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Supplementary DVD

The DVD attached to the back cover contains animations produced with the sys-

tem described in this thesis. The system produces continuous sequences of growing

forms, and as such, it is best appreciated and understood by watching these ani-

mations. The text will reference specific chapters of the DVD when the animations

complement the discussion. The references to this material are of the form “see

animation SDS2/3”, which refers to chapter 3 in sequence SDS2 on the DVD. The

DVD contains two sequences: the 2D animations (SDS2) and the 3D animations

(SDS3). The chapters of each sequence are listed below.

SDS2 Animations

1. Introduction

2. Interaction with an s-morph

3. Limb growth

4. Worm

5. Starfish

6. “It Looks Like An Echinoderm”

7. Another limbed form

8. Segmentation

9. Luminous urchin

SDS3 Animations

1. Introduction

2. Physics tests

3. Failed limb experiments

4. Single limb growth

5. Six-limbed orb

6. Octopus

7. Many limbs

8. Attraction

9. Not quite a starfish

10. Starfish

11. Curling limbs
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Abstract

In many applications of computer graphics it is necessary to model natural forms.

Worlds populated with both familiar and exotic flora and fauna, for example, are

commonplace in animated films and computer games. Modelling organic forms using

traditional computer-aided design or animation tools, however, is often a tedious

and time-consuming process, particularly when constructing forms that grow and

develop large amounts of complexity from simple beginnings.

Procedural modelling, an alternative to the traditional, or “manual”, approach to

geometric modelling, seeks to address the problem of model complexity. Under this

approach, a user specifies a procedure — often with associated parameters and ini-

tial conditions — which the computer then executes in order to construct a model.

Procedural modelling systems are capable of generating extremely complex struc-

tures, such as sprawling landscapes, cityscapes, and forests. If biological or organic

shapes are to be modelled, it is natural to consider the processes that occur within

biological development. Developmental systems, based on aspects of biological de-

velopment, have emerged as a powerful technique for generating a rich variety of

organic forms; however, there remains a number of forms that existing systems are

unable to generate effectively.

This thesis introduces the Simplicial Developmental System (SDS), a system capable

of automatically generating developing organic forms that are difficult, or impossi-

ble, to create using existing methods. These forms can be characterised in natural

language as “organic, smooth, soft, squishy, and modular”. SDS integrates a num-

ber of elements, such as cellular behaviour, soft-body mechanics and morphogen

diffusion. These elements operate on a unified, adaptive, geometric representation

of volumetric form – the simplicial complex – that is embedded within a physically
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simulated environment. The thesis presents two instances of SDS: a system for gen-

erating 2D forms with a triangular mesh representation, and a system for generating

3D forms with a tetrahedral mesh representation. Modelling biological development

on these representations raises a number of questions; for instance, how does the

division of a cell modify the tetrahedral mesh? This research offers a solution to

this and other technical challenges.

The capabilities of SDS are exhibited in a number of experimental results presented

in the thesis. These experiments demonstrate how SDS can be used to generate

continuous sequences of developing organic forms. Two biological models of growth

were successfully implemented in the 2D system: limb bud development in chicken

embryogenesis and antero-posterior segmentation in Drosophila melanogaster. Ex-

periments with these models demonstrate how cells in SDS can coordinate their be-

haviour in order to generate higher-order structures and patterns. This thesis also

presents a number of experiments performed with the 3D system, demonstrating the

effectiveness of SDS in automating the generation of complex 3D geometric models

with organic features such as smooth surfaces, modularity, environment-sensitivity,

similarity with variation, and elastic deformation.
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Chapter 1

Introduction

The field of computer graphics plays a vital role in many facets of contemporary

culture and industry, including film, computer games, simulation, and visualisation.

The desire for more complex, realistic, and detailed models has driven research into

texture synthesis, rendering techniques, and geometric modelling. Modern games

and cinematic effects, for example, often require complex and detailed natural forms

(including flora and fauna) as part of the simulated environment they create for

audiences.

Generating these forms presents an enormous challenge for the geometric surface

modelling techniques found in the current generation of graphics and animation

software. The structures of most natural forms are not readily modelled using reg-

ular geometric primitives (such as cubes, cylinders, cones, etc.). The intricate and

complex details found in organic shapes are difficult to reproduce by manual editing

of primitives, even when using more complex representations such as subdivision sur-

faces (Catmull and Clark, 1978) or interpolative methods, such as NURBS (Forrest,

1980). Moreover, natural forms are not static, undergoing geometric and topological

change as development occurs. Automated techniques are thus becoming a neces-

sary component of the modelling process, if we are to achieve the developmental

detail, geometric complexity and topological changes exhibited in nature.

For some time, a promising approach in computer graphics has been to “offload” the

task of generating this detail and complexity to the computer. This is often known

as procedural modelling, because the user specifies some procedure — along with

associated parameters and initial conditions — which the computer then executes

in order to build the model (see e.g., Ebert et al., 2003). Typically, the user specifies

the form at a more simple, abstract level and the computer “fills in the details” in

order to generate the variation and complexity required.

1
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Organic forms seen in nature are created through a complicated process of biological

development, many details of which are still not completely understood. However,

enough is known about development at the cellular level to make realistic modelling a

possibility. It makes sense then, that by studying and simulating aspects of biological

development, we should be able to generate organic structures, and indeed this

has been demonstrated for a wide range of shapes and forms (Prusinkiewicz and

Lindenmayer, 1996; McCormack, 2005; Greene, 1989; Combaz and Neyret, 2006).

This thesis presents a new developmental system, the Simplicial Developmental Sys-

tem (SDS), designed specifically to generate a variety of organic forms which are

difficult, or impossible, to generate with existing systems. Through simulation of de-

velopmental processes at an abstracted cellular level, and in a physically embedded

environment, SDS allows the user to successfully model the growth and development

of organic form in both two and three-dimensional space.

1.1 Developmental Modelling

There are numerous software packages available for 3D modelling, ranging from so-

phisticated modelling and animation packages (e.g., Blender1) to low-polygon mod-

elling programs for use in computer games (e.g., MilkShape2). These packages all

offer an approach to modelling in which a user, or modeller, manually manipulates

geometric primitives, or applies a series of specialised operations, to construct a ge-

ometric model. The most common approach, polygonal surface modelling, involves

direct manipulation of the vertices, edges, and faces of a polygonal mesh, as well

as the application of geometric operations such as subdivision, face extrusion, and

vertex merging (Foley et al., 1990, §11). This approach to modelling is extremely

flexible, however the creation of complex geometry is typically tedious and requires

a talented and highly specialised modeller, often with many years of experience in

modelling with such systems.

Generative design is a procedural technique that offers an alternative paradigm to

manual modelling, in which a geometric model is constructed not by a user, but

by an algorithm (McCormack et al., 2004). Generative 3D modelling systems can

create very complex, often environmentally-sensitive, structures from proportionally

simpler representations. Moreover, by altering the input to the system, variations

on a theme can often be generated. Generative systems offer a unique approach

to design, requiring the user to consider the process of form generation, rather

1http://www.blender.org/
2http://chumbalum.swissquake.ch/ms3d
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than the instantiated form itself. Generative modelling systems have been used

in architectural design, digital art, and within film and computer game design.

Commercial generative design software is available for generating plants, trees and

forests (e.g., Xfrog3), entire cities (e.g., CityEngine4), and sprawling landscapes (e.g.,

Terragen5).

When modelling biological or organic shapes, it is natural to consider the processes

that occur in real biological development. The construction of a complex, multi-

cellular organism from a single fertilised cell is a powerful phenomenon. The study

of the initial stages of development, embryology, can be traced back to Aristotle in

the fourth century B.C. (Gilbert, 2006, p5). Modern fields far removed from biol-

ogy are now beginning to appreciate the power of developmental processes and are

applying them to design problems beyond biological simulation. Interest from theo-

retical (Lindenmayer, 1967), applied (Stanley and Miikkulainen, 2003) and creative

(Prusinkiewicz and Lindenmayer, 1996) domains have led to the study of develop-

mental systems : abstract systems that attempt to achieve the same representational

efficiency, generative capability and robustness of organism development.

Developmental systems have also been studied in computer graphics in order to

autonomously create complex forms and textures. There are many established sys-

tems in computer graphics that incorporate aspects of biological development for

modelling organic shape, ranging from abstract symbol manipulation systems to full

physical and biological simulators (Prusinkiewicz and Lindenmayer, 1996; McCor-

mack, 2005; Greene, 1989; Combaz and Neyret, 2006).

Perhaps the simplest abstraction of development is to discard the concepts of physics,

geometry, environment, and space, by modelling development purely at a symbolic

level. L-systems (discussed in §2.1.1) take this approach, in which development is

modelled as a discrete sequence of events acting on a string of symbols. L-systems

are conceptually elegant and fast, and have been used extensively to model the

growth of plants, trees, flowers, and other biological structures (Prusinkiewicz and

Lindenmayer, 1996). Under the L-system methodology, a 3D biological structure

is not directly modelled, but rather it is constructed from the symbol string. The

symbolic nature of the system allows for efficient developmental simulation, however,

due to the one-way geometric construction process, spatial and other interactions

of the geometry and its environment cannot be fed back into the developmental

system.

3http://www.xfrog.com/
4http://www.procedural.com/
5http://www.planetside.co.uk/
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Some developmental systems model space, and allow spatial interactions to occur

between components. By allowing spatial interactions and environmental conditions

to feed back into the developmental rules, Voxel Automata (described in §2.1.3)

generate amazingly complex structures (such as creeping vines) that grow around

each other, spread and grow over walls and buildings within the environment, and

seek out sunlit regions. This system demonstrates the behavioural property of many

generative systems: the emergence of complexity from simple growth rules combined

with feedback from the environment into the developing system. A limitation of

this system is that, due to the static nature of the representation (vine segments

cannot move after being placed), some physical phenomena cannot be modelled;

for example, a branch cannot push another branch out of the way. The biological

structures in VA are represented as growing lines, snaking and branching through

space. This representation is efficient and suited to modelling vine growth, however

it means that VA is incapable of modelling more topologically expressive structures,

such as 3D surface and volumes.

Modelling development at the level of surface geometry allows a wide range of organic

and smooth 3D forms to be autonomously generated (Kaandorp and Kübler, 2001;

Smith, 2006; Combaz and Neyret, 2006). Modelling biological structures with a mesh

is, however, considerably more difficult than other approaches, such as L-systems.

One problem is that modelling cell division requires an algorithm to modify a mesh

in an appropriate manner. Vertex-Vertex systems (VV) address this problem by

providing a language for manipulating a mesh from a local perspective, ideal for

modelling developmental events such as cell division (VV systems are discussed

in §2.2.3). VV systems support a range of surface-based developmental models,

demonstrated, for example, by Smith’s model of the growth of a branching plant

(Smith, 2006, Chapter 7).

The organic forms we see in the natural world arise not only through biological

development, but are also shaped by physical forces. It has been demonstrated

that modelling the physics of matter within a developmental system can greatly

increase the realism of the generated forms, perhaps most elegantly illustrated by

the complex folding forms generated by Combaz and Neyret’s system (discussed in

§2.2.4). In their system, a geometric surface, modelled as an elastic “shell”, grows

in response to hot-spots painted on the structure. The growth of the structure

against the constraining physical forces results in the emergence of beautiful organic

structures with complex geometric texture.

There are a number of ways biological development can be modelled for application

in computer graphics. Depending on the “kind” of form a user is trying to generate,
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some aspects of development may be more or less important. The next section

discusses the kind of form this thesis is concerned with.

1.2 Automated Generation of Organic Forms

While a wide range of natural forms can be generated with existing techniques, there

are still many kinds of natural forms these methods cannot model effectively. The

aim of the research presented in this thesis is to design a system for the automated

generation of a class of form that can be described in natural language as “organic,

smooth, soft, squishy, and modular” (such as the Siphonophorae illustrated in Figure

1.1). In order to efficiently model the development of such forms, a number of

problems need to be addressed.

First is the problem of spatial interaction. A primary objective of this research is

to be able to model the physical deformations that occur when parts of a form are

constrained for space, either because there are a large number of them in a small

space (such as the tubular appendages of the forms shown in Figure 1.1), or because

there are environmental obstacles. Therefore spatial interactions between elements

of the form need to be detected and fed back into the developmental system.

The second problem to be addressed is that of physicality, wherein form is shaped by

deformations due to spatial interactions and other forces. Consider, for example, the

tubular appendages of the forms in Figure 1.1. It is obvious that physics is playing

a role in their exact shape, as they are attached to a small surface area, pushing

against each other, and contorting themselves into different shapes. The intention

of this research was to model deformations, such as this, that make the form appear

as if it is composed of soft matter. Physical modelling in developmental systems has

been investigated with appealing results (Jirasek et al., 2000; Combaz and Neyret,

2006), indicating that a model of physicality would greatly assist in the generation

of the forms desired in this thesis.

Perhaps the most important consideration is: how to represent a developmental

system in a way that achieves the intended modelling goals, while remaining efficient

and useable. How should biological cells be modelled? Is the cell a fundamental

structural unit, as in L-systems, or is a structure modelled as a continuum of cells,

as in Combaz and Neyret’s system? How do developmental and physical events

affect the representation? Spatial interactions are required, hence there must be a

spatial component to the representation. Moreover, the representation has to be

capable of expressing complex surface structures, either directly as in Vertex-Vertex

systems, or indirectly, as in L-systems.
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Figure 1.1: Characteristics of the “organic, smooth, soft, squishy, and modular”
forms pursued in this research are nicely highlighted by Ernst Haeckel in his illustration
of Siphonophorae (Haeckel, 1904, Plate 17).

The final problem, common to all cell-based developmental systems, is that of emer-

gence. Developmental systems typically use processes that act locally, a basic ex-

ample being cell division, which splits a cell into two adjacent daughter cells. A
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complex structure emerges through the cumulative effect of these local actions. A

major benefit of this is that the amount of information required to generate a struc-

ture is considerably less than the amount required to describe the entire structure —

a property known as database amplification (Smith, 1984). This reduces the effort

on behalf of the user as it allows complexity to emerge from the repeated application

of simple rules. However, producing structures from low-level processes is, in gen-

eral, very difficult, due to the non-intuitive way a user must design: by specifying

a process, executing the simulation, observing the results, modifying the process

accordingly, and so on. If the generative system is to be useful, these considerations

must be addressed.

1.3 Contributions of this Thesis

This thesis presents a new system that, by addressing the problems outlined above,

is able to autonomously synthesise complex organic 2D and 3D geometry, using

processes inspired by the biological development of organisms. A user of the system

sets up the initial conditions of the world and specifies a model of growth; the system

then simulates a developmental sequence of forms. In the 3D system, these forms

can be easily converted into a polygonal surface representation common to most

3D modelling environments. Figure 1.2 presents an example of output from the

system. This research has applications primarily in 3D geometric modelling, where

it could be used to model creatures or organic structures for computer games, films,

and other design disciplines. Another potential application of this research is in

theoretical biology, as models of biological development can be simulated and tested

within the system (see e.g., §5.1.2).

The key contributions of this thesis are:

• The introduction of a general simulation framework that unifies a cell-based

model of development with a physical model of soft-bodied matter. The sys-

tem proposes the use of an adaptive simplicial complex as a flexible spatial

representation, which is embedded within an environment.

• An implementation of the framework in 2D that models a developing structure

with an adaptive triangular mesh embedded in an environment. Implementa-

tion specific details of the system, such as the physical and morphogen models

are presented. In addition, algorithms are presented and compared for mod-

elling cell division and adaptation to cell movement.
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Figure 1.2: (left to right, top to bottom) A sequence of 3D geometric models of
a striped starfish generated by the system introduced in this thesis. The system
simulates the growth of the starfish and the generation of the stripe pattern. The
system allows spatial interactions to occur between a developing structure and its
environment, demonstrated here by the starfish geometry following the contour of the
rock (see §7.5).

• Experiments with the 2D system that show how macro-scale structures can

emerge by coordinating cell behaviour. This is demonstrated through the

implementation of two biological models of development: a model of limb bud

development based on early chicken embryogenesis and a model of Drosophila

stripe formation.

• An implementation of the framework in 3D that models a developing struc-

ture with an adaptive tetrahedral mesh embedded in an environment. This

system is the first developmental system to model a biological structure with

an adaptive tetrahedral mesh governed by a physical model. A range of prob-

lems are addressed, including: how cell division modifies a tetrahedral mesh,

how a tetrahedral mesh can adapt to the movement of cells, and how to model

of soft-body physics and morphogen transport in 3D.

• Experiments with the 3D system, showing the generation of a range of com-

plex, organic, limbed forms. Features of the system such as modularity, en-

vironmental interaction, and the use of timers to activate sequences of events

are demonstrated.

• A discussion of this new approach to form generation, with numerous sug-

gestions proposed for future work and strategies for further advancing this

field.
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1.4 Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2 examines the seminal work and state of the art in developmental modelling

of organic structure and form. This review identifies the important features of

existing systems that influenced the original research presented here.

Chapter 3 introduces the Simplicial Developmental System (SDS), a novel system

for generating organic forms in two and three dimensions. This chapter introduces

the concept of the simplicial-morph, or s-morph , which models a collection of cells

connected together with a simplicial complex. The cells of the s-morph behave

autonomously, executing cell programs in parallel, and can choose to grow or divide,

thus modifying the s-morph. Cell division is the primary mechanism for adding more

complexity to an s-morph. This complexity is shaped by a mechanical model of soft

matter that ensures an s-morph has an organic appearance. The remainder of the

thesis then covers the technical issues surrounding the implementation of SDS in

two and three dimensions, and demonstrates the use of SDS to produce organic

structures.

A 2D implementation of SDS is presented in Chapter 4. In 2D, an s-morph is a

collection of cells in a 2D plane, connected together with a triangular mesh. Trian-

gulated graphs have been used to model developmental systems for at least three

decades (Matela and Fletterick, 1979); however, this research differs because its pur-

pose is to explore principles of form generation that could be generalised to 3D. This

chapter discusses the specifics of modelling cell division, cell movement, soft-body

physics, and morphogen simulation in two dimensions. Having discussed the techni-

cal details, Chapter 5 presents the results of experiments with the 2D system. These

experiments demonstrate how to program the cells of an s-morph in order to generate

organic limb structures and a stripe pattern. These growth models are heavily based

on two biological models of development: limb bud development in early chicken

embryogenesis, and antero-posterior segmentation in Drosophila melanogaster.

Chapter 6 presents an implementation of SDS in 3D. In 3D, an s-morph is a collec-

tion of cells in a 3D environment, connected together by a tetrahedral mesh. This

system is the first developmental system that operates on a spatially and struc-

turally dynamic tetrahedral mesh. Existing developmental systems that produce

organic forms in 3D typically use a surface representation (Smith, 2006; Combaz

and Neyret, 2002; Kaandorp and Kübler, 2001), which fails to capture aspects of

internal growth and volumetric material effects. Numerous theoretical and technical

challenges were encountered during the implementation of SDS in 3D. This chapter
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compares some models of cell division on tetrahedral meshes, presents a model of

adaptive meshing driven by cell movement, describes the incorporation of soft-body

simulation into SDS, and presents other details of the implementation. Chapter 7

follows by presenting some different structures created with the 3D system. The

experiments show variations of the limb bud model introduced in Chapter 5, and

illustrate how SDS can successfully generate complex 3D forms with organic features

such as smooth surfaces, modularity, and similarity with variation, by addressing

those considerations outlined in Section 1.2.

Chapter 8 discusses a number of issues surrounding the new technique. For in-

stance, it examines the trade-offs between using different algorithms for modelling

cell division — a cell division algorithm may be efficient, but if it produces asym-

metric structures around the newly generated cells, then it may be difficult to use.

This chapter also discusses issues concerning the software implementation of SDS.

The thesis concludes with Chapter 9 which proposes a number of further develop-

ments for SDS. The research presented here is just a first step towards full biological

and physical simulation of organic form for computer graphics, addressing the is-

sues discussed in the final chapter will bring that goal closer. Finally, a number

of appendices containing supporting material are attached to the end of the thesis.

Notably, Appendix A contains some high-resolution images of forms produced with

SDS.

Some parts of the research presented in this thesis have also appeared in the following

publications:

1. a review of the state of the art in developmental modelling for computer graph-

ics, and an outline of the initial research goals of this project (Porter, 2009a),

2. a paper describing the 2D implementation of SDS (Porter, 2009b), and

3. a paper describing the 3D implementation of SDS (Porter and McCormack,

2010).

Before SDS is presented, it is important to first consider existing developmental

systems and their features or limitations that inspired the research presented in this

thesis. This material is described in the next chapter.



Chapter 2

Background

The goal of the research presented in this thesis was to design a system that can

automatically generate a class of organic form that is difficult, or impossible, to

generate using existing systems. The purpose of this chapter is to review the existing

systems which influenced the design of SDS. These systems are able to achieve some

aspects of the goal, but not all. Specific features of some developmental systems are

discussed later in the thesis, when closely related to concepts used in SDS.

There are numerous systems that model aspects of development, either for form

generation, or to study biological systems. These systems have been reviewed ex-

tensively in the literature. For a good overview and classification of visual models

of morphogenesis, see Prusinkiewicz’ comprehensive review (Prusinkiewicz, 1993).

From an Artificial Embryology perspective1, Stanley and Miikkulainen (2003) pre-

sented a review and a classification of several developmental models. Other publica-

tions of note include Lantin (1997), Sandberg (2006) and Giavitto et al. (2002) which

provide general overviews of different approaches to modelling developmental pro-

cesses in simulation. Papers reviewing systems from a theoretical and computational

biology perspective cover plant modelling (Prusinkiewicz, 2004), cellular automata

approaches to biological modelling (Ermentrout and Edelstein-Keshet, 1993), and

computational modelling of biological systems (Brodland, 2004).

The first section of this chapter reviews the seminal research into developmental

modelling, including L-systems, Cellular Automata, and a model of cell layers us-

ing triangulated graphs which heavily influenced the design of the system (§2.1).

This section reviews the variety of approaches possible when modelling biological

development, and provides the historical context of this thesis. The second section

reviews some modern developmental systems capable of generating complex organic

1Artificial Embryology (AE) studies abstract systems inspired by biological development and is
primarily focussed on evolving complex systems, such as neural networks and robot morphologies.

11
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3D forms (§2.2). These systems are most closely related to SDS and are capable of

generating forms which partially fulfil the goals of this research. Aspects of these

systems, including the spatial embedding of a form into an environment, the use

of physical models, and the geometric representations of biological structure are

discussed. These systems inspired the design of SDS. The concluding section sum-

marises the key features of these systems that were incorporated into the system

presented in this thesis (§2.3).

2.1 Seminal Work

Research into developmental systems has a rich history, and it is enlightening to

examine a few of the seminal models of development. This research offers different

perspectives on modelling developmental processes, from Lindenmayer’s symbolic

L-systems, through to Fleischer’s physically-based multi-mechanism developmental

model. This section looks at some of the seminal work in developmental systems in

order to gain some insight into the fundamental ideas in developmental modelling.

2.1.1 L-Systems

Lindenmayer-systems, or L-systems, were introduced by Aristid Lindenmayer (Lin-

denmayer, 1967) in order to describe the development of multicellular organisms.

Lindenmayer proposed that these systems could integrate and express many facets

of development including: gene control mechanisms, cell lineages, organising centers,

polarity, and allometry (Herman and Rozenberg, 1975, Preface). L-systems model

cells as symbols and development with parallel rewriting rules. An organism is rep-

resented as a string of symbols that develops through a process of parallel rewriting.

Different symbols denote different cell types or states. Developmental processes such

as division, differentiation, cell death, cell movement, and cell communication are

all modelled by rewriting rules.

The simplest class of L-systems are the deterministic, context-free L-systems, re-

ferred to as D0L-systems2. D0L-systems consist of an alphabet of symbols, an

axiomatic symbol from that alphabet, and a set of transition rules. For example, a

simple L-system might use the alphabet {a, b}, the axiom a, and a single transition

rule, a→ ab. The sequence this system generates is a, ab, abb, abbb, abbbbb, . . ., and

so on.

2In D0L-systems, the zero stands for zero-sided, or context-free. The alternatives are D1L and
D2L-systems which allow one-sided and two-sided context dependant rules.
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step 0 1 2 3 ... 6

Figure 2.1: A geometric interpretation of an L-system developmental sequence.
The L-system is a D0L-system with the alphabet {F,+,−, [, ]}, an axiom F , and a
single rule F → F [+F ][−F ]. The sequence of strings generated by this system is F ,
F [+F ][−F ], F [+F ][−F ][+F [+F ][−F ]][−F [+F ][−F ]], and so on. These strings are
interpreted by a drawing “turtle”, which sits on the drawing plane and executes the
following actions: ‘F ’ move forward one unit while drawing, ‘−’/‘+’ turn left/right 16
degrees, ‘[’ push the current position onto the stack, and ‘]’ pop the last position off
the stack and move there (without drawing).

While originally intended to model developmental biology, L-systems were also

adopted in formal language theory3 and, more relevantly, computer graphics. If

we interpret the string of symbols as instructions to a geometry building machine,

then a string can be mapped to a geometric structure, and a sequence of strings

gives us a sequence of structures. The turtle-based machine is the most common

interpretation, using the concept of the drawing turtle. The turtle sits in the draw-

ing space and reads each symbol in sequence performing commands such as draw

line, change colour, or store current position. Figure 2.1 illustrates an example of a

drawing produced this way.

L-systems can also be used to generate 3D geometric structures, by associating

with the turtle a position and orientation in 3D space. Parsing the derived string

produced by the L-system causes the turtle to move through space, tracing out line

segments, profile curves, placing geometric models, or performing other geometric

actions. An example of a 3D model generated by an L-system is shown in Figure

2.2, with the corresponding L-system given in Table 2.1.

L-systems belong to the class of grammar-based approaches to procedural design,

the fundament of which is the replacement rule. Other grammar-based systems

include shape grammars (discussed later in §2.1.2), collage grammars (Drewes and

Kreowski, 1997), boundary solid grammars (Heisserman, 1991), graph grammars

3By considering the set of all strings generated by a particular set of transition rules as a
language we can explore the generative power of various L-systems. One particularly interesting
result is that context-free Chomsky grammars form a proper subset of context-free L-systems. See
(Herman and Rozenberg, 1975; Rozenberg and Salomaa, 1980, 1986) for a comprehensive survey
of results in this field.



14 CHAPTER 2. BACKGROUND

Figure 2.2: A sunflower generated by the L-system given in Table 2.1. Note how the
L-system captures the symmetry of the flower elements in a succinct set of production
rules. Image courtesy of Jon McCormack.

(e.g., Kniemeyer et al., 2004) and rule-based mesh growing systems (Maierhofer,

2002).

L-systems are conceptually elegant as they use a simple but expressive abstraction

of development. From the perspective of computer science these systems are fast

(as they operate on symbolic strings) and expressive (context-sensitive L-systems

are Turing complete). As a form generating tool, L-systems are extremely power-

ful (Prusinkiewicz and Lindenmayer, 1996). However, to generate realistic images

the original system had to be extended, for example by allowing continuous growth

(Prusinkiewicz and Lindenmayer, 1990; Prusinkiewicz, 1993), physical and mechan-

ical effects (Jirasek et al., 2000; Lam and King, 2005), explicit specification of hier-

archy (Vaario, 1994; McCormack, 2005) and environmental interaction (Měch and

Prusinkiewicz, 1996). These extensions are useful but depreciate the simplicity and

elegance of the original formalism.

As discussed in the introduction (§1.2), physical modelling can greatly enhance the

realism of models generated by developmental systems. A number of L-systems mod-

els have been proposed that integrate developmental and physical models. These

range from modelling nutrient transport in a developing structure (Allen et al.,

2005), to modelling the biomechanics of bending branches (Jirasek et al., 2000).

The biomechanics model is particularly interesting, from a computer graphics per-

spective, as it produces interesting 3D plant forms with branches that bend under

their own weight and are influenced by other forces such as negative gravitropism

(the desire to grow against the pull of gravity). An interesting aspect of this sys-

tem is that, by discretising the physical equations as L-system rewrite rules, the

physical model can be solved using L-systems. This allows the whole system, both
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Table 2.1: An L-system used to produce the 3D sunflower model shown in Figure 2.2.
This parametric L-system associates parameters to the symbols A, C, S, f , +, and ∧,
which the L-system uses to enact parameter-dependent rules (e.g., rule 2 is executed
only if the n parameter of the C symbol is less than or equal to 440). The parameters
are also used by the turtle when building the geometry. The turtle interprets each
symbol as specified under symbol interpretations.

axiom : stamen A(0)
production rules
A(n)→ +(137.5)[f(n0.5)C(n)]A(n+ 1)
C(n) : n ≤ 440→ floret
C(n) : n > 440 & n ≤ 565→ floret2
C(n) : n > 565 & n ≤ 610→ ∧(90)S(0.3)leaf2
symbol interpretations
stamen, floret, floret2, leaf2: Instantiate pre-defined geometry at the current
position and orientation
f(x): Move forward x units
S(x): Scale (uniformly) all geometry after this symbol by x units
+(x): Rotate (yaw) right by x degrees
∧(x): Rotate (pitch) up by x degrees

the developmental and physical aspects, to be elegantly framed within the L-system

formalism.

One major feature of L-systems is the distinction between the symbolic string rep-

resenting an organism and the geometry created from that string. Conceptually the

developing organism exists in a one dimensional string space. The developmental

rules operate on that string and transform it to another string. The interpretation

of the string as a geometric object is a one-way procedure. This makes the devel-

opmental simulation fast but it has a major limitation. The difference between the

string space and the geometric space raises two main issues. Firstly, the topologies

of the geometry are tied to the topology of the underlying representation, for exam-

ple D0L-systems are only suited to creating geometric structures with simple one

dimensional topologies, like trees and other branching structures, etc. Depending

on the class of object you wish to model, this may not be appropriate. This issue

has been addressed by extending L-system models onto more topologically complex

structures such as graphs (such as Cell systems (§4.1.1)) and polygonal surfaces

(such as Vertex-Vertex systems (§2.2.3)). A second limitation is the lack of commu-

nication from the geometric space back into string space. So, for example, a model

of tree development in which branches compete for space cannot be expressed as an

L-system. Open L-systems seek to address this issue by adding an explicit coupling

mechanism between the environment and L-system (Měch and Prusinkiewicz, 1996).

This approach is effective at modelling some scenarios, however, for more complex

interactions the elegance of the system breaks down.
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Figure 2.3: Emergent shapes in shape grammars. Translating the upper rectangle in
(a) down by some distance creates in (b) an emergent rectangle (highlighted in grey).
This rectangle could then be transformed by a rewrite rule.

A key goal of the research in this thesis was to reduce the gap between the inter-

nal representation of a developing structure and its visual representation (i.e., its

interpretation). This gap is referred to as embeddedness in this thesis — a weakly

embedded system is one in which this gap is large (e.g., L-systems), and a strongly

embedded system is one in which this gap is small (e.g., Cellular Automata). Em-

beddedness is discussed in more detail later (§2.3).

2.1.2 Shape Grammars

Shape grammars (Stiny and Gips, 1972) are a formalism for describing transforma-

tions on shapes4. A shape grammar consists of an initial shape and a set of shape

transformations. A simple example design in a shape grammar is shown in Figure

2.3(a). Shape grammar rules may move shapes, rotate shapes, add or remove shapes,

or transform parts of shapes. Applying a translation rule to a rectangle in Figure

2.3(a) may result in the transformed design shown in Figure 2.3(b) (in which the

top rectangle has been shifted down). As in L-systems, the complexity of a design in

a shape grammar emerges through the repeated application of locally applied rules.

Shape grammars differ fundamentally from other grammar-based systems as they

work directly on shapes, rather than symbolic representations of shapes. This makes

shape grammar systems difficult to implement because they require shape recogni-

tion and an extremely flexible internal representation. Shape grammars are inher-

ently more powerful than symbolic systems due to ambiguity within shapes and the

emergence of new shapes (Figure 2.3). This feature makes shape grammars ideal

for art, architecture and product design where emergent shapes contribute greatly

to the aesthetic. Shape grammars have been applied to many domains, including

Palladian houses (see Figure 2.4), Chinese Lattices (Stiny, 1977), Coffee Makers

(Agarwal and Cagan, 1998), and Coke Bottles (Chau et al., 2004).

4A shape in a shape grammar is typically an object constructed from primitives such as points,
lines, polygons, and curves.
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Figure 2.4: The rules for laying out rooms in an architectural shape grammar in-
spired by Palladio (Stiny and Gips, 1978, Figure 7). The entire model consists of 72
individual rules. Image courtesy of George Stiny.
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Figure 2.5: (left to right) A simulation of the Eden process over multiple time steps.

Figure 2.6: Examples of environmentally sensitive geometry generated with Voxel
Space Automata (Greene, 1989, Figures 5 and 9).

2.1.3 Cellular Automata

Cellular Automata were introduced by Von Neumann (1966) and Ulam (1962) in

order to study self-replicating machines and the growth of crystals respectively.

CAs are a general modelling technique in which space is typically discretised into

square elements. In biological modelling, three main types of CA have been iden-

tified: deterministic, lattice gas models, and solidification models (Ermentrout and

Edelstein-Keshet, 1993).

Deterministic CAs (von Neumann and Ulam’s original model) represent a system as

a regularly connected set of finite state automata, each of which update depending

on the state of neighbouring automata. In this system, a biological cell is represented

as a single automaton, and there is a direct correspondence between cell and space.

One of the first and simplest models of cellular growth via accretion is the Eden

model (Eden, 1961). The process begins with a single cell on a regular lattice

and iteratively grows the colony by adding a new cell adjacent to the colony at a

stochastically determined site. The colony grows dense clusters with fractal surfaces

(e.g., Figure 2.5).

Branching growth in CAs was originally studied by Ulam (1962). These ideas have

been applied to computer graphics to synthesise three dimensional form (Greene,
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1989; Kawaguchi, 1996). Greene’s Voxel Space automata models the growth of a

structure in a discretised three dimensional space. At each time step, the growing

structure attempts to add a new part specified by a set of rules. The rules that

are executed are determined by a number of conditions, including available light,

proximity to some object, or the result of an intersection test. Greene observed

that some complex structures arise through the interplay of probabilistic growth,

environmental effects, and feedback between the growth rules and space (see Figure

2.6).

Lattice gas and solidification models discretise space but allow cells and molecules

to move between sites. These models have also been used extensively to model

various biological and physical phenomena. Diffusion-limited aggregation (DLA), for

example, models the formation of complex aggregated structures, or “puff balls”,

formed in nature from the aggregation of certain kinds of solid particles (Witten

and Sander, 1981). In the DLA model, a static seed particle is first placed into

an environment. Particles are then introduced one at a time at the edge of the

environment and randomly walk around the grid. When a walking particle comes

into contact with a static particle it becomes static. The DLA model is simple and

succinctly explained and yet produces complex tendrilled structures. The sorting of

cell by differential adhesion is a commonly studied biological phenomenon, in which

cells arrange themselves into clusters purely by choosing to adhere to certain kinds

of cells. This phenomenon has been replicated in a CA model, using a two-layer CA

in which cells are modelled as collections of sub-cells which move around the lattice

according to physical rules (Hogeweg, 2000, 2003).

In CA-based developmental systems, the rules describing the growth of an organism

are typically simple, and yet complex patterns and forms emerge. This complexity

emerges because the developing structure is embedded within a spatial environment,

allowing interactions to occur between initially unrelated parts of a structure. CAs

are an excellent example of the power of spatial embeddedness, a feature that has

guided the development of the research described in this thesis. Developmental

models in CAs are typically limited to accretive (boundary) growth because of the

lack of room to place new cells on the “inside” of a form. Physically-based models

can help with this by allowing cells to move around based on an energy minimising

term (Hogeweg, 2003). Another disadvantage of using a regular spatial discretisation

is that it is tedious to represent detail over many scales. Representing two cells of

different sizes, for example, necessitates splitting both cells into sub-cells. This
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makes this method computationally inefficient when modelling detail over multiple-

scales, though this is becoming less of a factor with the recent emergence of very

fast parallel computing architectures (e.g., Nvidia’s CUDA5).

2.1.4 Matela’s Triangulated Graph Model

There are two major issues with deterministic Cellular Automata. Firstly, the de-

veloping structures are bound to the topology of the underlying space. This can be

alleviated somewhat by using different spatial topologies (for example a hexagonal

grid). Secondly, it is difficult to model internal structural events, such as cell divi-

sion. If a dividing cell is completely surrounded by other cells there is simply no

room to place the two new daughter cells. These disadvantages led researchers to

consider other, more flexible, representations of cellular structures, including planar

graphs (Matela and Fletterick, 1979), Voronoi regions (Honda, 1978), and polygonal

maps (Weliky and Oster, 1990).

Particularly important amongst these developments was the model of Matela and

Fletterick, in which planar graphs were proposed to represent cellular layers, allow-

ing a greater range of topological configurations than CAs and much more spatial

freedom in which to divide and migrate (Matela and Fletterick, 1979). Matela and

Fletterick’s general model (Matela and Fletterick, 1979) uses a planar map to model

sheets of cells: regions represent cells and edges represent cell boundaries. The re-

sulting complex then approximates cells of polygonal shape that are densely packed

(see Figure 2.7.) Allowing cells to have an arbitrary polygonal shape is the primary

rationale behind the development of this model, as it provides greater flexibility over

previous (hexagonal or rectangular grid-based) models (such as cellular automata)

in topology, cell size and cell shape (Matela and Fletterick, 1979). Their model pro-

vided the inspiration for the representation and operations proposed in this thesis,

and is considered in substantial detail later (§4.1.3).

2.1.5 Fleischer’s Multi-Mechanism Model

One system that takes a more literal interpretation of biological cells is Fleischer’s

multi-mechanism model (Fleischer, 1995). Initially developed to study the evolution

of artificial neural networks, it became a general framework for studying structure

and pattern formation in collections of autonomous free-floating cells. In his the-

sis, Fleischer modelled many phenomena including the development of neural net-

works through cell targeting, the emergent formation of chains, compartments and

5http://www.nvidia.com/object/cuda_home_new.html
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Figure 2.7: In Matela and Fletterick’s developmental model cells are modelled as
polygons. The developmental operations act on the cell layer topology (the dotted
graph).

hierarchical structures, the emergence of structures through differential adhesion,

reaction-diffusion directed growth, and segmented structures. Fleischer’s model in-

tegrates mechanical interaction (collision and adhesion) and intracellular processes

(transcription, regulation, kinetics, transport, metabolism, a cell surface protein

model, cell lineage, cleavage plane control, neurite growth, and electrical activity)

(Fleischer et al., 1995). In Fleischer’s 2D model, cells are modelled as circles freely

moving in a bounded plane. This model is examined in more detail later (§4.1.2).

One question that arises from applying cell-based systems to 3D modelling is: how

do you generate geometry from a collection of cells? While Fleischer’s primary

contribution was his 2D system, he also used his system in a novel way to generate

complex 3D forms. By simulating 2D cells floating on the surface of a geometric

model, he then used the cell’s positions and properties to generate geometric detail,

such as bumps, thorns and spikes. The system presented in this thesis is also cell-

based, but the relationship between cells and geometric model is quite simple: a cell

is a vertex in a 3D solid mesh.

Fleischer’s research can, arguably, be considered as one of the first systems in Ar-

tificial Embryology. A recent survey of this field presents a useful categorisation

(Stanley and Miikkulainen, 2003). These systems are important to consider with re-

spect to the original research presented in this thesis, because they offer insight into

different models of cell behaviour and structural representations, and are considered

later on (§3.3.1).

2.2 Related Work in Developmental Systems

The last section highlighted the broad spectrum of developmental systems. This

section focuses on systems which achieve some aspects of the goals of this research

(§1.2) and which were the inspiration for the system presented in this thesis. These
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systems model processes of biological development in order to generate continuous

sequences of organic 3D forms, and range from an L-system inspired continuous

cell-based developmental model (§2.2.1) to a biologically motivated model of coral

growth (§2.2.2). As each system is reviewed, features important for modelling 3D

organic smooth surfaces and limitations of the system (with respect to my research

goals) are discussed.

2.2.1 Cellular Developmental Model

The Cellular Developmental Model (or CDM) by McCormack is a developmental

modelling framework for application in computer animation and music synthesis

(McCormack, 2005). CDM incorporates ideas from L-systems, cellular automata.

and cellular programming with useful concepts such as hierarchies, asynchronous

development, and a generalised context mechanism. Figure 2.8 illustrates a complex

3D model generated using this system.

CDM models a cell as an object which has a label that indicates its type, internal

and external state, a set of production rules, and an interpretation. The production

rules model the cell’s behaviour and take the form:

ri : {context} : predicate : state calculations/actions (2.1)

As with L-system models, the context represents the relation of the cell in the pool

to other cells, for example, the context A(y)meB(z) represents the situation where

an A cell is immediately to the left of the current cell, and a B cell is immediately

to the right (the variables y and z are extracted from the state of A and B). The

context in CDM can be more general that this, for example Euclidean distance or

von Neumann neighbourhood in a 3D CA. The predicate indicates some condition

that has to be true in order for the rule to be applied. Using the context above,

for example, the predicate y > kmin means that the rule is applied only if the single

state variable of A is above some threshold. Finally, the third component of the

rule indicates some state calculation or action to perform. The state calculation is a

mathematical expression, for example x = 2y. The actions available are cell death,

cell division, and changing a cell’s type.

The interpretation of a cell is a set of instructions for constructing a representa-

tion of it. This might be, for example, an interface to a geometric algorithm that

constructs a 3D mesh based on the cells and their properties. Particularly interest-

ing is McCormack’s use of generalised cylinders to generate 3D forms with smooth
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Figure 2.8: A complex structure evolved using CDM. (McCormack, J. Morphogenesis
Series #11, Lightjet print on archival paper, 1.5m x 1.5m, 2006.) Image courtesy of
Jon McCormack.
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continuous surfaces. This addresses the visual anomaly of sharp creases or joins be-

tween components that occurs in geometry constructed with traditional L-systems,

and offers a simple type of spatial interaction or “awareness” between modules.

The generality of CDM and it’s interpretation layer, however, means that is cannot

model more complex spatial interactions, such as collisions between modules. Hence

CDM is unsuitable for addressing the specific goals of this research, but nonetheless

is a powerful method for generating complex dynamic 3D developmental forms and

animations.

The CDM concepts of “cell” and “cell rules” inspired similar concepts that were

incorporated into SDS. As in CDM, cells in SDS are autonomous entities which

execute behaviour-defining sets of rules; however, this is where the similarity ends. A

cell in CDM is an abstract module in a CDM system, and is responsible for building

a geometric model via construction commands determined by the interpretation of

the system — there is a clear distinction between a system of cells and the output

of the system. A cell in SDS, however, is an element of a geometric structure and

is tightly coupled to the geometric models produced by the system. The distinction

between these systems arises primarily because SDS is designed to support a flow

of information between the geometry of a form and the system that generates it,

whereas CDM makes a conceptual distinction between the process of development

and the modes of output produced by the system (e.g., geometric models or sound).

2.2.2 Modelling Accretive Growth

A developmental model of accretive growth that demonstrates the combination of

a geometric surface-based developmental model with a physical model of nutrient

acquisition and hydrodynamics was developed by Kaandorp (1994); Kaandorp and

Kübler (2001). While scientific in application, their model is nonetheless useful to

consider here because it simulates the growth of a surface embedded in an environ-

ment. The developmental process is initialised with a triangulated sphere. A growth

process then repeatedly constructs a new triangulated surface around the old one.

This method is particularly interesting as it does not attempt to modify the old

surface but merely adds a new layer on top of it. This is conceptually appropriate

for the accretive growth processes it models. One experiment performed with the

system grows a surface at a rate proportional to the availability of food particles dis-

persed throughout the environment (Kaandorp and Kübler, 2001, §4.6.4). A fluid

simulation is performed to compute the distribution of food. These experiments

demonstrate that a combination of a simple growth logic, a physical model and em-

bedding a growing structure into an environment can result in complex and organic
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forms. Kaandorp and Kübler’s system is designed specifically for modelling accre-

tive growth of hard structures, and it is incapable of modelling deformations due to

physical collisions and the processes of development that occur inside a structures.

Nonetheless, their model of growth that acts on a polygonal mesh is interesting, and

is considered in more detail later when discussing the representation of 3D forms

used in SDS (§6.1.2.1).

2.2.3 Vertex-Vertex Systems

Smith’s Vertex-Vertex systems (VV) are a general purpose modelling framework

that can be used to model polygonal meshes (2-manifold topologies) which are both

spatially and structurally dynamic (Smith, 2006). The VV algebra and language

provide a method for manipulating meshes from a local perspective, i.e., without the

need for a global indexing scheme. For example, the instruction splice x after

a in v indicates that a new vertex x is to be inserted into the neighbourhood of

v after a in a clockwise order. The ability to specify transformations locally is the

key to VV, and makes it an ideal system for modelling biological development.

Geometric algorithms can be specified using the VV language. These can range from

adding a new vertex on an edge (Smith, 2006, Algorithm 3.1) to complex surface

subdivision schemes (Smith, 2006, Chapter 4). VV can also be used to implement

physically-based models of growth, as demonstrated by Smith’s simulation of the

growth of a branching plant that incorporates a simple mechanical model (Smith,

2006, Chapter 7). The result is an animated smooth polygonal mesh of a plant-like

form with a nice stem-to-branch geometric interface (Figure 2.9). Smith models the

surface of the structure as a mass-spring system with an additional pressure term

that provides an outward pushing force. Extra rules such as a simple tropism model

and reducing pressure at the growing tips of the primordia contribute towards the

final result.

The flexibility of the VV approach in modelling development either from a cell

level (as in Smith, 2006, §7.2) or a mesh level makes it useful in a wide range of

developmental modelling scenarios, however, the restriction of VV’s representation

to surface meshes causes some problems. Firstly, VV is incapable of modelling

growth or other developmental events that occur internally. Secondly, being surface-

based also means that the physical model has to use a very rough approximation to

keep the form “solid” (Smith uses a pressure term which applies a normal force on

the vertices.)
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Figure 2.9: Geometry synthe-
sized by a model of phyllotaxis
implemented in Vertex-Vertex
systems (Smith, 2006, Figure
9.4). Image courtesy of Colin
Smith.

Figure 2.10: A complex fold-
ing surface created using Com-
baz and Neyret’s physically-
based growth system (Combaz
and Neyret, 2002). Image cour-
tesy of Fabrice Neyret.

If only surface-level events are to be modelled then VV systems are a sophisticated

and practical 3D generative modelling tool. An early strand of the research presented

in this thesis considered extending VV to operate on solid forms, thus addressing

some of these issues. Unfortunately (for reasons discussed in §6.1.2.3) the topolog-

ical and algebraic basis for VV cannot be generalised into 3D topologies, and so a

different approach was sought. Vertex-Vertex systems are the most closely related

(of existing systems) to the 3D model presented in this thesis, and are revisited later

when discussing the details of the 3D system (§6.1.2.3).

2.2.4 Semi-Interactive Morphogenesis

An alternative approach to modelling individual cells within an organism is to model

an organism as a continuum of cells and consider the aggregate effects of cell ac-

tions. One system that takes this approach is Combaz and Neyret’s semi-interactive

morphogenesis system (Combaz and Neyret, 2006, 2002). In their system, a user

paints a texture onto the surface of a triangular mesh, stimulating local growth and

change. The texture specifies the desired state of local mesh properties, such as edge

length and vertex curvature. The mesh elements are elastic and a solver iteratively

reduces the energy of the system. The physical model incorporates the continuum
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Figure 2.11: Two complex reaction-diffusion patterns (Sanderson et al., 2006, Figure
15). Image courtesy of Allen Sanderson, copyright A K Peters, originally published
in Journal of Graphics Tools Vol 11, No. 3.

mechanics theory of thin shells (discussed later §6.1.2.2). The resulting forms have a

smooth, soft, organic appearance that would be extremely tedious to build by hand

(Figure 2.10).

Combaz and Neyret’s work elegantly demonstrates that a model of elastic surface

growth can produce quite complex and organic geometry. The system, however, is

not entirely automated, and control is performed primarily by a user interactively

painting hot-spots on the growing surface. Procedural control of these hot-spots were

explored (Combaz and Neyret, 2006); however these results are preliminary and it is

not clear as yet if this approach applies generally. The semi-interactive morphogen-

esis approach works extremely well for generating the geometric complexity of folds

and geometric “texture”, however as it lacks a mechanism for coordinating more

complex structures, it is limited to producing local geometric features, and hence is

unsuitable for generating modular forms.

2.2.5 Morphogen Coupled Growth

In 1952, Turing showed that complex patterns can arise from simple systems of

interacting chemicals or morphogens (Turing, 1952). Turing postulated that these

reaction-diffusion systems exist in biological systems and assist in coordinating the

spatial expression of genes.6 These systems have been investigated in depth (Mein-

hardt, 1982, 2003) and have also been applied to the creative synthesis of complex

patterns (Figure 2.11) (Turk, 1991; Sanderson et al., 2006).

Reaction-diffusion models have been coupled to geometry to investigate morphogen-

directed growth (Harrison et al., 2001; Leung and Berzins, 2003; Cummings, 2001).

From a creative perspective these systems illuminate how growth can be coordinated

6The existence of reaction-diffusion in biological systems has been recently confirmed (Sick
et al., 2006).
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Figure 2.12: (left to right, top to bottom) A model of a developing polyp by Leung
and Berzin (Leung and Berzins, 2003, Figure 9).

in a continuum model. Leung and Berzins (2003) present an interesting computa-

tional model of development. They link concepts of cell bio-chemistry and surface

deformation to model simple developing shapes (Figure 2.12). Their model uses a

reaction-diffusion simulation of morphogens on a surface. The surface curvature is

locally altered by the presence of morphogens, thus tightly coupling the surface ge-

ometry and cell chemistry. The application of these systems to the creative modelling

of organic form is hindered because of a number of reasons: the reaction-diffusion

process is notoriously hard to control, the geometric representations prevent topo-

logical changes, and growth is limited to the surface. These systems successfully

demonstrate that chemical patterning coupled with surface growth can produce in-

teresting organic forms, and, like Combaz and Neyret’s system (§2.2.4), show that a

model of material physics offers a powerful mechanism for generating organic com-

plexity.

2.3 Discussion

As shown in this chapter, there are many ways in which biological development

can be modelled in order to generate forms and patterns. The research of this

thesis is concerned with modelling the development of complex 3D organic forms.

A number of systems are capable of this (§2.2), however, none of these systems can

generate forms of the type outlined in the previous chapter, i.e., soft, squishy forms

with smooth surface that spatially interact. Features of these systems which seem

critical to achieving the goals of this research are: spatial embeddedness, physicality,
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and representation. These features were considered when designing SDS and are

explained below.

Embeddedness The embeddedness of a system measures the difference between

the internal representation of a structure and its visual representation, subject to

an external viewer. A strongly embedded system is one in which the developing

structure exists within the space it is being viewed in, and the more embedded a

system is, the less visual anomalies will occur. L-systems and the Cellular Devel-

opmental Model are both weakly embedded. In the L-system shown in Figure 2.1,

for example, an anomaly occurs where two branches (straight lines) can intersect in

space. The line intersection condition cannot affect the development of the structure

as the turtle-based mapping is a one-way process.

CAs, on the other hand, are strongly embedded, as the cells are typically represented

directly within a grid, often with coloured cells distinguishing cell types. As CAs

most elegantly demonstrate, embedding a developing structure within an environ-

ment adds considerable complexity and an additional facet of control (often at the

expense of more direct modes of control §8.2). A spatially embedded system sup-

ports spatial interactions between parts of a structure (e.g., Ulam, 1962). Kaandorp

and Kübler (§2.2.2) showed that by distributing nutrients through an environment

with a model of fluid flow a surface could grow in an environmentally dependent

manner. One goal of the research presented in this thesis was to model spatial

interactions between the geometric elements of developing forms; and thus SDS is

strongly embedded, with respect to 2D and 3D geometric models.

Physicality This chapter reviewed some systems which demonstrate how a gen-

erative model that incorporates physics can lead to natural looking forms. Combaz

and Neyret’s system (§2.2.4) used a physically-based elastic thin shell model cou-

pled with a growth mechanism to achieve forms with complex smooth folds. The

geometric texture is a balance between procedural specification and physical simula-

tion, resulting in the surface adopting a generally smooth organic shape. A physical

model of material acts as a constraint on a generative structure, forcing it into low-

energy configurations. Combaz and Neyret’s system, like others, demonstrate that

smooth organic forms typically emerge when physically modelling elastic material

(Smith, 2006; Combaz and Neyret, 2002, 2006). Physicality plays a key role in the

system introduced in the next chapter.

Representation A flexible representation of an organism is required in order to

model complex 3D surfaces. A discrete boundary surface linear representation, such
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as a polygonal mesh, is conceptually simple, and, due to the arbitrary size and shape

of the individual polygons, can approximate complex smooth surfaces with detail

over multiple scales. As seen in this chapter, many developmental models operate

on polygonal surfaces. Smith (2006) and Matela and Fletterick (1979) model cells

as vertices, organisms as polygonal meshes, and developmental events as local mesh

transformations. Cell division in these systems is modelled by replacing one vertex

with two or more new vertices. Developmental events do not have to be modelled

as local transformations. Kaandorp and Kübler (2001), for example, use a growth

operator which operates on an entire polygonal mesh, modelling multiple biological

processes simultaneously.

One key disadvantage of using a surface representation is that internal phenomenon

of development can only be coarsely modelled, if at all. The mechanics of solid

matter is one such phenomenon that can be only coarsely modelled using a surface

representation. An example is given in a developmental model proposed by Smith,

in which he uses an ad hoc “internal pressure” force to approximate the effects that

internal forces have on the surface of a growing structure (Smith, 2006, Algorithm

9.3). This model simply applies a constant force to each vertex in a normal direc-

tion, and is only accurate for structures that have a consistent width — which is

a major restriction on the set of forms that can be modelled. Modelling internal

developmental events, such as cell division, using a surface representation can also

only be approximately modelled, but are typically abstracted away. For example,

sub-surface growth might be modelled using an increasing internal pressure force as

described above, or by moving the surface cells outwards, giving the appearance of

a growing volume. A volumetric representation can model both of these aspects of

development at a higher degree of fidelity. The tetrahedral mesh, used in the system

described next, is one such representation.

2.3.1 Conclusion

This chapter examined a range of existing generative systems that model biological

and physical processes. These systems are capable of producing beautiful and com-

plex 2D and 3D forms and patterns, and offer a glimpse into what is and will be

possible in generative computer graphics. These systems partially fulfil the goals of

this research, and it seems likely that a system capable of fulfilling them completely

would incorporate the best features of these systems, which are outlined above. This

thesis presents such a system, the Simplicial Developmental System, which is now

introduced.



Chapter 3

The Simplicial Developmental

System

This thesis presents the design, implementation and analysis of a new system, the

Simplicial Developmental System (SDS), that supports the simulation of develop-

ment and generation of complex organic geometry. SDS uses principles from bio-

logical development and physics to grow two and three dimensional organic forms

from basic embryonic structures. It was designed to address some limitations of

the systems discussed in the previous chapter and was inspired by work in theo-

retical biology (Matela and Fletterick, 1979), artificial embryology (Fleischer et al.,

1995), and computer graphics (Prusinkiewicz and Lindenmayer, 1996; Smith, 2006;

Kaandorp, 1994; Combaz and Neyret, 2006).

Broadly, SDS models a developing organism as a simplicial complex (a triangular or

tetrahedral mesh) within a spatial environment. Cells of the organism move, grow,

and divide, transforming the complex. Cells communicate with each other via a

chemical signalling mechanism, allowing them to coordinate and build macro-level

structures. SDS incorporates physical properties such as cell adhesion, elasticity and

spatial constraints that result in the generation of organic form. Other spatial and

environmental elements, such as tropisms, static meshes, or the presence of other

developing organisms can be included in the simulation. The output of SDS consists

of the developmental sequence of these forms, which is typically incorporated into

an animation. Figure 3.1 shows an example simulation performed in 2D.

SDS is capable of generating organic volumetric forms with smooth surfaces. This is

possible due to its discrete geometric representation and physical model of soft elastic

material. It supports the emergence of geometric forms from many localised geo-

metric transformations. This is demonstrated with the limb bud module (§5.1,§7.1)

31
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Figure 3.1: A sequence of frames from a 2D SDS simulation of a starfish-like form.

which grows tentacle-like protrusions through the orchestration of directed cell di-

vision, morphogen diffusion, and a feedback loop. The limb can be re-used within

a model by implanting it in numerous locations, and organic variation amongst

the limbs is achieved due to the environmental and geometric context-sensitivity of

SDS. Figure 3.1, for example, was generating using the same cell “program” in each

starfish arm, and yet each limb is subtly different. This natural repetition with vari-

ation is a key advantage of the SDS approach. The geometric modules in SDS are

not strictly delineated within a form, rather, “natural” geometric interfaces emerge

between module boundaries. In Figure 3.1, for example, there is no clear distinction

between cells belonging to a starfish arm, and cells belonging to the body. This is

a consequence of the emergence of modules from local geometric transformations,

and avoids the discontinuous module boundaries evident in some module oriented

3D modelling systems.

This research was conducted in two main phases. Firstly, experiments with a 2D

system examined how developmental and physical processes could be integrated.

The second phase of the research looked at generalising principles from the 2D

system to a 3D system. The commonality in both systems is captured in the general

SDS framework for modelling biological and physical processes for organic form

creation, the subject of this chapter. This thesis presents and compares some specific

implementations of SDS in two and three dimensions, referred to as SDS2 and SDS3

respectively.

SDS is a complex system and it is useful to introduce each of its components sep-

arately: the simplicial complex representation of biological structure, the growth

model, the model of cellular communication, the structural transformations, and

the physical model. This chapter first presents an outline of these components and

the role they play in the framework (§3.1). Each of the remaining sections then

discuss each component in turn, starting with the component’s biological relevance

and history in existing systems, before presenting the details of the component. This
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Figure 3.2: An overview of some of the key components of SDS. An s-morph is
composed of cells and simplexes. Cells contain state (such as position) and execute
a cell program that may perform actions (such as cell division). Morphogens diffuse
between cells, and are transported along the edges of the simplexes. The physics
component of SDS specifies the motion of cells by modelling simplexes as springs.
External forces, collisions, and tropisms can also contribute to the motion of cells.

chapter introduces a number of new concepts and technical notation, a summary of

which is presented in Table 3.2 in the concluding section of this chapter.

3.1 SDS Concepts

SDS is a simulation-based framework comprised of a number of components (Figure

3.2). This section introduces these components and explains how they fit together

to create an overall simulation framework. The subsequent sections then explore

each of the components in depth.

In SDS, a geometric form is generated by simulating morphogenetic and physical

processes acting upon a structure termed a Simplicial Morph, or an s-morph. An

s-morph consists of a set of cells — autonomous entities that execute actions based

on internal state, received “information”, and external stimuli. The cells of an s-

morph are connected by the structure of an s-morph, which is composed of geometric

elements known as simplexes. The structure of an s-morph is a triangular mesh in 2D

and a tetrahedral mesh in 3D. Figure 3.3 illustrates an example three dimensional

s-morph.
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(a) (b) (c)

Figure 3.3: An example SDS3 s-morph. It has (a) vertices, edges and (b) tetrahedra.
It also has (c) spherical cells. These are all different views of the same structure.
Vertex v corresponds to the position of cell c.

Each cell in the s-morph operates as an individual agent or program. A cell can

modify its properties, can distribute information to neighbouring cells, and can

execute actions such as cell division. The behaviour of the cells is governed by the

growth model, which includes the specification of a cell program, a set of morphogens,

and a set of simulation parameters. The input to an SDS simulation includes an

initial s-morph, a growth model and an environment. The growth model drives

the development of the s-morph, which undergoes both continuous and discrete

structural changes until the simulation is halted.

SDS allows cells to coordinate their behaviour using a simple morphogen model that

is inspired by protein signalling in biological systems. Morphogens diffuse between

adjacent cells and decay slowly over time. This simple mechanism allows cells to

estimate distance from, and direction to, a morphogen source. This is used, for

example, to determine the region of proliferation in a developing segment or limb

(§5.1).

A cell in an s-morph may choose to divide, at which point it is replaced with two

or more daughter cells. Adding or removing cells requires modifications to the

structure of an s-morph. Maintaining a triangulation (or tetrahedralisation) of the

structure poses many challenges, and thus cell division is not a simple operation.

In addition to cell division, an s-morph’s structure dynamically adapts when cells

move. In SDS, this is known as a structural movement transformation. Division

and structural movement are the two operations that change the structure of an

s-morph, hence changing the developing form.

The motion of cells through space is described by a physical model, in which the

structural elements of an s-morph (its edges and triangles or tetrahedra) are mod-

elled as elastic springs. This has two purposes: firstly, cells can divide and grow and

the surrounding structure will expand and re-organise to accommodate them, and

secondly, the structure behaves and appears as if composed of soft elastic matter.
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These components are incorporated into the simulation loop, outlined in Algorithm

1 (p35). The simulation loop iteratively “steps” the state of the world (the envi-

ronment and the s-morph) forward in time by a time increment, ∆t, specified by

the user. One iteration of the loop involves several steps. Firstly, SimulatePhysics

integrates the positions and velocities of all the cells in an s-morph over the spec-

ified time interval (§3.6). MovementDetected looks at the current state of an s-

morph and detects whether a cell movement transformation needs to be performed

(§3.5.3). If a cell movement transformation is required the simulation is rewound

to the time of the first movement and the movement transformation is executed

(TimeOfFirstMovement, RewindSimulation, and PerformCellMove). After this

point, the world time may be advanced either by the full time step, ∆t, or up to

the rewound point, ∆̃t, therefore it is important that all modules take this into

consideration. Collisions between surface elements of an s-morph are detected and

handled by HandleCollisions (§3.6). UpdateCellState then updates other cell

properties that can change over time, for example, cell radius (§3.6). After this,

the flow of morphogens through the s-morph is simulated by SimulateMorphogens

(§3.4). Finally, all the cell programs are executed by RunCellPrograms (§3.3). A

cell program may instruct a cell to divide, at which point PerformCellDivide is

executed (§3.5.2).

Algorithm 1 SDS Simulation Loop

t = 0
while t < duration do
SimulatePhysics(∆t)
if MovementDetected() then

∆̃t = TimeOfFirstMovement()

RewindSimulation(∆̃t)
PerformCellMove(cell)

else
∆̃t = ∆t

end if
HandleCollisions()

UpdateCellState(∆̃t)

SimulateMorphogens(∆̃t)

RunCellPrograms(∆̃t)

t = t+ ∆̃t
Output world state for time t

end while

Having presented an overview of SDS, each of its components are now discussed in

detail. Discussion of the components are complemented by the examples in Figure

3.4, and it may be helpful to refer back to these examples while reading this chapter.
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Figure 3.4: Key SDS components demonstrated in 2D. (a) Representation. The
representation of a SDS2 s-morph consists of cells, edges and simplexes (triangles).
This figure illustrates an example s-morph in 2D that has four cells. (b) Morphogen
diffusion in 2D. A cell in a 2D s-morph starts to constantly produce a morphogen
(the concentration of which is shown via the shading of the cells). (c) The morphogen
diffusion equations cause morphogens to travel between connected cells from high
concentration to low concentration, therefore the two neighbours of the black cell
start to fill up with morphogen. (d) After a number of time-steps the morphogen
is distributed throughout the s-morph. (e) Cell division in 2D. The highlighted cell
in this s-morph has elected to divide. (f) Upon division the cell splits into two new
cells, and the s-morph is adapted to maintain a simplicial complex structure. (g)
Cell movement in 2D. Cells may move through space in reaction to physical forces.
In this example the highlighted cell is being pushed in the direction shown by the
arrow. (h) Occasionally cells may come into contact with the edges of the s-morph,
as is occurring in this example. (i) As the cell crosses the edge, the cell movement
operation restructures the mesh to maintain non-overlapping simplexes. In 2D this is
achieved by simply “flipping” the highlighted edge.

The most important component of SDS, the representation of a developing biological

structure, is discussed first.

3.2 Representation

There are a number of ways a developmental system can be represented: symbol-

ically, geometrically, topologically, mathematically, and so on. A defining charac-

teristic of SDS is its representation. SDS models a developing organism as a set of

cells bound together with a mesh. The primary goal of this research was to generate

complex 3D surfaces for use alongside 3D modelling packages, and hence the out-

put of SDS is oriented towards producing geometric models in a suitable form. In

SDS3 a user can extract the boundary of the s-morph’s tetrahedral mesh to obtain
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a triangulated surface mesh — a geometric representation compatible with most 3D

modelling packages. This section discusses some potential geometric representations

for developmental modelling, introduces the geometric representation used in SDS,

and discusses the relationship between an s-morph and its geometric structure.

3.2.1 Background

Numerous theoretical and computational models of shape exist, including interpo-

lating representations, implicit and explicit surfaces, iterated function systems, and

constructive solid geometry. This section outlines some different representations and

motivates the representation scheme used in SDS.

Interpolating representations are primarily applied to modelling surfaces. In this

representation, a shape is typically defined using a set of control points in space and

a method for generating a surface by interpolating between them. This approach is

useful for generating smooth surfaces1 and is the basis of many commercial modelling

applications. Whilst these representations can be extremely sophisticated, it is not

obvious how to use this representation within the developmental paradigm, and to

the author’s knowledge, no such system exists.

The functional paradigm includes all the methods of representing shape using math-

ematical functions. Functional representations include implicit surfaces, iterated

function systems, and parameterised surfaces (see e.g., (Bloomenthal and Bajaj,

1997),(Flake, 1999, §7), and (Schneider and Eberly, 2003, §9.7)). Implicit and pa-

rameterised surfaces are the most suitable of these for modelling smooth form. Im-

plicit surfaces (or volumes) define shapes as a set of points where a specified function

evaluates as zero (or negative). For example, a sphere of unit radius can be defined

using the equation x2 + y2 + z2 = 1. The equation is true for all points (x, y, z) that

lie on the sphere. Practicality requires that implicit functions be constructed using

high-level components, such as skeletal shapes (Bloomenthal, 1995). Parameterised,

or explicit, surfaces are defined using images of functions. A simple example is the

two-dimensional parameterised line segment, f(t) = p(1 − t) + qt, which maps the

parameter space segment [0, 1] to a line joining two points, p and q.

In general, functional representations are concise and are capable of producing

smooth, organic shapes, and complement specific modelling domains, such as particle-

based fluid modelling (e.g., metaball-based (Blinn, 1982)). The functional represen-

tation seems suitable as a scheme that will ultimately be controlled by a developmen-

tal system; although discrete models have more advantages for complex modelling.

1There are numerous interpretations of smoothness in computer graphics (e.g., C1-continuity);
however, in this context the common use of the term is accepted.
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Figure 3.5: A polygonal surface mesh consists of vertices, edges and polygons.

The representation of shape by collections of discrete elements is a popular strategy

in computer graphics and is the dominant representation used in developmental

modelling. Developmental modelling typically breaks a biological system into many

parts or modules, and so it makes sense to use a discretised geometric representation.

Constructive Solid Geometry (CSG) combines discrete elements such as cubes,

spheres, and cylinders using Boolean operations such as union, intersection and

difference. The method is typically applied to represent solid sharp-edged forms

in the engineering industry; however, there are extensions that make the method

suitable for modelling smoother organic forms (Barthe et al., 2004).

For 3D modelling the polygonal surface representation is by far the most popular.

The polygonal surface mesh models an object using vertices, edges, and polygonal

faces (see Figure 3.5). This representation is popular in domains such as computer

games, character design for animated films, and CAD, and most modern 3D mod-

elling packages use this representation (e.g., Blender2). Modern graphics hardware

accelerates the rendering of this representation and numerous creative applications

exist that directly support this model. There are myriad methodologies and al-

gorithms that support this representation. One such operation helpful in organic

modelling is subdivision surfaces (see e.g., (Zorin and Schröder, 2000)) which refines

and smoothes a polygonal mesh.

Vertex-Vertex systems (§2.2.3), Kaandorp and Kübler’s growth model (§2.2.2), and

the semi-interactive morphogenesis system (§2.2.4) all represent organisms with

polygonal meshes and demonstrate different ways to model growth and develop-

ment on the mesh. These systems are revisited later (§6.1).

2Blender is an open-source 3D modelling and animation suite (http://www.blender.org/).
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Modelling only the surface of a developing form has some limitations which can be

solved by using a volumetric representation. Typical volumetric representations of

shape use collections of discrete solid elements such as cubes, hexahedra or tetrahe-

dra. Modelling a volumetric form as a collection of axis-aligned same-sized cubes is

referred to as the voxel representation (§2.1.3). This representation is simple, fast

and has been used successfully in developmental systems (e.g., Greene, 1989). A

major disadvantage of the voxel representation is that, due to the uniform size of its

elements, it is computationally expensive to represent objects that have both large

and small scale detail. This can be addressed by spatial subdivision schemes, such

as octrees, or by using fast GPU representations and algorithms (e.g., Crassin et al.,

2009).

Tetrahedral meshes are a highly flexible volumetric representation historically used

within finite element modelling in computational engineering. Techniques for real-

time physical simulation of tetrahedral meshes have recently popularised this rep-

resentation in computer graphics (e.g., Teschner et al., 2004). The 2D analogue

of the tetrahedral mesh — the triangular mesh — was originally proposed as a

representation of cellular layers by Matela and Fletterick (1979). The model was

developed primarily because it provided greater flexibility than the cellular automata

approaches common at the time. §4.1.3 reviews their model in more detail. Triangu-

lar meshes in 2D and tetrahedral meshes in 3D provide an elegance and simplicity

to the conceptualisation and implementation of developmental models. With re-

spect to the research goals outlined in the first chapter these representations have

numerous benefits, including:

• conceptual simplicity,

• generality (they work in 2D, 3D, or indeed any dimension),

• they are supported by existing physical simulation techniques (§3.6),

• flexibility (they can model complex topologies and detail over multiple scales),

• compatibility with 3D modelling tools (allowing integration into such tools),

and

• allow modelling of interior as well as surface detail.

These advantages were the primary motivation for the choice of the triangular mesh

in 2D and the tetrahedral mesh in 3D as the representation scheme for the structure

of s-morphs.
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3.2.2 The S-morph

An s-morph in SDS consists of a set of cells, C, and a mesh with edges, E, triangular

faces, F , and, in SDS3, tetrahedra, T .

In SDS2 an s-morph consists of a set of cells connected together with a triangular

mesh, and in SDS3 the cells are connected together with a tetrahedral mesh. Figure

3.3 shows an SDS3 s-morph. Triangular meshes in 2D and tetrahedral meshes in 3D

can be unified using the concept of simplicial complexes. A simplicial complex3 in n

dimensions is a topological structure that is composed of a set of simplexes, where

a simplex is an edge, face, or tetrahedron (called a 1-simplex, 2-simplex, and 3-

simplex respectively). The simplexes join a set of vertices in space, and overlapping

and intersecting simplexes are not allowed. Stated using this terminology, an s-

morph in SDS consists of a set of connected cells and a simplicial complex. This

abstraction helps to simplify comparisons between SDS2 and SDS3.

The SDS2 representation has a heritage in the 2D triangulated graph representation

of cell layers introduced by Matela et al (see §2.1.4); however, simplicial complexes

have not been used before in a 3D developmental system. A volumetric representa-

tion has the advantage of being able to model internal developmental and physical

processes, allowing an extra level of expressiveness not possible in surface-oriented

systems. For example, in the limb bud model presented later (§5.1) it is the prolif-

eration of internal cells that causes outward growth of limb-like forms.

A cell is an axiomatic entity in an s-morph. It can perform actions, such as divide,

and has a set of properties which may change over time. These include cell position,

cx, velocity, cv, and radius, cr (see Table 3.2 for a list of all the cell properties.) A

cell is modelled as a circle in SDS2 and as a sphere in SDS3, with a specified radius,

cr. The density of all cells is uniform and so cm = vol(c), where the volume, vol(c),

is computed as:

vol(c) = πcr
2 (SDS2) (3.1)

vol(c) =
4π

3
cr

3 (SDS3) (3.2)

Two cells are neighbours if there is an edge connecting them — this neighbour-

hood relationship forms the topology of the s-morph. Neighbouring cells diffuse

morphogens between one another and can detect each other’s properties (such as

morphogen concentration). The function N : C → 2C maps a cell to the set of its

neighbours.

3The terminology of simplicial complexes differs between fields, but see e.g., Popović and Hoppe
(1997) for a complete formal definition.



3.3. GROWTH MODEL 41

The cells of an s-morph can transform its simplicial complex. When a cell moves,

the adjacent simplexes change shape. If the movement of a cell causes a simplex

to collapse, the local structure is modified to prevent simplexes from overlapping

(§3.5.3). If a cell divides then the structure also changes (§3.5.2).

There are some important restrictions on an s-morph’s mesh. Firstly, the mesh

elements cannot intersect. This supports the embeddedness criterion specified in

the previous chapter. This constraint can be satisfied by detecting and preventing

collisions between elements. In SDS3 this is done by incorporating collision detection

and handling into the physical simulator (§6.3.5). The second restriction is that

hinges are invalid (see Figure 4.6e). A triangle in SDS2 or tetrahedron in SDS3

represents a solid chunk of matter, and so a hinge represents an infinitesimally thin

joint within an s-morph. For physical and biological realism, as well as simplicity,

an s-morph is considered to be solid everywhere, and consequently hinges are not

allowed.

An s-morph can be viewed from two perspectives. From the cell’s perspective, an s-

morph is made up of cells that grow, divide, and move. The cells execute a program

that drives the generative process, and it is through the program that a user has

primary control of the system (§3.3). From this perspective, the simplexes are merely

byproducts of the topology of the cells. The alternative is the simplex perspective

which focuses on the structure of the s-morph on which the physical and morphogen

models act. Both perspectives are useful in understanding the development of an

s-morph. In actuality, the cells and simplicial complex are tightly coupled: the

simplicial complex defines the physical equations (§3.6) which describe the motion

of the cells, and the motion and behaviour of the cells affect the structure of the

simplicial complex through structural transformations.

The representations of s-morphs are revisited in §4.2 and §6.2, when details specific

to the 2D and 3D implementations are discussed. The next key element of SDS

discussed is its model of cell behaviour.

3.3 Growth Model

In SDS, cells behave as autonomous entities, absorbing and diffusing morphogens,

changing their internal state, and modifying the s-morph through cell division and

growth. The description of the behavior of the cells and other factors that lead to

the generation of specific forms are grouped in SDS under the concept of growth

model. This section briefly reviews some related research into existing models of cell

behaviour before presenting in detail the approach used in SDS.
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3.3.1 Related Work

The universal abstraction in developmental systems is that of the autonomous cell.

There are many different models of cellular autonomy, all abstracting the role of

the genome and the effects of proteins in biological systems. These models range

from abstract models of cells as computers, to rich biologically inspired dynamical

models.

Some systems model the cell as a computer that executes logical instructions in

sequence and communicates via formal protocols. The Cell Programming Language

(CPL) (Agarwal, 1994) is a simulation system built primarily to support experimen-

tal observation. A discretised CA space4 is populated with cells that execute a cell

program. The user defines the genomic and environmental influences on the cell be-

haviour using a simple language which offers high-level constructs like divide, move,

for each neighbour do, die, conditional and jump instructions, and biochemical

control commands. The cell program is executed at each time step in parallel in all

of the cells.

An abstraction that is closer to biology than the cell computer approach is the

Genetic Regulatory Network (GRN). A cell is modelled with a finite set of genes that

are active or inactive. Active genes can cause the production of a protein, activate

or repress other genes, and can be activated or repressed by protein thresholds. The

coupling between genes and proteins is then described by a network. More abstract

forms of these networks (Random Boolean Networks, or RBNs) have been identified

to contain interesting dynamics (see e.g., Kauffman, 1995). Such a network is used in

Dellaert and Beer’s system, in which they explored the evolution of a developmental

model for autonomous agents with a simple morphology and control system (Dellaert

and Beer, 1994). Their model is divided into the organism, cell, and biochemical

levels. At the lowest level cell DNA is modelled as a bit vector and genes are

modelled as individual bits that are either on or off. The dynamics of the DNA

is modeled with a RBN. Each cell contains a bit vector indicating which genes are

active. This is updated at each time step using the current state and the state of

its neighbours (iterated repeatedly until the network enters a stable state.) The

cell divides if a certain gene is activated. Other mechanisms, like communication

and differentiation are also included. A key result of Dellaert and Beer’s research is

that the evolution of the agents effectively reinforced and extended a developmental

pathway (in the RBN) that eventually built successful agents.

4CPL is designed to be applicable to any cell space representation (e.g., 2D grid, 3D mesh,
linear), however for his experiments Agarwal has explicitly used a 2d hexagonal-lattice with cells
represented by a set of connected points.
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A less abstract model is provided by Streichert et al. in which they present a

complex system that grows groups of cells (Streichert et al., 2003). They evolve

the organisms to be limited in their growth (i.e., to grow to a certain size and

stop) and to self–repair if damaged. Their model incorporates continuous space, is

structure–oriented, and has dynamic neighbourhood relations between cells. Cell

behaviour is controlled by Random Boolean Networks (RBNs) and S-systems5 They

also implement endogenous communication between cells. Their model incorporates

a simple physics in which cells have a uniform size and attempt to attach to their

seven closest neighbours. Adhesion forces the cells into stable configurations.

L-systems implement autonomy through rules that execute based on context, cell

type and state. Given a cell with a particular type, state, and context, the grammar

encodes a replacement rule that acts on that cell. There are a finite set of rules and

types, however (parameterised) state may be continuous.

The connectionist approach of Mjolsness, Sharp and Reinitz provides a phenomeno-

logical framework for modelling development (Mjolsness et al., 1991; Krul et al.,

2003). Their approach abstracts collections of interacting cells, proteins and genes.

It integrates continuous dynamics with grammar-based rules of cellular actions. The

general idea is to construct a matrix of continuous values that defines the interaction

between all pairs of genes, where a positive value indicates activation, a negative

value indicates repression, and a zero value indicates that no interaction occurs.

Certain assumptions about the system (e.g., gene effects are additive) lead to a

set of simplified differential equations describing the dynamics of the system. This

model was used in Fleischer’s system to model and evolve primitive neural networks

and shapes out of cells roaming on a plane (§2.1.5).

3.3.2 Cell Programs in SDS

In SDS, a growth model determines the kinds of form that are generated. It requires

the implementation of a cell program, the specification of a set of morphogens, and

the definition of cell and simplex variables. Cell programs are implemented with a

module RunCellPrograms(∆t) that is called at each time step of the simulation.

For the results presented in this thesis the cell programs are modelled using a set of

rules of the form:

ri : condition→ action

5S-systems model a dynamical system as an abstract set of values related by a non-linear
differential equation of a specific form. They have been used, amongst other things, to model
genetic regulatory networks in theoretical biology (Irvine, 1988).
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The condition is a Boolean expression containing terms such as morphogen values,

cell properties, and the state of the cell’s neighbours. The condition is checked every

iteration of the simulation loop, and if it is satisfied then the action is executed. The

action may be a structural action, such as the cell division operation, divide(d),

which instructs the current cell to divide in direction d. Alternatively, it may be

a change in cell state, for instance allowing a cell to change radius, cr, or create

morphogen. As an example, consider the rules in Table 3.1. Rule r1 specifies that

upon becoming half full of morphogen φ, a cell should divide towards the source of

φ. The ∇φ term models the ability of a cell to detect its local morphogen gradient.

Rule r2 commands all surface cells to produce morphogen φ1 at a rate K. The

final rule, r3, specifies that all the neighbours of a cell of type A should increase

their radius at a linear rate of 0.01 units per second. A variety of other rules are

demonstrated in Chapters 5 and 7.

Table 3.1: An example cell behaviour rule.

rule condition action
r1 cφ >

1
2

vol(c) divide(∇φ)
r2 csurface c∆φ1 = K
r3 ct = A ∀n ∈ N(c) : n∆r = 0.01

Rule-based cell programs are concise and suited to the results shown in this thesis;

however, at the lowest level cell programs are implemented in code, and hence

arbitrary computations within a cell can be performed. Extensions to this research

which could lead to more user-friendly interfaces are considered in §9.6. Biological

cells do not act in isolation, and it is vital, if macro-level structures are to be

generated, that the actions of cells be coordinated. The next section presents the

model of cell communication used in SDS to coordinate cell actions.

3.4 Cell Communication

Cells in SDS are modelled as autonomous entities in a simplicial complex, each op-

erating according to a set of supplied rules (§3.3.2). In order to generate structures

in SDS which are composed of many cells, it is important that cell actions be coor-

dinated. The principle mechanism used to coordinate cells in SDS is a model of cell

communication inspired by chemical signalling in biological systems. This section

first discusses how cell communication and coordination are modelled in existing

developmental systems, and then presents the model used by SDS.
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3.4.1 Background

The successful growth of an organism relies heavily on the ability of cells to organise

and coordinate their actions. This requires cells to be able to communicate. Biolog-

ical cells communicate via proteins and receptors which bind to their surfaces. Once

bound, a receptor causes the release of another protein, internal to the cell, which

results in a series of reactions that may activate or repress a gene, thus causing a

change in the cell6. The coordination and organisation of the developing embryo and

complex organs, such as the vertebrate eye, rely extensively on protein signalling

(Gilbert, 2006, p143).

General communication and coordination amongst cells is vital in biological systems,

and many artificial developmental systems incorporate some form of information

sharing. In L-systems, information can be acquired locally through context. The

context-sensitive rule “a < b > c → d”, for example, specifies that b changes to d

if it has an a on its left and a c on its right. Context-sensitive rules can be used

to model the flow of information or nutrients within a structure. As an example,

consider the repeated application of the rules “m < a → m” and “m → a” to

the structure maaaa. The developmental sequence that results is: maaaa, amaaa,

aamaa, aaama, aaaam; which can be interpreted as a message, m, propagating

through the structure. This technique has been used to propagate a flower-activating

signal in a model of plant development (Prusinkiewicz and Lindenmayer, 1996, p32).

The coordination of development is not constrained solely to explicit messaging

between cells. Structures can also be shaped by other forms of “information” in-

cluding, for example, the presence of light, walls, or food. Open L-systems (Měch

and Prusinkiewicz, 1996) introduced a “special symbol reserved for bilateral com-

munication with the environment”. This allows environmental information to be

passed into the growth rules, for example the amount of light available at a leaf

could affect its growth rate. The use of environmental information to guide the

growth of a structure is demonstrated effectively by Greene’s Voxel Automata 3D

models of vines growing across walls and competing for light (Greene, 1989). Other

systems, such as Kaandorp’s model, show that cohesive structures can emerge when

diffusing food within an environment (§2.2.2). In these systems information that

exists in the environment helps to coordinate the developmental processes.

Alan Turing postulated in 1952 that structural and temporal interactions of proteins

(he referred to them as morphogens) generate complex dynamics in biological sys-

tems (Turing, 1952). Systems similar in spirit to Turing’s original models have been

6Signalling can also occur by passing proteins through special gap junctions in the cell membrane
of adjacent cells
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proposed in theoretical biology (Meinhardt, 1982) and computer graphics (Turk,

1991), and produce beautiful and complex spatio-temporal patterns (see §2.2.5).

Reaction-diffusion systems are interesting and generate very complex patterns; how-

ever, the research of this thesis explores very basic patterns and their effect on

growing forms. One simple pattern, for example, is the gradient of morphogens

that emerges by continuously producing and diffusing a decaying morphogen from

a cell or region. In biological systems, these gradients can be used by cells to infer

coordinate systems or positional information (Wolpert, 1969). Early experiments

with the limb bud model (§5.1) showed that SDS didn’t need a very complex com-

munication mechanism (at least at this early stage), all it needed was a mechanism

for producing morphogen gradients. This model is described next.

3.4.2 A Morphogen Model of Communication

In SDS, a model of cell communication based on morphogen patterning has been

chosen. The cells in an s-morph contain morphogens that diffuse between neigh-

bouring cells and decay over time. This model allows cells to communicate over

short distances and for morphogen gradients to be established. The module

SimulateMorphogens(∆̃t) simulates the flow of morphogens around an s-morph over

a time interval. The flow of morphogens around an s-morph could be modelled in

a number of ways, some of which are illustrated in Figure 3.6. SDS uses the model

shown in Figure 3.6b as it is the simplest approach capable of modelling morphogen

gradients. The model can be summarised as follows:

• There is a finite set of morphogens,

• Morphogens exist inside cells where they are measured with a concentration

value,

• Morphogens can be created or destroyed within a cell,

• Morphogens are transported around the s-morph by diffusion,

• Morphogens decay over time,

• Every cell accepts and diffuses all morphogens,

• Cell membranes are negligible,

• Signalling is juxtacrine7 (occurring only between adjacent cells), and

7Cell signalling in early development can be categorised as juxtacrine or paracrine. Juxtacrine
signalling occurs between two neighbouring cells by passing proteins through gap junctions in the
shared membrane, and paracrine signalling involves diffusing proteins through the extracellular
matrix (over short distances).
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• Diffusion is isotropic.

Figure 3.6: Different morphogen models in 2D. The shading represents morphogen
concentration in the system. (a) The “ideal” model in which morphogen diffuses con-
tinuously throughout the shape. This would require an analytic representation, which
only exists for trivial distributions. Some alternative models include: (b) restricting
the morphogen to exist only within cells, modelling the morphogen as (c) constant or
(d) linearly varying within each triangle, or (e) discretising the space and modelling
morphogens as constant within each spatial unit.

A morphogen is a cell variable, denoted as cφ. The morphogen concentration is a

continuous value in the range [0, vol(c)]. Each morphogen has a rate of diffusion,

Dφ, and a rate of decay, Cφ, that is specified in the growth model. Diffusion of

morphogens occurs between neighbouring cells and morphogens decay within cells.

This is modelled using the standard particle diffusion equation:

∂φ

∂t
= Dφ∇2φ− Cφφ (3.3)

This equation is discretised over the s-morph structure following the assumptions

given above, and is simplified by the fact that morphogens are represented as a single

value within cells and diffuse isotropically. The specific discretisation for SDS2 and

SDS3 is presented later (§4.6,§6.6).

At this point the structural representation, cell behaviour model, and cell communi-

cation models used in SDS have been presented. The cell behaviour model lets cells

perform actions. Some of these actions, such as cell division, causes new cells to be

added to the s-morph. This requires that the simplicial complex be adjusted to make

room for the new cell. This cell division operation, and the structural operation of

cell movement, are now discussed.

3.5 Structural Transformations

In developmental systems a structural transformation is a discrete modification of

the structure of an organism or form. For example, adding or removing a symbol in
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an L-system string, splitting a cell wall in a Map L-system, or collapsing an edge in

Vertex-Vertex systems are all structural transformations.

In SDS, structural transformations modify the structure of an s-morph by adding

or removing cells, edges and simplexes. Two transformations have been explored in

this research: cell division and cell movement. Cell division is a transformation that

replaces one mother cell with two or more daughter cells. Structural cell movement

(not to be confused with the normal spatial movement of a cell) is a transformation

that dynamically adapts the structure of an s-morph as cells move across simplex

boundaries. Structural transformations can furthermore be categorised either as

active or passive. Cell division is an active transformation as cells can choose to

execute it. Structural cell movement on the other hand, is automatically performed

when the right conditions occur, and as such, is passive.

This section briefly reviews and rationalises structural transformations in related

systems and then provides an overview of the two transformations used in SDS.

3.5.1 Background

In nature, early biological development consists of processes such as: cleavage divi-

sions, pattern formation, morphogenesis, cellular differentiation and growth (see e.g.,

Gilbert, 2006). This thesis is primarily concerned with morphogenesis, the process

by which cells proliferate, organise and form complex structures. The fundamental

processes of morphogenesis are (Gilbert, 2006, p13):

• cell division,

• cell movement,

• cell death,

• cell growth,

• cell shape changes, and

• changes in the composition of cells and secreted products.

Cell division, or mitosis, involves a complex process of genome duplication and mem-

brane cleavage (Gilbert, 2006, p111). Through this process the multitude of cells

that constitute a multicellular organism are generated. Another important process

in morphogenesis is the movement of cells in an organism or developing embryo. Cell

movement supports many fundamental processes: the aggregation of dispersed cells;

the relocation of groups of cells; the dispersal of locally manufactured cells around

an organism; and the formation of connective cell networks (Davies, 2005, p96).
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It has been extensively demonstrated in simulation that cell movement (through

differential adhesion) can self-organise specific structures and patterns (Matela and

Fletterick, 1979; Hogeweg, 2003). The death of a cell can arise necrotically from poi-

soning, membrane rupture, physical stress and starvation. Cell death can also be a

programmed part of development where it is referred to as apoptosis (Gilbert, 2006,

pp158–160). This can be advantageous to an organism for redistributing resources

or when creating complex structures, such as in the formation of mammalian fingers

or toes via death of inter-digital tissue (Gilbert, 2006, pp522–523).

In SDS, the structural transformations are cell division and cell movement. The

other processes are not considered as structural transformations and are modelled

in the physical model (cell growth) and growth and morphogen models (changes

in the composition of cells and secreted products). Cell death is not considered in

SDS, as it was never required in the growth models designed; however, cell death

could broaden the range of forms the system can generate, and could be easily

accommodated within the current framework (§9.2.1).

Structural transformations such as cell division, growth, and movement, have been

modelled in different ways. Arguably the most elegant formalisation of cell division

is given by L-systems, where the simple rule a→ bc signifies that a cell of type a will

divide into two cells of type b and c. Moreover, their relative positions are given:

b is to the “left” of c. Other systems incorporate cell division or part replacement

depending on the structure they use. Other L-system transformations include: a→
b which replaces a geometric part with another, ab→ ba which moves parts around,

and ab→ a which deletes a part.

Structural transformations are essential in developmental systems and the complex-

ity of performing transformations depends on the structural representation used.

In L-systems, for example, modelling the division of a single cell is a trivial oper-

ation; however, in Map L-systems, it involves a number of steps. Map L-systems

are L-systems that operate on planar maps, or equivalently, graphs (Lindenmayer

and Rozenberg, 1979). In this representation, the edges of the graph model cell

walls, and the faces or regions model the cells. The axiomatic operations in this

system add, replace, delete or subdivide cell wall segments. To perform cell divi-

sion, i.e., dividing a face in two, requires a rigid sequence of cell wall manipulations.

In SDS, particularly in the 3D case, the division and movement transformations

are very complex. A primary contribution of this thesis is the exploration of these

transformations and comparison of some different approaches.

Other systems model structural transformations more abstractly. For example, in

Kaandorp’s model of accretive growth (described in §2.2.2) the single structural
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transformation is a “growth step”, in which a new mesh layer is created around the

old one. For each vertex of the mesh, a growth function determines the direction and

amount of local growth that occurs. The mesh is adapted as necessary to preserve

or remove detail. In this model, as with the other continuum models, cell division

is abstracted away to surface growth.

Later in this thesis, details on how these and other developmental systems perform

structural transformations will be further discussed (§4.1,§6.1.2). We now consider

how cell division in SDS can be modelled.

3.5.2 Cell Division

Cell division in SDS involves the transformation of an s-morph by replacing a divid-

ing mother cell with two or more daughter cells. From a structural point of view, the

division transformation needs to remove the mother cell from the simplicial complex,

add the new daughter cells and reconfigure the local structure so that no simplexes

overlap and no hinges occur. Cell division in SDS is performed by the module

PerformCellDivide, outlined in Algorithm 2. PerformStructuralDivision is the

key component, it transforms the structure of the s-morph and returns the set of

daughter cells, C ′. After the structure has been transformed, the mass of the mother

cell is distributed evenly amongst the daughter cells. The growth model may need

access to the newly created cells (to distribute morphogens or to assign special cell

variables), and so PerformCellDivide returns the daughter cells.

Algorithm 2 PerformCellDivide(c,d)

PerformStructuralDivision(c,d)

Let C ′ be the newly created cells
Remove c from C
for c′ ∈ C ′ do
c′m = cm

|C′|
compute c′r from c′m

end for
Return C ′

Structural cell division can be implemented in a number of ways, ranging from sub-

dividing a neighbouring triangle in SDS2 (Algorithm 6 (p78)) to Delaunay tetra-

hedralisation schemes (Algorithm 11 (p127)). A key contribution of this research

is the presentation and comparison of different approaches (§4.4,§6.4). A range of

factors must be considered when implementing a cell division algorithm, for exam-

ple: should the neighbourhood connections of the mother cell be split in exactly two

amongst the daughter cells?
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Assuming that a cell divides in a direction d, into exactly two daughter cells, C ′ =

{a, b}, experimentation with SDS has shown that the following considerations are

important when implementing a good structural cell division algorithm:

1. a and b should be neighbours (localised),

2. bx ≈ ax + dα, for some α ∈ R (directional division), and

3. |N(a)| ≈ |N(b)| (topologically symmetric division).

The first rule states that the daughter cells should be neighbours. This corresponds

to a physical understanding of how cell division in nature occurs. In addition, a

structural cell division operation should only modify the local structure. If the effect

of a dividing cell propagates throughout an s-morph it may be difficult to localise

development and form coherent modules. The effects could either be structural

modifications that propagate throughout a mesh or a big “jump” in the physical

model8. The issue of local transformation is discussed later (§8.5).

The second rule states that the daughter cells should lie in the specified axis of

division. The degree to which the approximation holds is dependent on the di-

vision technique. For example, simplex subdivision in SDS2 (Algorithm 6 (p78))

only loosely approximates this equation, whereas the balanced division algorithm

(Algorithm 4) satisfies it.

The third rule evenly distributes the mother’s topological connections amongst the

daughter cells. Maintaining balance this way across an s-morph makes the system

easier to use, and was required for the forms generated in the experiments. There

may be other requirements of a cell division transformation, including physical sta-

bility and geometric efficiency (discussed later §8.1).

From a generative perspective, cell division is about adding new elements to an s-

morph, and hence a division operation is not limited to producing just two daughter

cells. Algorithm 4 (p73), for example, uses additional stabilising cells in order to

distribute the neighbours more symmetrically between the daughter cells. Sections

4.4 and 6.4 present some different algorithms for cell division in triangular and

tetrahedral meshes. The second important structural transformation in SDS, that

of cell movement, is now considered.

8A jump, or discontinuity, in the physical equations corresponds to a dynamical catastrophe
(Thom, 1975).
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Figure 3.7: (left to right) A cell (shaded) in SDS2 crosses over an edge, causing the
two triangles to overlap.

3.5.3 Cell Movement

The cell movement transformation allows the structure of an s-morph to adapt to the

movements of cells. As cells move through space they may move into positions where

simplexes overlap (see Figure 3.7), which is not permitted. One solution would be to

näıvely prohibit simplexes from overlapping, by detecting and preventing collisions

between cells and simplexes. In SDS, this technique is used for boundary cells that

collide with boundary simplexes (see §3.6). For all the other cases, SDS reconfigures

the mesh, giving cells more freedom in moving around within an s-morph. This

approach balances the extremes of having a very rigid structure (e.g., a mesh that

doesn’t change at all) and a very loose structure (e.g., Fleischer’s loosely coupled

cell system (Fleischer, 1995)).

The early experiments performed with SDS2 showed that this technique leads to

visually organic arrangements of cells (Figure 3.1). This adaptive operation also

leads to low energy structures, which is highly beneficial when using integration

methods that may become unstable under high stresses.

Cell movement is implemented in SDS by a number of modules. MovementDetected()

looks at the current state of an s-morph and detects whether a cell movement trans-

formation is required. During a single time-step, many cell movement transforma-

tions may need to be performed. While it could be possible to perform multiple

structural transformations in parallel, a simpler approach is to rewind time back

to the first detected movement, and then perform a single structural movement.

TimeOfFirstMovement() and RewindSimulation(∆̃t) carry out these two tasks. In

the implementation of SDS2, it was assumed that — as the time-step was very small

— only one cell movement ever occurred at a time, so these modules were only im-

plemented in the 3D system. The PerformCellMove(cell) module performs the cell

movement operation. By assuming that only one cell movement has occurred, the

algorithm is greatly simplified.
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Cell movement in 2D can be performed with a trivial edge-flip operation (§4.5).

This operation does not generalise to 3D, and as a result, the 3D transformation is

significantly more complicated (§6.5).

Active movement Cell movement can be considered as an active transformation,

for example in modelling cell migration. Cell migration is an important part of

biological development (Gilbert, 2006) but was not extensively considered in this

research. Models of cell-directed movement could be incorporated into SDS either

by allowing cells to control their motion, or by adding explicit movement actions

(for example, a transformation that swaps the positions of two adjacent cells).

The two key transformations presented here, cell division and cell movement, allow

an s-morph to grow in complexity and let cells distribute themselves throughout an

s-morph. The cell movement transformation discussed here is triggered as a response

to cells moving around spatially, pushed around due to the forces modelled in the

s-morph. The physical model that describes this motion is now discussed.

3.6 Physical Model

A key goal of the research presented in this thesis was to model the deformations

that occur when soft objects come into contact. These deformations are modelled

in SDS through the use of a physical model, implemented as a physical simulation

that runs in parallel to the structural transformations, morphogen simulation and

growth model. In a nutshell, s-morphs are modelled as mass-spring systems, with

the cells as point masses and the simplexes as springs. The simulation causes the

cells to move around, forcing the s-morph into a shape that has low potential energy.

Unlike related developmental systems, SDS3 uses a deformable model of local volume

conservation. The system handles collisions amongst surfaces, which means that the

components of an s-morph never intersect in space. The physical model of matter

in SDS has the following properties:

• a growing region of the s-morph forces its surroundings to expand and re-

organise around it,

• regions of the s-morph resist compression, giving solidity to an s-morph, and

• the surface of an s-morph doesn’t intersect either with itself or with other

objects in the world.

This section first looks at how physical models have been used in computer graphics

and developmental systems, and then presents in detail the approach used by SDS.
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3.6.1 Background

Many physical factors influence biological development, including gravity, pressure,

surface tension, temperature, radiation, magnetic fields, friction, and viscosity. Evo-

lution has exploited these physical laws to generate the various functional forms we

find in nature. D’Arcy Thompson emphasised the importance of studying these

physical effects alongside traditional biology in order to truly understand biologi-

cal development (Thompson, 1942). Many patterns and forms we find in nature

can be explained by simple processes governed by physical laws, including the ar-

rangements of bubbles in foam, zebra stripes, sand dunes, and mineral dendrites.

(These examples and more can be found in Ball’s The Self-Made Tapestry (Ball,

2001) which explains many different models of pattern and form development.) In

cellular systems, simple processes can lead to complex organic structures. Hogeweg,

for example, demonstrated that a variety of natural patterns such as segmentation

and budding could emerge through differential cell adhesion alone (Hogeweg, 2003).

Computer graphics uses physical models to achieve visual realism and realistic dy-

namics. In modern computer games, for example, physical simulation middle-ware

is often incorporated to provide many realistic physical effects, including collisions

between objects, fluid dynamics, and rag-doll physics. Physical simulation is also

used in 3D animation and modelling to model phenomenon such as ocean waves,

fracturing objects, and fire and smoke effects (O’Brien and Hodgins, 1999; Fournier

et al., 1987). In developmental modelling, the incorporation of a physical model is an

effective way to achieve natural forms, as has been noted by computer graphics and

artificial life researchers alike (Eggenberger, 2003; Jirasek et al., 2000; Kaandorp

and Kübler, 2001). Combaz and Neyret’s system (§2.2.4) most elegantly demon-

strates that a simple growth process coupled with an elastic physical model results

in complex organic folded structures. Details of some physical models used in devel-

opmental systems are discussed later (§4.1, §6.1). Section 6.1 also reviews a number

of different approaches to physical modelling in computer graphics in general.

3.6.2 Modelling Physics in SDS

The physical model in SDS was originally designed to address the following problem.

Consider the s-morph in Figure 3.8. An edge between two cells indicates that they

are neighbours and should be in contact, hence the length of an edge should equal

the sum of the radii of the cells it connects. Figure 3.8 (a) shows an ideal situation

in which the cells are arranged so that neighbours are touching. As the center

(shaded) cell grows it would be ideal to move all the cells into a configuration such
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that all neighbours are touching but not overlapping. Image (b) illustrates that,

in this example, this isn’t possible, as the gaps between the cells cannot be closed

sufficiently. This dilemma could be resolved in a number of ways: For example, by

allowing the cells to take arbitrary polygonal shapes, or by changing the topology

by removing the edges that are too long or too short.

Figure 3.8: Deformation of an s-morph due to cell growth. (a) An s-morph contains
cells and a mesh (both shown). (b) As the shaded cell changes its size, the mesh
deforms. Ideally we would like all neighbouring cells to touch sides, but as this example
demonstrates, this is generally impossible, and thus this requirement must be relaxed.

SDS follows a physical modelling approach in which an energy term measures how

close an s-morph is to an ideal configuration. The goal of the simulation algorithm

is then to reduce the energy of an s-morph to a minimum. The strategy adopted by

SDS is simple and works well, in 2D a mass-spring system is used and in 3D a gener-

alised mass-spring system is used, in which both edge and tetrahedral springs. This

approach provides a simple approximation of the complex dynamics within a soft

body and is common in physical simulation (Müller et al., 2008; Turini et al., 2007).

Mass-spring systems have also been used previously to model the physics within cell

complexes (Eggenberger, 2003; Streichert et al., 2003; Smith, 2006; Lindenmayer

and Rozenberg, 1979).

Re-using the same mesh throughout the different aspects of SDS (physics, cell com-

munication, and geometry) keeps SDS conceptually simple and relatively easy to

implement. Other physical simulation methods, such as mesh-free simulation (re-

viewed later in Section 6.1.1) would arguably provide a more sophisticated and

accurate simulation, but this would incur a higher computational cost and signifi-

cantly increase the complexity of the implementation. Moreover, the results shown

in this thesis demonstrate that the mass-spring approach is sufficiently capable of

producing a variety of organic shapes efficiently, and with perceptually believable

physical behaviour.

The mass-spring model in SDS defines energy-minimising forces on an s-morph’s

mesh which causes the geometry to behave as a soft elastic object. In 2D this

is achieved by modelling the edges as springs, and in 3D by modelling both the

edges and tetrahedra as springs (Figure 3.9a). For each simplex, s (edge, face,

and tetrahedron), the dynamics of the simplex spring is controlled with a stiffness
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Figure 3.9: Calculating the rest length of an edge. (a) A simple SDS2 s-morph with
three cells connected with edge springs. (b) The rest length of an edge connecting two
cells a and b is determined to be the sum of their radii: ar + br.

coefficient, skd , and damping co-efficient, skdamp . The radii of the cells, cr, specify the

desired rest state of all the edges, faces, and tetrahedra (Figure 3.9b). Neighbouring

cells wish for their surfaces to be just “kissing” and resist attempts at pulling them

apart or pushing them together. To inhibit the intersection of the surface of an

s-morph, a collision detection and handling system was incorporated (though this

was only required and implemented in SDS3).

Biological cell growth combined with mitosis results in a massive increase in size

of an organism. Different rates of growth, or allometry, are evident in developing

organisms. Some developmental systems cannot model cell growth due to limitations

in the representation of structure, cellular automata being a prime example. The

simplicial complex representation used in SDS does not suffer from this drawback.

The physical simulator is incorporated into SDS via the SimulatePhysics(∆t) mod-

ule which updates the physical properties of an s-morph by the specified time incre-

ment. The simulator also provides the HandleCollisions() module, which detects

and handles collisions within the system. This includes collisions within an s-morph

that occur between its boundary cells and boundary simplexes, collisions between

s-morphs and static geometries within the world, and collisions between multiple

s-morphs. The final component of the simulator is UpdateCellState(∆̃t), which

updates other cell variables that have a continuous rate of change. For example cell

radius, cr, is modified by the rate of change variable c∆r. Theoretically this rate

of change is continuous, c∆r(t) = dr
dt

, but due to the discrete, step-wise nature of

the simulation, c∆r is assumed to be constant over each time interval [t, t + ∆t].

With relatively small step sizes this simplification is unlikely to affect the modelling

capability of SDS, and could always be improved if finer control is required.

The physical model is an important component of SDS. By modelling simplexes as

elastic elements, an s-morph always has an appearance of being soft, squishy, and

organic. Detecting and resolving collisions between boundary cells and simplexes

ensures that the modules of an s-morph never intersect and spatially interact in a

natural manner.
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3.7 Conclusion

This chapter introduced the Simplicial Developmental System. SDS defines a rep-

resentation called the s-morph (§3.2) and a simulation framework for iteratively

transforming the s-morph. The system is composed of a number of components:

the physics simulator (§3.6), the cell behaviour model (§3.3), the morphogen simu-

lator (§3.4), and the structural transformations (§3.5). The SDS framework states

at a general level how each of these components should work, the remainder of the

thesis details exact implementations in 2D and 3D.

When presenting his developmental system, Fleischer postulated the question: “Why

should we have any faith that this abstraction will work?” (Fleischer, 1995, p14).

The goals of SDS are creative rather than scientific, and if “work” is taken to mean

“able to generate interesting and complex forms”, the question still applies. By mod-

elling some of the fundamental processes of morphogenesis (§3.5.1) we can begin to

have confidence that the system is capable of reproducing some interesting devel-

opmental phenomena. SDS incorporates a number of these processes, including cell

division and cell movement, but not others, such as cell death. These processes were

chosen to support the implementation of some biological models of development (§5)

and, as this thesis demonstrates, are sufficient to generate complex organic geome-

tries. This level of abstraction was sufficient for the goals of this research, but there

is no doubt that the incorporation of other developmental processes will increase the

expressiveness of SDS and the range of forms it can generate (see §9.2). There are

many more interesting theoretical questions about developmental systems — one

particularly interesting example is, “What is the minimal set of biological processes

necessary to generate structure X?” These kinds of questions may be addressed in

future research, but lie outside the scope of the research presented here.

The remainder of this thesis discusses how SDS can be implemented in two and three

dimensions, compares alternative designs of SDS components, and most importantly,

demonstrates that SDS can successfully generate complex organic forms. A large

number of symbols were introduced in this chapter that will be used throughout this

thesis. Table 3.2 summarises this notation for reference. The next chapter describes

how SDS can be implemented in two dimensions.
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Notation Description
c cell
cx cell position
cv cell velocity
cm cell mass
cr cell radius
c∆r rate of change of cell radius
cφi concentration of morphogen φi in cell
c∆φi rate of change of morphogen φi in cell

csurface true if a cell lies on the boundary of an s-morph
c... custom cell variable (e.g., cfrozen (§6.3.8))

N(c) set of neighbours of cell c
vol(c) volume of cell

s a simplex (edge, face, or tetrahedron)
skd stiffness coefficient of s

skdamp damping coefficient of s
s... custom simplex variablea

R(s) rest size of simplex s
V (s) actual size of simplex sb

E(s) energy of a simplex
Fs(c) force acting on cell c by simplex s
F (c) total force acting on c

Φ set of morphogens for a growth model
φi morphogen i

Dφi morphogen diffusion coefficient
Cφi morphogen decay coefficient
∇φi gradient of φi
∇2φi Laplacian of φi

C set of cells of an s-morph
E set of edges of an s-morph
F set of faces of an s-morph
T set of tetrahedra of an s-morph
S set of all simplexes of an s-morph

c ∈ s true if simplex s is attached to cell c
a An arbitrary variable can be associated with a simplex

(e.g., the simplex rest scale multiplier in §6.3.7).
b The actual size of a simplex can be negative (see Equation

6.10).

Table 3.2: Notation used in this thesis.



Chapter 4

A 2D Developmental Modelling

System

This chapter presents the details of a 2D implementation of SDS, called SDS2. This

system was initially prototyped in order to design and explore the concepts behind a

novel physically simulated and embedded developmental system. The eventual goal

was to build a generative 3D form system, with the view that much of the design

of SDS2 could be easily generalised into 3D. Two biologically-inspired models of

development were implemented using SDS2: a limb bud model (used to generate

the form shown in Figure 4.1) and a stripe generation model. These models were

used in some experiments performed with SDS2 and demonstrate how SDS is able

to generate forms and patterns. These results are presented in the next chapter.

This chapter describes the design of SDS2, and includes an examination of:

• different algorithms for modelling cell division on a triangular mesh,

• how structural cell movement reduces to a simple edge-flip operation, and

• the physical coupling between cell system and triangular mesh.

Many existing developmental systems operate in two dimensional space, some of

which were outlined earlier (§2.1.4,§2.1.5). SDS2 draws on a number of features

from existing systems. It has a structural representation similar to Matela and Flet-

terick’s triangulated graph model (§4.1.3), a rule-based model of cellular behaviour

similar to Fleischer’s multi-mechanism model (§4.1.2), and incorporates a physical

model acting upon a structure (as found in Cell Systems (§4.1.1)). SDS2 unifies

these features into a common framework and incorporates new functionality, such

as allowing cells to passively modify the structure of an s-morph as they move, and

allows cells to communicate by modelling morphogen flow. Before the details of

59
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SDS are discussed, it is important to consider how previous related systems model

development in 2D.

Figure 4.1: A starfish–like form generated using SDS.

4.1 Related Work

This section examines some existing methods for modelling development in 2D and

provides context for the design of SDS2. Comprehensive reviews, found in Stanley

and Miikkulainen (2003) and Prusinkiewicz (1993), can be consulted for descriptions

of other 2D developmental models as this section only describes the work most closely

related to SDS.

4.1.1 Map L-Systems and Cell Systems

Map L-systems generalise L-systems to operate on 2D models of cell structures

(Lindenmayer and Rozenberg, 1979). Cell layers are represented as graphs, where

(labelled) edges represent cell walls, closed faces represent cells and rewrite rules

operate on the edges of the graph. A developmental model consists of a labelled

graph and a set of rewrite rules. A single developmental step transforms the graph

using the rewrite rules. Expressing the developmental model as a set of rewrite rules
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greatly simplifies working with a 2D structure. However, some operations, such as

cell division, require a complex sequence of wall rewriting rules.

The complexity of modelling cell operations in Map L-systems was addressed by the

Cell Systems approach, which focusses on cell operations, rather than wall operations

(de Boer et al., 1992). Cell Systems supports the simulation of 2D pattern and

shape formation for exploring morphogenesis in the context of theoretical biology.

It incorporates a physical model of mechanical cell interactions caused by osmotic

pressure and wall tension. Additionally it incorporates vector fields (e.g., gravity,

morphogenetic fields) in order to provide cells with directional information they can

use when dividing.

A cellular structure in a Cell System consists of a finite set of cells, each with

a polygonal shape and state information. The cells are non-overlapping polygons

that form a polygonal mesh by connecting together. The physical model (called a

pressure-tension model) consists of two components: cells exerting pressure on their

boundary walls, and walls modelled as linear springs with masses at the vertices of

the cell polygons. The cellular structure changes upon cell division, which is con-

trolled by L-system-like production rules. The rule “A → B ↑ (α)C”, for instance,

indicates that a cell of type A divides into two cells of type B and C with the divi-

sion wall oriented at an angle of α degrees from the reference vector at the center

of A. The development proceeds as a sequence of steps, where each step involves

applying all production rules, computing the steady state of the physics system, and

updating the vector field.

Map L-systems and Cell Systems show how a grammar-based approach of devel-

opment can be applied to generate 2D structures. Although Cell Systems support

arbitrary polygonal cell shape and model material physics, it differs from SDS2 in a

number of aspects. The physical model in SDS2 models connections between cells

with springs, whereas in Cell Systems, cell walls are modelled with springs. Cells

in SDS2 are free-floating and can move around within the adaptive mesh, whereas

in Cell Systems, cells are fixed to a specific neighbourhood. Unlike Cell Systems,

SDS2 also incorporates a method of cell communication, allowing cells to coordinate

their activity over short ranges. These differences primarily exist because SDS2 was

explicitly designed to be generalisable to 3D. It is not obvious how a system that

models cells as polygons (like Cell Systems) can be easily generalised to 3D, without

being overly complex. Nonetheless, Map L-systems and Cell Systems are elegant

techniques for modelling the development of 2D cell systems.
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4.1.2 Fleischer’s Model

At the opposite end of the spectrum to L-system methods lies Fleischer’s multi-

mechanism model. This model considers cells as autonomous circular entities that

are continuously simulated in a 2D plane (§2.1.5). It is illuminating to examine

some of the details of this system. The fundamental entity is a cell, which, like SDS,

has a behaviour and a set of properties. Specifically, a cell has:

• state: that models properties and intracellular and surface chemicals,

• sensors : that are mapped into the cell state equations,

• state equations : differential equations that model changes in state, and

• behaviour functions : which map cell state to actions and state changes.

An example behaviour function is (from Fleischer, 1995, Eq2.8):

TimeToSplit(state, env) ≡ env[radius]>̃r0 ãnd state[split]>̃split threshold (4.1)

This equation indicates that a cell should split when its radius exceeds r0 and when

it has accumulated enough of the split protein. The ‘>̃’ and ‘ãnd’ operators are

continuous analogues used in place of the Boolean > and and operators, due to the

continuous nature of the system.

The model incorporates physical aspects of cell systems, such as viscous drag acting

on individual cells, mechanical barriers, collisions between cells, and cell adhesion

(Fleischer, 1995, p13). The circular cells move around the environment governed

by high viscosity dynamics F = mv with a viscous drag, kdrag = 32
3
ηr, where

η is the fluid viscosity. Cells have a motive force which can be specified via their

behaviour function. It can also be bound directly to their state variables, for example

(Fleischer, 1995, Eq2.6):

MotiveForce(state) ≡ (state[fx], state[fy]) (4.2)

A model of cell adhesion allows cells to stick together, where the adhesion forces are

computed from the contact area between the cells and the concentration of surface

factors (binding chemicals). The collision force between cells is computed based on

their overlap using a collision detection mechanism that also allows collisions with

other objects in the environment. The collision and adhesion forces are combined

using an empirically derived function.

The system is simulated by first gathering all the different components into a large

system of piecewise ODEs (PODEs). This system is then numerically solved up
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Figure 4.2: (a) A cellular layer modelled as a planar map, and its topology (dotted)
with a graph. This sequence of illustrations demonstrates the effects of the primitive
operations on the topology and the conceptual cell map. (b) The insertion of an edge
(bold) results in a change on the topology, but not in the number of cells. (c) An
edge exchange is performed, changing the topology of the layer. (d) An edge deletion
drastically changes the topology.

until a discrete event occurs, such as cell division. When such an event occurs,

the simulation is halted, the relevant action performed, and then the simulation is

resumed.

Fleischer’s system is different from SDS in that everything is expressed as PODEs

which are solved. SDS describes some components using ODEs (the physical model

and the morphogen model), however the focus is on incrementally updating the world

state, rather than as a system of equations to be solved. These two approaches offer

different ways to specify cell behaviour, either as a set of equations, or as a program.

The difference is purely conceptual as the two are theoretically interchangeable (a

program could solve a set of equations and a set of equations could describe most

cell programs).

4.1.3 Matela and Fletterick’s Model

Matela and Fletterick’s model of cellular layers was introduced earlier (§2.1.4). The

original formulation used planar maps to represent cellular layers, where the regions

correspond to cells. The graph represents the dual of the cell map, and under this

interpretation cell layers may be considered as planar graphs where cells are nodes,

and edges indicate neighbourhood relationships. In the original paper (Matela and

Fletterick, 1979) three basic operations were proposed: insertion, deletion and the

exchange of edges (demonstrated in Figure 4.2).

Matela and Fletterick showed that modelling a cellular layer with a general graph

results in biologically unstable networks, and so they restricted their attention to the

triangulated graph, which “was chosen because observation of living tissues shows

this pattern to be most common” (Matela et al., 1983, p360). From a structural
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point of view the triangulated graph reduces the set of primitive edge operations to

just one: the edge exchange, since other operations would void the triangulation.

Exchanging edges in a graph models the movement of cells. Using this operation

and two cell types, it was shown that cell self-sorting can occur under different

conditions (Matela and Fletterick, 1980). Edge exchange, or the edge flip, is an

important operation because for any set of points with a triangulation, any other

triangulation can be obtained through a sequence of edge flips (Ransom and Matela,

1984, p237). This means that the edge-flip is sufficient for modelling cell movement

at a topological level.

Matela and Fletterick’s original model was later extended to model cell division

(Matela et al., 1983; Ransom and Matela, 1984) and cell death (Duvdevani-Bar and

Segel, 1988). Matela et al’s model of cell division on triangulated graphs (Matela

et al., 1983; Ransom and Matela, 1984) is important to this discussion because

the representation of cell complexes is similar to that of SDS, and the cell division

operation is governed by rules similar to the SDS division guidelines (§3.5.2). These

rules are (from Ransom and Matela, 1984, pp238–240):

1. division involves the formation of a new vertex,

2. the new vertex is positioned on the graph adjacent to the dividing vertex,

3. changes in the pattern of edges around these two vertices are made to re-

establish the triangularity condition,

4. the number of neighbours around the new and dividing vertices are balanced

as equally as possible, and

5. (implicitly) cells divide into progeny which are both of equal size.

The cell division operation that implements these rules is based on a series of division

masks (see Figure 4.3). The masks enumerate each of the configurations in which the

dividing vertex has between four and nine neighbours and provide transformed sub-

graphs for each of these. Ransom and Matela noticed that this division mechanism

often resulted in cells with very large numbers of neighbours, so they provided a

balancing mechanism that allowed cells with more than nine neighbours to locally

rearrange themselves through edge exchanges (Matela et al., 1983). Figure 4.4 shows

a cell layer transformed with an edge exchange, followed by a cell division

The systems reviewed in this section illustrate different methodologies to modelling

developmental systems in two dimensions. SDS2 has aspects in common with these

systems, and can be considered as a synthesis of both Matela and Fletterick’s model,
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with its representation of a cell system with a triangulated mesh and division opera-

tion, and Fleischer’s model, with independent autonomous cells which are governed

by rules and communicate via morphogen signalling. A significant feature of SDS2

that has not been previously incorporated in existing systems (to the author’s knowl-

edge) is the use of an adaptive triangular mesh to allow more flexible cell movement

(§4.5). Having reviewed related work, SDS2 is now presented.

Figure 4.3: The division masks used in Matela et al’s model. Each pair of illus-
trations shows the structure before and after cell division, for cells with between four
and nine neighbours (from Ransom and Matela, 1984, Figure 4). Image courtesy of
Raymond Matela.

4.2 SDS2 Overview

The system presented here was created as a precursor to a 3D modelling system, and

as such, design decisions were oriented towards facilitating the transition to 3D. This

included aspects such as the representation of an s-morph as a triangular mesh, the

design of the structural transformations, and the re-use of the s-morph structure

in the physical and communication models. Ultimately, the design of SDS3 was
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Figure 4.4: (a) A cell complex with a cell (shaded) migrating towards the lower
right. (b) The movement is modelled as an edge exchange, and now the migrating
cell is in contact with the lower right cell. (c) The migrating cell divides into two,
resulting in the new complex shown.

formed by generalising the components of SDS2. Conceptually, this generalisation

is straightforward — triangles become tetrahedra and circular cells become spherical

cells. Technically, however, the generalisation posed many challenges (see Chapter

6).

The 2D prototype implements a subset of the full framework, including only the

components necessary to demonstrate the effectiveness of the technique. The proto-

type omits collision detection and doesn’t rewind the simulation for cell movement

transformations. This is primarily because SDS was formative when the prototype

was built, and it was found that collision detection can be omitted if there are no

surface-surface collisions. Rewinding the simulation for the cell movement transfor-

mation guarantees certain structural conditions (see §6.5); however, if the time step

is small enough, then only one cell movement will occur per step and rewinding is

unnecessary. Algorithm 3 covers the main simulation logic, incorporating the major

components of this implementation. The components are the s-morph itself, the

physics model, the cell division and movement transformations, and the morphogen

diffusion model.

An s-morph in SDS2 consists of a set of cells in 2D space connected together with a

triangulated mesh. Figure 4.5 illustrates an example s-morph and some visualisation

methods. Examples of valid and invalid s-morphs are shown in Figure 4.6.

The major components of SDS2 discussed in this chapter are:

• The physics model in SDS2, which models an s-morph as a mass-spring system

(§4.3),

• A comparison of cell division algorithms (§4.4),
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Algorithm 3 SDS2 Simulation Loop

t = 0
while t < duration do
SimulatePhysics(∆t)
if MovementDetected() then
PerformCellMove(c)

end if
UpdateCellState(∆t)
SimulateMorphogens(∆t)
RunCellPrograms(∆t) (may call PerformCellDivide)
t = t+ ∆t
Output world state for time t

end while

Figure 4.5: An SDS2 s-morph visualised in three ways. The geometric, or mesh
view, shows the simplexes of the s-morph; in this view the cells are shown as vertices.
The cell view shows the cells as circles, which is useful for visualising the sizes of the
cells. The cell dual view visualises the cells and provides a much clearer illustration
of an s-morph. In the dual view, a cell, c, is represented as a polygon, with |N(c)|
sides (one for each neighbour) and neighbouring cells share polygon edges. This view
corresponds roughly to the graphic dual of the mesh graph; however, the sizes of the
polygons reflect the sizes of the cells (as is also demonstrated in Figure 4.8).

Figure 4.6: The meshes of some s-morphs. (a) The simplest 2D s-morph consists
of three cells (represented by vertices in the mesh), three edges and a single triangle.
(b) More complex s-morphs are composed of sets of joined triangles. (c) An invalid
disconnected s-morph. (d) Another s-morph that is invalid due to a hole inside it. (e)
An invalid s-morph due to the presence of a hinge.
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Figure 4.7: Edge springs in SDS2. (a) Three adjacent cells and the edge springs
connecting them. (b) The rest length, R, of an edge spring is the sum of the radii of
the two cells it joins. The actual length, V , is the distance between the two cells. The
edge spring acts to minimise the difference between V and R.

• A model of cell movement, implemented as a simple edge-flip operation (§4.5),

and

• The discretisation of the morphogen model over a triangular mesh (§4.6).

4.3 Physical Model

S-morphs in SDS2 are modelled using mass-spring systems, in which cells are mod-

elled as point masses and edges are modelled as springs. The purpose of the springs

is to preserve the local structure of the geometry. The system is solved using a stan-

dard real-time numerical integration scheme (the mid-point method) with damping

added to increase stability. Collision detection and response can be incorporated

into the simulator to prevent the triangles of an s-morph from intersecting; however,

the developed prototype did not employ collision detection, as it was not found to

be necessary to achieve the results shown in Chapter 5.

The physical simulation system in SDS2 implements the SimulatePhysics(∆t) rou-

tine in the simulation loop. The model treats cells as point masses with mass

cm = πcr
2 connected together by springs along the edges1. The edges have a desired

rest size, R(s), which they attempt to maintain by applying forces on the adjacent

cells. These elements are all connected via dynamical equations, which are then

numerically integrated.

The dynamical equations The dynamical equations specify the motion of the

cells by measuring the energy of an s-morph and forcing it into a lower energy

1The primary difference between this physical model and the model in SDS3 (§6.3) is that the
3D model uses additional tetrahedral springs, in order to preserve local volume. The analogue of
this in 2D is to constrain the area within the triangles. This feature was not implemented in the
SDS2 prototype as the concepts in SDS were still formative; however, it is likely that adding these
triangle springs to an s-morph would increase its structural stability and allow the more regular
cell arrangements.
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configuration. A potential energy, E(s), for each edge spring is computed from its

current length, V (s), rest length, R(s), and stiffness coefficient, sk, using Hooke’s

Law (Equation 4.3). The stiffness coefficient is spring dependent.2

E(s) =
skd
2

(V (s)−R(s))2 (4.3)

For a spring connecting two cells a and b (and remembering that cx and cr denote

the cell’s position and radius) we have V (s) = |ax − bx| and R(s) = ar + br (this is

shown in Figure 4.7). After computing the current and rest lengths the potential

energy can be computed. The energy of each spring, s, generates a force on each

adjacent cell that acts to minimise E(s):

Fs(c) = −∂E(s)

∂cx
(4.4)

This equation can be understood by considering a spring, s, connecting two cells,

a and b. Taking sk = 1, the derivative of the potential energy of the spring with

respect to ax gives the spring force acting on cell, a, as:

Fs(a) = −∂E(s)

∂ax
= (1− R(s)

V (s)
)(bx − ax) (4.5)

Note that if R(s) = V (s), then the edge is in its desired state, and the force is zero.

If R(s) > V (s) then the edge is too short, and a is pushed away from b. Finally,

if R(s) < V (s) then the edge is too long, and a is forced towards b. The total

force, F (c), acting on a cell is the sum of forces from all the adjacent springs. This

summed force affects the cell’s position through the second order ODE:

d2cx
dt2

=
F (c)

cm
(4.6)

Splitting the equation into two first order ODEs, and applying the equation over

the simulation interval [t0, t0 + ∆t] gives:

cx(t0 + ∆t) = cx(t0) +

∫ t0+∆t

t0

cv(t)dt (4.7)

cv(t0 + ∆t) = cv(t0) +
1

cm

∫ t0+∆t

t0

F (c)dt (4.8)

2For the experiments shown in the next chapter the stiffness coefficient is generally the same
for all springs.
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Figure 4.8: A time-series dual view of the simulation of a slowly growing cell (marked
with a dot) in an SDS2 form. Spatial and structural cell movements cause the cells
to rearrange around the growing cell.

Numerical integration The SimulatePhysics(∆t) function updates the state

of the cells from the current time, t0, by an amount ∆t to the next time step, t1 =

t0 + ∆t. The SDS2 prototype solves Equation 4.7 numerically using the midpoint

integration scheme (Press et al., 2007, §17.1), which is fast and proved adequate for

the experiments that were performed. The scheme approximates the equation

f(t0 + ∆t) = f(t0) +

∫ t0+∆t

t0

g(t, f(t))dt

as

f(t0 + ∆t) ≈ f(t0) + ∆t ∗ g(t0 +
∆t

2
, f(t0) +

∆t

2
g(t0, f(t0))) (4.9)

by assuming the function g is constant over the integration interval, with an ap-

proximated value lying halfway between t and t+ ∆t. Equation 4.9 can be used to

approximate Equations 4.7 and 4.8 which gives an explicit update equation for cell

position and velocity.

Other Cell State Changes Cell state changes can also be considered as part of

the physical simulator. Like cell position, other cell variables change over time. For

example, the cell radius variable cr(t) is dynamic and is modified with the radius rate

of change variable dcr
dt

(t) = c∆r(t). An example of the effects of cell growth is shown

in Figure 4.8. In SDS2 (and SDS3) it is sufficient to integrate these variables with

a simple explicit Euler update, cr(t+ ∆t) = cr(t) + ∆t ∗ c∆r. A more sophisticated

integration scheme may be necessary if more precise cell state dynamics are sought.

4.4 Cell Division

This section compares some strategies for modelling cell division in SDS2 and

presents the method used in the SDS2 implementation. Cells that lie on the bound-

ary of an s-morph and cells that lie inside an s-morph are considered separately.
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Internal Division An internal cell is completely surrounded by simplexes. Figure

4.9 illustrates two approaches to dividing a cell that has an even number of neigh-

bouring simplexes. Experimentation revealed that the introduction of stabiliser cells

(method (d)) works better than the others. In method (c) the configuration is less

stable as the shape of the triangles is less regular than in method (d). This physical

imbalance means that the daughter cells may move a significant amount immediately

after the division. This could lead to the propagation of structural cell movement

events, which makes a developmental model difficult to control (see the discussion

for more on this §8.5).

(a) (b)

(c1) (c2)

(d)

or

Figure 4.9: Cell division with an even number of neighbours. (a) The shaded cell
has elected to divide in the direction shown. (b) The cell is split into two and its
neighbours are evenly distributed to the daughter cells resulting in two quadrilaterals.
(c1, c2) The two quadrilaterals can be triangulated in a number of ways, but the re-
sulting configuration is unstable. (d) An alternative method creates a more symmetric
configuration by adding extra stabiliser cells, shown in bold.

With an odd number of neighbouring simplexes only one stabiliser cell may need to

be added (see Figure 4.10). The behaviour of stabilising cells could be deferred to

the growth model, but it is sufficient to make them inert, unresponsive to stimuli and

diffusing any morphogen that enters, behaving essentially as empty space. A more

sophisticated behaviour would be to let the stabilising cells automatically merge and

die, dynamically adapting the mesh when appropriate.

Internal cell division is implemented in the SDS2 software following the stabilising

cell approach shown in Figures 4.9d and 4.10d1. The full implementation is given in

Algorithm 4, and illustrated in Figure 4.11. In short, the neighbours of the dividing

cell, c, are split into two groups by the half-space defined by cx and d (Figure 4.11a).

The neighbour cells are attached to the daughter cells depending on whether they lie
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(a) (b)

(c1) (c2)

(d1) (d2)

or

or

Figure 4.10: Cell division with an odd number of neighbours. (c1,c2) Applying the
same approach as in Figure 4.9 results in daughter cells with different numbers of
neighbours. (d1) Adding two stabiliser cells does not solve this discrepancy, but (d2)
adding just one does. The SDS prototype uses method (d1), however in retrospect
(d2) is a more symmetric approach.

in one half-space or the other. As shown in Figure 4.11b, the leftmost and rightmost

cells from both half-space groups are found and the edges between l1 and l2, and r1

and r1, are subdivided with stabilising cells. The final post-division configuration is

shown in Figure 4.11c.

Boundary Division A more expressive system is possible if we consider two types

of boundary division: along the boundary and away from the boundary. Division

along a boundary allows a surface to grow laterally by adding new cells as shown

in Figure 4.12. Division away from the boundary supports the development of

extrusions by adding new elements on top of the surface (see Figure 4.13). As with

internal division, it may be necessary to add stabilising cells in order to maintain

symmetry amongst the daughter cells.

The prototype implementation for division along a boundary follows Figure 4.12 (top

row and top path of bottom row), and for division away from a boundary follows

4.13b. The algorithm proceeds as follows: Given a cell c we can identify the two

surface neighbours l and r (Figure 4.14a). Depending on the direction of division,

d, the algorithm chooses between dividing along or away from the boundary. This

is decided by measuring the angle between d and the boundary edges as shown in

Figure 4.14b. A threshold angle, θ, determines whether division is performed along

(d1) or away from (d2) the boundary. Algorithm 5 and Figure 4.14 describe the

algorithm in full.
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Figure 4.11: Internal cell division in SDS2. (a) Cell c chooses to divide in direction
d. The neighbours of c can be split by a line perpendicular to d and intersecting c.
Cells oL and oR only exist if l1 and l2 (and r1 and r2) are not both surface cells.
(b) Division is performed by first splitting c into two cells c1 and c2 that lie along
the vector d, and adding the two stabilising cells cL and cR as shown. (c) The local
configuration after the division operation.

Algorithm 4 PerformCellDivide(c,d) when c is internal

Let ε be the desired distance between the daughter cells
Find l1, l2, r1, r2, oL, oR as shown in Figure 4.11a
c1 = c
Add a new cell c2

c1x = cx + dε, c2x = cx − dε
Let H = {x ∈ R2 : x− cx · d > 0}
for all b ∈ N(c) such that bx /∈ H do

Remove edge (c, b)
Add edge (c2, b)

end for
Split edges and add stabiliser cells cL and cR
Add new cells cL, cR
cLx = 1

2
(l1x + l2x), cRx = 1

2
(r1x + r2x)

Remove edges (l1, l2) and (r1, r2)
Add edges (l1, cL), (l2, cL), (r1, cR) and (r2, cR)
The configuration at this point is shown in Figure 4.11b
if oL exists then

Add edge (cL, oL)
end if
if oR exists then

Add edge (cR, oR)
end if
Add edges (c1, cL), (c1, cR), (c2, cL), and (c2, cR)
The configuration at this point is shown in Figure 4.11c
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Algorithm 5 PerformCellDivide(c,d) when c lies on the boundary

Let ε be the desired distance between the daughter cells
dl = lx−cx

|lx−cx|
dr = rx−cx

|rx−cx|
if d · dr > cosφ or d · dl > cosφ then

Perform division along the boundary
c1 = c
Add new cell c2

c1x = cx + dlε
c2x = cx + drε
Remove edge (c1, r)
Add edges (c1, c2) and (c2, r)
Find L and R as shown in Figure 4.14c2
L = ∅, R = ∅
for b ∈ N(c){l, r} do

if bx−cx
|bx−cx| · dl >

bx−cx
|bx−cx| · dr then

Add b to L
else

Add b to R
end if

end for
for b in R do

Remove edge (b, c1)
Add edge (b, c2)

end for
Find crl, clr as shown in Figure 4.14c3
Compute Lθ and Rθ as shown in Figure 4.14c3
if Lθ < Rθ and clr exists then

Add edge (c1, clr)
else if crl exists then

Add edge (c2, crl)
end if

else
Perform division away from the boundary
Re-orient d to point away from the s-morph as shown in Figure 4.14d2
c1 = c
Add new cell c2

c1x = cx − d′ε, c2x = cx + d′ε
Add edges (c2, l), (c2, r) and (c1, c2) as shown in Figure 4.14d3

end if
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Figure 4.12: Cell division along a boundary. The upper figure demonstrates the
trivial division of a cell with an odd number of neighbours. The lower figure illustrates
a non–triangular region that can form when dividing, which can be re-triangulated
either asymmetrically or with a peripheral stabilising cell.

Figure 4.13: Cell division away from a boundary as (a) one-sided or (b) symmet-
ric operations. A one-sided division results in a quadrilateral which must then be
triangulated into either (c1) or (c2). Method (b) is used in the SDS2 prototype.

Figure 4.15 shows an SDS2 simulation in which consecutive cell divisions occur.

Each frame is shown in mesh view and cell dual view. From the top left: (a1,b1)

The highlighted cell has elected to divide horizontally. (a2, b2) The instant it divides

two daughter cells and two stabiliser cells are created. The stabiliser cells are shown

in dark gray in b2. (a3,b3) The highlighted cell elects to divide diagonally. (c1,d1)

The four new cells and the resulting mesh are shown. (c2-c3,d2-d3) Another cell

chooses to divide. (e1-e3,f1-f3) After the last division the s-morph is unbalanced,

the light gray cell in (f2) is pushed towards the dark gray cell. In (e2) we see the

cell is just about to cross over an edge. (e3,f3) The result of performing a cell move

(both grey cells are now adjacent).
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Figure 4.14: Cell division on an s-morph boundary (see Algorithm 5). (a) A cell c
and its left and right surface neighbours l and r. (b) Division along or away from the
boundary is determined by whether the direction of division lies within a threshold
angle, for example direction d1 will result in division along the boundary and direction
d2 . (c1) A cell c divides along the boundary in direction d. (c2) The cell is split into
two daughter cells c1 and c2 as shown. The sub-surface neighbours of c are split into
two groups L and R which are reattached to the daughter cells. (c3) Finally, L and
R must be joined, this is done by identifying cells crl and clr as described in the
algorithm. (d1) A cell, c, may also divide away from the boundary. (d2) The division
direction is normalised to bisect the edges cl and cr. (d3) Cell c is split into two
daughter cells c1 and c2 and structured as shown.
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Figure 4.15: (left to right, top to bottom) A time series from an SDS2 simulation
in which three cell divisions and one cell movement operation occur. Each frame is
shown in mesh view and cell dual view. See the text for the description.
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4.4.1 Cell Division as Simplex Subdivision

The implementation for SDS2 cell division works well for triangular meshes, however

it does not generalise easily to tetrahedral meshes. Consider the internal cell division

algorithm (Algorithm 4). A key step in this algorithm involves dividing the set of

neighbours of a cell into two halves, attaching one daughter to one half and the

other daughter to the other half, removing the triangles which lie in the boundary

between the halves, and then restructuring the space between the two halves. The

obvious analogue in three dimensions is to split the set of neighbouring tetrahedra

into two halves, connect the daughter cells to their respective halves, remove the

tetrahedra which lie in the boundary between the halves, and then restructure the

space between the two halves. A brief examination of this problem reveals that there

are many different cases that can arise when splitting a set of tetrahedra into two

halves — the 2D case is trivial in comparison. Appendix B considers this problem

in more detail.

Therefore, with generality in mind, a division algorithm that could work in 2D and

3D was sought. This led to the idea of using simplex subdivision to model cell

division: when a cell divides, subdivide a neighbouring simplex in the direction of

division. Simplex subdivision applies to all simplexes: tetrahedra, triangles and

edges. Algorithm 6 outlines the method for subdividing a neighbouring face, which

also applies to SDS3 (see Algorithm 9 (p123)). Figure 4.16 demonstrates some

different cases of simplex subdivision in SDS2. Edge subdivision adds an extra

degree of accuracy when a cell wishes to divide in a particular direction.

Algorithm 6 Simplex subdivision

Input: c ∈ C, d ∈ R2

Choose the f ∈ F that lies in direction d, where c ∈ f
Subdivide f (see Figure 4.16a) by adding a new cell c2 at the center.
Replace c with c1

Output: c1 and c2

Of the cell division guidelines proposed in §3.5.2, simplex subdivision follows rule

1 (daughter cells are neighbours) and loosely follows rule 2 (directional division).

However, it is obvious that simplex subdivision does not result in topologically

balanced structures (rule 3). For example, in Figure 4.16a, we have |N(a)| = 7,

while |N(b)| = 3. In general, with triangular subdivision, we always have |N(a)| =
|N(c)|−1 and |N(b)| = 3 and with edge subdivision |N(a)| = |N(c)| and |N(b)| = 4.

This asymmetry may result in topologies that are difficult to work with (see §6.4).
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c a
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b

c a b

(a)
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(c)

Figure 4.16: Cell division modelled as simplex subdivision. Each of the three rows
demonstrates a different case, in which a cell c divides in the direction shown and is
replaced by two daughter cells a and b. (a) To perform triangle subdivision, choose
the triangle, t, adjacent to c that lies in the direction of division. Rename c to a and
add a new cell, b, in the center of t. Replace t with three triangles as shown. (b) To
perform edge subdivision, choose the edge, e, that lies closest along the direction of
division. Let a = c, as above, and split e with the new daughter cell, b, as shown. (c)
Edge subdivision can also be performed on the boundary as shown.
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4.5 Cell Movement

The cell movement transformation in SDS allows the structure of an s-morph to

adapt to the movement of cells (§3.5.3). As cells move around within an s-morph

they may occasionally come into contact with, or cross over, the edges of the mesh.

When this occurs the mesh may become invalid (due to overlapping triangles or

edges), a situation that must be avoided. An example of a series of SDS2 cell

movements are shown in Figure 4.17.

(a) (b) (c) (d) (e)

Figure 4.17: An example of a series of SDS2 cell movements. (a) A cell (shaded)
moves within an s-morph, causing a series of structural adaptations. (b) The cell is
just about to intersect with an edge (bold). (c) At the instant it collides with the
edge, the edge is flipped to the new configuration shown. (d) The cell continues to
move, causing a collision between an edge and a different cell, resulting in (e).

The cell movement transformation in SDS2 can be performed simply as follows:

When a cell crosses over an internal edge, an edge-flip is performed (Figure 4.18).

The edge-flip operation was first proposed as a model for cell movement by Matela

and Ransom (§4.1.3). They considered cell movement as the addition or removal

of edges, which in a triangulated graph can be reduced to the exchange of edges.

Duvdevani-Bar and Segel (1988) extended this model by considering the positions

of cells and allowing cells to move through space as a result of undergoing neigh-

bourhood exchanges. The primary difference between their model and SDS2 is that

in SDS2 the operation is performed only when a cell crosses over an internal edge.

This crossing is detected by performing a line intersection test between the edge and

the line segment between the points cx(t) and cx(t+ ∆t).

If a cell crosses a boundary edge, then the edge cannot be flipped. In this case,

SDS2 simply splits the crossed edge with the cell, as is illustrated in Figure 4.19.

The special case where both the moving cell and the crossed edge lie on the sur-

face (Figure 4.19b) should be handled appropriately. This case never came up in

the experiments performed; however, it could be dealt with by using the collision

detection and handling in the physical simulator.
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Figure 4.18: A cell movement transformation in SDS2. (a) The mesh of an s-morph
with four cells a, b, c, and d and the cell dual view of the s-morph. (b) Cell a at the
instant before it crosses over the edge bd. (c) The movement transformation flips the
edge bd replacing it with a new edge ac. The cell move is best visualised using the
cell dual view, cell a comes into contact with cell c, while cells b and d are separated.

hinge

(a) (b)

Figure 4.19: SDS2 boundary cell movement. (a, left) An internal cell moves towards
a boundary edge. (a, right) The cell movement transformation bisects the edge with
the cell. (b) If a boundary cell is pushed into a boundary edge, näıvely splitting the
edge will result in a hinge and therefore an invalid s-morph structure.

In practice it was found that the time step used in the experiments was small enough

such that multiple crossings did not occur simultaneously. For simplicity, any de-

tected movement is assumed to occur at time t+ ∆t and hence there is no need to

rewind time before performing the movement operation. TimeOfFirstMovement()

thus always equals ∆t and hence RewindSimulation(∆̃t) is unnecessary. If mul-

tiple crossings occur, or if greater accuracy and robustness is required, then these

components would need to be implemented. The SDS3 prototype implements these

methods (§6.5), and the techniques used could be easily applied to an SDS2 imple-

mentation. A cell movement occurring in an SDS2 simulation is shown in Figure

4.15(e2-3).

4.6 Morphogen Model

In SDS, morphogens are contained within the cells, and flow between adjacent cells

(refer to Figure 3.6b). In SDS2 this is implemented in the framework through
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the SimulateMorphogens(∆t) function. The growth program specifies a set of m

morphogens Φ = {φ1, . . . , φm}, each with corresponding diffusion and decay coef-

ficients, Dφi and Cφi . Each cell contains a continuous amount of each morphogen.

The morphogen equation is spatially discretised over the triangular mesh following

the assumptions given in §3.4.2. Recall the morphogen equation is:

∂cφ
∂t

= Dφ∇2cφ − Cφcφ (4.10)

To compute ∇2cφ at each cell for some timestep, the following general discretisation

is used:

∇2cφ =
∑

n∈N(c)

γ(n, c)(nφ − cφ), (4.11)

where γ(n, c) is a weighting function. γ(n, c) = (|N(c)||nx − cx|2)−1 is used in the

simulations shown in the next chapter, but different γ(n, c) functions will give differ-

ent morphogen dynamics. In retrospect, γ(n, c) = |cx − nx|−1, as used in SDS3 (see

Equation 6.27), is a much simpler function and still allows the formation of mor-

phogen gradients. The SimulateMorphogens(∆t) function updates the morphogen

values using an explicit Euler step:

cφ(t+ ∆t) = cφ + ∆t(Dφ∇2cφ − Cφcφ), (4.12)

where cφ is the value at time t, and the result is clamped to the range [0, vol(c)].

The morphogen simulation performed is somewhat näıve but produces acceptable

results (e.g., Figure 5.13). In particular, the Euler integration scheme does not

conserve the morphogens based on the continuous equation. In practice, however,

the morphogens are crudely used to either set up gradients and give cells an axis of

division, or to demarcate spatial zones using the gradients. In this case, the accuracy

of the simulation is not an issue. If higher accuracy is required then the resolution

of the triangular mesh can be increased or a more conservative integration scheme

could be used (e.g., fourth-order Runge-Kutta (Press et al., 2007, §17.1)).

4.7 Summary

This chapter presented the details of a 2D implementation of SDS, called SDS2.

In 2D, an s-morph is modelled as a system of circular cells connected together

with a triangular mesh. Algorithms were given for performing cell division and cell

movement on a triangular mesh, and it was shown how a mass-spring model can be

coupled to the cell system. Finally, it was described how the morphogen equation
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can be discretised on a triangular mesh. All these components form the machinery

of the 2D developmental system. The next chapter shows how to use this system in

order to generate organic structures.
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Chapter 5

Experiments in 2D

The previous chapter formalised the machinery of SDS2. This chapter will demon-

strate how to use SDS2 to generate developing limb forms and stripe patterns. Early

on in the research the SDS2 prototype was used to explore some basic ideas in form

generation. This exploration fed back into the design of SDS and demonstrated that

SDS could generate the desired forms, leading to the eventual development of SDS3.

The first experiment presented in this chapter is the limb bud model (§5.1), which

demonstrates that a basic cell behaviour, acting in parallel with the physical and

morphogen models, can generate some interesting forms and cellular configurations.

The second experiment, the formation of striping (§5.2), illustrates how a simple

model of morphogen flow can be used to coordinate the spatial patterning of cells.

These experiments demonstrate how SDS uses morphogen patterns, local informa-

tion and geometric operations to construct forms.

An important element of SDS and any developmental system is the relationship

between cell-level (or local) processes and global structures. This chapter demon-

strates how, by carefully designing and controlling coordinated cell-level processes,

macro-level structures and morphogen distributions can be generated, thus address-

ing the problem of emergence, one of the key aims of this research (§1.2). Moreover,

it is shown how locally acting processes can be grouped together as “modules” that

can then be repeated within a single design, or re-used in other, new designs. For

example, the limb module can be re-used, simply by “implanting” the limb at vari-

ous locations within a mesh. Furthermore, there are a number of advantages gained

through the emergence of the limb, and other modules. Firstly, the growth process

typically creates a natural structural coupling between modules, i.e., there isn’t a

clear structural delineation between limb and body. Secondly, variations on the

module can be obtained by varying the parameters of the growth model, allowing,

for example, the growth of wider limbs. Lastly, each of the processes of the limb

85
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model are sensitive to local structure and environmental conditions. If numerous

limb tips are implanted within a mesh the environmental-sensitivity of the processes

results in limbs that are similar, but not exactly the same (demonstrated by the

variation between starfish arms in Figure 4.1). These advantages are all benefits of

the process-based, embedded approach of SDS.

The two growth models are now presented in detail.

5.1 A Study of Limb Bud Formation

This section discusses how a biological model of limb bud development in chick

embryos was implemented in SDS2 and how it leads to the emergence of a rich set

of organic geometries. Aspects of the model, including re-use, module boundary,

repetition, and variation are also considered.

5.1.1 Limb Growth in Chicks

Limb growth in early chick embryogenesis is the result of a coupled reaction between

the epithelium (a proto skin) and mesenchyme (free floating cells beneath the skin)

(Gilbert, 2006, Chapter 16). The development involves interactions between a re-

gion on the epithelium called the apical ectodermal ridge (AER) and the underlying

mesenchyme. Broadly, the AER diffuses a protein, Fgf8, which induces the under-

lying mesenchyme to proliferate towards it. The proliferating mesenchyme diffuses

a protein, Fgf10, which induces the AER to produce more Fgf8. This feedback loop

causes a cluster of cells to proliferate in one direction, resulting in the growth of a

primitive limb (see Figure 5.1.)

The key elements of this model are:

• The directed proliferation of a cluster of cells towards a target cell,

• The stimulation of the proliferating cluster using morphogen gradients and

activation thresholds, and

• A feedback loop which drives the process.

The following results demonstrate that these elements are sufficient to create simple

limb-like growths in SDS2.
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Figure 5.1: A model of limb bud development in chicks. (a) The AER cells (the
black squares) are initialised in the epithelium (primitive skin cells). (b) The AER
releases a protein, Fgf8, which induces the nearby mesenchyme (free floating internal
cells) to (c) grow and divide towards the AER, resulting in a feedback cycle and the
proximal-distal (outwards) growth of a limb.

5.1.2 Growth Model

The limb model was implemented in SDS2 by modelling the two proteins with

morphogens and capturing the cell behaviour with a set of simple rules. The key

features of the growth model are:

• There are two morphogens φ8 and φ10 which model the two proteins Fgf8 and

Fgf10,

• Cells can create morphogens at a linear rate:
dcφ
dt

= c∆φ,

• A cell can access the local gradient of each morphogen, ∇φi, and

• An additional cell variable, ct ∈ {AER, E, M}, is used to distinguish between the

AER, epithelium and mesenchymal cells.

The cell type variable is necessary to distinguish the behaviour of the AER from

the surrounding cells. The distinction between E and M provides control over the

proliferation rates of the boundary and internal cells. The AER cells are specified

in the initial conditions, and for all non AER cells ct = E if csurface = true and

ct = M otherwise. The cell behaviour is modelled with the set of rules in Table 5.1.

Depending on its type a cell may execute the AER, E, or M rules. The rule-sets

are evaluated at each call of RunCellPrograms(∆t) and if a condition is satisfied

then the action is performed. For example, Rule AER1 dictates that a cell of type

AER with a φ10 concentration greater than AERthres produces the morphogen φ8 at

a linear rate of 4φ8. In total, there are nine1 model parameters: AERthres, Mthres,

Ethres, 4φ8, 4φ10, 4rM , 4rE, MR, and ER. The effect of the parameters in this

system are dependent on subtleties of the implementation, and hence the parameter

1This is a lot of parameters! In the SDS3 experiments this model is refined considerably (§7.1).
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values used in the experiments presented here are unimportant. Through trial and

error, it was found to be relatively easy to locate a viable range of parameters for

growing a limb. Once a set of parameters is found it is interesting to consider the

effect of varying the parameters, as discussed later (§5.1.3.3).

Table 5.1: Cell behaviour rules for the limb growth model.

rule condition action
AER1 ct = AER & cφ10 > AERthres c∆φ8 = 4φ8

M1 ct = M & cφ8 > Mthres c∆φ10 = 4φ10, c∆r = 4rM
M2 ct = M & cr > MR divide(∇φ8)
E1 ct = E & cφ8 > Ethres c∆r = 4rE
E2 ct = E & cr > ER divide(∇φ8)

5.1.3 Results and Discussion

After much experimentation the formation of limb-like structures was achieved (Fig-

ure 5.3). This form generation capability was explored in isolation, within the

context of re-use, and the effects of the parameters were considered. This section

presents and discusses the results of this exploration and demonstrates the use of

the limb bud model in the generation of organic starfish-like forms.

5.1.3.1 Limb Growth in Isolation

The first experiment explored the limb bud model in an isolated context (much

like an experimental control). The experiment began with a rectangular configu-

ration of cells (Figure 5.2), a single cell of which was manually initialised with a

full concentration of φ10 and designated as an AER cell. The simulation sequence

shown in Figure 5.3 demonstrates that this model results in simple limb-like forms

(also see animation SDS2/3). The limb bud model reveals a general method for

directing growth: local induction with feedback and directed proliferation. The two

way induction allows a cluster of cells to coordinate their actions and the form that

develops is a result of this cluster forcing the epithelium outwards. The organic

configuration of the cells is a direct consequence of the physical simulation and the

dynamic reconfiguration.

During growth, the limb module closely couples itself with the body it grew from

resulting in an organic interface. Figure 5.4 illustrates that the coupling between

the geometry of the body and limb is complex. These results show that SDS is

capable of generating organic module boundaries, and thus can potentially support

the generation of complex modularity see in the forms that inspired this research
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Figure 5.2: The result of the initial perturbation of the starting structure of the
s-morph. The mesh is shown in the two figures on the left and the cell dual in the
two on the right. The initial s-morph (the square) is not physically stable and so
transforms into the lower energy configuration (the diamond). In the lower energy
configuration the triangles in the mesh become equilateral, or equivalently, the cells
in the dual view become regular hexagons.

Figure 5.3: Simulation of limb growth. (a) The initial form is rectangular with an
AER cell at the top. The form is quickly forced into (b) a minimal energy configuration
by the physical model. (c) φ8 (shown as shading) begins to diffuse into the surrounding
region. The nearby mesenchyme and epithelium begins to proliferate towards the
AER, causing (d) a bump to appear. (e-g) During the feedback loop the growing tip
is pushed away from the proliferating cluster of cells underneath it.

(§1.2). In the implemented model there is no distinction between the adhesion

within the mesenchyme and epithelium; this may be the cause of the tumour-like

appearance of the growths. In reality the epithelium is tightly formed whereas

the mesenchyme contains free floating cells. This could be incorporated into the

model by assigning spring strengths according to region, but was not explored in

this research.

5.1.3.2 Growing Multiple Limbs

In biological development, a single gene can be activated in different locations within

an organism. This provides a mechanism for modular re-use and repetition. In a

creative system, the design of form via the specification and re-used of modules

can be extremely useful, and SDS supports this. The experiments presented here

demonstrate how a limb can be re-used in a design to produce multiple limbed forms.

The simulations are initialised with an s-morph which includes multiple AER cells

located at different positions.
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Figure 5.4: A snapshot in time of simulated limb bud growth. All cells that were
involved in proliferation towards the AER are shaded, revealing the complex organic
boundary of the module.

Figure 5.5: The simultaneous growth of four separate limbs. (a) The form is initial-
ized with four AER cells. (b-f) Each separate AER region induces a nearby cluster
of cells to proliferate and set up the feedback loop. (g) The last form contains four
similar limbs. The rightmost limb is distinct in its curved character. It may have
formed like this due to the location of its AER being initially very close to both the
corner of the geometry and the topmost AER.

Figure 5.5 shows an initial experiment in which four limbs are grown simultaneously

from a diamond-shaped body. In this experiment the cells which aren’t involved

in proliferation remain inactive. A similar experiment, shown in Figure 5.6, begins

with a different geometry, and this time non-proliferating cells were instructed to

grow, resulting in tapered limbs (also see animation SDS2/5).

These experiments demonstrate that SDS2 supports modularity, organic symmetry,

and physicality. The arms of the starfish (Figure 5.6) illustrate that modules can be

designed and then applied in different locations. The different initial contexts of the

arms and complex interactions during growth, give rise to subtle variation amongst

the modules and results in an imperfect, organically symmetric form. The starfish

also has a solid appearance caused by the bending of the limbs and the low energy

arrangements of the cells (also see Figures A.2 and A.3). The limb bud model can

be implanted in arbitrary geometry, not just radially symmetric forms. Figure 5.7

illustrates one such experiment, in which limbs were grown from a thin stem.
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Figure 5.6: (left to right, top to bottom) The developmental sequence of a starfish-
like form grown from a hexagonal s-morph with six implanted limb tips. The non-
proliferating cells are instructed to grow, which results in a tapering of the limbs.
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Figure 5.7: An experiment in which limb tips are implanted onto a thin stem,
resulting in a primitive plant-like form.

Figure 5.8: The effect of different morphogen decay rates on limb growth. Three
separate simulations were conducted with different φ8 decay rates. As the decay rate
is decreased the range of φ8 (and hence the proliferation zone) is expanded, resulting
in the formation of larger limbs.

5.1.3.3 Exploring the Parameters

Adjusting the parameters of the model can lead to different characteristics in the

developing form. For example, the growing tip cluster can be increased in size by

decreasing the rate at which φ8 decays. Experiments indicate that this leads to

larger growths which are the result of a larger proliferating zone in the mesenchyme

(see Figure 5.8).

By varying other parameters, some interesting relatives of the starfish can be gen-

erated (see Figure 5.9). These forms were located by performing a sweep of all the

limb-bud parameters within certain ranges, using the off-line simulator described in

§8.6.2, and then selecting a representative sample. These results demonstrate that

qualitative aspects of the starfish model, such as limb width and curvature, can be

influenced by varying the parameters of the growth model. In Figures 5.9 (c), (d),

and (e), we can see that some sets of parameters lead to limb growth failure either

in all limbs bar one, in all limbs, or in two limbs. Figure 5.10 illustrates an earlier

experiment in which the rate of growth within the proliferation region was too high,

resulting in tumourous growths. These experiments show how large-scale structures

can emerge through coordination of local geometric modifications. The next section

explores how cells can infer spatial information from a morphogen gradient.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Some relatives of the starfish grown using different sets of parameters.
(a) Larger limbs can be created by increasing the region of proliferation. (b) Less
tapering by decreasing the base rate of growth. (c,d,e) Some sets of parameters can
lead to only one limb growing, no limbs growing, or four limbs growing. (f) A relative
of (a) has the same large limbs.
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Figure 5.10: A failed experiment in limb growth. Incorrect parameters lead to
tumour-like growths. The star polygons (one of which is marked in the second lowest
image) are cells that have a high number of neighbours — this should be avoided
where possible. The rate of proliferation of the cells on the corners between the limb
and body differs. This causes the limbs to curl around. Note that this prototype has
no collision detection, so the mesh elements begin to intersect at the corners of the
limbs.
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5.2 A Study of Drosophila Segmentation

The limb bud model relies on cell communication via morphogen flow in the s-morph.

The morphogen gradient can be considered as a one-way communication channel

between the AER and the proliferating cells, and the feedback loop enables a two-

way communication. In general, dynamic morphogen patterns in SDS can be used

to coordinate cell behaviour allowing macro-level structures to be constructed. In

theory these patterns can include gradients, stripes, and spots for instance, although

further research is needed for more complex patterns (§9.5). This section presents a

model of stripe formation based on early segmentation of Drosophila melanogaster

(fruit fly), and demonstrates the basic patterning capabilities of SDS.

5.2.1 Drosophila Segmentation

The process of partitioning a developing embryo into parallel bands is known as seg-

mentation. Drosophila melanogaster is well studied in developmental biology, and

many models have been proposed that explain various developmental stages, such

as the early segmentation of the egg (Ball, 2001, p101). This section examines a

simplified model of Drosophila segmentation restricted to antero-posterior segmen-

tation and the expression of a single band, in order to adapt the principles into

SDS.

Drosophila patterning occurs within a multinucleate syncytial blastoderm – a com-

plex of cells without the cell membranes that eventually becomes a multicellular

complex (Gilbert, 2006, p259). The segmentation process begins with the insertion

of maternal factors (mRNA and proteins) into the anterior aspect of the egg (Figure

5.11a). The maternal factors include bicoid mRNA which is responsible for antero-

posterior axis formation. After translation of the mRNA the Bicoid protein diffuses

and degrades, eventually forming a morphogen gradient along the antero-posterior

axis (Figures 5.11b and 5.11c).

The Bicoid protein activates the hunchback gene in the anterior of the egg which

produces Hunchback protein. The diffusion and degradation of this protein sets

up a hunchback antero-posterior concentration gradient. The Krüppel gene has

two thresholds: a Hunchback concentration that activates it, and a Hunchback

concentration that represses it. If the Hunchback concentration is between these

two thresholds the gene is activated (Figures 5.11d and e)).
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Figure 5.11: An abstract model of Drosphila segmentation. (a) An abstract
Drosophila embryo with maternal factors (shaded) injected in one end. (b,c) Af-
ter a period of time diffusion of the factors have set up a protein gradient. (d,e) The
activation threshold, a, and inhibition threshold, b, cause a striped region of genes to
be expressed.

5.2.2 Stripe Formation in SDS2

The model of Drosophila segmentation described above uses two main mechanisms

to form a stripe: activation and inhibition thresholds, and a morphogen gradient.

Both of these can be modelled in SDS: activation and inhibition thresholds can

be modelled by rules in the cell program, and, as demonstrated in the limb growth

model (§5.1.3.1), a morphogen gradient can be generated by releasing a diffusing and

decaying morphogen from a cell. However, the morphogen gradient in Drosophila

segmentation is used differently to the gradient used in the limb bud model, time

now plays a key role. In order to understand the difference, consider the following

hypothetical “first experiment” in stripe formation: Set up an empty s-morph that

contains a single special cell that constantly produces a morphogen, φ1 (Figure
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Figure 5.12: A hypothetical morphogen gradient in a simple structure (Figure 5.11a)
considered at three increasing times, t1, t2, and t3. (a) The gradient changes over time
as the morphogen diffuses further throughout the structure. If genes are activated
within a certain concentration band, then (b) the activation regions will change over
time also.

5.11a). The morphogen will diffuse and decay, setting up a gradient (Figure 5.11b).

However, the gradient in Figure 5.11b is just a snapshot in time of a dynamic process

— the distribution of morphogen, and hence activation region, actually change over

time (Figure 5.12). In summary, the position and size of the morphogen stripe is

determined, not only by the activation and inhibition thresholds and properties of

the morphogen, but also by time. Therefore, if a specific position and size of a stripe

is required, extra developmental scaffolding is needed.

Taking time into consideration, a stripe generation program was designed for SDS.

The program shown in Table 5.2 generates a single morphogen stripe within an

s-morph that is used to activate a band of growth. The growth model uses two

morphogens, φ1 and φ2. φ1 generates the gradient against which the stripe is per-

pendicularly aligned. φ2 acts as a timer used to control when the stripe is expressed,

but doesn’t diffuse or decay (i.e., Dφ2 = 0 and Cφ2 = 0). Each cell has a type, which

is either normal, injected (I), or growing (G). An injected cell acts as the entry point

for the maternal factors modelled by constantly producing morphogen φ1 (rule 1).

φ1 activates a slowly changing region of the s-morph, stimulating the production of

φ2 (rule 2). Then when a threshold of φ2 is reached, the cell types are changed to

growing (rule 3). Figure 5.13 illustrates this process (also see animation SDS2/8).

This model has a number of parameters: diffusion and degradation rate for each

protein, activation and repression thresholds, rate of growth, and rate of morphogen

synthesis. These parameters affect the size, position, and time of activation of the

stripe. The parameters used in the simulation of Figure 5.13 were found by trial

and error, essentially resorting to a balancing act using a real-time simulator and

monitoring the distribution of morphogens over time. This process is tedious due
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to the large number of parameters; moreover, visual features of the morphogen

distribution often depend on multiple parameters. An important area of future

research would be to reduce models, such as this one, to a small set of visually

relevant parameters. This is discussed in Section 9.6.

Table 5.2: A stripe generation model.

rule condition action
r1: ct = I cφ1 = vol(c)
r2: cφ1 > a & cφ1 < b c∆φ2 = 4∆φ2

r3: cφ2 > Gthres ct = G
r4: ct = G c∆r = 4r

Figure 5.13: (top to bottom) A simulated sequence of Drosophila-like segmentation
in SDS2. Initially cells are selected as injected cells (red). The diagrams shows the
dual mesh of the s-morph with morphogen concentrations (φ1 is shaded green, and
φ2 blue). Note the formation of the band or stripe of the φ2 morphogen. In this
simulation φ2 is expressed as cell growth.
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5.3 Conclusion

The limb bud experiments demonstrate how directed proliferation, local stimulation

using morphogen gradients and activation thresholds, and a feedback loop, can gen-

erate limb-like geometries in SDS. While these processes are specified at a cell-level,

macro-level structures are formed. Indirect control over the form is gained through a

set of parameters which directly affect the generative processes and physical model.

The stripe formation experiment illuminates how spatial information can be inferred

in an s-morph. By using morphogen diffusion and decay, and activation and inhibi-

tion thresholds, we can identify and stimulate a band of cells that lie at a distance

from a coordinator cell, and form a band perpendicular to the gradient. While

this model was not explored further, it offers insight into what other organisational

processes could be incorporated within SDS.

It is interesting to consider whether the SDS2 software could have applications in

biological research. SDS2 provides an abstraction of a 2D cell layer, and is capable

of modelling a number of biological and physical processes. Moreover, as shown

in this chapter, it has successfully been used to implement biological models of

growth, generating results predicted by the models. Could SDS2 be used as a tool

to test hypotheses about biological growth? In its current form, this is doubtful.

The components of SDS2 were modelled phenomenologically — the goal being to

reproduce the rough behaviour of a system of cells in an efficient manner. Therefore

the models in SDS do not accurately represent reality; the physical forces that occur

between two adhered cells, for example, are far more complex than those in a single

idealised spring. However, some components of SDS, in particular the adaptive

mesh representation and the algorithms for cell division and movement, could form

the basis of a more sophisticated simulation system appropriate for more accurate

biological simulation.

The SDS2 software was built to test and design aspects of SDS, and the experiments

presented in this chapter acted as a proof of concept that SDS was capable of pro-

ducing complex organic structures. Once these initial investigations were completed,

research into a 3D implementation of SDS was started. This research is presented

in the next chapter.
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Chapter 6

A 3D Developmental Modelling

System

This chapter presents the details of a 3D implementation of SDS, called SDS3. SDS3

is a system for generating complex organic 3D forms by simulating the biological and

physical processes of development in three dimensions. The intended application of

SDS3 is in computer graphics, where it could be used to design and autonomously

generate complex organic forms for use in computer animation, simulation, games,

and design. Existing developmental systems that produce organic forms in 3D typi-

cally use a surface representation (Smith, 2006; Combaz and Neyret, 2002; Kaandorp

and Kübler, 2001) which fails to capture aspects of internal growth and volumetric

material effects. SDS3 addresses this limitation by using a flexible volumetric repre-

sentation, and is the first developmental system, to my knowledge, that operates on a

spatially and structurally dynamic tetrahedral mesh. The research presented in this

chapter is a first step towards a method for full biological and physical simulation

for 3D modelling, and the results are very promising (Chapter 7).

SDS3 can be considered as a 3D generalisation of SDS2 (Chapter 4), and, in fact,

the growth models designed for SDS2 (§5.1.2) can be applied almost directly to

SDS3 (§7.1). However, considering it as a generalisation belies both the significant

difficulty involved in designing the system, and the fundamental differences between

the systems. In 3D, an s-morph is a collection of spherical cells connected together by

a tetrahedral mesh. The generalisation from triangles in SDS2 to tetrahedra in SDS3

is by no means straightforward and adds significant conceptual and computational

complexity to the implementation. Numerous theoretical and technical challenges

were encountered during the implementation of SDS in 3D. This chapter discusses

these problems and presents solutions, including an examination of:

101
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• modelling an s-morph as a soft-body in 3D with collision detection between

surface elements,

• a simple scheme for rewinding a simulation (in order to perform structural cell

movements),

• issues surrounding the conversion of a 3D surface to an s-morph,

• different algorithms for modelling cell division on a tetrahedral mesh,

• an algorithm for performing structural cell movement, and

• a model of morphogen transport on a tetrahedral mesh.

The concepts behind SDS3 developed from the consideration of: SDS2 (Chapter §4),

physical simulation techniques, in particular Teschner’s tetrahedral mesh approach

to deformable modelling (§6.1.1), and existing surface-based developmental systems,

such as Vertex-Vertex systems (§6.1.2.3). Before presenting the implementation of

SDS3 it is important to consider its historical context in physical and developmental

simulation. This is discussed next.

6.1 Related Work

The research presented in this thesis was seeded by imagining the benefits of com-

bining a soft-body physics model with a developmental system. The physical model

used in SDS was formulated by considering the latest advancements in 3D de-

formable modelling (Teschner et al., 2004; Irving et al., 2007). The tetrahedral

mesh-based approach of Teschner et al. (2004) was particularly remarkable due to

its simplicity and efficiency, and thus became the basis of the SDS3 physical model

(§6.3). Teschner’s model and various other approaches for physically modelling de-

formable objects are reviewed in Section 6.1.1. Section 6.1.2 then examines some

developmental systems capable of producing organic 3D geometry. These systems

have already been introduced (§2); however Section 6.1.2 examines them in more

detail, discussing how these systems model developmental events on 3D structures,

how they incorporate a physical model, and their relationship with the SDS3 re-

search.

6.1.1 Physical Modelling

The modelling of soft matter in 3D (also known as soft-body or deformable mod-

elling) has been an active area of research in computer graphics for the last two
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decades (Terzopoulos and Fleischer, 1988). Physical modelling in computer graph-

ics, as opposed to engineering or computational biology, is driven by visual realism

and efficiency — if it looks real then it’s generally good enough. The field of physical

modelling in graphics is broad and there are numerous modelling techniques. For

a detailed introduction to the field, the following literature is recommended: the

survey of Nealen et al. (2005, 2006), the lecture notes of Müller et al. (2008), and

the lecture notes of Baraff and Witkin (1997). This section briefly describes some

common techniques for modelling deformable objects in 3D.

Mass-spring models have been claimed to be the simplest and most intuitive of all

deformable models (Nealen et al., 2005, §3.5). A mass-spring model consists of a

finite set of point-particles connected together by springs. The point-particles are

infinitely small points in space with mass and velocity. The particles move around

in response to the springs and external forces (e.g., gravity). The spring forces are

typically modelled by Hooke’s law of elasticity, which assumes a linear relationship

between elongation and force. Mathematically, the force applied to a particle, a,

attached to a particle, b, by a spring with rest length, l, and stiffness, k, is:

f(a) = −k bx − ax
|bx − ax|

(|bx − ax| − l) (6.1)

The benefits of mass-spring systems are that they are intuitive, easy to implement,

and efficient. They do not necessarily accurately model any real world material,

however this is not so important in animation (as compared to e.g., surgery simu-

lation). A significant issue is that the behaviour of mass-spring systems does not

converge under mesh refinement — their behaviour is dependent on the specific res-

olution and topology of the mesh. This makes it difficult to match model parameters

with dynamical behaviour, particularly if the mesh is adaptive, as is the case with

SDS. A more detailed discussion of this model can be found in (Müller et al., 2008;

Baraff and Witkin, 1997).

Addressing some of the issues of the basic mass-spring model, Teschner et al. (2004)

proposed a slightly different model which formed the core of their framework for real-

time simulation of 3D deformable objects. Their system models volume-preserving

tetrahedral meshes and provides fast methods for detecting and handling colliding

surfaces. It is meant for real-time simulation in computer graphics, trading accuracy

for efficiency while maintaining visually acceptable results. The physics model in

SDS3 is based upon this system, and so it will be discussed in more detail later

(§6.3).
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The finite element method (FEM) is a more sophisticated modelling technique based

on the theory of continuum mechanics. FEM originated from computational engi-

neering but has been adopted into computer animation because of the realistic visual

results it can achieve (see e.g., Müller et al., 2008; Baraff and Witkin, 1997). The ba-

sic idea behind FEM is to discretise a continuous volume (or shell) into a tetrahedral

or hexahedral mesh. The continuum mechanics equations for the volume are then

solved at the nodes of the mesh. The nodes store a simple functional description

(or basis) of the local distribution of properties (such as stress and strain). Being a

physically derived model, FEM provides a good approximation of the mechanics in

a solid material and hence the results are quite accurate (much more so than mass-

spring models). This accuracy comes at the cost of being harder to understand and

more computationally demanding. Recent FEM-based models in computer graphics

produce great visual results of soft deformable bodies (Irving et al., 2007). The re-

lated method of Finite Differences works similarly but instead discretises the volume

into uniform cubes (see e.g., Gibson and Mirtich, 1997; Gibson, 1997).

Mesh-free systems do away with the structural elements that are used by mass-

spring models and FEM. Loosely coupled particle systems (Reeves, 1983) model

an object as a set of freely moving particles (see also Nealen et al., 2005, §4.1).

The particles can be coupled spatially in order to achieve some material cohesion.

One coupling approach (Tonnesen, 1992) is to specify an interaction energy between

pairs of particles, e.g., φ(a, b) for all particles a and b. A potential energy for

a particle p is then specified as the sum of all the relevant pair-wise energies, e.g.,

φ(p) =
∑

q 6=p φ(p, q). The goal is then to minimise the energy of the system. This can

be done by specifying a force term f = −∇φ(p) and relating it to particle movement

using the typical Newtonian law f = p̈m. These systems can be visualised by an

iso-surface in which the particles act as potentials (Blinn, 1982). More sophisticated

mesh-free methods known as point-based methods scatter particles over a surface

or volume (Nealen et al., 2005, §4.3.1). The continuum elasticity equations are then

solved around these points, and as they move they drag the mesh along with them.

The advantage of this approach is that the complexity of the mesh is independent

of the complexity of the simulation. This approach is gaining popularity with the

proposal of a number of recent methods based on these ideas (see e.g., Sifakis et al.,

2007; Müller et al., 2005, 2007). These methods are very sophisticated and could

be used in conjunction with a developmental model; however, in SDS, a simpler

approach is taken, one in which the mesh of an s-morph is used directly.
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There are an increasing number of libraries and tool-kits available for simulating

deformable bodies, such as Idolib1, VCG2, and PhysX 3. These methods are applied

in games, 3D modelling, films, and the relatively young field of surgery simulation.

This research began when these libraries were still in their infancy, and at that stage

were not quite suited to SDS — in particular SDS uses meshes with a dynamic

structure, which some of these libraries do not support. Therefore, considerable

time was spent implementing a custom simulator, for both SDS2 and SDS3 (see

§8.6.3).

6.1.2 3D Developmental Modelling

Chapter 2 reviewed a number of developmental systems capable of generating com-

plex 3D organic structures. The systems which are most closely related to SDS3

are those that use a 3D mesh representation of a biological structure in conjunction

with a model of physical processes. There are a number of ways development can

be modelled using such as representation. Kaandorp and Kübler, for example, use

a triangulated mesh representation, on which a biological growth “step” is modelled

by constructing a new mesh around the old one (§6.1.2.1). The growth is controlled

by nutrients distributed through an environment via a physical simulation. Combaz

and Neyret, on the other hand, model the physical properties of an elastic shell,

which grows depending on the presence of hot-spots painted on the mesh (§6.1.2.2).

They use a polygonal mesh to represent the structure, which is automatically refined

when more detail is required. The research that is perhaps most related to SDS3

is the Vertex-Vertex system (§6.1.2.3), which can be used to model development

acting on a polygonal surface-mesh. Like SDS, cells in a Vertex-Vertex system can

be modelled as vertices in a mesh, and as point-masses in a mass-spring system;

however, Vertex-Vertex systems are restricted to modelling structures at the surface

level, whereas SDS can model volumes. This section examines some aspects of these

systems in detail, in order to give historical context to the design of SDS3.

6.1.2.1 Modelling Accretive Growth

In their book The Algorithmic Beauty of Seaweeds, Sponges, and Corals, Kaan-

dorp and Kübler (2001) present a variety of sophisticated simulation models of the

growth and development of the organisms mentioned in the title. The book offers

a number of approaches to modelling the growth of these organisms in submerged

1http://idolib.sourceforge.net/
2http://vcg.sourceforge.net/
3http://www.nvidia.com/object/physx_new.html
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environments. Whereas Kaandorp and Kübler are interested in studying biology,

their experiments are considered here purely for their 3D form generation potential.

An overview of their approach was given in Section 2.2.2.

Kaandorp and Kübler’s model of surface normal accretive growth (Kaandorp and

Kübler, 2001, §4.6.2) is particularly relevant to this thesis because (a) the modelled

organism is represented by a triangular surface mesh, and (b) the simulations re-

sult in smooth, organic forms. In this model, a biological entity (representing a

colony of organisms) is modelled with a triangular surface mesh embedded in an

environment. This model does not have a concept of a cell, but rather considers the

surface as a continuous growing entity. The organism being modelled grows through

the repeated deposition of new skeleton material on top of an existing structure

(Kaandorp and Kübler, 2001, p125). Growth is modelled by repeatedly applying a

geometric operation that constructs a new, larger mesh around an old mesh. By

seeding the environment with a simple mesh (e.g., a sphere), this growth process

can generate familiar, coral-like forms.

The distance between two meshes, from an old layer j to a new layer j + 1, is

determined by a growth function, G(). A “simple” example of a growth function is:

G() = sf(α, β)h2(. . .) (6.2)

where f measures the deviation of the surface normal α from a growth axis, β

specifies the leniency of the measure, and h2(. . .) approximates the amount of contact

the surface has with the environment using its local curvature. This growth function

results in the generation of smooth, space filling, forms (Kaandorp and Kübler,

2001, §4.6.2). Kaandorp and Kübler also model a more complex G() term which

involves a full hydrodynamical simulation that distributes food particles around the

environment (Kaandorp and Kübler, 2001, §4.6.4).

In their model of development, all the complex processes of the development of these

organisms have been abstracted away into a single equation which is calculated for

each triangle in the mesh. No information affecting the development of the structure

is stored in the elements of the organism, but rather, information is gathered at the

moment of growth (such as the presence of nutrients). Compare this to SDS, in

which cells contain a persistent state which drives the development of the system.

As discussed later, in relation to Combaz and Neyret’s system (§6.1.2.2), the lack

of cellular logic in Kaandorp and Kübler’s system makes it unsuitable for modelling

a number of interesting developmental phenomenon, such as the development of

different types of structures within the same system.
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Kaandorp and Kübler models are oriented towards studying morphogenesis of very

specific organisms; however, they also happen to produce interesting geometric mod-

els with smooth polygonal surfaces, and so are interesting from a computer graphics

perspective. This system is unable to satisfy key objectives of this thesis: movement

and deformation of form (§1.2); however it does provide an interesting approach to

form generation which, with further development, could have wide application in

computer graphics.

6.1.2.2 Semi-Interactive Morphogenesis

Combaz and Neyret’s semi-interactive morphogenesis system (introduced in §2.2.4)

models the growth of a 3D elastic polygonal surface using a quasi-static physical

simulation, in which every time step is solved to static equilibrium. Their system

generates interesting organic shapes that “fold, bend, and curl as in nature” (Combaz

and Neyret, 2006). The growth of the surface is induced by hot-spots which a user

paints onto the mesh.

One defining feature of Combaz and Neyret’s system is their model of an elastic

material, which results in the surface contorting and folding as it grows. It is useful

to consider their physical model in greater detail, as a point of comparison against

the model used by SDS. In Combaz and Neyret’s surface growth system, a triangular

mesh has a real state (i.e., the current vertex positions, edge lengths, and face

topology) and a reference state, which is specified by desired lengths of each edge,

and desired mean curvature of each vertex. The real mesh is updated iteratively

by a solver, which minimises the difference between the real and reference states,

measured by an energy term, E. This is similar in spirit to the model used in SDS3

(§6.3), which specifies target edge lengths and tetrahedra volumes that the s-morph

attempts to achieve. Combaz and Neyret, however, use a more sophisticated energy

equation, composed of three parts:

E = Emembrane + Ebending + Epressure (6.3)

The membrane and bending energies, Emembrane and Ebending, are derived from the

theory of thin shells (Grinspun et al., 2003) and the ad hoc pressure term, Epressure,

is used to control the folds and curves in the resulting geometry. Combaz and Neyret

do not use a volumetric representation, and consequently the pressure term is only

a rough approximation to the complex forces that occur within a solid body. In

comparison, the use of a tetrahedral mesh representation in SDS supports a more

accurate model of internal pressure.
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The technical details of the energy calculation are outside the scope of this discus-

sion; however, the complexity of this model can be appreciated by considering, for

example, the membrane energy which measures the amount of stretch and shear on

a surface. The total membrane energy is computed from the weighted sum of the

membrane energies of every triangle, t, in the mesh, as:

Emembrane =
∑
t

ĀtE
t
membrane (6.4)

where Et
membrane =

1

2

2∑
i=1

2∑
j=1

σtijε
t
ij (6.5)

Āt represents the reference (desired) area of t, εtij is the strain tensor (the deforma-

tion of t from its reference state), and σtij is the stress tensor (see e.g., (O’Brien and

Hodgins, 1999, Eq. 7)). After a growth step, which updates the reference state, the

simulator minimises the total energy of the system using Conjugate Gradient Opti-

misation. Each step involves finding the minimal energy state, or static equilibrium,

of the system. Combaz and Neyret call this method of simulation quasi-static.

The quasi-static nature of the physical simulator in Combaz and Neyret’s system

produces a developmental sequence of forms, each one simulated to static equilib-

rium. Realistic dynamical behaviour, such as a bouncing ball, is impossible under

this scheme (because a ball suspended in mid-air is not in equilibrium); however, this

is not an important factor if the desired output of the system is a single geometric

model (rather than a continuous animation). The physical model in SDS, on the

other hand, is able to generate realistic animations of growing soft-bodied forms, as

it has a concept of dynamic properties, such as cell velocity and acceleration. The

potential of using an alternate, simpler physical model in SDS is discussed in §8.3.

An interesting feature of Combaz and Neyret’s system is that the growth texture

(that the user paints) is not stored as a normal 2D image (as this would require

constant re-parameterisation of the surface). Instead, the texture information is

stored as local information in the vertices and in extra nodes within the faces.

Adding extra nodes to the faces allows the resolution of the textural detail to be

much greater than the resolution of the mesh. A drawback of the morphogen system

used in SDS (§6.6) is that the morphogen simulation is constrained to the resolution

of the tetrahedral mesh. It would be desirable, in some situations, to have a higher

resolution for the morphogen component, especially if complex patterns are to be

generated. Using an approach similar to Combaz and Neyret’s (i.e., adding extra

morphogen nodes to the simplexes), could help achieve this goal.
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Combaz and Neyret’s system elegantly demonstrates that surface growth combined

with an elastic physical model can result in the generation of interesting, organic,

curved 3D forms. However, like other systems which model development with a

continuum of cells (§2.2.5), it is not clear how to model more complex structures

which depend on cells having internal processes. The development of biological

structures that rely on sequences of events or complex cell lineages cannot be easily

modelled without a concept of cell logic. This observation contributed to the design

of SDS as a cell-based system, one in which cells can act out complex programs in

order to coordinate the development of different structures.

6.1.2.3 Vertex-Vertex Systems

Vertex-Vertex (VV) systems (introduced in §2.2.3) provide a language for manip-

ulating polygonal surface meshes in 3D. VV systems can be used in a number of

ways to model development. For example, a biological cell can be modelled in a VV

system either as an individual entity, or as part of a continuum of cells. VV systems

can model cells as vertices in a mesh acted upon by physical forces, and in this

respect, VV is very similar to SDS. Alternatively, individual cells can be modelled

as polygons within a planar map (Smith, 2006, §7.3), and in this respect they are

similar to Map L-systems (Lindenmayer and Rozenberg, 1979).

When considering a cell as part of a continuum, a growing tissue can be modelled

with mesh operations that abstract larger scale developmental events. This abstrac-

tion is demonstrated by Smith in a model of the growth of a primitive branching

plant form4 (Smith, 2006, Chapter 7). Smith models the growth of a mesh by main-

taining different sets of vertices, such as an “active ring” which sits at the top of the

stem and is responsible for extending the stem upwards by dividing when appropri-

ate. To identify the cells that form the start of new primordia, a morphogen-based

model of inhibition–diffusion is simulated that results in a spiral arrangement of

new primordia (Smith, 2006, §9.2.2). Surface growth in this model is performed

by two specialised functions. The first function models the effect of the directed

proliferation of cells within the stimulation zone, by adding a new active ring of

vertices to the top of the growing stem. The second function models growth around

the primordia, by identifying and subdividing a geometric band near to a specified

vertex. These functions are very specific to the model and geometric conditions.

Nonetheless, this experiment illustrates how ad hoc models of development can be

constructed to validate biological models of growth.

4Technically, a shoot apical meristem with growing primordia distributed via a model of phyl-
lotaxis.
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(a) (b) (c)

Figure 6.1: (Repeated from Figure 3.3) Three different views of an SDS3 s-morph. It
has (a) vertices, edges and (b) tetrahedra, and (c) spherical cells. Vertex v corresponds
to cell c.

One disadvantage of the VV method, is that, unlike SDS3, it cannot operate on

a volumetric 3D structure. This is because the vertices in a Vertex-Vertex system

must have neighbours that can be ordered in a cyclic list. A triangular mesh satisfies

this property because every vertex has a set of neighbouring vertices which can be

ordered clockwise around it (forming a triangle fan). However, there is no such

ordering for tetrahedral meshes, and thus the “algebraic” approach used by VV

cannot be applied to tetrahedral meshes.

There is a broad range of approaches to physical and developmental modelling in

3D, each advantageous in specific scenarios or suited to a particular representation.

SDS3 is similar to these systems, in that it can produce complex organic 3D surfaces,

but differs in one significant respect: it acts on a tetrahedral mesh representation.

This representation allows a larger range of developmental and physical phenomenon

to be modelled, but poses significant problems. The design of SDS3, that addresses

these problems, is described in the remainder of this chapter.

6.2 Overview

This chapter presents the details of a 3D implementation of SDS, called SDS3. In

SDS3, an s-morph is composed of spherical cells bound together by a tetrahedral

mesh (Figure 6.1). An s-morph in an SDS3 simulation transforms over time, as

developmental events and physical effects act upon it (e.g., Figure 6.2). As in SDS2,

a valid s-morph in SDS3 is one in which all simplexes are connected. Figure 6.3

shows some examples of valid and invalid meshes — it is assumed that an s-morph

is everywhere at least one tetrahedron thick, and so hinges are not allowed.

SDS3 is a complex system that implements the full SDS framework (Algorithm 7).

The major components of this system are discussed in the remainder of this chapter.

These are:
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Figure 6.2: (left to right) Frames from the simulation of a developing SDS3 s-morph,
shown as (top row) cells and (bottom row) the surface of the tetrahedral mesh.

Figure 6.3: The meshes of some SDS3 s-morphs. (from left to right) The simplest
SDS3 s-morph consists of just four cells and a single tetrahedron. The next simplest
consists of two tetrahedra joined at a face. The third image shows the surface mesh
of a complex ellipsoid s-morph. Hinges, such as those shown on the right, are not
allowed.
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• The physical model and related issues, such as collision detection and adaptive

time-stepping (§6.3),

• A comparison of algorithms for modelling cell division in a tetrahedral mesh

(§6.4),

• An algorithm for modelling cell movement within a tetrahedral mesh (§6.5),

and

• The discretisation of the morphogen model on a tetrahedral mesh (§6.6).

Algorithm 7 SDS3 Simulation

t = 0
while t < duration do
SimulatePhysics(∆t)
if MovementDetected() then

∆̃t = TimeOfFirstMovement()

RewindSimulation(∆̃t)
PerformCellMove()

else
∆̃t = ∆t

end if
HandleCollisions()

UpdateCellState(∆̃t)

SimulateMorphogens(∆̃t)

RunCellPrograms(∆̃t) (may call PerformCellDivide)

t = t+ ∆̃t
Output world state for time t

end while

6.3 Physical Model

The physical model in SDS3 generalises the concepts of the SDS2 physical model.

Cells have a position, velocity, size, and mass, and move around in response to

forces applied from the simplexes. Whereas the SDS2 model only incorporated

springs along edges, SDS3 models both edges and tetrahedra with springs. This ap-

proach is based on the framework of Teschner et al., introduced above (§6.1.1). This

section describes how this model has been adapted to fit into the SDS framework

— in particular how to couple cell size with spring rest size and how to incorporate

simulation rewinding through the use of an adaptive simulation time-step. Other

key considerations of the physical simulator discussed are the modelling of cell state

changes, the concept of a rest scale multiplier, and frozen cells.
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Conceptually, the tetrahedral mesh represents a solid deformable body, with each

tetrahedron representing a homogenous elastic element. The model provides local

volume conservation, is more stable than the basic mass-spring model, and con-

verges to the “true solution” under mesh refinement. Figure 6.4 shows the physical

simulation of a spherical s-morph acted upon by gravity and colliding with a plane,

demonstrating all of these aspects of the model in action. The physical equations

that govern the soft-body dynamics of an s-morph in SDS3 will now be described.

Figure 6.4: (left to right) A spherical s-morph is placed onto a plane and, under
gravity, deforms into an ellipsoid. The final stable state occurs when the reaction force
from the plane balances against the gravity force.

6.3.1 Constraints and Potential Energy

The physical model is most easily understood with the concept of constraints. The

simplexes within an s-morph try to maintain a consistent size, and hence constrain

the motion of the cells. As outlined in §3.6.2, the cells of an s-morph are modelled as

point masses with position, cx, and mass, cm. A set of constraints describes an ideal

configuration of the cells. These constraints exist for every edge and tetrahedron5

and are satisfied when they equal zero. As an example, for an edge, e, joining two

cells, a and b, the following constraint specifies that the two cells should be separated

by a distance equal to the sum of their radii (see Figure 6.5).

C(e) = |ax − bx| − (ar + br) (6.6)

In practice there are numerous constraints, all of which cannot be satisfied simulta-

neously. Hence, instead of finding the optimal solution, a mesh configuration that

satisfies the constraints as closely as possible is sought. The constraint solver is a

key component of Teschner’s model, which models the constraints as potential en-

ergies, E(s). These potential energies are converted into forces, Fs(c), acting on the

individual cells. The forces on the cells can be interpreted as the direction the point

5In practice, applying constraints to faces is not necessary when using both edge and tetrahedron
constraints (Teschner et al., 2004).
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Figure 6.5: For an edge connecting two cells, the constraint equation, C, measures
the shortest distance between the boundaries of the two cells. In this example C > 0.

Figure 6.6: The tetrahedral constraints attempt to preserve the volume of the tetra-
hedra. Two tetrahedra in their current states (solid line) and desired states (dashed
line), and the forces acting upon them due to the constraints.

masses need to move in order to reduce the potential energy of the system. The

forces and cell movement are related by Newton’s law, F = ma, to generate a set of

equations that describe the movement of cells over time. These piece-wise ordinary

differential equations are then numerically solved to obtain the positions of the cells

at discrete time steps.

6.3.2 Calculating the Forces

The desired state of an s-morph is specified by a set of constraints. Every edge

and tetrahedron has a constraint, the edge constraints preserve edge length and the

tetrahedral constraints preserve tetrahedron volume. For every simplex, s, whether

it is an edge or tetrahedron, the constraint is given by:

C(s) =
V (s)−R(s)

R(s)
, (6.7)

where V (s) is the current size of the simplex and R(s) is the desired, or rest, size.

For an edge, e, connecting cells a and b:

V (e) = |ax − bx| (6.8)

R(e) = ar + br (6.9)
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Figure 6.7: Computing the rest size of a tetrahedron. (left) A tetrahedron of an
s-morph and its four attached cells. The edge bc has length V which is less than R.
(right) Construct a tetrahedron where the length of each edge is the sum of the radii
of the attached cells. The desired volume of the original tetrahedron is equal to the
volume of this new tetrahedron, which can be calculated using Heron’s formula.

The signed volume of a tetrahedron, t, is:

vol(t) =
1

6
(v1 − v0) · ((v2 − v0)× (v3 − v0)), (6.10)

where the vi are the positions of the four vertices of the tetrahedron. The rest size

of a tetrahedron t with cells a,b,c and d is computed by first calculating the desired

lengths of all edges of t (Figure 6.7) and then using Heron’s formula to compute the

volume of the tetrahedron with those edge lengths:

R(t) =

√
ABCD

3(ar + dr)(br + dr)(cr + dr)
, with (6.11)

A = w + x+ y − z

B = w + x− y + z

C = w − x+ y + z

D = −w + x+ y + z

w = arbrcr

x = dr
√
brcr(ar + br + dr)(ar + cr + dr)

y = dr
√
arcr(ar + br + dr)(br + cr + dr)

z = dr
√
arbr(ar + cr + dr)(br + cr + dr)

As defined in §3.6.2, each simplex, s, has physical properties associated with it, a

stiffness coefficient, skd , and a damping coefficient, skdamp . As noted above, only

edges and tetrahedra are actually considered to have these properties as faces are

not necessary in the physical model (alternatively, all faces can be considered to

have zero stiffness and damping). The constraints are modelled elastically using a

potential energy function based on Hooke’s law of linear elasticity:
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E(s) =
1

2
skd

(
V (s)−R(s)

R(s)

)2

(6.12)

Note that this equation is similar to the SDS2 energy equation (Equation 4.3) except

s now denotes either an edge or a tetrahedron, and there is a normalisation factor.

This factor makes the spring stiffnesses scale-free which allows the same stiffness

coefficients to be used throughout the entire structure (Teschner et al., 2004). The

spring stiffness and damping coefficients (discussed later) could easily be specified

per spring6. The actual coefficients vary from experiment to experiment and gen-

erally have to be manually fine-tuned to achieve the desired results. The specific

values of these parameters will be dependent on the implementation (a side-effect

of the complexity of the software).7

Given the energy, E(s), of a simplex, s, the force acting on a cell, c, is defined as:

Fs(c) = − ∂

∂cx
E(s) (6.13)

The total force on a cell is the sum of all forces from adjacent simplexes:

F (c) =
∑
s:c∈s

Fs(c) (6.14)

This force affects the cell position as follows:

d2cx
dt2

=
F (c)

cm
(6.15)

A useful alternative interpretation of this model is to consider two spherical cells

joined together by a “sticky” region on their surfaces. The region resists being

separated, and thus force is required to separate the two cells. Imagine the cells

also contain a fluid, that will resist being compressed, and thus pushing the two

cells together will result in an opposing force. These phenomena are not actually

modelled in SDS, but the interpretation helps to understand the physical behaviour

of the system.

A common technique to improve the robustness of a simulation is to incorporate

damping; Moreover, it has been determined that, to increase robustness, this kind

6For the results presented in Chapter 7, one set of spring coefficients is used for surface springs
and another set is used for internal springs. This can be utilised, for example, to model the
difference in physical behaviour of the mesenchymal and epithelial cells in the limb bud model
using looser internal springs and tighter surface springs.

7For illustrative purposes, the physical parameters of the single curling limb experiment (§7.7)
are: skd = 17, skdamp

= 0.05, and Vdamp = 0.05.
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of system only needs damping on the tetrahedral elements (Teschner et al., 2004).

The damping on a tetrahedron is modelled by providing a resistive force proportional

to the velocity of the cells. This is incorporated into the full equation force acting

on a cell, c, from a simplex, s:

Fs(c) = −

(
skdC + skdamp

∑
c̃∈s

∂C(s)

∂c̃x
c̃v

)
∂C

∂cx
, (6.16)

where C was given in Equation 6.7. Given the current state of the mesh, Fs can

be calculated for the edges and tetrahedra. For the sake of completeness the full

expansion for Fs is given in Appendix D. Damping of the system is also incorporated

as explicit viscous damping of all cells, via the Vdamp parameter (discussed below).

6.3.3 The Response of Cells to Forces

The dynamical system specified in Equation 6.15 can be solved between two points t

and t+h using a number of numerical integration techniques8 (see e.g., Müller et al.

(2008) for a review of integration schemes). The SDS3 implementation employs the

Verlet integration scheme as it is fast and offers increased stability over similarly

efficient methods (Teschner et al., 2004). Under this scheme, cell positions are

modified over a time interval using the following equation:

cx(t+ h) = cx(t) + (1− Vdamp)(cx(t)− cx(t− h) + h2F (c)

cm
) (6.17)

This equation also incorporates an ad hoc damping factor Vdamp that represents a

viscous fluid in which the s-morph is embedded. The purpose of this constant is to

improve the stability of the simulator, but it also provides an additional environmen-

tal control parameter of the generative system (the same growth model embedded

in different viscosity environments will generate different forms). Implementations

can compute the Verlet equation simply by storing the positions of each cell for the

current time step, t, and previous time step, t− h. However, due to cell movement

transformations (§6.5), the last position may not have occurred at t− h, but rather

at a time t − h′, where h′ < h. Hence an adaptive Verlet integration scheme is

used (based on Dummer, 2005) in which the position of the last time step is linearly

extrapolated:

cx(t− h) ≈ cx(t− h′)
h

h′
(6.18)

8Not every integration technique is suitable. The integration technique should assume linear
velocity of all cells between the two time points — this is required by the rewinding scheme (§6.3.4).
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In the Verlet scheme, the velocity of a cell is not stored explicitly but is computed

from the positional data of the current and previous time steps. In the cases where

the velocity of a cell is required, as in Equation 6.16, the cell velocity can be calcu-

lated as:

cv(t+ h) =
cx(t+ h)− cx(t)

h
(6.19)

6.3.4 Rewinding Time

Structural cell movement in SDS2 occurs when cells cross edges in the triangular

mesh (§4.5). This event also occurs in SDS3 (the structural issues are described in

Section 6.5). During some interval [t, t + h] many structural cell movements may

have occurred. Instead of handling them simultaneously it is simpler to “rewind”

the simulation back to the time of the first movement event, perform a single cell

movement transformation and continue the simulation from that point onwards9.

Assuming the simulation is at time t + h, the goal of the simulator is to rewind

the state of the world to a time t + h′, where 0 < h′ < h. One solution to this

task would be to remember the state of the s-morph at time t, allowing us to reset

the positions of the cells to time t and then step forward by an amount h′. But

this requires integrating the physical equations again. A cheaper solution arises by

assuming that the cells have linear velocities over the time interval [t, t+h] and then

interpolating their positions10. In this case the state of each cell at the desired time,

t+ h′, is:

cx(t+ h′) = lerp(cx(t), cx(t+ h),
h′

h
), (6.20)

using the linear interpolation function: lerp(a, b, t) = a(1− t) + bt.

6.3.5 Handling Collisions

The 3D forms that SDS generates do not have intersecting geometric elements. This

is made possible with the incorporation of a system that detects and handles colli-

sions between the surface elements of the s-morphs, world boundary, and static ge-

ometries within an environment. Within the simulation loop, the physical simulation

first updates the positions of all the cells. The purpose of the HandleCollisions()

9A disadvantage of this approach is that it may slow down a simulation drastically if many cell
movements occur. It may be necessary, if massive cell migration is to be modelled for example, to
explore alternatives to this approach, such as performing multiple movements in parallel. In the
experiments presented in the next chapter, cell movements were rare, and so performing sequential
cell movement transformations was not too computationally demanding.

10This assumption is correct in the case of Verlet integration, but may be less accurate if more
advanced integration techniques are used.
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procedure is to ensure that no mesh elements intersect. Collision detection and han-

dling is a very active field of research and there are a number of methods available

for handling collisions between deformable bodies (Teschner et al., 2005). SDS3 in-

corporates the fast and robust collision detection and response framework proposed

by Teschner et al. (Teschner et al., 2003; Heidelberger et al., 2004) which operates

directly with tetrahedral meshes and integrates nicely with the simulation method.

The system efficiently detects when a cell has penetrated a surface face and projects

it backwards until it is no longer intersecting. The same system is used to model

collisions with static objects, other s-morphs, and to confine the s-morph within the

bounds of the environment.

6.3.6 Cell State Changes

Non-spatial cell state changes (those updated with the UpdateCellState(∆t) pro-

cedure) can also be considered to occur within the physical simulation. The most

important state change is cell growth. By changing size, cells affect the lengths

of edges and the shape of tetrahedra, allowing the development of different sized

regions. Hence one part of an s-morph can be coarsely modelled with large tetrahe-

dra, while simultaneously another part can have many small tetrahedra modelling

smaller features.

The cell state changes in SDS3 are updated as in SDS2, using an explicit Euler step.

Cell growth, for example, is updated with the following equation:

cr(t+ h) = cr(t) + c∆r(t)h, (6.21)

where c∆r is the linear rate of growth of cell c.

6.3.7 Importing an S-morph

A popular geometric representation used in computer graphics is the triangular sur-

face mesh. This representation is readily supported in most 3D modelling packages

and is accelerated by modern graphics hardware. Tetrahedral meshes, on the other

hand, are not supported in most 3D modelling packages. Fortunately, as the sur-

face of a tetrahedral mesh is a triangular surface mesh, each representation can be

converted into the other. Practically, this means that an SDS3 s-morph can be im-

ported into a 3D modelling package for analysis or rendering. In the same way, the

initial conditions of an SDS simulation can be prepared using a 3D modeller.
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Converting an SDS3 s-morph to a triangular surface mesh can be accomplished

by exporting the surface cells as the vertices of the mesh, and the faces of the

tetrahedra that lie on the surface as the triangles. This conversion loses most of the

information within the s-morph, but this doesn’t matter here. Some of the figures

in the next chapter were rendered by importing an SDS3 simulation into a 3D

animation package using this method. In addition to this, some other visualisation

methods were used: cell visualisation, which converts the cells to sphere primitives

and discards all other information in the s-morph; and tetrahedron visualisation,

which converts each individual tetrahedron within the s-morph to its own surface

mesh, shrinking it slightly. Each visualisation is useful in understanding the results

of a simulation. Furthermore, some of the s-morph boundary meshes were smoothed

using Catmull-Clark subdivision surfaces, to create a more aesthetically pleasing

appearance. 11

One user-friendly method to set up a simulation is to construct a surface mesh

within an interactive 3D modelling program, and then export that mesh as the

initial s-morph for an SDS3 simulation. This method was found to be adequate

for most cases and was used to set up all of the experiments presented in the next

chapter. The conversion from a triangular mesh to a tetrahedral mesh was performed

using a library for tetrahedralising piece-wise linear complexes, Tetgen12. The SDS3

simulator takes a tetrahedral complex as input, and forms the mesh of an s-morph,

from which the cell information is inferred. SDS3 computes the radii (and hence

mass) of all cells based on the edge lengths in the mesh:

cr =
1

2|N(c)|
∑

n∈N(c)

|cx − nx| (6.22)

Using the cell radii, the rest sizes, R(s), can be computed for all edges and tetra-

hedra. Initially this procedure seemed adequate, however, importing a tetrahedral

complex that has non-regular tetrahedra (a common occurrence) resulted in a defor-

mation of the initial shape. The SDS2 experiments show an initial square s-morph

deforming into a trapezoid (Figure 5.2), an analogous issue arises in 3D but is much

more problematic, particularly when importing smooth meshes, such as spheres.

The rest scale multiplier addresses the undesirable deformation that occurs when

importing. It is a per simplex variable, sm, which stores the difference between the

initial state of the imported mesh and the desired state as specified by the inferred

11In hindsight, an alternative subdivision scheme, such as Loop subdivision (Loop, 1987), would
have been more suitable due to the triangulated nature of the surface mesh.

12http://tetgen.berlios.de/
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cell radii. When a mesh is imported, this variable is initialised as:

sm =
V (s)

R(s)
(6.23)

The rest scale multiplier is used in the physical equations to calculate a modified

rest size:

R′(s) = smR(s), (6.24)

which is used in place of the rest size, R, in all the energy calculations. This has

the effect that the initial minimal energy state of the s-morph corresponds precisely

to its initial imported state, which eliminates the deformation at the start of the

simulation.

6.3.8 Frozen Cells

It occasionally becomes useful to hold part of an s-morph in place, stopping it from

growing and moving due to forces, but still allowing it to take part in physical

collisions. For example, if growing a tree-like structure, freezing the base as SDS

simulates the growth of a branch may increase stability and controllability. This is

implemented in some of the SDS3 experiments with a Boolean cell variable, cfrozen.

When frozen, a cell does not move or grow, but it retains the ability to transport

morphogens and physically collide. The implementation is simple: a frozen cell

doesn’t have its position updated during the integration step (and for efficiency

simplex forces are not computed if the simplex is composed entirely of frozen cells.)

The frozen cell variable can be modified by the cell program or assigned to a whole

region of a mesh when importing from a surface mesh into SDS3. In the latter case,

where the value of cfrozen is given only for surface cells, it may be necessary to infer

which internal cells are frozen. One approach is to propagate the cfrozen variable

from the surface down into the s-morph, assigning cells as frozen only if the majority

of their neighbours are frozen (Algorithm 8 (p122)).

The physical model describes the motion of the cells and results in changes in shape

of an s-morph. The next two sections discuss how the structure changes due to cell

division and movement.

6.4 Cell Division

Cell division in SDS replaces one cell with two or more cells. At the mesh level,

cell division replaces one vertex of the mesh with two or more vertices placed close
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Algorithm 8 Frozen cell propagation algorithm.

Let P be the set of all surface cells
while N(P )/P 6= ∅ do
Q = {}
for c ∈ N(P )/P do
M = N(c) ∩ P
F = {m ∈M : mfrozen = true}
Let cfrozen = true if |F | > |M |/2 or false otherwise
Add c to Q

end for
P = P ∪Q

end while

together and aligned along a division direction. In order to maintain the tetra-

hedralised structure of an s-morph, the configuration of the tetrahedra must be

adjusted. Additionally, the changes to the structure should be as local as possible

(for reasons discussed in §3.5.2).

Cell division in SDS3 is considerably more complex than in SDS2. It is difficult

to even imagine the different arrangements of tetrahedra that can surround a cell

and to understand how the configurations can be changed with the removal and

addition of vertices. There are many different ways a cell division transformation

can be implemented in SDS3, and one aspect of this research was exploration —

theoretical and experimental — of the consequences of some different approaches.

In the formative stages of this research, an attempt was made to enumerate all the

different configurations of tetrahedra that can surround a single cell, in order to

design an efficient and robust division algorithm. This task was extremely complex

and time-consuming, and was eventually suspended in favour for the simpler cell

division algorithms presented below. The goal of this research was not, after all, to

design perfectly efficient algorithms, but to demonstrate the generation of complex

organic geometries in SDS, and the simpler cell division algorithms fulfil this goal.

Nonetheless, notes on this original line of research are presented in Appendix B, and

may offer insight for future developments.

This section examines a number of approaches to cell division. First tetrahedral

subdivision is examined along with its generalisation, simplex subdivision. This

technique provides a simple and efficient way to model cell division but results in

topological asymmetry amongst the daughter cells. A general method is then pro-

posed that uses a black-box tetrahedralisation algorithm. (With a good tetrahedral-

isation algorithm this method is computationally more expensive than subdivision,

but can result in a more balanced distribution of structure around the daughter
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Figure 6.8: Cell division modelled with tetrahedron subdivision. (a) Given a dividing
cell c, select the adjacent tetrahedron, t, that lies in the direction of division, d. (b)
Split t into four new tetrahedra by adding a new cell to its centroid. (c) An expanded
view of t split into the four new tetrahedra, with the location of the first daughter cell
(white) and the second daughter cell (black) highlighted.

cells.) The method used for the SDS3 implementation is then described, which uses

a combination of simplex-subdivision and the general method.

Tetrahedral Subdivision The concept of modelling cell division in SDS2 by sub-

dividing neighbouring triangles (§4.4.1) can be generalised to SDS3. This procedure

is outlined in Algorithm 9 and illustrated in Figure 6.8. Consider an internal cell,

c, that chooses to divide in direction, d. Choose the neighbouring tetrahedra, t, in

direction d (t exists because the cell is internal). Subdivide t by adding a new cell at

its centroid and replacing t with four new tetrahedra. Let the daughter cells consist

of the original cell, c, and the new centroid cell.

Algorithm 9 Cell division as tetrahedral subdivision

Input: c ∈ C, d ∈ R3

Choose the t ∈ T that lies in direction d, where c ∈ t (Figure 6.8a)
Subdivide t by adding a new cell c2 at the centroid (Figure 6.8b and c)
Rename c to c1

Output: c1 and c2

The operation is simple, but it is unbalanced in two ways. Firstly, the local topology

around the mother cell is not distributed evenly amongst the daughter cells. Cell c2

always has four neighbours, whereas cell c1 has an arbitrary number, which violates

the topological symmetry guideline (§3.5.2). Secondly, if the two daughter cells are

to be of equal size, the structure is not physically stable, because c2 is “trapped”

inside the subdivided tetrahedra, but it is so big that stresses acting on it will push

it out. One way to relieve this is to give the cell c2 a smaller size than c1, resulting

in both physical and topological asymmetry. Nonetheless, tetrahedral subdivision is

very simple to implement, isolates all changes to the hull of a single tetrahedron, and

only adds three new tetrahedra to the system. On the other hand, it is asymmetric

and restricts the directions in which a cell can divide.
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Figure 6.9: Internal cell division by subdividing an edge. (a) Given a cell c, choose an
adjacent edge e. Label the tetrahedra attached to e in sequence as t1 . . . tn. (b) Sub-
divide e and let the two new daughter cells be c1 and c2. (c) What remains is to split
each of the ti into two tetrahedra tia and tib, as shown.

Simplex Subdivision We can generalise tetrahedral subdivision to simplex sub-

division, whereby we allow any simplex that contains c to be subdivided. Any

j-simplex can be subdivided into j + 1 j-simplexes. Tetrahedral subdivision is sim-

ply the case where j = 3. For the case j < 3, subdivision of a j-simplex results

in additional topological changes. Figures 6.9 and 6.10 demonstrates edge and face

subdivision in a tetrahedral mesh. These operations give a cell a greater range of

directions in which it can divide.

Note that this subdivision will always add just one new vertex, however each method

adds a different number of tetrahedra. Subdividing faces or tetrahedra only adds a

constant number of new tetrahedra (3 and 4 respectively), but subdividing an edge

will add n new tetrahedra, where n is the number of tetrahedra attached to the

edge.

A more flexible algorithm would choose between these different types of subdivision

depending on the direction of division. The first iteration of the SDS3 prototype

used a combination of tetrahedral and edge subdivision. If an edge attached to the

dividing cell was aligned parallel to the desired direction of division, then it would

be subdivided, otherwise the tetrahedron pointed to by the division direction would

be subdivided.

Simplex subdivision also applies to division along a boundary. Figure 6.11 illustrates

a boundary cell, c, dividing in direction, d. Boundary division can be modelled by

subdividing a neighbouring surface face in direction d, which can be interpreted as

subdividing the tetrahedron attached to the face into three parts. A similar opera-

tion exists for surface edge subdivision that acts just like internal edge subdivision

(Figure 6.9), except in this case tetrahedra t1 and t2 are not neighbours.

Balanced division approach Tetrahedral subdivision results in structural asym-

metry and a reduced fidelity in directional division. Edge and face subdivision are

marginally better, but still suffer from asymmetry. An ideal division algorithm
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Figure 6.10: Internal cell division by subdividing a face. (a) Given a cell, c, choose
an adjacent face, f . As c is internal, the face is connected to two tetrahedra, t1 and
t2. (b) Subdivide f by adding a new cell, c2, at its centroid. The daughter cells are
c1 and c2. Subdividing the face splits t1 and t2 into three tetrahedra each.

Figure 6.11: Boundary cell division with face subdivision. (a) A boundary cell, c,
and its neighbouring surface faces. Given a direction of division, d, choose the surface
face, f , (shaded) which lies in that direction. (b) Identify cell c′ which lies opposite
f . (c) Subdivide f and its adjacent tetrahedra by adding a new cell c2 to the centroid
of f . Rename c to c1.

would support arbitrary division direction, maintain as much of the local topology

as possible, and distribute the topology of the mother cell evenly amongst its daugh-

ter cells. Some theoretical work towards such an algorithm is presented in Appendix

B. For the results presented in this thesis a “brute-force” approach was taken.

Algorithm 10 presents a general approach to performing cell division. The algorithm

removes all elements adjacent to the dividing cell, c, removes c itself, adds the two

daughter cells a and b aligned along d, and then tetrahedralises the empty hull with

the daughter cells inside. The tetrahedralisation phase can be performed using any

appropriate algorithm or library, depending on the quality of the structure that is

required. (In the SDS3 implementation a Delaunay tetrahedralisation is generated

in this step using Tetgen13 tetrahedralisation library.)

Algorithm 10 Balanced cell division

Let c be the dividing cell, and d be the desired direction of division
Let Tc be the set of all tetrahedra adjacent to c
Let F be the hull surrounding ∪Tc
Remove ∪Tc and c
Add two cells a and b, with ax = cx + εd and bx = cx − εd, where ε is such that a
and b are contained within F
Tetrahedralise the structure F ∪ {a, b}

13http://tetgen.berlios.de/
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As in Algorithm 2 (p50), the mass of the mother cell cm is then distributed evenly

amongst the daughter cells, and the radii of the new cells are computed from these

masses assuming a uniform density. All new tetrahedra and edges then have their

rest sizes calculated (§6.3.2). This allows the local volume to be preserved, and

existing local stress will be transferred into the new configuration.

Cells that lie on the boundary of the mesh can also be divided using this approach,

with a small modification. If a cell c lies on the surface, then, in Algorithm 10, c

lies on the boundary of Tc. This means that when ∪Tc and c are removed, some of

the faces on the hull, F , will also need to be removed. The structure F ∪ {a, b},
then, is an open hull (i.e., not a closed one as in the internal cell case). This

open hull then needs to be tetrahedralised appropriately (e.g., with Tetgen, which

can tetrahedralise closed or open hulls). If the tetrahedralisation algorithm cannot

operate on open hulls, then the open region may need to be closed first (e.g., by

patching it with faces).

Implementation Details The SDS3 implementation used to generate the results

shown in the next chapter incorporates a combination of the above mentioned di-

vision methods (Algorithm 11). This algorithm does not support division away

from the surface, however this operation was not required in the experimentation of

SDS3. For division along a surface, the algorithm either performs edge subdivision

if the direction of division is oriented within an angle, α, of an adjacent edge, or

performs surface face subdivision otherwise (Figure 6.12). For internal cell divi-

sion, the algorithm either performs edge subdivision if the direction of division is

oriented within an angle, α, of an adjacent edge, or performs balanced cell division

otherwise. This hybrid approach works because when the direction of division lies

almost parallel with an adjacent edge, it is efficient and sufficient (for the experi-

mental results) simply to subdivide the edge, rather than performing a brute-force

re-tetrahedralisation.

Figure 6.12: Selecting between edge and face subdivision for a surface cell. (a) Given
a surface cell, c, with an intended direction of division, d, a choice is made to either
subdivide a neighbouring edge or face based on the direction. (b) If the d lies within
an angle α of any edge (the shaded regions) then that edge is subdivided. Otherwise
the neighbouring face that d is pointing towards is subdivided.
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The tetrahedralisation step in Algorithm 10 (p125) is performed using Tetgen. The

library generates a Delaunay tetrahedralisation that produces almost regular tetra-

hedra, and hence the resulting configuration has a low energy. One side-effect of

this method is that more than two daughter cells may be generated in order to keep

the tetrahedra of a minimum quality (i.e., as regular as possible). This is a trade-off

between geometric complexity and physical stability (the more regular a tetrahedron

is, the lower energy it has).

Algorithm 11 PerformCellDivide(c,d)

if csurface = true then
Find n ∈ N(c) where nsurface = true and nx−cx

|nx−cx| · d = maxn′∈N(c)(
n′
x−cx

|n′
x−cx| · d)

if The angle between the vectors d and nx − cx is less than α then
Subdivide the surface edge connecting c and n

else
Subdivide the surface face the lies in direction d

end if
else

Find n ∈ N(c) where nx−cx
|nx−cx| · d = maxn′∈N(c)(

n′
x−cx

|n′
x−cx| · d)

if The angle between the vectors d and nx − cx is less than α then
Subdivide the internal edge connecting c and n

else
Perform Algorithm 10 (p125)

end if
end if

Discussion The two algorithms for cell division presented above lie at opposite

ends of the spectrum. Simplex subdivision only slightly modifies the existing struc-

ture surrounding the dividing cell, whereas the balanced cell division algorithm

removes the local structure altogether and generates a new one from scratch. This

brute-force re-tetrahedralisation inefficiently discards the existing structural infor-

mation. A more efficient algorithm would use this information in order to quickly

restructure the local topology. Appendix B offers insight into such an algorithm,

but due to time constraints this research was not pursued in full.

There is a natural tradeoff in the cell division transformation between efficiency

and quality of the algorithm. The quality of a cell division algorithm relates to

aspects of the post-division configuration, for example: the topological symmetry of

the daughter cells, its physical stability (i.e., the energy of the configuration), and

its structural complexity (e.g., number of new tetrahedra). Simplex subdivision is

efficient but produces configurations that are topologically asymmetric and physi-

cally unstable. Balanced cell division, on the other hand, is computationally more
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complex but produces configurations of better topological symmetry and physical

stability (at the expense of adding more tetrahedra).

In conclusion, performing cell division within a tetrahedral mesh is significantly more

complex than in a triangular mesh. Cell division in a tetrahedral mesh can be ac-

complished in a number of ways., with a natural trade-off existing between algorithm

complexity and the quality of the new structure generated. This section compared

two alternative techniques and offered suggestions for further research paths. The

second transformation in SDS3, structural cell movement, is now considered.

6.5 Cell Movement

The cells of an s-morph move around in space as a result of external forces, the

constraints of the simplexes, and due to collisions with surfaces (§6.3). As cells

move, the simplexes change shape and are occasionally flattened (Figure 6.14). In

order to maintain the tetrahedral mesh structure either the movement of internal

cells needs to be restricted or the mesh needs to be dynamically restructured. The

experiments in SDS2 highlighted that giving cells more freedom of movement was es-

sential to maintaining a structure that is physically balanced. This section describes

the method used to dynamically restructure the tetrahedral mesh of an s-morph as

cells move. The method detects when a topological movement has occurred be-

tween two points of time, rewinds the system to the point of movement, and locally

reconfigures the mesh.

Edge-flip in 3D In SDS2 the cell movement transformation is modelled with a

simple edge-flip operation. In the operation a cell, a, crosses over an edge, e, which

is flipped, resulting in cell a now being connected to cell b (Figure 6.13a). This

operation is effective because it is confined to the quadrilateral hull containing e, and

thus from the perspective of the local neighbourhood, the hull remains unchanged

(Figure 6.13b). The transformation acts locally and structural modifications don’t

propagate.

When exploring the movement transformation in 3D, a first step is to try to gen-

eralise the edge-flip operation from SDS2. Is there such as thing as a “face-flip”?

Yes, but unlike the edge-flip operation, a face-flip operation modifies the hull con-

taining the face. This operation is demonstrated in Figure 6.13. Due to structural

propagation a face-flip is not an appropriate method for modelling cell movement
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in 3D14. An alternative approach to the cell movement transformation in SDS3 was

thus designed and is now presented.

Figure 6.13: Generalising the edge-flip. (a) The edge-flip operation in SDS2 allows
a cell a to join to b by flipping edge e within the quadrilateral hull. (b) This operation
doesn’t affect any cells outside the hull and from their perspective the hull has an
unknown structure. (c) In SDS3, the analogous situation to (a) consists of two cells,
a, and b, separated by a face, f . The smallest hull containing these elements is the
dipyramid shown. (d) Consider “flipping” face f such that a and b are now connected,
there are a number of ways, one of which is shown. (e) The hull containing a, b and f
now has a new edge ab. Comparing this to (c) the hull has changed, and consequently
any tetrahedra external to the hull that were connected to edge ec now have to be
modified. This may result in further modifications to the tetrahedra connected to
them and so on.

Modelling cell movement in SDS3 In SDS3, a topological cell movement is

necessary when a cell moves through an opposite face, equivalently, at the instant

when a tetrahedron becomes flattened. Therefore, to detect a cell movement, it is

sufficient to check, at every time step, whether the signed volume of each tetrahedron

(Equation 6.10) has become negative. An inverted tetrahedron is one where vol(t) ≤
0, and the time of inversion occurs at the instant when vol(t) = 0.

Multiple tetrahedra may invert during a single time step. Instead of handling mul-

tiple movements simultaneously, only the first movement is performed. This is

achieved by rewinding the simulation back to the time of the first inversion, per-

forming the movement transformation, and then restarting the simulation from that

point. Given that the simulation is at time step u2, and the last time step was

u1, for each inverted tetrahedron t, the time u the inversion occurs is computed by

assuming linear motion of the vertices and solving for t in vol(t) = 0. This equates

to solving the following cubic (discarding the roots that fall outside the interval

14Note that if the angle formed by the faces connected to edge ab is less than 180 degrees, then
a new tetrahedron acbe can be added to “plug the hole”, keeping the hull unchanged. In the case
where the angle is greater or equal to 180 degrees, a more sophisticated adjustment is needed.
These two cases are considered in the algorithm presented here.
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Case 1 Case 2

Figure 6.14: Two situations that cause a tetrahedron to become flat. (Case 1) A
vertex enters the opposite face of the tetrahedron. (Case 2) An edge intersects the
opposite edge. These cases can be distinguished by observing that if any vertex of the
tetrahedron lies within the face opposite then Case 1 has occurred, and if not then
Case 2 has occurred.

[u1, u2]):

(v1(u)− v0(u)) · ((v2(u)− v0(u))× (v3(u)− v0(u))) = 0,

where:

vi(u) = vi(u1) +
u− u1

u2 − u1

(vi(u2)− vi(u1)).

Restarting the simulation from the first inversion is not efficient if there are many

inversions occurring in one time step. This problem has also been identified in

the collision literature and some systems solve it by handling multiple collisions

at a time (Bridson et al., 2005). In SDS, however, handling multiple inversions

simultaneously is non-trivial because of the topological modifications involved. More

specifically, the movement transformations given below assumes that there are no

other inverted tetrahedra besides the target one in order to enumerate the topological

configurations that arise. The transformations of the two inversion cases illustrated

in Figure 6.14 will now be discussed.

Case 1 This occurs when a vertex in a tetrahedron attempts to pass through the

opposite face, and results in the transformation described in Figure 6.15. The figure

illustrates the case where neither v nor f lie on the surface. If v lies on the surface

then the transformation is exactly the same. If f is on the surface then t′ doesn’t

exist and hence new tetrahedra aren’t generated. If v and f are both on the surface

then the transformation cannot be applied (as this would result in an infinitely thin

section). This situation has yet to arise in the simulations performed; however, if it

arises in the future then another transformation could be designed.

Case 2 This case occurs when opposite edges in a tetrahedron intersect. Let these

edges be named eu and el respectively. Consider the case where eu and el are not

on the surface, resulting in a closed hull of all tetrahedra attached to either edge

(Figure 6.16). The mesh is transformed at the time of inversion by removing all
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(a) (b) (c) (d)

Figure 6.15: Case 1. (a) Consider a tetrahedron t and a vertex v. Let f be the
opposite face. (b) Let t′ be the tetrahedron that is joined to face f , and v′ be the
vertex in t′ that is opposite to f . (c) v is assumed to have just intersected face f .
(d) We remove f and t but keep the faces adjacent to v. We then add a new edge
connecting v and v′ thus implicitly tetrahedralising the hull of t ∪ t′.

(a) (b) (c)

Figure 6.16: Case 2. (a) Consider the tetrahedron in the diagram. Call its upper
edge eu and its lower edge el. (b) Create the sets U and L by considering all tetrahedra
that share edge eu and el respectively. (c) Consider the hull around the union of those
sets, U ∪L. When the tetrahedron’s volume becomes zero the task is to tetrahedralise
the hull of U ∪ L.

tetrahedra within the hull of U ∪ L and tetrahedralising the empty space formed.

Tetgen was used to generate the Delaunay tetrahedralisation of the empty hull. In

general any tetrahedralisation approach will work, with a tradeoff existing between

running speed and quality of tetrahedra. If eu or el are on the surface then the hull

is not closed, and additional tetrahedra must be added to cover each edge before

applying the method above.

In conclusion, cell movement in SDS3 is considerably more involved than in SDS2.

Algorithms were proposed that allow a tetrahedral mesh to change its structure as

vertices are pushed around inside. The adaptive structure of an s-morph allows

stresses to distribute throughout the mesh and gives cells more freedom in their

movement. The algorithm proposed for Case 2 is, however, not very efficient. The

hull shown in Figure 6.16c has a very specific structure that is currently ignored by

using a general tetrahedralisation algorithm. Efficiency gains could be made by tak-

ing advantage of this specific structure and designing a method for tetrahedralising
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it. Avenues for further improvement to this adaptive aspect of SDS are discussed in

§9.2.3.

6.6 Morphogen Model

SDS3 implements a similar morphogen model to the one used in SDS2 (§4.6). The

growth program specifies a set of m morphogens, Φ = {φ1, . . . , φm}, each with

corresponding diffusion and decay coefficients (Dφi and Cφi). Each cell contains

a continuous amount of each morphogen, cφi ∈ [0, vol(c)]. In 3D the morphogen

equation is discretised over the tetrahedral mesh in a similar manner to the 2D

model (§4.6). The morphogen update equation for a cell c with a morphogen φ is:

cφ(t+ h) = cφ(t) +
∂cφ
∂t

h (clamped to the range [0, vol(c)]) (6.25)

∂cφ
∂t

= Dφ∇2cφ − Cφcφ (6.26)

∇2cφ =
∑

n∈N(c)

min(nφ, vol(c))−min(cφ, vol(n))

|cx − nx|
(6.27)

In Equation 6.27 the use of the min function in the numerator limits the amount of

morphogen that travels between two cells of different sizes. As an example, consider

two cells, a and b, with vol(a) = 1, vol(b) = 2, aφ = 1.0 and bφ = 1.2. As a is at

capacity and bφ < aφ no morphogen should flow between the cells. This is supported

by the model, as min(bφ, vol(a))−min(aφ, vol(b)) = 1− 1 = 0 and hence ∇2cφ = 0.

6.7 Summary

This chapter presented designs for each of the SDS components in 3D. The physi-

cal model extends the SDS2 model by adding tetrahedral forces that preserve local

volume, resulting in more solid and stable forms. A number of technical considera-

tions regarding the physical simulation were also discussed, including a simulation

rewinding scheme, the incorporation of an adaptive step-size, and the conversion

of a surface mesh to an s-morph. Perhaps the most challenging aspect of imple-

menting SDS in 3D is modelling cell division in a tetrahedral mesh. This is due

to both the complexity of the tetrahedral mesh structure and the difficulty in vi-

sualising (mentally and technically) structural changes in a tetrahedral mesh. This

chapter proposed a number of methods for modelling cell division, and discussed

properties of these methods, such as quality and efficiency. An algorithm for cell
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movement was also proposed, illustrating how a tetrahedral mesh can dynamically

adapt its structure to accommodate the movement of cells. Lastly, it was shown how

to discretise the particle diffusion equation on a tetrahedral mesh, supporting the

implementation of morphogen transport. Having examined the machinery of SDS3,

the next chapter presents examples of using the system to generate 3D forms.
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Chapter 7

Experiments in 3D

Using the 2D limb growth experiments (§5.1) as a basis, the next goal was to gen-

eralise them into SDS3. The 2D experiments were heavily focused on biological

modelling; the 3D system, on the other hand, was meant as a creative modelling

and animation system, and therefore the growth models were stripped back in order

to focus on flexibility and ease of use. The primary growth model demonstrated

in this chapter, the basic limb model, is a simplified version of the 2D limb bud

model. Using this model as a base, it was possible to generate a set of different

tentacled forms. In this chapter each of these form creation experiments will be

discussed, highlighting features of SDS, such as the re-use of modules, variation,

and environmental interaction. The basic limb model is discussed first.

7.1 The Basic Limb Model

The basic limb model forms the basis for the experiments presented here. The initial

attempt at implementing the limb model in 3D was unsuccessful, but it is useful

to consider why. Figure 7.1 illustrates the simulation output of one of the first ex-

periments performed with SDS3 (also see animation SDS3/3). At this stage in the

research it was not clear whether the principles seen in the 2D prototype could be

successfully applied in 3D, and as this example demonstrates, the early results were

not promising. The difficulty in implementing the model arose because of the simul-

taneous exploration of division algorithms, growth model parameters, and physical

parameters, all while fixing bugs with the simulator. This early failure led primarily

to a reconsideration of how cell division was performed in SDS3, culminating in the

balanced cell division algorithm discussed in the previous chapter. After these early

135
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Figure 7.1: (left to right, top to bottom) A simulation sequence of an early limb bud
experiment. We can see that amongst other problems, one vertex is far too connected
(circled), and the limb lacks symmetry. This failure is due to sing a non-balanced
division algorithm and supplying wrong parameters to the growth and physical models.

failures, the limb bud model was stripped back considerably, the balanced division

algorithm was implemented, and the initial s-morph configuration was simplified.

The key idea behind simplifying the limb bud model is the elimination of the feed-

back mechanism. The feedback mechanism is postulated to occur within the bio-

logical system, however, as SDS is not modelling biology, this mechanism can be

replaced with a simpler one. By allowing the growing tip to perpetually produce

morphogen the same effect occurs. This observation removed the need for the sec-

ond morphogen (Fgf10) which reduced the complexity of the model. The simplified

limb bud model is described in Table 7.1. There is now only one morphogen, φ,

and a binary cell variable ct = {0, 1} is used to differentiate the cells on the grow-

ing tip (the AER). Rule r1 maintains a constant amount of morphogen within the

growing tip cells. Rule r2 directs all non growing tip cell to grow at a linear rate,

4, if a threshold, K, of the morphogen is exceeded. Rule r3 causes cells to divide

upon reaching a given size, R, with the division directed towards the morphogen

source. This basic rule-set results in a localised growth towards a growing tip, due

to the orchestration of cell actions, physical effects, and geometric transformations.

Figure 7.2 demonstrates the basic sequence of one growing limb (also see animation

SDS3/4).

Table 7.1: Cell behaviour rules for the 3D limb growth model.

rule condition action
r1: ct = 1 cφ = vol(c)
r2: ct = 0 & cφ > K c∆r = 4
r3: ct = 0 & cr > R divide(∇φ)
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Figure 7.2: A visualisation of how the edges (left) or the tetrahedra (right) of a
developing organism change over time. (top) An organism at the start of a simulation
has a cell chosen to be a growing tip (circled). From top to bottom: as morphogen
diffuses, cells begin to grow and divide near the growing tip, forcing the tip to the
right and creating a limb-like structure.

This simplified limb model, while useful, has some limitations. It requires a cer-

tain structural configuration in order to develop, specifically, there should be a cell

directly below the growing tip (Figure 7.3). This cell divides towards the growing

tip and forms the internal core of the limb. An analysis of the structural processes

behind the growth of a limb in 3D is discussed later (§7.8.2). This point also high-

lights a major restriction of the current results as the limbs are all just three cells

wide. A discussion of this limitation and others is deferred until §7.8.3. The basic

limb model shows how coordinating the directed proliferation of a group of cells

can generate simple a growth primitive in SDS3. Next we see how limbs can be

implanted in existing geometry.

Figure 7.3: A necessary condition for the successful growth of a limb in SDS3, is to
have the surface limb tip cell, g, connected to a cell, g′, that lies below it under the
surface. This growth and division of g′ towards g provides necessary internal pressure
to push the limb out.
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Figure 7.4: (left to right) A sequence from a simulation where a single limb bud
was implanted in a sphere. The initial geometric modifications are visible in the wire-
frame view. A barrier in the environment prevents the limb from growing through it,
causing the limb to buckle and fold in an organic manner, illustrated in the lit surface
mesh view.

7.2 Implanting The Limb

The previous section introduced the basic limb model. This section shows how this

model can be used, by implanting it into an s-morph. Like the limb bud model

in SDS2, the SDS3 limb bud model can be incorporated in a design by simply

designating a cell as a growing tip. The experiments performed here were set-up

using the Blender SDS plug-in (§8.6.3.2), in which a triangulated surface mesh is

first constructed. A vertex of this mesh is then designated as a growing tip, and a

sub-surface vertex is placed below and connected to the growing tip (as in Figure

7.3). The growing tips are identified using the vertex colouring functionality in

Blender, in this example, painting a vertex white indicated a growing tip (as in

Figure 7.5). Vertex colours can also be used to assign morphogen quantities or

other cell parameters. SDS converts this coloured mesh into an s-morph. Running

the simulation results in a single limb growing out of the spherical s-morph, as is

shown in Figure 7.4. There are a number of parameters in this model, and the exact

values required to achieve specific results will be dependent on the implementation.

In practice the parameter values were found experimentally1 The radius threshold

is specified independently for surface (RE) and sub-surface cells (RM). A limb can

be implanted in any geometric model, or in multiple sites within the same model.

The next section demonstrates some forms that have had multiple limbs implanted

in them.

1The parameters of the simulation shown in Figure 7.4 were Dφ = 0.1, Cφ = 0.05, RE =
1.1, RM = 1.2,4 = 0.2, where D and C are the morphogen equation parameters as in Equation
6.26.
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Figure 7.5: Creating a surface mesh in Blender to be converted to an initial s-morph
for use in the six-limbed orb experiment shown in Figure 7.6. (left) The vertices of the
mesh are coloured to denote type. In this case, white vertices denote limb tips. All
the other vertices are painted black, and colour interpolation across the faces show up
as a white to black gradient. (middle) The shaded surface mesh, a Blender icosphere
(subdivided icosahedron). (right) A wireframe view of the mesh. Examining it closely
will reveal the sub-surface vertices that were added and connected to each limb tip as
required by the limb model (§7.2).

7.3 Multiple Limbs

The limb model can be re-used by specifying multiple limb tips on a mesh. Using the

basic limb program (Table 7.1) multiple limb tips were specified on a mesh (Figure

7.5), resulting in the simulation shown in Figure 7.6 (also see animation SDS3/5).

Even though the same limb program is used and the starting conditions are essen-

tially symmetric, it is clear that each limb has a different geometry and, because the

growth is constrained within a box, the resulting geometric model is significantly

more complex than the initial configuration. Figure 7.7 illustrates another simu-

lation that used the same growth model but differed in the initial configuration,

resulting in an octopus-like form (also see animation SDS3/6). Figure 7.8 shows

another simulation performed with many more limbs (also see animation SDS3/7).

The ability to re-use components (such as the limb model) is a very useful feature in

a creative system as it allows designers to model at a higher-level of abstraction. In

SDS, the limb model emerges from low level geometric manipulations, and therefore

can be implanted into any geometric model. As the limb develops it literally grows

out of the geometric body, thus the geometric interface between the two is a complex

arrangement of cells. The examples shown so far in this chapter illustrate how, using

just the basic limb model, a wide range of forms can be generated with SDS. The

next sections presents new growth models which offer variations on the basic limb

model.
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Figure 7.6: (left to right, top to bottom) A developmental sequence of a six-limbed
s-morph. As the limbs grow they eventually collide with the bounding box of the
environment (shown as a wireframe). They continue to grow in the constrained space
and the physical model causes them to curve and bend, eventually filling up the space.
Figure A.5 shows a high-res close-up of a similar simulation.
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Figure 7.7: (left to right, top to bottom) In this simulation sequence an octopus-like
creature (a quinquepus?) is generated by implanting five limb tips into an egg shaped
s-morph.
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Figure 7.8: (left to right, top to bottom) A simulation of an orb with multiple limb
tips implanted around it. The ability to re-use modules, as demonstrated here, is an
advantage of the SDS approach.

7.4 Tapered Limbs

Limbs and arms of some organisms (e.g., the starfish) taper along their length.

Tapered limbs can be formed in SDS, using the basic limb model, by additionally

instructing all cells to simultaneously grow at some small rate. This simple addition

results in tapered limbs because the threshold of division, R, from the basic limb

model, is constant; hence the growing tip remains a constant size while all the other

cells grow. This growth model is specified in Table 7.2 and demonstrated in Figure

7.9. The simulation shown begins with a symmetric six-sided form with six growing

tips. As the six limbs grow, any non-proliferating cells (i.e., all cells minus the

growing tips) grow slowly, causing the body to expand.

One unfortunate side-effect of generating tapered limbs using this method is that

the scale of the s-morph increases over time, and therefore it is difficult to predict

the final size of the geometric model. While an increase in size is a natural trait

of biological development, a dramatic increase in scale may be problematic for a

creative system. An alternative method for tapering limbs, that does not suffer this

particular problem, is to slowly shrink the end of the limb (instead of growing the

body). This approach does not affect the scale of the s-morph but is considerably

more complicated. In order to shrink the end of the limb, while maintaining the

limb growth process, a number of properties need to change over time, including: the

size of growing tip, the radius threshold for division, and the morphogen diffusion

and decay rates. Brief experimentation with this model showed that, due to the

extra number of time-dependent variables, it is considerably more cumbersome than

the original model. Further research into a consistent scale method for generating

tapered limbs is thus necessary.
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Table 7.2: Growth model for the starfish.

rule condition action
r1: ct = 1 cφ = vol(c)
r2a: ct = 0 & cφ > K c∆r = 4
r2b : ct = 0 & cφ ≤ K c∆r = 4′
r3: ct = 0 & cr > R divide(∇φ)

Figure 7.9: (left to right, top to bottom) A 3D version of the SDS2 starfish growth
model (Table 7.2). In this simulation, six limb tips are assigned to an initial simple
mesh. A rule causes the slow growth of all cells. The radius threshold for proliferating
cells remains constant and so tapered starfish arms form. (As the simulation progresses
the camera zooms out in order to fit the starfish in frame.)

Once an SDS developmental model is designed it can be applied in different environ-

ments. Figure 7.10 shows an early simulation in which the starfish embryo of Figure

7.9 is placed upon a static rock-shaped geometry (also see animation SDS3/10). As

the form grows, gravity acts upon it, causing the starfish arms to follow the contours

of the rock and ground. In this simulation, the growth rate of the body, 4′, was

too high, causing the limbs to buckle due to friction from the rock. This resulted

in an interesting variation of a starfish. Tuning this parameter results in starfish

of different shapes (Figure 7.11). Other examples of environmental interaction are

explored later (§7.6).

7.5 Stripes and Morphogen Timers

In addition to the geometric output of SDS, texture data can be generated using

cell variables or morphogen values in an s-morph. For example, when importing

an s-morph into a 3D modelling package, morphogen concentrations in cells can be

used to specify vertex colours or texture coordinates. This idea was experimented
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Figure 7.10: (left to right) An early attempt at growing the starfish over a rock.
This simulation was initialised with a radially symmetric geometry with six growing
tips placed upon a rock. The growth model includes a rule to allow the body to grow
slowly over time. This simulation incorporates static friction between the rock and
the starfish arms, which results in a buckling of the starfish arms while they grow.

with, in order to generate the striped starfish model shown in Figure 7.11 (also see

animation SDS3/10).

The growth model used to generate this striped starfish extended the basic starfish

model (used in Figure 7.9) by adding a stripe generating component (Table 7.3).

The stripes of the starfish are generated by a timer morphogen, φs, contained within

the growing tip. The decaying morphogen in the growing tip acts like a count-down

timer. Once the morphogen is depleted the growing tip signals all neighbouring

cells to become stripe cells, by assigning a true value to a custom cell variable

cstripe. After stimulating the stripe cells, the timer is reset, and the process restarts.

This enables the generation of a number of equally spaced stripes — the distance

between the stripes determined by the decay rate of the timer morphogen. In the

growth program (Table 7.3), rule r4 models the generation of stripes. This rule does

not use morphogen communication to signal nearby cells to form stripes, but instead

allows a cell to explicitly modify the state of its neighbours. This is an example of

trading biological realism for modelling flexibility.

Table 7.3: Growth model for the striped starfish model.

rule condition action
r1: ct = 1 cφ = vol(c)
r2a: ct = 0 & cφ > K c∆r = 4
r2b : ct = 0 & cφ ≤ K c∆r = 4′
r3: ct = 0 & cr > R divide(∇φ)
r4: ct = 1 & cφs < ε cφs = vol(c) & ∀n ∈ N(c) : nstripe = 1

Morphogen timers can also be used to drive sequences of developmental events.

Figure 7.12 illustrates a simulation, derived from the basic limb model, in which a

morphogen timer is used to switch between two growth models. In this experiment

a timer is added to the growing limb tip. When the timer has fully counted down

(decayed) the growing tip is deactivated and destroys all its limb growth morphogen.

At this point, the growing tip begins executing a budding program, in which it

releases a morphogen that causes nearby cells to grow slowly until they reach a
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Figure 7.11: (left to right, top to bottom) Simulated growth of a striped starfish
on a rock executing the growth model in Table 7.3. This simulation is similar to the
one shown in Figure 7.10, with the body growth rate parameter tuned to generate a
starfish with more regular arms. An additional rule was added to cause the formation
of morphogen stripes.
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Figure 7.12: (left to right, top to bottom) Simulation of a budding form using the
rules in Table 7.4. The growth model consists of a limb growth stage (as seen in the
top row), and a bud growth stage (as seen in the bottom row).

specific size. The goal of this growth program was to develop buds at the end of

long stalks2. Table 7.4 specifies the growth model for the budding limb experiment.

The cell type ct variable can be one of: G growing tip, N normal, T budding tip,

B budding cell. BM is the bud multiplier, BGR is the bud growth rate, and cbs is a

cell variable representing the target bud size per cell.

This example demonstrates how sequences of growth models can be modelled. A

benefit of modelling cells that have state and can execute logic (as opposed to a

continuum of state-less cells (Combaz and Neyret, 2006)) is that complex develop-

mental sequences can be trivially modelled; in the case of SDS, using rule-sets and

a model of morphogen transport. Time constraints in this project meant that the

potential of SDS to model more complex sequences was not explored. Suggestions

for further development in this area are proposed in §9.1.

7.6 Environment

SDS forms are embedded within, and are susceptible to, an environment. Figure

7.13 demonstrates the effect that static geometry has on a growing s-morph. A

single limb grows in a constrained environment and will contort to fit within the

2An interesting feature used in the budding simulation are the frozen cells that hold the main
body in place. The mesh was prepared as usual for a limb bud experiment with growing tip
vertices assigned. All the other vertices in the surface mesh were then assigned as frozen (i.e.,
cfrozen = true). When the mesh was imported into SDS, the cfrozen variable for the internal cells
was computed by propagating the variable down into the s-morph using Algorithm 8 (p122). The
desired effect of this was to hold the body in place, while the stalks and buds were affected by
gravity; however, this is only slightly noticeable in the output due to the short length of the stalks.
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Table 7.4: Cell behaviour rules for the budding limb model.

rule condition action
Normal Limb Growth

r1: ct = G cφ = vol(c)
r2: ct = N & cφ > K c∆r = 4
r3: ct = N & cr > R divide(∇φ)

Switch from Limb to Bud
r4: ct = G & cφ2 < ε ct = T & cφ = 0 &

cφ3 = vol(c) & cbs = crBM

Grow Bud
r5: ct = T & cr > cbs cφ3 = 0
r6: cφ3 > 0.1 & ct 6= B & ct 6= B ct = B & cbs = crBM

r7: cφ3 > 0.1 & cr < cbs c∆r = BGR

rb: cφ3 > 0.1 & cr >= cbs c∆r = 0

constraints. This example illustrates that the limb model is not an explicit geometric

specification but rather a process, susceptible to external influence.

Figure 7.13: (left to right, top to bottom) A simulation sequence of a single limb
growing in an environment. The initial conditions place the limb above the ground
and it is dropped into the environment. The two blocks constrain the space of the
simulation, leading to the development of the form shown. The final result is generated
by a combination of a simple growth program, a physical model, and an environment.

Static geometries can be used to constrain the spatial environment. Another envi-

ronmental factor that can influence the development of an s-morph is an attractor.

Figure 7.14 presents a simulation within which an attractor is placed into the en-

vironment that applies a constant force towards its position, acting on the growing

tips (also see animation SDS3/8). This provides a simple control mechanism that

guides the directional growth of the limbs. The growth model is specified in Table

7.5. An attraction strength parameter can be used to change the influence of the

attractor on the s-morph.
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Figure 7.14: (left to right, top to bottom) This simulation incorporates an attraction
point, shown as a black dot, just above the initial organism. Starting in the same
configuration as in Figure 7.6, the growing tips have a small attraction force applied
to them, which results in the developmental sequence shown.
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Table 7.5: The limb attractor growth model. The attractor is specified with a posi-
tion, Ax, and strength, As. At every time step the attraction force, FA, is computed
for each cell and added to the other forces during the physical simulation step.

rule condition action
r1: ct = 1 cφ = vol(c)
r2a: ct = 0 & cφ > K c∆r = 4
r2b : ct = 0 & cφ ≤ K c∆r = 4′
r3: ct = 0 & cr > R divide(∇φ)
r4: ct = 1 FA(c) = As

Ax−cx
|Ax−cx|

The SDS framework is flexible enough that many environmental phenomena such

as phototropism or chemotaxis could be included within a simulation. A form can

be made to stick to a geometric object as it grows, allowing vines to be grown on

a wall, for example. This embedded physical interaction provides another aspect of

user control over the system.

7.7 Curling Limbs

During limb growth in the basic limb model all the proliferating cells divide at

roughly the same time and at the same size. This results in straight limbs (unless

acted upon by external forces as in the attractor example above.) An interesting

curling limb can be generated by directing one side of the limb to grow faster than

the other. The growth model for a curling limb program is specified in Table 7.6.

This model uses the presence of a cell variable, ccurl, that affects the growth rate

of cells. Figure 7.15 illustrates the growth of a single curling limb. To use the

growth program, the growing tip must be set-up as usual, and in addition, the

cells neighbouring the tip should be split into two groups with different ccurl values.

When dividing, the ccurl variable is copied to the daughter cells, preserving the local

curliness in the limb. The reason the growth program is divided into two groups

(surface cell rules and non surface cell rules) is merely to improve ease of use. As

the limb is one cell thick, it is sufficient to simply shrink the surface cells on one side

of the limb. When generating thicker limbs, the ccurl variable has to be distributed

throughout the limb, and can even be modelled with a diffusing morphogen.

Figure 7.16 shows a more complex curling limb based simulation in which two s-

morphs with six growing tips each were placed into an environment together. The

growth program then causes them to grow curling limbs. As the limbs collide they

wind around each other, creating the complex geometry shown. A close-up of a frame

of the simulation is shown in Figure A.9. The surface mesh of the s-morphs from the

final frame of this simulation was textured and smoothed to produce Figure A.12,
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Figure 7.15: (left to right, top to bottom) A curling tentacle can be grown by
modifying the limb program. This growth program requires the user to specify the
side of the limb to curl around. This was done by painting the cells/vertices on one
side of the limb tip a specific colour in the Blender setup environment.

which illustrates how SDS may be used artistically. This example demonstrates

that even when using simple growth models, SDS is capable of producing complex,

organic, environmentally-sensitive geometry (also see animation SDS3/11).

Table 7.6: A model that generates a curling limb, building upon the basic limb
model. A cell variable ccurl ∈ [0, 1] changes the growth rate and division threshold for
a cell, allowing different growth rates within the same limb. The amount of curling
can be controlled by the curling factor constant F .

rule condition action
r1: ct = 1 cφ = vol(c)
r2a: csurface & ct = 0 & cφ > K c∆r = 4(1− Fccurl)
r2b: ¬csurface & ct = 0 & cφ > K c∆r = 4
r3a: csurface & ct = 0 & cr > R(1− Fccurl) divide(∇φ)
r3b: ¬csurface & ct = 0 & cr > R divide(∇φ)

7.8 Discussion

This chapter concludes with a summary of the benefits of the limb bud model, a

geometric analysis of the basic limb model and a discussion of a limitation of the

current model.
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Figure 7.16: (left to right, top to bottom) The simulation of two s-morphs placed
within the same environment, both running the curling limb program (Table 7.6).
Gravity acts upon the s-morphs as they grow, causing them to fall to the ground.
The tentacles of the two s-morphs curl and intertwine around each other, resulting in
complex tentacled structures. Also see Figures A.9 and A.12.
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7.8.1 Benefits of the Limb Bud Model

A single limb arises from the orchestration of many locally acting processes, includ-

ing:

• directed cell division,

• cell growth,

• stimulation of the proliferating cells (via morphogen flow),

• cells performing actions based on state, and

• cellular structure changing to accommodate proliferating cells (via physical

modelling).

Letting a structure emerge from low-level processes results in a number of beneficial

features, including re-use, context-sensitivity, and parametric control.

The limb module can be re-used simply by designating limb tip cells at various lo-

cations within a mesh (subject to suitability of local structure (§7.8.3)). This re-use

is trivial in a top-down system but is not supported by current embedded genera-

tive systems. The process also creates a geometric coupling between limb and body,

resulting in an automatically generated natural structural interface. Each of the pro-

cesses of the limb model are sensitive to local physical structure and environmental

conditions. If numerous limb tips are implanted with a mesh, this context-sensitivity

means that each limb will be similar, but slightly qualitatively and structurally dif-

ferent. The starfish arms of Figure 5.6 exemplify these characteristics.

Control over the shape of a limb is performed via the parameters of the processes,

including physical parameters (e.g., stiffness coefficients), growth model parameters

(e.g., morphogen decay rate), and environmental parameters (e.g., viscosity). The

parameters of the limb bud model can affect the rate of growth of the limb and its

size, and some parameter ranges result in no limbs growing at all or uncontrollable

tumour-like growths. This parametric method of interaction is difficult to use be-

cause the parameters control the low-level processes and properties of the system,

rather than visual aspects of the form. In other words, there is currently no way to

directly specify the width of a limb, instead a user is required to “turn the dials” of

the growth model until something suitable is created. This indirect level of control

is common to process-based systems. The usability of SDS can be improved by

designing growth models with fewer parameters that directly control visual aspects

of the generated forms, for example, a limb model with a width parameter would

be far easier to use than those proposed in this thesis. Avenues for improving the

usability of SDS are discussed in Chapter 9.6.



7.8. DISCUSSION 153

7.8.2 Analysis of the Limb Bud Model

When considering the high-level model of limb bud formation in biology (§5.1.1) it

is easy to see how primitive limbs might form in nature. However at a lower level,

when considering the complex arrangements of cells, the processes of cell mitosis,

protein signalling, etc., it is not at all clear how these processes orchestrate limb

growth. SDS in contrast, is a much simpler system, and it is enlightening to explore

how a limb is actually forming at the geometric level. Figure 7.17 illustrates the

events that occur during one iteration of extrusion of a limb.

Figure 7.17: The geometric steps involved in one level of limb extrusion. (a) Consider
a growing tip, its surface neighbours and the sub-surface cell below it. As the tip
diffuses morphogen, the neighbours begin to grow, increasing the lengths of all adjacent
edges, including those connected to the growing tip. (b) When the surface neighbours
reach the critical radius threshold they divide towards the tip. The division direction
is parallel to the edge that connects the cell to the tip, and thus each edge is subdivided
(Algorithm 11 (p127)). This happens more or less simultaneously resulting in (c) a
configuration such as this one. Importantly, this configuration has a smaller hexagon
inlaid within the larger one. (d) Meanwhile, the sub-surface cell is growing, and will
eventually divide. (e) When it divides, the edge connecting it and the limb tip is
subdivided resulting in the two daughter cells (bold) configured as shown. This is
because the division direction is aligned with the edge (Algorithm 11 (p127)). Due
to the growth of the new daughter cell and the growth of the neighbours, the inner
hexagon is pushed outward. To grow a full limb, this process is repeated.

7.8.3 A Geometric Limitation of the Limb Bud Model

The limb growth experiments presented here generate limbs that are thin, internally

only one cell thick (see Figure 7.2). The growth model is capable of generating limbs

of arbitrary thickness in 2D simply by increasing the rate of diffusion (Figure 5.9),

but this is yet to be explored in SDS3. Generating limbs this thin has an important

consequence. As discussed above, the limb structure develops because cells are
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dividing toward the growing tip, pushing it outwards. When generating limbs that

are internally one cell thick, we need to ensure that the initial configuration has a

cell directly below the growing tip, for without it there would be no internal pressure

for the tip to move outwards. To guarantee this constraint, we establish the initial

conditions manually by adding a vertex below all the growing tips. An important

goal for future work is to eliminate this manual intervention. This restriction has one

important consequence for SDS3. It means that currently it is difficult to generate

new functional limb tips automatically without the aid of an intelligent system that

ensures the correct local conditions are fulfilled.

This issue arises when specifying growth processes at a high-level without having

sufficient knowledge of the low-level geometry and topology needed to accommo-

date them. We can resolve this problem by either adding more geometric detail

or specifying the growth processes at a lower level (requiring more detail). Ideally

adding more geometric detail would be done adaptively, heuristically determining,

for example, which regions of the organism require more detail in order to express

specific growth programs and morphogen patterns.

7.8.4 Summary

This chapter presented a variety of experiments performed with the SDS3 system.

The limb bud model used in SDS2 was generalised and simplified as the basic limb

model which formed the basis for the experiments. Variants of the limb bud model

were presented, including a tapered limb, a curling limb, and a striped limb. These

variants illustrated different growth model principles that can be applied in other

situations. For example, the striped limb uses the concept of a morphogen timer,

which can be applied in general to unfold timed sequences of events. This chapter

also demonstrated the complex effects that embedding has on a simple growth model

in 3D: illustrated, for example, in Figure 7.6 in which a six-limbed form is constrained

to, and takes the shape of, a cube in which it is grown. This thesis now concludes

with a summary and discussion of the advantages and disadvantages of SDS, and

suggests further avenues of research.
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Discussion

The aim of this research was to design a system for the automated generation of a

class of forms that can be described in natural language as “organic, smooth, soft,

squishy, and modular” (§1.2). This thesis presented a new method, the Simplicial

Developmental System (SDS), capable of generating this class of form in both two

and three dimensions. A number of key features of SDS helped achieve this aim:

• The representation of a system of autonomous cells with an adaptive volumet-

ric structure (the simplicial complex),

• A physical simulation of soft matter that models the deformations that occur

from external forces, ensuring the forms appear “smooth, soft and squishy”,

• The embedding of a structure into an environment, allowing spatial interac-

tions and relationships to affect development and sculpt the form, and

• Supporting the emergence of form through morphogen-based coordination of

cells, and the spatial interaction of the system with its environment.

There are a number of important issues that arose during this research. The re-

mainder of this chapter elaborates on these issues:

• Structural Operations: issues concerning different models of cell division

and movement,

• Embeddedness: a discussion of the consequences of embedding a developing

structure into a spatial environment,

• Simulation: issues concerning physical simulation, and simulation in general

for 3D modelling,

• Developmental Metaphor: why the biological models of growth are useful

in a generative system,

155
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• Local Transformations: advantages and disadvantages of using generative

transformations that only transform small parts of a structure, and

• Implementation: some key aspects of the SDS software and discussion of

issues to consider when implementing a system like SDS.

8.1 Structural Operations

Shape generation in SDS involves processes that affect the “internal” state of cells,

the motion of cells, and the structure of s-morphs. The two structural processes or

transformations that were examined in this thesis are cell division and cell movement.

A notable exclusion from the transformations examined in this thesis is cell death,

which would provide a mechanism for reducing the structural complexity. This and

other transformations could be pursued in further research (§9.2).

The goal of the cell division transformation is to replace one mother cell in an

s-morph with two or more daughter cells, thus adding geometric elements to an s-

morph, which are shaped by further processes into cohesive structures. Ignoring cell

contents and size (which are distributed evenly amongst daughter cells), cell division

reduces to a computational geometry problem: replace one mother vertex with

two or more daughter vertices in a triangular (or tetrahedral) mesh. “Biological”

constraints on the outcome of the algorithm make it non-trivial: the two daughters

should be neighbours, they should be aligned along a direction of division, they

should have an equal distribution of topology, and so on.

Allowing the structure of an s-morph to adapt to cell movement supports the de-

velopment of physically stable configurations. If the mesh wasn’t adaptive, the cells

would be restricted in their movement and the stresses would increase. By dy-

namically adapting the mesh, the stresses can be distributed throughout the mesh.

This transformation increases the system’s stability and also results in more natural

configurations of cells (Figure 8.1).

The cell division transformations explored in this research offer different approaches

to modelling cell division on triangular and tetrahedral meshes (§4.4,§6.4). The

proposed methods all replace a vertex in a mesh with one or more new vertices, but

produce different quality configurations.

The balanced cell division technique used in the SDS2 prototype (Algorithm 4 (p73))

adds stabiliser cells in order to maintain topological symmetry amongst the daughter

cells and increase the regularity (and hence physical stability) of the new triangles.

In this algorithm, quality is increased at the expense of more cells and geometric
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Figure 8.1: (left to right) As a cell grows in an SDS2 simulation, structural cell
movements cause the surrounding cells to form an enveloping loop. The number of
cells connected to the central cell increases dramatically as it grows.

elements. Simplex subdivision offers an alternative approach that is simpler, pro-

duces less geometric elements, but is asymmetric (Algorithm 6 (p78)). The benefit

of simplex subdivision is that any k-simplex can be subdivided, and hence the al-

gorithm trivially generalises to SDS3 (Algorithm 9 (p123)). At the very least, this

provides a useful starting point and baseline for other cell division algorithms.

The balanced cell division algorithm in SDS2 does not easily generalise to SDS3.

As discussed in §4.4.1, the key step to this algorithm is to split the neighbouring

simplexes of the dividing cell into two groups and then reconfigure the geomet-

ric boundary between them. The structure surrounding a cell in 2D can always be

enumerated (it is just a triangular fan). The structure surrounding a cell in 3D how-

ever, is much more complex. A 3D version of this algorithm would be more efficient

than the brute-force approach (Algorithm 10 (p125)), and would produce better

quality results than simplex subdivision. Some research towards this is included in

Appendix B.

Although a division algorithm may produce a poor quality configuration, the con-

figuration may not remain poor. If a configuration is physically unstable and has

a high energy, the subsequent physics simulation may result in structural trans-

formations in that area. A low quality division algorithm then, can still produce

a quality configuration if enough physical simulation time is allowed in order to

improve it. Consequently, an SDS simulation can either spend computation time

executing a good cell division algorithm, or spend time executing both an inferior

cell division algorithm and following this with a period of physical simulation until

it improves the configuration. The latter option, however, does not guarantee a

quality configuration whereas the former does.

Cell division has been difficult to implement on simplicial complexes primarily be-

cause of the way it is modelled: Cell division adds one new cell. Adding just a single

vertex to a triangular and tetrahedral mesh (such that the other constraints are also

satisfied) is a difficult task. Broadly speaking, cell division in SDS exists solely to
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increase the structural complexity of an s-morph. Considered this way, there are

alternative interpretations of cell division, one example is: cell division subdivides

every adjacent simplex with a new cell. This model ignores the fact that a biological

cell divides into two. Compared to the balanced cell division algorithms this model

can be implemented efficiently and is perfectly symmetric; however, it results in the

generation of a substantial number of new geometric elements, possibly too many

to control. An interesting avenue of further research would be to examine more

localised structural operations that add new geometric elements. Some operations

may be suited to generating specific sub-structures, whereas some may be more

general.

8.2 Embeddedness

As demonstrated by SDS and existing systems (Měch and Prusinkiewicz, 1996;

Kaandorp and Kübler, 2001; Greene, 1989), embeddedness adds a dimension of

complexity to a generative system, at the cost of direct control. Characteristic of

embedded and process-based systems is the indirect level of control a user has, and

SDS is no exception. These indirect modes of interaction include using static objects

in the environment to shape the growth of a form, positioning forces that attract or

repel parts of a form, or implementing ad hoc spatial interactions. There are many

other ways in which spatial interaction can affect a generative form system. For

example, allowing surfaces to fuse together upon impact could allow the generation

of complex surface topologies (see §9.2.2). A creeper vine could be modelled by

allowing surface cells to stick to objects they collide with.

8.3 Simulation

Developmental and physical simulation holds much promise for computer-assisted

generation of 3D geometry. In SDS, the developmental simulation is the creative

force. As cells grow and split, they add structure and geometry to an s-morph, in

a harmony of cellular proliferation. The physical simulation plays the counterpoint

to this harmony as a constraining force. It grabs on to cells and slows them down,

smoothes out the surface of an s-morph, and glues together the (otherwise free) cells.

The balance of these two forces results in forms that have an organic character.

The physical model in SDS is simple and effective, however it can be made simpler by

changing from a Newtonian to an Aristotelian physical model. The model proposed

in this thesis (§6.3) implements Newtonian physics, in which the motion of cells
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in an s-morph are governed by the familiar law F = ma. Under this model, cells

have an acceleration, velocity and position, which means for example, that we can

simulate an s-morph blob that is released at some height, falls down at an ever

increasing velocity, and then collides with and bounces off the floor. This is a

realistic dynamic behaviour. A simpler physical model, Aristotelian physics, relates

force directly to velocity, using the law F = mv. In the Aristotelian universe,

acceleration does not exist, and the dynamics of objects are very different to what

we observe in reality — masses would move as if in a very viscous fluid. From a

simulation perspective however, the Aristotelian model is simpler and more stable,

and will still result in organic cellular configurations and smooth forms. If the

desired output of SDS is not an animation, but rather a single 3D model at a

snapshot in time, then Aristotelian physics is a viable alternative to the Newtonian

model. Typically the output required from a generative 3D modelling system is

not a realistic animation but rather a single 3D model, considered the “output”

of the system, and so exchanging realistic dynamics for simplicity and stability is

a reasonable compromise. Some systems don’t consider realistic dynamics, such as

the “quasi-static” simulation of the semi-interactive morphogenesis system (Combaz

and Neyret, 2006). This system produces a developmental sequence of forms, each

one simulated to static equilibrium. Simulating a bouncing ball is impossible under

this scheme, but the individual forms generated are extremely complex and realistic.

It is unsurprising that simulation is not typically used to model 3D organic form,

given the indirect and counter-intuitive control schemes and the time required to

perform a simulation. Advances in both these areas will likely increase the uptake of

these methods in the creative industries. The first problem can be addressed by of-

fering additional modes of control and user-friendly interfaces (see §9.6). The second

problem will be addressed by developments in hardware and hardware-accelerated

simulation algorithms that will decrease the time a user has to wait. Most 3D

modelling and animation packages incorporate methods for simulating natural phe-

nomenon such as fluid flow, fracturing objects, and soft-body systems. These sys-

tems all require a user to wait as the simulation is performed or rendered, and,

likewise, it may eventually become acceptable to wait for a simulation when mod-

elling 3D organic forms.

8.3.1 Timing and Complexity

Besides the loss of direct control, a major disadvantage of simulation and embed-

dedness in SDS is computational complexity. Calculating the spatial interactions of

geometric elements is computationally demanding, and so the total time required for
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Figure 8.2: Timing information for the experiment shown in Figure 7.11: simulation
time on the horizontal axis vs. the CPU time required to compute one time-step (blue)
and the number of cells in the s-morph (red). The spikes in the CPU time correspond
to cell divisions in the developing s-morph.

simulation is significantly higher than non-embedded systems (such as L-systems).

This becomes tedious during experimentation, when parameters need to be mod-

ified, and a simulation may need to be re-run many times.1 The striped starfish

(Figure 7.11), for example, took approximately 5.7 minutes to simulate on a stan-

dard desktop PC with a dual core 2GHz processor and 2GB RAM. Figure 8.2 shows

some timing information for this experiment. The red line shows that the number

of cells increases linearly over time and cell division events for each limb occur more

or less simultaneously (due to the symmetric initial conditions). The blue CPU

time plot has two main components: the base-line time to simulate a frame (which

includes calculations for physics, morphogens, collisions, etc.), and large spikes in

computation time which correspond to cell divisions. Although the spikes are quite

conspicuous, cell divisions are relatively infrequent (in this experiment at least), and

so it is the base-line that contributes the most to the total simulation time.

While a simulation in SDS is computationally expensive, it can be argued that

the visual complexity and realism outweighs this cost. As hardware improves this

cost will decrease, and generative systems that operate in fully simulated physical

environments will become an important aspect of 3D simulation-based geometric

modelling.

1Most of the experiments performed in this research were simulated overnight. A batch script
was written to sweep over a range of parameters, thus running the experiments sequentially. The
results were then analysed the next day.
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8.4 The Developmental Metaphor

The processes that drive the generation of a form in SDS are inspired by real pro-

cesses that occur during biological development. Of the key processes involved in

morphogenesis (Gilbert, 2006, p13), SDS models cell division, cell movement, cell

growth, and changes in the composition of cells and secreted products. All these

processes were crucial in SDS in order to grow limbed forms. The cellular processes

not modelled in SDS include cell death and changes in cell shape. A consequence of

omitting these processes is that SDS cannot directly adapt some biological models

of structure formation (e.g., autopod development (§9.2.2)). There may, however,

be alternative developmental pathways to the same result, so this is not such a big

disadvantage. Incorporating some of the morphogenetic processes into SDS provides

confidence that SDS is capable of reproducing some interesting developmental phe-

nomena. This thesis demonstrates that even with a few processes, some interesting

forms can be generated.

While developmental biology inspired this research, it is not based purely in theo-

retical or computational biology, and so SDS is not obliged to accurately simulate

biology. Biology is simply a starting point, upon which useful features can be added

to the system. The further the divergence from the developmental metaphor, the

less reliance can be placed on the observation of biological processes to help build

generative models. One useful feature, for example, is that SDS cells can access their

absolute world coordinates — this has no direct analogue in biology, nor physics.2

This feature could be used in many ways, for example in a model of tree growth, to

allow longer branches to grow the lower they are to the ground. This kind of feature

may increase the expressiveness and useability of SDS; however, if developmental

modelling is to become a competitive technique for building complex geometry, the

research focus should be on broad generative mechanisms and how to use them,

rather than ad hoc features suited to a small number of cases. These mechanisms

may take the form of axiomatic processes, such as those used in the limb bud model

in SDS. Suggestions for further development in this area are offered in Section 9.1.

8.5 Local Transformations

One very important property of developmental (and generative) systems is local

transformation. Acting locally, a transformation needs a minimal amount of in-

formation, as it doesn’t need to account for the entire structure. The cumulative

2According to the theory of relativity there is no absolute universal coordinate system.
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effect of many of these local transformations results in the massive difference in in-

formation between the input (the transformation rules) and the output (the entire

structure). The structural transformations in SDS act locally, affecting some small

region of an s-morph.

Generating large cohesive structures requires a balancing act of coordinated pro-

cesses. Creating structures with simple hierarchical or fractal relationships is typ-

ically easy, as the coordination amongst processes is vertical or hierarchical, i.e.,

information is passed down from parent to child, from space to sub-space, etc.

Context-free L-systems can only model vertical coordination, and yet can still gen-

erate many interesting structures. Horizontal coordination between sibling cells, or

across a structure, lies at the opposite end of the spectrum. This mode of coordina-

tion is demonstrated succinctly with cellular automata, in which the only mode of

communication is typically between immediately adjacent cells. Longer range coor-

dination in CAs can emerge through morphogen patterning (Turing, 1952), dynamic

structures (e.g., gliders in the Game Of Life (Berlekamp et al., 1982)), or physical

models (Cickovski et al., 2005), for example. These models are typically expressed

as CA rules, and hence act locally. They are all methods by which transformations

can be coordinated to form macro-level structures or dynamics.

This thesis demonstrated that SDS is capable of generating macro-level structures

from coordinated local processes. This is due to a number of mechanisms which

coordinate the cellular actions and structural transformations, including morphogen

diffusion through an s-morph, physical modelling of material, and spatial interaction

within an environment. Each of these components contributes a different organising

force, but all are necessary to achieve the variety of forms shown.

Brittleness In some systems it is possible that effects from a single transformation

may propagate throughout a structure. An extreme example of this is the Game Of

Life CA (Berlekamp et al., 1982), in which changing the state of a single cell can

have drastic consequences on the entire system, in other words this system is very

brittle. In general, the propagation of local effects make it very difficult to build

cohesive structures, so the control over this propagation should be considered.

In SDS the immediate effects of division and cell movement are confined to a rel-

atively small area. It was found in SDS2, however, that a single cell movement

would occasionally result in a series of cell movements, following the path of least

resistance through the s-morph until the boundary was reached. This seemed to

occur more often as the system became more stressed, or equivalently, had a higher

energy. The propagation was typically confined to a chain of cells and hence was
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not too disruptive. To state a hypothetical example: imagine that the SDS2 starfish

form is under greater stress because the spring coefficients are extremely high, if a

limb on one side collides with a wall, a change of cell movements may propagate

through the starfish, causing a cell to pop out of a limb on the other side! It is

interesting to note that as an s-morph is placed under greater stress, the system

becomes more brittle and the propagation of transformation effects increases. This

brittleness can be attenuated by increasing the physical stability of transformations

and distributing stresses appropriately (using e.g., adaptive meshing (§9.2.3)).

Comparison to high-level modular systems Consider a case in which instead

of having modules emerge from local processes, they are specified at a higher level.

Such high-level approaches to design are easy to use and can produce a wide-range of

natural looking forms, typically with interesting symmetries and hierarchical modu-

lar relationships (e.g., Lintermann and Deussen, 1998; Maierhofer, 2002). Specifying

modules at a high-level, however, has some disadvantages. Figure 8.3 shows an illus-

tration of such a problem occurring in a high-level rule-based geometric modelling

program. In this system, there are two modules, branch and trunk. The branch

can be attached to the trunk by specifying a hierarchical relationship between the

two. The problem then arises: how is the branch attached to a trunk? In nature,

branches typically smoothly emerge out of trunks. To achieve a natural attachment

between modules is a difficult problem when each module has a precise high-level

specification. A branch module is attached to a trunk module, but the geometric

interface between them is not natural at all. The main problem is that the rela-

tionship between branch and trunk has been abstracted away where branch and

trunk are arbitrary objects and their relationship is purely spatial. The fact that

in natural systems, branches grow out of trunks has been abstracted away, and one

of the consequences of this abstraction is the lack of a natural geometric interface.

This interface problem has been solved specifically for tree models (Bloomenthal,

1985; Holton, 1994), and can also be rectified using ad hoc procedures, for example,

geometrically smoothing sharp edges thus reducing the artificiality of the geometry.

There are, however, many other developmental and physical phenomenon that can-

not be modelled at this level, for which a low level approach like SDS is far more

suited.

8.6 Implementation Issues

SDS is a complex system that required the implementation of many different com-

ponents. The physical simulator, structural transformation algorithms, morphogen
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Figure 8.3: A 3D tree model built with XFrog (Cuspressus example from
http://www.xfrogdownloads.com/Walli/ retrieved on 25/03/2008). The geometric
intersection between the branch and trunk modules is not natural, and is exacerbated
by the difference in texture. This occurs because the system models the relationship
between the modules as a simple affine transformation, and ignores the real complex
developmental history which binds trunks and branches in nature.
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simulator, and cell programs, all needed to be robust, efficient, and act harmo-

niously with each other. A significant portion of this research was spent building

and debugging the two SDS simulators and the supporting scripts and tools. The

simulation nature of SDS meant that some software bugs only appeared after long

periods of simulation, resulting in a lengthy code debugging cycle. This section

discusses features of the simulation software, the problems encountered during the

software development and the solutions designed to address them. Hopefully, this

information will provide insight into the implementation difficulties associated not

just with SDS, but other simulation-based developmental systems.

8.6.1 Debugging

Much of the time spent on this research was divided simultaneously between de-

veloping software, designing the algorithms within SDS, and defining, simulating,

rendering, and analysing the experiments. Developing the software consumed much

of the time, since most of the system was built from scratch. Moreover, debugging a

simulation system like SDS can be tedious as often a bug might only manifest itself

after many minutes, or sometimes hours, of simulation. It was found helpful to

run the simulator in a debug mode, in which for each frame, useful information was

logged, and mesh consistency checks were performed. The logs were used to trace

any bugs that appeared and included information regarding cell divisions, mesh con-

ditions before and after structural transformations, collisions detected and handled,

and s-morph energy levels. The mesh consistency checks were particularly useful

as they ensured that the structural transformations didn’t invalidate the mesh data

structure.3 Operating in debug mode slowed the simulations down considerably,

resulting in a cycle of designing, running, rendering and analysing an experiment

that spanned a number of days, slowing progress considerably, especially as only one

simulation could be performed at a time on the single machine used.

Bugs in the structural modification algorithms were especially onerous to analyse

in SDS3, due to the difficulty of visualising a dynamic tetrahedral mesh. This

can be assisted by restrictively viewing the structure, e.g, just the edges, cells, or

neighbours of a selected cell. Additionally, simplex topology graphs can also be

helpful (see Appendix B). Nonetheless, a significant difficulty with implementing

3The structural algorithms directly manipulate the mesh data structure, for example adding
vertices, connecting vertices together with edges, deleting tetrahedra, etc. It is their responsibility
to maintain a valid data structure. For example, if a tetrahedron is deleted, then all appropriate
edges must also be deleted, and neighbourhoods of cells updated. The mesh consistency checks
are a brute-force, debug-mode-only method to ensure mesh validity.
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SDS3 was that tetrahedral meshes that change shape and structure are very difficult

to both conceptually and technically visualise.

8.6.2 SDS2

The SDS2 simulator was developed during the formative stage of SDS, and was

critical in the development of the ideas that led to the general SDS framework and

SDS3 system. The SDS2 simulator is interactive and allows users to manipulate

an s-morph in real-time. Cells can be manually moved and instructed to divide.

This interactivity was very helpful in understanding how division and structural

movement transformations affected the surrounding structure of an s-morph. It is

particularly interesting to watch the mesh dynamically adapt as a cell is moved

around within it (see animation SDS2/2).

A non-interactive off-line simulator was built for larger simulations, and was com-

plemented by a renderer which processed the simulation data and created vector

images (.SVG format) for visualisation and analysis. The renderer was written as

a custom Python script (using the Cairo vector graphics library4) and was used to

generate many of the SDS2 images in this thesis. The animation It Looks Like An

Echinoderm included in the DVD was also rendered using this system.

8.6.3 SDS3

The SDS3 software is substantially more complex than SDS2 as it not only involved

more complex data structures and algorithms, but, unlike the SDS2 simulator, it

implemented the full SDS framework, including collision detection and simulation

rewinding. The SDS3 simulator itself was built as a software module that is re-used

in different tools.

A real-time interactive simulator was built to assist in exploring the different algo-

rithms and growth models (Figure 8.4). It allows a simulation to be stepped through

one frame at a time and provides a real-time visualisation of an s-morph’s cells and

geometric elements. It also allows the inspection of cells and geometric elements, so

a user can, for example, see how much morphogen is inside a cell, or see an edge’s

desired length versus its current length. These features were crucial in designing,

debugging and fine-tuning the algorithms and concepts of SDS3.

4http://cairographics.org/
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Figure 8.4: Screenshots of the interactive SDS3 simulator. (a) A simulation has
been loaded. The lowest slider allows the individual frames to be cycled through.
The other GUI elements allow various properties of the view to be changed. In this
screenshot the unlit surface mesh of the s-morph is shown. (b) A cell view mode allows
the individual cells to be visualised. The colour of the cells indicate their morphogen
concentrations. In this example the growing tips are full of morphogen, and hence are
coloured white. (c) Tetrahedra can be selected and shown or hidden. This is helpful
when analysing sub-structures. (d) A secondary parameter window allows a user to
adjust parameters of the simulation while it is running and instantly see the effects.
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An off-line simulator was built to run all the lengthy simulations (typically overnight),

and output the simulation data for later analysis. The input and output of this sim-

ulator occurs via a custom file format (§8.6.3.1). The output data can be imported

either into a tool for interactively viewing the simulation (based on the real-time in-

teractive simulator), or imported into Blender, a 3D modelling and animation pack-

age. The software interface between SDS and Blender is described later (§8.6.3.2).

At the time the system was built, there was a limited range of physics simulation

software that supported tetrahedral meshes, including Idolib5, VCG6, and PhysX7.

It wasn’t clear if these systems could support tetrahedral meshes with a dynamic

structure, and so the SDS3 physical simulator was built from scratch. In retrospect,

the design of Idolib is nicely suited to a system like SDS, as it cleanly separates nu-

merical integration technique from the mesh data structure, which allows different

integration schemes to be swapped in and out. If the SDS3 system was to be used

in a production environment, its simulator would need to be flexible and robust,

and Idolib’s design would allow for this. A large portion of this research was spent

building and debugging the simulator and discovering how to integrate all the com-

ponents. With this experience, a more stable and flexible version of SDS3 could be

built in a fraction of the time using existing technologies.

8.6.3.1 Simulation File Format

During this research, the design of SDS3 was formative and changed on a regular

basis. As features were being added or removed the simulators and tools were

updated accordingly. In order for existing simulation data to be compatible with

newer iterations of tools, a flexible file format was designed that was backwards and

forwards compatible. Aspects of this format may be applicable to similar systems

and so it is discussed here.

The SDS3 simulation file-format can be used in two different modes: to store the

initial conditions for a simulation, or to store the results of a full simulation. When

used as input to a simulator the file simply stores one frame containing the initial

configuration of the s-morph. When used to store the output of a simulation, the

file can store multiple frames of time-dependent data, for example, the changing

structure of an s-morph. The simulation file is the primary channel of communication

between simulators and tools. One software tool that was used early on in this

research, for example, read in a full simulation file and, for each frame, extracted

5http://idolib.sourceforge.net/
6http://vcg.sourceforge.net/
7http://www.nvidia.com/object/physx_new.html
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the surface mesh of the s-morph and converted it to the common .ply mesh format.

These .ply files were then imported into Blender for rendering (before the Blender-

SDS plug-in was developed (§8.6.3.2)).

A major design decision for this format was that it be both backwards and forwards

compatible. Backwards compatibility allows older simulation files to be read by

newer iterations of SDS. This allows new features to be added to the software without

invalidating existing simulation data. The vertex freeze feature (§6.3.8), for example,

was added quite late in the implementation, adding a new cell variable, cfrozen, to

the simulators. If a tool reads an old file, that doesn’t contain the vertex freeze

information, then the variable is assigned a default value (cfrozen = false). Forwards

compatibility allows SDS tools to read simulation files generated by newer versions

of the software. This is particularly useful as it means that new features (e.g.,

vertex freeze) can be added to the main SDS3 simulator and simulation file without

breaking all the other tools for which the feature had not been implemented. The

.ply surface mesh extractor tool, for example, doesn’t care about whether cells

are frozen or not, and so forwards compatibility ensures that it will only read the

information from the simulation file it knows (or cares) about.

This compatibility of the format is possible through the use of simulation file seg-

ments. Segments are arbitrary chunks of frame-dependant data. There are segments

for storing data such as the tetrahedral mesh, cell variables values, and morphogen

values. New segments can be added easily via a simple API. If a simulation file

contains a segment that a program doesn’t understand then it can choose to sim-

ply ignore it. An additional advantage of this format is that tools can choose to

selectively output features, useful for reducing the simulation file size. For very long

animations, selective output is useful due to the large file sizes involved — it is much

more efficient to output only the surface mesh of an s-morph and discard the other

information.

When used to describe the set-up of a simulation, it was desired that the simulation

parameters (gravity strength, time-step, stiffness coefficients, etc.) be editable by

hand. Instead of designing a specific tool to do this, the simulation files are split

into two parts: a human-readable component and a binary component. A simulation

is described by two files, a plain-text .cfg file and an associated .bin binary file.

The .cfg file specifies the simulation parameters and can be edited using a normal

text editor. It also specifies the name, location and format of the binary data file

associated with the simulation, which stores the data segments described in the

paragraph above.

The file-format is described in full in Appendix C.
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8.6.3.2 The SDS-Blender interface

To provide a more useful interface to SDS, software was written to allow SDS to

interact with Blender, a popular open-source 3D modelling and animation package.

This software was designed and implemented in collaboration with Bart Veldstra,

as part of an undergraduate software engineering project. The SDS-Blender plug-in

integrates SDS concepts directly into the primary Blender interface. A user can

set-up an SDS simulation as a Blender scene, specify simulation parameters, specify

parameters to a growth mode, and then press a simulate button (see Figure 8.5).

The plug-in then exports the Blender scene and parameters to a format compatible

with SDS simulation and runs the SDS simulation. The plug-in then imports the

simulated scene as an animated Blender scene. Using this interface is far simpler

than using the other tools. (Before this tool was developed, each separate step: sim-

ulation set-up, simulation, export to .ply, and import into Blender, was performed

manually.)

Blender does not support tetrahedral meshes, and consequently s-morph information

can only be specified at the surface level as a triangular surface mesh. To add an

s-morph to the scene, a user builds a triangulated surface mesh (typically by adding

a mesh primitive, such as an icosphere8 or a cube), and then tags the mesh as an

s-morph. When exported, the mesh is tetrahedralised (with a user-defined precision)

and converted to an s-morph (as in §6.3.7). Morphogen concentrations of surface

cells can be specified using Blender’s vertex paint tool. Each colour channel of a

vertex corresponds to a morphogen in SDS. For example, if a vertex is painted red

(i.e., RGB (1, 0, 0)), the corresponding cell, c, will have cφ1 = vol(c), cφ2 = 0, and

cφ3 = 0. Under this scheme, SDS simulations can only have three morphogens, but

this could be extended to an unlimited amount using Blender’s vertex colour layers,

with which multiple layers of colours can be attributed to each vertex. Meshes can

also be tagged as static. They will then be imported into SDS as static objects, with

which an s-morph may collide.

The usability of SDS is dramatically increased when incorporated alongside other

tools, such as Blender. When integrated within a more general 3D modelling pack-

age, SDS becomes a useful addition to the palette of 3D modelling and animation

tools available. This observation holds for many of the generative systems available

today. It is only through the successful integration of these systems within more

general modelling tools, that the generative approach to modelling will enter the

mainstream.

8An icosphere in Blender is a subdivided icosahedron.
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Figure 8.5: A screenshot of Blender showing some GUI elements for the SDS plug-in.
The left panel shows a 3D view of a mesh, which will be converted to an s-morph.
The top right panel allows the user to specify SDS simulation settings including the
bounding mesh to use in the simulation, the number of frames and step size, whether
to use collision detection, the gravity strength, and the spring stiffness coefficients.
Pressing the “simulate” button then runs the SDS simulator and imports the anima-
tion back into Blender. The lower right panel is a text field that allows the user to
specify the growth model to use, along with parameters. In this case, the user has
chosen the “LimbGrowth” model (the basic limb model of Table 7.1), along with the
morphogen diffusion and decay rates, division thresholds, and growth rates. Another
panel (not shown) allows the user to select which meshes in the scene will be converted
to s-morphs, and the precision of the tetrahedralisation process.
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8.7 Summary

This chapter discussed various issues that arose during the development of SDS. A

number of topics were covered, including: the emergence of structure, the trade-offs

that exist between structural algorithms, the consequences of spatially embedding

a form, how physical simulation plays a counterpoint to generative aspects of SDS,

and why it is useful to consider biological models of growth. Aspects of the imple-

mentation of SDS in 2D and 3D were also discussed. Implementing and debugging

SDS3 was, without doubt, the most time-consuming and difficult aspect of this

project, and hopefully the discussion in this chapter will assist researchers who are

building similar systems. The research presented here is just a first step towards

full biological and physical simulation of organic form for computer graphics. The

final chapter of this thesis proposes a number of issues that need to be addressed in

order to achieve this goal.



Chapter 9

Conclusion and Future Work

This thesis presented a new system, the Simplicial Developmental System, capable

of automatically generating a range of interesting organic forms, which are difficult,

or impossible, to generate using existing methods. SDS presents a novel approach to

form generation, based on the developmental and physical simulation of a volumetric

structure embedded in an environment. It was demonstrated through a range of

examples that SDS fulfils the objectives of this research outlined in Section 1.2.

This new technique of form generation was presented in a number of stages. The

motivation and goals for this research were introduced in Chapter 1. A number

of existing developmental systems were then reviewed in Chapter 2, highlighting

features or deficiencies that inspired and drove the design of SDS. The general SDS

framework was introduced in Chapter 3, describing each key component and its place

within the framework: the Simplicial Morph, the growth model and cell program, the

morphogen model, the structural transformations (cell division and cell movement),

and the physical model. The details concerning the 2D and 3D implementations

of each component were presented in Chapters 4 and 6. These chapters presented

algorithms for modelling cell division and movement, soft-body physics, and the

flow of morphogens on triangular and tetrahedral meshes. Experiments performed

with the 2D model, exhibited in Chapter 5, demonstrated how SDS can be used to

generate a limb structure and a morphogen stripe. These experiments were based

on models of biological growth, and showed how local processes in SDS can be

coordinated in order to form macro-scale structures. Lastly, Chapter 7 demonstrated

the generation of limbed forms in 3D, using principles learned in the 2D experiments.

These 3D experiments show the generation of continuous sequences of growing,

complex, smooth, squishy, organic forms, which are very difficult to model using

existing techniques. The combination of spatial interaction with a physical model

supports a range of phenomena, including: prevention of geometric self-intersection

173
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(Figure 7.16), shaping forms with external structures (Figure 7.6), and the inclusion

of other environmental effects, such as attraction forces (Figure 7.14). The use of

a volumetric representation (the tetrahedral mesh) in SDS allows internal forces to

be modelled at a higher fidelity than existing systems, which typically only use a

surface representation. In addition, the volumetric representation supports internal

development events, which is also not possible in surface-based systems; for example,

in the limb bud model presented (§5.1) it is the proliferation of internal cells that

causes outward growth of limb-like forms.

The original, grand aim of the research presented in this thesis was to generate,

through biological and physical simulation, the organic forms of Figure 1.1. The ex-

perimental results shown in Chapter 7 are simpler than these forms; but nonetheless

demonstrate that the approach is worth pursuing further. SDS is still in its embry-

onic stage, requiring more development before maturing into a system capable of

generating interesting complex structures such as those in Figure 1.1. This chap-

ter concludes this thesis by offering suggestions for improvement to the robustness,

expressiveness, and usability of SDS.

9.1 Growing Other Structures

A wide range of structures appear in organic forms, considering just the forms shown

in Figure 1.1, for example, there are bulbs, tubes, tentacles, suckers, discs, tendrils,

ridges, folds, clumps, hexagonal packings, branches, and stars. The Simplicial De-

velopmental System was designed with these characteristics in mind; however, nu-

merous technical and implementation problems meant that only a limited type of

structure — the limb bud model — could be examined (in the 3D system) in the

time available. Further research into the processes behind these other sub-forms is

necessary in order to increase the expressiveness of SDS and improve its applicability

as a general organic form modelling system.

In order to be widely adopted into mainstream 3D modelling, these processes would

need to be encapsulated as, for example, parameterised modules, as was done with

the limb bud module (Table 5.1). Such a high-level interface to SDS would build

upon the wide range of different processes within SDS and offer a user a palette of

different sub-forms and patterns to use within a design. The palette could consist of

such sub-structures as tubular growths, rings, wrinkles, folds, and ridges; along with

methods for coordinating the growth of these structures. For example, a composition

method would allow a user to grow a ridge along a surface, and then cause the ridge

to wrinkle. These methods operate at a low level by designing cell programs and
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morphogen patterns. Toward this goal, it would be highly beneficial to find a set of

fundamental form and pattern generating processes, or axioms, upon which growth

models can be built. One of these may be directed proliferation, in which a cluster

of cells repeatedly divides and grows towards a target, causing the structure to

stretch along an axis. This is vital for the growth of the limb forms shown in this

thesis. Other axioms might include stripe formation, morphogen gradients, timer

morphogens, and lateral inhibition.

9.2 Transformations

The set of transformations presented in this thesis was necessary to achieve the

results shown; however, it is just a small sample of the operations that can be

performed on an s-morph. Future research could implement other operations and

consider the implications for creativity and generative design. This section discusses

a few of these operations, including cell death, surface fracturing, and adaptive

meshing.

9.2.1 Cell Death

Cell death is an obvious exclusion from the transformations discussed in this re-

search, particularly as it is vitally important in biological morphogenesis. The focus

of this research was on the integration of structural transformations, physical sim-

ulation, morphogen simulation, and cell behaviour models, acting on an embedded

triangular and tetrahedral structure. The biological limb bud model (§5.1.1) drove

the development of the features of SDS. It required proliferating cells, and so cell

division and cell growth were implemented. It required morphogen gradients, and so

the morphogen model was developed. The limb bud model, in its primitive form, did

not require cell death, and so this transformation was not considered. If more com-

plex growth models are to be implemented, cell death will have to be incorporated

into SDS.

Cell death can be implemented in SDS2 by following the approach of Duvdevani-Bar

and Segel (1988). Their research extends Matela and Fletterick’s triangulated graph

model (which SDS2 is closely related to) with extra features, such as cell death. In

their paper, cell death is described as the slowing down of activity and successive

removal of connections to neighbouring cells. This is modelled on the triangulated

graph as a sequence of edge-flips followed by deletion of a few elements (Figure 9.1a).

Removal of boundary cells can be performed in a similar way.
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(a) (left to right) Cell death in Duvdevani-Bar and Segel’s model
(Duvdevani-Bar and Segel, 1988). The inner cell elects to die
and sequentially severs its adhesion to neighbouring cells. Once
it has only three neighbours it is removed (the dotted lines) and
the triangulation property is preserved.

(b) Cell death with hull triangulation. (left) An
internal cell chooses to divide. (middle) Remove
the cell and all adjacent triangles. (right) Trian-
gulate the hull. The triangulation can be gov-
erned by a metric, for example to preserve phys-
ical stability.

Figure 9.1: Two approaches for modelling cell death in a triangulated graph.

This method does not generalise to 3D as it requires edge-flips (see §6.5). An alterna-

tive method that does generalise, is to completely remove the structure surrounding

a dying cell and then re-triangulate (or re-tetrahedralise) the empty hull (Figure

9.1b). This is a brute-force approach to cell death, similar in spirit to the balanced

cell division algorithm (Algorithm 10).

One interpretation of cell death is as the inverse of cell division, where a dying cell is

merged with an adjacent cell to create a mother cell. Using this interpretation, some

cell division algorithms can be inverted to make cell death algorithms. A special case

of the method shown in Figure 9.1b is illustrated in Figure 9.2, which is essentially

the inverse of cell division via tetrahedral subdivision (Algorithm 9). Whether there

exists a cell death operation that is efficient and results in nice structures is yet to be

determined, and like cell division there are likely to be advantages and disadvantages

of different methods.

Figure 9.2: A simple example of cell death in SDS3. (left) A cell, c, with four neigh-
bours elects to die. (right) The cell is removed and its four neighbouring tetrahedra
are unified together to form the larger bounding tetrahedron.
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Although technically challenging, a more critical consideration is the creative con-

sequence of cell death. Is it necessary in order to achieve some types of structures?

In some cases, like the formation of fingers (see §9.2.2), a cell death operation is

useful, but not necessary. Finger-like structures can be grown either by dissolving

the space between the fingers, or by growing the fingers individually like the growth

of limb buds. So in this case, cell death seems unnecessary. One structural feature

that seems to require cell death, or the removal of material, are small indents or

holes in a structure.

Aside from generating interesting structures, cell death could support the simplifi-

cation of structures. Cell division adds elements to an s-morph, which support the

generation of complex structures. Likewise, cell death removes elements from an

s-morph, and thus could be used to simplify a structure.

Cell death could be used to smooth bumpy surfaces that have too many cells, or

to reduce geometric complexity while retaining visual features. Consider a large

region of an s-morph, for example, that has many thousands of cells, all similar in

behaviour, and clumped together. It may be possible that the behaviour and visual

appearance of this cluster could be adequately modelled with much fewer cells. Cell

death in this situation could allow many of the cells to die, while other cells grew to

fill the empty space. This could result in a dramatic increase in the efficiency of a

simulation, and is an example of the more general adaptive meshing transformations

discussed below (§9.2.3).

9.2.2 Surface Fuse and Fracture

Cell death in the development of autopods (e.g., hands) allows the disintegration of

webbing and separation of digits. The cell death model mentioned above fills in the

space left by a dying cell. The other option is to allow empty space to remain, thus

supporting material fracture. A surface fracture transformation could be designed to

permit the deletion of cells, edges and simplexes, allowing the generation of complex

surface features. One such transformation could detect when edges are under large

strains and delete them if a threshold is reached (Figure 9.3). A similar operation

could allow surfaces to fuse together (essentially the inverse of Figure 9.3). This

would allow a growth model to change the surface topology of an s-morph. For

example, an s-morph could start as a sphere and turn into a donut as shown in

Figure 9.4. This feature could also support the modelling of biological phenomena

like gastrulation and neurulation. The physics of surface fracture has been addressed

in computer graphics models which may provide insight into a model suitable for

SDS (Federl and Prusinkiewicz, 2004; Wicke et al., 2010).
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Figure 9.3: (left) A fracture operator could detect when large forces are pulling
two cells apart, and (right) delete the edges that are strained beyond some specified
threshold.

Figure 9.4: (left to right) Supporting changes in surface topology would allow,
amongst other things, spheres to change into torii. (A topological change similar
to the one shown here occurs during the process of gastrulation in early biological
development.)

9.2.3 Adaptive Meshing

The mesh of an s-morph is adaptive and restructures itself to accommodate moving

cells, helping to distribute stresses within the form, resulting in a more stable system

and natural arrangements of cells and geometry. This adaptive nature of SDS can

be extended in a number ways.

Within the current system, cell movement transformations only occur when cells

cross over simplex boundaries. In some situations, it may be possible that great

stresses build up in an s-morph without this geometric event occurring. An alterna-

tive approach could be to analyse the stresses occurring in an s-morph, and directly

manipulate the structure of an s-morph to reduce the stresses. This could have the

same effect as cell movements, but would be a more robust approach.

Adaptivity can also be used to simplify an s-morph, as proposed in the cell death

section. If there are a number of similar cells or geometric elements that are grouped

in a cluster, then efficiency gains could be made by replacing many elements with a

few. An extreme example of this would be to replace a spherical cluster of cells with

a single cell the size of the cluster. Whether the efficiency gains this transformation

provides outweigh the computational cost of locating homogenous regions of the

right shape is unknown. The reverse of this transformation could also be beneficial.

Assume that an s-morph contains a region modelled with very few tetrahedra. If

a complex morphogen pattern is required in that region, then the mesh resolution

will need to be increased. A system could monitor whether morphogen patterns
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fulfil some user-specified precision, and if not, repeatedly subdivide tetrahedra in

the vicinity of the low pattern resolution until the required resolution is achieved.

Adaptive meshing is a broad topic, and numerous mesh modifications are potentially

suited to this application. Operations may act on a local scale (e.g., with “2-3”

and “3-2” tetrahedral mesh operations Joe (1995)) or on a global scale (e.g., by

subdividing an entire s-morph). Incorporating adaptive meshing into SDS would

allow a user to directly specify the level of detail they would like, supporting a

work-flow that ranges between fast draft simulations with coarse meshes to accurate

production simulations with high resolution meshes.

9.3 Heterogenous Material

The simulations presented in this thesis have all been performed using a homoge-

neous material (all the spring stiffness coefficients are the same). As a result the

forms are homogenously smooth and behave somewhat like marshmallows. One ex-

citing avenue of research could be to explore the creative possibilities of allowing

different material properties within the same s-morph. This would allow, for exam-

ple, rigid bones, softer muscle mass, and a jelly-like material to be part of the same

structure. A major challenge in modelling heterogeneous material is the problem of

physical stability. Rigid material can be modelled in SDS using highly stiff springs,

but this requires a large amount of computation time due to increased instability, a

problem commonly observed in mass-spring simulation (Baraff and Witkin, 1992).

Therefore alternative approaches must be sought. Research into real-time simula-

tion of deformable bodies for surgical simulation may provide solutions (e.g., Lin

et al., 2010).

In addition to simulation stability, another issue arises when considering the refine-

ment of a heterogeneous material. For example, when a cell divides in a hetero-

geneous region, what would be an appropriate procedure for deciding the physical

properties of the new edges and tetrahedra? Recent work into numerical coarsening

may offer insight into a solution (e.g., Kharevych et al., 2009). In resolving these

challenges, heterogeneous material would provide an extraordinary facet of physical

realism to SDS.
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9.4 Improving the Simulation Method

The choice of integration schemes for the physical and morphogen simulations was

adequate to achieve the results presented in this thesis. However, these efficient

methods fail to correctly conserve physical properties, such as the energy within an

s-morph or the concentration of morphogens in cells. Moreover, they are typically

unstable and without the appropriate choice of time step the physical simulation is

prone to “blowing up”. The use of a better integration technique, specifically for

the soft body simulation, would improve the reliability of SDS and would allow the

modelling of finer grained details.

The results of this thesis show forms with detail of roughly the same scale, the cells

are all roughly the same size and mass. Figure 9.5 shows a typical example, in

which there exists two cells in an s-morph that differ in mass by approximately five

times, not a considerable difference in scale at all. In order to model structures with

multi-scale detail, further development of SDS is necessary. Mass-spring systems

do not perform well on structures that have widely different masses, as the step-

size typically has to be decreased to remain stable on the smaller masses. This

slows the simulation down considerably. One solution to this problem could be to

design a method for updating the positions of the masses with a priority inversely

proportional to their mass (for example, update smaller masses every time-step,

and larger masses every N time steps). This would be simple to implement and

would increase simulation efficiency; however, the accuracy and stability of such a

method would likely be extremely difficult to assess and prove. Another solution

might involve the modelling clusters of adjacent small masses with a single larger

mass. The resolution of these issues will need to be addressed in future research in

order to efficiently and robustly model structures that have interesting detail that

varies over scale.

9.5 Morphogen Model

Morphogen creation, destruction, diffusion and decay plays the role of pattern cre-

ation within SDS. Distributions of morphogens can direct specific parts of a mesh

to grow, for example, in the proliferation region of the limb bud model (§5.1), or

in the stripe region of the Drosophila segmentation model (§5.2). Two classes of

patterns were explored in this thesis (the gradient and the stripe) and there is great

opportunity to investigate other pattern classes and their potential for form and

texture generation.
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Figure 9.5: The representation in SDS can support systems of cells that drastically
differ in size; however, the experiments shown in this thesis typically generate s-
morphs which have the same size cells. This illustration shows one of the more extreme
examples: a close-up of the form from Figure A.3 which shows two cells (marked),
one of which is roughly five times the mass of the other.

Future research could examine the potential of a more sophisticated morphogen

model based on reaction-diffusion equations (Turing, 1952). This would allow the

generation of a wide range of self-organising patterns (such as those shown in Figure

2.11) which could be used to lay out geometric features or synthesize textures. This

would be a challenging task as reaction-diffusion systems are notoriously difficult

to control, and few studies have been made of the behaviour of these systems on

dynamic surfaces (Leung and Berzins, 2003).

Another avenue of research is in the composition of morphogen patterns — taking

two simple morphogen patterns and multiplying, adding or subtracting their cellu-

lar concentrations, resulting in a more complex pattern. Research could look into

defining a set of axiomatic morphogen patterns (as in §9.1) and then designing a

system for composing them. Composition could be done as described above, by

directly multiplying morphogen values, or using more sophisticated means, such as

compositional pattern-producing networks (Stanley, 2006).

9.6 User Friendliness

The design of an SDS form involves the specification of cell behaviours that coordi-

nate dynamic morphogen patterns and geometric operations, i.e., the cell rule-sets.

In addition to this, a number of parameters such as spring stiffness, viscosity, and

morphogen decay rate need to be specified, many of which are abstract or irrelevant

to the end-user. This interface to the user — with rule-sets and parameters — is not
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ideal, and becomes increasingly difficult to use as the design becomes more complex.

If SDS and similar generative systems are to become accepted as design tools, the

interface to the user should be as simple and intuitive as possible.

The parameter sets used to generate the results of this thesis where found manually,

which is tedious and time-consuming. This is partially due to the indirectness

of the parameters, but also due to the sheer number of parameters some of the

growth models have. The first limb model (Table 5.1), for example, requires nine

growth model parameters just to grow a simple lump, and this excludes the physical

parameters! Therefore, an important contribution to improve the ease of use of SDS

would be to reduce the number of parameters of the growth models.

Similarly, not only do the growth models need fewer parameters, they also need

visually relevant and intuitive ones, i.e., parameters which directly control visual

aspects of the generated form. Consider the simplicity (from the user’s perspective)

of a limb model that has parameters such as limb size, growth speed, and limb length.

This would obviously be far simpler to use than the current model.

In SDS, not all sets of parameters (at least not in the limb bud model) result in suc-

cessful growth (see Figure 5.9d for example). A mathematical analysis of the system

could reveal the ranges of parameters that are successful; however, this analysis is

likely to be extremely difficult due to the model’s dependance on the temporal, struc-

tural and spatial properties of the s-morph. This difficulty is compounded because

the effects of growth models are often dependent also on the physical parameters of

the system.

If the parameter-space of a growth model cannot be reduced, then alternative meth-

ods for exploring the space may need to be examined. This could include the devel-

opment of an interactive tool that allows users to drag parameter sliders and observe,

in real-time, the effect they have upon a structure. This would require improvements

to simulation efficiency (§9.4). Another approach is to use parameter-space explo-

ration algorithms, such as evolutionary search techniques, which model parameter

sets as genomes, and allow designs to be combined and evolved (Bentley and Corne,

2002; Sims, 1994). In order to build a simpler, “user proof” system, these issues

would have to be considered in greater detail.
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9.7 Summary

The Simplicial Developmental System is an entirely new approach for automated

generation of organic volumetric forms, heretofore unexplored in a generative man-

ner. The experiments presented in this thesis, drawn from real biological models of

development, demonstrate that SDS is capable of modelling a variety of complex

and smooth organic forms in two and three dimensions, but there is much more work

yet to be done. This chapter examined many research paths for further development

of SDS, and, in addressing these opportunities, progress will be made towards even

greater biological and organic realism in 3D modelling for computer graphics.
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Appendix A

Gallery of Additional Results

Figure A.1: A relative of the starfish shown in Figure 5.6.
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Figure A.2: (left to right, top to bottom) Frames from an animation created with the
starfish developmental model. In this image the cells have been rendered as rounded
polygons and shaded. Due to the increase in scale of the starfish over time, the image
is zooming out to fit the entire form in frame.
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Figure A.3: Two close-ups of the form from Figure A.2. The lower image illustrates
the organic arrangement of cells that emerges due to the minimisation of elastic energy
in the s-morph.
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Figure A.4: (left to right, top to bottom) Frames from the animation It Looks Like
An Echinoderm, created from a starfish growth simulation (see animation SDS2/6).
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Figure A.5: A six-limbed form grown within a cube (cube not shown). This form
was grown using parameters similar to the simulation shown in Figure 7.6.

Figure A.6: (left) A form similar to the one above. (right) A photo of an SDS3 form
manufactured in stainless steel.
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Figure A.7: A render of the last frame from the simulation shown in Figure 7.11,
with the morphogens mapped to different colours.
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Figure A.8: A close-up of the budding simulation shown in Figure 7.12.
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Figure A.9: A close-up of the simulation shown in Figure 7.16.

Figure A.10: A close-up of the simulation shown in Figure 7.16.
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Figure A.11: A tetrahedral mesh view of the simulation shown in Figure 7.16.
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Figure A.12: Two intertwined tentacled s-morphs. This image shows three different
view points. The form was generated from the simulation data shown in Figure 7.16.
A frame was selected from the simulation and different textures were applied to the
two smoothed meshes to distinguish them.
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Appendix B

Modelling Cell Division with

Separating Sets

The two SDS3 cell division algorithms introduced in this thesis lie at opposite ends

of the spectrum — simplex subdivision (Algorithm 9 (p123)) is simple and efficient,

but generates topologically asymmetrical configurations, whereas the balanced di-

vision method (Algorithm 10 (p125)) performs a brute-force re-tetrahedralisation,

which is slower, but results in more physically stable configurations (as the resulting

tetrahedra are more regular). In a typical simulation the cell division algorithm

is likely to be executed many times, and so it is important that it is computa-

tionally efficient. The division algorithm used in the SDS3 software reduces the

computational cost of the balanced division method by employing simplex subdi-

vision under certain conditions (Algorithm 11 (p127)). This hybrid solution offers

a balance between the two algorithms, however it is still inefficient because of the

occasional brute-force re-tetrahedralisation it performs. It is desirable, then, to find

a division algorithm that operates faster than brute-force re-tetrahedralisation but

produces better quality results than simplex subdivision. This appendix offers a

starting point for the design of such an algorithm, tentatively called The Method of

Separating Sets. The algorithm is first discussed in the context of triangular meshes.

These concepts are then generalised into 3D (tetrahedral meshes) and examples are

given that perform division on surface and internal cells. Finally, a number of open

problems concerning this approach are proposed for future investigation.
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B.1 Separating Sets in 2D

Consider the SDS2 cell division algorithm illustrated in Figure B.1. The algorithm

operates by first splitting the triangles surrounding a dividing cell (the cluster) into

two halves. One half joins to one daughter cell, and the other half to the other

daughter cell. The two halves can be found by choosing two edges (the separating

set) which divides the cluster (shown in bold in Figure B.1b). The structure between

the halves is then “filled in” by stretching the separating set along the edge joining

the two daughter cells, in effect transforming the edges into triangles. This algorithm

is simple, efficient, only generates a small number of new simplexes, and acts locally

(i.e., structural modifications are confined to a local area).

Figure B.1: A model of cell division in SDS2. (a) Given an internal cell and direction
of division, (b) split the set of surrounding triangles into two halves (shaded). Between
these halves lie two edges (bold). (c) Divide the cell in two along the direction of
division, and join each daughter to each half. The final step is to add the triangles
(white) between the two halves.

This approach can be formalised as the general cell division algorithm presented in

Figure B.2. An important first step in this algorithm is to separate the triangles

surrounding a cell into two groups and identify the boundary between the groups.

This is done by splitting the face topology graph into two, in other words, finding a

minimal set of edges whose removal would separate the fore and aft nodes. This set

of edges (the separating set) is a key component of this algorithm. The goal, once

a separating set has been found, is to add a vertex and change the mesh in such a

way that, from the point of view of each half the structure has not changed at all.

Figure B.2d shows the separating set, and Figure B.2e shows such a change. From

the point of view of triangles a, b, c and d, the structure hasn’t changed, the two

halves {a, b} and {c, d} still “think” they are joined to the original separating edges,

this is why the transformation acts locally.

A crucial problem that arises in this algorithm is that not all separating sets can

be stretched along a given direction (Figure B.3). For a given separating set the

division direction has to lie within an area defined by the separating edges (e.g.,

Figure B.3e). Therefore, not only does a separating set have to be found, it has

to be valid too. Finding this valid separating set it the most demanding part of

this algorithm. This is fairly simple in 2D, as triangular clusters always form a

“fan” around a vertex (corresponding to a cycle face topology graph), and therefore
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Figure B.2: Dividing a cell in SDS2 by stretching a separating set of edges. (a) A
cell surrounded by four faces (triangles), a, b, c, and d elects to divide in the direction
shown. (b) Construct a face topology graph (where faces are represented by nodes
and edges connect nodes if two faces in the mesh share an edge). (c) Choose one face
(in the direction of division) to be the fore face (circled) and one face (the greatest
distance away from the fore node) to be the aft face (squared). Cut the topology
graph into two pieces, one containing the fore face and the other containing the aft
face. The dashed lines represent the cut. (d) The cut corresponds to edges in the
s-morph which divide the face cluster into two parts. (e) Finally, split the cell into
two, and stretch the two dividing edges along the edge connecting the daughter cells,
thus forming two new faces.

Figure B.3: An example of an invalid separating set. (a) A cell and its direction
of division. (b) The bold edges have been selected as a separating set. (c) The
separating set is then stretched in the direction shown, resulting in (d) two triangles
which intersect, an invalid configuration in SDS. (e) This separating set can only be
stretched in a direction that lies within the shaded region.

a separating set is always composed of just two edges. In 3D, however, the sheer

number of different tetrahedral arrangements that can occur around a single vertex

makes this task extremely difficult. This is discussed in the next section.

B.2 Separating Sets in 3D

This section considers how the method of separating sets can be performed on a

tetrahedral mesh. It is simplest first to study the case of a surface cell. Figure B.4

presents a simple example of finding a separating set of faces for a surface cell. For

any given configuration of tetrahedra there may be a number of separating sets.

After finding a separating set it can be stretched (Figure B.5). It may be tempting

to compare the configuration of surface triangles to the 2D case shown in Figure

B.2, but this is misleading — the tetrahedral structure under the surface may be

more complex than in Figure B.4. Figure B.6 gives an example of a cluster where

the surface consists of the same four triangles as in Figure B.4, but the tetrahedra

underneath are arranged differently, leading to a different set of separating sets.
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Even when restricting our attention to surface cells, the range of different tetra-

hedral clusters is large. A first step for developing this research further would be

to enumerate the different tetrahedra topology graphs that arise around a surface

cell. Knowing all the possible graphs will be helpful when designing an algorithm

for finding valid separating sets. Investigation with these structures leads me to

believe that, with a little effort, the surface clusters should be easily enumerable.

Enumerating the internal clusters, however, will pose a difficult challenge.

Figure B.4: Finding a separating set for a surface cell in SDS3. (a) A surface
cell connected to four tetrahedra, a, b, c, and d. (b) The tetrahedra topology graph
(in which tetrahedra are represented as nodes, and faces that lie between tetrahedra
are represented as edges). Note that the graph is identical to Figure B.2b. (c) The
fore and aft nodes have been selected, and a separating set of faces found. (d) The
separating set (bold) splits the tetrahedral cluster into two halves.

Figure B.5: Stretching a separating set of faces for a surface cell. (a) A cell, v,
connected to the separating set of faces chosen in Figure B.4d, divides in direction d.
(b) The faces are stretched and become tetrahedra.

Finding separating sets for an internal cluster is demonstrated in Figure B.7. Once

found, an internal separating set can be stretched (Figure B.8). This example is

one of the simplest internal clusters, and yet it has a fairly complex topology graph

and a number of potential separating sets. As happens with triangular meshes,

there is much freedom in selecting a separating set, but not all separating sets

are valid — the direction of division, d, occasionally conflicts with the choice of

separating set. If a separating set is discovered and found to be invalid, there are

two options: find another separating set which is valid with respect to d, or change d

so that the separating set becomes valid. Finding a separating set that fits a division

direction may be computationally demanding, or even impossible. On the other

hand, adjusting d to suit a particular separating set inhibits the directional freedom

of a dividing cell. Which method is appropriate will depend on the quality required

and the efficiency of the algorithm that finds separating sets. A brief rumination on

what other tetrahedral clusters arise internally will reveal the difficulty involved in
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Figure B.6: A complex tetrahedral cluster of a surface cell. (a) A surface cell
connected to six tetrahedra, a . . . f . (b) The tetrahedra topology graph. (c,d) A
separating set and its corresponding faces. (e,f) An alternative separating set and its
corresponding faces.

enumerating them all. A complete enumeration may not be necessary in order to

develop an efficient algorithm, but it is likely that it would greatly assist.

One final observation of the example given in Figure B.7, is that stretching each

of the separating sets shown gives results identical to performing a simplex sub-

division. For example, stretching the separating set in Figure B.7d corresponds

to a tetrahedral subdivision, Figure B.7f to an edge subdivision, and Figure B.7h

to a face subdivision. An obvious question then arises: are all separating set di-

visions equivalent to simplex subdivisions? If they are, then this method needn’t

be explored further; however, if this method turns out to be more expressive than

simplex subdivision then it is worth investigating further.

B.3 Further Work

There is much work to be done in order to develop the method proposed here into

a fully functional cell division algorithm for SDS3. There are a number of questions

which need to be answered if this approach is to be fully explored:

• Given a tetrahedral cluster, how hard is it to find a valid separating set?

• Is it easy to find a minimal separating set?

• Given a separating set and a direction, d, is it always possible to modify d

such that the set is valid?

• What constitutes a “good” separating set? (e.g., number of elements, regular-

ity of triangles, planar alignment?)
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Figure B.7: Some separating sets of an internal cell. (a) A cell, surrounded by six
tetrahedra, a . . . f , as labelled in (b) the exploded view. (c) The tetrahedra topology
graph. Tetrahedron f has been selected as the fore tetrahedron and a as the aft. A
separating set consisting of all edges connected to f has been chosen, corresponding to
(d) the faces highlighted in this figure. (e,f) and (g,h) illustrate alternative separating
sets.

Figure B.8: Stretching an internal separating set. (a) The separating set from Figure
B.7h. (b) The four separating faces along with the intended direction of division.
(c) Stretching the faces along the direction of division converts them into four new
tetrahedra.

• Can we discover the structure of all tetrahedra topology graphs?

• Can you efficiently find a separating set, for example, using dynamic program-

ming?

Although not explored in full here, the method of separating sets may provide an

entry-point into developing a better, more efficient algorithm for modelling cell di-

vision in tetrahedral meshes.
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The SDS3 Simulation File-Format

A simulation in SDS3 is stored in two files, a human-readable .cfg file which contains

information about the entire simulation (e.g., values of parameters), and a binary

.bin file which contains time-dependent frame-specific data (e.g., the structure of

an s-morph). This appendix presents the formats of these two files, in order to

complement the discussion in §8.6.3.1 and provide insight into the technicalities of

simulation serialisation in SDS3 in its constantly evolving state.

Configuration file The configuration file for an SDS3 simulation is stored in a

.cfg file, in a format compatible with libconfig1, a library for processing structured

configuration files. This format was chosen due to its simplicity over other human-

readable formats, such as XML, and the ease-of-use of the library’s API. An example

simulation setup configuration file is shown below. The C-style comments (//)

describe each parameter.

Note that the parameter numFrames stores the number of frames in the simulation

data. If numFrames is equal to 1 then this indicates that the binary file only stores one

frame, and is probably intended as initial conditions for a simulation. If numFrames

equals −1, then the number of frames in the simulation file is unknown, and the

simulator or tool has to count the number of frames in the binary file (see below).

s imu la t i on : {
dt = 0 . 0 1 ; // Step−s i z e f o r s i m u l a t i o n

numFrames = 1 ; // Number o f frames in the s i m u l a t i o n data ( see above )

c o l l i s i o n I n t e r v a l = 1 ; // Check f o r c o l l i s i o n s every N frames

g rav i ty = 0 . 0 ; // S t r e n g t h o f the g r a v i t a t i o n a l f o r c e

kD = 1 7 . 0 ; // S t i f f n e s s c o e f f i c i e n t f o r edge s p r i n g s

kSM = 1 . 0 ; // S t r e n g t h o f s u r f a c e s p r i n g s ( p r o p o r t i o n a l to kD)

kV = 1 7 . 0 ; // S t i f f n e s s c o e f f i c i e n t f o r t e t r a h e d r o n s p r i n g s

1http://www.hyperrealm.com/libconfig/
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kDamp = 0 . 0 5 ; // Damping c o e f f i c i e n t f o r s p r i n g s

v i s c o s i t y = 0 . 0 5 ; // V i s c o s i t y o f environment

framedata = ” out . bin ” ; // F i l e name o f b inary data

time = ”2011−Feb−18 12 : 34 : 43 ” ; // Time t h i s f i l e was genera ted

wor ldIn fo : { // Contains e x t r a in format ion about the world

bounds : { // S p e c i f y the c e n t e r and s i z e o f the world bounds

x = −64.7145462; y = −49.44396782; z = −64.12328339;

dx = 129 .42908859 ; dy = 122 .48793602 ; dz = 128 .24655914 ;

} ;

} ;

processModel : { // S p e c i f i e s the p roc es s / growth model

type = ” CurlingB ” ; // Cur l ing l imb program

d i f f u s i o n = 0 . 1 ; // D i f f u s i o n r a t e o f the primary morphogen

decay = 0 . 0 5 ; // Decay r a t e o f the primary morphogen

rE = 1 . 1 ; // D i v i s i o n t h r e s h o l d o f s u r f a c e ( e p i t h e l i u m ) c e l l s

rM = 1 . 2 ; // D i v i s i o n t h r e s h o l d o f i n t e r n a l ( mesenchymal ) c e l l s

drdtE = 0 . 2 ; // Growth r a t e o f s t i m u l a t e d e p i t h e l i u m

drdtM = 0 . 2 ; // Growth r a t e o f s t i m u l a t e d mesenchyme

cu r l i ngFac to r = 3 . 0 ; // Cur l ing amount o f the l imb

} ;

f r a m e S p e c i f i c a t i o n = ( // Descr i bes format o f a frame in . b in f i l e

{ type = ”mesh” ; v e r s i on = ” 19042010 ” ; } , // The t e t r a h e d r a l mesh

{ type = ” organism ” ; } , // Organism informat ion

{ type = ” p r o c e s s i n f o ” ; } // Process / growth model in format ion

) ;

} ;

Binary file The second part of a serialised simulation is the binary file. It was

decided that, due to the large amounts of simulation data that can be generated,

storing time-dependent data in binary format, instead of text format, would save a

lot of storage space. The binary file may contain a number of frames of simulation

data. The exact structure of a frame in a binary file is described in the associated

config file. The listing above, for example, specifies that each frame contains three

segments: the mesh, organism, and processinfo segments. A simulation binary data

file (.bin file) is structured as follows:

uint MAGICNUMBER // used to check t h a t t h i s i s an SDS3 s i m u l a t i o n f i l e

uint VERSION // major v e r s i o n o f the f i l e −format

[ Frame1 ]

[ Frame2 ]

[ Frame3 ]

. . .

During operation, the simulator outputs each frame as it is generated, appending it

to the simulation file. The simulator was in constant development and, as such, the
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code was volatile, often resulting in the simulator crashing after a period of simu-

lation. The simple layout of the binary file allows the simulator to crash without

corrupting existing frame data. This greatly assists in debugging crashed simula-

tions; however, one side effect of this simple appending layout is that no frame count

can be stored at the start of the file. If the simulator completes a simulation it will

write the frame count into the config file (the numFrames variable), but if it crashes,

then numFrames will equal −1 and the number of frames is unknown. If this occurs

then any program loading the file has to step through each frame and count the

total.

The structure of an individual frame is as follows:

uint s izeOfFrameInBytes // t o t a l s i z e ( in b y t e s ) o f a l l segments

uint frameNumber // number o f t h i s frame

double currentSimulat ionTime // time o f t h i s frame

uint numberOfStepsTaken // number o f s i m u l a t i o n s t e p s taken so f a r

[ Segment1 ]

[ Segment2 ]

[ Segment3 ]

. . .

The order and type of segments in a frame are specified in the configuration file. In

general, a segment is simply a chunk of binary data, with an unsigned long at the

start that specifies its size (so a program can quickly skip over it if needed).

ulong s izeInBytesOfThisSegment

[ SegmentData ]

The segments can describe any elements of an SDS3 simulation that change over

time. In this research, three segments were primarily used, the mesh segment which

describes the structure of the tetrahedral mesh, the organism segment which de-

scribes the properties of the cells, and the processinfo segment, which stores pro-

cess model dependent information, like custom cell variables and morphogen values.

These segments are structured as follows:

Mesh Segment

uint numverts // number o f v e r t i c e s

uint numedges // number o f edges

uint numouterfaces // number o f outer f a c e s

uint numtetras // number o f t e t r a h e d r a

AABB bounds // s m a l l e s t bounding box which f i t s t h i s mesh

f o ra l l v e r t i c e s v :

vector3 v . x // current p o s i t i o n

vector3 v . ox // l a s t p o s i t i o n

vector3 v . f // f o r c e a c t i n g on t h i s v e r t e x
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double mMass // mass

f o ra l l edges e :

uint index ( e . v ( 0 ) ) , index ( e . v ( 1 ) ) // index o f two endpo in t s

double e . r e s t // r e s t v a l u e

double e .kD // s t i f f n e s s c o e f f i c i e n t

f o ra l l f a c e s f :

uint index ( f . v ( 0 . . 2 ) ) // index o f t h r e e v e r t i c e s

double f . r e s t // r e s t v a l u e ( unused )

f o ra l l t e t r a s t :

uint index ( t . v ( 0 . . 3 ) ) // index o f four v e r t i c e s

int index ( t . n ( 0 . . 3 ) ) // index o f ne ighbour ing t e t r a h e d r a

double t . kD // s t i f f n e s s c o e f f i c i e n t

double t . r e s t // r e s t v a l e

Organism Segment

uint numberOfCells

f o ra l l c e l l s c :

uint index ( c . v ) // index o f a s s o c i a t e d v e r t e x in mesh segment

double c . r // r a d i u s

double c . drdt // r a t e o f growth

Example ProcessInfo Segment

uint numberOfCells // number o f c e l l s ( used f o r s a n i t y check )

f o ra l l c e l l s c :

double c . morphogens [ 0 ]

double c . morphogens [ 1 ]

double c . customCel lVar iab le1

int c . customCel lVar iab le2

. . .

As new features are added to the system, new segments can be added to the file-

format to store associated time-dependent data. In conclusion, this modular file-

format supported the two year development of a system which was constantly being

changed, whilst maintaining compatibility with old simulation data-sets and across

different implementations of tools.



Appendix D

Expanding the Tetrahedron Force

Equation

Implementing the physical simulator in code (procedurally) requires the expanded

form of Equation 6.16. The expansions for the edge forces can be found by hand, but

the expansion for the tetrahedron forces is significantly more involved. It is easiest to

expand computationally using a symbolic manipulation tool such as Mathematica1.

For the sake of completeness, the Mathematica code for generating the tetrahedron

force equations is presented in this appendix.

A necessary preliminary is to first define the gradient operator, which is used to

compute the ∂C
∂cx

terms:

Clear [ Grad ] ;

Grad [ f , v a r s L i s t ] := First@Outer [D, { f } , vars ] ;

The volume, V , and constraint value, C, of a tetrahedron with vertices at positions

a,b,c, and d, with a given rest value is:

VolTet [ a , b , c , d ] :=(1/6) ∗ ( ( b−a ) . Cross [ c−a , d−a ] ) ;

CTet [ a , b , c , d , r e s t ] :=( VolTet [ a , b , c , d]− r e s t )/ r e s t ;

The damping term, skdamp
∑

c̃∈s
∂C(s)
∂c̃x

c̃v, can be computed as:

TetDamping [ ax , bx , cx , dx , av , bv , cv , dv , r e s t , skdamp ] :=

Table [ skdamp∗Grad [

CTet [ ax , bx , cx , dx , r e s t ] ,

{ax , bx , cx , dx } ] [ [ i ] ] .

{av , bv , cv , dv } [ [ i ] ] ,

{ i , 4 } ] ;

1http://www.wolfram.com/mathematica/
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The force, Fs, applied on each of the four cells of a tetrahedron can then be succinctly

expressed as:

F[ ax , bx , cx , dx , av , bv , cv , dv , r e s t , skd , skdamp ] :=

−(skd∗CTet [ ax , bx , cx , dx , r e s t ] +

TetDamping [ ax , bx , cx , dx , av , bv , cv , dv , r e s t , skdamp ] ) ∗
Grad [ CTet [ ax , bx , cx , dx , r e s t ] ,{ ax , bx , cx , dx } ] ;

Some final commands allow us to express the force as a function of the four cells’

positions (a, b, c, d) and velocities (a′, b′, c′, d′), the rest volume of the tetrahedron,

R, its stiffness coefficient, skd, and damping coefficient, skdamp:

Table [ToExpression [ l e t t e r <> ”X = ” <> ToString [ InputForm [

Table [

ToExpression [

” Subsc r ip t [ ”<>ToLowerCase [ l e t t e r ]<>” , ”<>index<>” ] ” ] ,

{ index , {”x” , ”y” , ”z” } } ] ] ] ] ,

{ l e t t e r , {”A” , ”B” , ”C” , ”D” } } ] ;

Table [ToExpression [ l e t t e r <> ”V = ” <> ToString [ InputForm [

Table [

ToExpression [

” Subsc r ip t [ ”<>ToLowerCase [ l e t t e r ]<>” ’ , ”<>index<>” ] ” ] ,

{ index , {”x” , ”y” , ”z” } } ] ] ] ] ,

{ l e t t e r , {”A” , ”B” , ”C” , ”D” } } ] ;

F [AX,BX,CX,DX,AV,BV,CV,DV,R, Subscript [ s , kd ] , Subscript [ s , kdamp ] ]

// FullSimplify

Executing this last command in Mathematica gives the full expansion of Fs as a four-

tuple, {Fa, Fb, Fc, Fd}, that contains the three dimensional forces acting on each of

the cells. This equation can then be implemented in a procedural language as part

of the physical integrator.
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