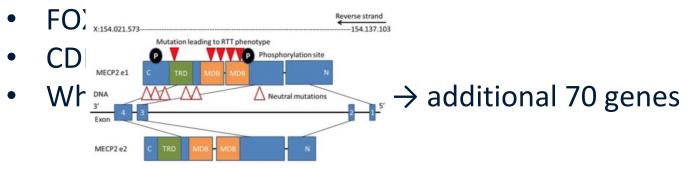
Investigation of the Overlapping Phenotypes of Rett Syndrome (RTT)

Eline Koornstra 16095529 Supervisor: Friederike Ehrhart 01-07-2019

Rett Syndrome


- Rare genetic disorder
 - 1:10.000 female life births
- Decreased brain development and brain function
- Motoric, developmental and cognitive problems
- Developmental stages characterized by phenotypes
 - Developmental arrest, hand stereotypies, autistic like behavior, seizures, microcephaly

Dunn, H.G. (2001) Brain Dev Ehrhart, F., et al. (2016) Orphanet J Rare Dis Ip, J. P. K., et al. (2018) Nat Rev Neurosci

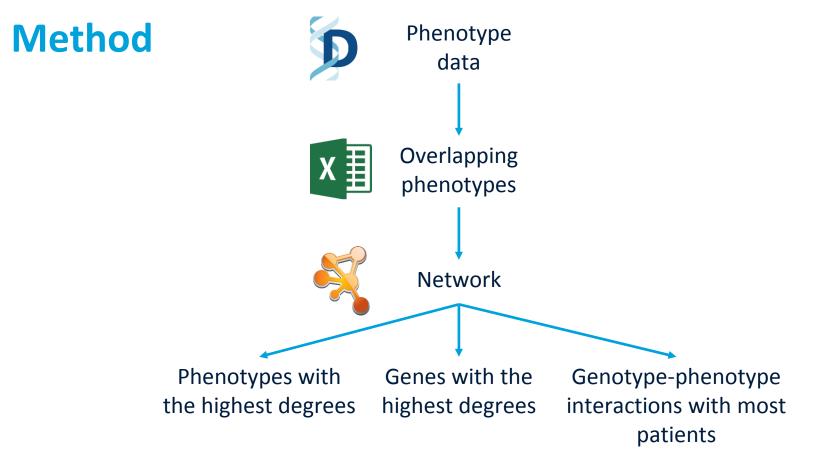
Causes

- De novo mutations in MECP2 (X chromosome)
 - Transcriptional repression and activation
 - Alternative splicing
 - Regulation of microRNAs and long non-coding RNAs

Diagnosis

- Diagnosis based on phenotypes
 - Regression followed by a stabilization phase
 - Main criteria
 - Supportive criteria
- Genetic testing
- Diagnosis of genetic disorders based on pheneric
- Disorders have similar phenotypes
- Misdiagnosis

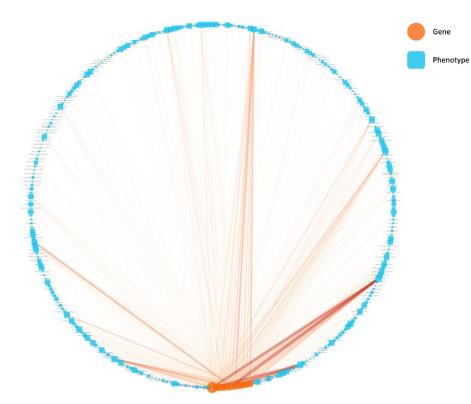
- Hand stereotypies
- Loss of speech
- Gait abnormalities
- Loss of purposeful
- hand skills


disturbances


- Scoliosis
- Growth retardation
- Small cold feet/hands
- Inappropriate laughing
- Diminished pain response
- Intense eye communication

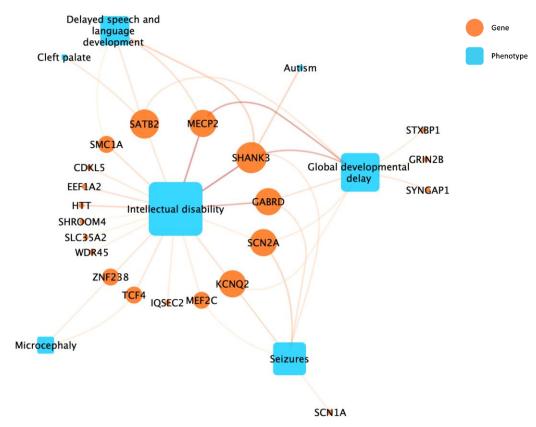
Research question


To which extend do the phenotypes of genes responsible for a RTT-like phenotype overlap with the phenotypes associated with a mutation in *MECP2*?

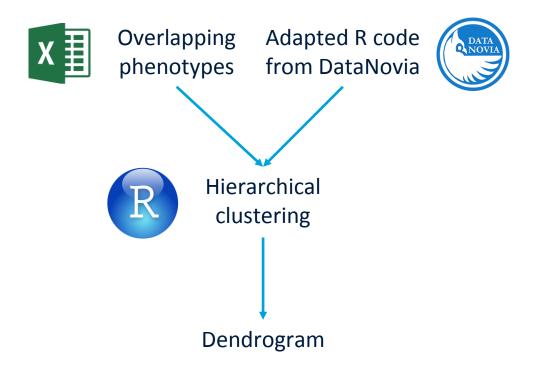


Phenotypes

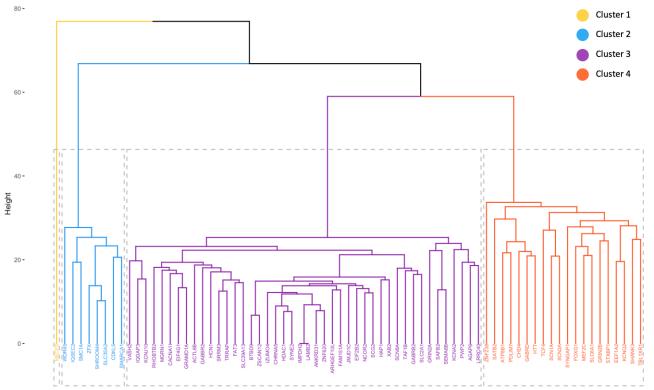
Phenotype	Degree
Intellectual disability	71
Global developmental delay	63
Microcephaly	61
Delayed speech and language development	60
Seizures	50
Hypertelorism	49
Short stature	49
Muscular hypotonia	48
Low-set ears	45
Strabismus	45

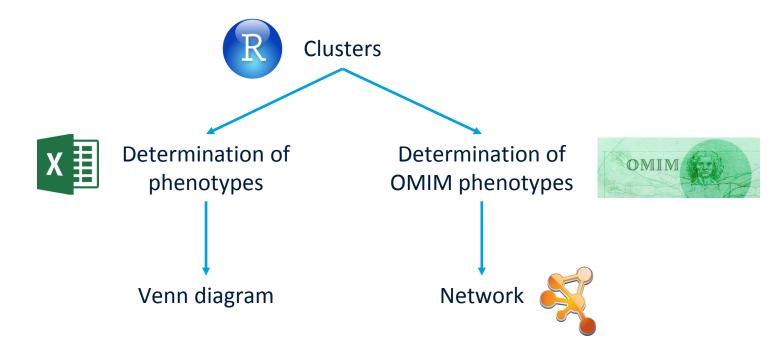

Genes

Gene	Degree
WDR45	127
SHANK3	114
SMC1A	112
ZNF238	111
IQSEC2	109
TCF4	109
KCNQ2	107
SCN2A	104
CDKL5	103
SATB2	102



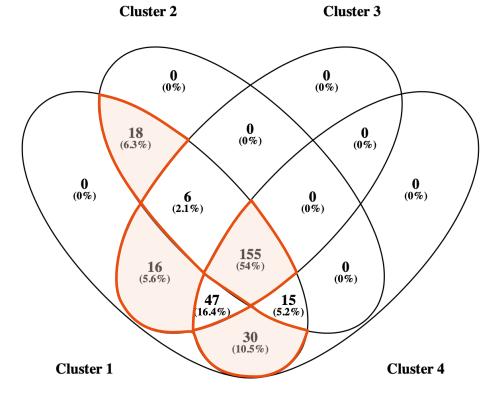
Genotype-phenotype interactions

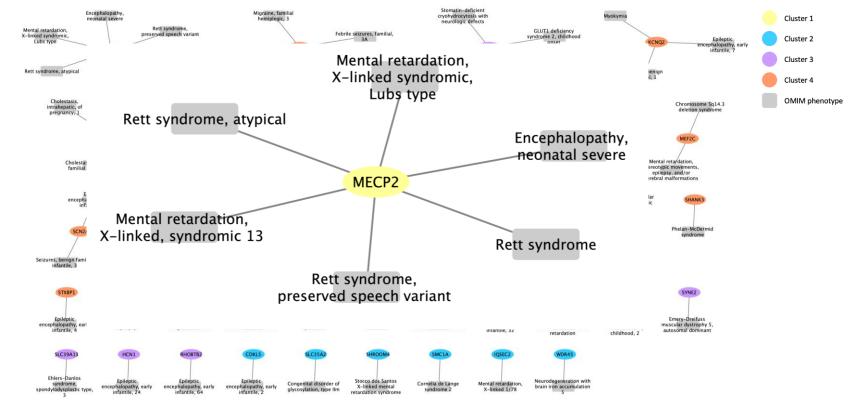

Method



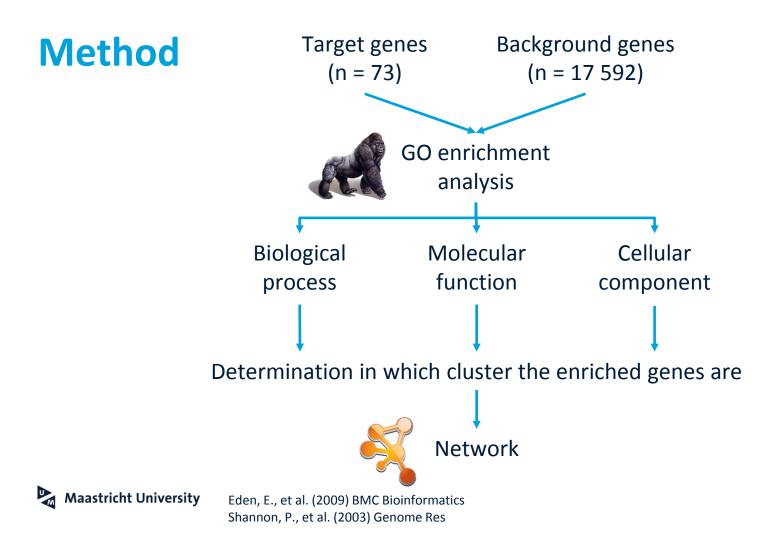
Hierarchical clustering

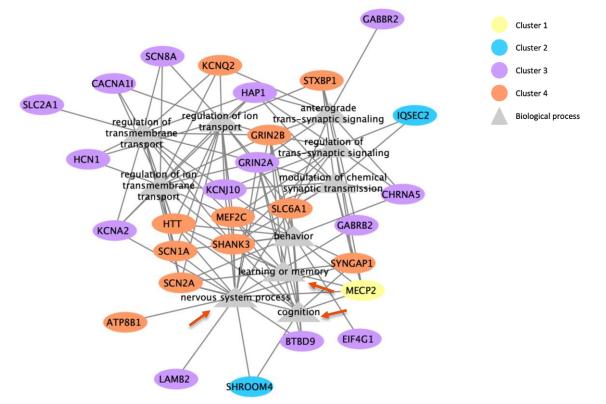
Cluster Dendrogram

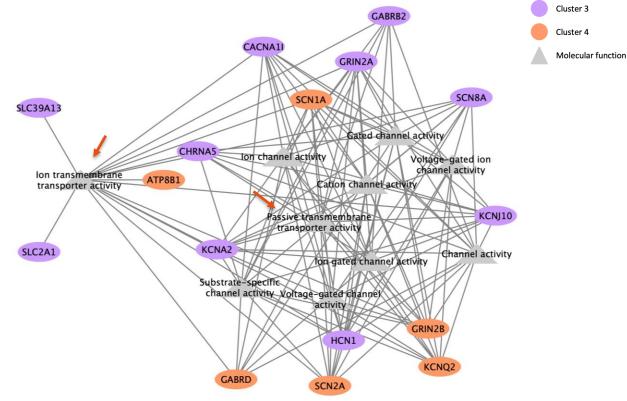

Method


Rstudio Team (2015) *http://www.rstudio.com* Online Mendelian Inheritance in Man, OMIM. *http://omim.org* Shannon, P., et al. (2003) Genome Res

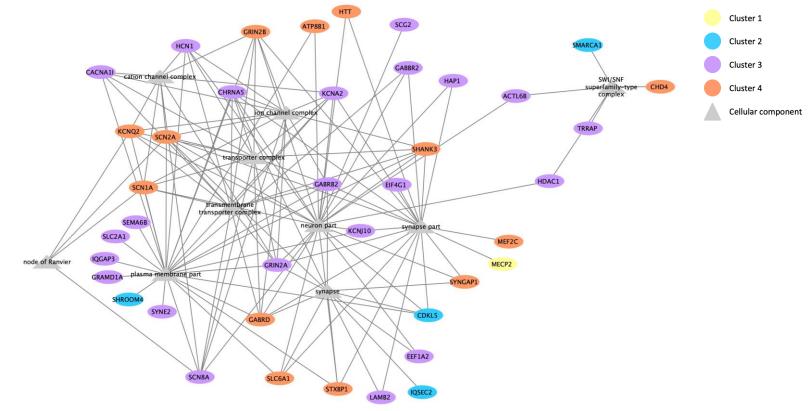
Phenotypes



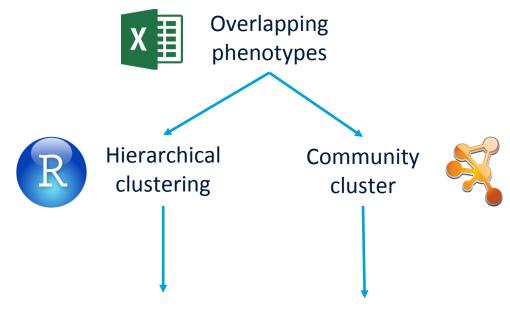

OMIM



GO – Biological process



GO – Molecular function



GO – Cellular component

Method

Comparison of genes in clusters

Rstudio Team (2015) *http://www.rstudio.com* Shannon, P., et al. (2003) Genome Res

Cluster	Genes
1	ACTL6B, AGAP6, ANKRD31, ARHGEF10L, CACNA1I, CHD4, CHRNA5, EEF1A2,
	EIF2B2, EIF4G1, FAM151A, FAT3, GABBR2, GABRB2, GABRD, GRAMD1A, GRIN2A,
	HAP1, HDAC1, HTT, IMPDH2, IZUMO4, JMJD1C, KCNA2, LAMB2, LRRC40, MGRN1,
	NCOR2, PDLIM7, PWP2, RHOBTB2, SAFB2, SCG2, SCN1A, SEMA6B, SLC39A13,
	SRRM3, SYNE2, TAF1B, TRRAP, XAB2, ZNF238, ZSCAN12
2	ATP8B1, BTBD9, FOXG1, GRIN2B, KCNQ2, MEF2C, SATB2, SCN2A, SCN8A,
	SHANK3, SLC2A1, SLC6A1, STXBP1, SYNGAP1, TBL1XR1, TCF4, ZNF620
3	CDKL5, HCN1, IQGAP3, IQSEC2, KCNJ10, MECP2, SHROOM4, SLC35A2,
	SMARCA1, SMC1A, VASH2, WDR45, ZFX

Cluster	Genes
1	ACTL6B, AGAP6, ANKRD31, ARHGEF10L, CACNA1I, CHD4, CHRNA5, EEF1A2,
	EIF2B2, EIF4G1, FAM151A, FAT3, GABBR2, GABRB2, <mark>GABRD</mark> , GRAMD1A, GRIN2A,
	HAP1, HDAC1, HTT, IMPDH2, IZUMO4, JMJD1C, KCNA2, LAMB2, LRRC40, MGRN1,
	NCOR2, PDLIM7, PWP2, RHOBTB2, SAFB2, SCG2, SCN1A, SEMA6B, SLC39A13,
	SRRM3, SYNE2, TAF1B, TRRAP, XAB2, ZNF238, ZSCAN12
2	ATP8B1, BTBD9, FOXG1, GRIN2B, KCNQ2, MEF2C, SATB2, SCN2A, SCN8A,
	SHANK3, SLC2A1, SLC6A1, STXBP1, SYNGAP1, TBL1XR1, TCF4, ZNF620
3	CDKL5, HCN1, IQGAP3, IQSEC2, KCNJ10, MECP2, SHROOM4, SLC35A2,
	SMARCA1, SMC1A, VASH2, WDR45, ZFX

Genes
ACTL6B, AGAP6, ANKRD31, ARHGEF10L, CACNA1I, CHD4, CHRNA5, EEF1A2,
EIF2B2, EIF4G1, FAM151A, FAT3, GABBR2, GABRB2, <mark>GABRD</mark> , GRAMD1A, GRIN2A,
HAP1, HDAC1, HTT, IMPDH2, IZUMO4, JMJD1C, KCNA2, LAMB2, LRRC40, MGRN1,
NCOR2, PDLIM7, PWP2, RHOBTB2, SAFB2, SCG2, SCN1A, SEMA6B, SLC39A13,
SRRM3, SYNE2, TAF1B, TRRAP, XAB2, ZNF238, ZSCAN12
ATP8B1, BTBD9, FOXG1, GRIN2B, KCNQ2, MEF2C, SATB2, SCN2A, SCN8A,
SHANK3, SLC2A1, SLC6A1, STXBP1, SYNGAP1, TBL1XR1, TCF4, ZNF620
CDKL5, HCN1, IQGAP3, IQSEC2, KCNJ10, MECP2, SHROOM4, SLC35A2,

Cluster	Genes
1	ACTL6B, AGAP6, ANKRD31, ARHGEF10L, CACNA1I, CHD4, CHRNA5, EEF1A2,
	EIF2B2, EIF4G1, FAM151A, FAT3, GABBR2, GABRB2, <mark>GABRD</mark> , GRAMD1A, GRIN2A,
	HAP1, HDAC1, HTT, IMPDH2, IZUMO4, JMJD1C, KCNA2, LAMB2, LRRC40, MGRN1,
	NCOR2, PDLIM7, PWP2, RHOBTB2, SAFB2, SCG2, SCN1A, SEMA6B, SLC39A13,
	SRRM3, SYNE2, TAF1B, TRRAP, XAB2, ZNF238, ZSCAN12
2	ATP8B1, BTBD9, FOXG1, GRIN2B, KCNQ2, MEF2C, SATB2, SCN2A, SCN8A,
	SHANK3, SLC2A1, SLC6A1, STXBP1, SYNGAP1, TBL1XR1, TCF4, ZNF620
3	CDKL5, HCN1, IQGAP3, IQSEC2, KCNJ10, MECP2, SHROOM4, SLC35A2,
	SMARCA1, SMC1A, VASH2, WDR45, ZFX

Discussion

- Genes with the highest degrees more similar to MECP2
 - Associated with other disorders
- Similar manifestation to RTT
- Several phenotypes differed between clusters
 - No correlation between phenotypes
- Inconclusive results

Discussion

- Hierarchical and community clusters similar
- GO enrichment analysis showed tendencies
- Clustering and GO enrichment analysis could improve understanding of overlapping phenotypes
- OMIM phenotypes not specific for clusters
 - Mental retardation and Encephalopathy most common
- Indirect involvement in pathogenesis of RTT?

Discussion

Maastricht University

- Spectrum disorder instead of monogenic disorder
- Misdiagnosis of patients
- > Broadened genetic screening
- Overlapping phenotypes due to overlap in pathways
 - *NCOR2* and *HDAC1* in co-repressor complexes
 - Mutations in *MEF2C* decrease *MECP2* expression

Limitations

- Inconsistent amounts of phenotype data
 - Genes with highest degrees \rightarrow most phenotype data

Number of patients with

Results were influenced Number of phenotypes

	Oche hane	Number of prictiotypes	Number of patients with
		Total (overlap)	phenotype data
•	A different clustering	method4would	have resulted in a
	different dend cogram	200 (86)	86
	different denakogram	189 (112)	81
	IQSEC2	179 (109)	80
	KCNQ2	194 (107)	75
	WDR45	209 (127)	73
	SCN2A	194 (104)	73
	SATB2	210 (102)	70
	CDKL5	162 (103)	70
	TCF4	213 (109)	66
	ZNF238	213 (111)	61

Conclusion

- There was phenotypic overlap to a certain extend
 - However, overlap influenced by the available amount of phenotype data
- Patient phenotype data beneficial to understand the overlap
- Better understanding of Rett syndrome
 - Misdiagnosis or spectrum disorder

Outlook

- Repeat when more data is available
- Normalization of the data
- Include data from other databases
 - DisGeNET, Human Phenotype Ontology
- More research on the mechanisms behind overlap

Acknowledgement

I would like to thank my supervisor Friederike Ehrhart for guiding and advising me during my internship

Questions?

