 (d, J = 7.2 Hz, 1H), 7.46-7.34 (m, 5H), 7.28-7.16 (m, 7H), 7.07-7.03 (m, 2H), 4.90 (d, J = 8.8 Hz, 1H), 3.49 (d, J = 8.8 Hz, 1H), 1.75 (s, 3H), 1.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 139.5, 139.0, 134.8, 134.1, 130.0, 129.8, 129.3, 129.2, 128.9, 128.3, 128.2, 126.8, 125.5, 125.4, 124.9, 124.0, 78.2, 74.2, 47.0, 29.7, 29.0; HRMS (ESI-TOF) m/z: [M+H]⁺calculated for $C_{28}H_{26}NO_2S$ 440.1684, mass found 440.1675.

3-(benzyloxy)-5,5-dimethyl-2-(naphthalen-2-yl)-2-phenylthiazolidin-4-one (3aj):

Following the general procedure, reaction between naphthalen-2-yl(phenyl)methanethione **2j** (0.050 g, 0.20 mmol,1.0 equiv) and α-bromo hydroxamate **1a** (0.055 g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3aj**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as white solid in 72% (0.063 g) yield. R_f 0.5 (1:4 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.92-7.86 (m, 3H), 7.71-7.69 (m, 2H), 7.61-7.55 (m, 3H), 7.47-7.44 (m, 3H), 7.33-7.24 (m, 3H), 7.09 (d, J = 6.8 Hz, 2H), 4.59 (d, J = 8.8 Hz, 1H), 4.29 (d, J = 8.8 Hz, 1H), 1.68 (s, 3H), 1.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 141.1, 139.6, 134.1, 132.9, 132.7, 129.8, 129.7, 128.8, 128.7, 128.7, 128.3, 128.3, 128.0, 127.6, 127.0, 127.0, 126.9, 126.6, 78.2, 74.5, 46.8, 29.2, 29.0; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for $C_{28}H_{26}NO_2S$ 440.1684, mass found 440.1677.

3-(benzyloxy)-2-(4-methoxyphenyl)-5, 5-dimethyl-2-(4-methylstyryl) thiazolidin-4-one (3ak):

Following the general procedure, reaction between 3-(4-methoxyphenyl)-1-(p-tolyl)prop-2-ene-1-thione **2k** (0.054 g, 0.20 mmol, 1.0 equiv) and α-bromo hydroxamate **1a** (0.055 g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3ak**, which was purified by silica gel column chromatography (5:95: EtOAc:Hexane as eluent) to give the title compound as reddish oil in 65% (0.061g) yield. R_f 0.35 (1:4 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.8 Hz, 2H), 7.29-7.24 (m, 3H), 7.22-7.17 (m, 4H), 6.88 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 16.0 Hz, 1H), 6.48 (d, J = 16.0 Hz 1H), 4.96 (d, J = 9.2 Hz, 1H), 4.56 (d, J = 9.2 Hz, 1H), 3.82 (s, 3H), 2.40 (s, 3H), 1.63 (s, 3H), 1.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 159.8, 138.7, 137.1, 134.5, 131.8, 129.8, 129.1, 128.8, 128.7, 128.7, 128.4, 128.3, 127.7, 114.2, 78.6, 72.2, 55.4, 46.7, 29.3, 28.9, 21.2; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for $C_{28}H_{29}NNaO_3S$, 482.1766 mass found 482.1752.

3-(benzyloxy)-2-(furan-2-yl)-5, 5-dimethyl-2-phenylthiazolidin-4-one (3al):

Following the general procedure, reaction between furan-2-yl(phenyl)methanethione **2I** (0.038 g, 0.20 mmol , 1.0 equiv) and α -bromo hydroxamate **1a** (0.055 g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3aI**, which was purified by silica gel column chromatography (5:95: EtOAc:Hexane as eluent) to give the title compound as white solid in 78% (0.058 g) yield. R_f 0.3 (1:9 EtOAc:Hexane); **mp** 108 -109 °C ; **FT-IR** (v cm⁻¹): 2926, 1705, 1449, 1383, 1016; ¹**H NMR** (400 MHz, CDCl₃) δ 7.51-7.48 (m, 3H), 7.37-7.33 (m, 3H), 7.27-7.23 (m, 3H), 7.17-7.14 (m, 2H), 6.46 (dd, J = 4.0, 1.0 Hz, 1H), 6.39 (dd, J = 4.0, 2.0 Hz, 1H), 4.57 (d, J = 9.0 Hz, 1H), 4.40 (d, J = 9.0 Hz, 1H), 1.57 (s, 3H), 1.52 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.4, 152.3, 143.4, 139.8, 134.3, 129.7, 128.8, 128.8, 128.4, 128.3, 128.1, 112.3, 111.0, 78.2, 68.8, 46.7, 29.2, 29.0; **HRMS** (**ESI-TOF**) m/z: [M+Na][†] calculated for $C_{22}H_{21}NaNO_3S$, 402.1140 mass found 402.1128.

3-(benzyloxy)-5, 5-dimethyl-2-phenyl-2-(thiophen-2-yl) thiazolidin-4-one (3am):

Following the general procedure, reaction between phenyl(thiophen-2-yl)methanethione **2m** (0.041 g, 0.20 mmol, 1.0 equiv) and α-bromo hydroxamate **1a** (0.055 g, 0.20 mmol,1.0 equiv) afforded the corresponding thiazolidin-4-one **3am**, which was purified by silica gel column chromatography (5:95: EtOAc:Hexane as eluent) to give the title compound as white solid in 97% (0.078g) yield. R_f 0.3(1:9 EtOAc:Hexane); **mp** 115 -117.5 °C; **FT-IR** (v cm⁻¹): 3400, 2926, 1704, 1448, 1383, 1235, 1014; ¹**H NMR** (400 MHz, CDCl₃) δ 7.48 (dd, J = 8.0, 2.0 Hz, 2H), 7.45 (dd, 3.6, 1.2 Hz, 1H) 7.33-7.28, (m, 6H), 7.20 (dd, J = 7.2, 3.6 Hz, 2H), 7.07 (dd, J = 3.6, 1.2 Hz, 1H), 7.03 (dd, J = 4.8, 3.6 Hz, 1H) 4.89 (d, J = 8.8 Hz, 1H), 4.11 (d, J = 8.8 Hz, 1H), 1.67 (s, 3H), 1.43 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.6, 145.8, 143.21, 134.3, 131.2, 129.7, 128.8, 128.3, 128.3, 128.2, 128.2, 127.3, 127.3, 78.3, 70.5, 47.2, 28.9, 28.7; **HRMS** (**ESI-TOF**) m/z: [M+H]⁺ calculated for C₂₂H₂₂NO₂S₂, 396.1092, mass found, 396.1084.

3'-(benzyloxy)-2,2,5',5'-tetramethyl-3,4-dihydro-2H-spiro[naphthalene-1,2'-thiazolidin]-4'-one (3an):

Following the general procedure, reaction between 2,2-dimethyl-3,4-dihydronaphthalene-1(2H)-thione **2n** (0.038 g, 0.20 mmol, 1.0 equiv) and α-bromo hydroxamate **1a** (0.055 g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3an**, which was purified by silica gel column chromatography (5:95: EtOAc:Hexane as eluent) to give the title compound as white solid in 81% (0.065 g, 0.16 mmol) yield. R_f 0.4 (1:4 EtOAc:Hexane); ¹H **NMR** (400 MHz, CDCl₃) δ 7.53-7.48 (m, 1H), 7.37 (d, J = 6.8 Hz, 2H), 7.34-7.29 (m, 2H), 7.28-7.22 (m, 1H), 7.17-7.13 (m, 2H), 7.04-6.99 (m, 1H), 5.03 (d, J = 14.0 Hz, 1H), 5.03 (d, J = 14.0 Hz, 1H) 2.86-2.73 (m, 2H), 1.79-1.74 (m, 2H), 1.73 (s, 3H), 1.64 (s, 3H), 1.06 (s, 3H), 1.04 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 163.1, 140.0, 138.5, 134.8, 128.8, 128.3, 128.2,

127.8, 127.7, 126.5, 126.1, 100.5, 76.2, 53.6, 39.9, 33.8, 33.6, 29.9, 25.4, 24.7, 22.2; **HRMS** (**ESI-TOF**) m/z: $[M+H]^+$ calculated for $C_{23}H_{28}NO_2S$, 382.1841 mass found, 382.1836.

3'-(benzyloxy)-5',5'-dimethylspiro[adamantane-2,2'-thiazolidin]-4'-one (3ao):

Following the general procedure, reaction between adamantane-2-thione **2o** (0.033 g, 0.2 mmol, 1.0 equiv) and α-bromo hydroxamate **1a** (0.055 g, 0.2 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one (**3ao**), which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 58% (0.042g) yield. R_f 0.2 (5:95: EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.2 Hz, 2H), 7.33 (t, J = 7.2 Hz, 2H), 7.30-7.25 (m, 1H), 5.03 (s, 2H), 2.35 (d, J = 12.4 Hz, 2H), 2.10 (s, 2H), 1.84 (s, 6H), 1.74-1.64 (m, 4H), 1.61 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 161.9, 138.6, 128.2, 128.0, 127.5, 100.7, 76.02, 52.4, 41.6, 37.3, 36.1, 34.1, 32.0, 26.5, 26.2; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for $C_{21}H_{28}NO_2S$ 358.1841, mass found 358.1831.

3-(benzyloxy)-2, 2, 5-triphenylthiazolidin-4-one (3ba):

Following the general procedure, reaction between diphenylmethanethione **2a** (0.040 g, 0.20 mmol 1.0 equiv) and α -bromo hydroxamate **1b** (0.055 g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3ba**, which was purified by silica gel column chromatography (5:95: EtOAc:Hexane as eluent) to give the title compound as white solid in 82% (0.073 g) yield. R_f 0.3 (1:4 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.74 (m, 2H), 7.54 -7.49 (m, 2H), 7.48-7.44 (m, 3H), 7.44-7.34 (m, 8H), 7.30-7.23 (m, 3H), 7.10 (d, J = 6.4 Hz, 2H), 4.85 (s, 1H), 4.69 (d, J = 8.8 Hz, 1H), 4.20 (d, J = 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 142.3, 139.6, 136.1, 134.1, 130.2, 129.9, 129.2, 129.2, 129.0, 128.8, 128.6, 128.4, 128.4, 128.3, 128.2, 128.0, 78.4, 75.4, 46.7; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for $C_{28}H_{24}NO_2S$ 438.1528, mass found 438.1517.

3-(benzyloxy)-2,2-diphenyl-5-(p-tolyl)thiazolidin-4-one (3ca):

Following the general procedure, reaction between diphenylmethanethione **2a** (0.040 g, 0.20 mmol, 1.0 equiv) and α -bromo hydroxamate **1c** (0.058 g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3ca**, which was purified by silica gel column chromatography (5:95: EtOAc:Hexane as eluent) to give the title compound as white solid in 83% (0.075 g) yield. R_f 0.3 (1:4 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.78 (m, 2H), 7.54 (d, J = 6.8 Hz, 2H), 7.50-7.45 (m, 3H), 7.44-7.38 (m, 3H), 7.34 (d, J = 8.0 Hz, 2H), 7.32-7.26 (m, 3H), 7.23 (d, J = 8.0 Hz, 2H), 7.14-7.10 (m, 2H), 4.84 (s, 1H), 4.74 (d, J = 8.8 Hz, 1H), 4.22 (d, J = 8.8 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 142.3, 139.6, 138.4, 134.1, 133.0, 130.2, 130.9, 129.6, 129.1, 129.0, 128.8, 128.4, 128.3 (2), 127.9, 78.3, 75.3, 46.4, 21.3; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for $C_{28}H_{24}NO_2S$ 452.1684, mass found 452.1675.

3-(benzyloxy)-5-(4-chlorophenyl)-2, 2-diphenylthiazolidin-4-one (3da):

Following the general procedure, reaction between diphenylmethanethione **2a** (0.040 g, 0.20 mmol, 1.0 equiv) and α-chloro hydroxamate **1d** (0.063 g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3da**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as yellow solid in 76% (0.073g) yield. R_f 0.2(1:9 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.62 (m, 2H), 7.46-7.43 (m, 2H), 7.40-7.36 (m, 3H), 7.35-7.31 (m, 3H), 7.29-7.24 (m, 4H), 7.22-7.16 (m, 3H), 7.02 (dd, J = 8.0, 1.6Hz, 2H), 4.75 (s, 1H), 4.54 (d, J = 8.8 Hz, 1H), 4.16 (d, J = 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 134.5, 134.0, 130.5, 130.0, 129.9, 129.2, 129.1, 128.9, 128.5, 128.4, 128.3, 128.1, 78.5, 75.5, 46.1. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for, $C_{28}H_{22}$ CINNaO₂S 494.0957 mass found 494.0939.

3-(benzyloxy)-5-(naphthalen-1-yl)-2,2-diphenylthiazolidin-4-one (3ea):

Following the general procedure, reaction between diphenylmethanethione **2a** (0.040 g, 0.2 mmol, 1.0 equiv) and α -chloro hydroxamate **1e** (0.065 g, 0. 2mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3ea**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as brown solid in 69% (0.064g) yield. R_f 0.3 (1:4 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.0 Hz, 1H), 7.93-7.88 (m, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.80-7.75 (m, 2H), 7.58-7.39 (m, 12H), 7.32-7.25 (m, 3H), 7.13 (d, J = 6.4 Hz, 2H), 5.59 (s, 1H), 4.82 (d, J = 8.8 Hz, 1H), 4.21 (d, J = 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 142.6, 139.4, 134.2, 134.1, 132.1, 131.9, 130.4, 130.0, 129.3 (2), 129.2, 128.9, 128.5 (2), 128.4, 128.2, 127.9, 127.3, 126.7, 126.1, 125.7, 123.4, 78.4, 75.9, 43.7; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for $C_{32}H_{26}NO_2S$, 488.1684 mass found, 488.1672.

3-(benzyloxy)-5-(naphthalen-2-yl)-2,2-diphenylthiazolidin-4-one (3fa):

Following the general procedure, reaction between diphenylmethanethione **2a** (0.040 g, 0.20 mmol, 1.0 equiv) and α-chloro hydroxamate **1f** (0.065 g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3fa**, which was purified by silica gel column chromatography (5:95: EtOAc:Hexane as eluent) to give the title compound as yellow solid in 74% (0.072 g) yield. R_f 0.2 (1:9 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.83 (m, 2H), 7.82-7.77 (m, 4H), 7.59-7.46 (m, 8H), 7.45-7.39 (m, 3H), 7.31-7.25 (m, 3H), 7.12 (d, J = 7.2 Hz, 2H), 5.05 (s, 1H), 4.70 (d, J = 8.8 Hz, 1H), 4.28 (d, J = 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 142.2, 139.8, 134.1, 133.3, 133.2, 130.2, 130.0, 129.2, 129.0, 128.8, 128.5, 128.4, 128.3, 128.1, 127.8, 126.6, 126.5, 126.2, 78.5, 75.6, 47.0; **HRMS (ESITOF)** m/z: [M+H]⁺ calculated for $C_{32}H_{26}NO_2S$ 488.1684, mass found 488.1670.

3-(benzyloxy)-2-(furan-2-yl)-2-phenyl-5-(p-tolyl) thiazolidin-4-one (3cl):

Following the general procedure, reaction between furan-2-yl(phenyl)methanethione **2I** (0.038 g, 0.2 mmol, 1.0 equiv) and α -chloro hydroxamate **1c** (0.058 g, 0.2 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3cI**, which was purified by silica gel column chromatography (1:9 EtOAc:Hexane as eluent) to give the title compound as mixture of diastereomers (d.r = 2:1) in 74% (0.065 g) combined yield. R_f 0.4 (3:7 EtOAc:Hexane); ¹H **NMR** (400 MHz, CDCl₃) δ 7.67-7.64 (m, 1H), 7.58 (s, 1H), 7.50-7.46 (m, 2.5H), 7.43-7.41 (m, 1.0H), 7.39-7.33 (m, 3H), 7.29-7.22 (m, 8H), 7.21-7.17 (m, 2H), 7.16-7.12 (m, 3H), 7.09 (d, J = 6.4 Hz, 1H), 6.53 (d, J = 3.2 Hz, 0.5H), 6.49 (d, J = 3.2 Hz, 1H), 6.45 (brs, 1H), 6.39 (d, J = 0.8 Hz, 0.5H), 4.87 (s, 0.5 H), 4.79 - 4.77 (m, 2H), 4.56 (d, J = 9.2 Hz, 0.5H), 4.42 (d, J = 8.8Hz, 1H), 4.37 (d, J = 9.2 Hz, 1H), 2.32 (s, 4H). ¹³C **NMR** (100 MHz, CDCl₃) δ 168.8, 168.0, 152.4, 151.4, 144.0, 143.4, 140.4, 138.5, 137.7, 134.3, 133.1, 129.9, 129.8, 129.7, 128.7, 129.5, 129.0 (2), 128.9, 128.8, 128.7, 128.6 (2),128.4 (2), 127.3, 113.9, 111.3, 110.8 (2), 78.4, 70.0, 69.4, 47.1, 46.3, 21.3; **HRMS** (ESI-TOF) m/z: [M+H]⁺ calculated for $C_{27}H_{24}NO_3S$ 442.1477, mass found 442.1467.

3-(benzyloxy)-2-phenyl-2-(thiophen-2-yl)-5-(p-tolyl) thiazolidin-4-one (3cm):

Following the general procedure, reaction between phenyl(thiophen-2-yl)methanethione **2m** (0.040 g, 0.20 mmol, 1.0 equiv) and α -chloro hydroxamate **1c** (0.058 g, 0.20 mmol,1.0 equiv) afforded the corresponding thiazolidin-4-one **3cm**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as mixture of diastereomers (d.r = 2:1) in 79% (0.072 g) combined yield. R_f 0.3 (1:4 EtOAc:Hexane); ¹H **NMR** (400 MHz, CDCl₃) δ 7.52 (dd, J = 7.2, 3.6 Hz, 1H), 7.44 (d, J=4.8 Hz 1H), 7.42-7.38 (m, 2H), 7.34 (d, J = 5.2 Hz, 0.5H), 7.31-7.26 (m, 6H), 7.22-7.16 (m, 5H), 7.15-7.08 (m,

6.5H), 7.05-6.99 (m, 3H), 6.97-6.94 (m, 0.5H), 4.92 (s, 0.5H), 4.88 (d, J =9.2 Hz, 1H), 4.71-4.68 (m, 1.5H), 4.38 (d, J = 9.2 Hz, 0.5H), 4.04 (d, J = 9.2 Hz, 1H), 2.29 (s, 3H), 2.24 (s, 1.3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.8 (2),145.5, 144.8, 142.6, 141.5, 138.6, 138.3, 134.4, 134.3, 132.9, 132.8, 131.8, 130.1, 129.9, 129.8, 129.7, 129.5, 129.1, 128.9 (2), 128.8 (2), 128.4 (2), 128.3 (2), 127.7, 127.5, 127.2, 126.9, 78.7, 78.4, 72.0, 71.4, 47.7, 46.6, 21.3, 21.2; **HRMS (ESI-TOF)** m/z: [M+Na]⁺ calculated for, $C_{27}H_{23}NNaO_2S_2$, 480.1068 mass found, 480.1059.

3-(benzyloxy)-5-(4-chlorophenyl)-2-(furan-2-yl)-2-phenylthiazolidin-4-one (3dl):

Following the general procedure, reaction between furan-2-yl(phenyl)methanethione **2I** (0.038 g, 0.20 mmol, 1.0 equiv) and α-chloro hydroxamate **1d** (0.062 g, 0.20 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3dI**, which was purified by silica gel column chromatography (1:9 EtOAc:Hexane as eluent) to give the title compound as mixture of diastereomers (d.r =1.3:1) in 77 % (0.071 g) combined yield. R_f 0.4 (3:7 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.55(m, 1.7H), 7.53 (s, 1H), 7.46-7.42 (m, 3H), 7.38-7.34 (m, 2.7H), 7.34-7.30 (m, 3H), 7.24-7.16 (m, 9.5H), 7.15-7.11 (m, 2H), 7.06 (d, J = 6.4 Hz, 1.7H), 6.45 (*app* t, J = 3.2 Hz, 2H), 6.41-6.38 (m, 1H), 6.37-6.35 (m, 1H), 4.84 (s, 0.7H), 4.75 (s, 1H), 4.66 (d, J = 9.2 Hz, 1H), 4.44 (s, 1.5H), 4.35 (d, J = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 167.4, 152.0, 151.2, 144.0, 143.5, 139.8, 137.7, 134.6 (2), 134.5 (2), 134.1, 130.4 (2), 129.9, 129.8, 129.5, 129.1 (2), 128.9 (2), 128.7, 128.6 (2), 128.4 (2), 127.4, 113.9, 111.3 (2), 110.9, 78.5, 78.4, 70.1, 69.6, 46.7, 45.9; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for $C_{26}H_{21}\text{CINO}_3\text{S}$, 462.0931 mass found, 462.0917.

Following the general procedure, reaction between diphenylmethanethione $\bf 2a$ (0.039 g, 0.2 mmol, 1.0 equiv) and α -bromo hydroxamate $\bf 1g$ (0.051 g, 0.2 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one $\bf 3ga$, which was purified by silica gel column

chromatography (using 3:97 EtOAc:Hexane as eluent) to give the title compound as white solid in 30% (0.023 g) yield. R_f 0.2 (5:95 EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.58 (m, 2H), 7.46-7.40 (m, 2H), 7.39 -7.35 (m, 3H), 7.34-7.29 (m, 3H), 7.25-7.19 (m, 3H), 7.03 (d, J = 6.0 Hz, 2H), 4.54 (d, J = 8.8 Hz, 1H), 4.13 (d, J = 8.8 Hz, 1H), 3.72 (q, J = 7.0 Hz, 1H), 1.56 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.02, 141.7, 140.40, 134.2, 129.8, 128.9, 128.8, 128.3, 128.3(2), 128.2, 78.3, 75.4, 37.1, 18.15. HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for $C_{23}H_{22}NO_2S$ mass, 376.1371 found 376.1368.

Following the general procedure, reaction between diphenylmethanethione **2a** (0.039 g, 0.2 mmol, 1.0 equiv) and α-bromo hydroxamate **1h** (0.046 g, 0.2 mmol, 1.0 equiv) afforded the corresponding thiazolidin-4-one **3ha**, which was purified by silica gel column chromatography (using 2:98 EtOAc:Hexane as eluent) to give the title compound as white solid in 28% (0.041 g) yield. R_f 0.3 (5:95 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.41 (m, 2H), 7.40-7.34 (m, 4H), 7.33-7.30 (m, 3H), 7.29-7.25 (m, 7H), 7.24-7.20 (m, 4H), 7.19-7.13 (m, 3H), 6.95 (d, J = 6.8 Hz, 2H), 5.32 (sept, J =6.0 Hz, 1H), 4.55 (s, 1H), 4.37 (d, J = 8.8 Hz, 1H), 4.25 (d, J = 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 141.9, 140.8, 140.4, 140.0, 133.9, 129.8, 129.3, 129.3, 128.9, 128.9(2), 128.7, 128.6, 128.4, 128.4(2), 128.3, 128.3(2) 127.9, 127.7, 125.5-116.1 (m, CF₃), 98.9, 78.3, 76.0, 71.0 (hept J_{FC} = 32.8 Hz), 45.8. **HRMS (ESI-TOF)** m/z: [M+Na]⁺ calculated for C₃₈H₂₉F₆NNaO₃S₂, 748.1391, mass found 748.1373.

5. General procedure for [3+2]-annulation of α -haloamides (precursor to azaoxyallyl cation) and thioamides to 2-aminothiazolidin-4-one derivatives (5).

To a solution of thioamide ($\mathbf{4}$, 1.0 equiv) and haloamide ($\mathbf{1}$, 2.0 equiv) in acetonitrile (0.5 M) was added Na₂CO₃ (4.0 equiv) and the reaction mixture was heated at 80 °C for 1 h. Upon completion of the reaction (TLC controlled), reaction mixture was passed through celite and thoroughly washed with ethyl acetate. The filtrate was concentrated under vacuo and the crude product was purified by silica gel column chromatography to afford the 2-aminothiazolidin-4-one derivatives ($\mathbf{5}$).

6. Characterization of thiazolidin-4-one products (5)

3-(diethylamino)-5, 5-dimethyl-2-phenylthiazolidin-4benzyloxy)-2-one (5aa):

Following the general procedure, reaction between *N,N*-diethylbenzothioamide **4a** (0.102 g, 0.5 mmol, 1.0 equiv) and α -bromo hydroxamate **1a** (0.286 g, 1.05 mmol, 2.0 equiv) afforded the corresponding thiazolidin-4-one **5aa**, which was purified by silica gel column chromatography (5:95, EtOAc:Hexane as eluent) to give the title compound as colorless oil in 70% (0.142 g) yield. R_f 0.4 (5:95 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.04(d, J = 6.8 Hz, 2H), 7.42-7.37 (m, 3H), 7.32 (br s, 5H), 4.91 (d, J = 8.8 Hz, 1H), 4.00 (d, J = 8.8 Hz, 1H), 2.67-2.60 (m, 4H), 1.69 (s, 3H), 1.62 (s, 3H), 1.11 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 141.4, 134.7, 129.4, 129.1, 128.9, 128.6, 128.4, 128.3, 94.0, 76.2, 45.4, 45.0, 30.9, 28.4, 15.3; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for $C_{22}H_{29}N_2O_2S$, 385.1950 mass found 385.1943.

3-(benzyloxy)-5,5-dimethyl-2-phenyl-2-(pyrrolidin-1-yl)thiazolidin-4-one (5ab):

Following the general procedure, reaction between phenyl(pyrrolidin-1-yl)methanethione **4b** (0.070 g, 0.36 mmol, 1.0 equiv) and α -bromo hydroxamate **1a** (0.198 g, 0.73 mmol, 2.0 equiv) afforded the corresponding thiazolidin-4-one **5ab**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as white solid in 85% (0.119 g) yield. R_f 0.3 (5:95 EtOAc:Hexane); **mp** 97-98 °C; **FT-IR** (v cm⁻¹): 2970, 1698, 1447, 1382, 1330, 1140, 1015; ¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, J = 7.2 Hz, 2H), 7.46 -7.41(m, 3H), 7.32-7.26 (m, 5H) 4.8 (d, J = 8.4 Hz, 1H), 3.81 (d, J = 8.4 Hz, 1H), 2.72-2.68 (m, 2H), 2.59-2.52 (m, 2H), 1.85-1.79 (m, 4H), 1.76 (s, 3H), 1.72 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.7, 139.9, 134.4, 129.9, 129.8, 129.3, 128.7, 128.3 (2), 92.3, 76.8, 48.0, 44.9, 31.7, 27.6, 24.0; **HRMS** (**ESI-TOF**) m/z: [M+Na]⁺ calculated for C₂₂H₂₆N₂NaO₃S 405.1613, mass found 405.1601.

3-(benzyloxy)-5, 5-dimethyl-2-phenyl-2-(piperidin-1-yl) thiazolidin-4-one (5ac):

Following the general procedure, reaction between phenyl(piperidin-1-yl)methanethione **4c** (0.164 g, 0.8 mmol, 1.0 equiv) and α -bromo hydroxamate **1a** (0.433 g, 1.59 mmol, 2.0 equiv) afforded the corresponding thiazolidin-4-one **5ac**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as white solid in 87% (0.256 g) yield. R_f 0.3 (5:95 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 6.8 Hz, 2H), 7.47-7.41 (m, 3H), 7.32-7.28(m, 5H), 4.85 (d, J = 8.8 Hz, 1H), 3.70 (d, J = 8.8 Hz, 1H), 2.47-2.38 (m, 4H), 1.77 (s, 3H), 1.72 (s, 3H), 1.68-1.58 (m, 4H), 1.53-1.48 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 139.7, 134.3, 129.7, 129.5, 129.1, 128.6, 128.3, 128.2, 93.1, 76.6, 47.5, 44.6, 31.4, 27.9, 25.3, 24.5; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for $C_{23}H_{29}N_2O_2S$ 397.1950, mass found 397.1944.

3-(benzyloxy)-5,5-dimethyl-2-morpholino-2-phenylthiazolidin-4-one (5ad):

Following the general procedure, reaction between morpholino (phenyl)methanethione **4d** (0.095 g, 0.46 mmol, 1.0 equiv) and α-bromo hydroxamate **1a** (0.248 g, 0.91 mmol, 2.0 equiv) afforded the corresponding thiazolidin-4-one **5ad**, which was purified by silica gel column chromatography (5:95, EtOAc:Hexane as eluent) to give the title compound as white solid in 85% (0.183g) yield. R_f 0.3 (1:9 EtOAc:Hexane); ¹H **NMR** (400 MHz, CDCl₃) δ 8.13 (d, J = 6.8 Hz, 2H), 7.45-7.39 (m, 3H), 7.28-7.25 (m, 3H), 7.23-7.18 (m, 2H), 4.79 (d, J = 8.8 Hz, 1H), 3.75-3.67 (m, 4H), 3.64 (d, J = 8.8 Hz, 1H), 2.48-2.40 (m, 4H), 1.71 (s, 3H), 1.67 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.3, 138.5, 134.2, 130.0, 129.7, 129.6, 128.8, 128.6, 128.3, 92.3, 76.8, 66.3, 46.8, 44.9, 31.5, 27.7; **HRMS (ESI-TOF)** m/z: [M+Na]⁺ calculated for $C_{22}H_{26}N_2NaO_3S$ 421.1562, mass found 421.1551.

3-(benzyloxy)-5, 5-dimethyl-2-phenyl-2-(phenylamino) thiazolidin-4-one (5ae):

Following the general procedure, reaction between *N*-phenylbenzothioamide **4e** (0.113 g, 0.53 mmol, 1.0 equiv) and α -bromo hydroxamate **1a** (0.287 g, 1.06 mmol, 2.0 equiv) afforded the corresponding thiazolidin-4-one **5ae**, which was purified by silica gel column chromatography (3:97 EtOAc:Hexane as eluent) to give the title compound as white solid in 60% (0.287 g) yield. R_f 0.25 (5:95 EtOAc:Hexane); **mp** 123 -124 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, J = 7.2 Hz, 2H), 7.45-7.40 (m, 3H), 7.31-7.27 (m, 3H), 7.20-7.15 (m, 4H), 6.89 (t, J = 7.2 Hz, 1H), 6.75 (d, J = 8.4 Hz, 2H), 4.82 (d, J = 8.8 Hz, 1H), 4.75 (s, 1H), 4.37 (d, J = 8.8 Hz, 1H), 1.62 (s, 3H), 1.47 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.1, 142.9, 140.5, 134.3, 129.9, 129.3, 129.0, 128.9, 128.8, 128.5, 128.0, 120.9, 118.9, 84.4, 78.4, 46.7, 29.6, 29.0; **HRMS** (**ESI-TOF**) m/z: [M+Na]⁺ calculated for $C_{24}H_{24}N_2NaO_2S$ 427.1456, mass found 427.1451.

3-(benzyloxy)-2-(dimethylamino)-2-(4-methoxyphenyl)-5, 5-dimethylthiazolidin-4-one (5ag):

Following the general procedure, reaction between 4-methoxy-*N*,*N*-dimethylbenzothioamide **4g** (0.050 g, 0.25 mmol, 1.0 equiv) and α -bromo hydroxamate **1a** (0.138 g, 0.51 mmol, 2.0 equiv) afforded the corresponding thiazolidin-4-one **5ag**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 62% (0.061 g) yield. R_f 0.2 (5:95 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.8 Hz, 2H), 7.29-7.21 (m, 5H), 6.93 (d, J = 8.8 Hz, 2H), 4.83 (d, J = 8.8 Hz, 1H), 3.84 (s, 3H), 3.69 (d, J = 8.8 Hz, 1H), 2.16 (s, 6H), 1.72 (s, 3H), 1.67(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 160.4, 134.3, 131.4, 131.3, 129.9, 128.8, 128.4, 113.6, 93.6,

77.0, 55.5, 44.8, 39.2, 31.8, 27.6; **HRMS (ESI-TOF)** m/z: $[M+Na]^+$ calculated for $C_{21}H_{26}N_2NaO_3S$, 409.1562, mass found 409.1552.

3-(benzyloxy)-2-(dimethylamino)-2-(3-methoxyphenyl)-5, 5-dimethylthiazolidin-4-one (5ah):

Following the general procedure, reaction between 3-methoxy-*N*,*N*-dimethylbenzothioamide **4h** (0.108 g, 0.55 mmol, 1.0 equiv) and α-bromo hydroxamate **1a** (0.298 g, 1.10 mmol, 2.0 equiv) afforded the corresponding thiazolidin-4-one **5ah**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 72% (0.153 g) yield. R_f 0.2 (5:95 EtOAc:Hexane); ¹**H NMR** (400 MHz, CDCl₃) δ 7.79-7.75 (m, 2H), 7.38 (t, J = 8.0 Hz, 1H), 7.32-7.25 (m, 5H), 6.99 (dd, J = 8.0, 2.0 Hz, 1H), 4.93 (d, J = 8.4 Hz, 1H), 3.81 (s, 3H), 3.71 (d, J = 8.4 Hz, 1H), 2.21 (s, 6H), 1.78 (s, 3H), 1.71 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.9, 159.7, 141.0, 134.2, 129.8, 129.3, 128.7, 128.3, 122.2, 115.4, 115.0, 93.7, 76.8, 55.3, 44.7, 39.0, 31.6, 27.5; **HRMS (ESI-TOF)** m/z: [M+Na]⁺ calculated for $C_{21}H_{26}N_2NaO_3S$ 409.1562, mass found 409.1554.

3-(benzyloxy)-2-(dimethylamino)-5,5-dimethyl-2-(4-nitrophenyl)thiazolidin-4-one (5ai):

Following the general procedure, reaction between *N,N*-dimethyl-4-nitrobenzothioamide **4i** (0.107 g, 0.51 mmol, 1.0 equiv) and α -bromo hydroxamate **1a** (0.276 g, 1.02 mmol, 2.0 equiv) afforded the corresponding thiazolidin-4-one **5ai**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as yellow oil in 65% (0.132 g) yield. R_f 0.25 (1:9 EtOAc:Hexane); **FT-IR** (v cm⁻¹): 2960, 1702, 1605, 1523, 1457, 1383, 1239, 1014; ¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (d, J = 8.8 Hz, 2H), 8.29 (d, J = 8.8 Hz, 2H), 7.38-7.33 (m, 3H), 7.29-7.26 (m, 2H), 5.01 (d, J = 8.8 Hz, 1H), 4.07

(d, J = 8.8 Hz, 1H), 2.27 (s, 6H), 1.82 (s, 3H), 1.78 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.6, 148.3, 146.6, 133.8, 130.8, 129.6, 129.0, 128.5, 123.4, 92.6, 77.0, 45.1, 39.0, 31.6, 27.6; **HRMS (ESI-TOF)** m/z: [M+Na]⁺ calculated for C₂₀H₂₃N₃NaO₄S 424.1307, mass found 424.1301.

3-(benzyloxy)-2-(4-chlorophenyl)-2-(dimethylamino)-5,5-dimethylthiazolidin-4-one (5aj):

Following the general procedure, reaction between 4-chloro-*N*,*N*-dimethylbenzothioamide **4j** (0.106 g, 0.53 mmol, 1.0 equiv) and α-bromo hydroxamate **1a** (0.285 g, 1.06 mmol, 2.0 equiv) afforded the corresponding thiazolidin-4-one **5aj**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as mixture of diastereomers (5:1) in 80% (0.170 g) yield. R_f 0.25 (5:95 EtOAc:Hexane); ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, J = 6.8 Hz, 0.4 H), 8.04 (d, J = 8.8 Hz, 2H), 7.41 (d, J=7.6 Hz, 0.4H), 7.37 (d, J = 8.4 Hz, 2H), 7.29-7.24 (m, 3.6H), 7.23-7.20 (m, 2.4 H), 4.88 (d, J = 8.8 Hz, 1H), 4.83 (d, J = 8.8 Hz, 0.2 H), 3.81 (d, J = 8.8 Hz, 1H), 3.61 (d, J = 8.8 Hz, 0.2H), 2.17 (s, 1.2 H), 2.14 (s, 6H), 1.74 (s, 0.6H), 1.71 (s, 3H), 1.67 (s, 3.6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.0, 170.9, 139.4, 138.1, 135.2, 134.1, 134.0, 131.3, 129.9, 129.8, 128.7, 129.3, 128.8, 128.7, 128.5, 128.4, 128.3, 93.8, 93.1, 76.9, 44.8, 44.7, 39.0, 39.0, 31.7, 31.6, 27.5, 27.5; **HRMS** (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₀H₂₃ClN₂NaO₂S 413.1066, mass found 413.1052.

3-(benzyloxy)-2-(2-chlorophenyl)-2-(dimethylamino)-5,5-dimethylthiazolidin-4-one (5ak):

Following the general procedure, reaction between 2-chloro-*N*,*N*-dimethylbenzothioamide **4k** (0.040 g, 0.20 mmol, 1.0 equiv) and α-bromo hydroxamate **1a** (0.108 g, 0.40 mmol, 2.0 equiv) afforded the corresponding thiazolidin-4-one **5ak**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as mixture of diastereomers (5:1) in 58% (0.045 g) yield. R_f 0.25 (5:95 EtOAc:Hexane); ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, J = 6.8Hz, 0.4H), 7.46-7.40 (m, 3H), 7.34 (d, J = 7.1 Hz, 0.4H), 7.31 (dd, J = 7.2 Hz, 2.0 Hz, 1H), 7.28-7.24 (m, 3.0H), 7.19 – 7.13(m, 1H), 7.11 – 7.04 (m, 2H), 5.25 (d, J = 8.8 Hz, 1H), 4.98 (d, J = 8.8 Hz, 1H), 4.75 (d, J = 8.8 Hz, 0.2H), 3.51 (d, J = 8.8 Hz, 0.2H), 2.60 (s, 6H), 2.10 (s, 1.2H), 1.66 (s, 0.6H), 1.60 (s, 0.6H), 1.54 (s, 3H), 1.20 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.7, 171.0, 140.5, 139.5, 134.8, 134.2, 132.9, 131.9, 130.0, 129.9, 129.6, 129.4, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 127.5, 126.9, 93.9, 91.5, 76.9, 76.8, 46.2, 44.8, 39.1, 38.8, 31.7, 29.5, 29.2, 27.6; **HRMS** (ESI-TOF) m/z: [M+H]⁺ calculated for, C₂₀H₂₄ClN₂O₂S, 391.1247 mass found 391.1256.

3-(benzyloxy)-5,5-dimethyl-2-(pyrrolidin-1-yl)-2-(thiophen-2-yl)thiazolidin-4-one (5al):

Following the general procedure, reaction between pyrrolidin-1-yl(thiophen-2-yl)methanethione **4I** (0.050 g, 0.25 mmol, 1.0 equiv) and α -bromo hydroxamate **1a** (0.137 g, 0.0.51 mmol, 2.0 equiv) afforded the corresponding thiazolidin-4-one **5al**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 90% (0.089 g) yield. R_f 0.25 (5:95 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 3.2 Hz, 1H), 7.40-7.34 (m,3H), 7.33-7.30 (m, 3H), 7.06 (*app* t, J = 4.0 Hz, 1H), 4.96 (d, J = 8.8 Hz, 1H), 4.04 (d, J = 8.8 Hz, 1H), 2.73-2.66 (m, 2H), 2.62-

2.56, (m, 2H), 1.85-1.78 (m, 4H), 1.74 (s, 3H), 1.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 146.1, 134.5, 129.9, 129.0, 128.8, 128.4, 127.9, 127.1, 88.0, 77.2, 48.6, 45.3, 31.6, 27.6, 24.0; **HRMS (ESI-TOF)** m/z: $[M+H]^{+}$ calculated for $C_{20}H_{25}N_2O_2S_2$ 389.1357, mass found 389.1354.

3-(benzyloxy)-2-(furan-2-yl)-5, 5-dimethyl-2-(pyrrolidin-1-yl) thiazolidin-4-one (5am):

Following the general procedure, reaction between furan-2-yl(pyrrolidin-1-yl)methanethione **4m** (0.074 g, 0.41 mmol, 1.0 equiv) and α-bromo hydroxamate **1a** (0.221 g, 0.82 mmol, 2.0 equiv) afforded the corresponding thiazolidin-4-one 5am, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as pale green solid in 73% (0.111 g) yield. R_f 0.3 (1:9 EtOAc:Hexane); **mp** 96 -97 °C ;**FT-IR** (v cm⁻¹): 2970, 1697, 1457, 1383, 1160, 1141, 1014; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.38-7.34 (m, 2H), 7.30-7.26 (m, 3H), 6.76 (d, J = 4.0 Hz, 1H), 6.42 (brs, 1H), 4.87 (d, J = 9.2 Hz, 1H), 4.26 (d, J = 9.2 Hz, 1H), 2.74-2.69 (m, 2H), 2.63-2.56 (m, 2H), 1.86-1.79 (m, 4H), 1.67 (s, 3H), 1.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 152.5, 143.2, 134.6, 129.8, 128.7, 128.2, 112.2, 111.0, 85.7, 77.3, 47.9, 45.1, 31.5, 27.7, 24.0; **HRMS (ESI-TOF)** m/z: [M+H][†] calculated for, C₂₀H₂₅N₂O₃S, 373.1586 mass found 373.1568.

3'-(benzyloxy)-1,5',5'-trimethylspiro[indoline-2,2'-thiazolidin]-4'-one (5an):

5an

Following the general procedure, reaction between 1-methylindoline-2-thione 4n (0.096 g, 0.58 mmol, 1.0 equiv) and α -bromo hydroxamate **1a** (0.319 g, 1.16 mmol, 2.0 equiv) afforded the corresponding spiro thiazolidin-4-one 5an, which was purified by silica gel column chromatography (1:9 EtOAc:Hexane as eluent) to give the title compound as yellow solid in 55% (0.0.114 g) yield. R_f 0.35 (1:4 EtOAc:Hexane); **FT-IR** (v cm⁻¹): 3292, 2924, 1703, 1610, 1487, 1364, 1309, 1207, 1079; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.33 (m, 3H), 7.29-7.23 (m, 3H), 7.17 (d, J = 7.2 Hz, 1H), 6.90-6.84 (t, J = 7.6Hz, 1H), 6.57 (d, J = 8.0 Hz,

1H), 5.17 (d, J = 8.8 Hz, 1H), 4.99 (d, J = 8.8 Hz, 1H), 3.88 (d, J = 16.8 Hz, 1H), 3.50 (d, J = 16.8 Hz, 1H), 2.89 (s, 3H), 1.80 (s, 3H), 1.76 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.1, 148.9, 134.5, 129.7, 129.0, 128.5, 128.0, 125.3, 123.8, 118.9, 106.4, 92.3, 77.9, 46.2, 43.7, 31.0, 29.5, 28.4; **HRMS (ESI-TOF)** m/z: [M+H]⁺ calculated for, $C_{20}H_{23}N_2O_2S$, 355.1480 mass found 355.1452.

3-(benzyloxy)-5-(4-chlorophenyl)-2-phenyl-2-(pyrrolidin-1-yl)thiazolidin-4-one (5db):

Following the general procedure, reaction between phenyl(pyrrolidin-1-yl)methanethione **4b** (0.040 g, 0.21 mmol, 1.0 equiv) and α-chloro hydroxamate **1d** (0.130 g, 0.42 mmol, 2.0 equiv) afforded the corresponding thiazolidin-4-one **5db**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as mixture of diastereomers (4:1) in 70% (0.068 g) combined yield. R_f 0.3 (1:9 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 7.6, 1.6 Hz, 2H), 7.97 (d, J = 7.2 Hz, 0.5H), 7.41-7.32 (m, 4.5H), 7.27-7.25 (m, 4H), 7.21 (s, 1H), 7.19-7.14 (m, 3.5H), 7.11-7.07 (m, 2H), 4.97 (s, 0.25H), 4.91 (d, J = 8.8 Hz, 0.25H), 4.79 (s, 1H), 4.69 (d, J = 8.4 Hz, 1H), 3.96 (d, J = 8.8 Hz, 0.25 H), 3.74 (d, J = 8.4 Hz, 1H), 2.77-2.70 (m, 0.5H), 2.60-2.52 (m, 4.5H), 1.78-1.69(m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 165.4, 140.0, 138.5, 137.4, 135.2, 134.4, 134.2 (2), 134.0, 130.1, 130.0, 129.8, 129.7 (2), 129.5, 129.3, 129.2, 129.0, 128.9, 128.6, 128.5, 128.4 (2), 125.7, 93.8, 93.7, 77.7, 48.5, 48.3, 46.9, 45.1, 24.4, 24.0; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₆H₂₆CIN₂O₂S 465.1404, mass found 465.1393.

7. Gram scale preparation.

compound 3aa

To a solution of α -haloamide (**1a**, 1.04 g, 3.83 mmol, 1.0 equiv) and thioketone (**2a**, 0.76 g, 3.83 mmol, 1.0 equiv) in (CF₃)₂CHOH (9.5 mL, 0.4 M), was added DIPEA (1.3 mL, 7.66 mmol, 2.0 equiv) dropwise. The reaction mixture was stirred at room temperature and the reaction progress was monitored by thin layer chromatography (TLC). Upon completion of the reaction HFIP was removed under reduced pressure and the crude was purified by silica gel column chromatography (using 3:97 ethyl acetate-hexane mixture as eluent) to afford the corresponding thiazolidin-4-one products **3aa** in 72% (1.07 g) yield.

compound 5aa

To a solution of thioamide (**4a**, 1.08 g, 5.58 mmol, 1.0 equiv) and haloamide (**1a**, 3.03 g, 11.2 mmol, 2 equiv) in acetonitrile (11.1 mL, 0.5 M) was added Na₂CO₃ (2.37 g, 22.3 mmol, 4.0 equiv) and the reaction mixture was heated at 80°C for 1h. Upon completion of the reaction (TLC controlled), reaction mixture was passed through celite and thoroughly washed with ethyl acetate. The filtrate was concentrated under vacuo and the crude product was purified by silica gel column chromatography (using 3:97 ethyl acetate-hexane mixture as eluent) to afford the 2-aminothiazolidin-4-one derivatives **5aa** in 64% (1.37 g) yield.

8. Synthesis of compound 6.

procedure 1.

N,N-diethylbenzothioamide **4a** (0.116 g, 0.60 mmol, 1.0 equiv) and α-bromo hydroxamate **1a** (0.162 g, 0.60 mmol, 1.0 equiv) were taken in HFIP (0.4 M) and was added DIPEA (0.20 mL, 1.2 mmol, 2.0 equiv). The reaction mixture was stirred at room temperature for 45 minutes until the disappearence of the starting materials were observed (TLC controlled). The solvent was removed in vacuo and the crude product was purified by silica gel column chromatography (3:97 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 76% (0.154 g) yield. R_f 0.5 (5:95 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.42 (m, 2H), 7.32-7.29 (m, 3H), 7.28-7.21 (m, 5H), 5.56 (sept, J = 6.0 Hz,1H), 4.92 (s, 2H), 1.60 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 152.5, 138.2, 131.6, 130.1, 128.6, 128.3 (2), 127.9, 124.9-116.5 (m, CF₃), 76.3, 67.6 (hept, J_{FC} = 34.5 Hz), 50.4, 25.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -72.90. HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₁H₂₀F₆NO₃S 480.1068 mass found, 480.1065.

procedure 2.

To a solution of α -haloamide **1a** (0.085 g, 0.31 mmol, 1.0 equiv) and thioamide **4b** (0.060 g, 0.31 mmol, 1.0 equiv) in (CF₃)₂CHOH (0.4 M), was added DIPEA (0.1 mL, 0.62 mmol, 2.0 equiv) dropwise. The reaction mixture was stirred at room temperature and the reaction progress was monitored by thin layer chromatography (TLC). Upon completion of the reaction, HFIP was removed under reduced pressure and the crude was purified by silica gel column chromatography (using 2:98 ethyl acetate-hexane mixture as eluent) to afford the corresponding thiazolidin-4-one products **6** in 65% (0.098 g) yield. Spectral data (1 H/ 13 C NMR) was matched to that of the previously prepared **6**.

procedure 3 (from 5aa).

Compound **5aa** (0.03 g, 0.08 mmol, 1.0 equiv) was taken in HFIP (0.2 mL) and stirred for 5 minute. Complete disappearence of **5aa** and formation of product **6** was observed by TLC analysis. HFIP was removed under reduced pressure and the crude was purified by silica gel chromatography (using 2:98 ethyl acetae-hexane mixture as eluent) to afford the corresponding thiazolidin-4-one product **6** in 90% (0.034 g) yield.

NMR experiment.

Compound **5aa** (0.010 g, 0.02 mmol) was taken in 0.3 mL of CDCl₃ and to this mixture was added HFIP (0.2 mL). ¹H NMR was recorded immediately.

9. General Procedure for the C-2 Modification of Thiazolidin-4-ones with Various Nucleophiles (7-18):

To a solution of compound **5aa** (1.0 equiv) in HFIP (0.4 M) was added the corresponding nucleophile (2-10 equiv) at room temperature. Progress of the reaction was monitored by TLC and upon completion of the reaction, the solvent was removed in vacuo and the crude was purified by silica gel column chromatography (using ethyl acetate/hexane mixture as eluent) to afford the corresponding 2-substituted thiazolidin-4-one derivatives (**7-18**).

10. Characterization of Various C-2 substituted Thiazolidin-4-ones (7-18):

3-(benzyloxy)-2-(1H-indol-3-yl)-5,5-dimethyl-2-phenylthiazolidin-4-one (7):

Following the general procedure, reaction between **5aa** (0.040 g, 0.10 mmol, 1.0 equiv) and 1*H*-indole (0.024 g, 0.20 mmol, 2.0 equiv) afforded the corresponding thiazolidin-4-one **7**, which was purified by silica gel column chromatography (1:4 EtOAc:Hexane as eluent) to give the title compound as white solid in 92% (0.041 g) yield. R_f 0.3 (1:4 EtOAc:Hexane); **mp** 139 -140 °C; **FT-IR** (v cm⁻¹): 3322, 2925, 1681, 1491, 1457, 1363, 1129, 1013; ¹**H NMR** (400 MHz, CDCl₃) δ 8.63-8.52 (m, 1H), 7.71-7.66 (m, 2H), 7.48 (d, J = 8.0 Hz, 1H), 7.43-7.39 (m, 4H), 7.37 (d, J = 8.8 Hz, 1H), 7.32-7.21 (m, 4H), 7.10 (t, J = 7.6 Hz, 1H), 6.99 (d, J = 7.2 Hz, 2H), 4.63 (d, J = 8.8 Hz, 1H), 4.42 (d, J = 8.8 Hz, 1H), 1.67 (s, 3H), 1.63 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.9, 142.3, 137.0, 134.3, 129.9, 128.7, 128.3, 128.2 (2), 126.2, 126.0, 122.6, 121.7, 120.1, 116.6 (2), 78.4, 70.3, 46.9, 29.2, 29.0; **HRMS** (**ESI-TOF**) m/z: [M+Na][†] calculated for $C_{26}H_{24}N_2NaO_2S$, 451.1456, mass found 451.1449.

3-(benzyloxy)-5, 5-dimethyl-2-(1-methyl-1H-indol-3-yl)-2-phenylthiazolidin-4-one (8):

Following the general procedure, reaction between **5aa** (0.03 g, 0.08 mmol, 1.0 equiv) and 1-methyl-1*H*-indole (0.020 g, 0.16 mmol, 2.0 equiv) afforded thiazolidin-4-one derivative **8**, which was purified by silica gel column chromatography (1:9 EtOAc:Hexane as eluent) to give the title compound as pale yellow solid in 91% (0.031 g) yield. R_f 0.35 (1:4 EtOAc:Hexane); **mp** 154 -155 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.65-7.63 (m, 2H), 7.39-7.35 (m, 4H), 7.34-7.25 (m, 4H), 7.21 (t, J = 7.2 Hz, 2H), 7.05 (t, J = 7.2 Hz, 1H), 6.93 (d, J = 7.6 Hz, 2H), 4.62 (d, J = 9.2 Hz, 1H), 4.34 (d, J = 9.2 Hz, 1H), 3.82 (s, 3H), 1.64 (s, 3H), 1.56 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.7, 142.8, 137.9, 134.5, 130.6, 129.9, 128.6, 128.2

(2), 126.8, 122.2, 121.9, 119.7, 114.8, 109.6, 78.4, 70.21, 46.87, 33.08, 29.19, 29.11; **HRMS** (**ESI-TOF**) m/z: $[M+Na]^+$ calculated for $C_{27}H_{26}N_2NaO_2S$ 465.1613, mass found 465.1604.

3-(benzyloxy)-5, 5-dimethyl-2-(2-methyl-1H-indol-3-yl)-2-phenylthiazolidin-4-one (9):

Following the general procedure, reaction between **5aa** (0.030 g, 0.08 mmol, 1.0 equiv) and 2-methyl-1H-indole (0.020 g, 0.16 mmol, 2.0 equiv) afforded thiazolidin-4-one derivative **9**, which was purified by silica gel column chromatography (1:9 EtOAc:Hexane as eluent) to give the title compound as brown solid in 90% (0.032 g) yield. R_f 0.3 (1:4 EtOAc:Hexane); **mp** 170 -171 °C ;**FT-IR** (v cm⁻¹): 3316, 2925, 1677, 1489, 1458, 1384, 1140, 1019; ¹**H NMR** (400 MHz, CDCl₃) δ 8.14-8.05 (m, 1H), 7.74 (s, 2H), 7.39-7.34 (m, 4H), 7.28-7.25 (m, 1H), 7.22-7.15 (m, 3H), 7.11 (t, J = 7.2 Hz, 1H), 7.00-6.94 (m, 3H), 4.50 (d, J = 8.8Hz, 1H), 4.21 (d, J = 8.8 Hz, 1H), 2.08 (s, 3H), 1.62 (s, 3H), 1.56 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.6, 142.7, 135.1, 134.5, 134.3, 129.6, 128.6, 128.4, 128.3, 128.2, 127.7, 121.6, 121.4, 119.7, 111.5, 110.4, 78.0, 71.1, 46.7, 29.3, 29.0, 14.2; **HRMS** (**ESI-TOF**) m/z: [M+Na][†] calculated for $C_{27}H_{26}N_2NaO_2S$ 465.1613, mass found 465.1599.

3-(benzyloxy)-5, 5-dimethyl-2-phenyl-2-(1H-pyrrol-3-yl) thiazolidin-4-one (10):

Following the general procedure, reaction between **5aa** (0.040 g, 0.10 mmol, 1.0 equiv) and 1*H*-pyrrole (0.014 g, 0.20 mmol, 2.0 equiv) afforded thiazolidin-4-one derivative **10**, which was purified by silica gel column chromatography (1:9 EtOAc:Hexane as eluent) to give the title compound as brown solid in 91% (0.036 g) yield. R_f 0.2 (1:4 EtOAc:Hexane); **mp** 141 - 142.5 °C; **FT-IR** (v cm⁻¹): 3340, 2972, 2927, 1691, 1456, 1384, 1033, 1016; ¹**H NMR** (400 MHz, CDCl₃) δ 8.72 (s, 1H), 7.53-7.48 (m, 2H), 7.41-7.34 (m, 6H), 7.28-7.24 (m, 2H), 6.95-6.91 (m, 1H), 6.46-6.42 (m, 1H), 6.34-6.30 (m, 1H), 4.86 (d, J = 8.8 Hz, 1H), 4.16 (d, J = 8.8 Hz, 1H), 1.68 (s, 3H), 1.52 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.1, 142.3, 134.3, 129.9, 129.4, 128.9, 128.4 (2), 128.3, 127.6, 119.4, 113.0, 109.2, 78.4, 69.2, 46.9, 28.9, 28.8; **HRMS** (**ESI-TOF**) m/z: [M+Na]⁺ calculated for $C_{22}H_{22}N_2NaO_2S$ 401.1300, mass found 401.1297.

3-(benzyloxy)-5,5-dimethyl-2-(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)-2-phenylthiazolidin-4-one (11):

Following the general procedure, reaction between **5aa** (0.030 g, 0.08 mmol, 1.0 equiv) and 3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one (0.135 g, 0.80 mmol, 10.0 equiv) afforded the corresponding thiazolidin-4-one derivative **11**, which was purified by silica gel column chromatography (1:9 EtOAc:Hexane as eluent) to give the title compound as light brown solid in 95% (0.036 g) yield; R_f 0.3 (1:4 EtOAc:Hexane); **mp** 173 -174 °C ;**FT-IR** (v cm⁻¹): 2924, 1697, 1617, 1498, 1458, 1401, 1380, 1016; ¹**H NMR** (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 7.2 Hz, 2H), 7.36-7.25 (m, 5H), 7.20-7.15 (m, 4H), 7.10-7.05 (m, 2H), 4.60 (d, J = 8.4 Hz, 1H), 4.53 (d, J = 8.4 Hz, 1H), 1.57 (s, 3H), 1.54 (s, 3H), 1.43 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.9, 149.4, 149.0, 141.6, 138.3, 133.3, 130.2, 129.3, 129.0, 128.8, 128.8, 128.6, 127.7, 126.5, 122.2, 97.6, 79.4, 69.0, 47.3, 29.4, 28.8, 15.0; **HRMS** (**ESI-TOF**) m/z: [M+H]⁺ calculated for C₂₈H₂₈N₃O₃S 486.1851, mass found 486.1841.

(3-(benzyloxy)-5, 5-dimethyl-4-oxo-2-phenylthiazolidin-2-yl)malononitrile (12):

Following the general procedure, reaction between **5aa** (0.020 g, 0.052 mmol, 1.0 equiv) and (0.034 g, 0.52 mmol, 10.0 equiv) afforded the corresponding thiazolidin-4-one derivative **12**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 86% (0.017g) yield. R_f 0.25 (5:95 EtOAc:Hexane); **FT-IR** (v cm⁻¹): 2923, 1712, 1448, 1386, 1134, 1016; ¹**H NMR** (400 MHz, CDCl₃) δ 7.61-7.56 (m, 2H), 7.44-7.39 (m, 3H), 7.28-7.21 (m, 3H), 7.19- 7.17 (m, 2H), 5.05 (d, J = 8.8 Hz, 1H), 4.95 (s, 1H), 4.35 (d, J = 8.8 Hz, 1H), 1.76 (s, 3H), 1.67 (s, 3H) ¹³**C NMR** (100 MHz, CDCl₃) δ 171.8, 135.9, 133.4, 130.5, 130.0, 129.5, 129.5, 128.7, 127.3, 110.8, 110.5, 78.8, 71.1, 47.6, 35.4, 31.3, 28.2; **HRMS** (**ESI-TOF**) m/z: [M+Na]⁺ calculated for $C_{21}H_{19}N_3NaO_2S$ 400.1096, mass found 400.1087.

3-(benzyloxy)-2-(butylamino)-5,5-dimethyl-2-phenylthiazolidin-4-one (13):

Following the general procedure, reaction between 5aa (0.030 g, 0.08 mmol, 1.0 equiv) and butan-1-amine (0.057 g, 0.80 mmol, 10.0 equiv) afforded the corresponding thiazolidin-4-one derivative 13, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as mixture of isomers. Each isomer was isolated separately by silica gel column chromatography. Yield of one isomer (13a), 26% (0.08 g); R_f 0.35 (5:95 EtOAc:Hexane). Yield of other isomer (13b) is 36% (0.011g) R_f 0.3 (5:95 EtOAc:Hexane). NMR data of 13a: ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.6 Hz, 2H), 7.37-7.29 (m, 3H), 7.27-7.25 (m, 4H), 7.23 (brs, 1H), 5.05 (d, J = 9.2 Hz, 1H), 4.72 (d, J = 9.2 Hz, 1H), 4.729.2 Hz, 1H), 2.99-2.89 (m, 1H), 2.57-2.49 (m, 1H), 2.23 (brs, 1H), 1.66 (s, 3H), 1.63 (s, 3H), 1.53-1.50 (m, 2H), 1.40-1.35 (m, 2H), 0.89 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 142.7, 135.0, 129.4, 128.8, 126.6, 128.5, 126.8, 86.6, 77.9, 46.3, 42.5, 32.1, 30.7, 29.2, 20.6, 14.1; **HRMS (ESI-TOF)** m/z: [M+H]⁺ calculated for, C₂₂H₂₉NO₂S, 385.1950 mass found 385.1928. NMR data of **13b**; ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.50 (m, 2H), 7.41-7.36 (m, 3H), 7.34-7.28 (m, 5H), 6.96 (s, 1H), 5.08 (s, 2H), 3.10 (g, J = 6.8 Hz, 2H), 1.59 (s, 6H), 1.43-1.39 (m, 2H), 1.34-1.29 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, $CDCI_3$) δ 173.4, 153.2, 138.0, 132.4, 130.0, 128.7, 128.5, 128.3, 128.3, 127.9, 76.7, 53.5, 39.8, 31.7, 26.6, 20.2, 14.0; **HRMS (ESI-TOF)** m/z: $[M+H]^+$ calculated for $C_{22}H_{29}NO_2S$ 385.1950, mass found 385.1936

3-(benzyloxy)-5,5-dimethyl-2-phenyl-2-(prop-2-yn-1-yloxy)thiazolidin-4-one (14):

Following the general procedure, reaction between **5aa** (0.050 g, 0.13 mmol, 1.0 equiv) and prop-2-yn-1-ol (0.073 g, 1.30 mmol, 10.0 equiv) afforded the corresponding thiazolidin-4-one derivative **14**, which was purified by silica gel column chromatography (1:9 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 62% (0.030 g) yield. R_f 0.3 (5:95 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 6.4 Hz, 2H), 7.29-7.25 (m, 3H), 7.15-7.09 (m, 3H), 7.06-7.03 (m, 2H), 4.80 (d, J = 8.8 Hz, 1H), 4.27 (dd, J = 14.0, 2.4 Hz,

1H), 4.17 (d, J = 8.8 Hz, 1H), 4.02 (dd, J = 14.0, 2.4 Hz, 1H), 2.33 (t, J = 2.0 Hz, 1H), 1.60 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.3, 138.6, 134.2, 129.7, 129.5, 128.9, 128.5, 128.4, 127.8, 99.0, 78.6, 78.2, 75.1, 52.8, 46.6, 30.2, 28.7; **HRMS (ESI-TOF)** m/z: [M+Na]⁺ calculated for C₂₁H₂₁NNaO₃S 390.1140, mass found 390.1132.

3-(benzyloxy)-5,5-dimethyl-2-phenoxy-2-phenylthiazolidin-4-one (15):

Following the general procedure, reaction between **5aa** (0.021 g, 0.05 mmol, 1.0 equiv) and phenol (0.051 g, 0.50 mmol, 10.0 equiv) afforded thiazolidin-4-one derivative **15**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 75% (0.017 g) yield. R_f 0.3 (5:95 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (dd, J = 6.8, 3.2 Hz, 2H), 7.40-7.32 (m, 5H), 7.31-7.26 (m, 5H), 7.22 (app t, J = 7.6 Hz, 1H), 7.00 (d, J = 8.4 Hz, 2H), 5.02 (s, 2H), 1.70 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 153.5, 151.4, 138.1, 132.1, 130.0, 129.5, 128.9, 128.4 (2), 128.3, 127.8, 125.8, 121.6, 76.6, 51.4, 26.2; **HRMS** (**ESI-TOF**) m/z: [M+H]⁺ calculated for $C_{24}H_{24}NO_3S$ 406.1477, mass found 406.1470.

3-(benzyloxy)-5,5-dimethyl-2-phenyl-2-(p-tolyloxy)thiazolidin-4-one (16):

Following the general procedure, reaction between **5aa** (0.050 g, 0.013 mmol, 1.0 equiv) and p-cresol (0.140 g, 0.13 mmol, 10.0 equiv) afforded the corresponding thiazolidin-4-one derivative **16**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 83% (0.045 g) yield. R_f 0.3 (5:95 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, J = 6.8, 3.2 Hz, 2H), 7.35-7.32 (m, 3H), 7.33-7.28 (m, 5H), 7.10 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.4 Hz, 2H), 5.02 (s, 2H), 2.30 (s, 3H), 1.69 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 153.5, 149.2, 138.1, 135.4, 132.2, 130.0 (2), 128.8, 128.4 (2), 128.3, 127.8, 121.3, 76.5, 51.5, 26.2, 21.0; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₅H₂₆NO₃S 420.1633, mass found 420.1618.

3-(benzyloxy)-2-(tert-butylperoxy)-5,5-dimethyl-2-phenylthiazolidin-4-one (17):

Following the general procedure, reaction between **5aa** (0.040 g, 0.13 mmol, 1.0 equiv) and tert-butyl peroxide solution (0.05 ml, 0.26 mmol, 2.0 equiv, 5-6 M in decane) afforded the corresponding thiazolidin-4-one **17**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 78% (0.040 g) yield. R_f 0.4 (3:97 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, J =7.6, 3.6 Hz, 2H), 7.39-7.35 (m, 3H), 7.27-7.24 (m, 5H), 5.06 (d, J = 9.2 Hz, 1H), 4.81 (d, J = 9.2 Hz, 1H), 1.76 (s, 3H), 1.67 (s, 3H), 1.38 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 136.9, 135.05, 129.5, 129.4, 128.6, 128.5, 128.3, 126.9, 100.9, 82.4, 77.9, 46.9, 30.5, 27.7, 27.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for $C_{22}H_{27}NNaO_4S$ 424.1558, mass found 424.1546.

3-(benzyloxy)-5, 5-dimethyl-2-phenyl-2-(phenylthio) thiazolidin-4-one (18):

Following the general procedure, reaction between **5aa** (0.041 g, 0.11 mmol, 1.0 equiv) and thiophenol (0.023 g, 0.22 mmol, 2.0 equiv) afforded the corresponding thiazolidin-4-one **18**, which was purified by silica gel column chromatography (5:95 EtOAc:Hexane as eluent) to give the title compound as colorless oil in 80% (0.036 g) yield. R_f 0.35 (1:9 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.6 Hz, 2H), 7.49-7.45 (m, 2H), 7.36-7.30 (m, 3H), 7.28-7.23 (m, 8H), 5.13 (d, J = 8.8 Hz, 1H), 4.30 (d, J = 8.8 Hz, 1H), 1.46 (s, 3H), 0.69 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 139.9, 138.1, 134.4, 130.9, 129.9, 129.7, 129.4, 129.0, 128.9, 128.7, 128.5, 128.2, 83.0, 77.7, 47.1, 31.4, 26.8; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for $C_{24}H_{23}NNaO_2S_2$ 444.1068, mass found 444.1060.

(1-((benzyloxy)amino)-2-methyl-1-oxopropan-2-yl) benzothioate (19):

19

Compound 5aa (0.040 g, 0.10 mmol, 1.0 equiv) was taken in HFIP (0.3 mL) and was added

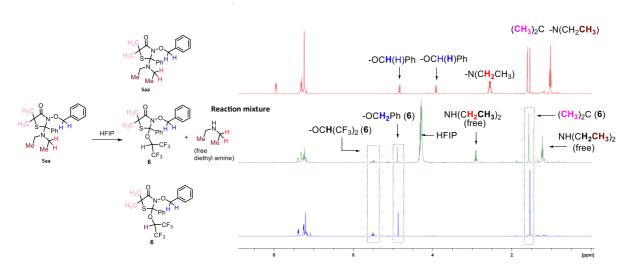
TBAF (0.2 mL, 0.20 mmol, 2.0 equiv, 1.0 M in THF). The reaction mixture was then heated at 50°C for 8h. Upon disappearence of the starting material (TLC controlled), the solvent was removed in vacuo and the reaction mixture was purified by silica gel column chromatography (1:4 EtOAc:Hexane as eluent) to give compound **19** as colorless oil in 30% (0.010 g) yield. R_f 0.25 (1:4 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.60 (appt, J = 7.2Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.39-7.35 (m, 2H), 7.25-7.20 (m, 3H), 4.92 (s, 2H), 1.68 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 171.5, 136.7, 135.5, 134.1, 129.5, 128.8, 128.7, 128.6, 127.6, 78.1, 50.6, 26.2; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for, $C_{18}H_{19}NNaO_3S$, 352.0983 mass found 352.0969.

11. Further Studies: Preparation and characterization of compounds 20-21

(Scheme 6 from main text)

5,5-dimethyl-2,2-diphenylthiazolidin-4-one (20):

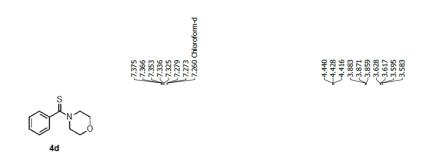
To a solution of thiazolidine-4-one **3aa** (0.078 g, 0.20 mmol, 1.0 equiv) in acetonitrile/water (9:1, 2 mL), Mo(CO)₆ (0.063 g, 0.24 mmol, 1.2 equiv) was added and the reaction was stirred at 120 °C under argon for 12 h. After cooling to room temperature, the mixture was the filtered through celite and thoroughly washed with ethyl acetate. Then, filtrate was concentrated under vacuo, and the resulting residue was purified by silica gel column chromatography (3:7 EtOAc/hexane) to afford **20** as white solid in 85% (0.049 g) yield. R_f 0.25 (30:70 EtOAc:Hexane) ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.37 (d, J = 7.2 Hz, 4H), 7.29-7.19 (m, 6H), 1.45 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 179.5, 144.8, 128.4, 127.9, 127.1, 69.9, 52.6, 28.4; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₇H₁₇NNaOS 306.0929, mass found 306.0921.

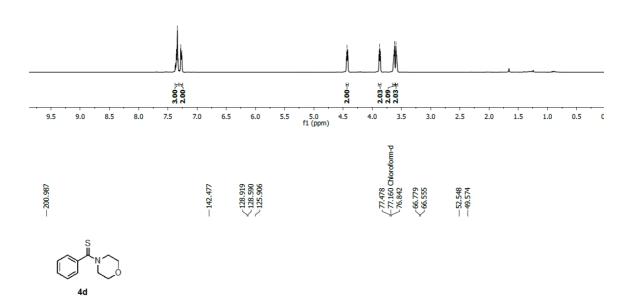

3-(4-bromobutyl)-5,5-dimethyl-2,2-diphenylthiazolidin-4-one (21):

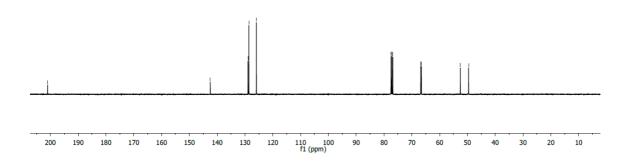
To a solution of thiazolidine-4-one 20 (0.029 g, 0.10 mmol, 1.0 equiv) in anhydrous DMF (1mL), under N_2 atmosphere was added KOH (0.017 g, 0.30 mmol, 3.0 equiv) was added and the reaction was stirred for 30 minutes, which provided yellow solution. After getting yellow solution,1,4 dibromobutane (0.023 mL, 0.20 mmol, 2.0 equiv) was added and stirred the reaction at room temperature until the consumption of the starting material. The reaction mixture was quenched with water and extracted with ethyl acetate. The organic layer was

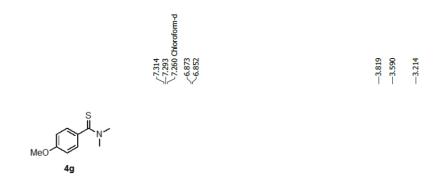
concentrated under vacuo, and the resulting residue was purified by silica gel column chromatography (3:7 EtOAc/hexane) to afford **21** as colorless oil in 62% (0.026 g) yield. R_f 0.3 (3:7 EtOAc:Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.38 (m, 4H), 7.38-7.32 (m, 6H), 3.30 (t, J = 7.6 Hz, 2H), 3.09 (t, J = 6.8 Hz, 2H), 1.53-1.47 (m, 8H), 0.90-0.82 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 142.9, 128.8, 128.4 (2), 75.2, 51.3, 44.7, 32.8, 30.3, 29.3, 26.5; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₁H₂₅BrNOS 418.0840, mass found 418.0822.

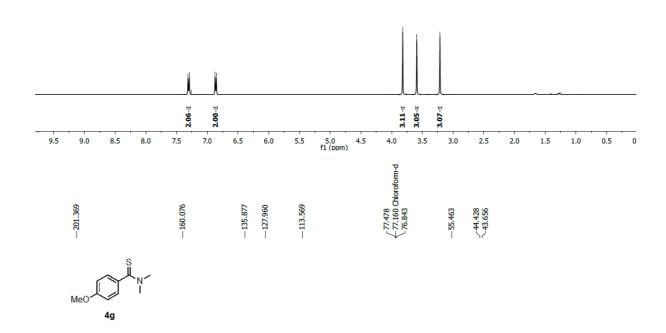
12. Control Experiments.

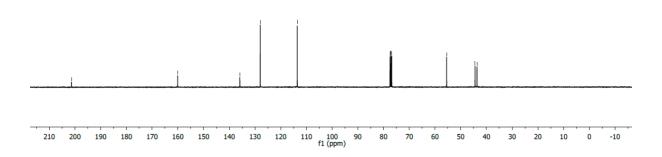

NMR Experiment.

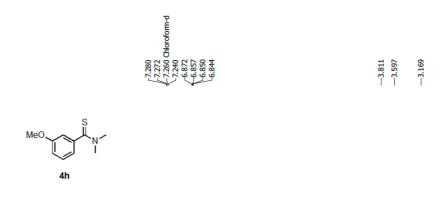


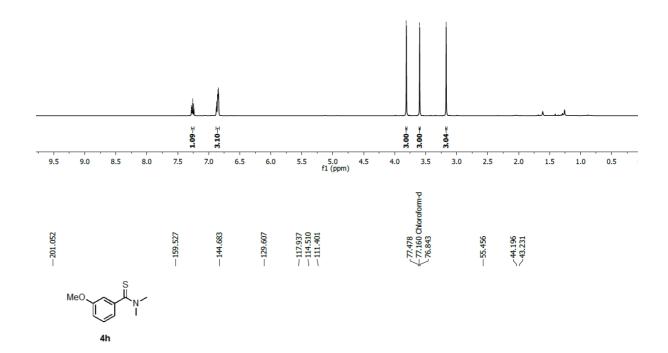

Figure S4: Stacked NMR spectras of pure **5aa**, reaction of **5aa** in HFIP and pure compound **6**.

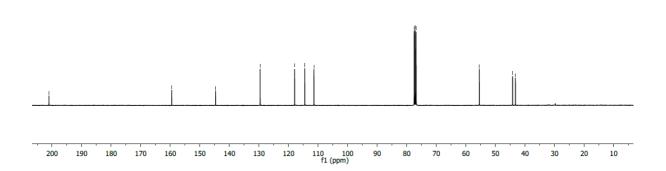

Note: Compound **5aa** (0.010 g, 0.02 mmol) was taken in 0.3 mL of CDCl₃ and to this mixture was added HFIP (0.2 mL). 1 H NMR was recorded immediately. It was clear from the crude NMR that, compound **5aa** was fully converted to compound **6** and free Et₂NH was released in the reaction mixture. No traces of **5aa** was remained in the reaction mixture.

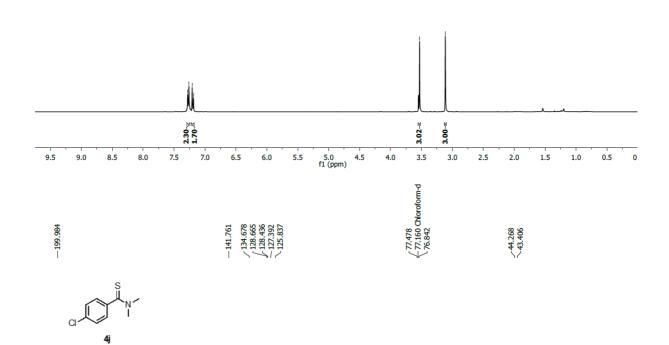

13. NMR Spectra of New Compounds

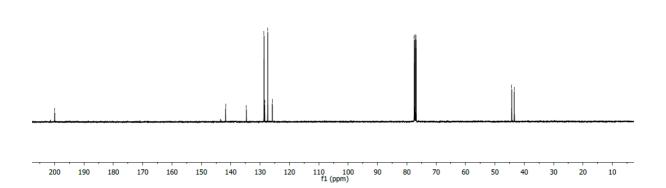


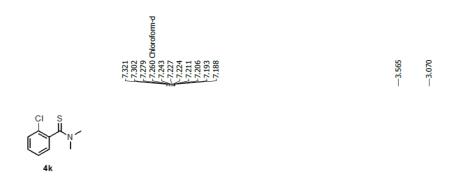


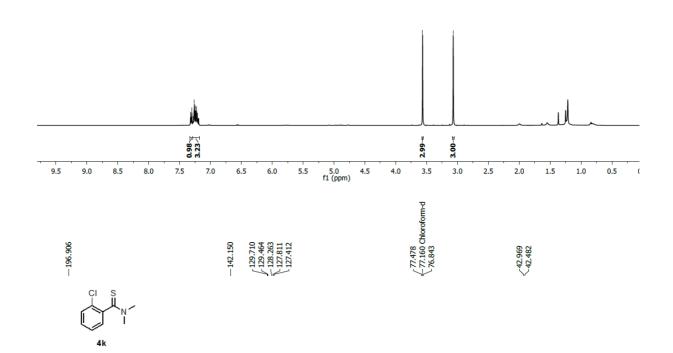


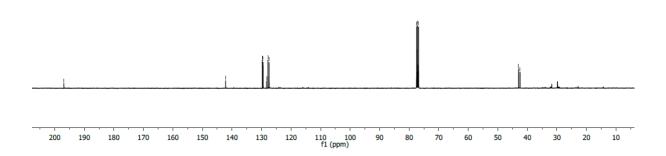


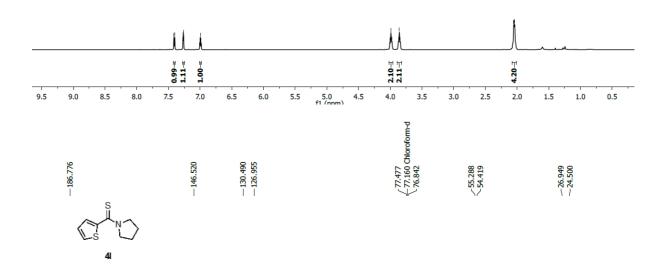


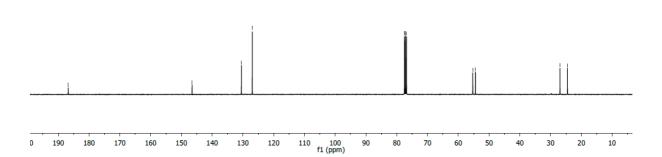


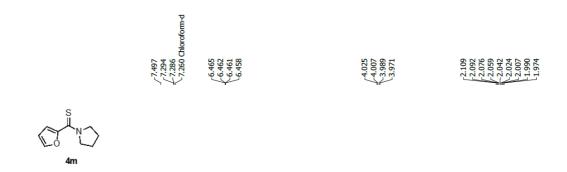


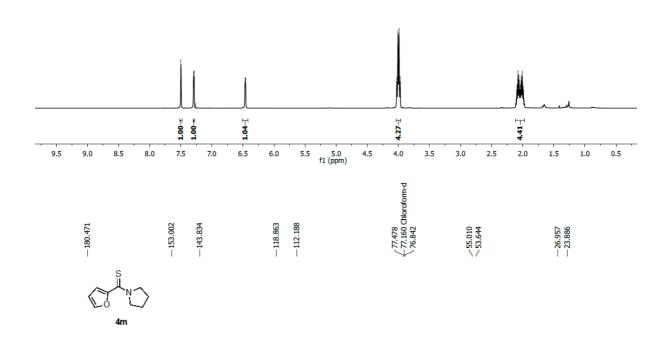


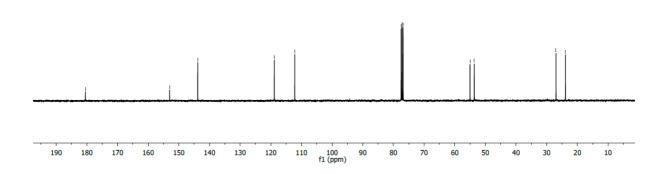


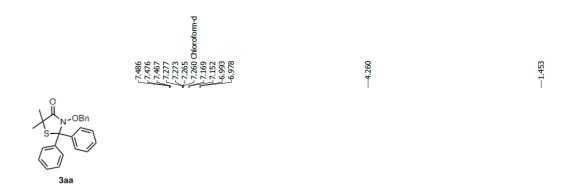


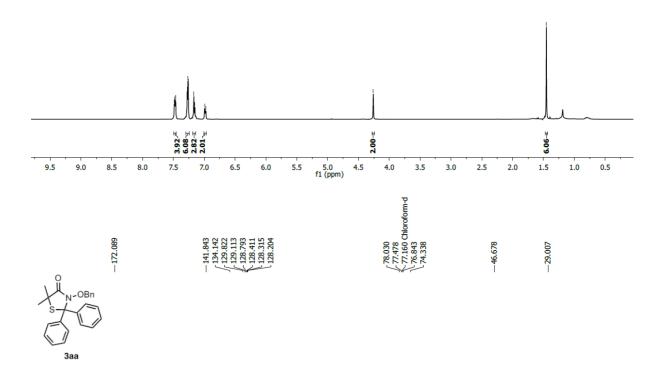


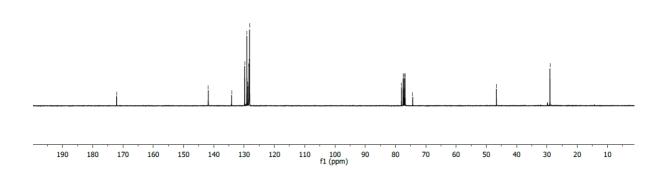


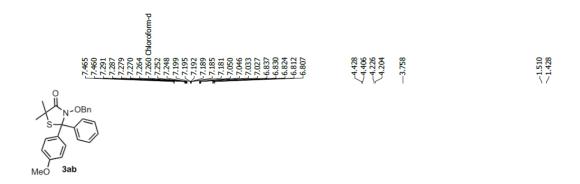


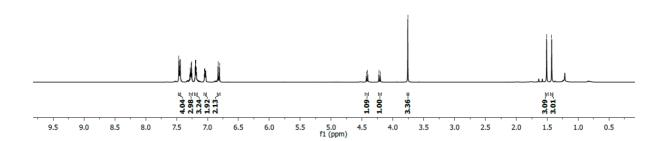


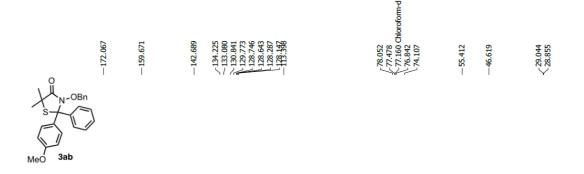


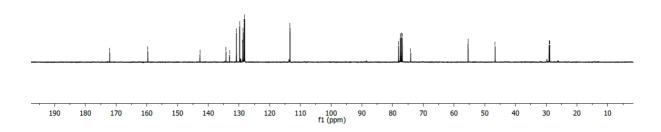


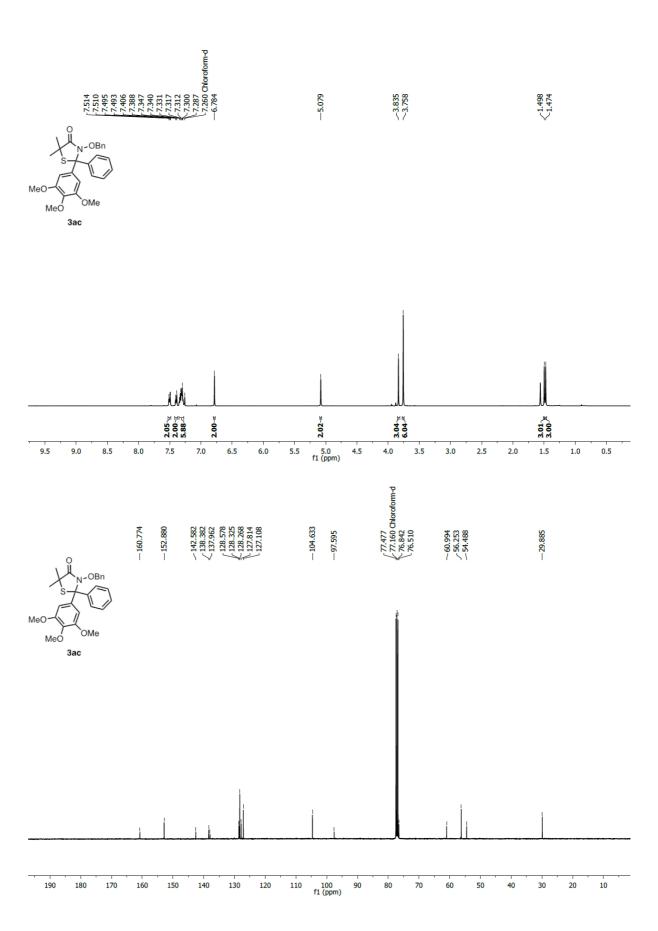


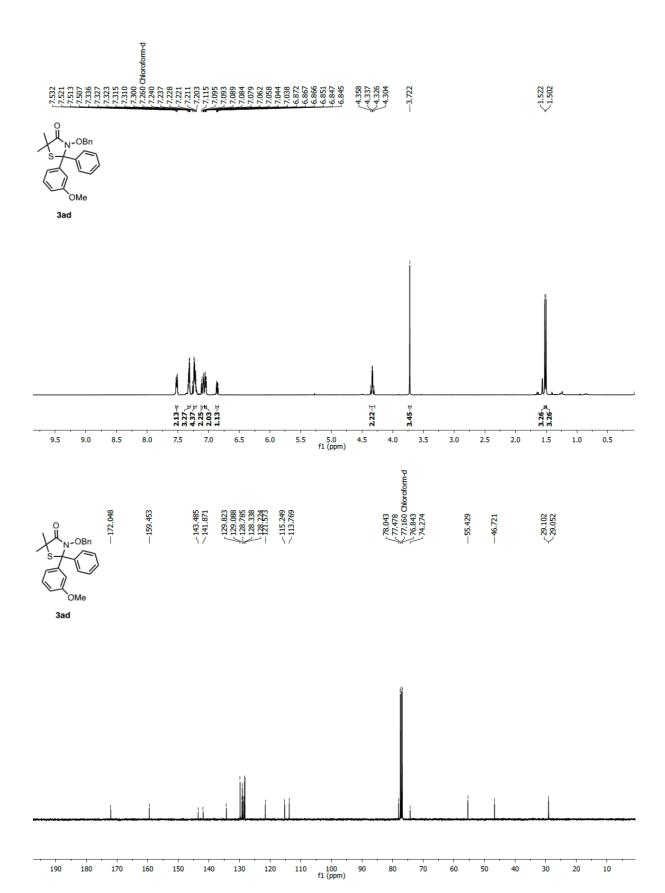


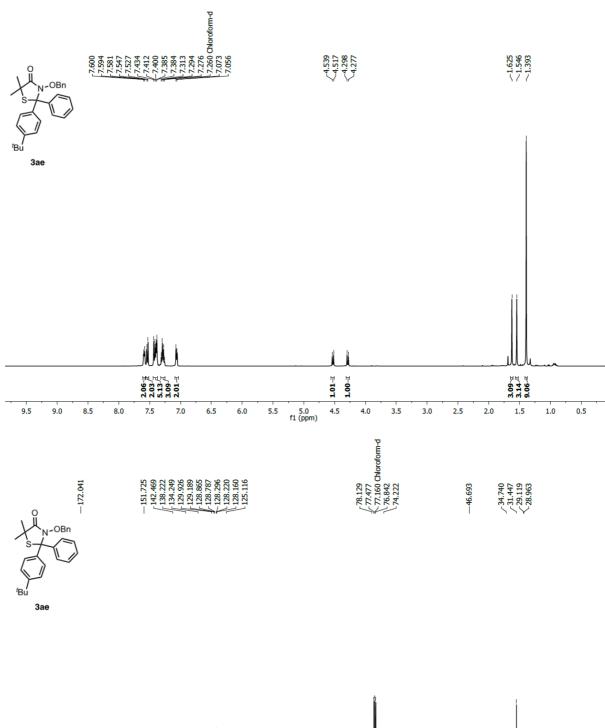


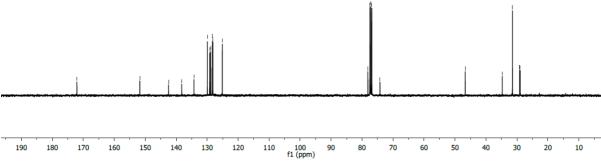


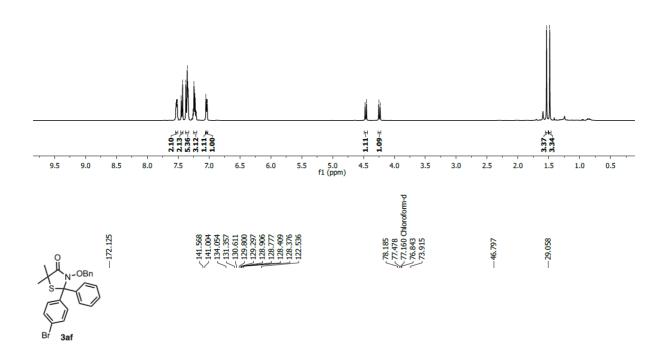


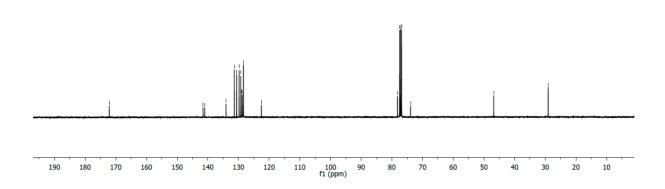


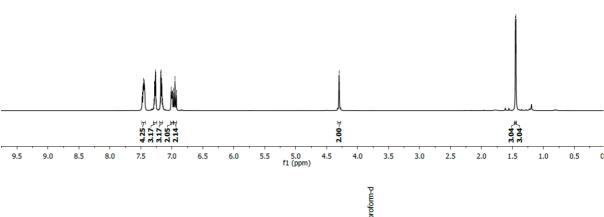


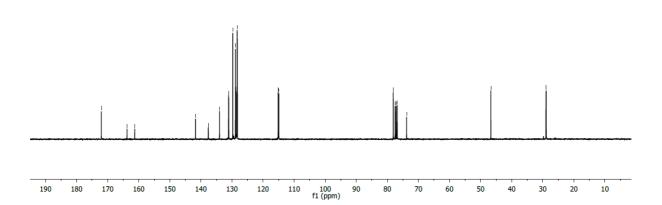


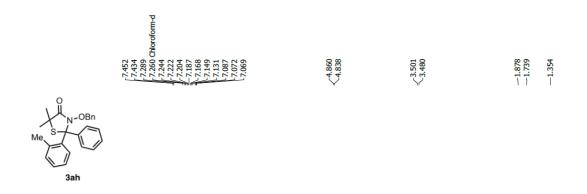


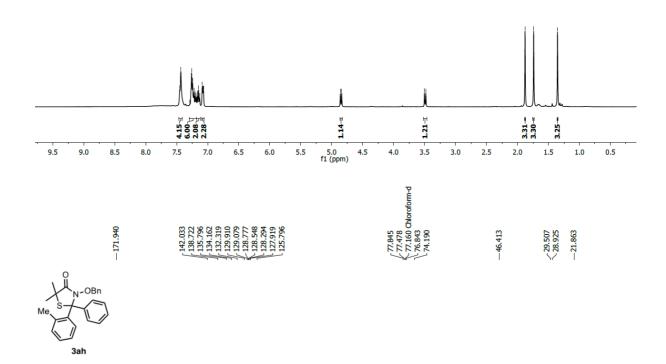


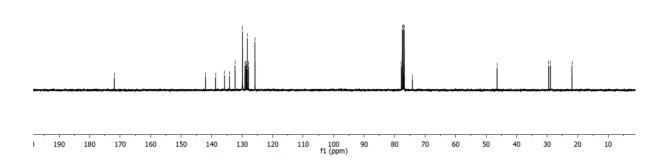


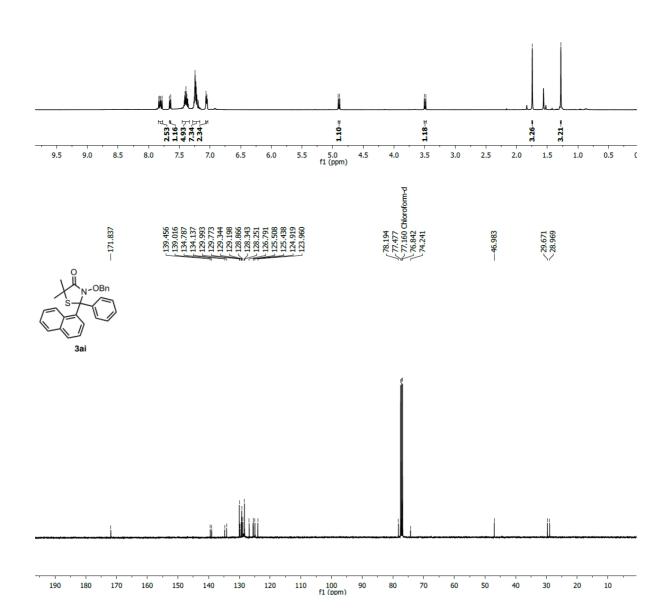


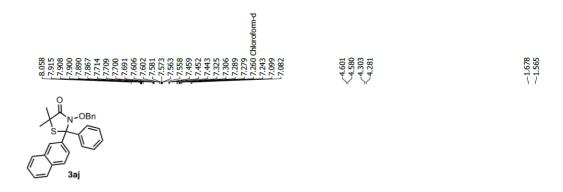


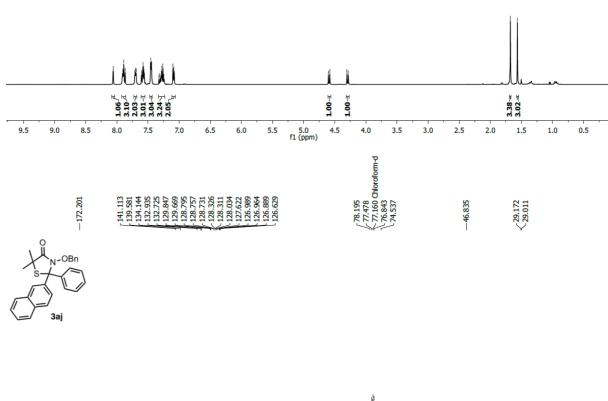


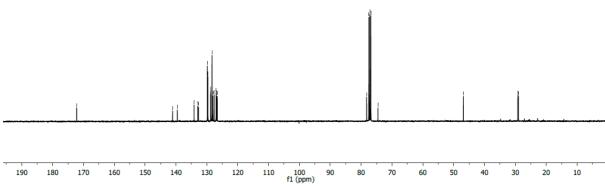


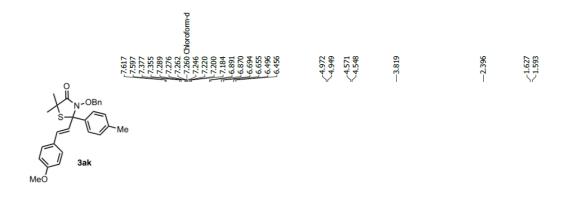


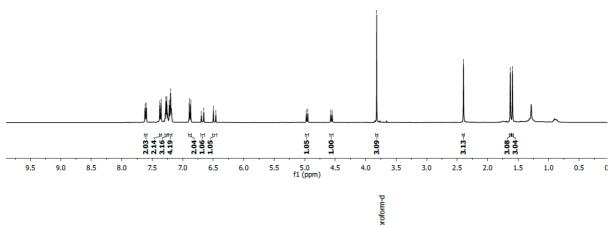


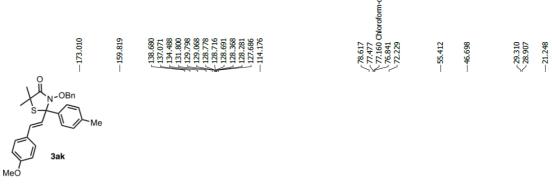


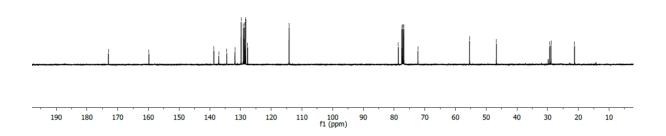


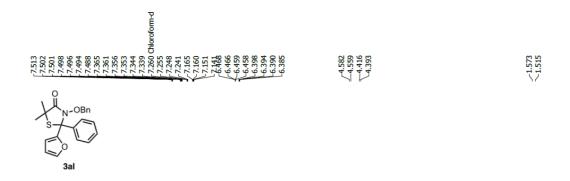


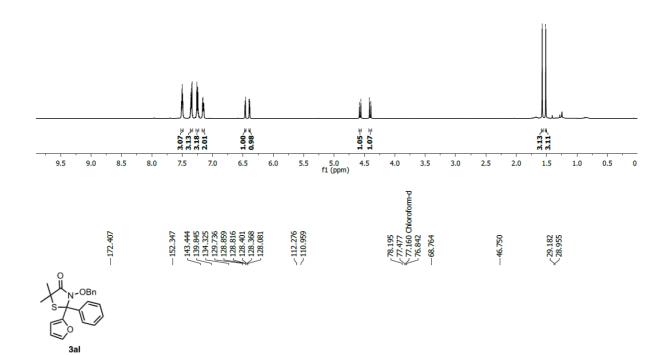


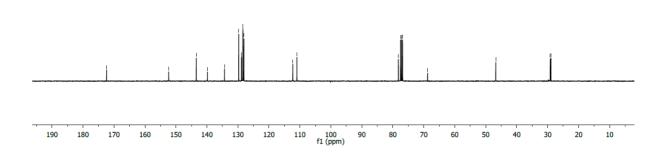


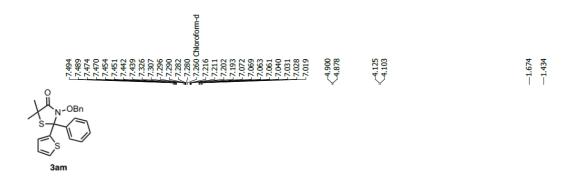


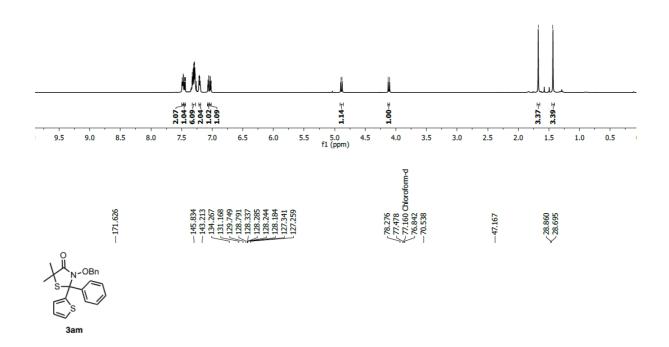


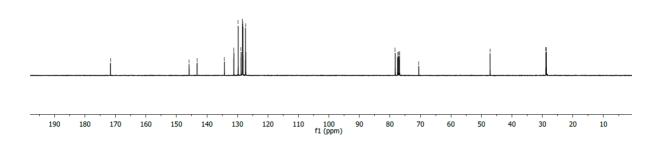


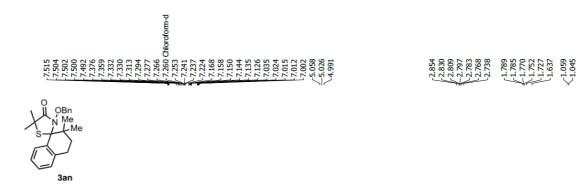


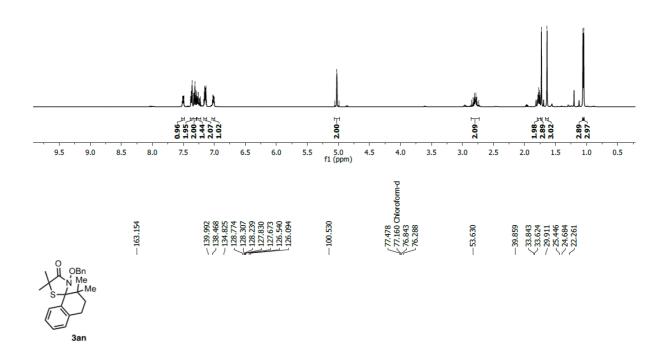


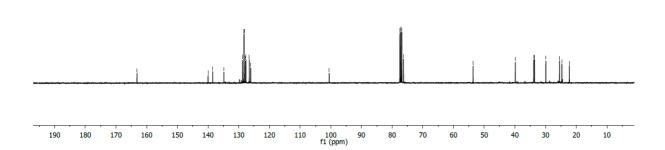


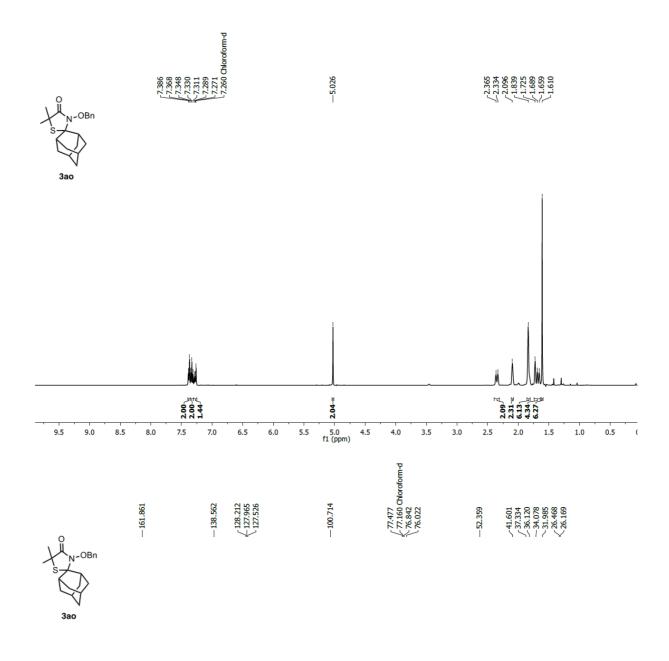


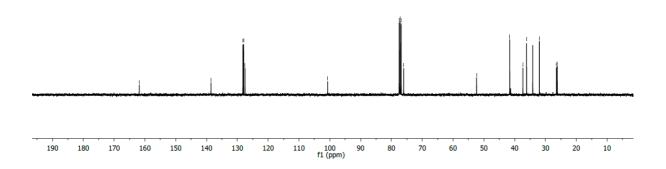


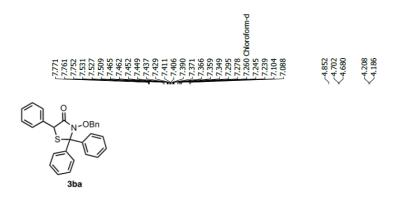


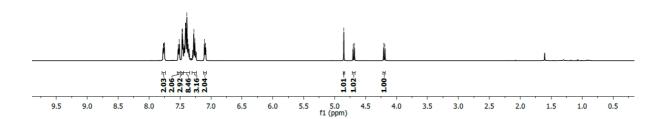


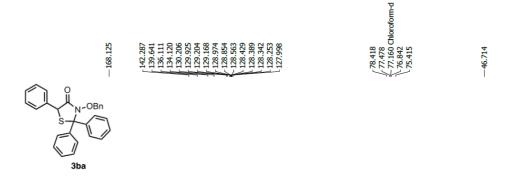


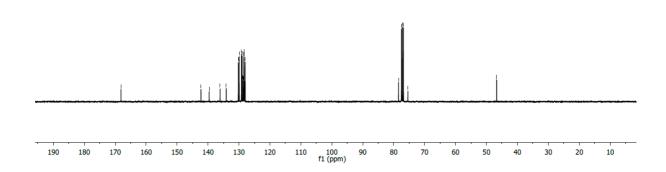


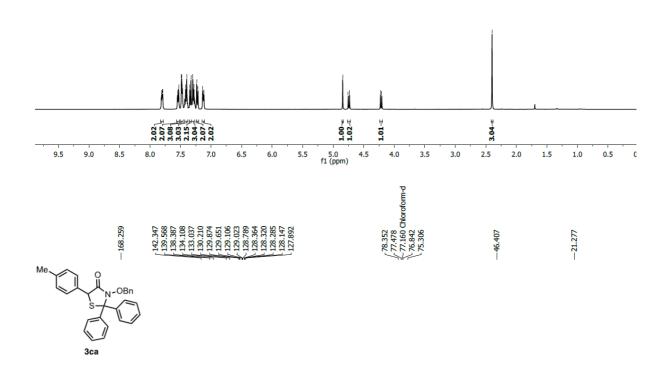


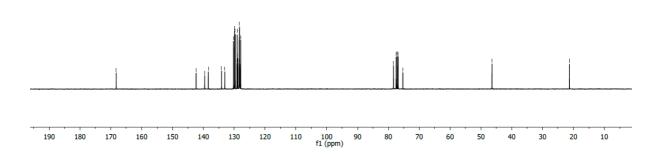


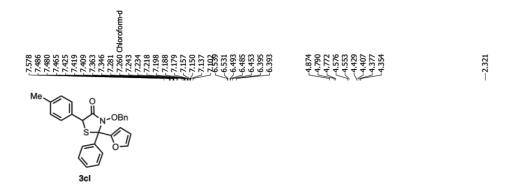


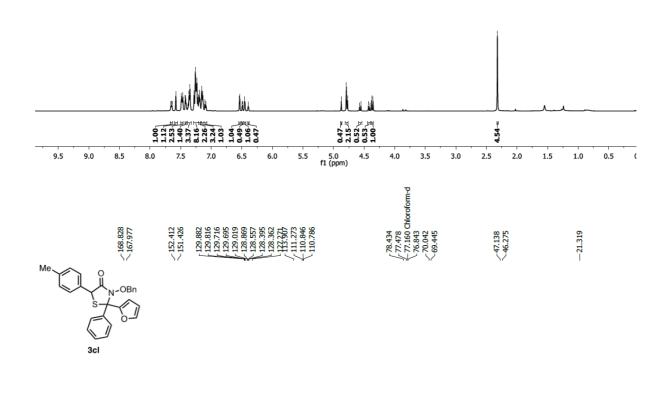


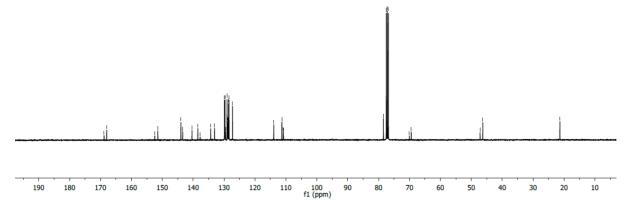


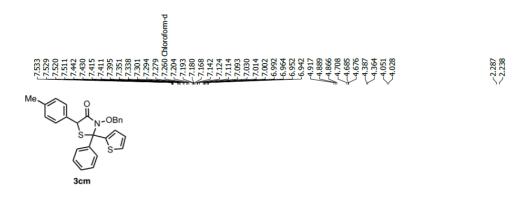


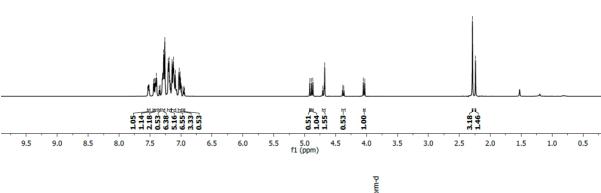


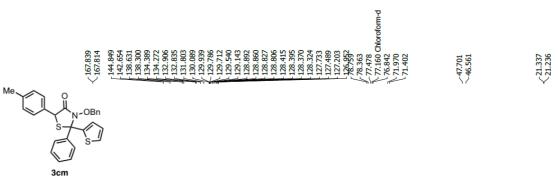


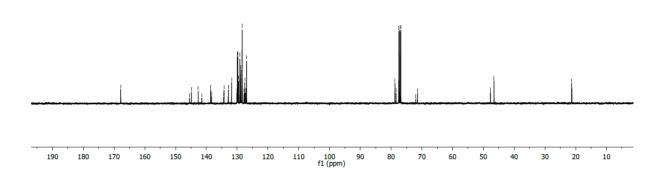


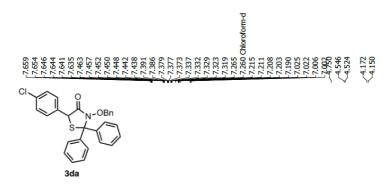


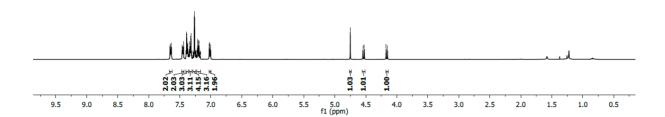


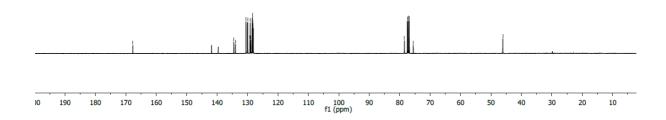


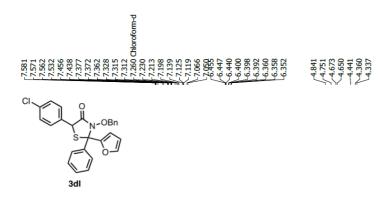


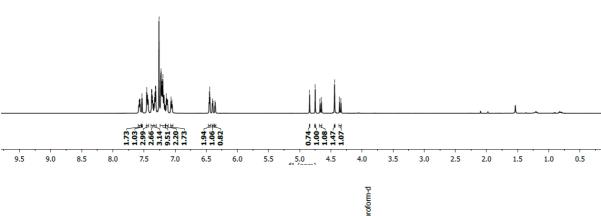


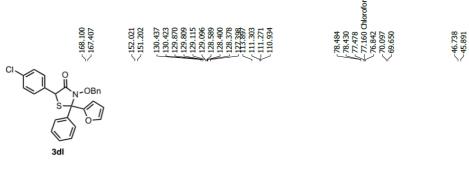


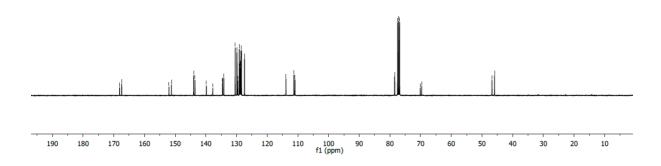


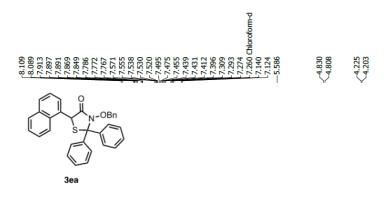


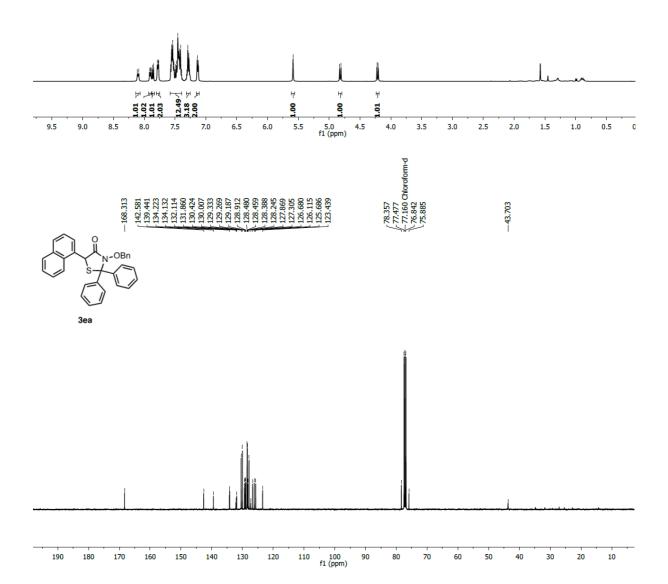


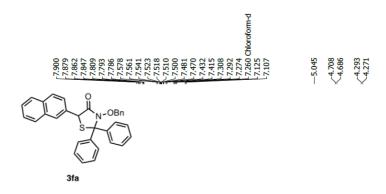


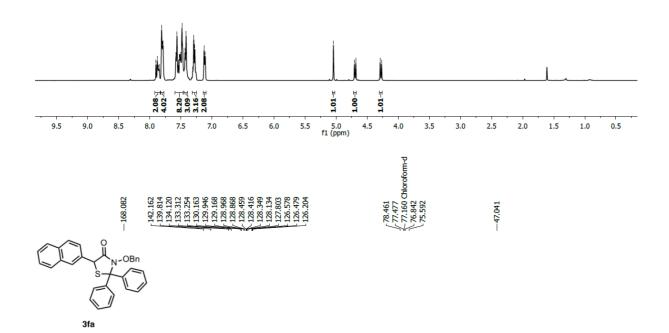


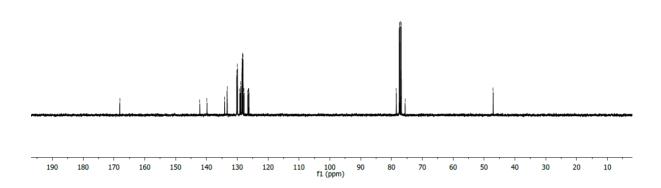


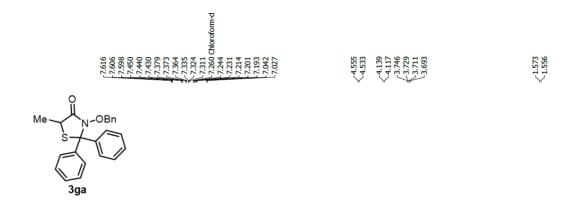


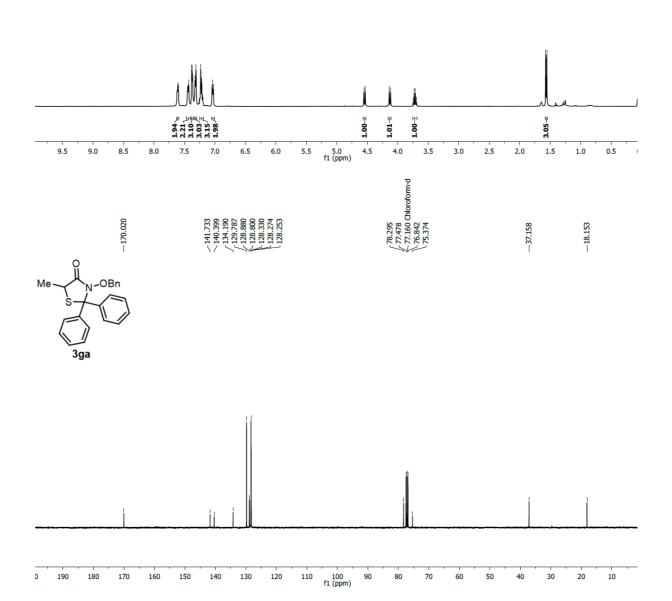


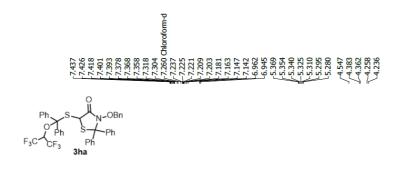


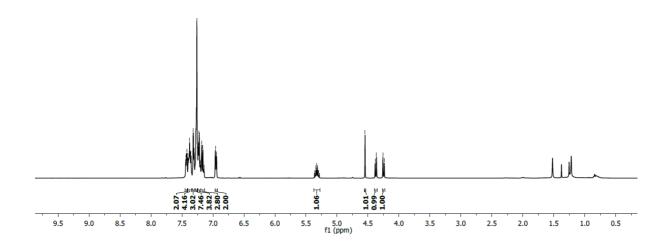


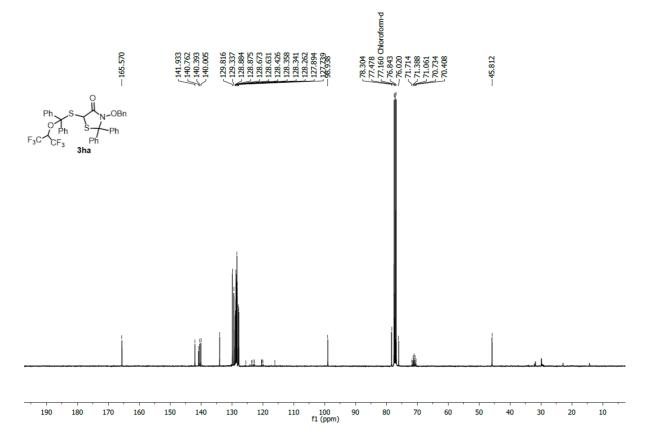


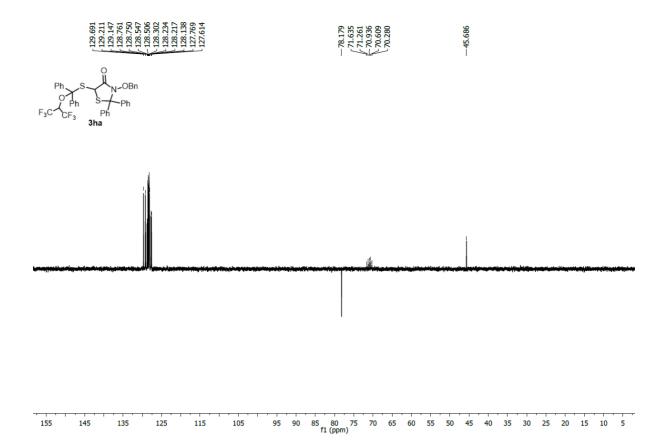


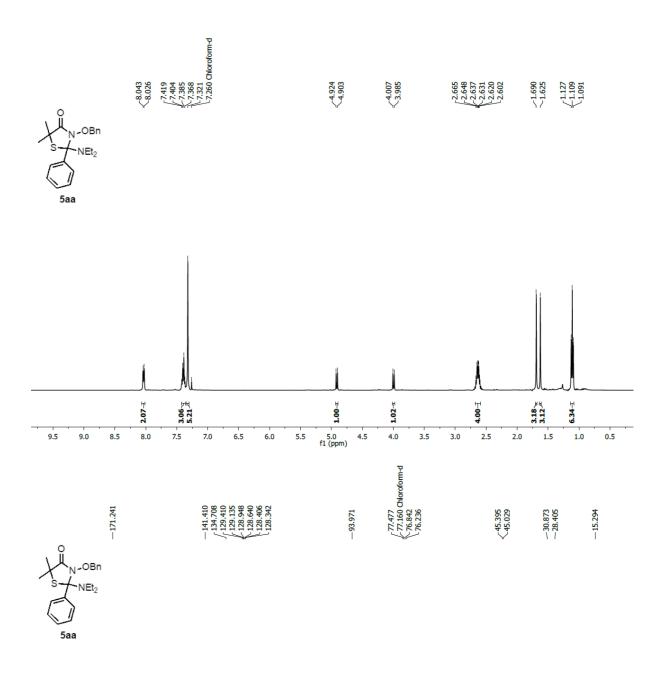


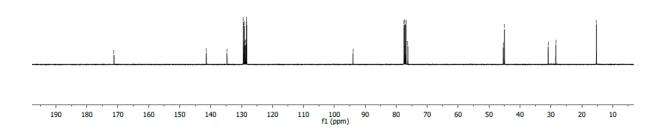


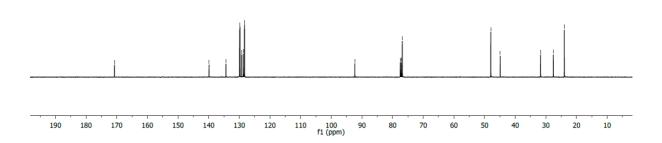


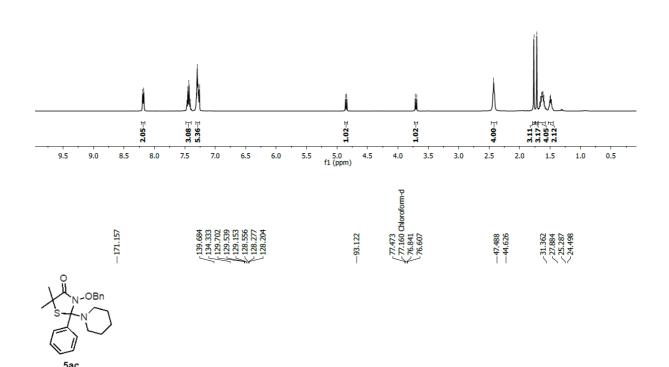


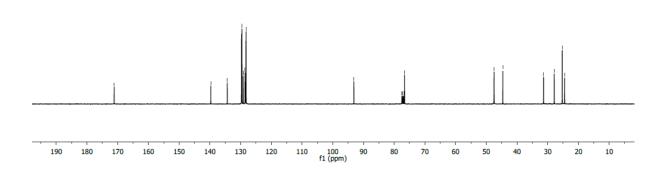




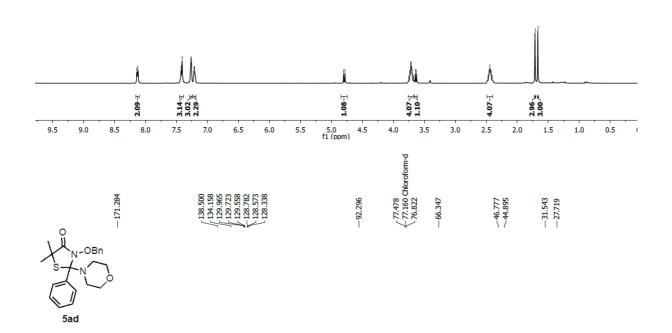


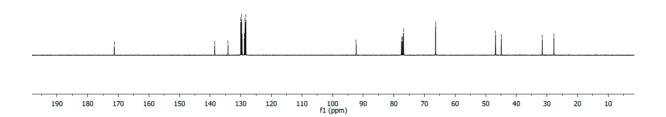


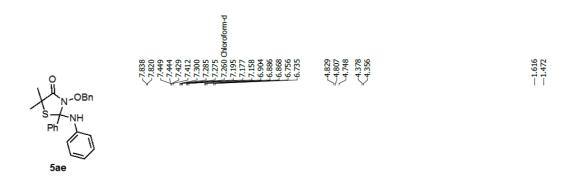


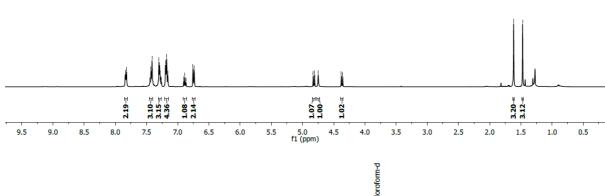


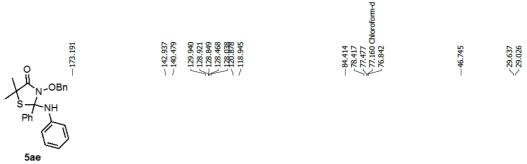


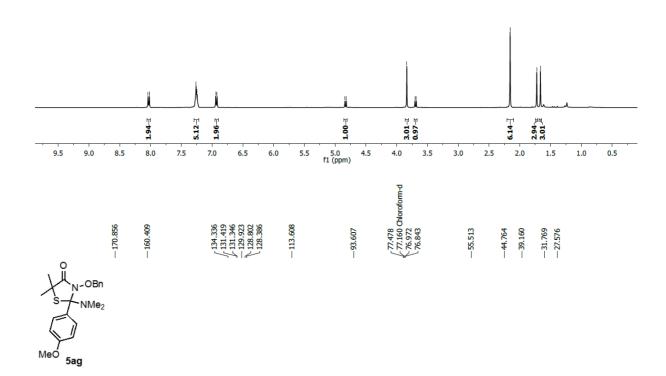


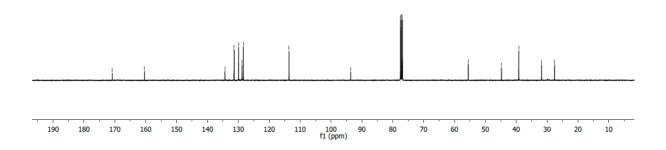


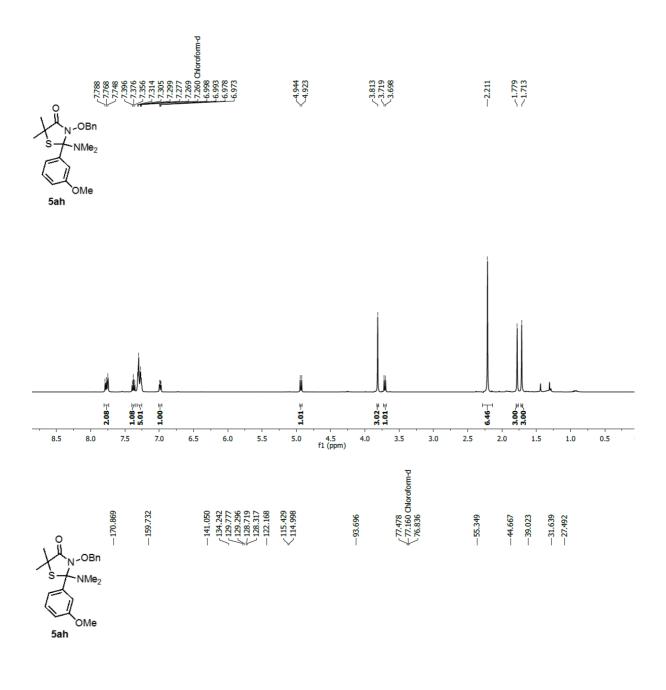


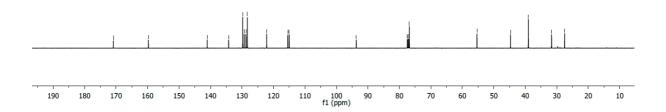


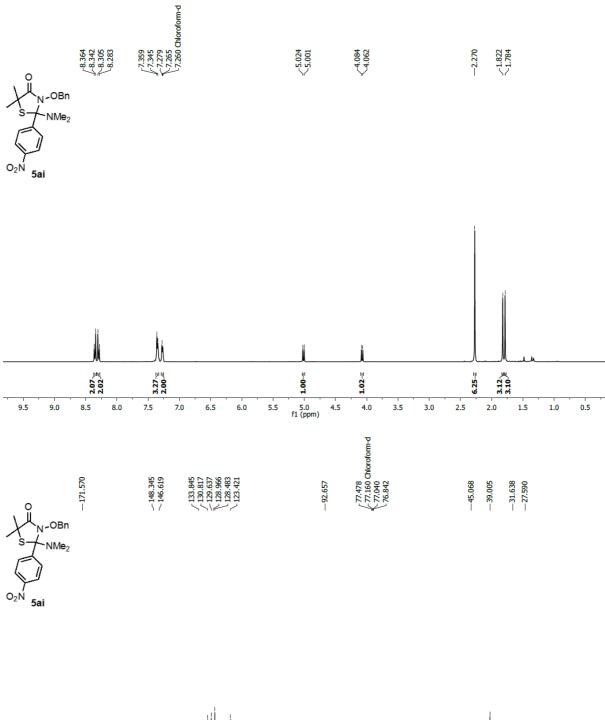


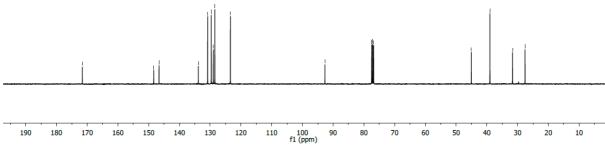


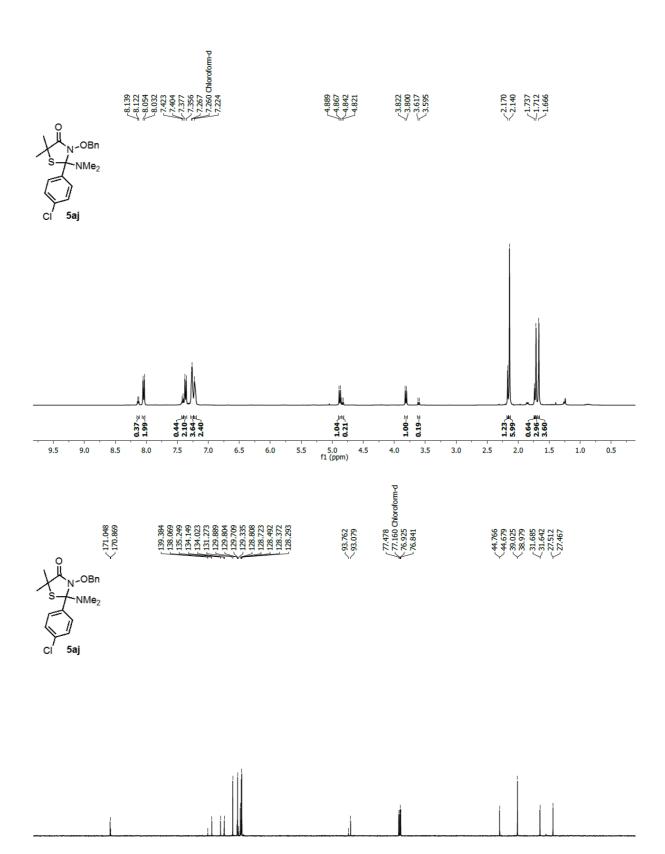


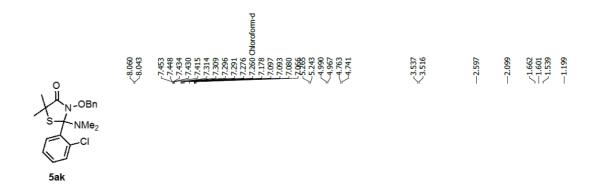


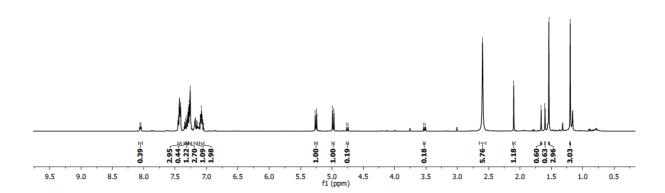


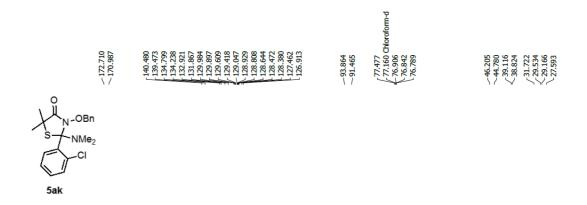


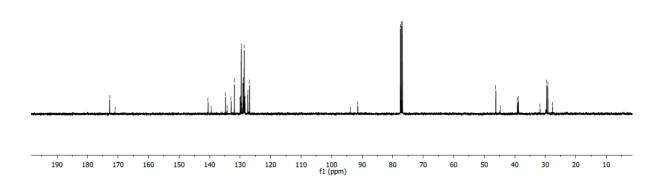


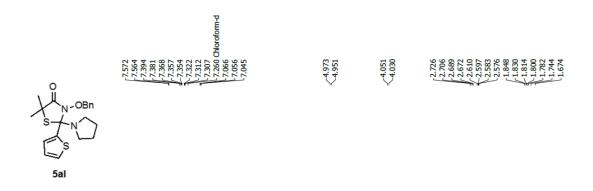


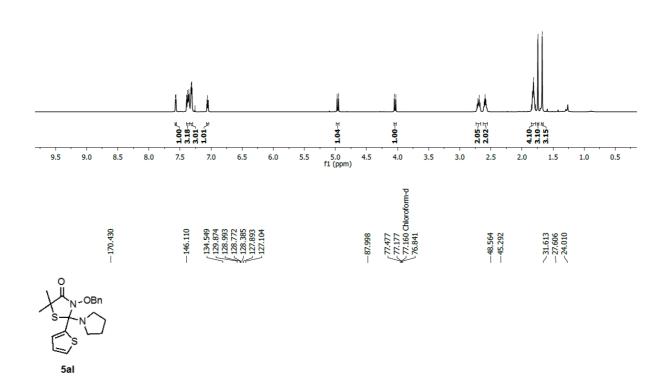


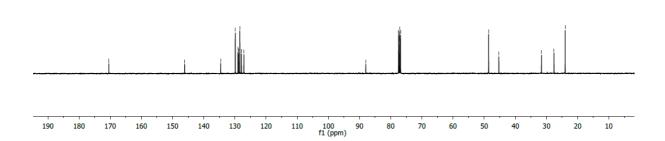


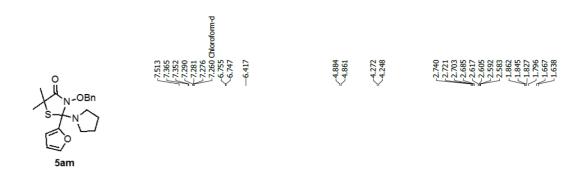


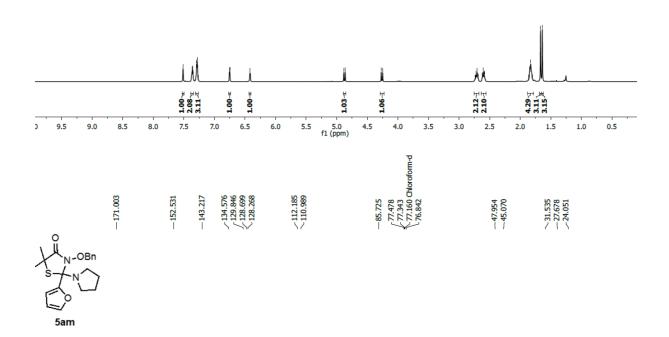


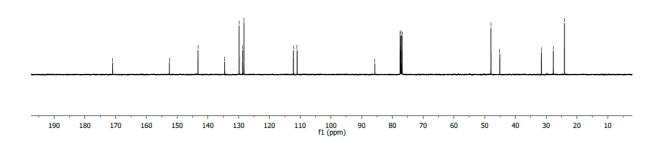


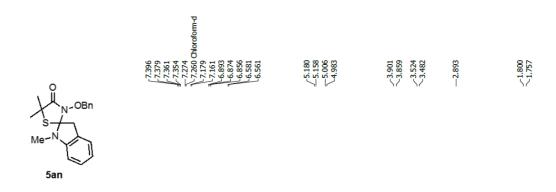

f1 (ppm)

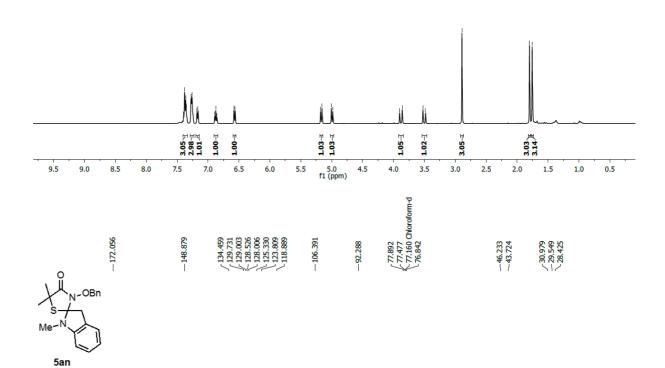


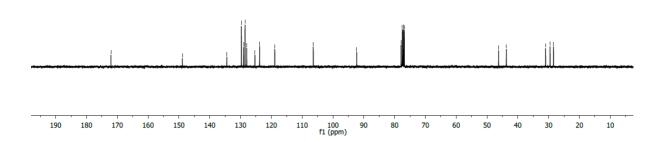


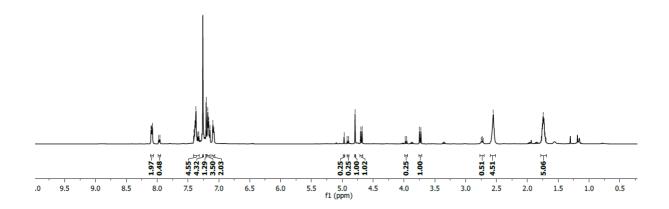


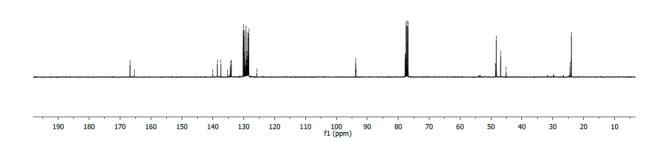


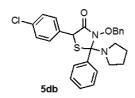


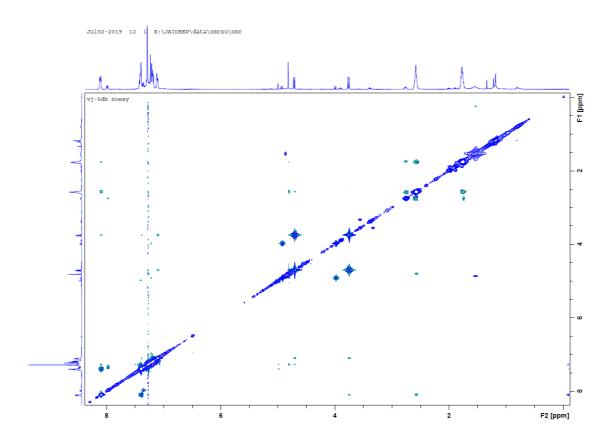


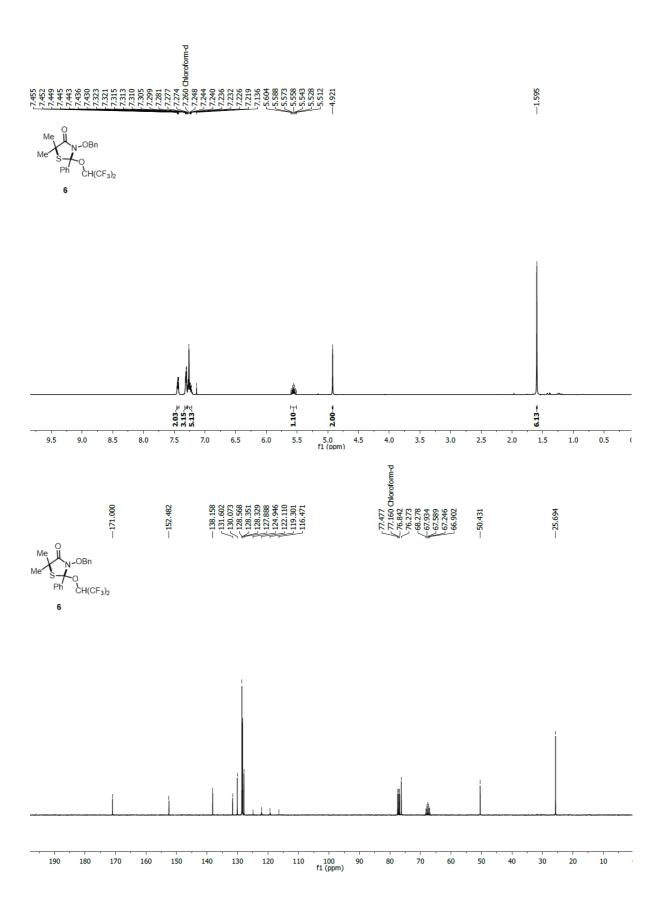


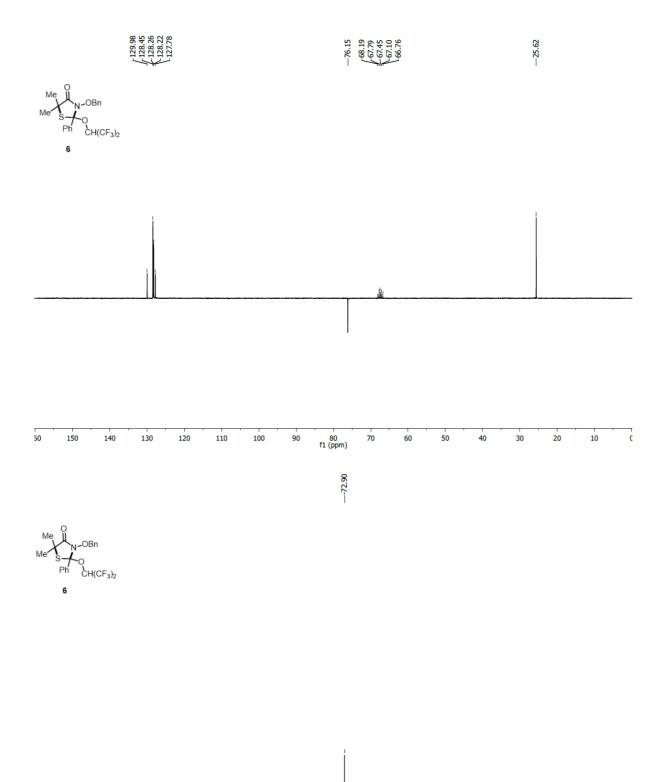


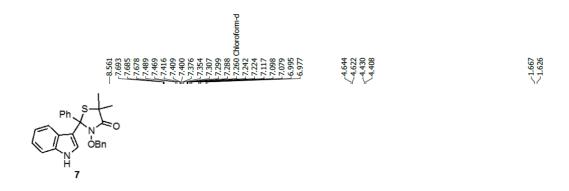


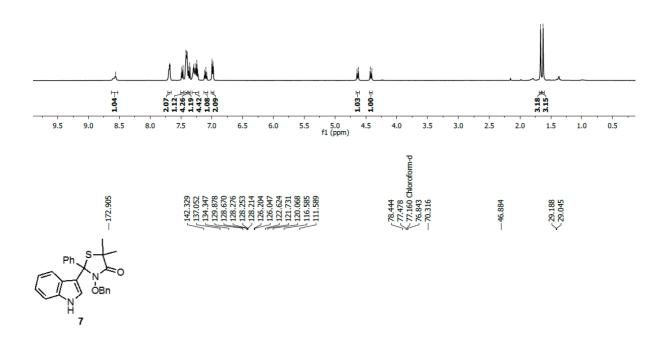


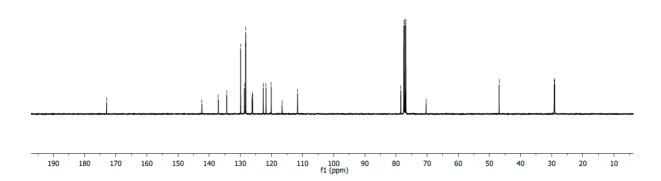


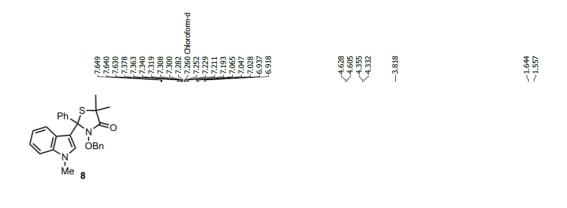




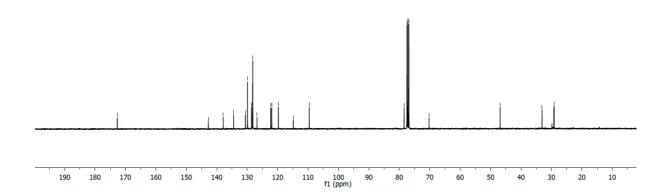


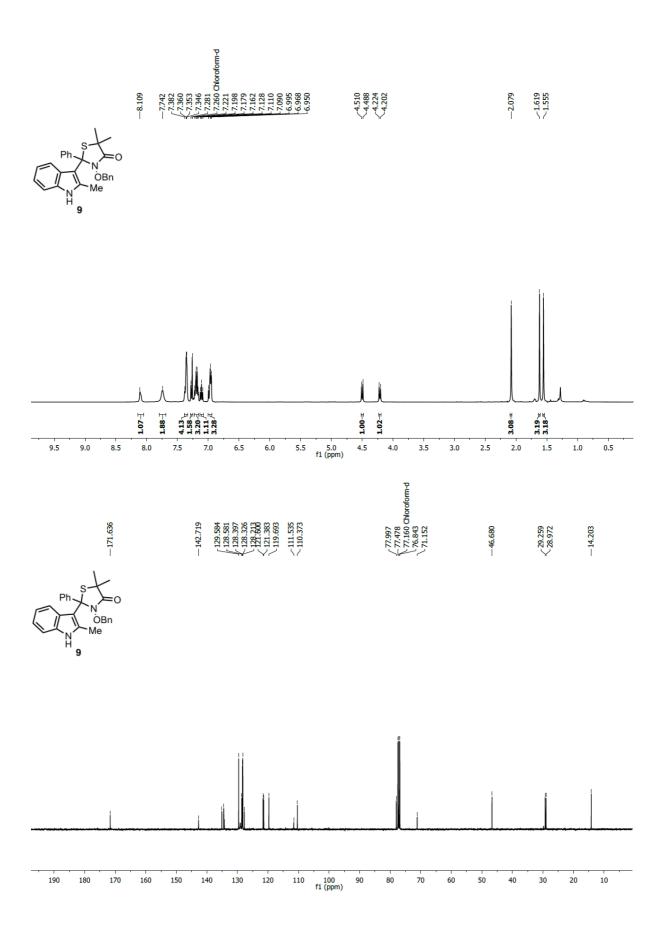


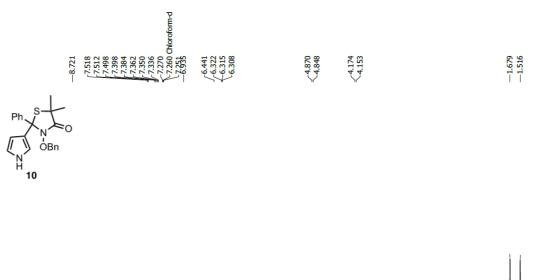

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -105 -115

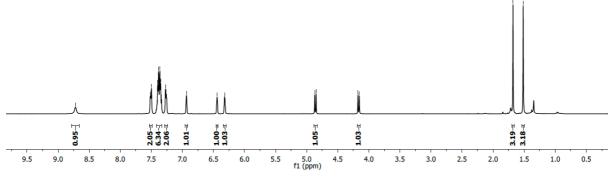

-135

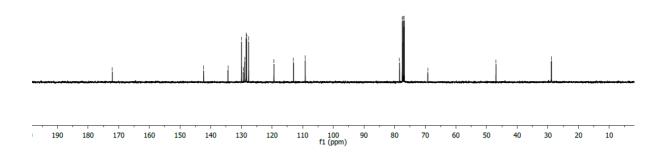
-125

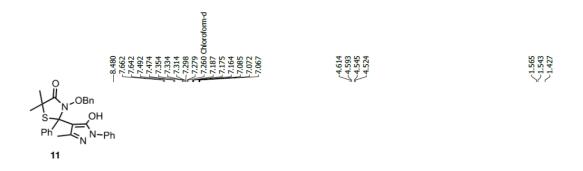


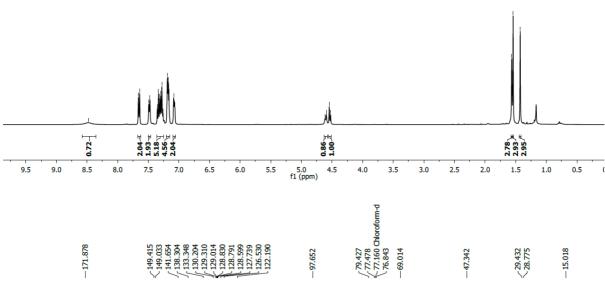


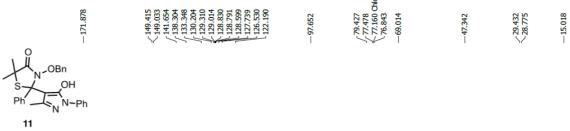


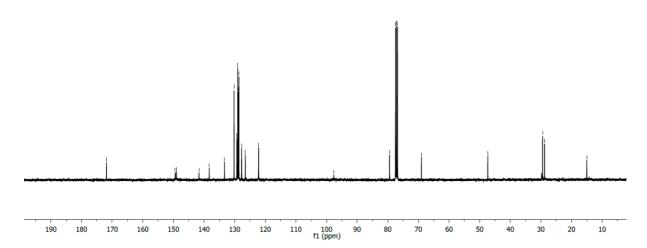


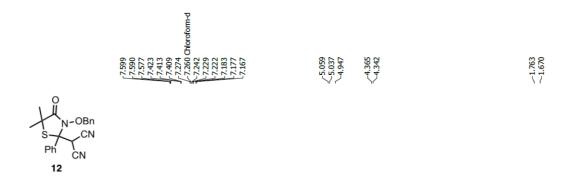


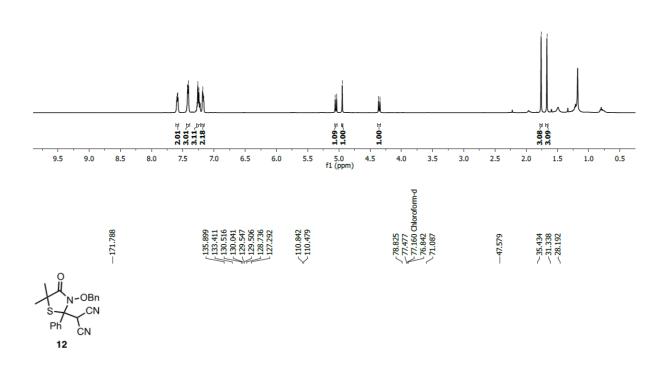


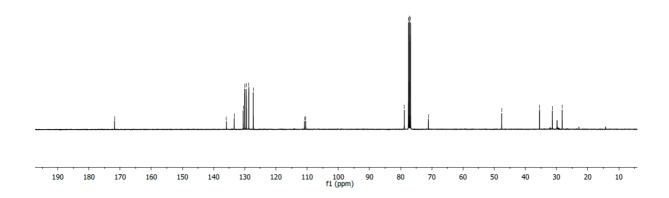


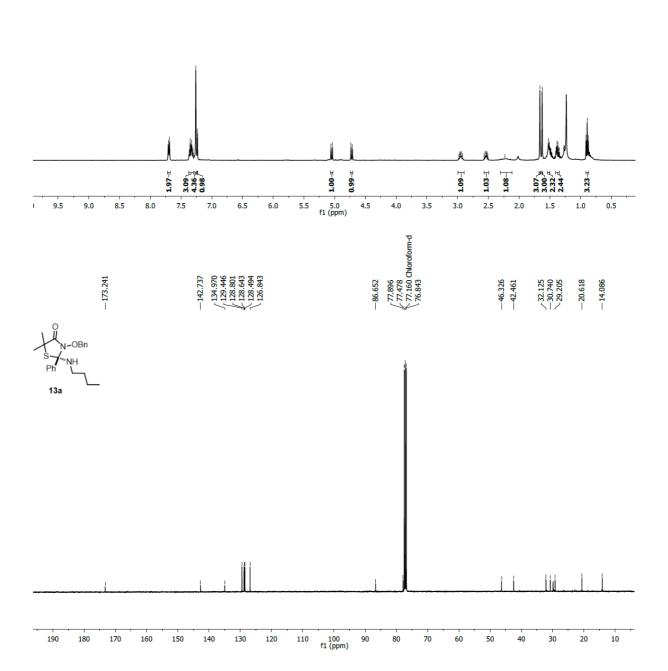


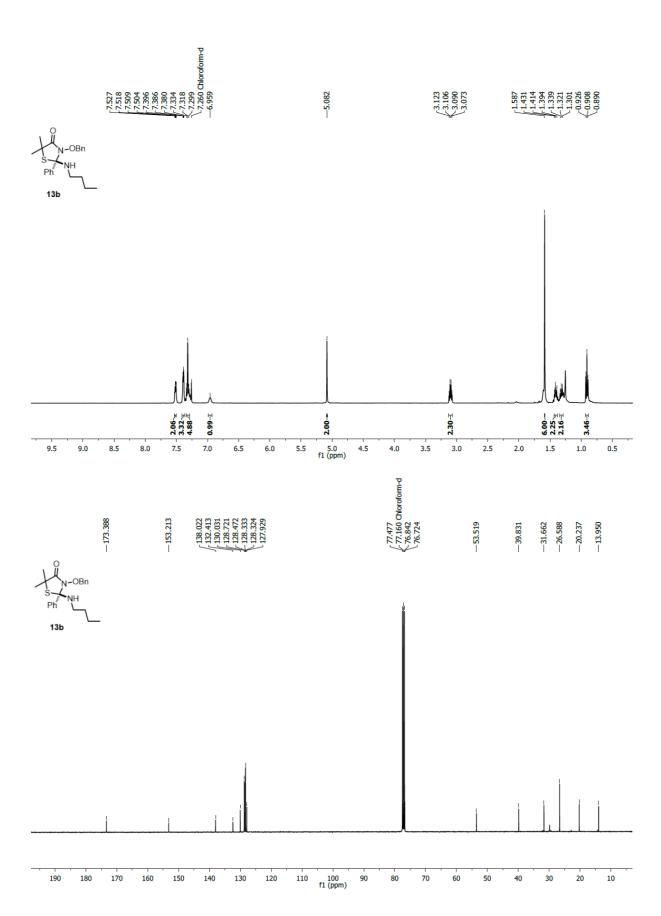

-172.091 -142.305 -129.940 -128.425 -128.425 -129.460 -112.985 -109.160 -112.985 -109.160 -112.985 -109.160 -46.941 -46.941

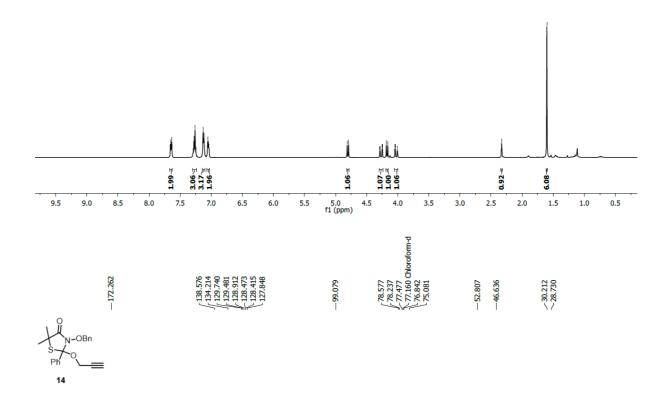


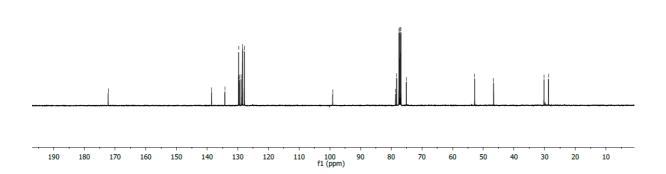


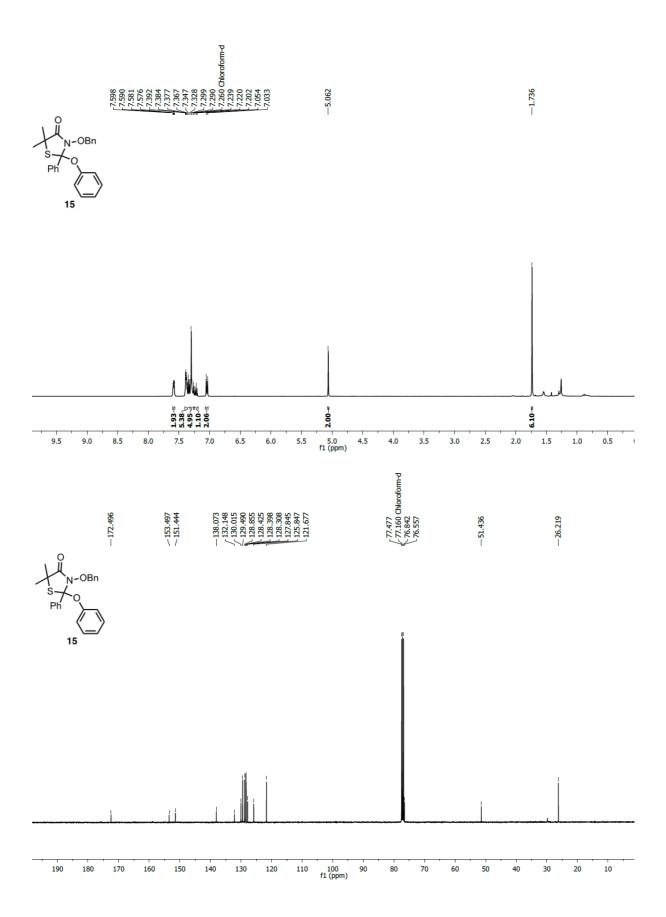


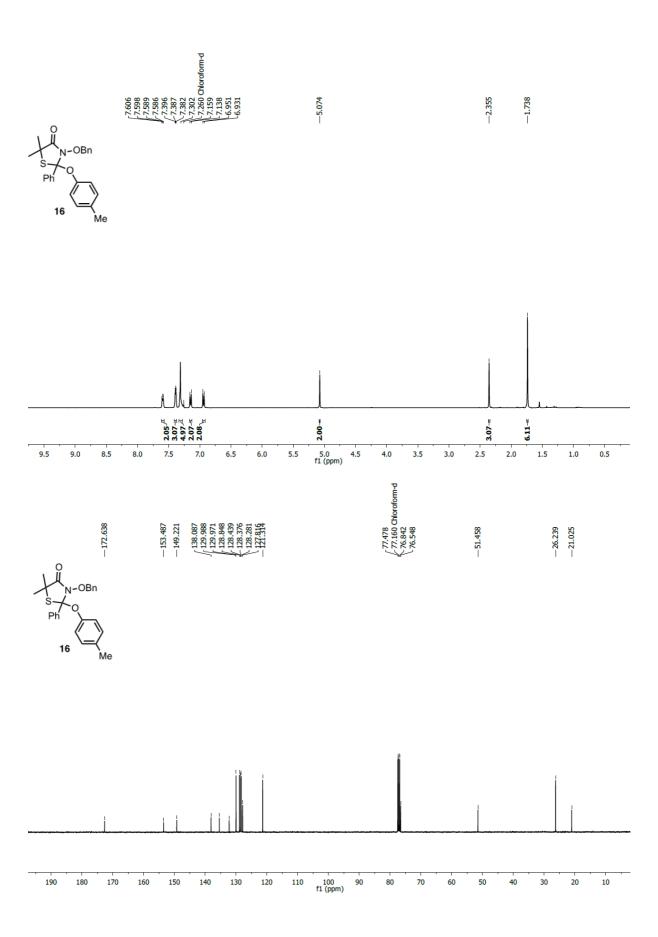


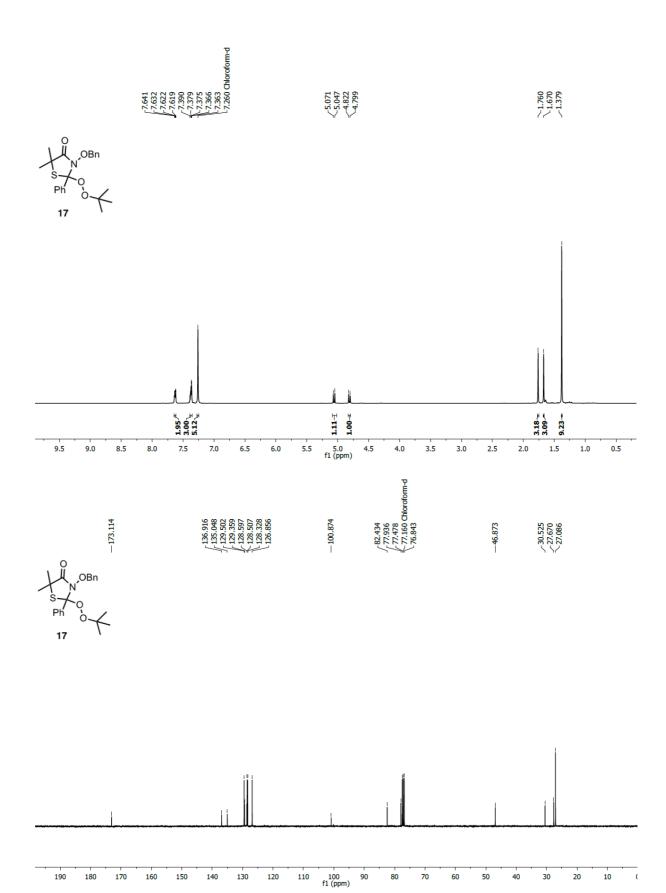


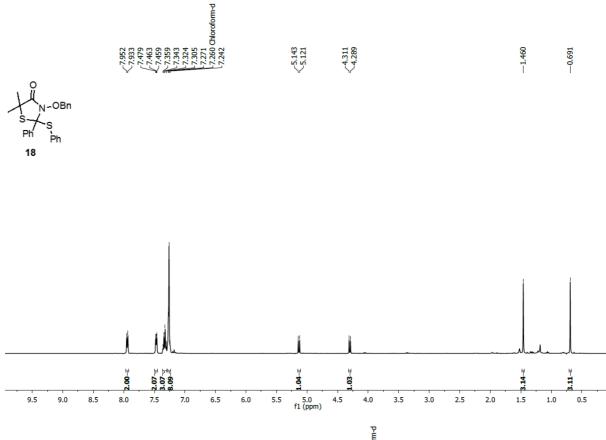


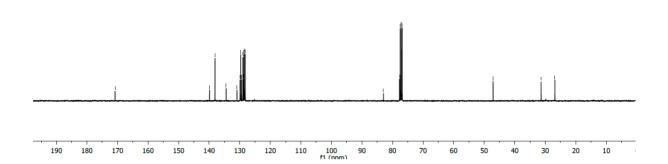


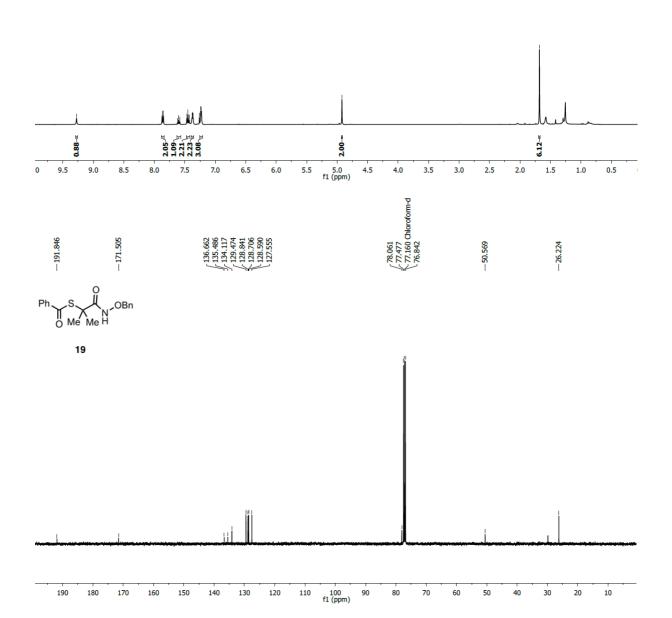


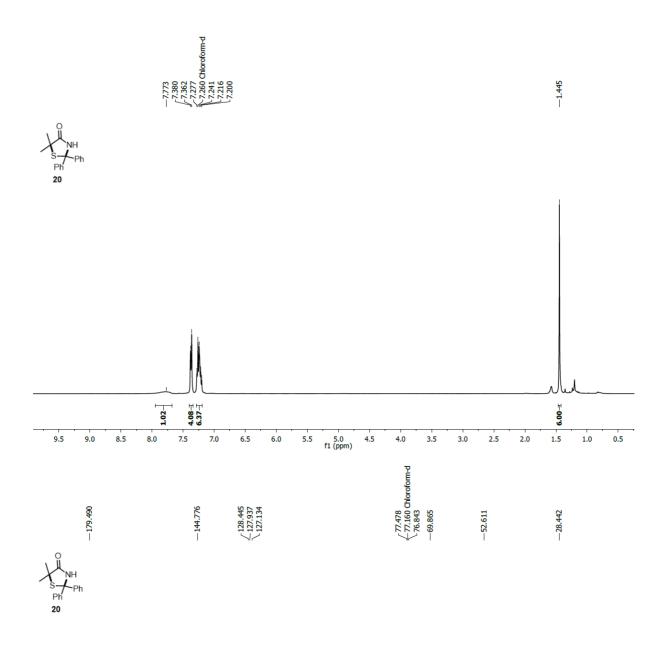


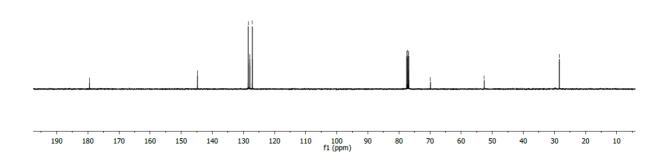


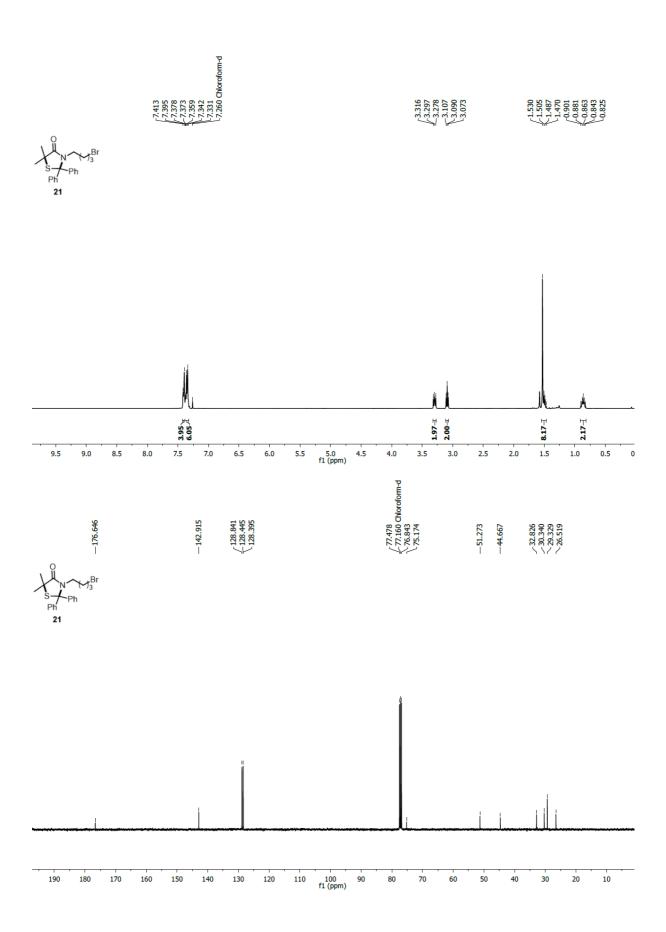




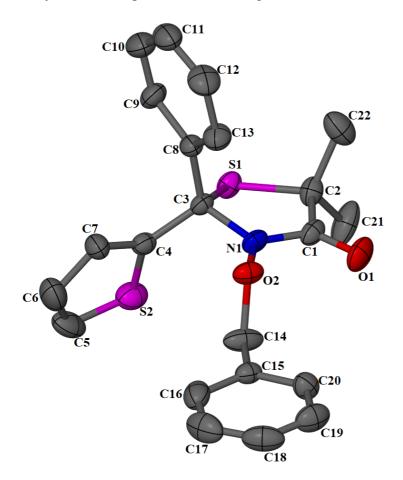




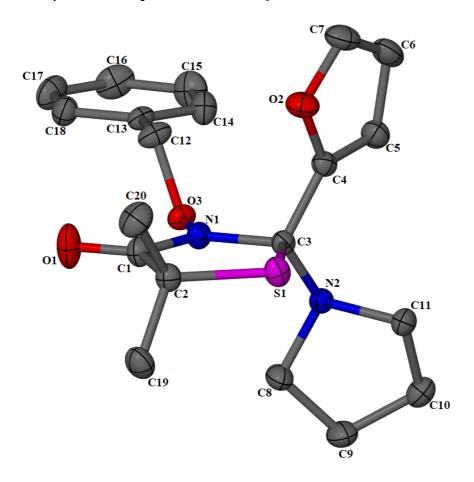




0 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 f1 (ppm)



14. Crystallographic Data


Crystal structures of all the compounds were determined by Single Crystal X-ray Diffraction (SCD) experiment. The structures of **3am** and **5am** were determined on Bruker D8 Quest equipped with a micro-focus anode (Mo) and a PHOTON II CMOS detector. Integration and scaling of data were performed by SAINT¹ and SADABS program². The structures were solved by direct methods using SHELXT-2018³ and refined by full-matrix least-squares on F² using SHELXL-2018/3 version³. All non-hydrogen atoms were refined anisotropically and all hydrogen atoms were placed at calculated positions using riding models.

ORTEP diagram: Atoms are shown with 30% probability of thermal ellipsoids

Compound: 3am [CCDC No. 1918619]

Compound: 5am [CCDC No. 1918620]

References:

- 1. SAINT, Version 6.45; Bruker AXS Inc.: Madison, WI, 2003.
- 2. SADABS, Version 2.05; Bruker AXS Inc.: Madison, WI, 2002.
- 3. Sheldrick, G. M. Acta Cryst. Sect. A. 2015, 71, 3-8

 Table S1. Crystal data and refinement parameters

Code	3am	5am
Empirical formula	C ₂₂ H ₂₁ N ₁ O ₂ S ₂	C ₂₀ H ₂₄ N ₂ O ₃ S ₁
Formula weight	395.52	372.47
Wavelength/ Å	0.71073	0.71073
Crystal system	monoclinic	monoclinic
Space group	P2 ₁ /c	P2 ₁ /n
Crystal size (mm ³⁾	0.47 x 0.43 x 0.27	0.44 x 0.35 x 0.26
a/Å	8.9931(3)	10.7320(8)
b/Å	9.8904(4)	10.5315(7)
c/Å	23.2963(8)	17.0367(12)
a/(°)	90	90
β/(°)	93.1270(10)	100.807(3)
y/(°)	90	90
V/Å ³	2069.01(13)	1891.4(2)
Z	4	4
D cal /g cm ⁻³	1.270	1.308
T/K	298	298
μ/mm ⁻¹	0.274	0.193
F ₀₀₀	832	792
Theta ranges for data	3.2° to 28.3°	2.4° to 30.4°
collection		
Index ranges	-10 ≤ h ≤ 11, -13 ≤ k	-15 ≤ h ≤ 15, -14 ≤ k ≤
	≤ 13, -31 ≤ I ≤ 30	14, -24 ≤ l ≤ 24
Reflections measured	29550	31791
Unique reflections	5087	5653
Observed reflections	3845	4555
Parameters	246	237
Data completeness	0.989	0.989
R _{int}	0.028	0.027
final <i>R</i> (I >2σ(I))	0.0699	0.0397

final R (all data)	0.0889	0.0538
final w R_2 (I >2 σ (I))	0.2183	0.1018
final wR ₂ (all data)	0.2459	0.1143
GOF on F ²	1.064	1.046
Highest peak and deepest	0.39 & -0.63	0.23 & -0.24
hole		
CCDC No.	1918619	1918620

15. Reference.

- 1. (a) Pedersen,B.S.;Scheibye,S.; Nilsson,N.H.; Lawesson, S.O. *Bull. Soc. Chim. Belg.* **1978**, 87, 223.(b) Mloston, G.; Urbaniak, K.; Gebicki, K.; Grzelak, P.; Heimgartner, H. Hetaryl Thioketones: Synthesis and Selected Reactions. *Heteroatom Chemistry.* **2014**, *25*, 548. (c) Grzelak, P.; Utecht, G.; Jasinski, M.; Mloston, G. First (3+2)-Cycloadditions of Thiochalcones as C=S Dipolarophiles: Efficient Synthesis of 1,3,4-Thiadiazoles via Reactions with Fluorinated Nitrile Imines. *Synthesis.* **2017**, *49*, 2129. (d) Greidanus J. *Can. J. Chem.* **1970**, *48*, 3530.
- 2. (a) Scheibye, S.; Pedersen, B.S.; Lawesson, S.O. *Bull. Sot. Chim. Belg.* **1978**, *87*,229. (b) Raucher S.; Kein, P. *Tetrahedron Lett.* **1980**, *21*, 406. (c) Sundberg, R. J.; Walters, C.P.; Bloom J.D. Borohydride and Cyanoborohydride Reduction of Thioimonium Salts: A Convenient Route for transformation of amides to Amines. *J. Org. Chem.* **1981**, *46*, 3730. (d) Palani V.; Chen J.; Hoye T.R. Reactions of HDDA-derived Benzynes with Thioamides: Synthesis of Dihydrobenzothiazino-Heterocyclics. *Org. Lett.* **2016**, *18*, 24, 6312. (e) Ransborg L.K.; Albrecht L.; Weise C.F.; Bak J.R.; and Jørgensen K.A. Optically Active Thiophenes via an Organocatalytic One-Pot Methodology. *Org. Lett.* **2012**, *14*, 3, 724. (f) Hori, T.; Otani, Y.; Kawahata, M.;Yamaguchi, K.; Ohwada, T. Nonplanar Structures of Thioamides Derived from 7-Azabicyclo[2.2.1]heptane. Electronically Tunable Planarity of thioamides. *J. Org. Chem.* **2008**, *73*, 22.
- 3. See reference 1b and 1j from the maintext.