Underlying regulatory expression mechanisms of Parkinson's disease

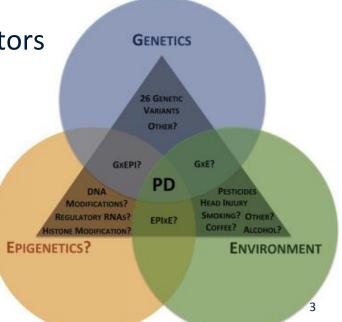
Name: Lars Robeerst Date: 03/07/2019 Supervisor: Lars Eijssen

Introduction

- Parkinson's is the second most common neurodegenerative disorder [1]
- Risk factors: advanced age, exposure to chemicals, familial history^[2]
- Symptoms: tremors, trouble walking, depression[2]
- Death of dopaminergic neurons in substantia nigration of the hands
 pars compacta is the main cause of symptoms

Persistent tremors

Shuffling gait, unbalanced and in small steps, curved in a characteristic way


1. Dorsey ER, Bloem BR. The Parkinson Pandemic—A Call to ActionThe Parkinson PandemicThe Parkinson Pandemic. JAMA

cht University Neurology. 2018;75(1):9-10.

2. and CWO, Tatton WG. ETIOLOGY AND PATHOGENESIS OF PARKINSON'S DISEASE. Annual Review of Neuroscience. 1999;22(1):123-44.

Background

- Only 10% of cases can be explained through genetics
- Large influence of environmental factors and epigenetics
- May not represent a single disease
- Genetic expression affected by all factors

 Papapetropoulos S, Adi N, Ellul J, Argyriou AA, Chroni E. A Prospective Study of Familial versus Sporadic Parkinson's Disease. Neurodegenerative Diseases. 2007;4(6):424-7.

My goal is to look at the expression differences of different genes to better understand the mechanisms of Parkinson's disease.

Methods: dataset

- Dataset was obtained from the NCBI GEO database
- keywords in search: RNA, epigenetic, Parkinson, genetic
- dataset was selected based on the vast amount of different data types and cell types present

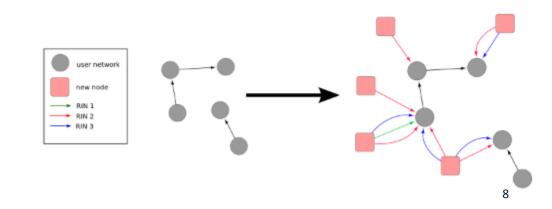
Methods: dataset

Maa

- 17 subjects, 9 pd and 8 control
- mRNA, miRNA and RRBS (epigenetic) data
- Cingulate gyrus cells, dermal fibroblasts, induced pluripotent stem cells (iPSCs) and neurons

Series GSE11072	20	Query DataSets for GSE110720
Status	Public on Oct 08, 2018	
Title	RNA-seq, RRBS-seq and miRNA-seq s	study of Parkinson's disease patients
Organism	Homo sapiens	
Experiment type	Expression profiling by high through Methylation profiling by high through Non-coding RNA profiling by high thr	put sequencing
Summary	This SuperSeries is composed of the	SubSeries listed below.
Overall design	Refer to individual Series	
stricht University	/	disease-specific mRNA and small RNA signatures wit cta Neuropathologica Communications 2018;6.

Methods: R analysis and quality control


- R studio V1.2.1335
- Statistical analysis template from BiGCaT
- Own code written for direct comparison

Methods: Cytoscape

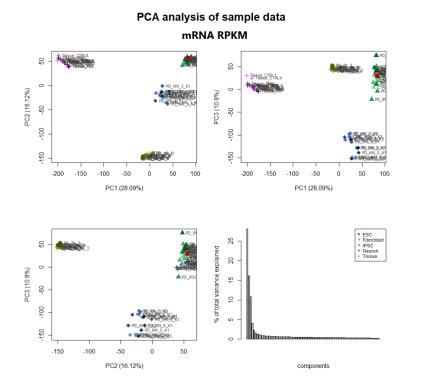
- Two different networks created by coupling miRNA to genes using cytargetlinker
- Networks filtered by either P-value and interconnectedness or adjusted P-value

Maastricht University
Source: https://projects.bigcat.unimaas.nl/cytargetlinker/

Methods: Pathvisio

- Genes from data were coupled to wikipathways using hs-derby-ensemble-91 mapping database
- Pathways filtered on: Permutation P- value < 0.05,
 Z-score > 1.96 and a minimum of 4 positive genes per pathway

Results: R


- Greatest miRNA correlations between brain tissue and neurons derived from stem cells
- mRNA tissue difficult to explain, degradation?

correlation	Fibroblast & Neuron	Tissue & Neuron	Fibroblast & Tissue		
mRNA	0.1977	-0.1001	0.0351		
miRNA	0.1899	0.5713	0.2865		

Tissue = brain tissue and Neuron = neurons generated from fibroblast-derived iPSCs.

Results: R mRNA

Boxplot of signal intensities mRNA counts ESC Fibroblast iPSC Neuron Tissue

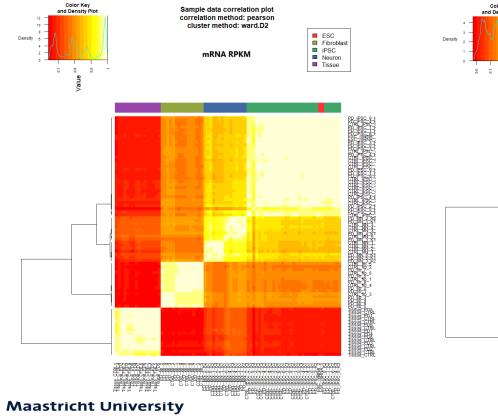
8

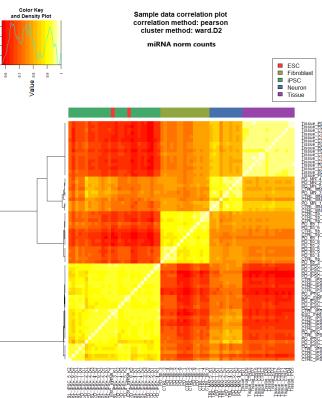
5

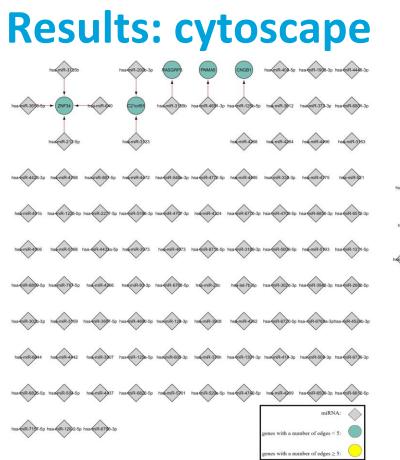
40

0

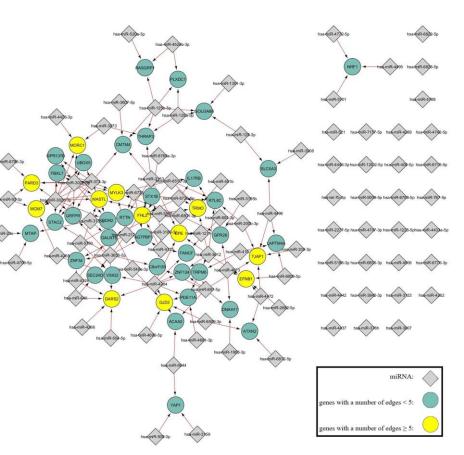
Intensity 10




Results: R miRNA



Results: R

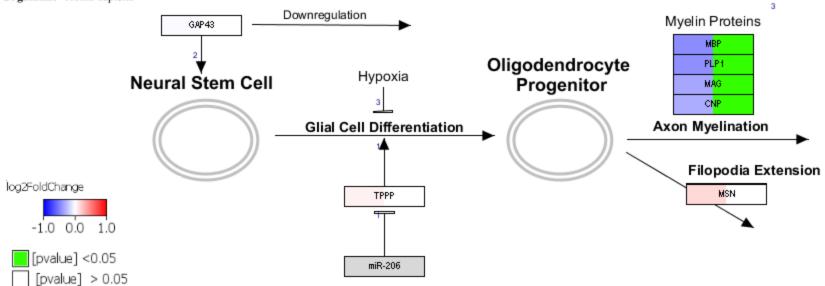


5 5555 5

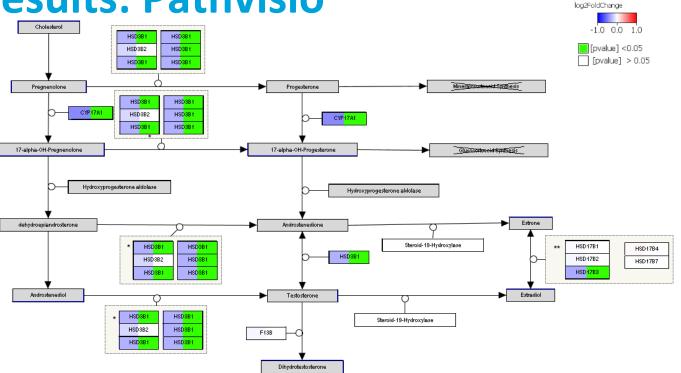
Maastricht University

Discussion: Cytoscape

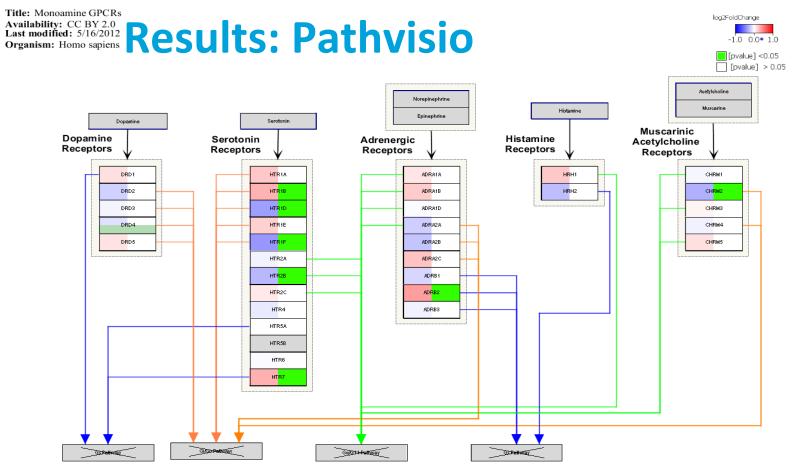
- Multiple genes related to prenatal brain development (c21orf91) or cell division (PARD3 and MCM7)
- Several genes related to cell adhesion methods: TJAP1, GJD3, EFNB1
- Mitochondrial genes: p450c11, Dars2

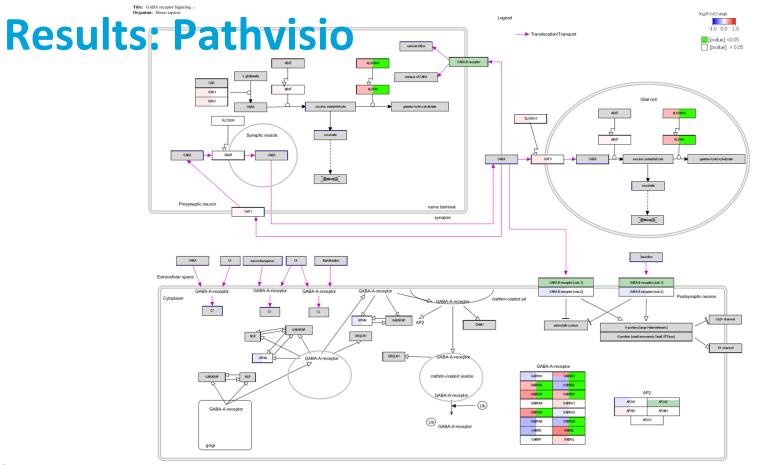

Pathway	positive	measured	total	%	Z	p-value
	(r)	(n)			Score	(permuted)
Glial Cell Differentiation	4	7	9	57.14%	4.74	0
GABA receptor Signalling	10	34	57	29.41%	4.53	0
miR-509-3p alteration of YAP1/ECM axis	6	17	19	35.29%	4.09	0
Oligodendrocyte Specification and differentiation (including remyelination), leading to Myelin Components for CNS	8	31	46	25.81%	3.59	0
Classical pathway of steroidogenesis, including diseases	5	15	49	33.33%	3.56	0.002
Sudden Infant Death Syndrome (SIDS) Susceptibility Pathways	24	163	182	14.72%	3.09	0.003
GPCRs, Class A Rhodopsin-like	34	256	272	13.28%	3.04	0.003
Arrhythmogenic Right Ventricular Cardiomyopathy	13	74	81	17.57%	2.97	0.004
Monoamine GPCRs	7	33	43	21.21%	2.74	0.009

Hair Follicle Development: Cytodifferentiation (Part 3 of 3)	14	87	92	16.09%	2.72	0.01
Rett syndrome causing genes	9	48	60	18.75%	2.69	0.004
Calcium Regulation in the Cardiac Cell	21	149	164	14.09%	2.67	0.011
GPCRs, Class B Secretin-like	4	15	24	26.67%	2.62	0.011
The alternative pathway of fetal androgen synthesis	4	15	48	26.67%	2.62	0.013
Spinal Cord Injury	17	115	127	14.78%	2.61	0.012
Dopaminergic Neurogenesis	6	30	32	20.00%	2.37	0.022
GPCRs, Other	13	86	118	15.12%	2.37	0.017
G13 Signalling Pathway	7	38	39	18.42%	2.32	0.026
Pathways Regulating Hippo Signalling	14	98	104	14.29%	2.23	0.01
Differentiation Pathway	8	50	64	16.00%	2.03	0.037
Splicing factor NOVA regulated synaptic proteins	7	42	44	16.67%	2.02	0.032

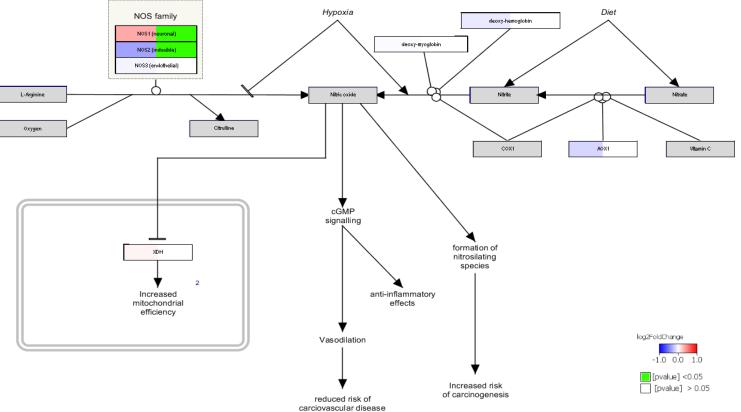


Title: Glial Cell Differentiation Organism: Homo sapiens


Title: Steroid Biosynthesis 1 Organism: Homo sapiens 1 Results: Pathvisio


* 3-beta-OH-delta-steroid DH & Steroid isomerase =

** Estradiol-17-beta DH = DHB



Maastricht University

Title: Effects of Nitric Oxide Last modified: 2/22/2013 Organism: Homo sapiens

Discussion

Connecting factor: Nitric Oxide

- Component neuronal cell death pathway^[4]
- Free radical
- excitotoxicity [5]
- Dopaminergic neurons especially sensitive to
 NO_{IG}

4. Bossy-Wetzel E, Talantova MV, Lee WD, Schölzke MN, Harrop A, Mathews E, et al. Crosstalk between Nitric Oxide and Zinc Pathways to Neuronal Cell Death Involving Mitochondrial Dysfunction and p38-Activated K+ Channels. Neuron. 2004;41(3):351-65.

5. Schulz JB, Henshaw DR, Siwek D, Jenkins BG, Ferrante RJ, Cipolloni PB, et al. Involvement of Free Radicals in Excitotoxicity In Vivo. Journal of Neurochemistry. 1995;64(5):2239-47.

6. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nature Medicine. 1999;5(12):1403-9.

Conclusion

- Data confirmed the involvement of several processes:
 Myelin degradation, mitochondria dysfunction
- Strengthened the GABA-collapse hypothesis and NOhypothesis
- Suggested involvement of: TJAP1, TRMO, Znf34, DARS2 MCM7 and many more
- Most likely not a single disease

Thank you for your attention

Questions?

