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Abstract

We define the H(R)-algebra of a space as the algebraic object consisting of the

graded cohomology groups of the space with coefficients in a general ring R, to-

gether with all primary cohomology operations on these groups, subject to the

relations between the operations. This structure can be encoded as a functor from

the category H(R) containing products of Eilenberg-Mac Lane spaces over R to

the category of pointed sets.

The free H(R)-algebras are the H(R)-algebras of a product of Eilenberg-Mac

Lane spaces. In this thesis we show how to construct free simplicial resolutions of

H(R)-algebras using the free and underlying functors.

Given a space X, we also construct a cosimplicial space such that the cohomology

of this cosimplicial space is a free simplicial resolution of the H(R)-algebra of X.

For R = Fp, the finite field on p elements, this cosimplicial resolution fits the E2

page of a spectral sequence and give convergence results under certain finiteness

restrictions on X. For R = Z, the integers, a similar result is not obtained and

the reasons for this are given.
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Chapter 1

Introduction

In this thesis we construct resolutions of the algebraic object consisting of the

cohomology groups of a CW∗−complex with coefficients in an arbitrary ring with

unityR, together with all the primary cohomology operations acting on this graded

group. The algebras over the Steenrod algebra is an example of this kind of

algebraic object for R = F2.

We take an approach that is Eckmann-Hilton dual to that of Stover’s work on

Π-algebras [53]. The Stover construction has led to a number of applications in

homotopy theory. These inlcude the development of resolution model categories by

Dwyer, Kan and Stover [22], some new spectral sequences [53, 36] and homotopy

calculations [27].

The Eckmann-Hilton dual to Π-algebras appeared in [46] but that was for R = Z

only and was called an H-algebra. To allow for arbitrary rings we will call them

H(R)-algebras, so that an H(F2)-algebra would be an algebra over the Steenrod

algebra. The structure of H(R)-algebras can be encoded in a functor from H(R),

the category of products of Eilenberg-Mac Lane spaces over R to the category
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of pointed sets. In fact, in the terminology of Borceux [13], Lawvere [39] and

Ehresmann [25, 24]H(R)-algebras can be thought of as models of a product sketch.

The category of H(R)-algebras do not form an abelian category so to do homotopy

theory on them we need to define a model category structure and work with free

simplicial resolutions. We define model category structures in Chapter 4 and using

the model category structure of Section 4.1.2, we are able to prove the existence

of free simplicial resolutions of H(R)-algebras in Chapter 5.

In Chapter 5, the simplicial construction formed by using the free and underlying

functors together with the natural transformations (counit and unit of adjunction)

is proven to be a resolution. Our proof holds for any model category with free

and underlying functors. This is analogous to the construction of resolutions by

Huber’s standard method [35] with slight modifications. We show in Chapter 3

that for R = Z we also need an infinite product sketch and give results for a model

category on these models in Section 4.1.2.

The other model category structure (Section 4.3) is Bousfield’s resolution model

category on cosimplicial spaces [15] allowing a comparison of the free cosimplicial

space, constructed in Chapter 6, with the Bousfield-Kan resolution on simplicial

sets ([16], I 4.1). The resolution of Chapter 6 using Eilenberg-Mac Lane spaces

is generally infinite dimensional, even if the space is finite and will generally be

connected, even if the space was not. For R = Z it is not possible to show a

G-equivalence with Bousfield-Kan resolution because the resolution by products of

Eilenberg-Mac Lane spaces is not acyclic for all abelian group coefficients.

Nevertheless for R = Fp and for a space X with finitely generated cohomology
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groups the G-equivalence with Bousfield-Kan resolution allows some applications.

Using the vector dual and working with homology with homology co-operations,

the resolution by Eilenberg-Mac Lane spaces fits into the E2 page of the Bousfield

homology spectral sequence converging to the homology of X which then may be

redualized to give information on cohomology.

The spectral sequence can also be applied to the mapping space map∗(Y,X) for a

fixed finite space Y . Setting Y to be a circle gives a spectral sequence converging

to the homology of the loops on X.
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Chapter 2

Preliminaries

2.1 Basic category theory and definitions

2.1.1 Natural transformations

In this thesis for composition of morphisms in a general category C, fg is used to

denote g following f .

Definition 2.1.1. Let L,R : C → D be covariant functors. A natural transfor-

mation ([41], I.4) ϑ from L to R is a class of morphisms, ϑX : LX → RX, such

that for each object X ∈ C and for all morphisms f : X → Y in C, the following

diagram is commutative.

LX
ϑX //

Lf

��

RX

Rf

��
LY

ϑY
// RY

The composition of two natural transformations are defined in the obvious way,

but we will make a short note of how natural transformations are defined on a

composition of functors ([35],
∮

1 ).

4



2.1.2 Composition of natural transformations and functors

Let ϑ : L −→ R be a natural transformation, U and V be covariant functors such

that the compostion of functors ULV and URV are defined. Then,

Uϑ : UL −→ UR, is defined as

(Uϑ)Y := U(ϑY ). (2.1)

ϑV : LV −→ RV, is defined as

(ϑV )X := ϑV X . (2.2)

Combining (2.1) and (2.2) we define

UϑV : ULV −→ URV, as

(UϑV )X := UϑV X . (2.3)

Fact 2.1.2. ([35],
∮

1) Let U and V be functors and ϑ and ϑ′ be natural transfor-

mations, then

(UϑV )(Uϑ′V ) = U(ϑϑ′)V (2.4)

Lemma 2.1.3. For any two natural transformations φ : L −→ R and ψ : M −→
N the following identities hold when the respective compositions are defined ([28],

Appendix) or ([35],
∮

1).

ML
Mφ //

ψL

��

MR

ψR

��
NL

Nφ
// NR

(ψR)(Mφ) = (Nφ)(ψL) (2.5)
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LM
φM //

Lψ

��

RM

Rψ

��
LN

φN
// RN

(Rψ)(φM) = (φN)(Lψ) (2.6)

Example 2.1.4. Let L = FU i, R = FU i+1, M = FU, N = I,

φ = hFU i, ψ = ε in equation (2.6), then we have

FU iFU
hFU iFU //

FU iε

��

FU i+1FU

FU i+1ε

��
FU iI

hFU iI
// FU i+1I

Then

FUFU iε hFU iFU = hFU i FU iε (2.7)

Example 2.1.5. Let L = FU, R = FU2, M = FU i, N = FU i+1, φ = ν,

ψ = hFU i in equation (2.5), then we have

FU iFU FU iν //

hFU iFU

��

FU iFU2

hFU iFU2

��
FU i+1FU

FU i+1ν
// FU i+1FU2

Then

FUFU iν hFU iFU = hFU iFU2 FU iν (2.8)

2.1.3 Adjoints

In this section, we explain the concept of adjoint functors between categories that

will be used to define free objects in a category. There are two common ways to
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define the adjunction of functors. Definition 2.1.7 is given using natural trans-

formations called unit and counit of adjunction and Definition 2.1.8 is described

using Hom sets ([41], IV.1).

Notation 2.1.6. We will use idX to denote the identity map from an object X to

itself within a category. The identity functor will be denoted by I and the identity

natural transformation on a functor G is denoted by 1G.

Definition 2.1.7. Let L : C → D and R : D → C be functors. L is left adjoint

to R, if and only if there exists natural transformations,

(i) η : I → RL, called the unit of adjunction and

(ii) ε : LR → I called the counit of adjunction such that the following two

diagrams commute.

L RLR Rε // R

L
Lη

//

1L

::

LRL

εL

OO

R

ηR

OO

1R

99 (2.9)

Definition 2.1.8. Let L : C → D and R : D → C be functors. L is left adjoint

to R, if there exists a family of bijections

HomD(LX, Y ) ∼= HomC(X,RY ) (2.10)

which is natural in X and Y .

Notation 2.1.9. We will use SET to denote the category of sets, Grp for the

category groups and Ab for the category of abelian groups.

Definition 2.1.10. Let C be a category whose objects are sets with some additional

structure and morphisms of C respecting this structure. A functor which ”forgets”

some or all the structure of the objects in C is called an underlying functor ([41],

I.3).
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Definition 2.1.11. Let C be a category where the underlying functor U is defined

on C. Then F is called a free functor if F is left adjoint to U . We denote F a U
to mean F is left adjoint to U .

Example 2.1.12. Let U be the underlying functor from Grp→ SET which send

a group G ∈ Grp to the underlying set of G. The free functor F from SET → Grp

sends a set A ∈ SET to the free group generated on the elements of A.

2.1.4 Categorical Duality

To each category C there is an associated opposite category Cop. The objects of Cop

are the objects of C. However, for any morphism f : a→ b in C, the corresponding

morphism in Cop is defined as f op : b → a (the direction of the arrow reversed).

Also the composition f opgop = (gf)op in Cop. According to this, a contravariant

functor S : C → D can be regarded as a covariant functor S : Cop → D. Therefore,

for every statement in a category C that can be expressed as a diagram, there is

a corresponding statement in the opposite category Cop by reversing arrows and

order of composition just as explained above. This procedure of interchanging

arrows and order of composition is called categorical duality.

2.1.5 Limits

Next, we define a limit in a category. Terminal objects, products, equalizers and

pullbacks can be unified using the concept of limit.

Definition 2.1.13. Let L be a functor from D to C, a cone ([12], 2.6.1) on L

consists of an object C in C and for every object D1 ∈ D, a morphism tD1 : C −→
LD1 in C, such that, for every morphism d : D1 −→ D2 in D, tD2 = L(d)tD1.

Notation 2.1.14. We will denote a cone on a functor L by (C, (tDi)Di∈D).
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Definition 2.1.15. A limit ([12], 2.6.2), if it exists, of a functor R : D −→ C is a

cone (L, (tD)D∈D) on R such that, for every cone (M, (qD)D∈D) on R, there exists

a unique morphism m : M −→ L such that for every D ∈ D, with qD = tDm. The

limit of a functor is also the terminal object in the category of cones on C.

Remark 2.1.16. Let D be an ordered category, the limit of the functor R : D −→
C, if it exists will be denoted by limd∈DXd, where Xd ∈ C. Dually the colimit if it

exists will be denoted by colimd∈DXd, where Xd ∈ C.

Here as an example, we will show that products are a particular type of limit.

Example 2.1.17. Let D be the discrete category with only two elements and no

non-identity morphisms. Also let R : D −→ C, so a cone on R is an object A ∈ C
with morphisms RD1

q1←− A
q2−→ RD2, where D1, D2 ∈ D. If the terminal cone

RD1
t1←− L

t2−→ RD2 on R exists then for any other cone (C, c1, c2), there is a

unique morphism of cones u : (C, c1, c2) −→ (L, t1, t2) with cj = tju, j = 1, 2,

by the universal property of the terminal object. Thus, the following diagram

commutes.

C

c1

||

u

��

c2

""
RD1 L

t1
oo

t2
// RD2

The limit (L, t1, t2), if it exists, in this case is called the binary product ([12], 2.1.1)

of RD1 and RD2 and we denote it by (RD1 ×RD2, t1, t2).

Definition 2.1.18. Let J be a set and {Ci|i ∈ J} be a family of objects in a

category C. A product ([12], 2.1.4) of that family is an object
∏
i∈J

Ci together

with morphisms {pri :
∏
i∈J

Ci −→ Ci} such that for any family of morphisms
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{fi : Y −→ Ci|i ∈ J} there is a unique morphism {fi}i∈J : Y −→
∏
i∈J

Ci with

pri{fi}i∈J = fi for all i ∈ J . Thus we have the commutative diagram

Ci

Y
{fi}i∈J

//

fi

;;

∏
i∈J

Ci

pri

OO

The categorical dual of a product is called a coproduct.

Definition 2.1.19. Let J be a set and {Ci|i ∈ J} be a family of objects in a

category C. A coproduct ([12], 2.2.1) of that family is an object
∐
i∈J

Ci together

with morphisms {inci : Ci −→
∐
i∈J

Ci} such that for any family of morphisms

{fi : Ci −→ Y |i ∈ J} there is a unique morphism < fi >i∈J :
∐
i∈J

Ci −→ Y with

< fi >i∈J inci = fi for all i ∈ J . Thus we have the commutative diagram

Ci

inci

��

fi

{{
Y

∐
i∈J

Ci<fi>i∈J
oo

Definition 2.1.20. In any category C and for a diagram of the form

A
f //
g

// B

the equalizer ([12], 2.4.1) of f and g is the object E and an arrow e : E −→ A

such that given any z : Z −→ A with fz = gz, there is a unique u : Z −→ E with

eu = z.

E
e // A

f //
g

// B

Z

u

OO

z

;;
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Definition 2.1.21. If a category C has a zero object, z, then for any two objects

A,B ∈ C, the unique maps A −→ z and z −→ B have a composite 0 : A −→ z −→
B, called the zero map.

Definition 2.1.22. In a general category C, with zero object, the kernel of a map

f : A −→ B is a pair consisting of an object K and a map k : K −→ A with fk = 0

(the zero map), such that, if there is any other map z : Z −→ A with fz = 0 then

there exists a unique u : Z −→ K making the triangle z = ku commute.

K
k //

0

&&
A

f // B

Z

z

::

u

OO

0

<< (2.11)

The kernel in a general category is an instance of an equalizer. To see this, firstly in

a category that has equalizers we let g be the zero map (factor g as A −→ z −→ B,

given in Defintion 2.1.21) in the diagram of Definition 2.1.20. Then (K, k) is the

equalizer of f and 0 and gives the kernel diagram (2.11).

Definition 2.1.23. In a category C with maps f and g as follows A
f−→ C

g←− B,

the pullback ([12], 2.5.1) of f and g consists of arrows A
p1←− P

p2−→ B such that

for any z1 : Z −→ A and z2 : Z −→ B with fz1 = gz2, then there is a unique map

u : Z −→ P making the following diagram commute.

Z

z1

��

z2

&&

u

""
P

p1

��

p2
// B

g

��
A

f
// C

(2.12)
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That is z1 = p1u and z2 = p2u. Given a pullback square (2.12) the map p1 is called

a pullback of g along f ([32], 7.2.10).

Notation 2.1.24. The pullback of diagram (2.12) is denoted by A×C B.

Definition 2.1.25. In a category C with maps f and g as follows A
f←− C

g−→ B,

the pushout ([12], 2.5.1) of f and g consists of arrows A
i1−→ P

i2←− B such that

for any z1 : A −→ Z and z2 : B −→ Z with z1f = z2g, then there is a unique map

u : P −→ Z making the following diagram commute.

C

f

��

g // B

i2

�� z2

��

A
i1 //

z1

++

P

u

""
Z

(2.13)

That is z1 = ui1 and z2 = ui2. Given a pushout square (2.13) the map i2 is called

a pushout of f along g ([32], 7.2.10).

Notation 2.1.26. The pushout of diagram (2.13) is denoted by A
∐

C B.

The following theorem further explains how products, equalizers and pullbacks are

interrelated.

Theorem 2.1.27. A category has finite products and equalizers if and only if it

has pullbacks and a terminal object ([6], 5.16).

Theorem 2.1.28. A category has all limits of some cardinality iff it has all equal-

izers and products of that cardinality, where C has limits (resp. products) of car-

dinality κ if and only if C has a limit for every diagram D : J1 −→ C where

card(J1) ≤ κ (resp. C has all products of κ many objects) ([6], 5.24).
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2.1.6 Canonical construction of pullbacks

In any category with all pullbacks, equalizers and products, there is a canonical way

to construct pullbacks using products and equalizers. In this section we explain

how this is done following ([1], Theorem 11.11). Let (Pb, α, β) be the pullback of

the diagram (2.14)

A
f−→ C

g←− B (2.14)

First we construct the product (A × B, prA, prB) of A and B and then by the

universal property of the product there exists a unique map k : Pb −→ A × B

such that (2.15) is commutative.

Pb
α

{{

β

##
k
��

A A×BPrAoo
PrB //

B

(2.15)

Next, we construct the equalizer of the diagram (2.16)

A×B
gPrB

//
fPrA //

C (2.16)

Suppose (E,e) is the equalizer of the diagram (2.16), then by the universal property

of the equalizer there exists a unique map u1 : Pb −→ E such that (2.17) is

commutative

E e // A×B
fPrA //
gPrB

// C

Pb

u1

OO

k

99 (2.17)

Since E
e−−→ A × B is a map into a product A × B, we have the commutative

square (2.18)

E

PrAe

��

PrBe // B

g

��
A

f
// C

(2.18)

13



but (Pb, α, β) is the pullback of the diagram (2.14), so there exists a unique map

u2 : E −→ Pb. The maps u2 : E −→ Pb (unique map into the pullback) and

u1 : Pb −→ E (unique map into the equalizer) are both universal maps such that

(2.19) is commutative.

E

PrAe

**

PrBe

��u2
,, Pb

α

��

β
//

u1

mm

B

g

��
A

f
// C

(2.19)

Therefore the equalizer of the diagram (2.16) is also the pullback of (2.14). It

should also be noted that since the pullback is given as an equalizer of the diagram

(2.16), pullback is a subobject of the product A×B ([6], pg 105).

2.2 Simplicial and cosimplicial objects

Simplicial objects are generalizations of the geometric simplicial complexes used

in algebraic topology. First, we define the category of ordinal numbers and then

give a definition of simplicial objects.

Definition 2.2.1. The category of ordinal numbers denoted by ∆ has

1. objects, the ordered sets [n] = {0, 1, . . . , n}, n ≥ 0.

2. morphisms, the order preserving maps f : [n] −→ [m] (that is those maps f

such that whenever x ≤ y then f(x) ≤ f(y)).

Theorem 2.2.2. Every map f , in the category ∆ can be uniquely decomposed

([54], 8.1.2) as compositions of

14



1. injective order preserving maps δi : [n− 1] −→ [n], 0 ≤ i ≤ n

given by j 7→ j for j < i and j 7→ j + 1 for j ≥ i

{0, 1, . . . , i− 1, i, i+ 1, . . . , n− 1} 7→ {0, 1, . . . , i− 1, i+ 1, i+ 2, . . . , n}

2. surjective order preserving maps σi : [n+ 1] −→ [n], 0 ≤ j ≤ n

given by j 7→ j for j ≤ i and j 7→ j − 1 for j > i

{0, 1, . . . , i− 1, i, i+ 1, i+ 2, . . . , n+ 1} 7→ {0, 1, . . . , i− 1, i, i, i+ 1, . . . , n}

.

Definition 2.2.3. A simplicial object ([54], 8.1.3) S, in a category C, is defined

as a covariant functor S : ∆op −→ C. Equivalently, a simplicial object in C, is a

sequence of objects An, n ≥ 0 in C, with face maps dni : An −→ An−1, 0 ≤ i ≤ n

and degeneracies snj : An −→ An+1, 0 ≤ j ≤ n, satisfying the simplicial identities

([54], 8.1.3):

didj = dj−1di if i < j

disj = sj−1di if i < j

djsj = dj+1sj = id (2.20)

disj = sjdi−1 if i > j + 1

sisj = sj+1si if i ≤ j

We can think of a simplicial object as a diagram

A0 s00
// A1d11
oo

d10
oo s10

//
s11

// A2 · · ·
d22

oo
d21

oo
d20

oo
(2.21)

Definition 2.2.4. An augmented simplicial object ([54], 8.4.6) is a simplicial

object A• together with a map ε : A0 −→ A−1, to an object A−1 ∈ C such that

εd0 = εd1. The map ε : A0 −→ A−1 is referred to as the augmentation.
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Definition 2.2.5. A cosimplicial object ([54], 8.1.4) cS, in a category C, is

defined as a covariant functor cS : ∆ −→ C or equivalently, as a sequence of objects

An, n ≥ 0 in C, with coface maps din : An−1 −→ An, 0 ≤ i ≤ n and degeneracies

sjn : An+1 −→ An, 0 ≤ j ≤ n, satisfying the cosimplicial identities ([54], 8.1.4):

djdi = didj−1 if i < j

sjdi = disj−1 if i < j

sjdj = sjdj+1 = id (2.22)

sjdi = di−1sj if i > j + 1

sjsi = sisj+1 if i ≤ j

Similar to a simplicial object we can represent a cosimplicial object as a diagram

A0 d01
//

d11
// A1s00
oo

d02
//

d12
//

d22
//

A2 · · ·
s01

oo
s11

oo
(2.23)

Notation 2.2.6. The category of simplicial objects over C is denoted sC and sim-

plicial sets as sSET . The category of cosimplicial objects over C is denoted cC.

Notation 2.2.7. We will use ∆n to denote the standard n-simplex and ∆• to de-

note the cosimplicial space with ∆n in each cosimplicial dimension and the obvious

coface and codegeneracy maps.

Definition 2.2.8. A map of simplicial objects S −→ S ′ is a natural transformation

of functors of the form ∆op −→ C (and dually maps of cosimplicial objects are

natural transformations). Alternatively a simplicial map ([52], 2.1) f : K −→ L

between two simplicial objects K and L, in a category C is a family of morphisms

{fn}n≥0 where fn : Kn −→ Ln satisfying

1. difn = fn−1di

2. sifn = fn+1si 0 ≤ i ≤ n.

16



2.2.1 Homotopy between two simplicial objects in a gen-

eral category

We will use the following definition of a simplicial homotopy ([54], 8.3.11 or [45])

in the proof of Lemma 5.2.9 to show a simplicial homotopy between two maps of

simplicial abelian groups.

Definition 2.2.9. Let X• and Y• be simplicial objects in a category C, and f, g :

X• −→ Y•. A simplicial homotopy between f and g is a sequence of maps hni :

Xn −→ Yn+1, for 0 ≤ i ≤ n and n ≥ 0;

such that

(A) dn+1
0 hn0 = gn

(B) dn+1
n+1h

n
n = fn

(C) dihj = hj−1di (i < j)

(D) dj+1hj+1 = dj+1hj

(E) dihj = hjdi−1 (i > j + 1)

(F) sihj = hj+1si (i ≤ j)

(G) sihj = hjsi−1 (i > j)

2.2.2 Monads and comonads

Definition 2.2.10. A comonad ([41], VI.1) in a category C consists of a functor

⊥ : C −→ C and natural transformations,

ε : ⊥ −→ I(the counit) and ν : ⊥ −→ ⊥2(the comultiplication)

17



such that the following diagrams commute.

⊥ ν //

ν

��

⊥2

⊥ν

��
⊥2

ν⊥
// ⊥3

(2.24)

⊥

ν

��
I⊥ ⊥2

ε⊥
oo

⊥ε
// ⊥I

(2.25)

There is a dual construction to comonads called monads.

Definition 2.2.11. A monad ([41], VI.1) in a category C consists of a functor

> : C −→ C and natural transformations,

η : I −→ >(the unit) and µ : >2 −→ >(the multiplication)

such that the following diagrams commute.

>3 >µ //

µ>

��

>2

µ

��
>2

µ
// >

(2.26)

I> η> // >2

µ

��

>I>ηoo

>

(2.27)

Theorem 2.2.12. ([26],
∮

2.1)

Every adjoint pair F a U with U : D −→ C, F : C −→ D, with unit of adjunction

18



η : IC −→ UF and counit of adjunction ε : FU −→ ID gives rise to a comonad

(⊥, ε, ν) on D, where

⊥ = FU : D −→ D

ε : ⊥ −→ I

ν = FηU : ⊥ −→ ⊥2

Dually an adjoint pair also gives rise to a monad ([26],
∮

2.1), but we will not use

this result and so we leave the details to the reader.

2.2.3 Construction of simplicial objects from a comonad

In [35], Huber shows that given a comonad (⊥, ε, ν) on C and A an object in the

category C we can define, for all n ≥ 0,

An : = ⊥n+1A

dni : ⊥n+1A −→ ⊥nA where, dni := ⊥iε⊥n−i (2.28)

sni : ⊥n+1A −→ ⊥n+2A where, sni := ⊥iν⊥n−i

to get a simplicial object in C. The augmentation is given by d00 = ε : ⊥A −→ A

(c.f. Definition 2.2.4).

Lemma 2.2.13 shows that for a comonad (⊥, ε, ν) on C, ε determines the augmen-

tation.

Lemma 2.2.13. The natural transformation ε of a comonad (⊥, ε, ν) on C satisfies

ε(ε⊥) = ε(⊥ε) (2.29)
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Proof. Let L = ⊥, R = I, M = ⊥, N = I, φ = ε, ψ = ε in equation (2.6),

then we get diagram (2.30). The identity (2.29) holds in C is equivalent to diagram

(2.30) being commutative

⊥⊥ ⊥ε //

ε⊥

��

⊥I

εI

��
I⊥

Iε
// II

(2.30)

Dually, given a monad (>, η, µ) on a category C with an object A, we can define

An = >n+1A. The coface map din : An−1 −→ An is given by din = >iη>n−i and

the codegeneracy map sin : An+1 −→ An is given by sin = >iµ>n−i.

Remark 2.2.14. A dual result to identity (2.29) holds for a monad (>, η, µ) in

any category, which would imply (η>)η = (>η)η, thus giving a coaugmentation.

2.2.4 Homotopy groups of a simplicial (abelian) group

Definition 2.2.15. A chain complex (C, ∂)of groups is a sequence of groups

and group homomorphisms

C0 C1 · · ·∂1oo Cn−1
∂n−1oo Cn

∂noo Cn+1
∂n+1oo · · ·∂n+2oo

(2.31)

such that Im(∂n+1) ⊂ ker(∂n), that is the composite ∂n+1∂n = 0 for all n.

We can define the homotopy groups of a simplicial abelian group via the Moore

chain complex. Let G•
ε−−→ G−1 be an augmented simplicial abelian group

G−1 G0 s00
//εoo G1d10
oo

d11
oo s11

//
s10

// G2 · · ·
d20

oo
d21

oo
d22

oo
(2.32)
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Definition 2.2.16. For the augmented simplicial abelian group (2.32) the associ-

ated Moore chain complex ([54], 8.4.6) is defined as

NpG : = Gp for p ≥ 0

NpG : = G−1 for p = −1

NpG : = 0 for p < −1 (2.33)

∂p : =

p∑
i=0

(−1)idpi where p ≥ 1

∂0 : = ε

The corresponding Moore chain complex for the diagram (2.32) is

0 G−1oo G0
εoo G1

d0−d1oo G2 · · ·d0−d1+d2oo

The addition of maps dp0(x), · · · , dpp(x) at a point x ∈ Gp, for the Moore chain

complex (2.33) is defined as pointwise addition within the abelian group Gp.

Using Dold-Kan ([54], 8.4.1) correspondence we have the isomorphisms

πn(G•) ∼= Hn(NpG)

.

Definition 2.2.17. An augmented simplicial abelian group (2.32) is a simplicial

resolution ([54], 8.4.6) of G−1 if

(i) πn(G•) = 0 for n ≥ 0 (acyclic)

(ii) π0(G•) ∼= G−1 for n = 0 (augmentation gives an isomorphism)

Fact 2.2.18. ([54], 8.4.6) In an abelian category the two conditions given in Def-

inition 2.2.17 is equivalent to the augmented Moore chain complex being exact.
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Let G• be a simplicial group given by the diagram (2.34)

G0 s00
// G1d10
oo

d11
oo s11

//
s10

// G2 · · ·
d20

oo
d21

oo
d22

oo
(2.34)

Definition 2.2.19. Moore chain complex (NpG, ∂)p≥0 of the simplicial group G•

is defined as ([42], 17.3)

NpG : = G0 for p = 0

NpG : = Gp ∩ kerdp1 · · · ∩ kerdpp for p ≥ 0

∂p : = dp0 where p ≥ 0

Using the Moore chain complex of the simplicial group G•, we can define the

homotopy groups of the simplicial group G• as ([42], 17.3, 17.4)

πn(G•) = Hn(NpG) = ker ∂n/Im ∂n+1

.

Fact 2.2.20. The homotopy groups of Definition 2.2.19 are isomorphic to those

of Definition 2.2.16 if G• is a simplicial abelian group.
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Chapter 3

H(R)-algebras

We will use spaces to mean pointed connected CW-complexes and denote it by

CW∗ . In this chapter we introduce objects that model the primary cohomology

structure of a space with coefficients in a ring R. We call these objects H(R)-

algebras and they are Eckmann-Hilton dual to the Π-algebras of homotopy theory.

First we introduce an HN(R)-algebra in Section 3.1, which is the algebraic struc-

ture of graded cohomology groups with all n-ary cohomology operations acting on

them. In Section 3.2, we explain the free functor from the category of pointed sets

to the category of HN(R)-algebras and also the unit and counit of adjunction.

The functor description of H(R)-algebras forms a model of a sketch in the sense

of Ehresmann [25, 24] and this will be shown in Section 3.4.

In this thesis we will be interested in the cases when R = Z or when R = Fp,

where Fp is the finite field with p elements and p is a prime number.

Definition 3.0.21. An Eilenberg-Mac Lane space ([5], 2.5) over a ring R is a
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space denoted by K(R, n) with the property

πi(K(R, n)) =

R if i = n

0 otherwise

Notation 3.0.22. We will use [A,B] to denote homotopy classes of pointed maps

from A to B and as we will be working over any fixed ring R, Kn will be used

to mean K(R, n). The reduced cohomology groups of a space X are given by

Hn(X;R) ∼= [X,Kn] and we will use Hn(X) to denote Hn(X;R) because we will

be working over any fixed ring R.

Definition 3.0.23. X ∈ C is a group object ([31],
∮

1) if and only if [A,X]

has a natural group structure for all A ∈ C. Then A 7→ [A,X] gives a functor

CW op
∗ −→ Grp.

Fact 3.0.24. ΩK(R, n) ∼= K(R, n− 1) ([5], 2.5)

3.1 HN(R)-algebras

Definition 3.1.1. Let HN(R) be the category with objects, the finite products of

Eilenberg-Mac Lane spaces over R, including the point and morphisms the homo-

topy classes of maps between them.

3.1.1 HN(R)-algebras as graded groups with operations

For any spaces X and Y and any map f : X −→ Y , for any homotopy class of

maps y ∈ Hn(Y ) there is an induced abelian group homomorphism of cohomology

f ∗ : Hn(Y ) −→ Hn(X) given by f ∗(y) = yf . Primary operations give additional

algebraic structure to the graded cohomology groups of a space which is natural,

meaning that the morphism induced on cohomology by f : X −→ Y respects this

additional algebraic structure. This is formalized in the following definition.
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Definition 3.1.2. An n-ary cohomology operation θ : Hm1(X)×· · ·×Hmn(X) −→
Hq(X), n ∈ N , is primary if, given any any spaces X and Y and any map f :

X −→ Y , the following naturality diagram commutes.

Hm1(X)× · · · ×Hmn(X) θ // Hq(X)

Hm1(Y )× · · · ×Hmn(Y ) θ //

f∗×···f∗
OO

Hq(Y )

f∗
OO

Definition 3.1.3. The cohomology HN(R)-algebra of a space X can be defined as

the collection of graded abelian groups {Hn(X;R)}n∈N with all the n-ary primary

cohomology operations acting on these groups. Equivalently as a functor [X, ] :

H(R) −→ SET ∗ .

Remark 3.1.4. In Defintion 3.1.3 the HN(R)-algebra, satisfies what Blanc and

Stover calls a ‘category of universal graded algebras’ (CUGA) [9]. All CUGA’s

have all limits and colimits [9].

There is another definition of HN(R)-algebras, which is more general than Defini-

tion 3.1.3. The second definition describes HN(R)-algebras as a functor and this

definition is valid for abstract HN(R)-algebras that do not come from a space.

3.1.2 HN(R)-algebras as a functor

Definition 3.1.5. A HN(R)-algebra is a functor from HN(R) to the category

SET ∗ of graded pointed sets, preserving products and sending the point to 0.

In Figure 3.1, we have denoted Z(Ki) as Zi and Z(∗) as 0. All identical copies of

Zi are identified in SET ∗.
The maps of HN(R) induce primary operations on the graded set Zi, i ∈ I

including the abelian group addition.
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HN (R)

Z2 Z3

K1

α

α∗

K2
Km

Ki ×Kj

Zi Zj Zm
Z1

Z

0

SET ∗

*

K3

Figure 3.1

Example 3.1.6. For any X ∈ CW∗,

[X, ] : HN(R) −→ SET ∗

is an HN(R)-algebra with the image the cohomology HN(R)-algebra given in

Definition 3.1.3

From Definition 3.1.5 we know that a HN(R)-algebra morphism is a natural trans-

formation.

Definition 3.1.7. A HN(R)-algebra morphism λ : Z −→ W is a natural trans-

formation. That is, for every C ∈ HN(R) there exists λC : Z(C) −→ W (C) such

that for any morphism α : C −→ C ′ in HN(R) we have W (α)λC = λC′Z(α).

Notation 3.1.8. The category of HN(R)-algebras and HN(R)-algebra morphisms

will be denoted by HN(R)−ALG.

3.2 Free H(R)-algebras

The cohomology HN(R)-algebra of a product of Eilenberg-Mac Lane spaces is a

free HN(R)-algebra. This can be shown theoretically using the Yoneda Lemma as

in [12]. In [46], Percy showed an explicit construction of a free functor which is
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left adjoint to the underlying functor between HN(R)−ALG and SET ∗. In this

section we will explain the free functor F , given in [46] followed by the unit and

counit of adjunction.

3.2.1 Free functor F

Let G• and B• be graded pointed sets and f : G• −→ B• be a graded function,

where we denote fn : Gn −→ Bn to be a function on each grade. Let F be a

functor from the category of graded pointed sets to HN(R)−ALG. We define

FG• := [
∏
n∈N

∏
g∈G−n

Kn
g , ] where G−n = Gn \ ∗

To show how F acts on the map f , let j ∈ Jb index the set of points in G−n whose

image under fn is b ∈ B−n . That is, fn(gj) = b, for some b ∈ B−n . We identify the

factors idKn : Kn
b −→ Kn

gj
and using the universal property of the product we get

the map {idKn}j∈Jb : Kn
b −→

∏
n∈N

∏
j∈Jb

Kn
gj

in diagram (3.1).

Kn
gj

Kn
b

idKn

77

{idKn}j∈Jb
//
∏
n∈N

∏
j∈Jb

Kn
gj

prgj

OO

⊂
∏
n∈N

∏
g∈Gn

Kn
g

(3.1)

Define f̂ :
∏
n∈N

∏
b∈B−n

Kn
b

project−−−−→
∏
n∈N

∏
b∈Imf−n

Kn
b

∏
n∈N

∏
b∈Imf−n

{1Kn}j∈Jb
−−−−−−−−−−−−−−−−−→

∏
n∈N

∏
g∈Gn

Kn
g

then we get induced map f̂ ∗ : [
∏
n∈N

∏
g∈G−n

Kn
g , ] −→ [

∏
n∈N

∏
b∈B−n

Kn
b , ].

We define Ff = f̂ ∗ : FG• −→ FB• .
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3.2.2 Unit of adjunction

The unit of adjunction is defined by the natural transformation ηG• : G• −→
UFG•, where g ∈ G−n is taken to prg :

∏
n∈N

∏
g∈G−n

Kn
g −→ Kn

g and ∗ is taken to

0 ∈ Hn(
∏
n∈N

∏
g∈G−n

Kn
g ).

3.2.3 Counit of adjunction

Denote Zn− = Z(Kn)− to be the image under the functor Z of Kn in SET ∗ ,

without the basepoint. Form the product
∏
n∈N

∏
u∈Zn−

Zn−
u .

Select the element (u)u∈Zn−,n∈N that takes the element u from the set Zn−
u indexed

by u. Then we can identify

∏
n∈N

∏
u∈Zn−

Zn−
u ≡

∏
n∈N

∏
u∈Zn−

Z(Kn)u

≡ Z(
∏
n∈N

∏
u∈Zn−

Kn
u ) , since Z preserves products.

So we identify (u)u∈Zn−,n∈N with w ∈ Z(
∏
n∈N

∏
u∈Zn−

Kn
u ).

Let α ∈ FUZ be given by a cohomology class of the map α :
∏
n∈N

∏
u∈Zn−

Kn
u −→ Kp

for some p ∈ N, then Zα is an operation Z(
∏
n∈N

∏
u∈Zn−

Kn
u ) −→ Z(Kp).

For every p ∈ N, we define the counit of adjunction εZ : FUZ(Kp) −→ Z(Kp) by

α 7→ Zα(w) ∈ Zp.

3.3 H(R)-algebra

In Chapter 6, we give a construction T (X) on a space X, which is Eckmann-Hilton

dual to Stover’s construction V (X) from ([53], 2.2). The construction T (X) is

homotopy equivalent to an infinite product of Eilenberg-Mac Lane spaces over R.
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For a cohomology HN(R)-algebra of a product of Eilenberg-Mac Lane spaces to be

free, the map representing α ∈ FUZ needs to be contained in HN(R), otherwise

the counit of adjunction is not defined. Thus we need to modify our definition of

HN(R) to contain universal arrows for infinitary operations.

In the case of R = Fp, all maps out of an infinite product of Eilenberg-Mac

Lane spaces over Fp factor through a finite subproduct because Fp is algebraically

compact ([34], Prop 2.1). So H(Fp) only needs to contain finite products to define

free H(Fp)-algebras.

However, for a general ringR andR = Z in particular, the property that maps out

of an infinite product of Eilenberg-Mac Lane spaces do not factor through a finite

subproduct because Z is not algebraically compact. So to define free HN(Z)-

algebras we need the category HN(Z) to contain universal arrows for infinitary

operations. Thus we have the definition;

Definition 3.3.1. Let H(R) be the category with objects, arbitrary (possibly in-

finite) products of Eilenberg-Mac Lane spaces over R, including the point and

morphisms the homotopy classes of maps between them.

Definition 3.3.2. An H(R)-algebra is a functor from H(R) to SET ∗, preserving

products and sending the point to 0.

Definition 3.3.3. The cohomology H(R)-algebra of a space can be defined as the

collection of graded abelian groups {Hn(X;R)}n∈N with all the primary cohomology

operations acting on these groups.

Notation 3.3.4. The category of H(R)-algebras and H(R)-algebra morphisms

will be denoted by H(R)−ALG.
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3.4 Sketches

Lawvere introduced, in his 1963 doctorial thesis [39], an alternative method of en-

coding algebraic theories without using generators and their relations. Historically

the problem of the structure of cohomology algebras has been studied from the

perspective of a universal graded algebra. These rely on knowing the generators of

the primary operations and their relations. Since the generators and their relations

of H(R)-algebras are not always known for a general ring R, in this thesis we will

apply the technique of Lawvere theories in which the generators and their relations

are encoded in a category and do not need to be known explicitly. The idea behind

Lawvere theory is that morphisms in a Lawvere theory correspond to the opera-

tions of the algebraic theory. The relations satisfied by the generators correspond

to the the fact that certain morphisms are equivalent. We will use a generalization

of Lawvere theory called models of sketches introduced by Ehresmann in [25, 24].

The functor definition of H(R)-algebras allows us to define the H(R)-algebras in

the context of Ehresmann’s models of sketches.

Definition 3.4.1. A sketch S = {T ,P , I} ([13], 5.6.1) is a triple with a small

pointed category T with

(i) a set P of cones on functors R : D −→ T , defined on small categories D;

(ii) a set I of cocones on functors R : D −→ T , defined on small categories D.

Definition 3.4.2. Let S be a sketch. A model ([13], 5.6.2) of a sketch S in a

category W is a covariant functor S-model W : T −→ W which preserves limits

and colimits of the category T .

Remark 3.4.3. Definitions 3.4.1 and 3.4.2 are too general for our purposes and

we will restrict the set P in Definition 3.4.1 to contain only small products, since
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we are not interested in other limits and the set I to be empty. Therefore, by a

model of a sketch in Definition 3.4.2 we mean only product preserving functors.

Definition 3.4.4. If P in Definition 3.4.1 contains only finite products then the

sketch is referred to as a finite product sketch.

Remark 3.4.5. For our purposes we take T -models in SET ∗. That is functors

of the following form W : T −→ SET ∗, and homomorphisms of T -models are

natural transformations between such functors.

Definition 3.4.6. A sketch T is multisorted with objects from a set of sorts S,

if every object in T is a product of elements from S.

Example 3.4.7. Let ∆ be the category of finite ordinals and order preserving

maps. Setting T = ∆op, the T -models in a category C are the simplicial objects

in C. Similarly the ∆-models in a category C form the cosimplicial objects of C.
Both of these theories T = ∆op and T = ∆ are single sorted, with the set of all

the objects of ∆ thought of as the sort.

Example 3.4.8. The category ofHN(R)-algebras andHN(R)-algebra morphisms

given in Definition 3.1.5 and 3.1.7 is corepresentable by T = HN(R). HN(R) is

sorted by the spaces K(R, n), n ≥ 1. Then HN(R)-algebras are the HN(R)-

models in SET ∗. This agrees with the Definition 3.1.5 of HN(R)-algebras being

the product preserving functors from HN(R) to SET ∗.

Similarly, if we let T = H(R), then the H(R)-models in SET ∗ are H(R)-algebras

given in Definition 3.3.2.

Example 3.4.9. LetH(Fp) be the category of Definition 3.3.1 withR = Fp. Then

H(Fp) is sorted by the spaces K(Fp, n) , n ≥ 1 and the models of H(Fp) in SET ∗
are algebras over the mod-p Steenrod algebra ([8],

∮
1).
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Remark 3.4.10. All the finite product sketches modelled on SET ∗ have all limits

and colimits [2]. In [40], Linton gives a general proof for the existence of a canon-

ical free functor F from SET to the models of a finite product sketch T -model,

that is left adjoint to the underlying functor U .

Remark 3.4.11. In ([13] 5.6.8) it is shown for a sketch S = {T ,P , I} if either

P or I is empty then the models of S are locally presentable. Adámek and Rosicky

([2] or [13] 5.5.8), show that all locally presentable categories have all limits and

colimits. Therefore, even in the general case with infinite product of Eilenberg-Mac

Lane spaces, for the category of H(R)-models in SET ∗ all limits and colimits exist

because I is empty (c.f. Remark 3.4.3).

3.5 Simplicial H(R)-algebras

The free and underlying adjunction between H(R)−ALG and SET ∗ gives rise to

comonad on H(R)−ALG by Theorem 2.2.12. Using this comonad we can form an

augmented simplicial H(R)-algebra for an H(R)-algebra Z as explained in Section

2.2.3.

Z FU(Z) s00
//d00

oo FU2(Z)
d10
oo
d11
oo s10

//
s11
// FU3(Z) · · ·

d20
oo
d21
oo
d22
oo

(3.2)

Each FUn(Z), for n > 0 in (3.2) is a free H(R)-algebra when considered individ-

ually.

In Figure 3.2, we have denoted FUn(Z)(Ki) as FUn(Zi) and Z(Ki) as (Zi).

Each row in Figure 3.2 is an H(R)-algebra (c.f. Figure 3.1). All identical copies

of FUn(Zi) in SET ∗ are identified. As illustrated in Figure 3.2 , cohomology

operations on FUn(Z), for n > 0 is induced by the cohomology operations in Z,

because FUn is a functor.
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H(R)

Z

FU(Z)

FU2(Z)

K1

α

K2Km

Ki ×Kj

Z

0

0

0

SET ∗

∗

α∗

α∗

α∗

Z1 Z2

FU(Z1) FU(Z2)

FU2(Z2)FU2(Z1) FU2(Zi) FU2(Zj) FU2(Zm)

FU(Zi) FU(Zj) FU(Zm)

Zi Zj Zm

Figure 3.2

A simplicial H(R)-algebra can be explained using Figure 3.3, where a horizontal

strip shows a graded abelian group with primary cohomology operations acting

on them (each row is an H(R)-algebra). In Figure 3.3 any vertical strip gives a

simplicial abelian group because the natural transformations dni and sni in (3.2) act

on the jth column to give natural transformations dni Zj and sni Zj and these natural

transformations satisfy the simplicial identities.

Z

FU(Z)

FU2(Z)

α∗

α∗

α∗

0 Z1 Z2

0 FU(Z1) FU(Z2)

0 FU2(Z2)FU2(Z1)

H(R)

K1

α

K2Km

Ki ×Kj

FU2(Zi) FU2(Zj) FU2(Zm)

FU(Zi) FU(Zj) FU(Zm)

Zi Zj Zm

SET ∗

∗
d00

d10 d11s00

d00Zj

d10Zj
s00Zj d11Zj

Figure 3.3

Notation 3.5.1. We will use (FU)•(Z) to denote the simplicial H(R)-algebra on

Z constructed using the free functor F and underlying functor U .
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Lemma 3.5.2. Let (FU)•(Z) be a simplicial H(R)-algebra augmented by the

H(R)-algebra Z−1. The simplicial maps dni and sni induce a morphism of H(R)-

algebras.

Proof. The face and degeneracy maps in a simplicial H(R)-algebra are the nat-

ural transformations dni and sni given in equation (2.28), therefore these natural

transformations commute with all the primary cohomology operations. Hence

morphisms of H(R)-algebras.
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Chapter 4

Model categories

To construct resolutions in Chapter 4 and Chapter 5, we need a proper framework

to define resolutions and model category theory allows us to do this. The purpose

of this chapter is to define all the model category structures that will be used in

this thesis.

In the first section we give the model category axioms and in Section 4.1.1 we give

a model category structure for a simplicial model of a finite product sketch. Then

we describe Bousfield’s resolution model category structure [15] on the category

cC of cosimplicial objects over a model categroy C. Bousfield’s resolution model

category of cosimplicial spaces is a generalization of the Dwyer-Kan-Stover [22]

theory of resolution model category on simplicial spaces.

4.1 Model category structure

Model categories, developed by Quillen in [47] give the most general context in

which the tools of homotopy theory can be used. Homotopy theory allows prob-

lems in a general category to be reformulated in a more tractable algebraic setting.
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A model category is a category with three distinct classes of morphisms satisfying

axioms making localization functorial with an image in Grp. Categories which

satisfy the model category axioms include the category of chain complexes over

a commutative ring, the category of topological spaces and a category of simpli-

cial sets. The homotopy theory of the category of chain complexes forms what

we know as homological algebra (abelian case), but, the main purpose of model

category theory is to study homotopy theory in non-abelian categories of which

topological spaces are a motivating example. The category of Π-algebras and also

the category of H(R)-algebras are non-abelian categories, so we need the notion

of model category to do homotopy on these categories.

Before we define a model category we give the following definition [23]

Definition 4.1.1. A map g : A −→ B is a retract of a map f : X −→ Y in a

category, if there is a commutative diagram

A i //

g

��

X r //

f

��

A

g

��
B

j // Y
s // B

with ri = 1A and sj = 1B.

The reason why we defined retracts is because isomorphisms are closed under

retracts (that is, the retract of an isomorphism is an isomorphism) in any category.

In order to localize over weak equivalences so they become isomorphisms in the

quotient category we will require the distinguished classes of maps of a model

category to be closed under retracts.

Definition 4.1.2. Let C be a category. A model category structure ([23],
∮

3) on

C is given by 3 classes of maps : weak equivalences, fibrations and cofibrations,

satisfying the axioms.
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(MC1) Finite limits and colimits exist in C

(MC2) If f and g are maps in C such that gf is defined and if any two of f, g, gf

is a weak equivalence then so is the third.

(MC3) Fibrations, cofibrations and weak equivalences are closed under retracts.

(MC4) Given a commutative diagram

A //

i

��

X

p

��

A //

i

��

X

p

��
B // Y B //

@@

Y

where i : A −→ B is a cofibration and p : X −→ Y is a fibration, then a

lift shown in the diagram on the right by the dotted arrow exists, if i or p

is also a weak equivalence.

(MC5) Every map f in C can be factored as f = pi in two ways, where

i is a cofibration and p is a fibration and a weak equivalence.

p is a fibration and i is a cofibration and a weak equivalence.

A map that is a fibration and a weak equivalence is called an acyclic fibration and

a map that is a cofibration and a weak equivalence is called a acyclic cofibration.

(MC1) implies that there is an initial object φ and a terminal object e in any model

category. In a model category, A is a cofibrant object if there is a cofibration

φ −→ A, and B is a fibrant object if there is a fibration B −→ e.

Definition 4.1.3. The homotopy category Ho(C) of a model category C is the

category with the same objects as C and morphisms between X and Y as [
ˆ̂
X,

ˆ̂
Y ]

where
ˆ̂
X and

ˆ̂
Y denotes a cofibrant fibrant replacement for X and Y respectively.

Remark 4.1.4. The cofibrations in a model category are the maps that satisfy the

Left Lifting Property (LLP) with repsect to the acyclic fibrations and the acyclic
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cofibrations are maps that satisfy the LLP with respect to the fibrations. The dual

statements also hold. Using this criteria once a fibration (or a cofibration) is fixed

then cofibrations (or a fibration) are already determined [23].

4.1.1 Model category structure on simplicial models of a

finite product sketch

One of the fundamental observations in Quillen’s work on homotopical algebra [47],

is that, in an non-abelian category, resolutions of an object by a chain complex

has to be replaced by a simplicial resolution.

The following Theorem shows there is a canonical model category structure given

on any simplicial model of a finite product sketch (c.f. remark 3.4.10). If T
is a finite product sketch the category of simplicial T -models will be denoted

by sT -model. This method was initially used by Quillen ([47], II.4) to show a

model structure on varieties of algebras and later generalised by other authors

[33, 32]. The idea behind it is to transport the model structure on sSET ∗ to

one on sT -model using the adjunction T -model
U
�
F
SET ∗ , where U and F are

underlying and free functors respectively.

Fact 4.1.5. ([8], prop 4.1) Let T be a finite product sketch, then there is a model

category structure on sT -models. Let X•, Y• ∈ sT -models. In this model structure

a map f : X• −→ Y• of sT -model is

1. a weak-equivalence if U(T )f : U(X•) −→ U(Y•) is weak-equivalence of sSET ∗.

2. a fibration if U(T )f : U(X•) −→ U(Y•) is a Kan fibration.

The cofibrations are the maps that satisfy the left lifting property with repect to

the fibrations.
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Example 4.1.6. In Example 3.4.8, we showed HN(R)-algebras are an HN(R)-

model in SET ∗. Then we can apply Theorem 4.1.5 to get a model category struc-

ture on simplicial HN(R)-algebras.

4.1.2 Resolution model structure on sT -model

In this section we explain the model category stucture from [8], which can be

applied to simplicial H(R)-algebras from Section 3.5, for R = Z. This is very im-

portant because it is hard to define model category structures on simplicial models

of infinite product sketches but if the models of a sketch are locally presentable

then using Fact 4.1.8 we can give a resolution model category structure.

Definition 4.1.7. ([8],
∮

4) Let A• be a simplicial T -model of a sketch in SET ∗.
By πpA• we mean the composition

πpA• : T A• // sSET ∗
πp // SET ∗

where πp is the pth homotopy group functor on simplicial sets.

Fact 4.1.8. ([8],
∮

4) If a locally presentable model of a sketch T -model (c.f.

Remark 3.4.11) has an underlying graded group structure then a map of simplicial

T -models f : W• −→ Z• is a

i. weak equivalence if and only if πnf : πnW• −→ πnZ• is an isomorphism for all

n ≥ 0.

ii. fibration if and only if the underlying map as graded groups is a surjection

onto the base point component.

Cofibrations are the maps that satisfy the left lifting property with respect to the

fibrations.
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4.2 Model category on Cosimplicial objects

4.2.1 Latching and Matching objects for cosimplicial ob-

jects in a category

Definition 4.2.1. Let X• be a cosimplicial object. The latching objects LnX• in

C for n ≥ 0 ([15], 2.2), are defined as

LnX• = colimθ:[k]→[n]X
k

with θ ranging over the injections [k]→ [n] in ∆ for k < n. The maps LnX• −→
Xn in C are the latching maps. Similarly we define the matching objects ([15],

2.2) MnX• in C for n > 0 as

MnX• = limθ:[n]→[k]X
k

with θ ranging over surjections [n]→ [k] in ∆ for k < n. The maps Xn −→MnX•

are the matching maps.

4.2.2 Reedy model structure

Definition 4.2.2. Let C be a model category. A map f : X• −→ Y • in cC is called

([48] or [15], 2.2):

i. a Reedy weak equivalence if each f : Xn −→ Y n is a weak homotopy equiva-

lence in C for each n ≥ 0;

ii. a Reedy fibration if the map Xn −→ Y n ×MnY • M
nX• (c.f. Notation 2.1.24)

is a fibration in C for all n ≥ 0;

iii. a Reedy cofibration if the map Xn
∐

LnX• L
nY • −→ Y n (c.f. Notation 2.1.26)

is a cofibration in C for all n ≥ 0.
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Fact 4.2.3. ([48] or [15], 2.2) If C is a model category then cC has a model

category structure called a Reedy model category, with Reedy weak equivalences,

Reedy fibrations and Reedy cofibrations.

4.3 Resolution model category on spaces

4.3.1 G-injectives

Definition 4.3.1. A model category is called a left proper pointed model category

([15], 3.1), if each pushout of a weak equivalence along a cofibration is a weak

equivalence.

Definition 4.3.2. ([15], 3.1) Let C be a left proper pointed model category and G
be a class of group objects in the homotopy category Ho(C). A map i : A −→ B in

Ho(C) is called G-monic when i∗ : [B,ΩnG] −→ [A,ΩnG] is onto for each G ∈ G
and n ≥ 0. A map in C is called G-monic when the induced map is G-monic in

Ho(C).

Definition 4.3.3. ([15], 3.1) An object C ∈ Ho(C) is called G-injective when

i∗ : [B,ΩnC] −→ [A,ΩnC] is onto for each G-monic map i : A −→ B in Ho(C)
and n ≥ 0. An object C in C is called G-injective when it is G-injective in Ho(C).

Definition 4.3.4. ([15], 3.1) Ho(C) has enough G-injectives when each object of

Ho(C) is the source of a G-monic map to a G-injective target. A class of group

objects G in Ho(C) is called a class of injective models if Ho(C) has enough G-

injectives.

4.3.2 G-resolution model structure on cC

The model category on simplicial groups is defined as follows.
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Definition 4.3.5. A homomorphism in the category sGrp is a weak equivalence or

a fibration when its underlying map in sSET is a weak equivalence or a fibration.

The cofibrations of sGrp are the maps that satisfy the left lifting property with

respect to all the acyclic cofibrations. ([47], II.3).

Definition 4.3.6. A map f : X• −→ Y • in cC is called

1. a G-equivalence when f ∗ : [Y •,ΩnG] −→ [X•,ΩnG] is a weak equivalence in

sGrp for each G ∈ G and n ≥ 0.

2. a G-cofibration when f is a Reedy cofibration and f ∗ : [Y •,ΩnG] −→ [X•,ΩnG]

is a cofibration in sGrp for each G ∈ G and n ≥ 0.

3. a G-fibration when f : Xn −→ Y n ×MnY • M
nX• is a G-injective fibration in C

for n ≥ 0.

Definition 4.3.7. Let cCG denote the category cC with weak equivalences defined

as G-equivalences, with cofibrations as G-cofibrations and fibrations as G-fibrations.

Fact 4.3.8. ([15], 3.3) If C is a left proper pointed model category with a class

G of injective models in Ho(C) then cCG is a left proper pointed simplicial model

category.

Definition 4.3.9. A weak G-resolution ([15], 6.1) of A ∈ C is a G-equivalence

Ā −→ X• in cC where Ā is a constant cosimplicial object, such that Xn ∈ G for

n ≥ 0.

If C is a left proper pointed model category with a class G of injective models in

Ho(C), then Fact 4.3.8 gives the G-resolution model category cCG.

4.3.2.1 Bousfield-Kan resolution and R-completion

In this section we will describe a construction from ([16], I.2 and [15], 7.2) called

the Bousfield-Kan resolution of a space X.
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Definition 4.3.10. Let X be a pointed simplicial set and R a commutative ring.

Let R : SET ∗ −→ SET ∗, defined by (RX)n is the free R-module on Xn modulo

the relation [∗] = 0 (all degenerate simplices are the base point). There are also

natural maps

1. φX : X −→ RX, given by x 7→ 1 ·x, where φX is the inclusion of basis into the

simplicial R-module and

2. ψX : R2X −→ RX, given by r1 · r2x 7→ r1r2x, where ψX is the multiplication

inside the the simplicial R-module.

Then (R,φ,ψ) is called the Bousfield-Kan triple (monad) ([16], I.2 or [15]) on

the category sSET ∗.

Note: RX does not inherit an R-module structure if X is not pointed ([16], I 2.2,

2.4).

Using the monad (R,φ,ψ) Bousfield forms a cosimplicial space R•X and in ([16],

I 4.1) it is shown that X → R•X is a cosimplicial resolution of X in the sense of

Huber [35]. The cosimplicial resolution of X is referred to as the Bousfield-Kan

resolution of X.

4.3.2.2 Total objects

Definition 4.3.11. Let X ∈ sC, then the nth skeleton ([16], VIII 2.13) of X is

a sub-object of X generated by all the simplices of X of dimension ≤ n. We will

denote the nth skeleton of X as sknX.

Definition 4.3.12. For a cosimplicial space X•, we define the space Tot(X•) ([50],

page 149) as the space of cosimplicial maps from ∆• ×∆[q] to X• (c.f. Notation

2.2.7). That is

Tot(X•)q = HomcCW∗(∆
• ×∆q, X•) (4.1)
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For s ≥ 0, we define

Tots(X
•)q = HomcCW∗(sks∆

• ×∆q, X•). (4.2)

Fact 4.3.13. [37] For a cofibrationA• −→ Y • and a fibrantX• the mapHom(Y •, X•) −→
Hom(A•, X•) is a fibration.

The inclusion is : sks−1∆
• −→ sks∆

• induces a map i∗s : Hom(sks∆
•, X•) −→

Hom(sks−1∆
•, X•)

By (4.2), we have

i∗s : Tots(X
•) −→ Tots−1(X

•) (4.3)

From ([29], VII (4.16)) the inclusion map is is a cofibration, then by Fact 4.3.13,

it is clear that (4.3) is a fibration. Thus for a cosimplicial space X•, we obtain a

tower of fibrations

Tot(X•) −→ · · · −→ Totk(X
•) −→ Totk−1(X

•) −→ · · · −→ Tot0(X
•) (4.4)

Tot(X•) is the limit of the sequence (4.4),

TotX• ∼= lim
←−

TotsX
•

Definition 4.3.14. The total space Tot(R•X), of the Bousfield-Kan resolution

of X, is called the R-completion ([16], I 4.2) of the space X, denoted by R∞X.

Equivalently, R∞X is the limit of a tower of fibrations {RsX}s≥−1, where RsX =

TotsR
•X.

Fact 4.3.15. A map f : X −→ Y induces an isomorphism H∗(X;R) ∼= H∗(Y ;R)

if and only if f induces a homotopy equivalence R∞X ∼= R∞Y ([16], I 5.5).

Definition 4.3.16. A space is called R-good ([16], I 5.1) if the map from the space

X to its R-completion is a homology isomorphism,

That is H∗(X;R)
∼=−−→ H∗(R∞X;R).
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Example 4.3.17. Let G contain all the simplicialR-modules. Then the Bousfield-

Kan resolution X −→ R•X in cosimplicial sSET ∗ is a weak G-resolution of X in

the model category sSET G∗ .
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Chapter 5

Free simplicial resolution of

H(R)-algebras

In this chapter we will give the definition of a free simplicial resolution of H(R)-

algebra in Definition 5.2.1. A free simplicial resolution of a H(R)-algebra Z is a

cofibrant simplicial replacement for Z in the model category described in Section

4.1.2. The main result of this chapter is Theorem 5.2.11, and in this theorem we

show a simplicial H(R)-algebra Z• augmented by Z constructed in Section 3.5 is

a free simplicial resolution for Z.

Definition 5.0.18. Let i : A ↪−−−→ X be an inclusion. A is a retract ([5], 1.4.1)

of X if there is a map r : X −→ A such that ri = idA.

Fact 5.0.19. ([35],
∮

3) Let i : A ↪−−−→ X be an inclusion and r : X −→ A be a

retract. If ir ∼= idX then A ∼= X are homotopy equivalent.

5.1 The natural transformation h

We will prove what Huber refers to as standard method originally devised by

Godement [28]. The standard method applies to any category C if it satisfies the
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following conditions;

(i) an underlying functor U : C −→ D exists

(ii) a free functor F : D −→ C exists and F is left adjoint to U

(iii) a natural transformation h : I −→ FU exists such that εh = 1, where ε is

the counit of adunction.

In Subsection 5.1.1 we will use the free and underlying functors from Section 3.2.1

on H(R) − ALG to show a natural transformation h exists satisfying condition

(iii) given above.

5.1.1 h acting on H(R)-algebras

Let Z be an H(R)-algebra, that is a set of graded abelian groups {Zn|n ∈ N} with

all the primary cohomology operations acting on them. UZ is a graded set since

Zn = Z(Kn) ∈ SET ∗, for each n ∈ N, so for each t ∈ Zn,

FUZ = [
∏
n∈N

∏
t∈Zn−

Kn
t , ] : H(R) −→ SET ∗ .

Definition 5.1.1. We define a natural transformation h : I −→ FU on Z by

hZ(t) = prt, for t ∈ Zn and prt :
∏
n∈N

∏
t∈Zn−

Kn
t −→ Kn

t .

In the next lemma we will show that h is a natural transformation.

Lemma 5.1.2. h : I −→ FU is a natural transformation on Z ∈ H(R)−ALG.

Proof.

Let t ∈ X and w : X −→ Z. So we need to show the square 5.1 is commutative.

X

w

��

hX // FU(X)

FU(w)
��

Z
hZ // FU(Z)

(5.1)
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By definition we have hX(t) = prt and hZ(w(t)) = prw(t) which are cohomology

classes. From Section 3.2.1 we know FU(w) is induced by a product map sending

Kn
w(t) to

∏
w(ti)=w(t)

Kn
ti

which in particular maps Kn
w(t) isomorphically to Kn

t . Hence

FU(w) takes prt to prw(t).

Therefore, the square commutes.

Lemma 5.1.3. Let ε : FU −→ I be the counit of adjunction for any Z ∈ H(R)−
ALG, given in Section 3.2.3, then εZhZ = 1Z.

Proof. To show εZhZ = 1Z , by definition of hZ and εZ we have for any Z ∈
H(R)−ALG

εZ(hZ(t)) = εZ(prt)

= t

so εZhZ = 1Z .

5.1.2 Induced maps

From Section 3.5 we know the face and degeneracy maps of a simplicial H(R)-

algebra induces a face and degeneracy maps of simplicial abelian groups (c.f. Fig-

ure 3.3). We will denote the face and degeneracy maps of vertical strip (jth sim-

plicial abelian group) in Figure 3.3 by

(i) εZj : FU(Zj) −→ Zj is the augmentation.

(ii) dni Zj : FUn+1(Zj) −→ FUn(Zj) is the ith face map

(iii) sni Zj : FUn+1(Zj) −→ FUn+2(Zj) is the ith degeneracy map.
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As h in Definition 5.1.1 is a natural transformation we have an induced map on

the jth simplicial abelian group which will be denoted by hZj : Zj −→ FU(Zj).

Lemma 5.1.2 and Lemma 5.1.3 implies hZj satisfies the condition (iii). That is

εZjhZj = 1Zj . Diagram (5.2) shows the jth simplicial abelian group of Figure 3.3.

Zj FU(Zj)
s00Zj //

ε
Zjoo FU2(Zj)

d10Zj

oo

d11Zjoo
s11Zj //

s10Zj

// FU3(Zj) · · ·
d20Zj

oo
d21Zj

oo

d22Zjoo

(5.2)

5.2 Construction of a free-underlying resolution

Dual to Stover ([53], 5.4), we will define a free simplicial resolution of a H(R)-

algebra.

Definition 5.2.1. A free simplicial resolution of a H(R)-algebra Z is a simplicial

H(R)-algebra F• augmented by Z with the following properties:

(i) πpF• = 0 for p > 0

(ii) πpF• = Z for p = 0

(iii) Fn is a free H(R)-algebra for each n ≥ 0.

Our Theorem 5.2.11 is an analogous result to Huber’s ([35], Theorem 3.2) or

Weibel’s ([54], Proposition 8.6.10). In Huber’s proof to show the simplicial object

(FU)•(Z) ∈ C is a free resolution he uses a functor T : C −→ SET ∗, which

satisfies a condition he calls T -triviality ([35], Definition 3.1) and then he shows

the simplicial set T ((FU)•(Z)) is weakly homotopy equivalent to the constant

simplicial set of Z. Huber defines a map f to be a weak equivalence when the

underlying map in pointed simplicial sets is weakly homotopy equivalent as a Kan
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complex. Finally he explains how to put a group structure on these underlying

simplicial sets.

At the time Huber wrote his paper [35], model category theory [47] and Lawvere’s

theory of algebraic structures [39] were not known. Huber’s result from the point

of view of model category theory, can be applied to construct resolutions in the

model category structure described in Fact 4.1.5 (which is a generalization of the

model category given by Quillen in ([47] II.4 Theorem 4)). Resolutions constructed

using our Theorem 5.2.11 can be applied if we are working in the model category

structure described in Section 4.1.2. This is the main difference between our

Theorem 5.2.11 and Huber’s result, because the notion of a weak equivalence is

different for the two model categories.

Weibel’s Proposition 8.6.10, says that, given a pair of adjoint functors with F

left adjoint to U and U : C −→ Ab, then for every Z ∈ C, the underlying set

U(FU)•Z) −→ U(Z) is acyclic. Just like Huber’s result this can be applied to

Fact 4.1.5 but not to the results of Section 4.1.2. Also one other difference between

our Theorem 5.2.11 and Weibel’s result is that to apply Weibel’s result, the target

category for the underlying functor needs to be Ab and in our case we need a pair

of adjoint functors with the target of underlying functor to any category that has

a underlying set structure.

The first row of Figure 5.1 are functors and natural transformations giving sim-

plicial abelian groups as in diagram (5.2) when applied to Zj from Figure 3.3.

The second row of Figure 5.1 are functors and natural transformations giving the

constant simplicial group 1 when applied to an Zj.

1Constant simplicial obect [54], 8.1.1
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· · ·FU3
d20
//

d21
//

d22
//

d00d
1
0d

2
0
��

FU2 d10
//

d11
//s11

oo
s10
oo

d00d
1
0

��

FUs00
oo d00

//

d00
��

I

id
��

——¬

· · · I oo id //

s10s
0
0h
��

I oo
id //

s00h
��

I oo
id //

h
��

I

id
��

——

· · ·FU3
d20
//

d21
//

d22
//

d00d
1
0d

2
0
��

FU2 d10
//

d11
//s11

oo
s10
oo

d00d
1
0

��

FUs00
oo d00

//

d00
��

I

id
��

——®

· · · I oo id // I oo id // I oo id // I ——¯

Figure 5.1

Lemma 5.2.2. Figure 5.1 is a commutative diagram.

Proof. A square of the form

FUn+1
d0 //

dn //
(d0)n+1

��

... FUn

(d0)n

��
I oo id // I

is commutative because

(d0)
ndk = (d0)

n−k(d0)
k−1d0dk

= (d0)
n−k(d0)

k−1dk−1d0

= (d0)
n−k(d0)

k−2d0dk−1d0 (using dni d
n+1
j = dnj−1d

n+1
i for i < j)

= (d0)
n−k(d0)

k−2dk−2(d0)
2

... (iterating (k − 2) times)

= (d0)
n−kd0d0(d0)

k−1

= (d0)
n+1

= (id)(d0)
n+1, where 0 ≤ k ≤ n.
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Similarly

FUn+1

(d0)n+1

��

... FUn
s0oo

sn−1oo
(d0)n

��
I oo

id // I

is commutative because

(d0)
n+1sk = (d0)

n−(k+1)(d0)
kd0sk

= (d0)
n−(k+1)(d0)

ksk−1d0

= (d0)
n−(k+1)(d0)

k−1d0sk−1d0 (using dn+1
i snj = sn−1j−1d

n
i for i < j)

= (d0)
n−(k+1)(d0)

k−1sk−2(d0)
2

... (iterating (k − 2) times)

= (d0)
n−(k+1)(d0s0)(d0)

k (using dn+1
i sni = id)

= (d0)
n

= (id)(d0)
n, where 0 ≤ k ≤ n− 1.

Also a square of the form

I oo id //

(s0)nh
��

I

(s0)n−1h

��
FUn+1

d0 //

dn //

... FUn

is commutative because

dk(s0)
nh = (dks0)(s0)

n−1h

= (s0dk−1)(s0)
n−1h (using dn+1

i snj = sn−1j dni−1 for i > j + 1)

... (iterating (k − 1) times)

= (s0)
k−1(d1s0)(s0)

n−kh (using dn+1
i+1 s

n
i = id)

= (s0)
n−1h

= (s0)
n−1h(id), where 0 ≤ k ≤ n− 1.
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Finally a square of the form

I oo
id //

(s0)n+1h
��

I

(s0)nh
��

FUn+2 ... FUn+1
s0oo

snoo

is commutative because

sk(s0)
nh = (sks0)(s0)

n−1h

= (s0sk−1)(s0)
n−1h (using sn+1

i snj = sn+1
j+1 s

n
i for i ≤ j)

= (s0)
2sk−2(s0)

n−2h

... (iterating (k − 2) times)

= (s0)
ks0(s0)

n−kh

= (s0)
n+1h

= (s0)
n+1h(id), where 0 ≤ k ≤ n.

This concludes the diagram given above being commutative.

Example 5.2.3. If we apply the simplicial functor ¬ in Lemma 5.2.2 to Zj we

get the simplicial abelian group (5.2). Then, Lemma 5.2.2 shows ¬−→, −→®

and ®−→® is a map of simplicial abelian groups (2.2.8).

Let f be the map ¬−→−→®, that is, FUn+1 (d0)n+1

−−−−→ I
(s0)nh−−−→ FUn+1 in Figure

5.1 and f is defined explicitly by

f−1 = 1

f0 = hd00

fn = (s0)
nh(d0)

n+1.

Lemma 5.2.4. The chain map −→®−→¯ is the identity 1.
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Proof.

(d0)
n+1(s0)

nh = d0 (d0 . . . (d0(d0︸ ︷︷ ︸
n times

n times︷ ︸︸ ︷
s0)s0) . . . s0)h

= d0h

= εh

= 1 by Lemma 5.1.3.

Remark 5.2.5. If the chain map −→® of Lemma 5.2.4 is an inclusion then

according to Definition 5.0.18,  is a retract of ®.

Fact 5.2.6. ([41] I.5) Let f and g be morphisms in a category where fg = id then

f is epic and g is monic. In the category of abelian groups f epic is the same as

f is surjective and g is monic is the same as g is injective.

Lemma 5.2.7 is only applicable to categories where inclusion map is defined.

Lemma 5.2.7. The chain maps −→® at Zj (c.f. Example 5.2.3) is an inclusion

map.

Proof. From Lemma 5.2.4 and Fact 5.2.6 it is clear that −→® is monic, hence a

1-1 map in the category of abelian groups.

The next step is to show that f is homotopic to identity chain map id¬ from

¬−→®. A homotopy between f and id¬ can be given by the sequence of maps

hni : FUn+1(Z) −→ FUn+2(Z), for n ≥ 0, defined by

h−10 = h

hn0 = hFUn+1 : IFUn+1 −→ FUFUn+1

hni = (s0)
ihn−i0 (d0)

i where 0 < i ≤ n
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First we will prove Lemma 5.2.8 which will be used in Lemma 5.2.9.

Lemma 5.2.8. (I) dn+1
i+1 h

n
0 = hn−10 dni

(II) sn+1
i+1 h

n
0 = hn+1

0 sni

Proof. (I)

dn+1
i+1 h

n
0 = FU i+1εFU (n+1)−(i+1)hFUn+1

= FUFU iεFUn−ihFU iFUFUn−i

= (FUFU iεhFU iFU)FUn−i by equation (2.4)

= (hFU iFU iε)FUn−i by Example 2.1.4 (5.3)

= hFU iFUn−iFU iεFUn−i by equation (2.4)

= hFUnFU iεFUn−i

= hn−10 dni

(II)

sn+1
i+1 h

n
0 = FU i+1νFUn−ihFUn+1

= FUFU iνFUn−ihFU iFUFUn−i

= (FUFU iνhFU iFU)FUn−i by equation (2.4)

= (hFU iFU2FU iν)FUn−i by Example 2.1.5 (5.4)

= hFU iFU2FUn−iFU iνFUn−i by equation (2.4)

= hFUn+2FU iνFUn−i

= hn+1
0 sni

Lemma 5.2.9. Let f be the map ¬−→−→®, that is, FU −→ I −→ FU in

Figure 5.1 and id¬ be identity chain map FUn+1 −→ FUn+1.

Then f is simplically homotopic id¬.

55



Proof.

· · ·FU3
d20

//
d21

//
d22

//
FU2 d10

//
d11

//s10
oo

s10
oo

h11,h
1
0

vv

FUs00
oo d00

//

h00

ww

I

h−1
0

~~
· · ·FU3

d20
//

d21
//

d22
//

FU2 d10
//

d11
//s10

oo
s10

oo
FUs00

oo d00
// I

(A)

d00h
−1
0 = εh = 1 where 1 : I −→ I is the identity natural transformation

dn+1
0 hn0 = εFUn+1hFUn+1

= εhFUn+1

= 1FUn+1

where 1FUn+1 : FUn+1 −→ FUn+1 is the identity natural transformation. So all

of these maps gives id¬.

(B)

dn+1
n+1h

n
n = dn+1

n+1(s0)
nh00(d0)

n

= dn+1
n+1s0(s0)

n−1h00(d0)
n

= s0dn(s0)
n−1h00(d0)

n

... (iterating dns0 = s0dn−1 (n− 1) times)

= (s0)
nd1h

0
0(d0)

n

= (s0)
nh−10 d0(d0)

n using (5.3)

= (s0)
nh(d0)

n+1

= fn
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(C)

dih
n
j = di(s0)

jh0n−j(d0)
j

= di(s0)
i(s0)

j−ih0n−j(d0)
j−(i+1)d0(d0)

i

= s0di−1(s0)
i−1(s0)

j−ih0n−j(d0)
j−(i+1)d0d1(d0)

i−1

... (iterating (i− 2) times)

= (s0)
i−1d1s0(s0)

j−ih0n−j(d0)
j−(i+1)(d0)

i−1di−1(d0)

= ((s0)
i−1(s0)

j−i)h0n−j((d0)
j−(i+1)(d0)

i−1d0)di

= ((s0)
j−1)h0(n−1)−(j−1)((d0)

j−1)di where n− j = (n− 1)− (j − 1)

= hn−1j−1di

(D)

djh
n
j = dj(s0)

jhn−j0 (d0)
j

= djs0(s0)
j−1hn−j0 d0(d0)

j−1

= s0dj−1(s0)
j−1hn−j0 d0(d0)

j−1

... (iterating (j − 2) times)

= (s0)
j−1d1(s0)h

n−j
0 d0(d0)

j−1

= (s0)
j−1hn−j0 d0(d0)

j−1 using d1(s0) = id

= (s0)
j−2s0d1h

n−j+1
0 (d0)

j−1 by d1(s0) = id and (5.3)

= (s0)
j−2d2s0h

n−j+1
0 (d0)

j−1 using s0d1 = d2s0
... (iterating (j − 2) times)

= dj(s0)
j−1h

n−(j−1)
0 (d0)

j−1

= djh
n
j−1
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(E)

dih
n
j = di(s0)

jhn−j0 (d0)
j where i > j + 1

= dis0(s0)
j−1hn−j0 (d0)

j

= s0di−1(s0)
j−1hn−j0 (d0)

j

... (iterating (j − 1) times)

= (s0)
jdi−jh

n−j
0 (d0)

j

= (s0)
jhn−1−j0 di−1−jd0(d0)

j−1 by (5.3)

= (s0)
jhn−1−j0 d0di−1−j+1(d0)

j−1

... (iterating (j − 1) times)

= (s0)
jhn−1−j0 (d0)

jdi−1−j+j

= hn−1j di−1

(F)

sih
n
j = si(s0)

jhn−j0 (d0)
j where (i ≤ j)

= sis0(s0)
j−1hn−j0 (d0)

j−i(d0s0)d0(d0)
i−1 using d0(s0) = id

= s0si−1(s0)
j−1hn−j0 (d0)

j−i(d0)
2s1(d0)

i−1

... (iterating (i− 1) times)

= (s0)
is0(s0)

j−1hn−j0 (d0)
j−i(d0)

i+1si

= (s0)
j+1h

n+1−(j+1)
0 (d0)

j+1si

= hn+1
j+1 si
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(G)

hn+1
j si−1 = (s0)

jh
(n+1)−j
0 (d0)

jsi−1 where (i < j)

= (s0)
jh

(n+1)−j
0 (d0)

j−1d0si−1

= (s0)
jh

(n+1)−j
0 (d0)

j−1si−1−1d0
... (iterating (j − 1) times)

= (s0)
j−1s0h

(n+1)−j
0 si−1−j(d0)

j

= (s0)
j−1s0si−jh

n−j
0 (d0)

j by (5.4)

= (s0)
j−1si−j+1s0h

n−j
0 (d0)

j

... (iterating (j − 1) times)

= si−j+j(s0)
jhn−j0 (d0)

j

= si(s0)
jhn−j0 (d0)

j

= sih
n
j

Remark 5.2.10. From Lemma 5.2.7, the map −→ ® is an inclusion and by

Lemma 5.2.4,  is a retract of ¬ then by Fact 5.0.19, ¬ and  have the same

homotopy type (that is the corresponding homotopy groups are the same) when the

maps f and id¬ are homotopic.

Theorem 5.2.11. Let Z be a H(R)-algebra and (FU)•(Z) be the free simpli-

cial H(R)-algebra augmented by Z, constructed using the adjoint pair SET ∗
U−⇀↽−
F

H(R)−ALG. Then (FU)•(Z) is a free simplicial resolution of Z in the sense of

Definition 5.2.1.

Proof. From Section 3.5 an augmented simplicial H(R)-algebra (FU)•(Z) can

be thought of as simplicial abelian groups in sSET . From Remark 5.2.10 the jth

simplicial abelian group from diagram (5.2) is homotopy equivalent to the constant
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simlicial abelian group. Instead of calculating the homotopy groups of simplicial

abelian group (5.2) we will calculate the homotopy groups of the constant simplicial

abelian group, since (5.2) has the same homotopy type as the constant simplicial

abelian group by Lemma 5.2.9 and Remark 5.2.10.

First, we form the Moore chain complex for the augmented constant simplicial

abelian group

Zj oo id // Zj oo id // Zj oo id // Zj · · · (5.5)

as explained in (2.33). Then (5.5) simplifies to

0 Zjoo Zjidoo Zj0oo Zj · · ·idoo (5.6)

since all di’s are identity maps.

The homology groups of the chain complex (5.6) is either

(i) ker(0)/im(id) = Zj/Zj ∼= 0

(ii) ker(id)/im(0) = 0/0 ∼= 0

This means the chain complex (5.6) is exact everywhere and by Definition 2.2.17

and Fact 2.2.18 the zeroth homology is the augmentation. Also as h is a homotopy

the two augmented Moore chain complexes (5.6) and the Moore chain complex cor-

responding to (5.2) have the same homology. Therefore the Moore chain complex

corresponding to (5.2) is exact.

Hence by Fact 2.2.18

πi(FU)•(Z
j) = 0 if i > 0

π0(FU)•(Z
j) = Zj
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The composition of the simplicial functor FU•Z : H(R) −→ Ab followed by the

homotopy π0 : Ab −→ SET ∗ defines a functor H(R) −→ SET ∗, therefore defining

an H(R)-algebra.

From Figure 3.3 where each row is anH(R)-algebra we have daugZ = d00 : FUZ −→
Z is a morphism of H(R)-algebras.

H(R)

FUZ

&&

Z

99�� daugZ SET (5.7)

Now we have the isomorphism π0FUZ
∼=−→ Z (on each column of Figure 3.3) induced

by daug, a morphism of H(R)-algebras. By naturality of cohomology operations

π0FUZ has the same H(R)-algebra structure as Z.
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Chapter 6

A cosimplicial resolution of a

space

The purpose of this Chapter is to show how to construct a cosimplicial resolution

of a space X using products of Eilenberg-Mac Lane spaces.

First we show a functorial construction T on CW∗ and we show the construction

T (X) is homotopy equivalent to a product of Eilenberg-Mac Lane spaces. There

are two natural maps ς and β which can be constructed together with T and

the triple (T, ς, β) forms a monad on spaces. After that we apply Huber’s stan-

dard construction [35] on the monad (T, ς, β) to form a cosimplicial space. Then,

in Theorem 6.3.2 we show this cosimplicial space is a resolution in the sense of

Huber [35]. Finally in Theorem 6.3.5 we show cohomology H(R)-algebra of this

cosimplicial resolution is augmented by the H(R)-algebra of X.

6.1 Construction T (X)

It is known from elementary homotopy theory ([5], Proposition 1.4.9) that every

null-homotopic map fXi : X −→ Kq, indexed by a set i ∈ S, factors through a
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path space PKq, but for each i ∈ S, fXi may factor through PKq indexed by a

map gXij where j ∈ J indexes the number of null-homotopies for each i ∈ S. The

map ev : PKq −→ Kq in diagram (6.1) is the evaluation map.

PKq

ev

((
X

gXij
66

fXi

// Kq

(6.1)

Conversely, given any map gXij : X −→ PKq the composition ev gXij is null-

homotopic.

6.1.1 The maps φ and e

We let φ :
∏
q∈N

∏
fXi :X→Kq

Kq

fXi
−→

∏
q∈N

∏
gXij

:X→PKq

Kq

gXij
be the map described as follows.

For a map f : X −→ Kq, if it is null-homotopic it has a factorization through the

path space as shown in diagram (6.1). But, for every null-homotopic map there

may be many null-homotopies. So, for each null-homotopic fXi : X −→ Kq we

can construct a map φfXi

Kq

fXi

Kq

fXi

id

55

{id}
fX
i

//

φ
fX
i

77

∏
fXi =ev gXij

:X→Kq

Kq

ev gXij

project

OO

identify //
∏

gXij
:X→PKq

Kq

gXij

(6.2)

Then φ factors through
∏
q∈N

∏
fXi
∼=∗

Kq

fXi
followed by

∏
q∈N

∏
fXi
∼=∗

φfXi .
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Let e be the map
∏
q∈N

∏
gXij

:X→PKq

PKq

gXij
−→

∏
q∈N

∏
gXij

:X→PKq

Kq

gXij
such that e evaluates

each path in
∏
q∈N

∏
gXij

:X→PKq

PKq

gXij
at its end point.

6.1.2 T (X)

For any space X ∈ CW∗ , we define T (X) as the pullback of φ and e as shown in

diagram (6.3).

T (X)
p2X inc //

p1X inc

��

∏
q∈N

∏
gXij

:X→PKq

PKq

gXij

e

��∏
q∈N

∏
fXi :X→Kq

Kq

fXi

φ //
∏
q∈N

∏
gXij

:X→PKq

Kq

gXij

(6.3)

Analogous to the explanation given in Section 2.1.6, we will think of the pullback

T (X) as an equalizer to the diagram

∏
q∈N

∏
fXi :X→Kq

Kq

fXi
×

∏
q∈N

∏
gXij

:X→PKq

PKq

gXij

e p2X //

φ p1X
//
∏
q∈N

∏
g:X→PKq

Kq

gXij
.

(6.4)

In diagram (6.3), the map inc is the inclusion of T (X) into the product

∏
q∈N

∏
fXi :X→Kq

Kq

fXi
×

∏
q∈N

∏
gXij

:X→PKq

PKq

gXij
. (6.5)

The maps p1X and p2X are the projections from (6.5) onto
∏
q∈N

∏
fXi :X→Kq

Kq

fXi
and∏

q∈N

∏
gXij

:X→PKq

PKq

gXij
respectively. We will write P1X := p1X inc and P2X := p2X inc .
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6.1.3 Geometric description of T (X)

T (X) is the equalizer of the diagram (6.4), so from ([6], pg 105) we know that

T (X) is a sub-object of the product given in (6.5) . Since T (X) is a sub-object of

the product (6.5) we can think of T (X) as a subspace of the product (6.5). This

subspace consists of factors of Kq
f indexed by non null-homotopic maps and also

those indexed by null-homotopic maps. The points in the connected component

of each factor of Kq
f indexed by a null-homotopic map f = ev gj , j ∈ J (by (6.1)

) are identified with the end points of the paths of all the path spaces PKq
gj

. Note

that a single null-homotopic map f : X −→ Kq can have many maps gj : X −→
PKq factoring through the same path space.

Proposition 6.1.1. T (X) is homotopy equivalent to a product Eilenberg-Mac Lane

spaces

Proof. From (6.5) and the description given above we know the space T (X) is a

subspace of Eilenberg-Mac Lane spaces Kq
f and path spaces PKq

g . Contracting

any path space leaves the set of loops on Kq, but since ΩKq ∼= Kq−1, we have

T (X) is homotopy equivalent to a product of Eilenberg-Mac Lane spaces.

Remark 6.1.2. Given that T (X) is a sub-object of (6.5), in the proofs to follow we

will use factors of Kq
f ⊂ T (X) and PKq

g ⊂ T (X) even though for null homotopic

maps f = ev g the two spaces Kq
f and PKq

g are identified as described above.

6.1.4 T acting on maps

Before we define T (X) as a functor we need to define T (X) on maps. For a map

b : X −→ Y in CW∗ , we define T (b) : T (X) −→ T (Y ) as described below.

First we construct T (Y ) as in diagram (6.3). If fYi : Y −→ Kq and gYij : Y −→
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PKq then by composing b with these maps we get the maps fYi b : X −→ Y −→ Kq

and gYij b : X −→ Y −→ PKq.

Since ∏
q∈N

∏
fYi b:X→Kq

Kq

fYi b
⊂

∏
q∈N

∏
fXi :X→Kq

Kq

fXi

and ∏
q∈N

∏
gYij

b:X→PKq

PKq
gijY b

⊂
∏
q∈N

∏
gXij

:X→PKq

PKq

gXij
,

we have the maps

T (X)
P1X−−−−→

∏
q∈N

∏
fXi :X→Kq

Kq

fXi

project−−−−→
∏
q∈N

∏
fYi b:X→Kq

Kq

fYi b
(6.6)

and

T (X)
P2X−−−−→

∏
q∈N

∏
gXij

:X→PKq

PKq

gXij

project−−−−→
∏
q∈N

∏
gYij

b:X→PKq

PKq

gYij
b
. (6.7)

We also have the maps∏
q∈N

∏
fYi b:X→Kq

Kq

fYi b
−→

∏
q∈N

∏
fYi :Y→Kq

Kq

fYi
(6.8)

and

∏
q∈N

∏
gYij

b:X→PKq

PKq

gYij
b
−→

∏
q∈N

∏
gYij

:Y→PKq

PKq

gYij
, (6.9)

where the maps (6.8) and (6.9) are the identification of the corresponding factors.

The composition of the maps (6.6) and (6.8) and the composition of the maps (6.7)

and (6.9) can be completed to form the outer commutative square of the diagram
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(6.10). The outer square clearly commutes as we are just taking subproducts of

T (X) indexed by maps factoring through Y and identifying with copies of Kq and

PKq indexed by those maps in the pullback of T (Y ).

T (X)

P1X

��

T (b)

))

P2X //
∏
q∈N

∏
gXij

:X→PKq

PKq

gXij

project //
∏
q∈N

∏
gYij

b:X→PKq

PKq

gYij
b

identify
��∏

q∈N

∏
fXi :X→Kq

Kq

fXi

project
��

T (Y )

P1Y

��

P2Y //
∏
q∈N

∏
gYij

:Y→PKq

PKq

gYij

e
��∏

q∈N

∏
fYi b:X→Kq

Kq

fYi b

identify //
∏
q∈N

∏
fYi :Y→Kq

Kq

fYi

φ //
∏
q∈N

∏
gYij

:Y→PKq

Kq

gYij

(6.10)

Therefore, by the universal property of the pullback (cf.(2.12)), we get a unique

map T (b) from T (X) to T (Y ).

6.1.5 The functor T

To show T is a functor, first we will prove the following lemma.

Lemma 6.1.3. Let b : X −→ Y and a : Y −→ Z be maps of spaces X, Y and Z.

Then T (ab) = T (a)T (b).

Proof. Let fZi : Z −→ Kq and gZij : Z −→ PKq, then by composing the maps we

get fZi a : Y −→ Z −→ Kq and gZija : Y −→ Z −→ PKq.

Given the maps a : Y −→ Z and b : X −→ Y , using Section 6.1.4, we have

T (a) : T (Y ) −→ T (Z) and T (b) : T (X) −→ T (Y ) respectively.

Furthermore using the composition ab : X −→ Y −→ Z we can get fZi ab : X −→
Y −→ Z −→ Kq and gZijab : X −→ Y −→ Z −→ PKq and again as shown in
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Section 6.1.4

T (X)
P1X−−→

∏
q∈N

∏
fXi :X→Kq

Kq

fXi

project−−−−→
∏
q∈N

∏
fZi ab:X→Kq

Kq

fZi ab

identify−−−−→
∏
q∈N

∏
fZi :Z→Kq

Kq

fZi
(6.11)

and

T (X)
P2X−−→

∏
q∈N

∏
gXij

:X→PKq

PKq

gXij

project−−−−→
∏
q∈N

∏
gZij

ab:X→PKq

PKq

gZij
ab

identify−−−−→
∏
q∈N

∏
gZij

:Z→PKq

PKq

gZij
(6.12)

implies a unique map T (ab) : T (X) −→ T (Z).

(6.11) shows a map that takes Kq

fZi ab
⊂ T (X) indexed by a map fZi ab, homeo-

morphically to Kq

fZi
⊂ T (Z). Similarly 6.12 is a map that takes PKq

gZij
ab
⊂ T (X)

indexed by a map gZijab, homeomorphically to PKq

gZij
⊂ T (Z).

But T (ab) : T (X) −→ T (Z) can also be factored as

T (X)
P1X //

T (b) 11

∏
q∈N

∏
fXi :X→Kq

Kq

fXi

project//
∏
q∈N

∏
fYi b:X→Kq

Kq

fYi b

identify

��

T (Y )
P1X //

T (a) 22

∏
q∈N

∏
fYi :Y→Kq

Kq

fYi

project //
∏
q∈N

∏
fZi a:Y→Kq

Kq

fZi a

identify

��

T (Z)
P1X //

∏
q∈N

∏
fZi :Z→Kq

Kq

fZi

(6.13)
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and (6.12) can be factored as

T (X)
P2X //

T (b) 11

∏
q∈N

∏
gXij

:X→PKq

PKq

gXij

project//
∏
q∈N

∏
gYij

b:X→PKq

PKq

gYij
b

identify

��

T (Y )
P2X //

T (a) 11

∏
q∈N

∏
gYij

:Y→PKq

PKq

gYij

project //
∏
q∈N

∏
gZij

a:Y→PKq

PKq

gZij
a

identify

��

T (Z)
P2X //

∏
q∈N

∏
gZij

:Z→PKq

PKq

gZij

(6.14)

The two diagrams (6.13) and (6.14) explains the composition T (a)T (b).

T (a) is basically a projection out to factors of T (Y ) indexed by fZi a and gZija,

similarly T (b) is a projection out to factors of T (Y ) indexed by fYi b and gYij b.

Therefore the composition T (a)T (b) is a projection out to factors of T (X) indexed

by fZi ab and gZijab.

Hence we have T (ab) = T (a)T (b).

Lemma 6.1.4. Let idX : X −→ X be the identity map on X and 1T (X) : T (X) −→
T (X) be the identity map on T (X) then T (idX) = 1T (X).

Proof. Let fXi : X −→ Kq and gXij : X −→ PKq. The maps fXi = fXi idX :

X −→ X −→ Kq and gXij = gXij idX : X −→ X −→ PKq are used to define

T (idX) : T (X) −→ T (X), by Section 6.1.4. It is clear that T (idX) takes all the

factors of T (X) identically to T (X).

Therefore, T (1X) = 1T (X).

Using Lemma 6.1.3 and Lemma 6.1.4 we have shown the construction T on spaces

is a functor, T : CW∗ −→ CW∗ .
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Let T 1(X) := T (X), and iterating this functorial construction on spaces n-times,

where n ∈ N, we get the space T n(X) := T (T n−1(X)), for n > 1. There are two

natural maps ςX : X −→ T (X) and βX : T 2(X) −→ T (X), associated with this

construction, which we will explain now.
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6.1.6 Unit ςX

Given a space X, and for every map f : X −→ Kq there are canonical maps {fXi } :

X −→
∏
q∈N

∏
fXi :X→Kq

Kq

fXi
such that f = prf{fXi }, where prf :

∏
q∈N

∏
fXi :X→Kq

Kq

fXi
−→

Kq
f is the canonical projection. Similarly, for every g : X −→ PKq, there are

canonical maps {gXij } : X −→
∏
q∈N

∏
gXij

:X→PKq

PKq

gXij
such that g = prg{gXij }.

X

{fXi }

""

{gXij }

##

ςX

$$
T (X)

P1X

��

P2X //
∏
q∈N

∏
gXij

:X→PKq

PKq

gXij

e

��∏
q∈N

∏
fXi :X→Kq

Kq

fXi φ
//

∏
q∈N

∏
gXij

:X→PKq

Kq

gXij

(6.15)

The image of φ are products of Kq

gXij
, which are end points of the path space

as explained in section 6.1 therefore the outer square commutes. Then by the

universal property of the pullback the map ςX : X −→ T (X) is the unique map

into the pullback.

Lemma 6.1.5. ς : I −→ T , defined by ςX for each X ∈ CW∗ is a natural trans-

formation.

Proof. To show ς : I −→ T is a natural transformation we need to show the square

(6.16) commutes for any b : X −→ Y in CW∗.

I(X)
ςX //

I(b)

��

T (X)

T (b)

��
I(Y )

ςY // T (Y )

(6.16)
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Given b : X −→ Y , from Section 6.1.4 we have T (b) : T (X) −→ T (Y ).

X
{fYi b}−−−→

∏
q∈N

∏
fYi b:X→Kq

Kq

fYi b

identify−−−−→
∏
q∈N

∏
fYi :Y→Kq

Kq

fYi
(6.17)

and

X
{gYij b}−−−→

∏
q∈N

∏
gYij

b:X→PKq

PKq

gYij
b

identify−−−−→
∏
q∈N

∏
gYij

:Y→PKq

PKq

gYij
(6.18)

combined with the universal property of the pullback gives the map T (b)ςX :

I(X) −→ T (X) −→ T (Y ).

The maps {fYi }b : X −→ Y −→
∏
q∈N

∏
fYi :Y→Kq

Kq

fYi
and {gYij}b : X −→ Y −→∏

q∈N

∏
gYij

:Y→PKq

PKq

gYij
together with the universal property of the pullback defines

ςY I(b) : I(X) −→ I(Y ) −→ T (Y ). Since {fYi b} = {fYi }b and {gYij b} = {gYij}b, we

have ςY b = T (b)ςX .

6.1.7 Multiplication βX

For any space X, T 2(X) is the pullback shown in the following diagram.

T 2(X)
P2TX //

P1TX

��

∏
q∈N

∏
gTXij

:T (X)→PKq

PKq

gTXij

e

��∏
q∈N

∏
fTXi :T (X)→Kq

Kq

fTXi φ
//
∏
q∈N

∏
gTXij

:T (X)→PKq

Kq

ev gTXij

(6.19)

If f : X −→ Kq, then there is a factor of Kq
f in

∏
q∈N

∏
fXi :X→Kq

Kq

fXi
and we have the

map

prfP1X : T (X)
P1X−−→

∏
q∈N

∏
fXi :X→Kq

Kq

fXi

prf−−→ Kq
f . (6.20)
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Hence there will be a factor of Kq
prfP1X

in
∏
q∈N

∏
fTXi :T (X)→Kq

Kq

fTXi
. Therefore we have

the map,

pr(prfP1X)P1TX : T 2(X)
P1TX−−−→

∏
q∈N

∏
fTXi :T (X)→Kq

Kq

fTXi

pr(prfP1X )−−−−−−→ Kq
prfP1X

. (6.21)

From the space
∏
q∈N

∏
fTXi :T (X)→Kq

Kq

fTXi
we project to factors of the form

∏
q∈N

∏
Kq
prfP1X

and then identify with factors of the form
∏
q∈N

∏
fXi :X→Kq

Kq

fXi

So we have a map
∏
q∈N

∏
fTXi :T (X)→Kq

Kq

fTXi
−→

∏
q∈N

∏
fXi :X→Kq

Kq

fXi
.

Using a similar argument, if g : X −→ PKq it can be shown that there is a

map
∏
q∈N

∏
gTXij

:T (X)→PKq

PKq

gTXij
−→

∏
q∈N

∏
gXij

:X→PKq

PKq

gXij
where we identify the factor

of PKq
prgP2X

in
∏
q∈N

∏
gTXij

:T (X)→PKq

PKq

gTXij
with PKq

g in
∏
q∈N

∏
gXij

:X→PKq

PKq

gXij
.

T 2(X)

P1TX

��

βX

((

P2TX //
∏
q∈N

∏
gTXij

:T (X)→PKq

PKq

gTXij

project //
∏
q∈N

∏
PKq

prgP2X

identify

��∏
q∈N

∏
fTXi :T (X)→Kq

Kq

fTXi

project

��

T (X)

P1X

��

P2X //
∏
q∈N

∏
gXij

:X→PKq

PKq

gXij

e

��∏
q∈N

∏
Kq
prfP1X

identify //
∏
q∈N

∏
fXi :X→Kq

Kq

fXi φ
//
∏
q∈N

∏
g:X→PKq

Kq
ev g

(6.22)

The outer square in the diagram (6.22) commutes because the inner square of

diagram (6.22) and diagram (6.19) commute. Therefore by the universal property

of the pullback there exist a unique map βX : T 2(X) −→ T (X).
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Lemma 6.1.6. β : T 2 −→ T , defined by βX for each X ∈ CW∗ is a natural

transformation.

Proof. To show β : T 2 −→ T is a natural transformation we need to show the

following square commutes for any b : X −→ Y in CW∗.

T 2(X)
βX //

T 2(a)

��

T (X)

T (a)

��
T 2(Y )

βY // T (Y )

The map T (a)βX : T 2(X) −→ T (Y ) factors through T (X) as shown in Figure

(6.1).

T 2(X)

P1TX

��

T2(a)

))

P2TX //
∏

q∈N

∏

gTX
ij

:T (X)→PKq

PKq

gTX
ij

project //
∏

q∈N

∏

gTX
ij

T (a):T (X)→PKq

PKq

gTX
ij

T (a)

identify

��∏

q∈N

∏

fTX
i :T (X)→Kq

Kq

fTX
i

project

��

T 2(Y )

P1TY

��

βY

((

P2TY //
∏

q∈N

∏

gTY
ij

:TY→PKq

PKq

gTY
ij

project //
∏

q∈N

∏

prfP2Y :Y→PKq

PKq
prfP2Y

identify

��∏

q∈N

∏

fTY
i T (a):T (X)→Kq

Kq

fTY
i T (a)

identify //
∏

q∈N

∏

fTY
i :TY→Kq

Kq

fTi Y

project

��

T (Y )

P1Y

��

P2Y //
∏

q∈N

∏

gYij
:Y→PKq

PKq

gYij

e

��∏

q∈N

∏

prfP1Y :Y→Kq

Kq
prfP1Y

identify //
∏

q∈N

∏

fYi :Y→Kq

Kq

fYi

φ //
∏

q∈N

∏

gXij
:X→PKq

Kq

ev gXij

(1)

T 2(X)

P1TX

��

βX

''

P2TX //
∏

q∈N

∏

gTX
ij

:T (X)→PKq

PKq

gTX
ij

project //
∏

q∈N

∏

prfP2X :TX→PKq

PKq
prfP2X

identify

��∏

q∈N

∏

fTX
i :T (X)→Kq

Kq

fTX
i

project

��

T (X)

P1X

��

T (a)

&&

P2X //
∏

q∈N

∏

gXij
:X→PKq

PKq

gXij

project //
∏

q∈N

∏

gYij
a:X→PKq

PKq

gYij
a

identify

��∏

q∈N

∏

prfP1X :TX→Kq

Kq
prfP1X

identify //
∏

q∈N

∏

fXi :X→Kq

Kq

fXi

project

��

T (Y )

P1Y

��

P2Y //
∏

q∈N

∏

gYij
:Y→PKq

PKq

gYij

e

��∏

q∈N

∏

fYi a:X→Kq

Kq

fYi a

identify //
∏

q∈N

∏

fYi :Y→Kq

Kq

fYi

φ //
∏

q∈N

∏

gXij
:X→PKq

Kq

ev gXij

(2)

1

Figure 6.1

Let γ1 be the map identify prfYi a P1X : TX −→ Kq

fYi
and γ2 be the map identify prgYija

P2X :

TX −→ PKq

gYij
. (6.1) shows, maps that take factors Kq

γ1
and PKq

γ2
in T 2(X)
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indexed by maps γ1 and γ2 homeomorphically to Kq

fYi
and PKq

gYij
in T (Y ) respec-

tively.

T 2(X)

P1TX

��

T2(a)

))

P2TX //
∏

q∈N

∏

gTX
ij

:T (X)→PKq

PKq

gTX
ij

project //
∏

q∈N

∏

gTX
ij

T (a):T (X)→PKq

PKq

gTX
ij

T (a)

identify

��∏

q∈N

∏

fTX
i :T (X)→Kq

Kq

fTX
i

project

��

T 2(Y )

P1TY

��

βY

((

P2TY //
∏

q∈N

∏

gTY
ij

:TY→PKq

PKq

gTY
ij

project //
∏

q∈N

∏

prfP2Y :Y→PKq

PKq
prfP2Y

identify

��∏

q∈N

∏

fTY
i T (a):T (X)→Kq

Kq

fTY
i T (a)

identify //
∏

q∈N

∏

fTY
i :TY→Kq

Kq

fTi Y

project

��

T (Y )

P1Y

��

P2Y //
∏

q∈N

∏

gYij
:Y→PKq

PKq

gYij

e

��∏

q∈N

∏

prfP1Y :Y→Kq

Kq
prfP1Y

identify //
∏

q∈N

∏

fYi :Y→Kq

Kq

fYi

φ //
∏

q∈N

∏

gXij
:X→PKq

Kq

ev gXij

(1)

T 2(X)

P1TX

��

βX

''

P2TX //
∏

q∈N

∏

gTX
ij

:T (X)→PKq

PKq

gTX
ij

project //
∏

q∈N

∏

prfP2X :TX→PKq

PKq
prfP2X

identify

��∏

q∈N

∏

fTX
i :T (X)→Kq

Kq

fTX
i

project

��

T (X)

P1X

��

T (a)

&&

P2X //
∏

q∈N

∏

gXij
:X→PKq

PKq

gXij

project //
∏

q∈N

∏

gYij
a:X→PKq

PKq

gYij
a

identify

��∏

q∈N

∏

prfP1X :TX→Kq

Kq
prfP1X

identify //
∏

q∈N

∏

fXi :X→Kq

Kq

fXi

project

��

T (Y )

P1Y

��

P2Y //
∏

q∈N

∏

gYij
:Y→PKq

PKq

gYij

e

��∏

q∈N

∏

fYi a:X→Kq

Kq

fYi a

identify //
∏

q∈N

∏

fYi :Y→Kq

Kq

fYi

φ //
∏

q∈N

∏

gXij
:X→PKq

Kq

ev gXij

(2)

1

Figure 6.2

Let prfYi P1Y T (a) : T (X) −→ Kq

fYi
, then (6.2) shows maps that take factors

Kq
pr
fY
i
P1Y T (a)

in T 2(X) homeomorphically to Kq

fYi
in T (Y ).

It is clear that both the maps prfYi P1Y T (a) and identify prfYi a P1X take the fac-

tors Kq

fYi a
to Kq

fYi
. So prfYi P1Y T (a) = identify prfYi a P1X index the same factor of

Kq ⊂ T 2(X) that is mapped homeomorphically to Kq

fYi
. Similarly prgYij

P1Y T (a) =

identify prgYija
P2X Therefore βXT (a) = T 2(a)βY .
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6.2 The monad (T, ς, β)

The triple (T, ς, β) forms a monad on spaces, which we verify shortly. The triple

(T, ς, β) is a monad if it satisfies the two diagrams given in (2.27) and (2.26).

Lemma 6.2.1. For each X ∈ CW∗

(i) βXςT (X) = 1T (X)

(ii) βXT (ςX) = 1T (X)

Proof. First we will prove βXςT (X) = 1T (X)

Let f : X −→ Kq, then we have the map

prfP1X : T (X)
P1X−−→

∏
q∈N

∏
fXi :X→Kq

Kq

fXi

prf−−→ Kq
f

as explained in (6.20). Using the universal property of the product there exists a

unique map {prfP1X} : T (X) −→
∏
q∈N

∏
fTXi :X→Kq

Kq

fTXi
into the subproduct indexed

by projection.

Kq
prfP1X

∏
q∈N

∏
fTXi :X→Kq

Kq

fTXi

oo

T (X)

{prfP1X}

OO

prfP1X

hh
(6.23)

As βX projects onto factors that are indexed by projections βXςT (X) is equivalent

to βX{prfP1X}. As ςT (X) takes Kq
f in T (X) identically to the factor indexed

by Kq
prfP1X

in T 2(X), we have βXςT (X) takes Kq
f in T (X) identically to factors

indexed by Kq
f in T (X). Similarly, PKq

g in T (X) is taken to PKq
g in T (X). Hence

βXςT (X) = 1T (X).
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(ii) Now we need to show, βXT (ςX) = 1T (X). We define T (ςX) as explained in

Section 2.1.2 (cf.2.1). We apply the functor T on the map ςX : X −→ TX, to get

TςX = T (ςX) as shown in the diagram (6.24).

T (X) T // T 2(X)

X

ςX

OO

T
// T (X)

T (ςX)

OO
(6.24)

From Section 6.1.4 we know how T acts on maps, so we have

∏
q∈N

∏
fXi :X→Kq

Kq

fXi

project−−−−→
∏
q∈N

∏
fTXi ςX :X→Kq

Kq

fTXi ςX

identify−−−−→
∏
q∈N

∏
fTXi :T (X)→Kq

Kq

fTXi

(6.25)

Therefore T (ςX) takes Kq

fTXi ςX
in T (X) to Kq

fTXi
in T 2(X).

For every f : X −→ Kq as in Section 6.1.7 there is a factor ofKq
f ⊂

∏
q∈N

∏
fXi :X→Kq

Kq

fXi

and a factor of Kq
prfP1X

⊂
∏
q∈N

∏
fTXi :T (X)→Kq

Kq

fTXi
and from the map (6.25) we get

∏
q∈N

∏
f :X→Kq

Kq
f

project−−−−→
∏
q∈N

∏
prfP1X ςX :X→Kq

Kq
prfP1X ςX

identify−−−−→
∏
q∈N

∏
prfP1X :T (X)→Kq

Kq
prfP1X

(6.26)
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This can also be explained by a diagram as follows

Kq
prfP1X

Kq
f T (X)

prfP1Xoo T // T 2(X)
P1TX //

∏
q∈N

∏
fTXi :T (X)→Kq

Kq

fTXi

pr
fTX
i

OO

∏
q∈N

∏
prfP1X ςX :X→Kq

Kq
prfP1X ςX

identify

OO

X

f

\\

ςX

OO

T // T (X)

T (ςX)

OO

P1X //
∏
q∈N

∏
fXi :X→Kq

Kq

fXi

project
OO

pr
fTX
i

ςX

��
Kq
prfP1X ςX

idKq

dd

(6.27)

Therefore T (ςX) identifies Kq
f ⊂ T (X) with the factor of Kq

prfP1X
⊂ T 2(X) which

βX then identifies back with Kq
f . It is clear that a similar argument for path spaces

holds.

Now we proceed to show the associative diagram (2.26) of a monad holds.

Lemma 6.2.2. For each X ∈ CW∗ βXβT (X) = βX(TβX).

Proof. Given βX : T 2(X) −→ T (X), we take the functor T on this map to get the

commutative square (6.28).

T 2(X)

βX
��

T
// T 3(X)

T (βX)
��

T (X) T // T 2(X)

(6.28)
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If f : X −→ Kq, then we have the map prfP1TX : T (X) −→ Kq by (6.20) and also

the map prprfP1X
P1TX : T 2(X) −→ Kq by (6.21). So the map prfP1TX indexes a

factor of Kq
prfP1TX

in
∏
q∈N

∏
fTXi :T (X)→Kq

Kq

fTXi
and the map prprfP1TX

P1T 2X indexes a

factor of Kq
prprfP1TXP1T2X

in
∏
q∈N

∏
fT

2X
i :T 2(X)→Kq

Kq

fT
2X

i

. Using Section 2.1.2 we define

TβX as T (βX).

Kq
prprfP1XP1TX

idKq

yy

T 2(X)

prprfP1XP1TX

��

βX

��

T // T 3(X)
P1T2X //

T (βX)

��

∏
q∈N

∏
fT

2X
i :T 2(X)→Kq

Kq

fT
2X

i

prprfP1XP1TX

OO

project
��∏

q∈N

∏
fTXi βX :X→Kq

Kq

fTXi βX

identify
��

Kq
prfP1X

T (X)
prfP1X

oo T // T 2(X)
P1TX //

∏
q∈N

∏
fTXi :T (X)→Kq

Kq

fTXi

prfP1X

��
Kq
prfP1X

(6.29)

Then T (βX) takes the factor of Kq
prprfP1TXP1T2X

to the factor of Kq
prfP1TX

.

Kq
prprfP1TXP1T2X

⊂ T 3(X)

T (βX)

��
Kq
prfP1TX

⊂ T 2(X)

βX
��

Kq
f ⊂ T (X)

(6.30)
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It is clear that βXβT (X) takes Kq
prprfP1XP1TX

7→ Kq
prfP1X

7→ Kq
f . A similar argument

shows diagram (2.26) holds for path spaces. Hence the associative square (2.26)

for the monad commutes.

6.3 Cosimplicial resolution

Given X ∈ CW∗, and the monad (T, ς, β) of Section 6.2 we will follow the method

explained in Section 2.2.3 of constructing a cosimplicial object in CW∗ from a

monad. The monad (T, ς, β) generates a cosimplicial functor (Cn, δin, σ
i
n)n≥0, where

we define

Cn(X) := T n+1(X) , n ≥ 0

δinX : Cn−1(X) −→ Cn(X) where, δin := T iςT n−i, and 0 ≤ i ≤ n

σinX : Cn+1(X) −→ Cn(X) where, σin := T iβT n−i . and 0 ≤ i ≤ n

We apply the cosimplicial functor (Cn, δin, σ
i
n)n≥0 to the space X, to get the cosim-

plicial object C•X coaugmented by X as in diagram (6.31), where ςX : X −→
C0(X) is the coaugmentation (Remark 2.2.14).

Notation 6.3.1. To simplify the notation we will write δin and σin for δinX and

σinX respectively.

X
ςX // C0(X)

δ01
//

δ11
// C1(X)σ0

0
oo

δ02
//

δ12
//

δ22
//

C2(X) · · ·
σ0
1

oo
σ1
1

oo
(6.31)

We then take the qth cohomology functor on the cosimplicial space (6.31) to obtain

Hq(X)
daug←−− Hq(C•X), which is a simplicial abelian group augmented by Hq(X).

The arrows are reversed because the functor Hq is contravariant

Hq(X) Hq(C0(X)) s00
//daugoo Hq(C1(X))

d11
oo
d10
oo s11

//
s10
// Hq(C2(X)) · · ·

d22
oo
d21
oo
d20
oo

(6.32)
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The face map dni and the degeneracy map sni in the simplicial abelian group

Hq(C•X) are induced by δin and σin respectively. The augmentation map daug

in the simplicial abelian group Hq(C•X) is induced by ςX . Using (2.2.19) we get

the Moore chain complex

Hq(C0(X)) Hq(C1(X)) ∩ kerd11
d10oo Hq(C2(X)) ∩ kerd21 ∩ kerd22 · · ·

d20oo

(6.33)

In Theorem 6.3.2, we will show the chain complex (6.33) is acyclic

Theorem 6.3.2. Let Φ ∈ Hq(Cp−1(X)), p > 1 be such that dp−10 (Φ) = dp−11 (Φ) =

· · · = dp−1p−1(Φ) = 0 ∈ Hq(Cp−2(X)). Then there exists γ ∈ Hq(Cp(X)) such that

dp0(γ) = Φ and dp1(γ) = dp2(γ) = · · · = dpp(γ) = 0.

Proof. We choose f : Cp−1(X) −→ Kq such that f is a map representing the

class Φ ∈ Hq(Cp−1(X)). Then we let γ represent the class [prfP1T p(X)], where

prfP1T p(X) : Cp(X) −→ Kq.

(i) First, we will show dp0(γ) = Φ. Consider the map ςT p(X) : Cp−1(X) −→
TCp−1(X), defined by

Cp−1(X)
ςTp(X) //

f

33

TCp−1(X)
P1Tp(X) //

∏
q∈N

∏
f
Tp(X)
i :T p(X)→Kq

Kq

f
Tp(X)
i

prf
��

Kq

(6.34)

and a similar map into the product of path spaces.
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The map δ0p = ςT p(X) induces the map dp0, so we get

dp0(γ) = dp0[prfP1T p(X)]

= [prfP1T p(X) δ
0
p]

= [prfP1T p(X) ςT p(X)]

= [f ]

= Φ.

(ii) To show dp1(γ) = dp2(γ) = · · · = dpp(γ) = 0. Let 1 ≤ j ≤ p then 0 ≤ j−1 ≤ p−1.

Given the maps δj−1p−1 : Cp−2(X) −→ Cp−1(X) and f : Cp−1(X) −→ Kq, we have

the following well-defined composition,

fδj−1p−1 : Cp−2(X)
δj−1
p−1−−−−−−−→ Cp−1(X)

f−−−−−→ Kq . (6.35)

Since fδj−1p−1 is a map from Cp−2(X) −→ Kq, there is a factor of Kq

fδj−1
p−1

in∏
n∈N

∏
f
Tp−1(X)
i :T p−1(X)→Kq

Kq

f
Tp−1(X)
i

and hence a map prfδj−1
p−1
P1T p−1(X) : Cp−1(X) −→

Kq

fδj−1
p−1

.

From Section 2.1.2 , for j ≥ 1, we have

δjp = (T jςT p−j)X

= (TT j−1ςT p−j)X

= T (T j−1ςT (p−1)−(j−1))X

= Tδj−1p−1

From Section 6.1.4 we know how functor T act on the map δj−1p−1 : Cp−2(X) −→
Cp−1(X), also using a similar argument as in diagram (6.27) we get the following

diagram
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Kq
f

Kq Cp−1(X)
foo T // TCp−1X

P1TpX //
∏
q∈N

∏
fT

pX
i :T p(X)→Kq

Kq

fT
pX

i

prf

OO

∏
q∈N

∏
fT

pX
i δj−1

p−1:T
p−1(X)→Kq

Kq

fT
pX

i δj−1
p−1

identify

OO

Cp−2(X)

fδj−1
p−1

VV

T //

δj−1
p−1

OO

TCp−2(X)
P1Tp−1X //

Tδj−1
p−1

OO

∏
q∈N

∏
fT

p−1X
i :T p−1(X)→Kq

Kq

fT
p−1X

i

pr
fδ
j−1
p−1 ��

project
OO

Kq

fδj−1
p−1

idKq

gg

(6.36)

Now Tδj−1p−1 takes the factor Kq

fδj−1
p−1

to the factor Kq
f .

Therefore, chasing the diagram (6.36) we have

prfP1T p(X)Tδ
j−1
p−1 = prfδj−1

p−1
P1T p−1(X) (6.37)

which implies prfP1T p(X)δ
j
p = prfδj−1

p−1
P1T p−1(X) (6.38)

So dpj [prfP1T p(X)] = [prfδj−1
p−1
P1T p−1(X)] . (6.39)

Since by our hypothesis dp−1j−1(Φ) = fδj−1p−1 is null-homotopic, then the map prfδj−1
p−1
P1T p−1(X) :

83



T p(X) −→ Kq

fδj−1
p−1

factors through the path space as in (6.3).

T p(X)
P2Tp−1X //

P1Tp−1X

��

∏
q∈N

∏
gT
p−1X

ij
:T p−1X→PKq

PKq

gT
p−1X

ij

e

��∏
q∈N

∏
fT

p−1X
i :T p−1X→Kq

Kq

fT
p−1X

i

φ //
∏
q∈N

∏
gT
p−1X

ij
:X→PKq

Kq

gT
p−1X

ij

(6.40)

So there is an homeomorphic map factoring through the path space and therefore

each [prfδj−1
p−1
P1T p−1(X)] = dpj(γ) (in (6.39)) factors through the path space PKq

fδj−1
p−1j

,

hence it is null-homotopic.

By (i) and (ii) we have ker dp−10 = im dp0.

Corollary 6.3.3. Let d00 = daug, then

Hq(X)
d00←− Hq(C0(X))

d10←− Hq(C1(X)) ∩ kerd11 is exact.

Proof. The same argument given in the proof of (i) in Theorem 6.3.2 can be used

to show that if Φ ∈ Hq(C0(X)) is such that d00(Φ) = 0 ∈ Hq(X) then there exists

γ ∈ Hq(C1(X)) such that d10(γ) = [prfP1T (X)ςTX ] = [f ] = Φ.

In the proof of Lemma 6.2.1 (ii) we have defined TςX . Then letting δ00 = ςX

and using a similar argument as in the proof of Theorem 6.3.2 (ii) it can be

easily verifed that d11(γ) = 0. Therefore ker daug = ker d00 = im d10, hence exact at

Hq(C0(X)).

Theorem 6.3.4.

(I) πpH
q(C•X) = 0 if p ≥ 1

(II) π0H
q(C•X) = Hq(X) is an isomorphism for all q ≥ 1
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Proof. Let [Φ] ∈ Hq(X) be the class representing f : X −→ Kq, since daug is

induced by the map ςX : X −→ TX. The diagram is commutative

X
ςX //

f

44

T (X)
P1X //

∏
q∈N

∏
fXi :X→Kq

Kq

fXi

prf
��

Kq
f

(6.41)

Therefore f = prfP1XςX which implies [f ] = daug[prfP1X ]. Therefore daug is onto.

From homological algebra we know ([49]) if daug in 0 ←− Hq(X)
daug←−− Hq(C0(X))

is onto then we have a short exact sequence

0←− Hq(X)
daug←−− Hq(C0(X))←− kerdaug ←− 0

which splits as

Hq(X) ∼= Hq(C0(X))/kerdaug = Hq(C0(X))/im d10

Since π0H
q(C•X) = Hq(C0(X))/im d10, we have

(I) πpH
q(C•X) = 0 if q ≥ 1

(II) π0H
q(C•X) = Hq(X)

Note: daug onto in 0←− Hq(X)
daug←−− Hq(C0(X)) also implies this sequence is exact

at Hq(X). Then by Theorem 6.3.2 and Corollary 6.3.3 the augmented Moore

chain complex for (6.32) is exact, so we could use Fact 2.2.18 to deduce the same

conclusion.

Theorem 6.3.5. π0H
∗(C•X) = H∗(X).

Proof. Let C•X be a cosimplicial space (6.31). We take the functor [C•X, ] :

H(R) −→ SET ∗ as shown in Figure 6.3. In Figure 6.3 each column is a simplicial

abelian group and each row is an H(R)-algebra.
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[C•X, ]HoCW∗

α∗

α∗

α∗

0 H1(X) H2(X)

0 H1(C0(X)) H2(C0(X))

0 H2(C1(X))H1(C1(X))

H(R)

K1

α

K2Km

Ki ×Kj

Hi(C1(X)) Hj(C1(X)) Hm(C1(X))

Hi(C0(X)) Hj(C0(X)) Hm(C0(X))

Hi(X) Hj(X) Hm(X)

SET ∗

∗

daug

d10 s00 d11

Figure 6.3

From Theorem 6.3.4 we have π0H
q(C•X) ∼= Hq(X). For any cohomology opera-

tion α :
∏
i∈J

Kni −→ Km, there is an induced map αX :
∏
i∈J

Hni(X) −→ Hm(X).

We also have the isomorphism daug :
∏
i∈J

Hni(C•X)/kerdaug =
∏
i∈J

π0H
ni(C•X) −→∏

i∈J

Hni(X). Since daug is a natural transformation we have the commutative square

∏
i∈J

Hni(C•X)/kerdaug
∏
i∈J

Hm(C•X)/kerdaug

∏
i∈J

π0H
ni(C•X)

π0αC•X //

daug

��

∏
i∈J

π0H
m(C•X)

daug

��∏
i∈J

Hni(X) αX
// Hm(X)

(6.42)

Therefore it is clear that H(R)-algebra structure of H∗(X) is the same as the

H(R)-algebra structure of π0H
∗(C•X)
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Chapter 7

Application and future work

7.1 Problems with the construction T (X) for R =

Z

Our construction T (X) in Section 6.1 is dual to Stover’s construction V(X) ([53],

2.2). Then in ([53], 2.3 and 2.4), Stover constructs a simplicial space, V•X, from

a CW∗ space X, where V•X is homotopy equivalent to a wedge of spheres in each

simplicial dimension. Taking the p-th homotopy group of this simplicial space gives

a simplicial group πp(V•X) and the homotopy groups of these simplicial groups

satisfy

πqπp(V•X) = 0 for all q ≥ 1 and p ≥ 1

π0πp(V•X) = πp(X)

Zisman’s ([18], Appendix) modification of the Bousfield-Friedlander spectral se-

quence has E2
p,q = πqπpX• and this spectral sequence converges strongly to πp+q(|X•|)

(where |X•| denotes the realization of the simplicial space X•). Therefore Stover’s

resolution fit into the E2 page of the Zisman’s Bousfield-Friedlander spectral se-
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quence and he could conclude

E2
p,q = πqπpV•X ⇒ πp+q(|V•X|)

Using ([53], 2.6 and 3.4) Stover shows in ([53], 3.5) there is a homotopy equivalence

between |V•X| and X and this allowed him to identify the E2 terms of the spectral

sequence with his resolution converging to the Π-algebra π∗(X).

It was hoped the dual Stover construction T (X) would provide better understand-

ing of the algebra of integral cohomology operations including the unstable com-

positions and torsion cross cap products ([46]
∮

3) and allow more powerful tools

incoporating this structure.

We identify two main problems associated with Z coefficients with our work in

contrast to Stover.

1. From Theorem 6.3.4 we have

(a) πpH
q(C•X) = 0 if p ≥ 1

(b) π0H
q(C•X) = Hq(X) is an isomorphism for all q ≥ 1

Dual to Stover we would like to use a cohomology spectral sequence (Dwyer Spec-

tral sequence [21]) with E2
p,q = πpH

q(X•) which converges to Hp+q(Tot(X•)).

However, this spectral sequence is not known to converge for R = Z, even when

R = Fp it has some convergence issues.

2. The second point to note is that Tot(X•) may not have the same cohomology

type as X or the R-completion R∞X.

Fact 7.1.1. Bousfield in ([15], 7.5) has shown that given a monad (>, η, µ) and

X ∈ Ho(C) such that > preserves weak equivalences and has the further properties
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(a) >X is a group object in Ho(C)

(b) Ω>X is >-injective in Ho(C)

then the monad (>, η, µ) fits into his framework ([15], 7.5) and the cosimplicial

space X• coming from this monad gives rise to a homotopy spectral sequence

([15], 5.8) which converges to πq−p(Tot(X•)). He observes that in ([15], 4.9 and

7.7), only when G contains Eilenberg-Mac Lane spaces over all R-modules (not

just Eilenberg-Mac Lane spaces over R itself) will Tot(X•) ∼= R∞X. This means

resolutions must be acyclic for cohomology in all R-module coefficients.

Our monad (T, ς, β) of Section 6.2 is only acyclic over a fixed ring R. So for the

cosimplicial resolution X −→ T •X we may not have Tot(X•) ∼= R∞X.

This suggests that we could modify our definition for H(Z) to contain products

and loops of Eilenberg-Mac Lane spaces over all Z-modules, but then we run into

set-theoretic complications. According to Mac Lane ([41] page 23) the category

R − mod is a large category. We want to modify H(R) to contain arbitrary

products formed from a proper class, but forming products over a proper class is

not defined according to ([43], pg 108).

7.2 The construction T (X) for R = Fp

Although Tot(X•) may not be R-equivalent to R∞X for our cosimplicial resolution

with coefficients in an arbitrary ring R as explained in Section 7.1, this is not the

case for R = Fp . From Example 3.4.9 we know that H(Fp)-algebras are the

algebras over the Steenrod algebras and it turns out that H(Fp)-algebras are more

nicely behaved as compared to H(Z)-algebras.

From algebra we know that any Fp-module (a vector space) is a direct sum of
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copies of Fp. For a cosimplicial resolution X −→ X• to be acyclic over Fp implies

the resolution is acyclic over all Fp-vector spaces ([17],
∮

11) because they are a

direct sum of copies of Fp. Consequently we have Tot(T •X) ∼= R∞X.

7.3 Homology spectral sequence for a cosimpli-

cial space

We will use homology instead of cohomology because the homology spectral se-

quence for a cosimplicial space is known to converge strongly for field coefficients

under certain conditions given below [14]. To use the homology spectral sequence

we will need to go from cohomology to homology and for this we will need to

impose some finiteness conditions on the space X. The main reason we need these

conditions is due to Fact 7.3.3, but first we give some definitions.

Definition 7.3.1. A space X is of finite type ([16], V 7.5) if Hn(X;R) is finitely

generated for all n ≥ 0.

Definition 7.3.2. A space X is finite if X has a finite number of finitely generated

homology groups.

Fact 7.3.3. From algebra we know that a finite dimensional vector space has

the same dimension as its algebraic dual, therefore both the vector space and

its algebraic dual have a finite basis. This result does not hold for an infinite

dimensional vector space.

Remark 7.3.4. For a space X of finite type the graded vector space Hn(X;Fp) is

isomorphic to its algebraic dual Hn(X;Fp) ∼= Hom(Hn(X;Fp);Fp). This can also

be derived from the universal coefficient theorem. That is, for the exact sequence

0 // Ext(Hn−1(X), G) // Hn(X;G) // Hom(Hn(X), G) // 0 (7.1)

90



the Ext term vanishes for field coefficients giving the required ismorphism Hn(X;Fp) ∼=
Hom(Hn(X;Fp);Fp) ([30], 3.1).

The H(Fp)-algebra (Steenrod algebra) structure is still preserved because the Steen-

rod algebra has a dual action on homology giving a coalgebra over the Steenrod

algebra [44].

Definition 7.3.5. A Generalized Eilenberg-Mac Lane space (denoted by R-GEM)

is a space homotopy equivalent to
∏
i∈I

K(Ai, ni) with Ai an R-module and I an

indexing set ([20],
∮

5).

Definition 7.3.6. A connected space X is called nilpotent ([51],
∮

5) if its fun-

damental group acts nilpotently on each πi(X) for i ≥ 1. A connected space X is

called p-nilpotent it it is nilpotent and πi(X) is a p-group with bounded torsion for

each i.

Shipley [51] generalizes the convergence conditions for the homology spectral se-

quence developed by Bousfield in [14] from earlier work ([17],
∮

10). In Shipley’s

result the space Tot(X•) is required to be p-good where as in Bousfield’s result

([14], 3.6) he needed Tot(X•) to be simply connected.

Fact 7.3.7. (Shipley [51],
∮

2 and Theorem 6.1) Let X• be a fibrant cosimplicial

space with each Xs p-nilpotent and Xs of finite type for each s. Assume either

(a) Tot(X•) is of finite type or

(b) lim
←
H∗Tots(X

•) is finitely generated

Then the homology spectral sequence for X• has E2
s,t = πsHt(X

•;Fp) and this

spectral sequence converges strongly to H∗(Tot(X•)) if and only if Tot(X•) is

p-good.
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Example 7.3.8. Let X be a simply connected space. If there are null-homotopic

maps X −→ K(Fp, 2) a factor of PK(Fp, 2) ∼= ΩK(Fp, 2) ∼= K(Fp, 1) is used in

the construction of T (X). The space T (X) may not be nilpotent without more

restrictions on X. This is because the construction T (X) becomes more and more

connected at each simplicial dimension.

Note: T 2(X) onwards is simply connected.

Remark 7.3.9. The cosimplicial resolution T •X is generally infinite and not

nilpotent, therefore the resolution does not directly satisfy the conditions of the

homology spectral sequence (7.3.7). However, because T •X is G-equivalent to

R•X for G the set of Eilenberg-Mac Lane spaces over all Fp vector spaces in the

resolution model category, the E2-term gives an isomorphism πsHt(R
•X;Fp) ∼=

πsHt(T
•X;Fp). With πsHt(R

•X;Fp) converging to H∗(R∞X;Fp) ∼= H∗(X;Fp)

([16], I 5.1 5.2 and III 5.4), so R•X can be replaced with T •X and we have

πsHt(T
•X;Fp)⇒ H∗(X;Fp).

7.4 Mapping space

Definition 7.4.1. Let X and Y be pointed spaces then the mapping space map∗(Y,X)

is the space of continuous maps from Y to X with the compact open topology.

Fact 7.4.2. (Shipley [51], Theorem 6.2) Let X and Y be spaces such that Y is

finite and X is of finite type. Assume either

(a) map∗(Y,R∞X) is of finite type.

(b) lim
←
H∗ map∗(Y,TotsR

•X) is finitely generated

Then the homology spectral sequence for map∗(Y,R
•X) strongly converges to

H∗ map∗(Y,R∞X) if and only if map∗(Y,R∞X) is p-good.
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Remark 7.4.3. Similar to Remark 7.3.9, because we have a G-equivalence be-

tween the cosimplicial resolutions R•X and T •X giving an isomorphism of the

E2-term of the homology spectral sequence applied to the mapping space, we have

πsHt(map∗(Y,R
•X);Fp) ∼= πsHt(map∗(Y, T

•X);Fp). Then by Fact 7.4.2 the spec-

tral sequence for the mapping space with E2
s,t = πsHt(map∗(Y,R

•X);Fp) converges

to H∗(map∗(Y,R∞X);Fp). Replacing R•X with T •X we have

E2
s,t = πsHt(map∗(Y, T

•X);Fp) converges to H∗(map∗(Y,R∞X);Fp).

Example 7.4.4. If Y = S1, then map∗(S
1, T •X) ∼= ΩT •X. So we get the mapping

space spectral sequence converging to H∗(map∗(S
1, R∞X);Fp) ∼= H∗(ΩR∞X;Fp).

7.5 Future work

1. In Definition 3.3.2 we have defined abstract H(Z)-algebras, as product preserv-

ing functors fromH(Z) to SET ∗. The realization problem can be stated as: Which

abstract H(Z)-algebras can be realized as a cohomology H(Z)-algebra? The real-

ization problem for H(Fp)-algebras, that is, which algebras over the Steenrod alge-

bra can be realized, were studied by many and solved for special cases [3, 38, 19, 4].

We can ask whether dual methods to those used to realize Π-algebras [7, 10] can

be used for both Z and Fp coefficients.

2. Can the conditions be found, so the cohomology spectral sequence with Ep,q
2 =

πpH
q(X•;Z) converges to H∗(Tot(X•);Z) and can this be used to show TotX•

has the same cohomology as the augmentation H∗(X;Z).

3. It is known that under certain conditions the cohomology spectral sequence

of a cosimplicial space converges for Fp coefficients [21, 11]. By studying the

conditions for which the spectral sequence converges, can we get results directly
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using the cohomology spectral sequence without having to use dual vector spaces

and homology spectral sequence?

4. As discussed in Section 7.1, for the Tot(X•) ∼= R∞X we need G to be Eilenberg-

Mac Lane spaces over all Z-modules. Can Bousfield’s conditions ([15], 7.5) be

relaxed so that the resolutions being acyclic to smaller test set still works? For ex-

ample, G containing products of Eilenberg-Mac Lane spaces over finitely generated

abelian groups.

5. How can we interpret πsHt(map∗(Y, T
•X);Fp) as a derived functor? In the dia-

gram of categories and functors in Figure 7.1 , we know the functor [map∗(Y, T
•X), ] :

H(Fp) −→ sFp-VEC is a covariant functor and Hom( ,Fp) is a contravariant func-

tor.

H(Fp) [map∗(Y, T
•X), ]

sFp-VEC cFp-VEC
Hom( ,Fp)

Figure 7.1

Therefore the composition Hom([map∗(Y, T
•X), ],Fp) is contravariant and hence

sends products in H(Fp) to coproducts in cFp-VEC. The image of the functor

Hom([map∗(Y, T
•X), ],Fp) is H∗(map∗(Y, T

•X);Fp). Another question we can

ask that is related to this is, what is the categorical setting for the co-model

objects of a sketch category? Or equivalently how can we encode the homology

operation structure as a natural transformation?
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litehn. Iaşi (N.S.), 14 (18)(fasc. 1-2):1–14, 1968.

[26] S. Eilenberg and J. C. Moore. Adjoint functors and triples. Illinois J. Math.,

9(3):381–398, 09 1965.

[27] M. Frankland. Moduli spaces of 2-stage Postnikov systems. Topology Appl.,

158(11):1296–1306, 2011.

[28] R. Godement. Topologie algébrique et théorie des faisceaux. Actualit’es Sci.
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