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Abstract

Standard Rumour Spreading (SRS) in a connected graph G, is defined as follows. At

the beginning, there is only one particular vertex that knows the rumour. For each vertex

in G, we assign a Poisson clock with rate 1. When the clock of a vertex rings, the vertex

chooses a uniformly random neighbour to exchange information with. The running time

of the SRS is the time needed to let every vertex in G learn the rumour.

In this thesis, we introduce a new variant of the SRS, called Rumour Spreading with

a Delaying Scheme (RSDS). In this model, each informed vertex has two possible statuses:

either active or dormant, which continuously flipping back and forth with a certain rate

called the switching rate. The switching rate is one of the main parameters studied in this

work. The same settings as the SRS apply in the RSDS except that dormant vertices are

unable to exchange information.

We compare the expected running times between the RSDS and SRS for paths, stars,

and complete graphs. In the context of rumour spreading in complete graphs, we provide

a threshold for the switching rate function in the following sense. The expected running

time of the RSDS asymptotically equals to that of the SRS if and only if the switching

rate is significantly smaller than the threshold function. In addition, we provide a more

accurate analysis on a specific case, that is the RSDS with unit rate.
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Chapter 1

Introduction

Nowadays, a large number of structures appearing in various real-world situations can be

described in the form of networks. In many settings, we can understand a system as a

collection of well separated elements where some particular pairs of them are interacting in

a certain way. To mention a few of real-world examples, we can find network structures in

communication patterns within online social media, scientific paper co-authorship studies,

spreading of an infectious disease, and interactions between discrete particles in a crystal.

Many prominent scholars, for example Barabási [4], Newman [37] and Watts [46],

conducted influential works exposing the emergence of large networks in many real-world

settings. Their works reveal that we are living in an extremely interconnected network

that is still growing over time. It is apparent that easy communication appears as a result

of effortless access to cheap computers and the Internet. This leads modern people to be

much more connected to each other than any kind of society throughout the whole history.

A network, in its simplest form, is often described in terms of a collection of vertices

joined together in pairs by the so-called edges, that we will call the graph. The vertices of

the graph represent the members of the network. On the other hand, when two vertices are

joined by an edge in the graph, the edge represents an access of communication between

these vertices.

Many aspects of large networks are worthy of study. A deep understanding of the

communication patterns occurring in large networks can provide many great benefits to

solve various problems that follow from the rapid growth of networks. The connections in

a social network, for example, affect the behaviour of a certain community to collect news

and form their public opinion. When we have no knowledge about the structure of large

networks, we cannot hope to fully understand how the corresponding systems work.

Often the enormous size of the networks makes the analysis very challenging. In

particular, some methods used in small deterministic networks can no longer be applicable
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in the context of larger networks. In fact, some giant networks are very difficult to be

accurately determined in real life, for example the network showing transmissions of sexual

diseases and the network of friendships. Much literature, for instance Lovász [35] and

Newman [37], suggests a stochastic approach to model such networks. From probability

theory, we often find that many properties of the stochastic model appear almost surely

when the size of the networks tends to infinity. As a result, probabilistic analysis becomes

an essential tool in contemporary network studies.

One of the fundamental schemes studied in probabilistic analysis of large networks is

the Randomised Rumour Spreading scheme. Various problems occurring in large networks

can be reduced to the problem of finding the time needed to disseminate information within

the members of the network, where the dissemination is performed in a random fashion.

For instance, the rumour spreading scheme represents the behaviour of a propaganda

propagation in online social networks [12], analysis of epidemic spreading [33], and design

of distributed computing [20].

In the rumour spreading scheme, the information passing can only occur between

pairs of neighbouring individuals. In the usual setting, the model picks a particular vertex

in the network to be the initial rumour spreader. Throughout the time, the informed

vertices call their random neighbours and pass the rumour to them. This procedure is

repeated until all members of the network know the rumour.

1.1 Existing Results on Rumour Spreading Models

One of the earliest models of rumour spreading was introduced by Frieze and Grimmett

in [25]. Their model considered a random rumour spreading scheme in a town having n

residents, each of whom possesses a private telephone access to all other people in the

town. In a series of discrete rounds, every individual that knows the rumour chooses a

uniformly random person in the town to pass the rumour to. This model represents the

rumour spreading occurring in a complete graph with n vertices, since all pairs of vertices

are able to communicate with each other.

Later on, the rumour spreading procedure that Frieze and Grimmett introduced is also

known as the push protocol. This is the spreading scheme in which informed individuals

push the message to the uninformed ones. The reversed version of the scheme also exists,

namely the pull protocol. In this scheme, each uninformed individual also uniformly calls

its random neighbours to ask the message from them. The first model which involves both

push & pull protocols was introduced by Demers, Greene, Hauser, Irish, Larson, Shenker,

Sturgis, Swinehart, and Terry in [16] and popularised in [33] by Karp, Schindelhauer,

Shenker, and Vöcking.

2



The scheme by which the messages are passed in discrete rounds is also known as

the synchronous rumour spreading model. The most studied parameter for this scheme

is the number of rounds needed to let everyone learn the rumour. Extensive results on

the synchronous model exist for some families of deterministic graphs, including complete

graphs [33, 41] and hypercube graphs [21]. Results for various classes of random graphs

are also present: Erdős-Rényi random graphs [21, 22, 38], random regular graphs [5, 23],

preferential attachment graphs [18], and Chung-Lu random graphs [24]. Since these graph

families are not directly relevant to the main topic of this thesis, interested readers are

advised to consult the references for precise definitions of each random graph family.

The analysis of the synchronous rumour spreading scheme for general n-vertex graphs

also exists. Most of the results of the analysis are expressed asymptotically, usually in

terms of n, the order of the graph. We say that an event whose probability depends on

n, occurs with high probability (abbreviated w.h.p.) if its probability converges to 1 as

n → ∞. Let G be an arbitrary connected graph with n vertices. Suppose that T (G)

denotes the number of rounds needed to let every vertex in the graph G learn the rumour.

Feige, Peleg, Raghavan, and Upfal in [21], stated that log n ≤ T (G) ≤ 12n log n w.h.p. for

any G. Moreover, this bound is tight in the sense that there exist connected graphs G1

and G2 such that T (G1) = O(log n) and T (G2) = Ω(n log n) w.h.p.

Further studies which relate the synchronous rumour spreading scheme to some well

known graph properties are also present. For any connected graph G, let ∆(G) denote

the maximum degree of the vertices of G. The diameter of G, denoted by diam(G), is the

maximum of all distances between all distinct pairs of the vertices if G. The conductance

of graph G, denoted by φ(G), is a value in range 0 < φ(G) ≤ 1 which measures the

connectedness of G. Roughly, the smaller conductance that a graph has, the more we

find “bottleneck” structures in the graph. The known relationship between T (G) and

diam(G) is T (G) = O(∆(G)(diam(G) + log n)), for any connected graph G, as thoroughly

discussed in [21]. There is much literature discussing the relationship between T (G) and

φ(G), for example in [13, 14, 26]. The best known bound for T (G) in terms of φ(G), is

that T (G) = O(φ(G)−1 log n) as reported in [13].

Several attempts to make more realistic models were made. Boyd, Ghosh, Prabhakar,

and Shah in [10] introduced the asynchronous version of the rumour spreading scheme.

In this variant, the uniformly random neighbour callings are allowed to occur at arbitrary

continuous times. This improves the modelling of many real-world rumour spreading

phenomena, since real life communication never occurs only in segmented time points.

The scheme has been well studied for some classes of deterministic graphs: complete

graphs [30] and hypercube graphs [8]. The studies of the scheme for various random graph

classes also exist. These include Erdős-Rényi random graphs [40], preferential attachment

random graphs [19], Chung-Lu random graphs [24], and random regular graphs [2].

The relationship between the synchronous and asynchronous rumour spreading was
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studied in a paper by Acan, Collevecchio, Mehrabian, and Wormald [1]. The paper dis-

cussed the comparison between the running time of both versions of rumour spreading

applied in the same underlying graph. They proved that for any connected graph G, the

ratio between the running times of the synchronous and asynchronous rumour spreadings

in graph G is bounded below by Ω(1/ log n) and bounded above by O(n2/3). Moreover,

the given lower bound is best possible, up to some constant factors.

In [39], Panagiotou, Pourmiri, and Sauerwald introduced a variation of the rumour

spreading scheme to accelerate the running time of the spreading using a multiple call

scheme. In the model, any informed vertex is able to pass the message to R other in-

dividuals at once, where R is a random variable whose support is the positive integers.

In particular, the paper discussed how the multiple call scheme applied in the rumour

spreading model in complete graphs decreases the running time. As long as the mean and

variance of R are bounded, they proved that the multiple call scheme gives insignificant

effect to the running time. However, when R follows a power law distribution with expo-

nent β, the running time is significantly quicker if 2 < β ≤ 3. Note that in this case, the

variance of R is unbounded whereas the mean is still bounded.

The rumour spreading model also has a close relationship to some other probabilistic

models, for example the epidemic spreading model, the first-passage percolation problem

and the minimal weighted path problem in a graph having random edge weights. In this

thesis, we will primarily utilise the strong relationship between the rumour spreading and

epidemic models in many technical parts of the analysis.

Despite many similarities of the phenomena modelled by both epidemic and rumour

spreading schemes, they have different motivations and studied parameters. In the epi-

demic modelling, an infectious disease propagates from some initially infected individuals

throughout other susceptible members of the network. As references, Miller and Kiss [36]

as well as Daley and Gani [15] provide extensive surveys on the models. The main mo-

tivation for the epidemic spreading analysis is to prevent the disease from infecting the

entire members of the community. This leads the researchers to concentrate their studies

on finding the probability that the infection spreads throughout the entire network in the

long run. For this reason, the quantification of the spreading time receives relatively less

attention in epidemic study. In contrast to most rumour spreading models, every individ-

ual in the network will receive the rumour in a finite time with probability 1. This implies

that such a long run probability is mostly trivial in the rumour spreading model.

Another critical difference between the rumour spreading and the epidemic models is

the rate of the spreading. In the rumour spreading model, the informed individuals pass the

message via random neighbour callings whereas the infection model has no such scheme.

The different schemes of the spreading imply different spreading rate characterisations of

each model. Consider the rate of the spreading conducted from a particular vertex. In

the rumour spreading model, this rate is the same for all vertices in the graph. However,
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in the epidemic model, the spreading rate depends on the degree of the vertex. The more

friends that an infected individual has, the more likely that the disease spreads to its

friends. Interested readers can find a more precise definition of the infectious spreading

method, for instance, in [9]. On the other hand, when we observe the spreading occurring

in a certain edge of the graph, the spreading rate within the edge in the rumour spreading

model is determined by the degree of the end vertices of the edge. Since a neighbour is

called in a uniformly random fashion, the rate of the spreading occurring in a given edge is

reciprocal to the degree of the incident vertices. In contrast, the spreading rates between

the pairs of adjacent vertices have the same value in the epidemic model.

When the underlying network has a special property, however, the rumour spreading

model has an exact equivalence to the epidemic model. Since the distinguishing feature

of both models comes from the degree of the vertices, the regular graphs (whose vertices

have the same degree) become a special network in which both models have the same

characteristic. In this case, the spreading rate is constant when we observe all edges as

well as when we consider the vertices. This special feature will be of particular interest in

many parts of the thesis.

The first passage percolation (FPP) model in networks, the minimal weighted path

problem in a randomly edge weighted graph, and the asynchronous rumour spreading

model are also equivalent to each other under certain condition. To provide a brief

overview, the FPP model is essentially a probabilistic model describing the flow of fluid

which passes through a random medium. To find a historical exposition and extensive

survey on the models, one can consult [3]. Often the models employ discrete graphs as

the representation of the flowing points of the fluid. The vertices of the graph represent

the pores of the medium at which the fluid has access to flow, while an edge between two

vertices represents the fluid pathway between them. In the FPP models in networks, the

fluid moves within vertices according to random capacities of the edges. In this sense, the

FPP problem on a network can be viewed as a graph with random edge weights. On the

other hand, the random weights on the edges can be associated with the waiting times of

the message passing within the end vertices of the edge in the rumour spreading model.

When the random weight is exponentially distributed, the FPP model behaves exactly

the same as the rumour spreading model. Extensive works on this topic can be found in

[6, 7, 29, 30, 45, 44]. The equivalence of these models is due to the memorylessness property

of the exponential distributions so that the random weights can be appropriately shifted

in order to be associated with the message passing waiting times in the rumour spreading

models. By this correspondence, the length of the minimal weighted path from a given

vertex to its “farthest” vertex in the graph depicts the running time of the asynchronous

version of rumour spreading.
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1.2 Purpose of the Thesis

The main purpose of this thesis is to study a particular variation applied to the classi-

cal asynchronous version of rumour spreading. So far, the existing variations of rumour

spreading procedures are mostly intended to expedite the spreading time. An attempt

to observe the rumour spreading in a different setting compared to ones that have been

studied can lead to interesting and useful results. This motivates us to construct another

variation in order to obtain a contrasting result from the existing ones.

In this work, we have designed a new rumour spreading model with a delaying scheme

that allows some possibilities to decelerate the running time of the standard rumour spread-

ing model. In particular, we will investigate a delaying scheme at which the spreading

agents can be absent from the spreading activity for a while. Specifically, we will apply

the asynchronous time and the push & pull protocol in our new rumour spreading model.

In this thesis, we will study the rumour spreading model in three well known elemen-

tary families of graphs: paths, stars, and complete graphs. However, we will primarily

concentrate on the rumour spreading analysis in complete graphs.

The delaying scheme models the spreading of messages in a network where the indi-

viduals are not constantly available to pass messages. This provides a good representation

of the rumour dissemination on the Internet where there are times at which some informed

users go offline and are unable to spread the rumour. For example, although the informa-

tion updates in a Twitter network are almost continuously added, a particular user is very

unlikely to receive all of the information exhaustively. During some period, some users log

out and miss the current news updates as well as have no access to post new information.

Those offline users need to get back online in order to participate in the spreading process.

On the other hand, the rumour spreading scheme also models the information dissemi-

nation in a network whose broadcaster servers can possibly be damaged with a certain

rate. Unless they are repaired, the information cannot pass through them. This leads to

a reduced spreading rate.

We will call the new model the Rumour Spreading with a Delaying Scheme (RSDS).

On the other hand, we call the original asynchronous rumour spreading process which

has no delaying scheme the Standard Rumour Spreading (SRS). In the RSDS process,

the informed vertices have two possible statuses, either active or dormant. Once a vertex

receives the message, it immediately receives an active status. However, we allow an active

vertex to be dormant with a certain rate, which means that they refrain from passing the

rumour. Although they know the rumour already, dormant vertices are unable to pass the

information to their neighbours. On the other hand, a dormant vertex can become active

again so that it regains its capability to spread the rumour. The more precise and formal

definition of the models will be discussed in Chapter 3.
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In the RSDS model, any informed individual in the network has the same rate to

switch from active to dormant or vice versa. We will call this rate the switching rate, as

the status of the informed ones are continuously switching back and forth between active

and dormant statuses throughout the entire process. However, we generally specify the

message passing rate to be different from the switching rate. In this thesis, we normalise

the ratio of these two rates by setting the spreading rate to be 1 while the switching rate

is expressed as a function of n, the network size.

The main quantity of interest in this work is the additional time gained by applying

the delaying scheme, which we will call the delay time. We intend to study how far the

application of the delaying scheme affects the spreading time in terms of the switching

rate. First, we will briefly discuss the expected delay time of the RSDS for path and star

graphs. Afterwards, we will devote the rest of the thesis to analyse the delay time of the

RSDS in complete graphs. Moreover, we will also review more thoroughly the phenomena

occurring in an RSDS process with unit switching rate.

To give an overview of the main results on the RSDS in complete graphs, we briefly

give a mathematical definition of the delay time. Suppose that T (X ′) and T (X) are

the random times needed to let every individual receive the rumour in SRS and RSDS

processes respectively, applied in a complete graph with n vertices. The delay time of

the RSDS process, denoted by D(X), is defined to be T (X) − ET (X ′). Here, D(X) is a

random variable which shares the same probability space as the RSDS process X. Later

on, we will see that ED(X) always has a nonnegative value since we can couple the SRS

and RSDS processes in such a way that T (X ′) ≤ T (X).

This work mainly focuses on the asymptotic expectation of D(X) in terms of the

switching rate. Note that ED(X) is the difference between expected running times of SRS

and RSDS. We first observe that ET (X ′) = 2 log n/n+O(1/n), as described in [30]. This

means that if ED(X) = o(log n/n), then the delaying scheme only contributes to negligible

expected additional time to delay the SRS process. We say that an RSDS process has a

noteworthy delay time if ED(X) = Ω(log n/n). Hence, one of the main objectives of this

work is to characterise the switching rate functions that bring a noteworthy delay time.

We observed that if the switching rate is slow enough, then the expected delay time is

insignificant compared to ET (X ′). When the switching rate is slower than the spreading

rate, an informed vertex has a higher probability to pass the rumour to a new vertex

than to become dormant. Thus, the spreading process will finish before a significant

number of dormant vertices are able to slow down the process. In other words, the slower

the switching rate that an RSDS process has, the more likely its running time behaves

similarly to that of the SRS process.

In our main results, we state that the delay time is noteworthy if and only if the

switching rate is Ω(n/ log n). This result divides the switching rate functions into two
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classes of function in terms of the noteworthiness of the delay time. We will later call

n/ log n the threshold function for the noteworthiness of the delay time. However, we also

show that no matter how fast the switching rate is, the magnitude of the expected delay

time is always bounded above by O(log n/n). This means that the delaying scheme can

only extend the expected running time of the rumour spreading process up to a constant

factor.

We will also pay attention to a special instance of the RSDS process with a slow

switching rate; that is when the rate is 1. In this setting, we analysed the sources of the

delay. We say that a rumour spreading process is in a vacuum state if there is no active

vertex during that time. We will show that the most significant delay comes from the

event where the process enters a vacuum state before the initial rumour spreader informs

any other vertices. The event becomes the source of the most significant expected delay

in the sense that if it is given that the event does not occur, then the expected delay time

drops dramatically.

In addition, we will discuss some lower and upper bounds for the RSDS running

time that hold w.h.p. The result appears as a direct consequence of the earlier results on

the expected delay times of the RSDS. When the switching rate is slow, we proved that

the running time of the RSDS is asymptotically the same as that of the SRS, which is

2 log n/n. On the other hand, for any positive constant ε and any function ω = ω(n)

tending to infinity arbitrarily slowly, we have that 2(1 − ε) log n/n < T (X) < ω log n/n

w.h.p. whenever the switching rate is fast.

1.3 Organisation of the Thesis

Chapter 1 provides an introductory exposition on the rumour spreading models, some

reviews of existing literature on the model, the purpose of the thesis, and the organisation

of the thesis. In Chapter 2, we will establish the standard definitions and notations that

will be used throughout the whole thesis as well as some preliminary theories which serve

as methods to obtain the main results of this thesis. The two models of rumour spreading,

the SRS and RSDS, are defined formally in Chapter 3. Also in this chapter, we provide

simple demonstration of the rumour spreading model in some elementary classes of graphs.

Chapter 4 discusses general properties of these two rumour spreading processes occurring

in a complete graph with n vertices. These properties will serve as important lemmas

that will be used extensively in the next chapter. The exposition of the main results

are given in Chapter 5. As a preparation for the chapter, we will describe an important

property possessed by the so-called compressed version of the RSDS process. In the next

two sections of the chapter, we will concentrate on the expected delay time of the RSDS

process for two classes of switching rate functions. Then, in the last section, we give a

more detailed analysis of a special case of the RSDS where the switching rate is 1. Lastly,
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in Chapter 6, we will have the concluding statements and discussions about some possible

future work.

At the end of this thesis, we provide a glossary and a list of symbols to help the reader

to keep track of the definitions of some technical terms and non-standard symbols used in

this thesis.
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Chapter 2

Preliminaries

This chapter consists of the standard notations and definitions that will be used throughout

the whole thesis and some useful elementary observations related to the main results.

2.1 Definitions and Notations

In this section, we provide some conventions regarding definitions and notations, mainly

from graph theory and probability theory.

2.1.1 Graph Theory Notations

Most graph theoretic notations in this thesis follow standard notations introduced in [17].

A simple graph G is a pair of finite sets G = (V,E) with V 6= ∅ and E a collection

of 2-subsets of V . We call the elements of V the vertices of G and the elements of E the

edges of G. Later on, for any edge {u, v} ∈ E, we will just refer to it as uv instead of its

set form. The order of a graph G is the number of its vertices. Unless otherwise stated,

we always let n denote the order of G.

For any u ∈ V and e ∈ E, we say that u is incident to e if u ∈ e. Moreover, if e = uv,

then we say that u and v are the ends of e. Also, for any pair of distinct vertices u, v ∈ V ,

we say that u is adjacent to v if uv ∈ E. We say a graph is complete, denoted by Kn, if

all pairs of distinct vertices are adjacent.

The degree of a vertex v, denoted by deg(v), is the number of vertices adjacent to v.

Suppose X,Y ⊆ V . We define E(X,Y ) as the set of all edges xy where x ∈ X and y ∈ Y .

We will also call the edge xy an X-Y edge. Also, we define e(X,Y ) := |E(X,Y )|, the total
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number of X-Y edges. We say that a graph is regular if all of its vertices have the same

degree.

For any two graphs G = (V,E) and G′ = (V ′, E′), we say that G′ is a subgraph of G,

denoted by G′ ⊆ G, if V ′ ⊆ V and E′ ⊆ E. If G′ ⊆ G, and G′ contains all edges xy ∈ E
with x, y ∈ V ′, then G′ is an induced subgraph of G. Also, we say that V ′ induces G′ in

G, and write G′ := G[V ′].

A path is a graph Pn = (V,E) of the form

V = {v1, . . . , vn}, E = {v1v2, v2v3, . . . , vn−1vn}.

We call the vertices v1 and vn the ends of P , while v2, . . . , vn−1 are the internal vertices

of P . The length of a path is the number of edges in it. Suppose P ⊆ G. We say that v1

and vn are linked in G by P , or equivalently, P is a v1-vn path in G. Figure 2.1 visualises

the path Pn.

v1 v2 v3 vn

Figure 2.1: The path graph Pn

A star is a graph Sn = (V,E) (commonly also known with notation K1,n−1) of the

form

V = {v, v1, . . . , vn−1}, E = {vv1, vv2 . . . , vvn−1}.

We call v the centre vertex, that is the only vertex which is adjacent to every other vertex.

On the other hand, we call the other vertices having degree 1 the leaves. Figure 2.2

illustrates the star graph Sn.

v1

v2
v3

v4
vn−1

v

Figure 2.2: The star graph Sn

For any two vertices x, y ∈ V , the distance of x and y, denoted by d(x, y), is the

length of the shortest x-y path in G. If no such path exists, then we set d(x, y) =∞. We

say that G is connected if for every pair of vertices x, y ∈ V , we have that d(x, y) < ∞.

We define the diameter of G, denoted by diam(G) to be max
u,v∈V (G)

d(u, v).
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2.1.2 Probability and Random Processes Notations

For any two random variables X and Y lying on the same probability space, we say that

X is equal to Y in distribution, denoted by X
d
= Y , if they share the same probability

distribution function.

We say that an event An, which depends on a parameter n, occurs with high probability

(abbreviated w.h.p.), if P(An)→ 1 as n→∞. Mainly in this thesis, n refers to the order

of the graph. We will often see an event that occurs w.h.p. as a property of a very large

graph that appears almost surely.

We use the following shorthands to denote some probability distributions. For n ∈ Z+

and p ∈ [0, 1], let B(n, p) denote a binomial distribution corresponding to the number of

successes out of n independent Bernoulli trials where each trial has success probability p.

Thus, if X
d
= B(n, p), then

P(X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1 . . . , n.

We also have that EX = np.

We use the notation G(p) to denote a geometric distribution with success probability

p ∈ (0, 1). Suppose that Y
d
= G(p). Consider a sequence of independent Bernoulli trials

with success probability p. Then, Y essentially counts how many failures occurring in the

sequence until it achieves its first success. In other words, the first success of the sequence

occurs in the (Y + 1)-th trial. It means that

P(Y = k) = p(1− p)k, k = 0, 1, . . . .

Note that EY = 1−p
p .

Also we use the notation E(r) with r > 0 to denote an exponential random variable

with rate r. Suppose that W
d
= E(r). The probability density function of W is given as

follows.

fW (w) = re−rw, w ≥ 0.

Note also that EW = r−1. Note that we use the notation E(·) to denote the exponential

random variables, whereas exp(·) represents the exponential function. We can think of the

exponential distribution as the continuous analogue of the geometric distribution since it

often represents the waiting time of the first successful occurrence of a certain event.

Both geometric and exponential distributions enjoy an interesting property, namely

the memorylessness property. For geometric distributions, we have the following formula-

tion for the property. For any m,n ∈ {0, 1, . . . },

P(Y > m+ n | Y > m) = P(Y > n).
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Whereas, the following formulation applies for the exponential distributions. For every

s, t > 0, we have that

P(W > s+ t |W > t) = P(W > s).

By interpreting the random variable as the waiting time for the first occurrence of some

event, the property says that the waiting time does not depend on how much time has

elapsed already. In other words, the information about how long we have waited for the

event is unhelpful to predict the future occurrence of the event.

In this thesis, we will use the terms random processes and stochastic processes inter-

changeably, referring to the collections of random variables. Throughout the chapters, we

will sometimes also simply use the term processes to refer to the random processes.

Now we define several important random processes. The random processes definitions

used in this thesis are adapted from [27].

Definition 2.1. A Poisson process of rate λ is an integer-valued stochastic process {X(t) :

t ≥ 0} satisfying the following properties:

1. X(0) = 0.

2. For any time points 0 = t0 < t1 < · · · < tn, the increments of the process

X(t1)−X(t0), X(t2)−X(t1), . . . , X(tn)−X(tn−1)

are independent integer-valued random variables.

3. For all s ≥ 0 and t > 0, the random variable X(s+t)−X(s) has Poisson distribution

with mean tλ, that is

P[X(s+ t)−X(s) = k] = e−tλ
(tλ)k

k!
, k = 0, 1, . . . .

Corresponding to the Poisson process {X(t) : t ≥ 0}, we also introduce its Poisson

clock CX = (c1, c2, . . . ) where 0 < c1 < c2 < . . . . Here, for all i ≥ 1, ci denotes the ringing

time of the clock corresponding to the time at which the value of the process increases. In

other words, a Poisson clock only captures the times at which the process jumps, without

paying much attention to the current state of the process. Observe that the value of X(t)

represents how many times the Poisson clock has rung up to time t.

It is worth noting the following facts. The time gaps between two consecutive ringing

times τ1, τ2, . . . of a Poisson clock with rate λ are independent and identical exponential

random variables with rate λ. This means that for all j ≥ 1,

P(τj ≥ x) = e−λx, x ≥ 0.
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We state the following important properties of Poisson processes. Suppose that we

have two independent Poisson clocks C1 and C2 with rate λ and µ, respectively. Then, we

define C to be another clock which rings whenever any of those two clocks ring, written

as C = C1 ∧ C2. We have that C is also a Poisson clock with rate λ + µ. Moreover,

whenever C rings, the probability that the ringing comes from C1 is λ
λ+µ . We call this

the superposition property of a Poisson process and C the superposition clock of C1 and

C2. Now suppose that a Poisson clock with rate λ has two types of ringings. Let p be the

probability that a ringing of the clock belongs to the first type. Then, when we create a

new clock whose ringing follows only the first type ringing of the original clock, the new

clock is also a Poisson clock with rate pλ. This is called the thinning property of a Poisson

process.

Next, we define the other well known random processes, namely the Markov Chains,

which serve as excellent models in diverse ranges of real-world applications. There are

two versions of Markov chains in regards to their time indices: the discrete-time Markov

chains and the continuous-time Markov chains. The formal definitions are described as

follows.

Definition 2.2 (Discrete-time Markov Chains). Let S be a countable set. A random

process {Xn : n ≥ 0} whose indices take values in the set of nonnegative integers, is called

a discrete-time Markov chain if X satisfies the following properties.

1. Markov property.

P(Xn+1 = j | X0, X1, . . . , Xn) = P(Xn+1 = j | Xn),

for all n ≥ 0 and j ∈ S.

2. Homogeneity property.

P(Xn+1 = j | Xn = i) = P(X1 = j | X0 = i),

for all n ≥ 0 and i, j ∈ S.

Markov property roughly says that, given a history of the process behaviour, the

probability distribution of the process in the future only depends on the most recent part

of the history. Sometimes this property is also known as the memoryless property, since

it conveys the fact that all memories possessed by the process in the past are no longer

relevant to determine its upcoming performance.

On the other hand, the second property says that the process evolution does not

depend on the time taken so far. It is worth remarking that many other literature exclude

the homogeneity property in their definition of a general Markov chains. Instead, they

call the one possessing the property the homogeneous Markov chains. However, we put
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the property in our definition since all Markov chains discussed in this thesis possess the

property.

The homogeneity property leads us to define the transition probabilities, which are

pi,j = P(Xn+1 = j | Xn = i),

for all n ≥ 0. Note that unless the homogeneity property is satisfied, the transition

probabilities are not well-defined. Moreover we call the |S| × |S| matrix P = [pi,j ]i,j∈S

the transition matrix. Note that P is a stochastic matrix, which means that all of its

entries are nonnegative and the sum of each row is 1. The discrete-time Markov chains

are completely determined by its transition matrices.

On the other hand, the continuous-time Markov chain is described as follows.

Definition 2.3 (Continuous-time Markov Chains). A continuous-time Markov chain {X(t) :

t ≥ 0} is a stochastic process indexed by the real half-line [0,∞) and taking values in some

countable state space S that satisfies the following properties.

1. The Markov property.

P(X(tn) = j | X(t1), . . . , X(tn−1)) = P(X(tn) = j | X(tn−1)), (2.1)

for any j ∈ S, n ≥ 1, and any sequence t1 < t2 < · · · < tn of times.

2. The Homogeneity property.

P(X(t+ s) = j | X(s) = i) = P(X(t) = j | X(0) = i),

for all 0 ≤ s ≤ t and i, j ∈ S.

Both properties possessed by the continuous-time Markov chains are the continuous

analogues of the discrete version. In particular, note that the Poisson process satisfies

the Markov property as described by property 2 of Definition 2.1. Also, a simple appli-

cation of property 2 and 3 of Definition 2.1 implies that the Poisson process satisfies the

Homogeneity property. Thus, we can think of the continuous-time Markov Chain as a

generalisation of the Poisson process.

The main difference of these two versions of Markov chains is obviously the time

indices of the processes. While the discrete Markov chains can only experience state

transitions on given discrete time slots, the state transitions of the continuous version can

occur at arbitrary times. However, unlike the discrete version, it is irrelevant to say that a

continuous Markov chain performs a state transition to the same state at a given time. In

the discrete version, at any given round n and current state i, the process has a chance to

stay in state i at the next step as long as pi,i > 0. In contrast, when a continuous Markov
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chain stays at the same state at a given period, it does not perform any transition. To

explain this more precisely, we introduce the notion of the generator matrix.

A continuous-time Markov chain {X(t) : t ≥ 0} is completely determined by its

so-called generator matrix Q = [qi,j ]i,j∈S satisfying the following properties:

1. qi,j ≥ 0 with
∑
j 6=i

qi,j > 0 for all i 6= j , and

2. qi,i = −
∑
j 6=i

qi,j for all i ∈ S.

For every distinct i, j ∈ S, we define p∗i,j = −qi,j/qi,i. Then, in regards to Q, we can

understand the behaviour of X as described by the following rules.

Rules 2.4 ([42] in Definition 4.1.1). For all i ∈ S and t ≥ 0,

1. If X(t) = i, then it will stay at state i for an exponentially distributed time with

mean −1/qi,i.

2. If the process leaves state i at time t, it will enter state j 6= i with probability p∗i,j.

Suppose that the process is currently in state i. Then for all j ∈ S − {i}, we call qi,j

the transition rate from i to j. Equivalently, we say that the process transitions from i

to j with rate qi,j . On the other hand, we call p∗i,j the instantaneous transition probability

from i to j.

Alternatively, we can also view the process X in terms of Poisson clocks. Suppose that

X is currently at state i. For all j ∈ S for which qi,j > 0, we define independent Poisson

clocks Cj with rate qi,j . Then the process will stay at state i until one of these clocks rings.

Suppose that the first ringing clock is Cj′ for some j′ ∈ S/{i}. Then, the ringing instructs

X to leave state i and enter state j′. By this setting, we have that the time spent by X

in state i is equal to the waiting time of the first ringing of the Poisson clocks Cj ’s. By

the superposition property, the waiting time has an exponential distribution whose rate

is the sum of the clocks rate, that is −qi,i. On the other hand, the probability that the

process moves to state j′ in the next transition, is −qi,j′/qi,i, which is basically p∗i,j . This

establishes the equivalence of the Poisson clocks point of view to the generator matrix

point of view.

We can also construct a discrete-time Markov chain from a continuous-time Markov

chain, that will be called the embedded Markov chain.

Definition 2.5 (Embedded Markov Chains). Let {X(t) : t ≥ 0} be a continuous-time

Markov chain and τj denote the time at which X experiences the j-th state transition.

Suppose that τ+j is an instantaneous time right after the j-th state transition. Then, the
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embedded Markov chain of X is the discrete-time Markov chain {X∗n : X∗n = X(τ+n ), n =

0, 1, . . . }.

Here, the embedded Markov chain only captures the information regarding the history

of the state jumpings that X experiences, without taking note of the exact times of the

state transitions. Suppose that the transition matrix of X∗ is P∗. Then for all i, j ∈ S,

one can check that the (i, j) entry of P∗ is p∗i,j , the instantaneous transition probability of

X.

2.2 Stochastic Orderings

In this thesis, we will often need to bound the expectation of many random variables. One

of the most convenient ways to do this is to find their stochastic orderings to the other

random variables.

The notion of stochastic orderings is mainly used to describe a condition when a

certain random variable is ‘typically greater’ than another random variable. The precise

definition is given as follows.

Definition 2.6 (Stochastic Orderings). Suppose that X and Y are real-valued random

variables, not necessarily lying on the same probability space. We say that X is stochas-

tically smaller than Y or equivalently, X is bounded by Y from above stochastically, if for

every t ∈ R,

P(X > t) ≤ P(Y > t).

We denote this by X ≤ST Y , or equivalently Y ≥ST X.

One way to show that two random variables satisfy a stochastic ordering relationship

is to construct a so-called coupling of them. First, we give the definition of a coupling of

random variables.

Definition 2.7 (Coupling). Suppose that X1, . . . , Xn are any real-valued random vari-

ables. We say that (X̂1, . . . , X̂n) is a coupling of X1, . . . , Xn if for all i = 1, . . . , n, the

marginal distribution of X̂i is the same as Xi. In other words, for any measurable set A

of R,

P(X̂i ∈ A) = P(Xi ∈ A) i = 1, . . . , n.

Note that the random variables X1, . . . , Xn possibly lie on various unrelated proba-

bility spaces. However, once they are coupled, they now lie on the same probability space,

appearing as a random vector. This marks the critical point of the notion of coupling.

The incredibly simple definition of couplings will lead us to a very useful lemma

regarding stochastic ordering, described as follows.
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Lemma 2.8. For any real-valued random variables X and Y , we have that X ≤ST Y if

and only if there exists a coupling (X̂, Ŷ ) of X and Y such that

P(X̂ ≤ Ŷ ) = 1.

The proof of the lemma is adapted from a work by van der Hofstad [43].

Proof. Suppose that P(X̂ ≤ Ŷ ) = 1 for some coupling (X̂, Ŷ ) of X and Y . Hence, for all

t ∈ R,

P(X > t) = P(X̂ > t) = P(Ŷ ≥ X̂ > t) ≤ P(Ŷ > t) = P(Y > t).

Thus, X ≤ST Y .

Now suppose that X ≤ST Y . First we define the notion of the generalised inverse of

a distribution function. For any real-valued random variable Z, let FZ be the distribution

function of Z. Then we define

F−1Z (u) = inf{x ∈ R : FZ(x) ≥ u},

where 0 ≤ u ≤ 1. Note that by the definition, F−1Z (u) > x if and only if FZ(x) < u.

Suppose that U is a uniform random variable on unit interval. Then for any u ∈ [0, 1],

P(F−1Z (U) ≤ u) = P(U ≤ FZ(u)) = FZ(u). (2.2)

This means that F−1Z (U) has distribution function FZ .

Now we construct a coupling (X̂, Ŷ ) of X and Y . Suppose that FX and FY are

the distribution functions of X and Y , respectively. We specify that X̂ = F−1X (U) and

Ŷ = F−1Y (U). Notice that by (2.2), X̂ and Ŷ have the same distribution function as X

and Y respectively. Hence, X̂
d
= X and Ŷ

d
= Y .

On the other hand, X ≤ST Y is equivalent to FX(t) ≥ FY (t) for all t ∈ R. Observe

that we can rewrite this into F−1X (u) ≤ F−1Y (u) for all 0 ≤ u ≤ 1. Hence, we obtain that

P(X̂ ≤ Ŷ ) = P(F−1X (U) ≤ F−1Y (U)) = 1,

and we are done.

The lemma has a very useful corollary that provides a bound on the expected value

of random variables.

Corollary 2.9. Suppose that X ≤ST Y . Then

EX ≤ EY.
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Proof. By Lemma 2.8, there exists a coupling (X̂, Ŷ ) of X and Y such that X ≤ Y . Then

EX = EX̂ ≤ EŶ = EY.

This corollary will be a fundamental tool in the upcoming chapters to bound the

expected value of a particular random variable by the expected value of another entirely

unrelated random variable.

2.3 Sharp Concentration Inequalities

Throughout the entire thesis, we will often apply the concentration inequality of sums of

independent random variables. In this section, we will review some well known results

on large deviation probability bounds for sums of independent random variables. These

include the prominent Chernoff’s bound, which is well known for the sums of random

variables having elementary distributions, as well as its generalisations adapted to our

settings.

In general, an outcome of a random variable usually deviates relatively little from its

expected value. Inequalities which express such phenomenon are usually called the con-

centration inequalities. There are many existing concentration inequalities, for example,

the classical Markov’s inequality and Chebyshev’s inequality.

When the observed random variable is a sum of other independent random variables,

an extremely powerful concentration inequality exists, namely Chernoff’s bound. This

bound substantially outperforms both Markov’s and Chebyshev’s inequalities in this spe-

cific context. This is due to the exponentially small bound yielded by the Chernoff’s

bound. Suppose that X is a random variable of the form X =
∑n

i=1Xi where the Xi’s

are independent. Let ε be any positive real constant. Then, the Chernoff’s bound shows

that both P(X > (1 + ε)EX) and P(X < (1− ε)EX) decrease exponentially as ε grows.

The main technique used in the Chernoff’s bound is the application of Markov’s

inequality to the random variable etX for some appropriate constant t. Note that EetX is

the moment generating function of X. Here, the independence of the summands comes into

practise, since the moment generation function of a sum of independent random variables

is equal to the product of the moment generating function of each summand. For all t > 0,
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we have that

P(X > (1 + ε)EX) = P
(
etX > et(1+ε)EX

)
≤ EetX

exp(t(1 + ε)EX)

=

n∏
i=1

EetXi

exp(t(1 + ε)EX)
, (2.3)

where the inequality above comes from Markov’s inequality and the last equation comes

from the independence of the summands.

The analogous version of (2.3) for P(X < (1−ε)EX) can be achieved by taking t < 0.

Then we have that

P(X < (1− ε)EX) ≤

n∏
i=1

EetXi

exp(t(1− ε)EX)
, t < 0.

For the final step, we particularly choose the constant t to optimise the result.

The most notable result on this technique is probably the sharp concentration in-

equality for binomial random variables. Suppose that X
d
= B(n, p) for some integer n and

0 ≤ p ≤ 1. Note that we can express X =
∑n

i=1Xi where (Xi) are identical and inde-

pendent Bernoulli random variables with success probability p. We present the following

lemma.

Lemma 2.10 (Sums of Bernoulli Trials). Suppose that X
d
= B(n, p) and φ(x) = (1 +

x) log x− x. Then

P (|X − EX| ≥ εEX) ≤ 2 exp(−φ(ε)EX). (2.4)

Moreover, if ε ∈ (0, 32), then

P (|X − EX| ≥ εEX) ≤ 2 exp

(
−ε

2EX
3

)
. (2.5)

The proof written below is adapted from a work of Janson,  Luczak, and Rucinski [32].

Proof. First we calculate the moment generating function of Xi and X. Observe that for

all t > 0,

EetXi = 1 + p(et − 1),

and

EetX = Ee(t
∑n

i=1Xi) =

n∏
i=1

EetXi = (1 + p(et − 1))n ≤ exp(EX(et − 1)),

where the second equation comes from the independence of the summands.
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Now, from (2.3), we have that

P(X > (1 + ε)EX) ≤ EetX

et(1+ε)EX
≤ exp{EX(et − 1− t(1 + ε))}. (2.6)

Then we choose t = log(1 + ε), which is optimal in (2.6). We write

P(X > (1 + ε)EX) ≤ exp(−φ(ε)EX).

Moreover, by performing analogous steps with t < 0, we obtain

P(X < (1− ε)EX) ≤ exp(−φ(ε)EX).

This results in (2.4). Furthermore, when 0 < ε < 3
2 , we have that φ(x) ≥ x2

3 and thus

justifies (2.5).

Now we describe the concentration inequality for sums of independent exponential

random variables. Define W =
∑n

i=1Wi where Wi
d
= E(ri) and is independent of each

other with ri > 0 for all i. Define r∗ := min
1≤i≤n

ri. Then we have the following lemma.

Lemma 2.11 (Sums of Exponentials). For any r1, . . . , rn > 0 and any 0 < u ≤ 1 ≤ t, we

have that

P(W ≥ tEW ) ≤ e−r∗EW (t−1−log t), (2.7)

and

P(W ≤ uEW ) ≤ e−r∗EW (u−1−log u). (2.8)

The following proof uses the same procedure as the proof of Theorem 2.1 in Janson’s

unrefereed technical report [31].

Proof. We only show (2.7) in this proof since (2.8) can be derived in an analogous way.

Suppose that t ≥ 1. First, we calculate the moment generating function EevW as follows.

If 0 ≤ v ≤ r∗, we have that

EevWi =
ri

ri − v
=

(
1− v

ri

)−1
.

It follows that

EevW =
n∏
i=1

(
1− v

ri

)−1
.

From (2.3), we have that

P(W ≥ tEW ) ≤ e−tvEWEevW ≤ exp

(
−tvEW −

n∑
i=1

log

(
1− v

ri

))
. (2.9)

On the other hand, consider the function φ(x) = − log(1 − x)/x on the domain (0, 1).

Observe that φ(x) is an increasing function. This implies that for all 0 < x ≤ y < 1,

− log(1− x) ≤ −x
y

log(1− y). (2.10)
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Now by taking x = v
ri

and y = v
r∗ and putting them into (2.9) and (2.10), we obtain

P(W ≥ tEW ) ≤ exp

(
−tvEW − log

(
1− v

r∗

) n∑
i=1

r∗

ri

)
= exp

(
−tvEW − r∗EW log

(
1− v

r∗

))
By choosing v = r∗(1− t−1), we get the desired result.

The same concentration inequality also applies for sums of geometric random vari-

ables. Suppose Y =
∑n

i=1 Yi where for each i ∈ [n], Yi are independent geometric random

variables with possibly different parameters. Suppose for all i ∈ [1, n], Yi
d
= G(pi). We

define p∗ := min
1≤i≤n

pi. Then, we have the following lemma.

Lemma 2.12 (Sums of Geometrics). For any p1, . . . , pn ∈ (0, 1) and any 0 < u ≤ 1 ≤ t,

we have that

P(Y ≥ tEY ) ≤ e−p∗EY (t−1−log t),

and

P(Y ≤ uEY ) ≤ e−p∗EY (u−1−log u).

We omit the proof of the lemma since we can prove it by adapting the steps of the

proof of Lemma 2.11.

In the case when the Yi’s are identical for all i, we can obtain a better bound. Let

Y =
∑n

i=1 Yi where for each i ∈ [n], we have that Yi
d
= G(p) for some identical success

probability p ∈ (0, 1). In fact, Y has a well known distribution, which is the negative

binomial. It is usually understood as the number of trials needed to achieve the n-th

success in a series of Bernoulli trials with a given success probability. The following

lemma gives an upper tail concentration inequality.

Lemma 2.13 (Sums of Identical Geometrics, Theorem 1 of [11]). Let {Xi}i∈[1,m] be a set

of identical and independent geometric random variables with success probability p. Let

X =
m∑
i=1

Xi. Then for all t > 1,

P
(
X > tm

1− p
p

)
≤ exp

(
−
(

1− 1

t(1− p)

)2 mt(1− p)
3

)
.

Proof. Consider a biased coin whose tail probability is p and we observe the sequence of

the biased coin tossing. We can view Xi as the number of heads needed to get the first tail

in the sequence. On the other hand, X is the number of heads appearing in the sequence

until we get the m-th tail. Hence, the event X > tm1−p
p implies that in the sequence

of tm1−p
p tossing, there are less than m tails. Suppose that Y is the number of tails in
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the outcome of the first tm1−p
p coin flippings. Note that Y is a binomial random variable

whose mean is tm(1− p). By Lemma 2.10, we have that for all positive real ε ∈ (0, 1),

P(Y < (1− ε)EY ) ≤ exp

(
−ε

2EY
3

)
.

Now by choosing ε = 1− 1
t(1−p) , we obtain

P
(
X > tm

1− p
p

)
= P(Y < m)

≤ exp

(
−
(

1− 1

t(1− p)

)2 mt(1− p)
3

)
.
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Chapter 3

Mathematical Models and Some

Examples

In this chapter, we present the precise mathematical models of the rumour spreading

schemes and demonstrate some examples of how they behave in two families of elementary

graphs.

3.1 Mathematical Models

In this section, we present the models of two rumour spreading processes: Standard Ru-

mour Spreading (SRS) process and Rumour Spreading with a Delaying Scheme (RSDS)

process. The former is the standard process with no delaying scheme while the latter is the

model for our primary rumour spreading scheme that we study. In the entire discussion

of the thesis, we will always compare the performance of the RSDS to the SRS in order to

see how far the delaying scheme affects the spreading time. In this section, we will always

denote G = (V,E) as a simple and connected graph with n vertices.

First, we describe the general model of Standard Rumour Spreading (SRS) process in

G. As briefly mentioned in Chapter 1, in the SRS process, we will employ the push & pull

scheme to spread the rumour and use the asynchronous version of the spreading times. In

the scheme, the rumour passes through uniformly random neighbour callings that occur

with a certain rate.

In the SRS process, there are two possible statuses of the vertices of the graph. We

call a vertex informed if it already holds the rumour and uninformed otherwise. The

precise mathematical process is described as follows.

Definition 3.1 (SRS Model). SRS model in graph G with initial rumour spreader v ∈ V
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is a continuous time Markov Chain {X ′G(t) : t ≥ 0} whose state space is 2V with the

following properties. The initial state is deterministically X ′G(0) = {v}. For every vertex

in G, we assign to it a Poisson clock, which we will call the spreading clocks, with rate 1

independently of each other. Suppose that for all x ∈ V , the spreading clock of x rings at

time t for some t ≥ 0. At time t, x chooses a random neighbour, say y ∈ V . If x ∈ X ′G(t)

and y /∈ X ′G(t), then the ringing of the clock instructs X ′G to move to state X ′G ∪ {y}. On

the other hand, if x /∈ X ′G(t) and y ∈ X ′G(t), then X ′G moves state X ′G ∪ {x} at that time.

The process halts when X ′G = V (G).

We provide an interpretation of the definition above as follows. The current state of

the process represents the set of vertices that are already informed at that time. The initial

state portrays the fact that there is only one vertex knowing the rumour initially. The

ringing of the spreading clock associated with x marks the time at which an information

exchange occurs between x and a random neighbour y. In the first case, that is when

x ∈ X ′G(t) and y /∈ X ′G(t), we can understand that the informed vertex x pushes the

rumour to y. On the other hand, when x /∈ X ′G(t) and y ∈ X ′G(t), the uninformed vertex

x pulls the information from y.

In addition, we remark that some clock ringings can have no effect in the rumour

spreading under certain conditions. Suppose that at a given time t ≥ 0, x calls y where x

and y is in X ′G(t). In this case, the process stays at its current state and experiences no

state transition. This portrays an event where two informed vertices exchange informa-

tion at which the rumour spreading is not progressing. The same condition also applies

when both x and y are not in X ′G(t), that is an event where two uninformed vertices

communicate.

Now we describe the model of Rumour Spreading with a Delaying Scheme (RSDS) in

a connected graph G. Unlike the SRS process, each vertex has a status which has three

possible values: uninformed, dormant or active in this model. We define a vertex to be

informed if it is either active or dormant. In other words, the vertices that know the

rumour can be in two different situations. These two situations will correspond to their

ability to participate in an information exchange.

Similar to the SRS process, the rumour passing method in the RSDS process also

applies the push & pull scheme. However, an additional restriction is applied in this

model. In order to either push or pull a rumour, the informed vertex involved in the

communication needs to be active. In other words, a dormant vertex knows the rumour

already but is unable to pass the rumour to other vertices. We describe the precise model

as follows.

Definition 3.2 (RSDS Model). Let S be the collection of all partitions of V into three

classes (A,D,U). RSDS model in graph G with initial rumour spreader v ∈ V , is a

continuous time Markov Chain {XG(t) : t ≥ 0} whose state space is S with the following
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properties. Initially we have that XG(0) = ({v}, ∅, V − {v}) deterministically. For each

vertex in G, we assign to it two Poisson clocks, which we will call the spreading clocks and

the switching clocks. We specify that all spreading clocks have rate 1 whereas the rate of the

switching clocks is s(n). These clocks are independent of each other. Suppose that for some

time t ≥ 0, we have that XG(t) = (A,D,U) for some vertex set partition (A,D,U). When

a switching clock assigned to a vertex a ∈ A rings at time t, it instructs XG to transition to

state (A−{a}, D∪{a}, U). Analogously, a ringing of a switching clock assigned to a vertex

d ∈ D at time t indicates the transition to (A ∪ {d}, D − {d}, U). Now for any x ∈ V ,

suppose that a spreading clock of x rings. Then x chooses a uniformly random neighbour,

say y ∈ V . If x ∈ A and y ∈ U , then XG transitions to state (A∪ {y}, D, U − {y}). Also,

if x ∈ U and y ∈ A, then XG moves to (A ∪ {x}, D, U − {x}). The process stops when it

arrives at any state of the form (A,D, ∅).

The state of the RSDS process described above represents the statuses of the vertices.

Suppose that XG(t) = (A,D,U) for some t ≥ 0 and (A,D,U) a partition of V . Then A,D,

and U denote the current set of active, dormant, and uninformed vertices respectively. The

initial state of the process tells us that there is only one active vertex in the beginning of

the RSDS process.

We describe the interpretation of the ringings of the clocks as follows. When a switch-

ing clock of an informed (either active or dormant) vertex rings, it immediately flips its

status, from dormant to active or vice versa. We remark that the ringing of a switching

clock associated to an uninformed vertex has no relevance to the rumour spreading pro-

cess. On the other hand, the spreading clocks work almost in the same way as that of the

SRS process, except that we ignore all random callings that involve any dormant vertices.

In particular, we call the rate of the switching clocks s(n), the switching rate. We

specify that the switching rate is a function of n, the order of the graph. The switching

rate will be the central interest of the upcoming chapters in this thesis. We will study

how different choices of the switching rate can substantially affect the running time of the

rumour spreading.

On the other hand, when a rumour spreading process takes a non unit spreading rate,

there is a simple transformation of the process into another process with a unit spreading

rate and a shifted switching rate. For this reason, as briefly mentioned in Chapter 1, we

always assume that the rate of the spreading clocks is 1 for the sake of the easiness of the

analysis.

Later on, when the context of the underlying graph G is clearly understood, we will

address the SRS and RSDS process simply by X ′ and X respectively, instead of X ′G and

XG.

There are other perspectives to understand the SRS and RSDS models. Before we
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discuss the perspectives more precisely, we provide the following observation. We say

that two adjacent vertices x and y (without paying attention to their statuses) exchange

information if either the spreading clock of x rings and x calls y, or the spreading clock

of y rings and y calls x.

Observation 3.3. Let x and y be two adjacent vertices in G and C be a clock that

rings every time x exchanges information with y. Then C is a Poisson clock with rate

1/deg(x) + 1/ deg(y).

Note that the observation above is a direct application of the thinning and superpo-

sition properties of Poisson clocks. When the spreading clock of x rings, x calls y with

probability deg(x)−1 since the random neighbour is uniformly chosen. Then, x informs y

with rate deg(x)−1 by the thinning property. By symmetry, we also have that y calls x with

rate deg(y)−1. Now, by the superposition property, we have that x and y communicate

with rate deg(x)−1 + deg(y)−1.

Now we restate the SRS and RSDS models with another point of view. We will call

the new models the edge clock models. In these models, we put the spreading clocks on the

edges. For each edge xy in G, we associate a spreading clock with rate 1/deg(x)+1/deg(y),

independently of each other. We specify that whenever the clock of xy rings, x and y

exchange information. On the other hand, we still apply the same switching clock rules

to the edge clock RSDS model. We call such spreading clocks the edge spreading clocks.

Then, Observation 3.3 implies that the edge clock models are exactly the same as the

original rumour spreading models, for both SRS and RSDS processes.

In the light of this notion, we will sometimes call the original SRS and RSDS models in

Definition 3.1 and Definition 3.2, the vertex clock models of the SRS and RSDS respectively,

since their spreading clocks are associated with the vertices of the graph. Also, we will

also call their spreading clocks the vertex spreading clocks.

A particularly interesting case is when G is a regular graph. Suppose that d is the

degree of the vertices in a regular graph G. Then the edge clock rumour spreading models

possess a nice property. In these models, all spreading clocks have the same rate, that is

2/d. This leads to a very handy analysis of rumour spreading when we analyse the edge

clock version of the models since we can disregard the random neighbour callings scheme.

We will utilise it in the case of complete graphs (which is also a regular graph) in the

upcoming chapters.

The rumour spreading edge clock models in regular graphs are equivalent to the

infection models, up to some normalisation. Recall that the rumour spreading model

differs from the infection model primarily in that the rate of the spreading occurring in

a particular edge depends on the degree of its ends vertices. However, when all vertices

of the graph have the same degree, the distinguishing factor between these two models
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simply vanishes.

In particular, when the underlying graph is regular, the edge clock SRS model is

equivalent to the SI infection model. For a more detailed definition of such a process, one

can consult [28]. In the SI model, a disease spreads from a certain infected vertex to its

susceptible neighbour with a constant rate. These infected vertices have no chance to be

susceptible again. This leads the scheme to behave exactly the same as the SRS. Then,

the time when every individual in the network receives the infection corresponds to the

running time of the SRS process.

On the other hand, the edge clock RSDS model has many correspondences with

the SIR infection model. To find a formal definition of the SIR model in networks, an

interested reader can take [9] and [34] as references. The uninformed, active, and dormant

vertices of the RSDS model correspond to the susceptible, infected, and recovered vertices

of the SIR model respectively. Similarly to the SI model, an infection propagates from

the infected individuals to the susceptible ones with a constant rate for each adjacent

pair of them. However, each infected individual has a rate to be recovered. In the SIR

model, once a vertex is recovered, it is no longer able to suffer from the disease. This

marks the substantial difference between the SIR and RSDS models. Suppose that the

SIR model is modified such that a recovered vertex is considered to have a more fragile

health than the susceptible vertices. These recovered vertices have a positive rate to get

infected again without having a contact with any infected vertices due to their history of

infection. However, we specify that when a vertex is in a recovered state, it cannot infect

its susceptible neighbours. Then this modified SIR is equivalent to the RSDS model when

the graph is regular.

We define the following terms. Let X be a rumour spreading process (either SRS or

RSDS) on graph G. We say that X is in stage i if there are i informed vertices at that

time. For i = 1, . . . , n, we introduce the monotone subsets sequence I1(X) ⊆ I2(X) ⊆
· · · ⊆ In(X) = V (G) where Ii(X) is the set of all informed vertices during stage i. For

convenience, we define I0(X) = ∅. Analogously, we also introduce the monotone subset

sequence (Ui(X))0≤i≤n where Ui(X) := V (G) − Ii(X). We call Ii(X) and Ui(X) the

informed and uninformed sets of stage i respectively.

We also define the potential set of stage i, denoted by Pi(X), as

Pi(X) = {w ∈ Ui : xw ∈ E(G) for some x ∈ Ii}.

In other words, Pi(X) contains all uninformed vertices during stage i that are potential to

be informed at the next stage. We call elements in a potential set the potential vertices.

Similarly, we define the effective set of stage i, denoted by Fi(X), as

Fi(X) = {x ∈ Ii : xw ∈ E(G) for some w ∈ Ui}.
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The vertices in an effective set are called the effective vertices. Only effective vertices

have a significant role in sending the rumour to a new vertex, since all neighbours of a

non-effective vertex are informed already. We call a vertex spreading clock associated with

an effective vertex the vertex effective clock. Similarly, we call an edge spreading clock of

an edge whose one of the ends is an effective vertex the edge effective clock.

In the context of the RSDS process, we call a vertex effectual if it is both effective

and active. Also, we say that a vertex effective clock is effectual if the associated effective

vertex is effectual as well as an edge effective clock of an edge is effectual if the associated

edge is incident to an effectual vertex.

v1

v2

v3
v4

v5

v6

v7
v8

Figure 3.1: Rumour spreading in the graph G

To exhibit these notions better, consider a rumour spreading process X occurring in

graph G as illustrated in Figure 3.1. Suppose at a given time, we have that the current

informed and uninformed vertices of G are respectively shown by the red and black vertices

at the figure above. Notice that X is now in stage 4 since we have 4 red vertices in the

graph. Hence,

I4(X) = {v1, v2, v3, v4},

U4(X) = {v5, v6, v7, v8},

F4(X) = {v1, v2, v3},

P4(X) = {v5, v6, v7}.

Now, since v4 is not effective, it can no longer spread the rumour to any new vertex.

It is obvious that the spreading clock associated to v4 has no effect for the forthcoming

spreading process. On the other hand, since v8 is non-potential, it cannot be an informed

vertex in stage 5.

Next, we define the captured vertex of stage i, denoted by wi, as the only vertex in

the set Ii(X) − Ii−1(X). In other words, the captured vertex wi is the i-th informed

vertex during the whole spreading process. Also, we write that Ii = {w1, . . . , wi} for all

1 ≤ i ≤ n− 1.

The following terms apply when X is an RSDS process. We defineA(X, t) and D(X, t)

as the set of active and dormant vertices in X at time t respectively. Observe that if X is

in stage i at time t, then A(X, t) and D(X, t) form a partition of Ii(X). Unlike Ii(X), the
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random subset A(X, t) and D(X, t) are changing during the entire stage i as the informed

vertices are switching. Let Do(X, t) and In(X, t) be the number of dormant and informed

vertices of X at time t respectively.

For i ∈ [1, n− 1], define

Vi(X) = inf{t ≥ 0 : In(X, t) = i},

that is the time at which X enters stage i for the first time. For i ∈ [1, n− 1], define

Ti(X) = Vi+1(X)− Vi(X),

that is the duration of time spent by X during stage i. Finally, define

T (X) = Vn =
n−1∑
i=1

Ti(X),

that is, the time needed for the rumour spreads until every vertex learns the rumour. We

will also call T (X) the running time of X.

When the process X is clearly understood from the context, we sometimes simply

write Ii, Ui, Pi, Fi ,Ti, Vi, and T instead of Ii(X), Ui(X), Pi(X), Fi(X), Ti(X), Vi(X), and

T (X).

It is worth describing some basic observations on the nature of both SRS and RSDS.

Most of the observations are based on the basic properties of random processes described

in Chapter 2. For this reason, some of the observations only require some brief explanation

instead of detailed proofs.

The following observations describe some phenomena occurring in an SRS process.

Suppose that X ′ denotes an SRS process in a connected graph G.

Observation 3.4 (Lemma 1 of [40]). For all i = 1, . . . , n − 1, conditional on Ii(X
′), we

have that Ti(X
′) has an exponential distribution with rate

ri :=
∑
u∈Fi

e({u}, Pi)
deg(u)

+
∑
w∈Pi

e({w}, Fi)
deg(v)

. (3.1)

Moreover, we have that Ti(X
′) is independent of T1(X

′), . . . , Ti−1(X
′).

The observation above is a result of an appropriate application of the superposition

and thinning properties. Recall that by Observation 3.3, for a particular pair of adjacent

vertices u and w, where u ∈ Ii and w ∈ Ui, we have that u and w exchange information

with rate 1/deg(u)+1/ deg(v). Recall that Ti(X
′) is the waiting time for the first rumour

passing among all possible pairs of u ∈ Fi and w ∈ Pi. It follows that by the superposition

property, the waiting time is exponentially distributed with rate∑
u∈Fi

∑
w∈Pi

(
1

deg(u)
+

1

deg(w)

)
1{uw ∈ E}

30



which is essentially the same as (3.1).

The next observation describes the probability distribution of the captured vertex of

stage i.

Observation 3.5. For all i = 1, . . . , n − 1, conditional on Ii(X
′), suppose that for any

potential vertex w ∈ Pi(X ′), we define

F
(w)
i = {u ∈ Fi : uw ∈ E},

r
(w)
i =

∑
u∈F (w)

i

(
1

deg(w)
+

1

deg(u)

)
. (3.2)

Also define ri to be the same as in (3.1). Then, the probability that a potential vertex

w ∈ Pi(X ′) is chosen from the set Pi(X
′) to be the captured vertex, is r

(w)
i /ri. In other

words,

P(wi = w) =
r
(w)
i

ri
, for all w ∈ Pi(X ′).

We provide a brief explanation for the observation above. Consider the edge clock

version of the rumour spreading model. Note that the term in (3.2) is the sum of the rates

of all effective clocks associated with the edges incident to w. In other words, r
(w)
i is the

rate of informing w. Note that ri =
∑
w∈Pi

r
(w)
i . It follows that the probability that w is the

captured vertex, is proportional to r
(w)
i where the normalising factor is ri.

The analogous version of the observations above for the RSDS process is less straight-

forward than the SRS version. Similar to the SRS, non-effective informed vertices in RSDS

process also play void role to pass the rumour to new vertices. However, when an effective

vertex in the RSDS process is dormant, it is also unable to pass the message. At an in-

stantaneous time, the rate of informing a new vertex depends on the number of effectual

vertices (instead of effective vertices as described in Observation 3.4) at that time. Yet,

as the process runs during a particular stage, the effective vertices are switching and this

changes the number of effectual vertices. This implies that the running time of stage i is

not necessarily exponentially distributed and requires more intricate analysis.

To describe the analogous observations more precisely, we define several additional

terms. Suppose that X is an RSDS process occurring in a connected graph G. For

i = 1, . . . , n − 1, we define SWi as a non negative integer-valued random variable that

counts how many times the vertices in Fi of X switch during stage i.

We define the sequence of time points Vi(X) = s0i < s1i < s2i < · · · with the following

specification. Starting from Vi(X), we observe the times at which the vertices in Fi

switch. For j ≥ 1, starting from the beginning of stage i, define sji as the j-th earliest

switching time. Here we just capture the times at which these vertices switch without

paying substantial attention on the rumour spreading process. We call sji the j-th switching
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time of Fi. Also, for all j ≥ 0 we define Cji to be the set of all effectual vertices at time

sj+i , an instantaneous time after the j-th switching time. Similarly, (Cji )j≥0 retrieves the

information about the statuses of the effective vertices for the upcoming times without

paying attention to the rumour spreading outcomes.

The following observations describe the distribution of the running time of stage i

in X as an RSDS-adapted version of Observation 3.4. Recall that s(n) is the rate of the

switching clock.

Observation 3.6. Conditional on SWi and (Cji )j≥0, suppose that for j ≥ 0, we define

qj :=
∑
u∈Cj

i

e({u}, Pi)
deg(u)

+
∑
w∈Pi

e({w}, Cji )
deg(w)

(3.3)

and Ej to be an exponential random variable with rate s(n)|Fi|+ qj, independently of each

other. Then

Ti(X) |
SWi,(C

j
i )

d
=

SWj∑
j=0

Ej .

Note that the derivation of Observation 3.6 from Observation 3.4 is less straightfor-

ward. To accommodate this, we provide the proof of the observation as follows.

Proof. Define a Poisson clock B at the beginning of stage i to be the superposition of all

switching clocks of the effective vertices in Fi and all effective edge spreading clocks of the

stage. Let b0 = Vi(X) and b1 < b2 < . . . be the ascending ringing times of B. Note that

for all 1 ≤ j ≤ SWi, the clock that rings at time bj is a switching clock, and bSWi+1 marks

the first ringing of a spreading clock. It follows that

Ti(X) |SWi=

SWi∑
i=0

bj+1 − bj . (3.4)

Now observe that the distribution of bj+1 − bj is independent of what type of clock that

rings at time bj+1. In fact, bj = sji for j = 0, . . . , SWi. Thus, conditional on Cji , starting

from time bj , the spreading rate is the sum of the rates of all effectual spreading clocks at

that time. A simple observation reveals that this equals to qj . Note also that qj in (3.3)

is a slight modification of (3.1) where we replace Fi with Cji . On the other hand, we have

that the switching rate is s(n)|Fi| since all non-effective informed vertices play void role

in the rest of the rumour spreading. This means that

(bj+1 − bj) |Cj
i

d
= E(s(n)|Fi|+ qj). (3.5)

By combining (3.4) and (3.5), we have the desired result.

Another adapted observation describing the distribution of the captured vertices is

given as follows.
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Observation 3.7. Conditional on SWi and {Cji }j≥0, suppose that for any potential vertex

w ∈ Pi(X), we define

C
(w)
i = {u ∈ CSWi

i : uw ∈ E},

r̂
(w)
i =

∑
u∈C(w)

i

(
1

deg(u)
+

1

deg(w)

)
,

r̂i =
∑
w∈Pi

s
(w)
i .

Then for any w ∈ Pi(X), the probability that w is the captured vertex is r̂
(w)
i /r̂i, that is

P(wi = w) =
r̂
(w)
i

r̂i
, for all w ∈ Pi(X).

Again, Observation 3.7 is the RSDS-adapted version of Observation 3.5. However,

unlike Observation 3.6, the adaptation follows directly from its SRS version by considering

the effectual set in an instantaneous time before an effectual spreading clock rings.

Next, we discuss the formal definition of delay time of an RSDS graph. For any con-

nected graph G, let X ′G and XG respectively denote the SRS and RSDS process conducted

in the same underlying graph G. As being briefly introduced in Chapter 1, the delay time

serves as a measure to compare the running times of these two schemes. Recall that T (X ′G)

and T (X) respectively denote the running time of the SRS and RSDS process in G. We

define the delay time of XG to be

D(XG) = T (XG)− ET (X ′G).

We also decompose the delay time into stages. For all i = 1, . . . n− 1, define

Di(XG) = Ti(XG)− ETi(X ′G). (3.6)

We call Di(XG) the delay time of stage i. Then, we can express

D(XG) =
n−1∑
i=1

Di(XG).

Note that D(XG) is a random variable that shares the same probability space as

the stochastic process XG. We can understand D(XG) as the measure of how strong the

delaying scheme slows the running time of the standard process. In this thesis, we will

mostly discuss the expectation of D(XG) as the main parameter in the analysis of the

RSDS process.

We now show that ED(XG) is always non negative. For i = 1, . . . , n − 1, we couple

Ti(XG) and Ti(X
′
G) in such a way that Ti(XG) ≥ Ti(X

′
G). Then, by Lemma 2.8, the

existence of such coupling implies that

Ti(X
′
G) ≤ST Ti(XG). (3.7)
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We specify that once stage i begins, these two processes XG and X ′G share the edge

spreading clocks to govern stage i of both processes. At the time when stage i of XG

finishes, a spreading clock associated to an effectual vertex rings. It follows that the ringing

of the spreading clock necessarily terminates stage i of X ′G. Thus, (3.7) is satisfied. As a

result, we have that ETi(XG) ≥ ETi(X ′G). By summing this inequality for all i ∈ [1, n−1],

we obtain that ET (XG) ≥ ET (X ′G). This establishes the non-negativity of ED(XG).

3.2 Some Examples of SRS and RSDS

This section discusses the behaviour of the running time of SRS and RSDS processes in

two elementary families of graphs: paths and stars. The main aim for this section is to

illustrate how the RSDS process works in a simple setting. We will present the expected

running time of both rumour spreading processes and their comparisons in paths and stars.

In this section, we will use the edge clock perspective in order to analyse the rumour

spreading processes in paths and stars. The term ‘spreading clocks’ in this section refers

to the edge spreading clocks.

3.2.1 Rumour Spreading Processes in Paths

Recall that Pn denotes the path graph with n vertices where V (Pn) = {v1, . . . , vn} and

E(Pn) = {v1v2, . . . , vn−1vn}. In this subsection, we let Y ′ and Y be the SRS and RSDS

process in Pn, respectively.

We choose the initial rumour spreader, that is a leaf vertex of the path. Note that if

we choose a vertex of degree 2 to be the initial rumour spreader, then the running time

is the maximum between the running times of two other rumour spreading processes on

the other smaller paths where the initial rumour spreader is a leaf vertex. For this reason,

we will be only interested in the analysis of the case where a leaf becomes the initial

rumour spreader. Without losing of generality, let v1 be the initial rumour spreader in our

analysis. In Figure 3.2, the red vertex indicates the initial rumour spreader.

v1 v2 v3 vn

Figure 3.2: Initial rumour spreading setting in Pn

For all i ∈ [1, n − 1], observe that we deterministically have that Pi(Y
′) = {vi+1}.

Also, the effective set of stage i is also deterministic, that is Fi = {vi}. Figure 3.3 visualises

stage i of Y ′ where the red vertices represent the informed vertices while the black ones
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represent the uninformed vertices. The only spreading clock whose ringing affects the

rumour spreading progress is the one lying on vivi+1. It follows that the i-th captured

vertex is chosen deterministically, that is wi = vi.

v1 v2 vi vi+1 vi+2 vn

Figure 3.3: Stage i of Y ′

Now we apply Observation 3.4 to find the distribution of Ti(Y
′) for all i. Note

that the only vertices with degree 1 are v1 and vn. So, the running time distribution of

stage 1 and stage n − 1 will receive a special attention since they involve the spreading

contacts with these vertices. Now observe that for all i, we have that E(Fi, Pi) = {vivi+1}
deterministically. Hence, we can write (3.1) as

ri =
1

deg(vi)
+

1

deg(vi+1)
.

Then, Observation 3.4 implies that Ti(Y
′) is an exponential random variable with rate ri

where

ri =

3/2, if i ∈ {1, n− 1},

1, otherwise,

and

ETi(Y ′) =
1

ri
=

2/3, if i ∈ {1, n− 1},

1, otherwise.

It follows that

ET (Y ′) =

n−1∑
i=1

ETi(Y ′) =
2

3
+
n−2∑
i=2

1 +
2

3
= n− 5

3
.

To calculate ETi(Y ) we analyse the distribution of SWi, that is the number of switch-

ings experienced by vi during stage i of Y .

The fact that Fi = {vi} deterministically means that during stage i of Y , the process

can either have one effectual vertex or none at all. At the former case, we say that Y is

alive and dead otherwise.

When Y is alive during stage i, it has two possible state transitions: either vi passes

the rumour to vi+1 or vi becomes dormant. With this in hand, we can understand the

alive condition of Y as a Bernoulli trial where the success refers to the spreading of the

rumour to vi+1. Observe that when Y is alive, in order to make a state transition, Y waits

until either the switching clock of vi or the spreading clock of vivi+1 rings. Note that the

switching clock has rate s(n) whereas the spreading clock has rate ri. This means that the
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success probability is equivalent to the probability that the spreading clock rings before

the switching clock, that is
ri

ri + s(n)

In the case when Y becomes dead, that is when vi switches before it passes the

rumour, the spreading is paused since no vertex is able to spread the rumour to the

potential vertex. To continue the spreading, Y has to wait for vi to come back active,

that is when the switching clock of vi rings again. Then, after vi switches for the second

time, Y comes back to be alive. Thus, the failure of the Bernoulli trial means that vi

experiences two consecutive switchings which leads to another identical and independent

Bernoulli trial. These Bernoulli trials are repeated until we get the first successful trial.

It follows that

SWi
d
= 2G

(
ri

ri + s(n)

)
,

and

ESWi =
2s(n)

ri
.

The factor 2 above comes from the fact that each failure of the trial contributes to two

switchings of vi.

Observe that Cji = Fi when j is even and Cji = ∅ otherwise deterministically. It

follows that

e(Cji , Pi) =

1, if j is even,

0, if j is odd.

Now we apply Observation 3.6. Whenever Y is alive, it waits for an exponentially

distributed time with rate ri+ s(n) until either it spreads the message or it goes dormant.

On the other hand, when Y is dead, the process will wait for an exponentially distributed

with rate s(n) until vi comes back active. Now, for all j ≥ 0, let Ej be an exponential

random variable with rate ri+s(n) if j is even and with rate s(n) otherwise, independently

of each other. Thus, we have that

ETi(Y ) = E
[
E
(
Ti(Y ) | SWi, (C

j
i )j≥0

)]
= E

E
SWi∑
j=0

Ej

∣∣∣∣∣∣SWi


= E

E
SWi/2−1∑

k=0

(E2k + E2k+1) + ESWi

∣∣∣∣∣∣SWi


=

ESWi

2
(EE0 + EE1) + EE0

=
s(n)

ri

(
1

ri + s(n)
+

1

s(n)

)
+

1

ri + s(n)

=
2

ri
= 2ETi(Y ′).
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This leads to

ET (Y ) =
n−1∑
i=1

ETi(Y ) = 2ET (Y ′) = 2

(
n− 2

3

)
,

and

ED(Y ) = n− 2

3
.

In path graphs, we showed that the expected delay time is unaffected by the choice of

the switching rate. No matter how fast the switching rate is, the expected running time

of an RSDS process in Pn will always be twice as much as the expected running time of

its SRS version.

3.2.2 Rumour Spreading Processes in Stars

Recall that Sn denotes the star graph with n vertices, where V (Sn) = {v, v1, . . . , vn−1}
and E(Sn) = {vv1, vv2, . . . , vvn−1}. Throughout this subsection, we let Z ′ and Z be the

SRS and RSDS process running in Sn, respectively.

v1

v2
v3

v4
vn−1

v

Figure 3.4: Initial rumour spreading setting in Sn

Similar to the paths, we also make a particular choice for the first informed vertex in

Sn. In the stars, we choose the centre vertex v to be the initial rumour spreader. Figure

3.4 visualises this, where the red vertex represents the initial rumour spreader. Observe

that when the rumour starts from a leaf vertex, the rumour spreading can be decomposed

into two rumour spreading processes of two smaller stars. To illustrate this, we suppose

that v1 is the initial rumour holder. Then, the next informed vertex is the centre vertex

deterministically. The process that pass the rumour from v1 to v is essentially the rumour

spreading process in S2 (whose both vertices can act as the centre of the star). On the

other hand, once v is informed, v1 is no longer an effective vertex and the remaining process

is the rumour spreading in Sn−1 whose initial rumour holder is the centre vertex. Thus,

if a leaf vertex becomes the initial rumour holder, then the running time of the process is

the sum of the same spreading process occurring in an edge (star with 2 vertices) and a

smaller star obtained by deleting the leaf (see figure 3.5). For this reason, we will always

assume that the initial rumour spreader is the centre vertex.
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v1v

v2
v3

v4
vn−1

v

Figure 3.5: Decomposing rumour spreading

The star graphs also enjoy the deterministic choice of effective sets similarly to the

path graphs. In fact, throughout the entire process, v is always effective and every leaf

vertex is always non-effective, that is, Fi = {v} for all i. This is because all leaves have only

one neighbour, the centre vertex, which has become informed already since the beginning

of the process.

However, unlike the paths, the informed and uninformed sets within stages are not

deterministic in stars. To see this, note that all uninformed vertices are potential since

they are always adjacent to the informed centre vertex. This implies that Ui = Pi for all

i. Next, one can check by simple calculation that the value of r
(w)
i in (3.2) is the same for

all w ∈ Ui = Pi. Hence, Observation 3.5 implies that the captured vertex wi is uniformly

distributed among all uninformed vertices. This means that Ii = {v} ∪ S where S is a

random subset uniformly picked from all (i− 1)-subset of {v1, v2, . . . , vn−1}.

Without losing of generality, we assume that wi = vi in order to simplify the analysis.

We can write that Ii = {v, v1, . . . vi−1} and Ui = {vi, . . . , vn−1} for all i.

v1

v2
vi−1

vi
vn−1

v

Figure 3.6: Stage i of Z ′

Although Pi is a random set, we have the following deterministic facts. Since Fi

has only one member at all times, we have that e({u}, Fi) = 1 for all u ∈ Pi. On the

other hand, since v ∈ Fi is adjacent to all other vertices in the graph, we have that

e({v}, Pi) = |Pi| = n− i. This means that ri in (3.1) is

ri =
n− i
n− 1

+ n− i (3.8)

deterministically.
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By Observation 3.4, we have that Ti(Z
′) is an exponential random variable with rate

ri and thus

ETi(Z ′) = r−1i =

(
1− 1

n

)
1

n− i
.

Therefore,

ET (Z ′) =
n−1∑
i=1

ETi(Z ′) =
n−1∑
i=1

1− n−1

n− i
= log n+O(1).

Now we calculate ETi(Z). We begin by looking for the distribution of SWi(Z), the

number of switching experienced by v during stage i.

Since v is the only effective vertex during the whole process, the performance of the

whole rumour spreading heavily depends on the status of v. It implies that the switching

clocks associated to the leaves play no role during the entire process and our running time

analysis requires no attention to these clocks.

Suppose that Z is in stage i. Similar to the analysis of the paths, we say that the

process is dead when v is dormant and alive when v is active. We will analyse the running

time of stage i based on these two conditions.

Now, suppose that Z is alive. Then, there are two options for the next state transition.

Observe that Z will stay at its current position until either one of the effective spreading

clocks or the switching clock of v rings. When the earliest ringing clock is a spreading

clock, Z enters stage i. Otherwise, v goes dormant and Z becomes dead.

With this in hand, we can associate the alive state of Z in stage i with a Bernoulli trial,

where the success corresponds to the entering of the next stage. The success probability

of the trial is the same as the probability that the first ringing clock is a spreading clock.

Observe that all spreading clocks have rate 1 + (n− 1)−1 since all edges are incident to a

leaf and the centre vertex. Note also that the rate of the spreading clocks is the same as

the value r
(w)
i described in (3.2) for all u ∈ Pi. Hence, the spreading rate is

(n− i)r(w)i = n− i+
n− i
n− 1

= ri

where ri here refers to (3.8). On the other hand, recall that the switching clock has rate

s(n). It follows that the success probability is

ri
ri + s(n)

.

When the Bernoulli trial fails, Z becomes dead. In this state, Z has no other transition

option but to wait for v to switch again to become active and thus Z is alive again. This

means that when the trial fails, Z performs two consecutive switchings for v and faces

another identical and independent Bernoulli trial. In other words, v experiences an even
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number of switchings until it finally passes the rumour to a new vertex. Thus, we have

that

SWi
d
= 2G

(
ri

ri + s(n)

)
, and ESWi =

2s(n)

ri
.

Now we observe the set of effectual vertices Cji . In the case of stars, Cji is a deter-

ministic set for all i and j. When Z first enters stage i, the centre vertex is necessarily

effectual. Since, there is only one effective vertex at all times, we have that Cji = {v}
when j is even and Cji = ∅ otherwise. One can check that qj in (3.3) has value

qj =

ri, if j is even,

0, otherwise.

Now, for all j = 0, . . . , SWi, let Ej be an exponential random variable with rate

s(n) + qj , independently of each other and SWi. Therefore, by Observation 3.6, we have

that

ETi(Z) = E
[
E
(
Ti(Z) | SWi, (C

j
i )j≥0

)]
= E

E
SWi∑
j=0

Ej

∣∣∣∣∣∣SWi


= E

E
SWi/2−1∑

k=0

(E2k + E2k+1) + ESWi

∣∣∣∣∣∣SWi


=

ESWi

2
(EE0 + EE1) + EE0

=
s(n)

ri

(
1

s(n) + ri
+

1

s(n)

)
+

1

s(n) + ri

=
2

ri
.

This leads to

ET (Z) =

n−1∑
i=1

ETi(Y ) =

n−1∑
i=1

2

ri
= 2 log n+O(1),

and

ED(Z) = log n+O(1).

3.2.3 Some Remarks

Although the expected running time of the rumour spreading process in stars is much

faster than in paths, the application of the delaying scheme gives the same effect on both

graphs. The expected delay time of the RSDS conducted in both graphs are the same
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as the expected running time of their SRS versions. This means that by enabling the

delaying scheme, the expected running time of the rumour spreading is doubled when the

underlying graph is either a path or a star.

Observe also that the delay times of the RSDS process in paths and stars are inde-

pendent of the switching rates. At first, this might be surprising since the slow switching

rates setting should suggest that the dormancy events are very rare. Thus, this should

lead the RSDS model to behave in strong similarity to the SRS. However, the results tell

us that the expected running time is still doubled whichever slow rates that we pick. This

is due to the large amount of delay times contributed by the rare events. Once the only

effective vertex of the stage becomes dormant (which occurs with a very low probability),

the process needs to wait for a very long time until the next ringing of the slow switching

clock. This phenomenon, however, is absent in the complete graphs as we will investigate

more thoroughly in the upcoming chapters.
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Chapter 4

Spreading a Rumour in Complete

Graphs

Although complete graphs are simple to define and seemingly elementary, the analysis of

the RSDS running time in Kn is fairly intricate. In the previous chapter, determining

the exact expected running times in paths and stars is relatively easy since their graph

structures allow us to observe many deterministic conditions. For instance, in paths and

stars, there are always one effective vertex (the most recent informed vertex in paths and

the central vertex in stars) at all stages.

This property is absent when we conduct the rumour spreading in complete graphs. In

complete graphs, once an informed vertex is dormant during a particular stage i ≥ 2, there

could be many other active vertices which are able to continue the spreading. However,

the number of active vertices in a given period is varying in a random fashion during

stages. This is one of many factors that complicates the RSDS running time analysis in

complete graphs.

In this chapter, we will provide additional terminology to describe the RSDS occurring

in complete graphs more precisely. We will also expose some useful general lemmas in a

specific setting of rumour spreading in Kn, that will be frequently used throughout the

following chapters.

Throughout this whole chapter, we let X ′ and X respectively be the SRS and RSDS

process in Kn.
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4.1 Model Reformulations

As described in Chapter 3, the running time distribution of a rumour spreading process

for a general graph depends on the choice of the initial rumour spreader. For example,

a rumour spreading process (either the SRS or RSDS) in a path starting from a leaf

vertex is intuitively slower than the one which starts from an internal vertex of the path.

Nevertheless, this phenomenon is absent in complete graphs. Since Kn is vertex-transitive,

the running time distribution of the rumour spreading processes in Kn is always the same

regardless of the choice of the initial rumour spreader.

Considering this, we will reformulate the rumour spreading models without paying

attention to the identity of the initial rumour spreader. Instead of specifying the model

in terms of the choices of the initial rumour spreader, the new models will simply assume

an arbitrary vertex to be the initial rumour spreader without losing of generality.

As we briefly mention in Chapter 3, the rate of each edge spreading clock is constant

when the underlying graph is regular. This leads the edge clock model to bring more

advantages for the rumour spreading analysis for complete graphs since we do not need to

consider the neighbour random calling scheme. For this reason, unless otherwise stated,

we will always refer to the edge clock version of the rumour spreading models in Kn.

Note that in Kn, all vertices have degree n−1. By Observation 3.3, the setting where

the spreading clocks with unit rate are assigned on the vertices, is equivalent to the one

where the spreading clocks are assigned on the edges, each of which has rate 2/(n − 1).

Now we can associate the vertex clock models to the edge clock models via a certain

normalisation. To be more precise, suppose that a vertex clock rumour spreading model

has switching rate s(n). Then, the vertex clock model is equivalent to an edge clock model

with switching rate ŝ(n) = (n− 1)s(n)/2.

With this in hand, from now on, we only consider the edge clock model of rumour

spreading where the spreading clocks have the unit rate in the context of Kn. We choose

this model to make the analysis convenient.

Next, we define the simplified models in Kn, that we will call the unlabelled rumour

spreading models. Again, by the strong symmetries possessed by Kn, it is unnecessary to

have complete information regarding the identities of the informed vertices at all times

throughout the entire process. The running time distribution of each stage of the rumour

spreading processes in Kn is always the same despite various choices of the informed set

at that time.

This motivates us to introduce the notion of unlabelled spreading clocks as well as

unlabelled switching clocks to accompany the unlabelled model. Unlike the ordinary defi-

nition of spreading and switching clocks in Definition 3.1 and Definition 3.2, the unlabelled
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clocks are not associated with any edges and vertices of the graph. The unlabelled clocks

will interact with the rumour spreading model only in accordance to the number of in-

formed and active vertices at a given time without paying much attention to their specific

identities. This will be elaborated more in the later parts of the section.

Based on this, we will also sometimes call the original clocks (both spreading and

switching clocks) in Definition 3.1 and Definition 3.2, the labelled clocks since they are

associated with particular vertices and edges of the graph. We will present the model

description without involving any Poisson clocks for the sake of simplicity. However, for

each definition, we will provide another perspective which involves the unlabelled clocks.

In the later parts of the thesis, we will mainly use the unlabelled perspective of the model

to perform the analysis of the RSDS.

Now we define the unlabelled SRS model for complete graphs as follows.

Definition 4.1 (Unlabelled SRS Model). An unlabelled SRS process in a complete graph

with n vertices is a continuous time Markov Chain {X ′(t) : t ≥ 0} whose state space is

{1, . . . , n} with the following initial condition and transition rates. The initial condition

is deterministic, that is X ′(0) = 1. Suppose that Q = [qi,j ] is the generator matrix of X ′.

For all i = 1, . . . , n− 1, we specify that qi,j = i(n− i) if j = i+ 1 and qi,j = 0 otherwise.

The process halts when it enters state n.

We define the following unlabelled clocks to accompany the unlabelled SRS model

as follows. Suppose that i ∈ {1, . . . , n − 1}. Once X ′ enters state i, we introduce i

independent Poisson clocks with rate n − i, that will be called the unlabelled spreading

clocks of stage i. Once an unlabelled spreading clock rings, we specify that X ′ moves to

state i+ 1.

The interpretation of the model description in Definition 4.1 is described as follows.

The state of X ′ at a given time represents the number of informed vertices at that time,

without giving detailed information about the identities of the informed vertices. It also

means that for all 1 ≤ i ≤ n, we have that X ′(t) = i if and only if X ′ is in stage i at time

t. The initial state of the process depicts the fact that there is only one initial rumour

spreader without revealing its identity. The first ringing of an unlabelled spreading clock

of stage i indicates the time at which a new vertex receives the rumour.

The model in Definition 4.1 is equivalent to the edge clock SRS model. Since every

pair of vertices are adjacent in Kn, we also have that every informed vertex is adjacent

to every uninformed vertex as long as the process is still running. This means that every

uninformed vertex is potential and every informed vertex is effective. Observe that the

choices of both potential and effective sets in stage i can vary arbitrarily among the

collection of all (n − i)-subset and i-subset of the vertex set respectively. However, the

size of the potential and effective sets in stage i are always (n− i) and i respectively, since
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Pi = Ui and Fi = Ii. Furthermore, with probability 1, there are i(n− i) pairs of informed

and uninformed vertices during stage i and thus we always have that

e(Fi(X
′), Pi(X

′)) = i(n− i)

deterministically regardless of the varied choices of Fi(X
′) and Pi(X

′). In the edge clock

model, these Fi(X
′)-Pi(X

′) edges correspond to i(n − i) spreading clocks whose ringing

terminates stage i. Since each clock has rate 1, the waiting time for the ringing of these

clocks is exponentially distributed with rate i(n− i). On the other hand, we can associate

each unlabelled spreading clock (in the unlabelled model) with a superposition of the n− i
edge spreading clocks (in the edge clock model) corresponding to the edges in E({w}, Pi)
for a particular w ∈ Fi. Hence, the earliest ringing among these i unlabelled spreading

clocks indicates that a new vertex becomes informed in both rumour spreading processes.

This means that the waiting time for the ringing of the unlabelled spreading clocks is also

exponentially distributed with rate i(n− i). This establishes the equivalence between the

edge clock model and the model introduced Definition 4.1.

The analogous property is also present in the RSDS model. Suppose that X has d

dormant vertices at a given time during stage i. Then, the choice of the set of dormant

vertices can be taken arbitrarily from the collection of all d-subsets of the informed set.

Nevertheless, at that time, there are always (i − d)(n − i) spreading clocks in the edge

clock model whose ringing leads X to end stage i. This means that we can omit the way

the process chooses the dormant vertices within stages. The only information that we

need is just the number of dormant vertices at any given time, instead of the exhaustive

information about the list of dormant vertices.

We now provide the definition of the unlabelled RSDS model for Kn as follows.

Definition 4.2 (Unlabelled RSDS Model). Let S = {(d, i) : 0 ≤ d ≤ i ≤ n − 1}. An

unlabelled RSDS process on a complete graph with n vertices is a continuous time Markov

Chain {X(t) : t ≥ 0} whose state space is S with the following properties. The initial

condition is deterministic, that is X(0) = (0, 1). Suppose that X is in state (d, i) with

1 ≤ d ≤ i ≤ n− 1 at a given time. Then X has the following transition rates.

1. (Dormancy transition). If d < i, then X moves to state (d+1, i) with rate s(n)(i−d).

2. (Waking up transition). If d > 0, then X moves to state (d− 1, i) with rate s(n)d.

3. (Spreading transition). If d < i, then X moves to state (d, i+1) with rate (i−d)(n−i).

Lastly, we specify that X halts when it enters any state of the form (d, n) with d < n.

Again, we can think of this model in terms of Poisson clocks. However, to describe

how the clocks govern the process more precisely, we need to introduce an additional term,
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the dormancy process, throughout each stage. Suppose that for all i ∈ {1, . . . , n− 1}, we

have that (di, i) is the first state of the form (·, i) that X enters, for some (random)

di ≤ i. Once X enters state (di, i), we introduce i independent unlabelled switching clocks

{S1, . . . , Si} and i independent unlabelled spreading clocks {R1, . . . , Ri}. Each unlabelled

switching clock has rate s(n), whereas the rate of each unlabelled spreading clock is (n−i).
Additionally, we introduce an integer-valued process {d(t) : t ≥ 0} at the start of stage

i, which we will call the dormancy process of stage i. We specify that d(0) = di. Define

c0 = 0 and for all j ≥ 1, starting from time Vi(X), define cj to be the waiting time for

the j-th earliest ringing among the clocks in {S1, . . . Si, R1, . . . , Ri}. For all j ≥ 0, we

define dj := d(c−j ) where c−j denotes an instantaneous time before the ringing time cj . In

addition, define Cj to be the clock ringing at time cj . For all j ≥ 1, the ringing of Cj

governs the realisation of stage i of X according to the following rules.

Rules 4.3. The ringing of Cj gives the following effects to stage i of X.

1. If Cj ∈ {S1, . . . , Sdj}, then d(cj) = dj − 1.

2. If Cj ∈ {Sdj+1, . . . , Si}, then d(cj) = dj + 1.

3. If Cj ∈ {R1, . . . , Rdj}, then d(cj) = dj. In particular, we call the clocks in this set

the futile clocks.

4. If Cj ∈ {Rdj+1, . . . , Ri}, then X moves to state (d(cj), i+1) at time cj. In particular,

we call the clocks in the set the terminating clocks.

The unlabelled RSDS model has the following interpretation. For any given time

t ≥ 0, the process state X(t) = (d, i) means that at time t, the process has d dormant

vertices and i informed vertices. Also, X(t) = (d, i) if and only if X is in stage i at time t.

The initial state means that in the beginning, there is only one active vertex and the rest

of the vertices are uninformed. The dormancy process of stage i, d(t) counts the dormant

vertices in X at time Vi(X) + t.

Suppose that X is now in stage i. We define three types of transition events in X:

the waking up, dormancy, and spreading events, that are marked by the names of the

transition rates in Definition 4.2. These three transitions correspond to the ringing of Cj

described in rule 1, 2, and 4 in Rules 4.3 respectively. At the moment when X undergoes

a dormancy transition (waking up transition), it sends an active (dormant) vertex to be

dormant (active). Again, the exact identity of the switching vertex is irrelevant here. On

the other hand, the ringing of a terminating clock indicates that a new vertex is informed

and thus X enters stage i + 1. Meanwhile, the ringing of a futile clock in rule 3 depicts

the ringing of a non-effective spreading clock at which there is no progress of the rumour

spreading process.

It is worth noting that at some particular states, the process has less transition

options. Suppose that X is in state (d, i). If 0 < d < i, then it can move to either (d−1, i),
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(d + 1, i), or (d, i + 1) at the next transition, which represent the waking up, dormancy,

and spreading events respectively. However, when d = 0, the waking up transition is

not possible since all vertices are active at that time. On the other hand, if d = i, then

the only possible transition is the waking up transition. In this case, we have no active

vertex, which means that no individual is able to spread the rumour and thus a spreading

event is impossible to occur. Also, since all vertices are dormant, it is also not possible to

conduct another dormancy transition. This is a rather special case at which the process

will transition to state (i− 1, i) deterministically after waiting for a while. Later, we will

put special attention to these special states that we will call the vacuum states.

4.2 SRS Process in Complete Graphs

Most topics covered in this section are mainly taken from a work of Janson [30]. The paper

studied some properties of the complete graphs with random exponential edge weights. In

particular, Janson considered the problem of finding the minimal weighted path between

vertices in the graph and derived some asymptotic values of such minimal weighted paths

for various settings. As mentioned briefly in Chapter 1, the problem is equivalent to the

SRS model in complete graphs.

To begin the discussion about the SRS process in complete graphs, we will first

describe the minimal weighted path problem in an exponentially edge-weighted graph.

Then, we will exhibit the relationship between this problem and the SRS process before

analysing the running time of the SRS process in Kn.

Now we describe the exponentially edge-weighted complete graphs model. Suppose

that we assign to each edge e ∈ E(Kn), an random weight We. For all e ∈ E(Kn), the

random variables We are independent to each other and are exponentially distributed with

unit rate. For every pair of distinct vertices u,w, let P(u,w) be the set of all paths whose

ends are u and w. For each path P ∈ P(u,w), we define dW (P ) =
∑

e∈E(P )

We, the weight

of the path P . Finally we define dW (u,w) = min
P∈P(u,w)

dW (P ). We can think of dW (u,w)

as the shortest distance between u and w.

We have a nice relationship between the complete graphs with exponentially dis-

tributed edge weights and the SRS process run in Kn. First we pick a particular vertex

v as the rumour spreader. We set the exponential edge weights as the waiting time

for the ringing of spreading clocks on edges. Now we expose one by one the vertices

having increasing weighted distance from v. Let (v = v1, v2, . . . , vn) be this ordering,

that is 0 = dW (v, v1) < dW (v, v2) < · · · < dW (v, vn). We claim that this order-

ing also denotes the ordering of the captured vertices in the SRS process. We show

our claim by induction. The base case is trivial by the definition. Now assume that
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(v1, . . . , vk) is the correct ordering for the sequence of captured vertices in the SRS. Define

Ek = {vivj : 1 ≤ i ≤ k, k+1 ≤ j ≤ n} and uiuj := min
e∈Ek

We. Then, vk+1 = uj by the order-

ing definition. Now, by memorylessness property, we reset all spreading clocks lying on all

edges in Ek at time Vi(X
′). We then couple the waiting time of these reinitialised spread-

ing clocks with the random exponential weights. It follows that the spreading clock lying

on uiuj is the fastest among all significant spreading clocks whose ringing can potentially

lead to the next stage. Hence, uj is the next captured vertex in the SRS process.

By the explanation above, we can see that dW (u,w) defined in the weighted graph

corresponds to the time needed to let w learn the rumour in the SRS process where u is

the initial rumour spreader. Thus, maxw dW (v, w) corresponds to the running time of the

SRS process, for an arbitrary choice of v.

Now we calculate ET (X ′). As described in Definition 4.1 in the previous section, we

have that

Ti(X
′)

d
= E(i(n− i)).

Thus,

ETi(X ′) =
1

i(n− i)
.

This leads to

ET (X ′) = E

(
n−1∑
i=1

Ti(X
′)

)

=
n−1∑
i=1

1

i(n− i)

=
1

n

(
n−1∑
i=1

[
1

i
+

1

n− i

])

=
2 log n

n
+O

(
1

n

)
. (4.1)

The term 2 log n/n in (4.1) will be an important term to which we will often compare the

expected running time of the RSDS process.

The running time of the SRS process is also sharply concentrated around its expected

value as n → ∞. To show this, we first calculate Var(T (X)). Note that since Ti(X
′)

d
=

E(i(n− i)), we have that

VarTi(X
′) =

1

i2(n− i)2
.

Also, observe that T1(X
′), T2(X

′), . . . , Tn−1(X
′) are independent of each other since they

depict the length of disjoint time intervals. It means that VarT (X ′) =
∑n−1

i=1 VarTi(X
′).
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Hence,

VarT (X ′) =
n−1∑
i=1

VarTi(X
′)

=
n−1∑
i=1

1

i2(n− i)2

=

bn/2c−1∑
i=1

1

i2(n− i)2
+

n−1∑
i=bn/2c

1

i2(n− i)2

≤
bn/2c−1∑
i=1

1

i2(n/2)2
+

n−1∑
i=bn/2c

1

(n/2)2(n− i)2

≤ 8

n2

bn/2c∑
i=1

1

i2


= O

(
1

n2

)
. (4.2)

From (4.2) and an application of Chebyshev’s inequality on T (X ′), we have that, for

any arbitrary positive real ε,

P
(∣∣T (X ′)− ET (X ′)

∣∣ > εET (X ′)
)
≤ VarT (X ′)

ε2ET (X ′)2
= O

(
1

log2 n

)
.

This means that for any ε > 0,

P
(

2(1− ε) log n

n
≤ T (X ′) ≤ 2(1 + ε) log n

n

)
= 1−O

(
1

log2 n

)
,

which is essentially equivalent to
T (X ′)

log n/n

p−→ 2. (4.3)

4.3 Compressed Version of the RSDS

We introduce the notion of the compressed version of rumour spreading processes to

begin a more detailed analysis of the RSDS. We provide the intuition behind this notion

as follows. As briefly mentioned in Section 4.1, the state at which the RSDS has no active

vertex brings a special meaning in the delay time analysis. This is the only state at which

the ringing of any unlabelled spreading clocks gives no effect to the process. However,

this is also a condition at which the spreading process is not progressing. The spreading

process is paused until one of the unlabelled switching clocks rings to bring back an active

vertex.

This motivates us to define the compressed version of the RSDS. Roughly, the com-

pressed RSDS is the same RSDS process which excludes those “bad” time periods. In the
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compressed version, the process has no chance to experience such pausing moments, as

there is at least one active vertex at all times.

To be more precise, we define the following terms. For all i = 1, . . . , n−1, we say that

(i, i) is the vacuum state, that is the state when all of the i informed vertices are dormant

at that time. We say that X is vacuum if it is currently in a vacuum state.

We define the Compressed Rumour Spreading with a Delaying Scheme (CRSDS) pro-

cess, denoted by {XC(t) : t ≥ 0}, as the same process of the RSDS process X with the

removal of all time periods at which X is vacuum. This means that at all times, CRSDS

process always has at least one active vertices.

In terms of unlabelled clocks, we can also define the same unlabelled switching and

spreading clocks having almost the same rules as described in Rules 4.3. The only differ-

ence is described as follows. Suppose that XC is in stage i for some i ∈ [1, n− 1]. When

the dormancy process has value d(t) = i− 1 at a given time, we abandon rule 2. This also

means that the unlabelled switching clock Si has no effect during the entire stage. By this

additional rule, we have a guarantee that d(t) < i for all t ≥ 0.

Next, recall from the definitions introduced in Chapter 3, we let T (XC) and Ti(X
C)

denote the running time of the CRSDS process and its stage i, respectively. The same

analogies also apply for Di(X
C), and D(X), the delay time of stage i of XC and the delay

time of the whole process. Recall also that, Vi(X
C) is the time at which XC enters stage

i for the first time.

We define W (X) to be the total length of time periods at which X is vacuum. Then

we have that

T (X) = W (X) + T (XC).

Also, we can express

D(X) = T (X)− ET (X ′) = W (X) + T (XC)− ET (X ′) = W (X) +D(XC). (4.4)

Here, W (X) can be understood as a part of the delay time contributed by the vacuum

condition. We call W (X) the vacuum delay time.

Next, we provide some general lemmas regarding the stochastic orderings of the run-

ning time of stages in the CRSDS. The usefulness of the lemmas comes from the fact that

the stochastic orderings provided by the lemmas are independent of the switching rates.

Many arguments in the later discussions regarding the expected delay time of the RSDS

will apply the lemmas extensively.

First we introduce some new notations regarding the running time of stage i in XC

in terms of a given stopping time. Suppose that τ is any stopping time with respect to
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the stochastic process XC . For all i ∈ [1, n− 1], we define

T<τi = (min{Vi+1, τ} − Vi) 1{τ > Vi}, (4.5)

T≥τi = (Vi+1 −max{Vi, τ}) 1{τ ≤ Vi+1}. (4.6)

We can understand T<τi as the total time spent by the process during stage i and before

time τ . Similarly, T≥τi quantifies the total time spent during stage i after time τ . Observe

that the following equation holds.

Ti = T<τi + T≥τi .

Now we state the lemmas regarding stochastic orderings of Ti(X
C) in terms of T<τi

and T≥τi . We will call the first lemma the Strong Bound. First we introduced a specific

stopping time. Let τ(k, P ) be the time at which XC has at least P dormant vertices for

the first time since stage k starts. Formally,

τ(k, P ) = inf{t ≥ Vk(XC) : Do(XC , t) ≥ P}.

In other words, when we start observing XC from time Vk(X
C), there will be less than

P dormant vertices before time τ(k, P ). The strong bound provides a stochastic upper

bound for T
<τ(k,P )
i as follows.

Lemma 4.4 (The Strong Bound). Let P, k and i be positive integers with 1 ≤ P ≤ k ≤
i ≤ n− 1. Then,

T
<τ(k,P )
i (XC) ≤ST E((i− P )(n− i)).

Proof. We construct a coupling (XC , Fi) where XC is a CRSDS process and Fi is a copy

of E((i− P )(n− i)). We aim to show that

T
<τ(k,P )
i (XC) ≤ Fi. (4.7)

Suppose that {Sj}1≤j≤i and {Rj}1≤j≤i are respectively the sets of unlabelled switching

and spreading clocks of stage i in XC . Let {d(t) : t ≥ 0} be the dormancy process of stage

i in XC . We specify Fi to be the waiting time from the start of stage i of XC until one

among the unlabelled spreading clocks in {RP+1, . . . , Ri} rings. We will show that stage

i necessarily will have finished by time Fi. Note that in this case, d(Fi) < P . Hence, if

one of the clocks in {RP+1, . . . , Ri} rings, then the ringing also indicates the termination

of stage i, accordingly to Rules 4.3. This establishes (4.7).

To complete the proof, observe that Fi is the waiting time for the first ringing among

(i−P ) Poisson clocks where each of them has rate (n−i). Therefore, Fi has an exponential

distribution with rate (i− P )(n− i) by the superposition property.

On the other hand, we also define another much looser bound, which we will call the

worst case bound. The bound uses an essential feature possessed by XC , which is the
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guarantee that there is at least one active vertex at all times. In the lemma, we bound

Ti(X
C) by considering its worst possible case, that is when the process only has one active

vertex at all times.

Lemma 4.5 (Worst Case Bound). Suppose that H is an arbitrary history of XC until the

end of stage i− 1. Then,

Ti(X
C) |H≤ST E(n− i).

Proof. We construct a coupling (XC |H, F ) where XC |F and F denote the CRSDS process

XC under the probability space conditioned on H, and an exponential random variable

with rate (n− i), respectively. We aim to show that

Ti(X
C) |H≤ F. (4.8)

Let {Sj}1≤j≤i and {Rj}1≤j≤i be the sets of unlabelled switching and spreading clocks

of stage i in XC |H respectively. Observe that the performances of these clocks are

independent of H. Also let {d(t) : t ≥ 0} be the dormancy process of stage i of XC .

Observe that the conditioning on the history can affect the distribution of the initial value

of the dormancy process. However, in this coupling, the varying value of d throughout the

stage is unimportant as it will not be involved in the construction of the coupling. The

only fact needed is that d(t) ≤ i− 1 for all t since we consider the compressed process.

We specify F to be the waiting time from the starting time of stage i until the

unlabelled spreading clock Ri rings. Since d(t) ≤ i− 1 for all t, the ringing of Ri will lead

XC to terminate stage i. This establishes (4.8).

To complete the proof, we have that F is exponentially distributed with rate (n− i)
since it is the waiting time of the ringing of a Poisson clock with rate n− i.

In particular, the worst case bound is useful to bound T≥τi (XC) for any stopping time

τ . The worst case bound implies the following corollary.

Corollary 4.6. Let τ be any stopping time and A be the event that XC is in stage i at

time τ . Then,

ET≥τi (XC) ≤ P(A)

n− i
.

Proof. Note that when A does not occur, we have that T≥τi = 0. Now we condition

on the occurrence of A. Suppose that S is the state of the process at time τ . By the

memorylessness property, we reset all of the Poisson clocks involved during stage i at time

τ . We can think of the time τ as the zero time of stage i conditioned on a specific setting.

Suppose that A′ is the event that XC is in state S when stage i starts. This means that

by conditioning on A, we can see T≥τi as the running time of stage i of a CRSDS process
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conditioned on A′. Now, by Lemma 4.5, we have that Ti |A′ is stochastically smaller than

E(n− i). It follows that

T≥τi |A
d
= Ti |A′ ≤ST E(n− i).

Therefore,

ET≥τi = E
(
T≥τi | A

)
P(A) + E

(
T≥τi | Ā

)
P(Ā)

≤ P(A)

n− i
.

We will use Corollary 4.6 for many times in the context of bounding the running time

of a particular stage at which a very rare event occurs, that is when P(A) is extremely

small.

Next, we provide an upper bound for the number of dormant vertices in a given stage

at a fixed time.

Lemma 4.7. Suppose i ∈ [1, n − 1] and {d(t) : t ≥ 0} is the dormancy process for stage

i of XC . Then, for all positive fixed function t = t(n) > 0 and ε ∈ (0, 1), there are at

most i(1+ε)
2 dormant vertices out of the i informed vertices in Ii(X

C) at time Vi + t with

probability 1− exp(−ε2i/6). Equivalently,

P
(
d(t) >

i(1 + ε)

2

)
< exp

(
−ε

2i

6

)
.

Proof. In this proof, we will refer to the edge clock RSDS model. All switching and spread-

ing clocks discussed here refer to the labelled switching and spreading clocks, associated

to particular vertices and edges of the graph, respectively.

Note that the process has i informed vertices at time Vi(X
C). We aim to bound the

number of dormant vertices among them at time Vi(X
C) + t. In this proof, we ignore all

newly informed vertices that might have appeared between times Vi(X
C) and Vi(X

C) + t.

Let Y ′(t) be the number of dormant vertices in Ii (ignoring new informed vertices which

may go dormant, if there are any) at time Vi(X
C) + t.

To bound Y ′(t), we construct a modification of RSDS. In this modified version, we

allow all switching clocks to work from the beginning, even for the uninformed vertices.

Let Y (t) capture the same information as Y ′(t) occurring in the modified version. We aim

to couple Y (t) and Y ′(t) in such a way to obtain that EY ′(t) ≤ EY (t).

For any informed vertices w ∈ Ii, let Y ′w(t) and Yw(t) respectively denote the indicator

that w is dormant at time Vi(X
C) + t on the original and the modified process. Hence,

we can write that

Y ′(t) =
∑
w∈Ii

Y ′w(t), Y (t) =
∑
w∈Ii

Yw(t).
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Note that in both processes, w is dormant if and only if an odd number of switchings is

applied to w since the switching clock of associated to w begins to give effect to w. Suppose

that Qw is the (random) time at which w first receives the rumour. Conditioned on Vi and

Qw, we have that Yw(t) and Y ′w(t) are Poisson random variables with mean (t + Vi)s(n)

and (t + Vi − Qw)s(n), respectively. Observe that {Y ′w(t)}w are not independent of each

other since the starting time of the switching clock of a particular vertex depends on the

starting time of the other’s. However {Yw(t)}w are independent since all switching clocks

start at the same time and thus their ringings are independent within each other. Also

observe that Qw ≤ Vi by definition. Now suppose that S is a Poisson random variable

with mean λ > 0. Then, we have that

P(S is odd) = e−λ
∞∑
k=0

λ2k+1

(2k + 1)!
= e−λ sinh(λ) =

1

2
(1− e−2λ). (4.9)

From this, we have that the following inequality

E
(
Y ′w(t) | Vi, Qw

)
=

1

2

(
1− e−2(t+Vi−Qw)s(n)

)
≤ 1

2

(
1− e−2(t+Vi)s(n)

)
= E (Yw(t) | Vi, Qw)

holds with probability 1. This implies that

P(Y ′w(t) = 1) ≤ P(Yw(t) = 1).

In other words,

Y ′w(t) ≤ST Yw(t)

which results in

Y ′(t) ≤ST Y (t).

Now notice that each Yw(t) is a Bernoulli trial with success probability at most 1
2 .

This means that Yw(t) is stochastically dominated by a Bernoulli random variable with

success probability 1
2 . Hence, we also have that

Y ′(t) ≤ST Y (t) ≤ST B
(
i,

1

2

)
.

Therefore, by Lemma 2.10, for any positive ε ∈ (0, 1), we have that

P
(
Y ′(t) > (1 + ε)

i

2

)
≤ exp

(
−ε

2i

6

)
.

This concludes the proof.

The lemma has a stronger result when the switching rate is relatively slow. While

the original lemma provides a bound on the number of dormant vertices only at a given

time, the stronger version states that during an entire stage with relatively many informed

vertices, the dormancies bound holds with considerably high probability.
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Corollary 4.8. Suppose that s(n) = o(n/ log n). Then, for every positive constant ε ∈
(0, 1), and every i ∈ [M log n, n − 1] with M = 60/ε2, we have that XC has at most
i(1+ε)

2 + 10 dormant vertices with probability 1−O(n−6) during the whole stage i.

Proof. Suppose that {d(t) : t ≥ 0} is the dormancy process of stage i in XC .

Note that by the worst case bound given by Lemma 4.5, Ti(X
C) is stochastically

smaller than E(n− i). Hence, we have that

P(Ti(X
C) > 6 log n) ≤ P(E(n− i) > 6 log n) = e−6(n−i) logn = O(n−6). (4.10)

This give a rather loose upper bound for Ti with high probability.

Based on this bound, we partition the time interval [V C
i , V

C
i + 6 logn] into disjoint

subintervals of size δ = (ns(n)i)−1. Hence, there are K = 6δ−1 log n = O(n4) subintervals

which decompose [V C
i , V

C
i + 6 log n]. For k ∈ [1,K], we will call [V C

i + (k − 1)δ, V C
i + kδ]

the k-th interval.

By Lemma 4.7, for all k ∈ [1,K], we have that

P
(
d((k − 1)δ) >

i(1 + ε)

2

)
< exp

(
−ε

2i

6

)
≤ exp

(
−ε

2M log n

6

)
= n−Mε2/6

= O(n−10). (4.11)

In other words, if we observe the process at the time where the k-th interval starts, we

will find at most (1+ε)i
2 dormant vertices with probability 1−O(n−10).

We say that an interval is bad, if either it starts with more than i(1+ε)
2 dormant

vertices, or it undergoes at least 10 switchings during the interval. Note that if there

exists a time point at which there are more than i(1+ε)
2 + 10 dormant vertices during the

k-th interval, then it is necessary that the interval is bad. Observe that the switching rate

during stage i is s(n)i. Suppose that Z denotes the number of switchings occurring in the

k-th interval. Then, Z is a Poisson random variable with parameter δs(n)i. Observe that

P(Z ≥ 10) = e−δs(n)i
∞∑

k=10

(δs(n)i)k

k!
= O((δs(n)i)10) = O(n−10). (4.12)

We obtain the dominating term of the infinite series above from the fact that δs(n)i = o(1).

Now, by (4.11), (4.12) and the union bound, we obtain that for all 0 < t ≤ 6 log n,

P
(
d(t) >

i(1 + ε)

2
+ 10

)
≤ P (the k-th interval is bad) = O(n−10). (4.13)
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In other words, during the whole time of the k-th interval, XC always has at most i(1+ε)
2 +10

dormant vertices with probability 1−O(n10).

Now, we find a bound for the probability that there is a time point during stage i at

which there are more than i(1+ε)
2 + 10 dormant vertices. Note that by the union bound

and (4.13), the probability that there is some bad interval k in stage i for k ∈ [1,K] is

O(Kn−10) = O(n−6). From this and (4.10), we have that

P
({
∃t ∈ (0, Ti] such that d(t) >

i(1 + ε)

2
+ 10

})
= O(n−6)

and we get our desired result.
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Chapter 5

RSDS in Complete Graphs

This entire chapter is devoted to provide a thorough analysis of the running time of the

RSDS processes in Kn and its relationship to the switching rate.

To begin this chapter, we will give the overview of the main results and state our

three main theorems. In the first section, we will discuss the vacuum delay time of the

RSDS process, as a preparation for the following sections. Then, the next three sections

will provide the complete proofs of the main theorems. In this chapter, we will always let

X ′, X and XC denote the SRS, RSDS and CRSDS process in Kn respectively.

First, we will introduce the threshold function of the noteworthiness of the delay time.

We say that a delay time of an RSDS process X is noteworthy if D(X) = Ω(logn/n). The

term log n/n here comes from the dominating term in (4.1), which states the expected

running time of the SRS process, that is

ET (X ′) =
2 log n

n
+O

(
1

n

)
.

So, if the delaying scheme is not noteworthy, that is when ED(X) = o(log n/n), then the

expected delay time is negligible compared to ET (X). As briefly mentioned in Chapter

1, if the switching rate is fast enough, then the delay time is noteworthy. However, when

the switching rate is too slow, the delaying scheme only brings negligible impact to the

rumour spreading process. We say that f is the threshold function for the noteworthiness

of the delay time if s(n) = Ω(f(n)) becomes the necessary and sufficient conditions for

the noteworthiness of the delay time. In other words, we can see that when the switching

rate grows around the threshold function, a sudden significant amount of expected delay

time emerges.

Theorem 5.1 (Expected Delay of the RSDS with a slow rate). Suppose that X is an

RSDS process on Kn with switching rate s(n) = o(log n/n). Then,

ED(X) = O

(
s(n) log2 n

n2

)
+O

(
log log n

n

)
.
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Theorem 5.2 (Expected Delay of the RSDS with a fast rate). Suppose that X is an

RSDS process on Kn with switching rate s(n) = Ω(logn/n). Then,

ED(X) = Θ

(
log n

n

)
.

Observe that for all s(n) = o(n/ log n), we have that ED(X) = o(log n/n) by Theorem

5.1. In this case, the delay time is not noteworthy. Again, this means that the expected

additional time given by the delaying scheme is so small that the expected running time

of the RSDS differs very little from the SRS.

On the other hand, s(n) = Ω(n/ log n) becomes a condition for which the delay time

is noteworthy, as stated in Theorem 5.2. However, for any choices of the switching rate,

the expected delay time of the RSDS process can only differ up to some constant factor

from ET (X ′). This means that the delaying scheme is incapable of providing a dramatic

jump for the rumour spreading running time. As a result, the expected running time of

an RSDS process will always be in the same order as the SRS even though we let the

switching rate grow infinitely fast.

By these two theorems, we infer that f(n) = n/ log n is the threshold function for the

noteworthiness of the delay time. We say that a switching rate is slow if it is significantly

smaller than the threshold function, that is s(n) = o(n/ log n). Otherwise, we call it fast.

Next, we also analyse the RSDS process with unit rate more thoroughly. As a member

of the class of slow switching rates, the unit rate will certainly lead the RSDS delay time to

follow the same fashion, that is, ED(X) = o(log n/n), according to Theorem 5.1. However,

we will take a closer look at the process to find a more accurate value of the expected

delay time by analysing various sources of the delay time.

We present the following theorem to exhibit the behaviour of the RSDS process with

unit rate.

Theorem 5.3 (Expected Delay of the RSDS with unit rate). Suppose that X is an RSDS

process on Kn with unit switching rate, that is s(n) = 1. Then,

ED(X) =
1

n
+O

(
1

n log n

)
. (5.1)

Moreover, suppose that A is the event where X is never vacuum during the first stage of

X. Then

ED(X | A) = O

(
1

n log n

)
. (5.2)

The theorem above gives not only an improved bound for the expected delay compared

to Theorem 5.1, but also the exact dominating term for expected delay. Furthermore, the

dominating term is contributed by the total vacuum time of the process only during the
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first stage. As signified in (5.2), when we remove all vacuum times of the first stage, we

get a much smaller expected delay time. This means that the most significant portion of

the delay time comes from the total time spent in the vacuum state during the first stage.

By these results on the expected delay time of the RSDS, we derive a corollary de-

scribing the upper and lower bounds for T (X) that hold w.h.p. Recall from (4.3) that the

SRS running time is sharply concentrated around its expected value, that is for all δ > 0,

P
(∣∣∣∣T (X ′)− 2 log n

n

∣∣∣∣ > 2δ log n

n

)
= o(1). (5.3)

We present the corollary as follows. We will provide the proof of the corollary in this part

as it is relatively short compared to the proofs of the theorems.

Corollary 5.4. Let ε be any positive constant and ω = ω(n) be an unbounded function

growing arbitrarily slowly. Then we have that w.h.p.

(1− ε)2 log n

n
< T (X) <

ω log n

n
. (5.4)

Moreover, when s(n) = o(n/ log n), we have that w.h.p.

(1− ε)2 log n

n
< T (X) < (1 + ε)

2 log n

n
(5.5)

or equivalently
T (X)

log n/n

p−→ 2.

Proof. Suppose that ε > 0 arbitrarily. By the stochastic ordering stated in (3.7) and (5.3),

we have that

P
(
T (X) < (1− ε)2 log n

n

)
≤ P

(
T (X ′) < (1− ε)2 log n

n

)
= o(1).

The last equation comes from (5.3) by choosing δ = ε. This shows that the left hand side

of inequality (5.4) holds w.h.p.

On the other hand, by Markov’s inequality, Theorem 5.1 and Theorem 5.2, we have

that

P
(
D(X) >

ω log n

2n

)
=
O(log n/n)

ω log n/2n
= o(1)

holds for all switching rates. Combining the equation above and (5.3).

P
(
T (X) >

ω log n

n

)
≤ P

(
T (X ′) >

ω log n

2n

)
+ P

(
D(X) >

ω log n

2n

)
= o(1).

This establishes that the right hand side of inequality (5.4) holds w.h.p.

Now, to show the right hand side of (5.5), we use the fact that ED(X) = o(log n/n)

when the switching rate is slow. By applying Markov’s inequality to D(X) we have that

P
(
D(X) >

ε log n

n

)
=

ED(X)

ε log n/n
= o(1). (5.6)
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Thus, by (5.3) with δ = ε/2 and (5.6), we obtain that

P
(
T (X) > (1 + ε)

2 log n

n

)
≤ P

(
T (X ′) >

(
1 +

ε

2

) 2 log n

n

)
+ P

(
D(X) >

ε log n

n

)
= o(1).

One interpretation of the corollary is as follows. If the switching rate is slow, then

the corollary strengthens the statement that the RSDS process behaves almost the same

as the SRS. This is shown not only by the same order of their expected running times but

also by the fact that the running time of both processes is strongly concentrated around

2 log n/n. On the other hand, we also have the same lower bound that holds w.h.p. when

the switching rate is fast. This means that for any switching rates, it is very unlikely that

the RSDS finishes before time 2 log n/n. The upper bound for the running time in the

case of a fast rate is much looser. However, the result says that the typical running time

is a constant multiple of log n/n where the constant is at least 2. This again affirms that

the delaying scheme is incapable of leading the RSDS running time to be much greater

than that of the SRS.

5.1 Vacuum Delay Time Analysis

In this section, we will measure the expected vacuum delay time W (X) occurring in the

RSDS process. We will mainly discuss the vacuum delay time when the switching rate is

slow.

The running time analysis of the RSDS process with a slow switching rate will depend

heavily on the result of this section. We will show that as long as the switching rate

is o(n/ log n), the expected vacuum delay time is insignificant relative to the expected

running time of the SRS, that is, EW (X) = o(log n/n). After showing this, we can

concentrate our attention on the compressed version of the process alone. Recall that

from (4.4), we have that

ED(X) = ED(XC) + EW (X).

Hence, showing that ED(XC) = o(log n/n) is sufficient to prove that the expected delay

time of X is insignificant. Later in the next section where we will prove Theorem 5.1, we

will only pay attention to the analysis of the CRSDS and combine it with the result of

this section to complete the whole proof.

To begin the analysis, we define additional terminology as follows. Let i ∈ [1, n− 1].

Let Ci(X) denote a random variable which counts how many times X becomes vacuum

during stage i. Also, let Wi(X) be the total time that X spends in the vacuum state
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during stage i. Observe that the total time spent in vacuum condition satisfies

W (X) =
n−1∑
i=1

Wi(X).

Now we are ready to present the following proposition.

Proposition 5.5 (Vacuum time of the RSDS with a slow rate). For any switching rate

satisfying s(n) = o(n/ log n), the expected vacuum delay time of the RSDS process X is

EW (X) = O

(
log log n

n

)
.

Proof. In this proof, we refer to the edge clock RSDS model. All switching and spreading

clocks mentioned in this proof are labelled. In other words, the switching and spreading

clocks are associated with the vertices and edges of the graph respectively.

To begin, we stochastically bound Ci(X) from above by constructing the following

coupling. We introduce a variant of RSDS, denoted by X∗, and couple it to the original

process X in such a way that

Ci(X) ≤ Ci(X∗) (5.7)

holds. We specify that both processes share the same spreading and switching clocks.

They follow the same performance until stage i begins. Among the i informed vertices

existing at the beginning of stage i, we pick one particular active vertex and call it the

transient vertex. In X∗, once stage i starts, we set all informed vertices but the transient

vertex to be always dormant afterwards. Also, we ignore all switching clocks associated to

them. However, the status of the transient vertex is still flipping around according to its

switching clock. Hence, whenever X∗ is not vacuum, the spreading rate is always n−i and

the dormancy rate is always s(n). Note that whenever X is vacuum, X∗ is also necessarily

vacuum. This means that (5.7) is satisfied.

Now we examine the distribution of Ci(X
∗). The vacuum condition of X∗ is com-

pletely determined by the status of the transient vertex. When X∗ is not vacuum, it

waits for the ringing of either the switching clock on the transient vertex or the spread-

ing clocks on the edges incident to the transient vertex. Hence, the probability that it

goes vacuum before a new informed vertex appears is s(n)
s(n)+n−i . On the other hand, when

the transient vertex is dormant (which means that X∗ is vacuum), it will deterministi-

cally transition back to the state where X∗ first enters stage i. Suppose that for every

time at which the transient vertex is active, we view the condition as an independent

Bernoulli trial where the success refers to the rumour passing to a new vertex. Hence,

Ci(X
∗) is the number of failures performed until it achieves the first successful trial. Thus,

Ci(X
∗)

d
= G

(
1− s(n)

s(n)+n−i

)
. It follows that

Ci(X) ≤ST G
(

1− s(n)

s(n) + n− i

)
, (5.8)
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and

ECi(X) ≤ s(n)

n− i
.

We also require to bound Ci(X) in the probability space conditioned on {Wi(X) > 0}
for the sake of later computations. Note that the conditioning event is exactly the same

as {Ci(X) ≥ 1}. In the rest of this paragraph, all probability measures are conditioned on

{Wi(X) > 0}. To get the bound, we again construct a modified RSDS process, X∗∗ and

couple it with the original process. The process X∗∗ is constructed in almost the same way

as X∗. The only difference is that the dormancies of non-transient vertices are fixed after

the process becomes vacuum for the first time during stage i (instead of the beginning

of the stage i). Before the process enters a vacuum state in stage i, we specify that X∗∗

and X follow the same transitions scenario. Observe that after X∗∗ recovers from the first

vacuum condition, that is when the transient vertex wakes up, X∗∗ enters a state that is

exactly the same as the state at which X∗ enters stage i. By the memorylessness property

of exponential distributions, the number of occurrences of the next vacuum condition

follows the same distribution as the Ci(X
∗). Thus, Ci(X

∗∗)
d
= 1 +G

(
1− s(n)

s(n)+n−i

)
where

the additional term 1 comes from the first vacuum condition that appears automatically

from the conditioning. It follows that

E(Ci(X) |Wi(X) > 0) ≤ 1 +
s(n)

n− i
. (5.9)

Now we bound Wi(X) stochastically. For all i, let Fi be exponential random variables

with rate s(n)i independently of each other. Observe that whenever X goes vacuum, it

needs to wait for the first ringing of the i switching clocks lying on the informed vertices

in order to continue the spreading. This waiting time is exactly a copy of Fi since each of

these switching clocks has rate s(n). By noting that X always arrives in the same state

whenever it goes in vacuum condition and by the memorylessness property of exponential

distributions, we have that

Wi(X) =

Ci(X)∑
j=1

F
(j)
i (5.10)

where each F
(j)
i is an independent copy of Fi.

We use two ways to bound Wi(X) stochastically, by using the couplings (X,X∗) and

(X,X∗∗). First, we bound Wi(X) by using Ci(X
∗) as the stochastic upper bound on

Ci(X) for 1 ≤ i < log2 n. From (5.8) and (5.10), we have that

Wi(X) ≤ST
Ĥi∑
j=1

F
(j)
i (5.11)

where Ĥi
d
= G

(
1− s(n)

s(n)+n−i

)
independently from all (F

(j)
i ). Hence, from (5.11), we obtain
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that

EWi(X) ≤ E

 Ĥi∑
j=1

F
(j)
i

 = E

E

 Ĥi∑
j=1

F
(j)
i

∣∣∣∣∣∣Ĥi

 = EĤiEFi =
1

i(n− i)
.

Note that the last equality comes from the fact that EĤi = s(n)/(n − i) and EFi =

(s(n)i)−1. Hence, we obtain that

blog2 nc−1∑
i=1

EWi(X) ≤
blog2 nc−1∑

i=1

1

i(n− i)
= O

(
log log n

n

)
(5.12)

Second, we use the coupling of X and X∗∗ conditioned on Wi(X) > 0 for log2 n ≤
i ≤ n− 1. By (5.9) and (5.10), in the probability space conditioned on {Wi(X) > 0}, we

have that

Wi(X) |{Wi(X)>0}≤ST
Hi∑
j=1

F
(j)
i

where Hi
d
= 1 + G

(
1− s(n)

s(n)+n−i

)
independently from all (F

(j)
i ).

Next, we bound the probability of the event {Wi(X) > 0}. Recall that XC is the

compressed version of X. Observe that if X ever enters a vacuum state during stage i,

then it is necessary that there is a time t during stage i where Do(XC , t) > 2i
3 . Thus,

when i ≥ log2 n, Lemma 4.8 states that

P(Wi(X) > 0) = O(n−6). (5.13)

Note that the lemma applies since we only consider the slow rate setting.

Now we bound EWi. We have that

EWi(X) = P(Wi(X) > 0)E[Wi(X) |Wi(X) > 0]

≤ P(Wi(X) > 0)E

 Hi∑
j=1

F
(j)
i


≤ P(Wi(X) > 0)E

E

 Hi∑
j=1

F
(j)
i

∣∣∣∣∣∣Hi


= P(Wi(X) > 0)EHiEFi. (5.14)

To bound (5.14), we break into two cases. First, when n3s(n)→∞, we use (5.13) to

obtain that P(Wi(X) > 0) = O(n−6) for all i ≥ log2 n. Hence, in this case we have that

P(Wi(X) > 0)EHiEFi = O(n−6)

(
1 +

s(n)

(n− i)

)
1

s(n)i

=
O(n−6)

i(n− i)
.
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It follows that when n3s(n)→∞,

n−1∑
i=blog2 nc

EWi(X) =

n−1∑
i=blog2 nc

O(n−6)

i(n− i)
= O

(
log n

n7

)
. (5.15)

Now we examine the other case, that is s(n) = O(n−3). In this case, we need a

smaller bound for P(Wi(X) > 0). Note that when i ≥ 2, stage i always starts with at least

two active vertices, which are the latest captured vertex and another active vertex from

which the captured vertex receives the rumour. This means that the event {Wi(X) > 0}
implies that X needs to experience switching transitions at least twice (to switch those two

active vertices to be dormant). Suppose that A is the event where at least two switching

transitions occur during the whole process. We bound the probability of A by considering

the n− 1 first state transitions of the process. When A occurs, it is necessary that there

are at least two switching transitions occurring among the first n− 1 transitions. Now we

bound the probability that a given transition is a switching transition. Suppose that X is

in stage i when the given transition occurs. Note that there are i switching clocks (where

each of them has rate s(n)) and at most i(n − i) spreading clocks (with rate 1) whose

ringings determine a transition event. Thus, the probability that the earliest ringing clock

is a switching clock, is at least

s(n)i

s(n)i+ i(n− i)
=

s(n)

s(n) + n− i
≥ s(n)

2n
.

Thus, we have that

P(Wi(X) > 0) ≤ P(A) ≤ P
(
B
(
n− 1,

s(n)

2n

)
≥ 2

)
= O

(
s(n)2

)
.

Now, continuing (5.14), we obtain that

P(Wi(X) > 0)EHiEFi = O(s(n)2)

(
1 +

s(n)

(n− i)

)
1

s(n)i

= O

(
s(n)

i

)
= O(n−3).

Hence, when s(n) = O(n−3),

n−1∑
i=blog2 nc

EWi(X) =

n−1∑
i=blog2 nc

O(n−3) = O(n−2). (5.16)

Now, from (5.15) and (5.16), we have that

n−1∑
i=blog2 nc

EWi(X) = O(n−2) (5.17)

holds for all cases.

Finally, by combining (5.12) and (5.17), the result follows.
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5.2 Proof of Theorem 5.1

In this section, we will always assume that the switching rate is slow, that is s(n) =

o(n/ log n).

Also, we will only discuss the running time of the CRSDS process XC here. As

stated in Proposition 5.5, the expected vacuum delay time is O(log log n/n). Hence, we

can rewrite the expression of the delay time in (4.4) as

ED(X) = ED(XC) +O

(
log logn

n

)
. (5.18)

We aim to show that ED(XC) = O(s(n) log2 n/n2)+O(1/n) for the case of a slow switching

rate. By showing this and considering (5.18), we will get the proof of Theorem 5.1.

We provide the overview of the analysis as follows. We divide the stages of the pro-

cess into three categories: the early, intermediate, and late stages. For each category, we

will analyse the distribution of the number of dormant vertices found during the stages.

Although the distributions are varied for different stage categories, they have the same

important thing in common. We will show that for each stage, the number of dormant

vertices is always insignificant compared to the number of active vertices during the entire

stage w.h.p. In the case that there are a small enough number of dormant vertices (occur-

ring with probability close to 1), we apply the strong bound to obtain a stochastic upper

bound for Di(X). In the other case, which occurs with a very low probability, we apply

the worst case bound to bound EDi(X). Then we analyse the expected delay times of the

stages from each category and sum them together to obtain the total expected delay time.

We define the following terms in order to classify the stages. The definitions are based

on the switching rates. They have special expressions when s(n) = O(1). Suppose that

when s(n) = O(1), M is a positive real constant such that s(n) ≤ M for all sufficiently

large n. Then we define

R = b1200 log nc,

P1 =

b22s(n) log nc, if s(n)→∞,

b(22M + 7) log nc, if s(n) = O(1),

P2 =

b23s(n) log nc, if s(n)→∞,

b(22M + 808) log nc, if s(n) = O(1),

Q = 2P2

The constants included in the terms above are chosen for the sake of computational con-

venience, as we will later discuss in the upcoming parts.

We classify the stages of the CRSDS process as follows. For all i ∈ [1, n− 1], we have

the following specification.
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Range of i Name of the stages

1 ≤ i ≤ R− 1 The early stages

R ≤ i ≤ Q− 1 The intermediate stages

Q ≤ i ≤ n− 1 The late stages

The main result of this section is presented as the following proposition.

Proposition 5.6 (Expected Delay of the CRSDS with a slow rate). If s(n) = o(n/ log n),

then

ED(XC) = O

(
s(n) log2 n

n2

)
+O

(
1

n

)
.

Proof. We break our measurements of the delay times into three categories of stages

described in the table above. To help the readers track the progressing results of the

proposition, we summarise the delay time analysis for each stage classification by including

three partial conclusions that can be found throughout this proof, namely Statement 5.8,

Statement 5.11, and Statement 5.13. They state the total expected delay times of the

early, late, and intermediate stages respectively.

To begin, we recall the definition of Di(X
C), as stated in (3.6). We have that

Di(X
C) = Ti(X

C)− ETi(X ′) = Ti(X
C)− (i(n− i))−1.

First, we analyse the running time of the early stages. We show that having a dor-

mancy during the early stages is relatively unlikely as described by the following claim.

Claim 5.7. During the first R − 1 stages, XC has no dormant vertex with probability

1−O( s(n) lognn ).

Proof. Consider XM , the embedded Markov chain of the CRSDS process XC , whose

transition matrix is PM = [pi,j ]. Let H be the event that no dormant vertex appears

during the first R−1 stages. Observe that the process experiences no switching transition

before stage R starts if and only if the first R− 1 state transitions of XM are entirely the

spreading transitions. Hence, H is equivalent to the event

{XM
0 = (0, 1), XM

1 = (0, 2), . . . , XM
R−1 = (0, R)},

whose probability is
R−1∏
i=1

p(0,i),(0,i+1).

Now we compute the value of p(0,i),(0,i+1) for each i ∈ [1, R − 1]. Suppose that XC

arrives at state (0, i). In this state, it waits for the first ringing among all unlabelled

spreading and switching clocks of stage i. If the ringing clock belongs to the spreading
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clocks set, then XC moves to state (0, i+ 1). Thus, p(0,i),(0,i+1) is the probability that the

no switching clock rings before the spreading clocks. Hence,

p(0,i),(0,i+1) =
i(n− i)

s(n)i+ i(n− i)
=

n− i
s(n) + n− i

. (5.19)

It follows that

P(H̄) = 1−
R−1∏
i=1

n− i
s(n) + n− i

= 1−
R−1∏
i=1

(
1− s(n)

s(n) + n− i

)

≤ 1−
R−1∏
i=1

(
1− 2s(n)

n

)

= 1−
(

1− 2s(n)

n

)R−1
= 1−

(
1− 2Rs(n)

n
+O

(
R2s(n)2

n2

))
= O

(
Rs(n)

n

)
= O

(
s(n) log n

n

)
.

The inequality above comes from the fact that s(n) +n− i ≥ n/2 for all 1 ≤ i < R = o(n)

and s(n) = o(n/ log n). In addition, note also that the approximation in the binomial

expansion above holds since Rs(n)/n = s(n) log n/n = o(1).

To complete the proof, we conclude thatH occurs with probability 1−O(s(n) log n/n).

Note that the probability bound given by the claim above is o(1) for all choices of slow

rates. This means that a dormancy transition is a relatively rare event during the early

stages. We will use the worst case bound to estimate the running time when a dormancy

transition occurs (whose probability is relatively small). On the other hand, if there is no

dormancy at all, the CRSDS behaves exactly the same as the SRS. Thus, typically XC

has no delay at all.

Next, we define the following stopping time to bound ETi(XC). Let S1 be the first

time at which either a dormancy occurs or the process enters stage R. Formally, we write

that

S1 := inf{t ≥ 0 : Do(XC , t) = 1}.

S1 := min(S1, VR(XC)).

For each i ∈ [1, R − 1], we write Ti = T<S1i + T≥S1i where T<S1i and T≥S1i , respectively

denote the times spent during stage i before and after S1 as stated in (4.5) and (4.6).
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Note that before time S1, we have that XC runs exactly the same as the SRS process

since it has no dormant vertex. Thus, we can couple Ti(X
C)<S1 and Ti(X

′), the running

time of stage i in the SRS, as follows. From the beginning of both XC and X ′, we specify

that both processes share the same unlabelled spreading clocks. Notice that no unlabelled

switching clock ever rings before time S1. Thus, for all i ∈ [1, R−1], as long as the process

has no dormant vertex during stage i, that is when the dormancy process of stage i always

takes value 0 during the entire stage, the ringing of any unlabelled spreading clocks will

terminate of stage i of both X ′ and XC . Hence,

Ti(X
C)<S1 ≤ST Ti(X ′).

It follows that from (3.6),

EDi(X
C) ≤ [ET<S1i (XC)− ETi(X ′)] + ET≥S1i (XC)

≤ ET≥S1i (XC). (5.20)

Now we find a bound for ET≥S1i (XC). Suppose that Ai is the event that a dormancy

occurs in stage i. We apply Corollary 4.6 with τ = S1 and A = Ai. Now, since P(Ai) ≤
P(H̄) = O(s(n) log n/n) by Claim 5.7, we have that

ET≥S1i (XC) ≤ P (Ai)

n− i
= O

(
s(n) log n

n2

)
. (5.21)

Thus, (5.20) and (5.21) lead to

R−1∑
i=1

EDi(X
C) ≤

R−1∑
i=1

T>S1i (XC)

=
R−1∑
i=1

O

(
s(n) log n

n2

)
= O

(
s(n) log2 n

n2

)
. (5.22)

From (5.22), we conclude the following statement regarding the analysis of the early

stages.

Statement 5.8 (Early stages of the CRSDS with a slow rate). If s(n) = o(n/ log n), then

the expected delay time during the early stages is

E

(
R−1∑
i=1

Di(X
C)

)
= O

(
s(n) log2 n

n2

)
.

Next, we will analyse the delay occurring in the intermediate and late stages. Unlike

the early stages, we will find some dormant vertices during these stages w.h.p. However,
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we will stochastically bound the number of dormant vertices and show that w.h.p. it is

always substantially smaller than the number of informed vertices so far. This observation

will be the key for the running time analysis on these stages.

We notice that when the switching rate is slow, Corollary 4.8 says that if stage i is

either intermediate or late, then the number of dormant vertices during the entire time in

the stage is bounded above by 2i
3 w.h.p. However, we will show that the number of dormant

vertices are much smaller than 2i
3 , still with reasonably high probability. Precisely, we

prove that during these stages, there are at most P2 dormant vertices w.h.p. This implies

that during the late stages, the new bound is better than Corollary 4.8. This bound will

be used to estimate the delay time at the late stages, whereas we will analyse the delay at

the intermediate stages by another method described later.

Before we go deeper into the analysis of the intermediate and late stages, we make

some observations regarding the number of dormant vertices. We will show that in the

case of a slow switching rate, switching transitions are uncommon relative to the spreading

transitions. This is due to the small switching transition probabilities yielded by the slow

switching rate. This means that the process is more likely to pass the rumour on rather

than flipping the statuses of informed vertices. Starting from this, we will provide a

stochastic bound for the number of dormant vertices throughout the intermediate and

late stages. With that bound in hand, we will apply the strong and worst case bounds to

obtain an upper bound for the expected delay times for each stage.

To begin, we define the following stopping times.

S∗ : inf{t ≥ VR(XC) : Do(XC , t) > 2
3 In(XC , t)}.

SP2 : inf{t ≥ VR(XC) : Do(XC , t) > P2}.
S2 : min{S∗, SP2 , T (XC)}.

We provide the interpretations of the stopping times above as follows. S∗ is the time

at which the number of dormant vertices in XC exceeds 2/3 of the number of informed

vertices for the first time, since stage R starts. Similarly, we understand SP2 as the time

at which XC has more than P2 dormant vertices for the first time since stage R begins.

Next, S2 is the stopping time that picks the earliest time between S∗, SP2 and the finishing

time of XC .

The main aim of defining these stopping times is to prove that w.h.p. the process

never experiences more than P2 dormant vertices during the entire intermediate and late

stages. Note that in order to prove this, it is sufficient to show that the probability that

SP2 < T (XC) is small. However, we will provide a slightly stronger result, that is to show

that P(S2 < T (XC)) is small. In other words, we will also prove that S∗ < T (XC) w.h.p.

along with our main aim. This includes an additional feature that w.h.p. the proportion

between the dormant and informed vertices is always bounded above by 2/3 during the
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whole intermediate and later stages. This feature will be useful to tackle some technical

difficulties to achieve our main aim, as we will later discuss.

For every i ∈ [R,n − 1], we define Z<S
∗

i to be the number of switchings occurring

during stage i before time S∗. In other words, Z<S
∗

i counts the switchings occurring during

stage i as long as the stopping criterion of S∗ is not satisfied yet. Note that if XC is in a

stage earlier than stage i at time S∗, then Z<S
∗

i = 0. Also we define

Yi
d
= G

(
1− 3s(n)

n− i+ 3s(n)

)
for i = R, . . . , n − 1 independently of each other. Then, the following lemma provides a

stochastic upper bound for Z<S
∗

i .

Lemma 5.9. For all i = R, . . . , n− 1, we have that

Z<S
∗

i ≤ST Yi (5.23)

and consequently,

EZ<S
∗

i ≤ 3s(n)

n− i
.

Proof. Suppose that at a certain time during stage i before S∗, a transition occurs in

XC . We now estimate the probability that the transition is a switching (either dormancy

or waking up) transition. Since there are at most 2i
3 dormant vertices at that time, the

spreading rate is at least i
3(n − i). On the other hand, the switching transition rate is

always s(n)i during the stage. Thus, the probability that a switching transition occurs at

a given transition time, is at most

s(n)i

s(n)i+ i(n− i)/3
=

3s(n)

n− i+ 3s(n)
.

We can think of Z<S
∗

i as the number of transitions occurring during stage i in XC

until either the process experiences the spreading transition or the stopping criterion of

S∗ is met. We can interpret these transitions as independent Bernoulli trials with success

probabilities at least 1− 3s(n)
n−i+3s(n) . Here the successful trial corresponds to the spreading

transition. We then couple Z<S
∗

i and Yi by the following specification. We couple each

Bernoulli trial performed by both Z<S
∗

i and Yi by U , a uniformly chosen value from interval

(0, 1). Consider the success probability of the trials. If the success probability is greater

than U , then we specify that the trial is successful. Now, since the success probability of

each trial of Z<S
∗

i is always at least that of Yi, we have the following fact: if a trial from

Z<S
∗

i fails, then the corresponding trial from Yi also fails. In this setting, we have that

Z<S
∗

i ≤ Yi with probability 1. Hence, Lemma 2.8 establishes (5.23).

To complete the proof, we have that EYi = 3s(n)/(n− i).
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Next, we will employ the lemma to show that during the whole process, XC has an

insignificant number of dormant vertices w.h.p. The precise statement is given by the

following claim in terms of the stopping times.

Claim 5.10. S2 = T (XC) with probability 1−O(n−5).

Proof. To prove the claim, we bound the probability of the complementary event by break-

ing it into two disjoint sub-events. First we consider the event {S2 < T (XC)}∩{S∗ ≤ SP2}.
Note that this event is contained in the event {S∗ < T (XC)}. Observe that the event

implies that there exists a time t during some stage i ∈ [R,n−1] such that Do(XC , t) > 2i
3 .

By applying Corollary 4.8, with ε = 1
4 , we have that for a given i ∈ [R,n− 1],

P
(

Do(XC , Vi(X
C)) >

2

3
i

)
= O(n−6). (5.24)

Now we apply the union bound on (5.24) for all i ∈ [R,n− 1] to obtain that

P({S2 < TR} ∩ {S∗ ≤ SP2}) = O(n−5). (5.25)

Now we bound the probability of {S2 < T (XC)} ∩ {S∗ > SP2}. This event implies

that the process has more than P2 dormant vertices during some intermediate stages

before the process finishes and before time S∗. Let H1 be the events where stage R starts

with more than 2
3R dormant vertices. Also let H2 be the event that before time S∗, XC

experiences more than P1 dormancy transitions during the intermediate and late stages.

Suppose that neither H1 nor H2 occurs. First we consider the case when s(n)→∞. Here,

the maximum number of dormant vertices that can possibly be attained by XC during

the entire intermediate and late stages, is 2
3R + P1 = 22s(n) log n(1 + o(1)) ≤ P2 for

sufficiently large n. We get this bound by considering the maximum number of dormant

vertices at the start of stage R and the maximum number of switchings experienced by

XC , each of which we consider that it contributes to a new dormant vertex. Second,

when s(n) = O(1), a similar bound also applies. In this case, XC always has at most
2
3R + P1 ≤ (807 + 22M) log n ≤ P2 dormant vertices during the whole intermediate and

late stages. This means that if neither H1 nor H2 occurs, then {S2 < TR} ∩ {S∗ > SP2}
also cannot occur. This implies that

P({S2 < TR} ∩ {S∗ > SP2}) ≤ P(H1) + P(H2). (5.26)

We apply Lemma 4.7 to bound the probability of H1 and specifically we choose ε = 1
3 .

For any i ≥ R, we have that

P(H1) = P
(

Do(XC , VR(XC)) >
2

3
i

)
< exp

(
−ε

2i

6

)
= O(n−5). (5.27)

Now we bound the probability of H2. Define Z<S
∗

=
∑n−1

i=R Z
<S∗

i , that is the number

of switchings occurring during the intermediate and late stages before time S∗. Similarly,
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we define Y =
∑n−1

i=R Yi. Observe that the probability of H2 is bounded above by P{Z<S∗ >
P1}, since the switchings counted by Z<S

∗
occur before time S∗. It is worth noting that

this signifies the essential of proving a stronger result by involving S∗ mentioned in the

earlier paragraph discussing the main aim of defining the stopping times. Now, observe

that Lemma 5.9 implies that Z<S
∗ ≤ST Y . Note also that for large enough n,

EY = 3s(n)(log n+O(1)) ≤

3s(n) log n+O(s(n)), if s(n)→∞,

(3M + 1) log n, if s(n) = O(1).

We apply the sharp concentration inequality for the sums of geometric random vari-

ables to Y stated in Lemma 2.12. Observe that the minimum value among all success

probabilities of {Yi}R≤i≤n−1 is (3s(n))−1. The minimum value is attained by the success

probability of Yn−1. Then by applying Lemma 2.12 to Y , with p∗ = (3s(n))−1 and t = 7,

we obtain the following result.

P(Y > P1) ≤ P(Y > 7EY ) < exp(−p∗EY (t− 1− log t))

= exp (−5.155 log n)

= O(n−5).

One can check that the inequality above applies for any choice of slow switching rates

since 7EY ≤ P1 for sufficiently large n.

It follows that

P(H2) ≤ P(Z<S
∗
> P1) ≤ P(Y > P1) = O(n−5). (5.28)

Thus, by putting (5.27) and (5.28) to (5.26), we obtain that

P({S2 < TR} ∩ {S∗ > SP2}) = O(n−5). (5.29)

Therefore, from (5.25) and (5.29), we conclude that

P(S2 < TR) = O(n−5).

The claim implies that once stage R starts, the process will not have more than P2

dormant vertices until every vertex is informed with probability 1−O(n−5). This provides

a much stronger bound on the number of dormant vertices than Corollary 4.8 and still

with reasonably high probability.

Now we bound the delay time during the late stages (and will come back to the

intermediate stages later). Let T<S2i and T≥S2i respectively denote the time spent in stage

i before and after time S2 accordingly to the ones defined in (4.5) and (4.6). We will apply

the bound provided by Claim 5.10 together with the strong bound in order to obtain the
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stochastic bound for T<S2i . On the other hand, we will again use the worst case bound to

bound ET≥S2i .

For Q ≤ i ≤ n − 1, we bound ET≥S2i again by the worst case bound. Suppose that

Bi denotes the event that XC is in stage i at time S2. Observe that from Claim 5.10, we

have that

P(Bi) ≤ P(S2 < T (XC)) = O(n−5).

Now we apply Corollary 4.6 with τ = S2 and A = Bi in order to obtain that

ET≥S2i ≤ P(Bi)

n− i
≤ O(n−5)

n− i
. (5.30)

Hence,

n−1∑
i=Q

ET≥S2i =
n−1∑
i=Q

O(n−5)

n− i

= O

(
log n

n5

)
. (5.31)

Now, we bound T<S2i stochastically for Q ≤ i ≤ n−1 by the strong bound. We apply

Lemma 4.4 to bound T<S2i with P = P2 and k = R. The lemma affirms that

T<S2i ≤ST E((i− P2)(n− i)),

and consequently

ET<S2i ≤ 1

(i− P2)(n− i)
. (5.32)

It follows that

ET<S2i − 1

i(n− i)
≤ 1

(i− P2)(n− i)
− 1

i(n− i)

=
P2

i(i− P2)(n− i)

≤ 2P2

i2(n− i)
(5.33)

where the last inequality comes from the fact that i ≥ Q = 2P2 and thus i − P2 ≥ i
2 for

all i ∈ [Q,n− 1].
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Therefore, we can bound the expected delay times occurring at late stages as follows.

n−1∑
i=Q

EDi =

n−1∑
i=Q

(
ETi −

1

i(n− i)

)

=

n−1∑
i=Q

ET≥S2i +

n−1∑
i=Q

(
ET<S2i − 1

i(n− i)

)

≤ O
(

log n

n5

)
+

n−1∑
i=2P2

2P2

i2(n− i)
(by (5.33) and (5.31))

≤ O
(

log n

n5

)
+

n/2∑
i=2P2

4P2

i2n
+

n−1∑
i=n/2

8P2

n2(n− i)
(5.34)

= O

(
1

n

)
. (5.35)

Observe that the first summation term in (5.34) comes from the fact that n − i ≥ n/2

when i ≤ n/2. On the other hand, the approximation in (5.35) is due to the fact that
N∑
i=M

i−2 = O(M−1), provided that M,N →∞ and M = o(N).

Hence, we conclude the following partial conclusion for the late stages.

Statement 5.11 (Late stages of the RSDS with a slow rate). If s(n) = o(n/ log n), then

the expected delay time during the late stages is

E

n−1∑
i=Q

Di(X
C)

 = O

(
1

n

)
.

Now, we analyse the delay during intermediate stages. We define L = Q/R. Now we

break the intermediate stages into a set of stage intervals as follows. For k = 1, 2, . . . , L−1,

we say that an intermediate stage i is in interval k if kR ≤ i < (k + 1)R. Let Mk be the

number of switchings occurring during the intermediate stages up to interval k and before

S∗, or equivalently

Mk =

(k+1)R−1∑
i=R

Z∗i .

The random variable Mk is stochastically bounded nicely from above. Recall from

Lemma 5.9 that Z∗i ≤ Yi where Yi
d
= G

(
1− 3s(n)

n−i+3s(n)

)
. Observe that for any i = o(n),

the success probability parameter of Yi can be bounded from above by 4s(n)
n . Thus, we

have that Yi ≤ST G
(

1− 4s(n)
n

)
. Suppose that for k = 1, . . . , L − 1, we define Ŷk as the

sum of kR identical and independent copies of G(1− 4s(n)
n ). By Lemma 5.9, we can write

that

Mk ≤ST
(k+1)R−1∑

i=R

Yi ≤ST Ŷk.
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Now, suppose that form = 1, 2 . . . , kR, we defineGm
d
= G

(
1− 4s(n)

n

)
independently

of each other. Then, observe that

EŶk = E

(
kR∑
m=1

Gm

)
=

4kRs(n)

n
+O

(
kRs(n)2

n2

)
.

Next, we apply the sharp concentration inequality for the sums of identical geometric

random variables to Ŷk given by Lemma 2.13, with p = 1 − 4s(n)
n and m = kR. For all

constant t > 1, we have that

P
(
Ŷk >

5tkRs(n)

n

)
≤ exp

(
−Ω

(
nkR

ts(n)

))
= e−ω(Rk logn) = o(n−R). (5.36)

By putting t = 6/5 in (5.36), we have that

P
(
Mk >

6kRs(n)

n

)
< P

(
Ŷk >

6kRs(n)

n

)
= o(n−R).

For each k = 1, . . . , L − 1, we define the following terms. Let Qk := 6kRs(n)
n + 2R

3 .

Define the stopping times

SQk
: inf{t ≥ VR(XC) : Do(XC , t) > Qk},

S(k) : min{SQk
, S∗, V(k+1)R}.

The interpretation of the stopping times above is given as follows. We can think of SQk

as the time where XC has more than Qk dormant vertices for the first time since stage R

starts. On the other hand, S(k) is the earliest time among S∗, SQk
and the finishing time

of interval k.

In analogy to Claim 5.10, we present the following claim in the context of intermediate

stages.

Claim 5.12. S(k) = V(k+1)R with probability 1−O(n−5).

Proof. First we claim that

P({S(k) < V(k+1)R} ∩ {S∗ ≤ SQk
}) ≤ O(n−5). (5.37)

Note that the event above is contained in the event {S∗ < V(k+1)R}. Now, the latter event

implies that there exists a time t during an intermediate stage i with R ≤ i < (k + 1)R

such that Do(XC , t) > 2i
3 . By Corollary 4.8 with ε = 1

4 , we have that for a fixed i with

R ≤ i < (k + 1)R, the process never has more than 2i
3 dormant vertices at any times

during stage i, with probability 1−O(n−6). Then, by applying the union bound, we have

that (5.37) holds.

On the other hand, now we bound the probability of the event {S(k) < V(k+1)R} ∩
{S∗ > SQk

}. This event implies that there exists a time t during an intermediate stage
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i with R ≤ i < (k + 1)R and before S∗, such that Do(XC , t) > 6kRs(n)
n + 2R

3 . Now

suppose that C1 and C2 are respectively the events that Do(XC , VR) > 2R
3 and that there

are more than 6kRs(n)
n dormancy transitions occurring during intermediate stages before

interval k + 1 begins and before time S∗. Observe that if both C̄1 and C̄2 occur, then

{S(k) < V(k+1)R} ∩ {S∗ > SQk
} cannot occur. This means that

P({S(k) < V(k+1)R} ∩ {S∗ > SQk
}) ≤ P(C̄1) + P(C̄2). (5.38)

Again, C1 occurs with probability 1 − O(n−6) by Corollary 4.8. On the other hand, to

let C̄2 occur, the process needs to experience at least 6kRs(n)
n switchings before time S∗.

Thus, C̄2 is contained in the event {Mk >
6kRs(n)

n }. Hence by (5.36), its probability is at

most O(n−R). Thus, by plugging in the upper bounds for the probability of C̄1 and C̄2 to

(5.38), we obtain that

P({S(k) < V(k+1)R} ∩ {S∗ > SQk
}) = O(n−6). (5.39)

Finally, from (5.37) and (5.39), we conclude that

P(S(k) < V(k+1)R) ≤ O(n−5).

This claim guarantees that within the first k intervals of the intermediate stages, the

process always has less than Qk dormant vertices w.h.p. Again, we will employ this bound

on the number of dormant vertices together with the strong and worst case bounds in

order to bound ETi.

Suppose that an intermediate stage i is in interval k. We write Ti = T<S
(k)

i + T≥S
(k)

i ,

where T<S
(k)

i and T≥S
(k)

i denote the running time of stage i before and after S(k) accord-

ingly to (4.6) and (4.5), respectively.

Following similar steps to the arguments for the late stages, we bound ET≥S
(k)

i by the

worst case bound. Let B̃i be the event that at time S(k), the process is in stage i. Note

that if B̃i occurs, then S(k) < V(k+1)R. Thus, by Claim 5.38, we infer that

P(B̃i) = O(n−5).

Again, we apply Corollary 4.6 by plugging in τ = S(k) and A = B̃i to obtain that

ET≥S
(k)

i ≤ P(B̃i)

n− i

≤ O(n−5)

n− i
.

On the other hand, we bound T<S
(k)

i by the strong bound given in Lemma 4.4. Putting

in P = Qk and k = R into the lemma, we have that

T<S
(k)

i ≤ST E((i−Qk)(n− i))
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and

ET<S
(k)

i ≤ 1

(1−Qk)(n− i)
.

Thus, we obtain that

EDi = ET<S
(k)

i − 1

i(n− i)
+ ET≥S

(k)

i ≤ 1

(i−Qk)(n− i)
− 1

i(n− i)
+
O(n−5)

n− i

≤ 2

n

(
Qk

i(i−Qk)
+O(n−5)

)
≤ 2

n

(
2R

3i2
+

6kRs(n)

ni(kR− 6kRs(n)
n − 2R

3 )
+O(n−5)

)

= O

(
R

ni2

)
+O

(
s(n)

in2

)
+O(n−6).

Therefore,

Q−1∑
i=R

EDi =

Q−1∑
i=R

(
O

(
R

ni2

)
+O

(
s(n)

in2

)
+O(n−6)

)
= O

(
1

n

)
+O

(
s(n) log(Q/R)

n2

)
+O(n−5)

= O

(
1

n

)
. (5.40)

Having (5.40) in hand, we conclude the analysis of the intermediate stages, summarised

by the following statement.

Statement 5.13 (Intermediate stages of the RSDS with a slow rate). If s(n) = o(n/ log n),

then the expected delay time during the intermediate stages is

E

(
Q−1∑
i=R

Di(X
C)

)
= O

(
1

n

)
.

Combining together Statement 5.8, Statement 5.11, and Statement 5.13 for all the

three categories of stages, we conclude that

ED(XC) = E

(
n−1∑
i=1

Di

)
= O

(
s(n) log2 n

n2

)
+O

(
1

n

)
.

This concludes the delay time analysis for the CRSDS process with a slow switching

rate.

To close this section, we state the following equation. From Proposition 5.5 and

Proposition 5.6, we have that the expected delay for the RSDS process with a slow switch-

ing rate is

ED(X) = ED(XC) + EW (X)

= O

(
s(n) log2 n

n2

)
+O

(
log log n

n

)
.

77



This proves Theorem 5.1.

5.3 Proof of Theorem 5.2

Throughout this section, we assume that s(n) = Ω(n/ log n). Unlike the slow rate case,

all arguments in this section will consider the ordinary RSDS process X, without giving

much attention to its compressed version.

We will provide a bound for the expected delay time at the case of a fast rates. We

provide both lower and upper bounds for the expected delay of the RSDS process. We

aim to show that both bounds are of order log n/n.

In contrast with the case of a slow switching rate, the RSDS process will frequently

enter a vacuum state during a given time period if the statuses of the informed vertices

switch frequently enough. Recall that when the switching rate is slow, the process never

arrives at a vacuum state w.h.p. during a relatively late stage, since the process will be

more likely to conduct the spreading transition than switching the informed vertices. The

faster the switching rate is, the more frequently the informed vertices switch before a

newly informed vertex appears. This provides a reasonable possibility for the process to

become vacuum.

To give a rough picture of this situation, we can think of the switchings experienced

by the informed vertices as an unbiased random walk on the set of binary strings. Suppose

that we represent the statuses of k informed vertices by a binary string with length k. Here,

each bit represents the status of a particular vertex and the 1’s denote the active vertices.

Then a switching experienced by a vertex means that we flip the bit corresponding to the

vertex. Thus, we can translate the sequence of the switching transitions as a random walk

on the binary strings set {0, 1}k where we can only move to the strings having exactly

one different binary coordinate to the current position, with an equally likely random

choice. It is well known that the stationary distribution of this random walk is the uniform

distribution over {0, 1}k. Hence, if the vertices switch frequently enough, then the process

will eventually become vacuum at some point.

Observe that during a given time interval, it is likely that the RSDS becomes vacuum

for a very quick subinterval when the switching rate is fast. However, we showed that

when we pick a fixed time point, the probability that the RSDS process is vacuum at that

time is very small, as described in Lemma 4.7. This will be the key observation for the

arguments in the forthcoming parts.

First, we describe the lower bound for the expected delay time as follows.

Proposition 5.14 (The lower bound delay of the RSDS with a fast rate). If s(n) =
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Ω(n/ log n), then

ED(X) = Ω

(
log n

n

)
.

Proof. The key idea to obtain the lower bound is the fact that with a fast switching rate,

informed vertices tend to switch for a lot of times before any new vertex is informed. By

experiencing a lot of switchings, significant number of informed vertices get chances to

become dormant. Once a significant fraction of dormant vertices arises in some stages,

the spreading rate also drops in a considerable way. This results in the significant delay

time of the process.

To show this more precisely, we construct a modified CRSDS process X∗, coupled

to the original process X, to provide a stochastic lower bound for the running time of

X. In this coupling, we will use the spreading and switching clocks introduced in the

RSDS edge clock model. In X∗, we do not allow any dormancy transition during the first

bn2 c−1 stages. In other words, before the process has bn2 c informed vertices, the switching

clocks have no effect. We start linking both processes once stage bn2 c of each process

starts. For each dormant vertex in X at time Vbn/2c(X), we specify the corresponding

vertex in X∗ to be always active from time Vbn/2c(X∗) until X∗ ends. On the other hand,

for each active vertex in X at time Vbn/2c(X), we set the corresponding vertex in X∗ to

share the same switching clock from time Vbn/2c(X∗) until X∗ ends. We call these active

vertices the delaying vertices. Observe that the status of every delaying vertex in both

processes is always the same once stage bn2 c of each process starts. We specify that every

new informed vertex appearing after stage bn/2c will be always active in X∗. In other

words, the switching clocks only affect the delaying vertices in X∗ after time Vbn/2c(X∗),

whereas the non-delaying vertices are always active. In this setting, we have that at all

times, whenever a vertex is active in X, it is also active in X∗. This implies that whenever

a spreading transition occurs in X, it also occurs in X∗. It follows that Ti(X∗) ≤ Ti(X).

Hence, the coupling implies that

ET (X∗) ≤ ET (X).

Now we aim to stochastically bound from below the running time of X∗. Define

L = n− bn1/3c.

Referring to (3.7), for any stage i with i ≤ L, we simply use Ti(X
′), the running time in

the SRS process, as the stochastic lower bound for Ti(X∗). In other words, we use the

very trivial lower bound EDi(X∗) ≥ 0 for all i ≤ L. On the other hand, we will show that

after stage L, w.h.p. there are Θ(n) dormant vertices until the process ends. Although we

only calculate the delay for the last bn1/3c stages, we will show that the expected delay

time during these stages is significant.
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To show this, we consider the time Vbn/2c + 1
2 log n/n. At this time, we bound the

number of two types of vertex: dormant vertices among the delaying vertices, and new

informed vertices achieved from the spreading actions. Using these bounds, we aim to

show that the following two events occur at time Vbn/2c + logn
2n w.h.p: there is a constant

fraction of dormant vertices among the delaying vertices, and stage L is not started yet.

We present these as the following two observations.

Observation 5.15. There exists a constant d0 ∈
(
0, 1

10

)
such that the following fact

holds. Suppose that we list the ringing times of all spreading clocks starting from time

Vbn/2c + 1
2 log n/n in ascending order as follows.

Vbn/2c +
log n

2n
< r1 < r2 < · · ·

Then, for all integers k ≥ 1,

P(Do(X∗, rk) ≤ d0n) = O(n−n
1/3

).

Proof. Observe that we can write rk = Vbn/2c+ 1
2 log n/n+ t′ for some random time t ≥ 0

which depends only on the ringing of the spreading clocks after time Vbn/2c + 1
2 log n/n.

Now write t = t′ + 1
2 log n/n. For the rest of the proof, we will focus on observing the

statuses of the delaying vertices at time rk. Note that the statuses on the delaying vertices

depend only on the ringing of the switching clocks associated to them after time Vbn/2c.

This means that the source of randomness in the arguments of the proof comes solely from

the switching clocks. For this reason, we will regard t as a fixed function in the context of

this proof.

Suppose that Z(t) is the number of dormant vertices among the delaying vertices

in X∗ at time Vbn/2c + t. For any delaying vertex v, let Zv(t) be the indicator random

variable for v being dormant. Suppose that VD ⊆ V (G) denotes the set of all delaying

vertices. We can write Z(t) =
∑

v∈VD Zv(t). Note that v is dormant at time Vbn/2c + t if

and only if v receives an odd number of switchings during the predetermined time interval

[Vbn/2c, Vbn/2c + t]. Suppose that Pv(t) counts how many times the switching clock of v

rings during [Vbn/2c, Vbn/2c+ t]. Then, Pv(t) is a Poisson distributed random variable with

mean ts(n). Hence, adapting (4.9), we obtain

EZv(t) = P(Pv(t) is odd) =
1

2
(1− e−2ts(n)).

Now, we notice that by Lemma 4.7, there are at most 4
5n dormant vertices at time

Vbn/2c(X) in the process X with probability 1− exp(−Ω(n)). It follows that the number

of delaying vertices of the process X∗ is at least n
5 with probability 1− exp(−Ω(n)). Thus,

we have that Z(t) ≥ST B(n5 ,
1
2(1 − e−2ts(n))). Now for any u ≥ 1

2 log n/n, it follows that
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there exists a constant d0 ∈ (0, 1
10) such that EZ(u) ≥ d0n. By Lemma 2.10, we have that

P(Z(u) < d0n) ≤ P
[
B
(
n

5
,
1

2
(1− e−2us(n))

)
< d0n

]
≤ exp(−Ω(n)),

which completes the proof.

We remark that the non-standard condition for t described in the observation above

will be useful to tackle some upcoming technical issues as we will later discuss.

Observation 5.16. With probability 1 − O(n−n
1/3

), there are at least n1/3 uninformed

vertices at time Vbn/2c + 1
2 log n/n or equivalently, VL(X∗) ≥ Vbn/2c + 1

2 log n/n.

Proof. Let N be the number of uninformed vertices at time Vn/2 + 1
2 log n/n. Define

U∗k :=
∑n−k

i=bn/2c Ti(X∗), that is the time spent for X∗ to move from stage bn2 c to stage

n − k. Observe that N < k if and only if U∗k < 1
2 log n/n. Let {Ei}i be independent

exponential random variables where Ei has rate i(n − i). Recall that Ei has the same

distribution as Ti(X
′), the running time of stage i in the SRS process. Hence, Ei is

stochastically smaller that Ti(X∗) and we write that

Ei ≤ST Ti(X∗).

From this, we also have that
n−k∑

i=bn/2c

Ei ≤ST U∗k .

We now show that N ≥ n1/3 with probability 1−O(n−n
1/3

). We bound the probability

of the complementary event {U∗bn1/3c <
1
2 log n/n}. As an upper bound for the probability,

we calculate the probability that
L∑

i=bn/2c
Ei <

1
2 log n/n. Notice that

E

 L∑
i=bn/2c

Ei

 =

bn/2c∑
i=bn1/3c

1

i(n− i)

=
1

n

bn/2c∑
i=bn1/3c

(
1

i
+

1

n− i

)

≤ 2 log n

3n
+O

(
1

n

)
.

Next, we employ the sharp concentration inequality for the sums of exponential ran-

dom variables. Specifically, we apply the second inequality of Lemma 2.11 with u = 3/4
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and W =
L∑

i=bn/2c
Ei. From this, we obtain

P

 L∑
i=bn/2c

Ei <
log n

2n

 = exp(−Ω(n1/3 log n)).

It follows that

P(N < n1/3) = exp(−Ω(n1/3 log n)).

Together, Observation 5.15 and Observation 5.16 imply an important corollary. For

the rest of the proof, d0 refers to the constant whose existence is stated in Observation

5.15.

Corollary 5.17. Suppose that we list the ringing times of all spreading clocks starting

from time VL in ascending order as follows.

VL < r∗1 < r∗2 < · · ·

Then, for all integers k ≥ 1,

P(Do(X∗, r
∗
k) ≤ d0n) = O(n−n

1/3
). (5.41)

Proof. Suppose that A denotes the event described in (5.41) and B denotes the event that

r∗k ≤ Vbn/2c + 1
2 log n/n. By Observation 5.16, we have that P(B) = O(n−n

1/3
). Now

we consider the event A conditioned on B̄. Observe that when B̄ occurs, r∗k satisfies the

condition given by Observation 5.15. Thus, P(A | B̄) = exp(−Ω(n)).

Therefore,

P(A) = P(A | B)P(B) + P(A | B̄)P(B̄)

≤ P(B) + P(A | B̄)

= O(n−n
1/3

).

We will employ this corollary to bound the expected running times of the last bn1/3c
stages of X.

For all L ≤ i ≤ n− 1, we now find a stochastic lower bound for Ti(X∗). To begin, we

define the unlabelled versions of the switching and spreading clocks of stage i in X∗. Let

{Sj}1≤j≤i and {Rj}1≤j≤i be respectively the unlabelled spreading and switching clocks of

stage i inX∗. Also, we introduce the dormancy process of stage i, denoted by {d(t) : t ≥ 0}.
We let the unlabelled clocks and dormancy process work in almost the same way as the

rules defined in Rules 4.3 with some exceptions. Suppose that ∆ is the (random) number

of the delaying vertices. We specify that whenever d(t) = ∆, we abandon Rule 2, which

means that we do not allow a dormancy transition since all of the active vertices at that
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time are the non-delaying vertices (that are supposed to be always active by the definition

of X∗). On the other hand, we let all other rules apply in the usual way when d(t) < ∆.

Now, we construct a coupling (T̂i, T̃i) in such a way that

T̃i ≥ T̂i (5.42)

where the exact definitions of T̂i and T̃i will be provided later. With the assistance of

(5.42), we will later find a lower bound for ETi(X∗).

To define T̂i and T̃i, we introduce the following terms. Let {X(k)
∗ }k≥1 be independent

realisations of X∗. For each k ≥ 1, let {S(k)
j }1≤j≤i and {R(k)

j }1≤j≤i respectively be the

unlabelled switching and spreading clocks of stage i in X
(k)
∗ . Similarly, we let {d(k)(t) :

t ≥ 0} be the dormancy process of X
(k)
∗ for stage i. In addition, for all k ≥ 1, we define

uk =
∑k

j=1 Ti(X
(j)
∗ ).

We define T̃i as follows.

k̃ = min{k ≥ 1 : d(k)(Ti(X
(k))) > d0n} (5.43)

T̃i =uk̃. (5.44)

Now we define T̂i. For all 1 ≤ j ≤ i, we define R∗j to be another clock that behaves

like a ‘concatenation’ of {R(k)
j }k≥1 in the following sense. Suppose that for all k ≥ 1, we

have that (t
(k)
1 < t

(k)
2 < · · · < t

(k)
lk

) is the sequence of ringing times of R
(k)
j during stage i

of X
(k)
∗ in an ascending order, where lk denotes the (random) number of ringing of R

(k)
j

during stage i of X
(k)
∗ . Then, we specify the ringing times of R∗j to be

(t
(1)
1 , . . . , t

(1)
l1
, u1 + t

(2)
1 , . . . , u1 + t

(2)
l2
, . . . uk + t

(k+1)
1 , . . . , uk + t

(k+1)
lk

, . . . ).

In other words R∗j consists of the concatenation of the ringing behaviours of {R(k)
j }k≥1

during the time period [0, Ti(X
(k)
∗ )]. However, since all clocks in {R(k)

j }k≥1 have rate (n−i),
we have that R∗j is simply another Poisson clock with rate n − i by the memorylessness

property of the exponential waiting times. Finally, we define

T̂i := the waiting time for the first clock ringing among {R∗bd0nc+1, . . . , R
∗
i }. (5.45)

Now we show that (5.42) holds. We claim that at time T̃i = uk̃, one of the clocks in

{R∗bd0nc+1, . . . , R
∗
i } must ring. Note that at this time, a spreading clock R necessarily rings

for some R ∈ {R(k̃)
1 , . . . , R

(k̃)
i } since the time marks the termination of stage i of X

(k̃)
∗ .

Now, by (5.43), the number of dormant vertices in X
(k̃)
∗ at that time is more than d0n.

This means that R ∈ {R(k̃)
bd0nc+1, . . . , R

(k̃)
i }. It follows that when R rings, one of the clocks

among {R∗bd0nc+1, . . . , R
∗
i } also rings. Thus, by (5.45), we have that (5.42) is satisfied.
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Now we analyse the distribution of T̃i and T̂i. By (5.44), T̃i is the sum of k̃ independent

copies of Ti(X∗). Note that for all k ≥ 1, at time Ti(X
(k)
∗ ), a spreading clock rings. Hence,

by Corollary (5.17), we have that d(k)(Ti(X
(k)
∗ )) > d0n with probability 1 − O(n−n

1/3
).

It follows that k̃
d
= 1 + G(1 − O(n−n

1/3
)) since we can associate the successful criterion

of the Bernoulli trials with the criterion described in (5.43). Consequently, Ek̃ = (1 −
O(n−n

1/3
))−1. Thus,

ET̃i = E

 k̃∑
k=1

T
(k)
i


= E

E
 k̂∑
k=1

T
(k)
i

∣∣∣∣∣∣k̃


= Ek̃ETi(X∗).

On the other hand, T̂i simply has an exponential distribution with rate (i− bd0nc)(n− i)
since it waits for the first ringing among (i − bd0nc) Poisson clocks, where each of them

has rate (n− i). It follows that

ETi(X∗) ≥
ET̂i
Ek̃

≥ 1−O(n−n
1/3

)

(i− bd0nc)(n− i)
.

Now we bound the delay time of the last n1/3 stages of X∗.

n−1∑
i=L

EDi(X∗) =
n−1∑
i=L

(
ETi(X∗)−

1

i(n− i)

)

≥
n−1∑
i=L

(
1−O(n−n

1/3
)

(i− d0n)(n− i)
− 1

i(n− i)

)

=
n−1∑
i=L

d0n

i(i− d0n)(n− i)
−O(n−n

1/3
)

= Ω

(
1

n

) bn1/3c∑
i=1

1

i
= Ω

(
log n

n

)
.

Therefore,

ED(X) ≥ ED(X∗)

=

L−1∑
i=1

EDi(X∗) +

n−1∑
i=L

EDi(X∗)

= Ω

(
log n

n

)
.

84



Now we find an upper bound for the expected delay time. The precise result on the

upper bound is summarised by the following proposition.

Proposition 5.18 (The upper bound delay of the RSDS with a fast rate). If s(n) =

Ω(n/ log n), then

ED(X) = O

(
log n

n

)
.

Proof. For all 1 ≤ i ≤ n − 1, we aim to provide a stochastic upper bound for Ti(X). To

obtain the bound, we construct a coupling (X,X∗) where X∗ is another rumour spreading

process having slightly different rules from those of X. Specifically, X∗ modifies stage i so

that during the entire stage, it always has a fixed number of dormant vertices. We let X∗

be an exact copy of X until stage i begins. We couple these two processes in such a way

that at the time where stage i of X∗ finishes, X will have finished by that time as well.

In other words,

Ti(X) ≤ Ti(X∗). (5.46)

In this coupling, we refer to the unlabelled model of the RSDS introduced in Definition

4.2. All spreading and switching clocks employed in this coupling are unlabelled.

Suppose that {Sj}1≤j≤i and {Rj}1≤j≤i are respectively the sets of unlabelled switch-

ing and spreading clocks of stage i in X. Also let {d(t) : t ≥ 0} be the dormancy process of

stage i in X. We will employ these clocks and dormancy process to govern the realisation

of stage i in X∗. In this coupling, we allow the dormancy process to extend its role to

capture the number of dormant vertices for time t > Ti(X). This means that even though

stage i of X has ended, we still let the ringing of the unlabelled switching clocks determine

the value of d(t).

We define the clock R′i to be the superposition of all clocks in {Rb2i/3c+1, . . . , Ri}.
Suppose that s0 = 0 and s1 < s2 < . . . denote the ringing times of R′i. For j ≥ 1, we

define sj as the waiting time from Vi(X) until the j-th ringing time of R′i. In other words,

R′i considers Vi(X) as the zero time. Now, we define

k∗ := min

{
k ≥ 1 : d(sk) ≤

2

3
i

}
. (5.47)

Then, we specify that stage i of X∗ terminates at time sk∗ . This means that during stage i

of X∗, whenever R′i rings, the process examines if there are more than 2
3 i dormant vertices.

If more than 2
3 i vertices are dormant, then stage i of the process continues. Otherwise, it

terminates the stage there.

Now we show that the running time of stage i in X is at most rk∗ . By (5.47), we have

that d(rk∗) ≤ 2
3 i. This means that any ringing among the clocks in {Rb2i/3c+1, . . . , Ri}

implies the termination of stage i in X by the general rules of the unlabelled clocks

described in Rules 4.3. Thus, this justifies (5.46).
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Next, we examine the distribution of Ti(X
∗). Note that k∗ denotes the number of the

ringings of Si until the stopping criterion in (5.47) is satisfied. Recall that from Lemma

4.7, for any t > 0, we have that

P
[
Do(XC , Vi(X

C) + t) >
2

3
i

]
≤ e−0.01i.

Hence, for each sj , the ringing time of R′i, the probability that X∗ terminates stage i at

time sj is at least 1 − e−0.01i. This implies that k∗ ≤ST 1 + G(1 − e−0.01i) since we can

associate the successful trial to the termination of stage i event in X∗. Note that

Ek∗ = (1− e−0.01i)−1.

On the other hand, by the memorylessness property of exponential random variables, for

all j ≥ 1, we have that sj−sj−1 has an exponential distribution with rate 1
3 i(n−i) and are

independent of each other. Let {H(k)
i }k≥1 be independent copies of E(13 i(n − i)). Then,

we have that

Ti(X
∗) =

k∗∑
k=1

H
(k)
i .

Now, we have that

ETi(X) ≤ ETi(X∗)

≤ E

(
k∗∑
k=1

H
(k)
i

)

≤ E

[
E

(
k∗∑
k=1

H
(k)
i

∣∣∣∣∣k∗
)]

≤ Ek∗EH(k)
i

≤ (1− e−0.01i)−1 3

i(n− i)
.

We are now ready to bound ED(XC) from above.

ED(X) =
n−1∑
i=1

ETi(XC)− 1

i(n− i)

≤
n−1∑
i=1

(1− e−0.01i)−1 3

i(n− i)
− 1

i(n− i)

≤
log2 n−1∑
i=1

200

i(n− i)
+

n−1∑
i=log2 n

2

i(n− i)
(1 +O(n−10))

= O

(
log n

n

)
.

To conclude the section, Proposition 5.14 as well as Proposition 5.18 provide the

direct proof for Theorem 5.2.
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5.4 Proof of Theorem 5.3

In this section, we will always assume that s(n) = 1. Since the unit rate is a specific

instance of a slow switching rate, many arguments in this section will frequently refer to

the proof of both Proposition 5.5 and Theorem 5.1.

We provide an overview of the proof as follows. We specify three sources of the delay

times of which the total delay time is composed: the vacuum time of the first stage, the

vacuum time of the rest of the stages, and the delay time of the compressed version.

To be more precise, we define the following terms. Recall that Wi(X) denotes the

total time length for which X is vacuum during stage i. Define W>1(X) =
∑n−1

i=2 Wi(X),

that is the total vacuum time experienced by X after stage 2 starts. Then, we rewrite

(4.4) as follows.

D(X) = W1(X) +W>1(X) +D(XC). (5.48)

Note that this equation breaks W (X) in (4.4) into two terms, W1(X) and W>1(X) in

order to show that EW1(X) has significantly greater value than EW>1(X). Furthermore

we will also show that ED(XC) is negligible compared to EW1(X).

For this entire section, we let X ′, X and XC be the SRS, RSDS, and CRSDS processes

on Kn with switching rate 1. Also, we will refer to the labelled edge clock version of the

SRS and RSDS models. This means that all switching and spreading clocks in this section

are labelled and are assumed to lie on the vertices and edges of the graph, respectively.

First, we calculate the expectation of W1(X).

Proposition 5.19. If the switching rate is 1, then

EW1(X) =
1

n− 1
.

Proof. Recall that X is vacuum for C1 times during the first stage. Now for 1 ≤ j ≤ C1,

let Rj be the waiting time starting from the time where X becomes vacuum for the j-th

time, until the dormant vertex switches and becomes active again. {Rj} are then identical

and independent exponential random variables with unit rate since they are the waiting

times for the ringing of the switching clock lying on the initial rumour spreader (whose

rate is 1). It follows that

W1(X) =

C1(X)∑
i=1

Ri. (5.49)

Now we find the distribution of C1(X). During the first stage, there are only two

possible states for the process, either it is vacuum or not. When X is not vacuum, it has

two possible state transitions: either going vacuum or terminating the stage by informing

a new vertex. On the other hand, when it is vacuum, it will deterministically transition
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back to the non-vacuum state after waiting for a while. Now, every time X becomes non-

vacuum, we interpret this condition as an independent Bernoulli trial with identical success

probability q for some q ∈ (0, 1), where the success corresponds to the spreading transition.

Hence, C1(X) is the number of failures occurring in the sequence of the Bernoulli trials

until it achieves the first successful trial. It follows that Ci(X)
d
= G(q). Now we find q.

When X is not vacuum, it will stay in the current stage until the first ringing of either the

switching clock on the initial rumour spreader, or the spreading clocks lying on the edges

which are incident to the initial rumour spreader. Note that all of these clocks have rate

1. Thus, q is the probability that the first ringing comes from a spreading clock, that is

q = n−1
n . It follows that

ECi = EG
(

1− 1

n

)
=

1

n− 1
. (5.50)

Therefore, from (5.49) and (5.50), we obtain

EW1(X) = E[E(W1(X) | C1)] = E

[
E

(
C1∑
i=1

Ri

∣∣∣∣∣C1

)]
= EC1ER1 =

1

n− 1

and the we have proved our proposition.

It is worth noting that the proof of the proposition above adapts the arguments for

finding the expected RSDS running time of the first stage in Sn. These arguments can be

found in Subsection 3.2.2. This is due to the following fact: in the first stage, when we

remove all edges whose ends are both uninformed in Kn (as the ringing of their spreading

clocks give no effect during the first stage), we will get a star subgraph where the centre

vertex is the initial rumour spreader.

Next, we present the following proposition to describe the expected vacuum delay

time for the later stages.

Proposition 5.20. If the switching rate is 1, then

EW>1(X) = O

(
log2 n

n2

)
.

Proof. First, we notice that during stages where the process has large enough number of

informed vertices, the expected vacuum delay time is extremely small. From Section 5.1,

by applying s(n) = 1 in (5.15), we have that

n−1∑
i=blog2 nc

EWi = O

(
log n

n7

)
. (5.51)

Now we find a bound for the expected delay times for stage i with 2 ≤ i ≤ blog2 nc−1.

To carry this out, we find a stochastic upper bound for Wi(X) for i = 2, 3, . . . , blog2 nc−1.
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We introduce X̂, a variant of X that customises the rules governing stage i. We design

the coupling of X̂ and X in such a way that

Wi(X) ≤Wi(X̂) (5.52)

holds, so that Wi(X̂) becomes a stochastic upper bound for Wi(X).

Observe that for each stage i with i ≥ 2, there are always at least 2 active vertices

at the beginning of stage i. Recall that wi is the captured vertex of stage i, that is

the most recent informed vertex at the start of stage i. Suppose that xi is an informed

vertex from which wi receives the rumour. Then, at time Vi(X), we have that wi and xi

are necessarily active by their definitions. This will become the key observation for the

coupling construction.

We specify that X̂ follows the same state transitions as X until the end of stage

i−1. This means that their transitions are governed by the same switching and spreading

clocks. When stage i begins, we specify that all vertices but wi and xi, are always dormant

in X̂. During stage i of X̂, we will only pay attention to the switching clocks on both wi

and xi and all spreading clocks lying on the edges which are incident to these vertices.

Essentially, during stage i of X̂, we restrict the process to have at most two active vertices.

By the coupling construction, the statuses of both wi and xi in both X and X̂ are

always the same during stage i, since they still share the same switching clocks. This

means that if an informed vertex is dormant in X̂, then it is also dormant in X. Thus,

when X is vacuum, so is X̂. Hence, this shows that (5.52) holds.

Now we look at the distribution of Ci(X̂). Observe that we can think of the transitions

occurring during stage i of X̂ as an embedded Markov chain with four states. Suppose that

Z is the embedded Markov chain with state space {0, 1, 2, 3}. Each state of Z corresponds

to various conditions of X̂, stated as follows.

State Interpretation

0 Both wi and xi are active

1 Exactly one of wi or xi is active

2 Both wi and xi are dormant

3 Stage i finishes

Note that state 2 is the vacuum state of X̂. Also, state 3 is an absorbing state since once

X̂ arrives at this state, it leaves stage i and will never visit other states defined above. On

the other hand, we start stage i of X̂ with both wi and xi being active deterministically.

This means that Z0 = 0. Hence, Ci(X) is the number of times Z visits state 2 before it

enters the absorbing state 3, given that Z0 = 0.
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Suppose that P = [p`,j ] is the transition matrix of Z. It follows that P is in the form

P =



0
1

n− i+ 1
0

n− i
n− i+ 1

1

n− i+ 2
0

1

n− i+ 2

n− i
n− i+ 2

0 1 0 0

0 0 0 1


.

The nonzero entries of the first row of P comes from the fact that the two currently active

vertices are waiting for the ringing of 2(n− i) spreading clocks and 2 switching clocks in

other to change their statuses. On the other hand, when there is only exactly one active

vertex, the process waits for the ringing of (n− i) spreading clocks and 2 switching clocks

to experience a the next state transition. This explains the nonzero entries of the second

row of P. Next, define

Q =


0

1

n− i+ 1
0

1

n− i+ 2
0

1

n− i+ 2

0 1 0

 , R =


n− i

n− i+ 1

n− i
n− i+ 2

0

 ,

and write that

P =

(
Q R

0 1

)
.

We now calculate ECi(X̂). Consider the so-called fundamental matrix of Z, that is

B :=
∞∑
k=0

Qk = (I−Q)−1.

Suppose that b`,j and pk`,j are the (`, j) entries of B and Pk respectively, for all `, j ∈
{0, 1, 2} and k ≥ 0. It is well known that

b`,j =

∞∑
k=0

pk`,j .

Hence,

ECi(X) = E

( ∞∑
k=0

1{Zk = 2}

)

=

∞∑
k=0

pk0,2

= b0,2 (5.53)

where the second equation comes from a well known fact that

pk`,j = P(Zm+k = j | Zm = `), for all `, j ∈ {0, 1, 2},m ≥ 0.
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By some calculations, we obtain that

B =



N1(N2 − 1)

M

N2

M

1

M

N1

M

N1N2

M

N1

M

N1

M

N1N2

M

N1N2 − 1

M


where

N1 = n− i+ 1,

N2 = n− i+ 2,

M = N1N2 −N1 − 1.

Hence, from (5.53) we have that

ECi(X̂) =
1

M
= O

(
1

(n− i)2

)
. (5.54)

Now we find the distribution of Wi(X̂). When X̂ is vacuum, the process stays in the

vacuum state until the first ringing among the switching clocks associated to either wi or

xi. It follows that once X̂ is vacuum, the waiting time until it leaves the vacuum state is

exponentially distributed with rate 2. For k ≥ 1, define H
(k)
i

d
= E(2). Then we have that

Wi(X̂) =

Ci(X̂)∑
k=1

H
(k)
i .

Therefore,

EWi(X) ≤ EWi(X̂) = E

Ci(X̂)∑
k=1

H
(k)
i


= E

E
Ci(X̂)∑

k=1

H
(k)
i

∣∣∣∣∣∣Ci(X̂)


= ECi(X̂)EH(1)

i

= O

(
1

(n− i)2

)
where the last equality comes from (5.54).

Therefore,

E

blog2 nc−1∑
i=2

Wi(X)

 =

blog2 nc−1∑
i=2

O

(
1

(n− i)2

)

= O

(
log2 n

n2

)
. (5.55)
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Finally, we have that (5.51) and (5.55) conclude the proof.

The proposition above suggests that we only need to pay attention to the total vacuum

time spent during stage 1. This is because the total expected vacuum delay times on the

later stages is significantly smaller and can be neglected compared to EW1(X).

Now we analyse the other sources of the delay times, that is the delay times con-

tributed by the compressed process. First, by directly applying Proposition 5.6 with

s(n) = 1, we observe that

ED(XC) = O

(
1

n

)
. (5.56)

This term is of the same order as EWi(X). However, if we take a finer analysis of the delay

time for the unit rate, we can get a slight improvement for the upper bound in (5.56). We

present this in the form of the following proposition.

Proposition 5.21 (Delay time of the CRSDS with the unit rate). If the switching rate

is 1, then

ED(XC) = O

(
1

n log n

)
.

The proof of the proposition is a direct modification of the proof of Proposition 5.6.

In the following proof, we will often refer back to some notions stated in Proposition 5.6.

Proof. We again divide the stages into categories. However, unlike the arguments in

Proposition 5.6, we abandon the notion of an intermediate stage. In this proof, for every

i ∈ [1, n−1], we simply call stage i early if i < blog2 nc and late otherwise. In other words,

we redefine R = Q = blog2 nc.

We reformulate Claim 5.7 in the context of the unit rate as follows.

Claim 5.22. When the switching rate s(n) is 1, during the first blog2 nc − 1 stages, XC

has no dormant vertex with probability 1−O(log2 n/n).

Proof. Let XM and H be the embedded Markov chain and the event introduced in Claim

5.7. We apply (5.19) with s(n) = 1, to obtain

p(0,i),(0,i+1) = 1− 1

n− i+ 1
.
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This means that

P(H̄) = 1−
blog2 nc−1∏

i=1

(
1− 1

n− i+ 1

)

≤ 1−
blog2 nc−1∏

i=1

(
1− 2

n

)

= 1−
(

1− 2

n

)blog2 nc−1
= 1−

(
1−O

(
log2 n

n

))
= O

(
log2 n

n

)
.

This proves our claim.

The claim above provides a stronger condition for the absence of a dormant vertex,

however with a slightly lower probability compared to Claim 5.7. Nevertheless, we still

have that the bound holds with sufficiently high probability and will employ this together

with the worst case bound.

Now by employing the same notations of S1, T≥S1i , and Ai as introduced in Proposition

5.6, we have that (5.20) holds, that is

EDi(X
C) ≤ ET≥S1i (XC).

On the other hand, by Claim 5.22, we have that P(Ai) = O(log2 n/n). Hence, by the

worst case bound in Corollary 4.6, we obtain that

EDi(X
C) ≤ ET≥S1i (XC) ≤ P (Ai)

n− i
= O

(
log2 n

n2

)
.

Therefore, the expected delay time during the early stages is

blog2 nc−1∑
i=1

EDi(X
C) ≤

blog2 nc−1∑
i=1

O

(
log2 n

n2

)
= O

(
log4 n

n2

)
. (5.57)

Now we bound the expected delay time for late stages. Again, we redefine the terms

P1 = b22 log nc and P2 = b23 log nc. However, we employ the same notion of S∗,S2, Z<S
∗

i

and Yi with s(n) = 1. While S∗ has exactly the same interpretation as that of Proposition

5.6, we can think of S2 as the waiting time from the start of stage blog2 nc, until either

time S∗ is achieved or the process has at least P2 = b22 log nc dormant vertices for the

first time.

In analogy to Claim 5.10, we present the following claim.
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Claim 5.23. If the switching rate s(n) = 1, then S2 = T (XC) with probability 1−O(n−5).

Proof. By imitating the proof of Claim 5.10, we have that (5.25) holds in the case of the

unit rate, that is

P({S2 < TR} ∩ {S∗ ≤ SP2}) = O(n−5). (5.58)

On the other hand, to bound the probability of {S2 < TR}∩ {S∗ > SP2}, we consider

two events H1 and H2 which slightly modify H1 and H2 in Claim 5.10. Define H1 to be the

event that stage blog2 nc starts with at least six dormant vertices whereas we let H2 be the

event where at least b22 log nc switching transitions occur during the late stages and before

time S∗. Observe that whenever both H1 and H2 do not occur, {S2 < TR} ∩ {S∗ > SP2}
also cannot occur. Hence, analogous to (5.26), we have the following similar result.

P({S2 < TR} ∩ {S∗ > SP2}) ≤ P(H1) + P(H2). (5.59)

Now we show that H1 occurs with a very low probability. We consider the first

blog2 nc + 5 state transitions of the process. Note that when stage blog2 nc starts with

at least 6 dormant vertices, there must be at least 6 switching transitions among the

first blog2 nc + 5 state transitions. Now we bound the probability that a particular state

transition is a switching transition. For i ∈ [1, blog2 nc − 1], suppose that XC is currently

in stage i. During this stage, there are i switching clocks and at most i(n − i) spreading

clocks where their ringings lead to a state transition. Note that all of these clocks have

rate 1. The probability that the earliest clock ringing among them is a switching clock is

at least
i

i+ i(n− i)
=

1

n− i+ 1
≥ 1

n
.

It follows that

P(H1) ≤ P
(
B
(
blog2 nc+ 5,

1

n

)
≥ 6

)
= O

(
log12 n

n6

)
.

On the other hand, H2 is contained in the event {Z<S∗i ≥ 22 log n}. Observe that

Lemma 5.9 holds in the unit rate setting. Thus,

n−1∑
i=blog2 nc

Z<S
∗

i ≤ST
n−1∑

i=blog2 nc

Yi.

Note also that in the case of the unit rate, we have that

EY = 3 log n+O(1).

It follows that

P(H2) ≤ P(Z<S
∗

i ≥ 22 log n) ≤ P(Y ≥ 7EY ) = O(n−5)
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in analogy to (5.28). Thus, continuing from (5.59), we have that

P({S2 < TR} ∩ {S∗ > SP2}) = O(n−5). (5.60)

Finally, (5.58) and (5.60) conclude the proof of the claim.

For all i ∈ [blog2 nc, n − 1], let T<S2i , T≥S2i and Bi denote the same notion as in

Proposition 5.6.

Now we bound ET≥S2i by the worst case bound. By Claim 5.23, we have that P(Bi) =

O(n−5). Hence, by applying Corollary 4.6 with τ = S2 and A = Bi and following the steps

described in (5.30) and (5.31), we obtain that

n−1∑
i=blog2 nc

ET≥S2i =
n−1∑

i=blog2 nc

O(n−5)

n− i
= O

(
log n

n5

)
. (5.61)

The similar steps in Proposition 5.6 for bounding ET<S2i can also be applied. Note

that (5.32) and (5.33) hold with P2 = b23 log nc. Hence, we can write that

ET<S2i − 1

i(n− i)
≤ 46 log n

i2(n− i)
. (5.62)

Therefore, the expected delay time for late stages is

n−1∑
i=blog2 nc

EDi =
n−1∑

i=blog2 nc

(
ETi −

1

i(n− i)

)

=
n−1∑

i=blog2 nc

ET≥S2i +
n−1∑

i=blog2 nc

(
ET<S2i − 1

i(n− i)

)

≤ O
(

log n

n5

)
+

n−1∑
i=blog2 nc

46 log n

i2(n− i)
(by (5.62) and (5.61))

= O

(
log n

n5

)
+

bn/2c−1∑
i=blog2 nc

O

(
log n

i2n

)
+

n−1∑
i=bn/2c

O

(
log n

n2(n− i)

)

= O

(
1

n log n

)
. (5.63)

Therefore, (5.57) and (5.63) establish the proposition.

Although the bound given by Proposition 5.21 only improves the bound in (5.56) by

a logarithmic factor, it turns out that it is essential to identify the most significant source

of the expected delay time.
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Now we summarise the sources of the expected delay time in the unit rate case. From

Proposition 5.19, Proposition 5.20, and Proposition 5.21, we have that

EW1(X) =
1

n
,

EW>1(X) = O

(
log2 n

n2

)
,

ED(XC) = O

(
1

n log n

)
.

From (5.48), recall that the sum of these three terms equals to the expected total delay

time of the RSDS process with unit rate. This establishes (5.1), the first equation of

Theorem 5.3.

The second equation of the theorem only requires a brief further explanation. Recall

that A is the event where X is never vacuum during the first stage of X. We condition on

the event that A occurs. By this condition, we have that EW1(X) = 0. On the other hand,

the random variable W>1(X) is independent of A by Markov property. Now, observe that

D1(X
C) = 0 by definition, while XC starts stage 2 with a deterministic state regardless

the history of the first stage of the process. This means that D(XC) is also independent

of A. Thus,

E(D(X) | A) = E(W1(X) | A) + EW>1(X) + ED(XC) = O

(
1

n log n

)
.

This establishes (5.2) and concludes the proof.
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Chapter 6

Conclusion

6.1 Summary of the Main Results

By applying a delaying scheme to a rumour spreading process, the expected running time

of the process is increased. We first proved this for two elementary families of graphs,

the paths and the stars. Although the expected running times of the RSDS processes in

both graphs are substantially different, we have shown that the delaying scheme doubles

their expected running times. Furthermore, this result is completely independent of the

switching rate functions.

In the context of complete graphs, we have proved that the delaying scheme has a

significant impact on the rumour spreading process if and only if the switching rate is fast

enough. Recall that from (4.1), the expected running time of the SRS process in complete

graphs is

ET (X ′) =
2 log n

n
+O

(
1

n

)
.

As the first result, Theorem 5.1 tells us that when the switching rate is s(n) =

o(n/ log n), the expected delay time is

ED(X) = O

(
s(n) log2 n

n2

)
+O

(
log log n

n

)
.

Note that if s(n) = o(n log logn/ log2 n), then the dominating term of the expression above

is O(log log n/n). Otherwise, O

(
s(n) log2 n

n2

)
becomes the dominating term. However,

for both cases, the dominating term is always o(ET (X ′)). This means that the delaying

scheme gives no essential effect to the rumour spreading process since the expected extra

time yielded by the scheme is significantly smaller than the expected running time of the

SRS.
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The proof of the result is based on the fact that with high probability, the process

only has very few dormant vertices, relative to the number of informed vertices so far,

during the entire process. Since the underlying network is a complete graph, the small

number of dormant vertices is an insignificant hindrance to spreading the rumour. There

are many other active vertices in the graph which are adjacent to all uninformed vertices

and are able to pass information. This provides the reason why the spreading progress is

substantially unaffected by the delaying scheme.

When the switching rate is fast, on the other hand, the delaying scheme has a signif-

icant effect to the rumour spreading process. To be precise, as stated in Theorem 5.2, if

s(n) = Ω(n/ log n), then the expected delay time is

ED(X) = Θ

(
log n

n

)
.

This bound says that by applying the delaying scheme, the expected running time of

a rumour spreading process is multiplied by a constant. On the one hand, this shows

that the scheme is now able to demonstrate a significant deceleration. However, on the

other hand, the result also indicates the inability of the delaying scheme to provide a

dramatic difference compared to the SRS process. Even if we choose the switching rate to

be extremely fast, both the SRS and RSDS processes will always have the same order of

expected running time.

The simple reason behind this result is that by having a fast switching rate, the

proportion between the dormant and informed vertices is mainly constant throughout the

entire process w.h.p. This results in the decreasing of the spreading rate by some constant

factor, which eventually leads to the increase of the expected running time, also up to a

constant factor.

We also have shown a more accurate result on the expected delay time when the

switching rate is 1, that is

ED(X) =
1

n
+O

(
1

n log n

)
.

The term 1/n comes from the expected total vacuum time of X during the first stage.

Moreover, we also proved that provided that the process is never vacuum during stage 1,

the expected delay time is O(1/(n log n)). This shows that the vacuum condition during

stage 1 contributes most significantly to the expected delay time for the RSDS with unit

rate.

From our results on the expected delay time, we derive a lower and upper bound for

the asymptotic value of T (X). From (4.3), recall that the running time of the SRS satisfies

nT (X ′)/ log n
p→ 2. We proved that the same convergence in probability also applies for

T (X), that is nT (X)/ log n
p→ 2, when the switching rate is slow. Again, this signifies that

the delaying scheme with a slow rate is inefficacious. On the other hand, we also showed
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that the following inequality holds w.h.p. For any positive real ε and unbounded function

growing arbitrarily slowly ω = ω(n), we have that

(1− ε)2 log n

n
< T (X) <

ω log n

n
.

In other words, the running time of the RSDS with a fast rate is typically around c log n/n

where c ≥ 2.

6.2 Future Possible Work

We close the thesis by discussing some possible tasks to do in the future in the context of

the extension of this research.

In the analysis of the RSDS in complete graphs, we separate the switching rate func-

tions into two categories, which are the slow (when s(n) = o(n/ log n)) and fast rates

(when s(n) = Ω(n/ log n)). We define the slowdown ratio of an RSDS process X to be

ED(X)/ET (X ′), that is, the proportion of the expected delay time and the running time

of the SRS version. By our results, the slowdown ratio is bounded away from 0 if and only

if the switching rate is fast. Recall that the function f(n) = n/ log n is the threshold func-

tion, in the sense that the slowdown ratio of the RSDS is o(1) if and only if the switching

rate is s(n) = o(f(n)).

One interesting possible future work will be to take a closer look at the case when

the switching rate is very close to the threshold function. It is interesting to understand

how the sudden ‘jump’ of the expected delay time emerges when the switching rate grows

approaching the threshold function. To answer the problem, one can start by analysing

the slowdown ratio when the switching rate is equal to some constant multiples of the

threshold function. The behaviour of the slowdown ratio as the constant tending to 0

can be the interesting object of study. Next, we can also analyse the slowdown ratio for

s(n) = n/ log n−ω(n) where ω(n) = o(n/ log n) to examine a finer window of the switching

rate functions. To summarise the suggested tasks, we present following open questions.

Open Question 6.1. Suppose that c is an arbitrary positive real and ω(n) is an unbounded

function which satisfies ω(n) = o(n/ log n).

1. Find the slowdown ratio for an RSDS process in complete graphs with switching rate

s(n) = cn/ log n, in terms of c.

2. Find the slowdown ratio for an RSDS process in complete graphs with switching rate

s(n) = n/ log n− ω(n) for various choices of ω(n) satisfying ω(n) = o(n/ log n).

Next, as mentioned in the previous section, there are important similarities between

the RSDS expected delay time analysis in the graphs Kn, Pn and Sn. Our results show
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that the slowdown ratio of the RSDS process in these three families of graphs is always

bounded. The natural question arising from these results is whether the constant factor

bound also appears in arbitrary connected graphs. We formulate the open question as

follows.

Open Question 6.2. Let G be a connected graph and X ′ and X be the SRS and RSDS

processes in graph G with the switching rate s(n). Does there exist a positive constant

c > 0 such that

ED(X) ≤ cET (X ′)

for all choices of switching rate s(n)?

This is interesting because if such a constant is found, then we can strongly infer that

the delaying scheme can only extend the spreading running time up to a constant factor

for any topology of the network. On the other hand, it is also interesting if a certain graph

structure yielding a significantly longer expected RSDS running time exists. If such graph

structures exist, then the next task to do would be to find their characterisations.

A further investigation of the noteworthiness of the delay time for general graphs can

lead to many interesting objects of study. We generalise the notion of noteworthiness as

follows. We say that a delay time of an RSDS in graph G is noteworthy if its slowdown

ratio is Ω(1). This means that the expected delay time of the process is not negligible

compared to the expected running time of the SRS version. Unlike the complete graphs,

the delay times for the paths and stars are always noteworthy regardless the choice of the

switching rate. In this case, the notion of the threshold function for noteworthiness is

irrelevant.

Based on this observation, some possible future tasks will be to characterise all families

of graphs where the delay time is always noteworthy. On the other hand, when the

noteworthiness depends on the switching rate, it is also interesting to find a formula for

determining the switching rate threshold function. For example, in the context of complete

graphs, the threshold switching rate function is reciprocal of the expected running time

of the SRS version. Will the same phenomenon also apply in other classes of graphs? We

state the following questions.

Open Question 6.3. Find all classes of graphs such that the delay times of the RSDS

conducted in them are always noteworthy.

Open Question 6.4. Suppose that G is a connected graph such that the noteworthiness

of the delay time of the RSDS conducted in it is dependent on the switching rate. Find a

formula to determine the threshold function of the switching rate.

Lastly, as another suggestion for future work, we can vary the delaying scheme. In the

switching clock setting of the RSDS, we use the same rate for both dormancy and waking
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up transitions. It is possible to let these two rates differ. The RSDS processes having

different dormancy and waking up rates can be considered to represent a more realistic

modelling. Consider a rumour spreading scheme where the vertices represent computer

servers sending information within a network. In the scheme, the computers can possibly

be broken at a certain rate so that they are unable to send or receive the message. On

the other hand, the broken computers also have a certain rate to be fixed. In real life

application, it is unlikely that the repairing rate equals to the breakdown rates. In this

way, the new model can be utilised in the first attempt to study such rumour spreading

scheme. We provide the research question as follows.

Open Question 6.5. How does the different dormancy and waking up rates affect the

rumour spreading process?

A mathematically interesting case would be when the dormancy rate is much faster

than the waking up rate. By this setting, we expect a greater amount of the delay time,

since the informed vertices are more likely to be dormant. As the varying scheme is able

to substantially slow down the spreading time, the expected running time of the new

scheme, in terms of the waking up rate, can be a quantity of interest to be investigated in

the future.
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Glossary

active vertex An informed vertex that is able to pass the rumour to other vertices. 25

captured vertex The most recent informed vertex at that time. 29

Compressed Rumour Spreading with a Delaying Scheme A modified RSDS pro-

cess that removes all time periods at which the process is vacuum. 50

coupling A method to couple many random variables, not necessarily lying on the same

probability space, into a random vector that is defined under the same probability

space. 17

CRSDS see Compressed Rumour Spreading with a Delaying Scheme. 50

delay time The difference between the running time of an RSDS process and its expected

SRS version. 33

dormancy process A stochastic process defined at the start of stage i in an unlabelled

RSDS, that captures the information about the number of dormant vertices. 46

dormancy transition A state transition of a rumour spreading process at which an

active vertex goes dormant. 45

dormant vertex An informed vertex that is incapable of spreading the rumour to other

vertices. 25

edge A 2-subset of vertex set in a graph. 10

edge clock model A rumour spreading model that employs edge spreading clocks. 27

edge spreading clock A Poisson clock put in the edges of the graph whose ringing serves

as a mark for the information exchange between the ends of the edge. 27

effective clock A spreading clock associated with an edge joining an effective vertex to

an uninformed vertex. 29

effective vertex An informed vertex that has an uninformed neighbour. 29
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effectual clock A spreading clock associated with an edge joining an effectual vertex to

an uninformed vertex. 29

effectual vertex An informed vertex that is both effective and active. 29

embedded Markov chain A discrete-time Markov chain that captures the state tran-

sitions history of a continuous-time Markov chain at its transition times. 16

fast switching rate A switching rate satisfying s(n) = Ω(n/ log n). 58

informed vertex A vertex which has already learned the rumour. 24

initial rumour spreader The only vertex that knows the rumour at the beginning of a

rumour spreading process. 24

labelled clock A Poisson clock (either switching or spreading) which has an association

with an edge or vertex of the graph. 44

Markov Chain A stochastic process whose state space is countable, that enjoys the

Markov property. 14

Markov property A property of a stochastic process saying that the only helpful infor-

mation of the process’ history to calculate the probability of a future event, is the

most recent part of the history. 14

memorylessness A property of some probability distributions which roughly says that

the probability of an upcoming event in the future does not depend on the events

occurring in the past. 12

noteworthy A delay time of an RSDS process X is noteworthy if ED(X) = Ω(logn/n).

57

Poisson clock A list of increasing time points at which an associated Poisson process

jumps. 13

potential vertex An uninformed vertex that has an informed neighbour. 28

RSDS see Rumour Spreading with a Delaying Scheme. 24, 25

Rumour Spreading with a Delaying Scheme The main rumour spreading scheme

studied in this thesis, where the informed vertices are possibly dormant for some

period of time. 24, 25

running time The time spent by a rumour spreading process to let every vertex learn

the rumour. 30
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simple graph A pair of finite sets G = (V,E) with V 6= ∅ and E a collection of 2-subsets

of V . 10

slow switching rate A switching rate satisfying s(n) = o(n/ log n). 58

spreading transition A state transition of a rumour spreading process at which a new

vertex receives the rumour. 45

SRS see Standard Rumour Spreading. 24

stage A rumour spreading process is in stage i if it currently has i informed vertices. 28

Standard Rumour Spreading The original rumour spreading scheme with no delaying

scheme. 24

superposition A superposition of two Poisson clocks is another Poisson clock which

captures all ringing times of these two clocks. 14

switching clock A Poisson clock put in the informed vertices of the graph whose ringing

switches the status of the informed vertex, from active to dormant and vice versa.

26

switching rate The rate of the switching clocks. 26

transition matrix An |S|×|S| matrix specifying the transition probabilities of a Markov

chain. 15

transition probability The probability that a stochastic process moves to other states

at a given time. 15

uninformed vertex A vertex which has not learned the rumour yet. 24, 25

unlabelled RSDS A version of the RSDS model using unlabelled clocks in the context

of complete graphs. 45

unlabelled spreading clock A spreading clock employed in the unlabelled SRS and

RSDS models, that is not associated with any edges of the graph. 43, 44, 46

unlabelled SRS A version of the SRS model using unlabelled clocks in the context of

complete graphs. 44

unlabelled switching clock A switching clock employed in the unlabelled RSDS model,

that is not associated with any vertices of the graph. 43, 46

vacuum A state of an RSDS process where all informed vertices are currently dormant.

50

vacuum delay time The total period of time during which an RSDS process is vacuum.

50
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vertex An element of the vertex set V in graph G = (V,E). 10

vertex clock model A rumour spreading model that employs vertex spreading clocks.

27

vertex spreading clock A Poisson clock associated with a particular vertex of the graph

whose ringing tell the vertex to call a uniformly random neighbour in order to ex-

change information between them. 25–27

w.h.p. The abbreviation of “with high probability”, occurring with probability tending

to 1 as n→∞. 12

waking up transition A state transition of a rumour spreading process at which a dor-

mant vertex goes active. 45
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List of Symbols

B(n, p) The binomial distribution with parameter n and p

Do(X, t) The number of dormant vertices in X at time t

exp(·) The exponential function

E(r) The exponential distribution with rate r

G(p) The geometric distribution with success probability p

In(X, t) The number of informed vertices in X at time t

Ci(X) The number of times that X becomes vacuum during stage i

D(X) The delay time of X

Di(X) The delay time of stage i of X

E The set of edges in graph G

E(X,Y ) The set of all X-Y edges in G

e(X,Y ) The number of X-Y edges in G

Fi(X) The set of effective vertices during stage i of X

G The graph

Ii(X) The set of informed vertices during stage i of X

Kn The complete graph with n vertices

Pi(X) The set of potential vertices during stage i of X

Pn The path with n vertices

s(n) The rate of the switching clocks

Sn The star with n vertices
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SWi(X) The number of switchings experienced by the effective vertices during stage

i of X

T (X) The running time of X

Ti(X) The duration of stage i of X

T<τi (X) The running time of stage i of X before time τ

T≥τi (X) The running time of stage i of X after time τ

Ui(X) The set of uninformed vertices during stage i of X

V The set of vertices in graph G

Vi(X) The time at which X enters stage i

W (X) The total vacuum delay time of X

Wi(X) The total length of vacuum delay time during stage i of X

wi(X) The captured vertex at the start of stage i of X

X ′ The SRS version of X

XC The CRSDS version of X

Y ≤ST Z Y is stochastically smaller that Z, that is P(Y > t) ≤ P(Z > t) for all t
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