An Exploratory Analysis into Gene eQTL Profiles

Metabolic Tissue and NAFLDMissing Heritability

Sonja Boman i6138089 Bachelor Thesis Biomedical Science Supervisors: Dr. Martina Kutmon & Dr. Lars Eijssen 03/07

Maastricht University

Content

- Introduction
 - eQTL
 - Research Focus
- Materials and Methods
 - GTEx dataset
 - General workflow
- Results and Discussion
 - eQTL profiles of metabolic tissues
 - Investigation into NAFLD missing heritability
- Conclusion and Future Directions

Introduction into eQTLs

Expressive quantitative trait loci

Maastricht University

Wolen A. et al: Identifying Gene Networks Underlying the Neurobiology of Alcoholism, Alcohol Research Volume 34 Issue 3 (2014)

Research Aim

- 1. Uncover eQTL profiles of metabolic tissues
- RQ: What are the similarities and differences in eQTL regulation between metabolic tissues?
 - Liver
 - Adipose Tissue
 - Skeletal muscle
- 2. Demonstrate application of eQTL studies
- RQ: Can eQTL analysis contribute to address missing heritability in multi-factorial diseases?
 - Case study on missing heritability in NAFLD

Materials and Methods

GTEx Data and Data Retrieval

- V7 release
 - 53 tissues from 714 donor
- Data retrieval: Preprocessed eQTL

Tissue	Donors with Genotyping
Liver	153
Adipose Tissue	358
Skeletal Muscle	491

- Pre-processed further:
 - Only protein coding genes
 - Only genes with MAF>0.1

• 85% above 40 years old

GTEx – Huge Amount of Data

Tissue	Gene Count	eQTL Count	Interaction Count
Liver	2,113	137,261	161,183
Adipose Tissue	7,036	575,672	823,421
Skeletal Muscle	6,809	595,532	869,406

AT (7036)

Liver (2113)

Workflow

Results: General analysis

MAF distribution

Q: What is the minor allele frequency of eQTLs? A: MAF 0.2 towers over other values for unexplained reasons.

eQTL locations

Q: Where are eQTLs located in respect to their eGenes? A: eQTLs are located increasingly proximate to transcription start site (TSS)

eQTL locations

Q: Does proximity to eGenes influence effect size? A: eQTLs closer to TSS have a larger effect size.

Gene expression vs. eQTL count

Q: Does gene expression level impact eQTL count? A: Gene expression level does not impact eQTL count.

Gene location

Q: What is chromosomal distribution of genes influenced by eQTLs?

A: Chromosome 1 has highest eGene count, chromosome 21 lowest.

700

number of eGenes

Results Liver eQTL Analysis

Liver eGenes

 Degree distribution of eGenes ranged between 1-2841

Liver eGene Hubs

Degree (# eQTLs)	Gene	Position
2841	LRRC37A2	<mark>17q21.31</mark>
2734	ARL17A	<mark>17q21.31</mark>
2004	C4A	<mark>6p21.33</mark>
2002	HLA-DQA2	<mark>6p21.32</mark>
1737	HLA-C	<mark>6p21.33</mark>
1682	HLA-DRB5	<mark>6p21.32</mark>
1541	HLA-DRB1	6P21.32
1468	HLA-DQB2	<mark>6p21.32</mark>
1158	ZFP57	<mark>6p22.1</mark>
1040	HLA-A	<mark>6p22.1</mark>

Metabolic Tissue eGenes Hubs

Liver	Adipose TIssue	Skeletal Muscle
LRRC37A <mark>17q21.31</mark>	HLA-DQB2 <mark>6p21</mark>	HLA-DQB1 <mark>6p21</mark>
ARL17 <mark>17q21.31</mark>	HLA-DQA1 <mark>6p21</mark>	HLA-C <mark>6p21</mark>
HLA-DQB2 <mark>6p21</mark>	HLA-DQB1 <mark>6p21</mark>	HLA-DQB2 <mark>6p21</mark>
C4A <mark>6p21</mark>	ZFP57 <mark>6p21</mark>	HLA-DRB5 <mark>6p21</mark>
HLA-DQA2 <mark>6p21</mark>	HLA-DRB1 <mark>6p21</mark>	HLA-DQA1 <mark>6p21</mark>
HLA-C <mark>6p21</mark>	LRRC37A <mark>17q21.31</mark>	LRRC37A <mark>17q21.31</mark>
HLA-DRB5 <mark>6p21</mark>	LRRC37A <mark>17q21.31</mark>	KANSL1 <mark>17q21.31</mark>
ZFP57 <mark>6p21</mark>	KANSL1 <mark>17q21.31</mark>	LRRC37A <mark>17q21.31</mark>
HLA-DQB1 <mark>6p21</mark>	ARL17 <mark>17q21.31</mark>	PLEKHM1 <mark>17q21.31</mark>
HLA-A <mark>6p21</mark>	CRHR1 17q21.31	ARL17 <mark>17q21.31</mark>

Liver eGenes: 17q21.31

- Locus has 9 genes and 3609 eQTLs
- Functionally genes are part of **cell cycle**
- Band is known for inversion polymorphisms
- Dysregulation associated with neurological conditions and cancers

Liver eGenes: 6p21.31-p21.33

- Human Leukocyte Antigen (HLA)-region
- 24 eGenes and 10,829 eQTLs
- Harbors MHC protein coding genes (HLA-genes) of the immune system
- Dysregulation associated with numerous diseases, importantly autoimmune diseases

Liver variants

Liver Variants

Metabolic Tissue Variants

• All metabolic tissues had 2 clusters for eQTLs with highest degree

Tissue	Position cluster A	Position cluster B
Liver	6p21	<mark>22q11</mark>
Adipose Tissue	6p21	<mark>3p21.31</mark>
Skeletal Muscle	6p21	<mark>3p21.31</mark>
	• C	ell Cycle
	• Ir	nmune System
Maastricht University	• N	1etabolism ²³

Results Missing Heritability: NAFLD

Maastricht University

Combined data from
 WikiPathways and
 DisGENet provided 460
 genes

- 43 were found to regulated by liver eQTLs
- Functionally related to energy homeostasis
- The genes did not share eQTLs with each other

25

eQTLs as Susceptibility Genes: AGTR1

AGTR1 eQTLs

Conclusion

RQ: What are the similarities and differences in eQTL regulation between metabolic tissues?

- eQTLs are located increasingly close to eGenes
- Proximity of eQTLs influences effect size
- Gene expression level does not impact number of eQTLs
- Densely regulated regions are 6p21 and 17q21 as well as 3q21 or 22q11 depending on tissue
 - Functionally harbor genes of immune system, cell cycle and metabolism

Maastricht University

Conclusion

RQ: Can eQTL analysis contribute to address missing heritability in multi-factorial diseases?

- 43 of 460 NAFLD susceptibility genes are regulated by eQTLs in liver
- 3 disease-variant associations are eQTLs of Angiotensin Receptor 1 -gene
- AGTR1 has 23 eQTLs as candidate susceptibility genes

Limitations

- Small sample size in liver tissue (n=153)
- Ethnicity is not controlled for
- Donor data is from older people
 - Less eQTLs in older people found

Future directions

- Investigate eQTLs behind common metabolic processes in different metabolic tissues
- Investigate eQTLs of susceptibility genes of other diseases to uncover missing heritability
- Study power can be increased by joining eQTL data from other data in "mega-analysis"
- Liver eQTLs hold a strong foundation to pharmacogenomic research as a primary site of xenobiotic metabolism

Thank you BiGCaT Dr. Martina Kutmon Dr. Lars Eijssen Dr. Nuno Nunes

Questions?

Neo4J

- Data structuring and storage
- Property graph structure
- Data can be queried using Cypher Query Language
- Return graphs, tables, statistics

Example query: get subnetwork of all genes with >5 eQTL variants

```
MATCH (g:Gene)-[gl:GTEX_ADIPOSE]-(v:Variant)
WITH v, count(g) AS edges, collect (g) AS genes
WHERE edges=13
RETURN v, genes, edges
```


Neo4J Example Query

Automation in R

- Statistics and graphs (some graphs were done in excel)
- Covert Neo4J queries into Cytoscape

```
77
    query<- "MATCH (v:Variant)
78
   WITH v, size((v)-[:GTEX_MUSCLE]->(:Gene)) as degree
79
   WHERE degree=13
80
    MATCH (v)-[r:GTEX_MUSCLE]->(g:Gene)
    RETURN g,r,v"
81
    G <- query %>% call_neo4j(con, type = "graph")
82
   igraph <- getIGraph(G)</pre>
83
    createNetworkFromIgraph(igraph)
84
```


Data visualization

Datasets of interest

- Downloaded from Disgenet and Wikipathways
- Queried through Neo4J visualized in cytoscape

Results Adipose Tissue eQTL Analysis

Adipose Tissue General eQTL Profile

Adipose Tissue eGenes

Adipose Tissue eGenes

Degree	Gene	Position
4127	HLA-DQB2	6p21.32
4090	HLA-DQA2	6p21.32
4082	HLA-DQB1	6p21.32
3647	ZFP57	<mark>6p22.1</mark>
3640	HLA-DRB5	<mark>6p21.32</mark>
3266	LRRC37A	<mark>17q21.31</mark>
3105	LRRC37A2	<mark>17q21.31</mark>
3086	KANSL1	<mark>17q21.31</mark>
2954	ARL17A	<mark>17q21.31</mark>
2934	CHR1	<mark>17q21.31</mark>

Adipose Tissue Variants

Adipose Tissue Variants

Results Skeletal Muscle eQTL Analysis

Skeletal Muscle eGenes

Skeletal Muscle eGenes

Degree	Gene	Position
4695	HLA-DQB1	<mark>6p21.32</mark>
4643	HLA-C	<mark>6p21.33</mark>
4620	HLA-DQB2	<mark>6p21.32</mark>
2575	HLA-DQA2	<mark>6p21.32</mark>
3764	HLA-DRB5	<mark>6p21.32</mark>
3448	HLA-DQA1	<mark>6p21.32</mark>
3234	LRRC37A	<mark>17q21.31</mark>
3139	KANSL1	<mark>17q21.31</mark>
3134	LRRC37A2	<mark>17q21.31</mark>
3077	PLEKHM1	<mark>17q21.21</mark>

Skeletal Muscle Variants

Skeletal Muscle Variants

- Genes experience co-regulation
- Genes are more closer to each other (due to length?)

