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§ S-1. Materials and methods 

§ S-1.1 Synthesis 

Mn3O4 nanodeposits were synthesized using a previously described cold-wall horizontal chemical 

vapor deposition (CVD) reactor equipped with a quartz chamber and an external precursor 

reservoir.1-2 The Mn(hfa)2•TMEDA precursor (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; 

TMEDA = N,N,N’,N’-tetramethylethylenediamine), synthesized following a recently reported 

procedure,3 was vaporized in a glass vessel at a temperature of 60°C throughout each experiment. 

Precursor vapors were transported towards the growth substrate by an electronic grade O2 flow (rate 

= 100 standard cubic centimeters per minute (SCCM)). An auxiliary 100 SCCM oxygen flow was 

separately introduced into the reactor. Gas lines between the precursor reservoir and the reaction 

chamber were maintained at 100°C in order to prevent condensation phenomena. 

Radio frequency (RF) sputtering for the functionalization of manganese oxide deposits with noble 

metal nanoparticles was performed using a custom-built two-electrode plasmochemical apparatus 

equipped with a RF generator (ν = 13.56 MHz).4-5 Depositions were carried out from electronic 

grade Ar plasmas using Ag or Au targets (BALTEC AG, 99.99%). On the basis of previous 

results,6-7 silver or gold sputtering was performed using the following optimized experimental 

conditions: Ar flow rate = 10 SCCM; RF-power = 5 W. The use of higher RF-powers or longer 

deposition times was discarded to prevent the formation of compact systems with an excessive 

Ag/Au loading and a reduced active area. 

§ S-1.2 Characterization 

Field emission-scanning electron microscopy (FE-SEM) images were recorded using in-lens or 

backscattered (BSE) electron signals. The mean deposit thickness and nanoaggregate dimensions 

were evaluated through the ImageJ® software (https://imagej.nih.gov/ij/, accessed November 2018), 

averaging over various independent measurements. 

Atomic force microscopy (AFM) characterization was carried out using an NT-MDT SPM solver 

P47H-PRO apparatus equipped with an anti-noise table, operating in tapping mode and in air. Root 
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mean square (RMS) roughness values were obtained from 5 × 5 µm2 images after plane fitting. 

As regards photoelectron spectroscopy analyses, for Mn3O4-Ag samples silver α1 and α2 Auger 

parameters were calculated as previously reported.8-9 For Mn3O4-Au systems, quantitative analyses 

were conducted following a recently reported procedure,6,10 which involved the use of the Au4d5/2 

signal instead of the most intense Au 4f one due to Mn2p/Au4p1/2 and Mn3s/Au4f photopeak 

overlaps.6,11 After a Shirley-type background subtraction,12 atomic percentages (at. %) were 

determined by peak area integration using Φ V5.4A sensitivity factors. Gold and silver molar 

fractions were calculated as XM = ((M at.%) / (M at.% + Mn at.%)×100), with M = Ag, Au.13-14 

Whenever necessary, peak fitting was performed by a least-squares procedure with 

Gaussian−Lorentzian peak shapes, using the XPS peak software 

(https://xpspeak.software.informer.com/4.1/, accessed September 2018). 

Secondary ion mass spectrometry (SIMS) measurements were carried out in beam blanking mode, 

to improve the depth resolution, as well as in high-mass resolution configuration, to prevent mass 

interference artefacts. The nominal rastered area was 150 × 150 µm2, whereas ion detection was 

performed from a 8 × 8 µm2 sub-region in order to avoid crater effects.  

§ S-1.3 Gas sensing tests  

Conductometric device working principle is based on the variation of the electrical resistance in 

presence of the target analyte. Gas sensing measurements were performed in the 200–300°C 

temperature (T) interval. In fact, lower temperatures did not enable the obtainment of appreciable 

responses, whereas for T > 300°C undesired Mn3O4 alterations resulted in a detrimental 

performance degradation.15 Prior to measurements, sensors were maintained at the desired working 

temperature for 8 h in order to attain material stabilization before functional tests. Analyses were 

carried out using a standard configuration with interdigitated Pt contacts.16 IDEs and a Pt heater 

were deposited by DC sputtering on the top of the sensing material and on the back of Al2O3 

substrates, respectively (Ar plasma, 7 SCCM gas flow, 70 W, 5×10-3 mbar, room temperature).  

All tests were performed using gaseous analytes from certified bottles with known concentration. 

To achieve the desired concentration during gas sensing tests, the analyte was diluted further with 



ACS Appl. Mater. Interfaces 2019, 11, 23692-23700    
 https://doi.org/10.1021/acsami.9b04875 
 

 
S-4 

 

synthetic air by mass flow controllers (MKS, Germany, resolution 0.1% full scale), and then 

introduced into the chamber. Humidity was controlled by generating a water-saturated synthetic air 

flow, which was mixed with the desired analyte in each experiment. 

For a p-type semiconductor like Mn3O4 in the presence of reducing analytes [like acetone, ethanol 

and di(propyleneglycol) monomethyl ether (DPGME)], the sensor response was defined as:15,17-18 

Response = (RG – Ra) × 100 / Ra = ∆R / Ra × 100                  (S1) 

where Ra and RG are the air resistance and the corresponding steady state value reached after analyte 

exposure.  

Experimental data were fitted by the relation:15,19-21 

Response = A×CB                       (S2) 

where A is a constant, C is the concentration of the gaseous analyte in ppm, and B is an exponent 

dependent on the reaction stoichiometry.22 Upon assuming the validity of equation (S2) even at low 

analyte concentration, detection limits were extrapolated for a fixed response value of 30.15  

The response time (τresp) was calculated as the time requested for the sample resistance to reach 

90% of the equilibrium value after exposure to the analyte,18,23-26 whereas the recovery time (τrec) 

was the one necessary to return to 70% of the original resistance in air.20,23,27 The maximum 

uncertainty on these values was estimated to be ± 10%. 

 

Figure S1. Sketch of the sensor device structure utilized in the present work. 
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§ S-2. Material characterization 

§ S-2.1 Atomic force microscopy (AFM) 

 

Figure S2. Representative AFM micrographs for Mn3O4-Ag and Mn3O4-Au specimens. 

AFM analyses evidenced a uniform surface topography with a granular-like texture and enabled to 

estimate a RMS roughness of ≈27 nm for all the target specimens, irrespective of Ag or Au 

functionalization. 
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§ S-2.2 Energy dispersive X-ray spectroscopy (EDXS) 

 

Figure S3. EDXS spectra and cross-sectional line scan data for Mn3O4-Ag (a→e) and Mn3O4-Au (f→j) 

specimens, recorded along the yellow lines marked in cross-sectional FE-SEM images. Arrows indicate the 
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direction of abscissa increase.  
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§ S-2.3 X-ray diffraction (XRD) 

 

Figure S4. (a) XRD patterns of Mn3O4, Mn3O4-Ag and Mn3O4-Au. Reflections pertaining to tetragonal 

α-Mn3O4 are marked by vertical orange bars,28 whereas the circles indicate the reflections related to the 

Al 2O3 substrate. 
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§ S-2.4 X-ray photoelectron spectroscopy (XPS) 

 

Figure S5. Surface XPS analysis of the samples fabricated in the present work: (a) wide-scan spectra; (b) 

Mn3s and (c) Au4d photopeaks.  
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Figure S6. Surface O1s signals, along with the resulting fitting components, for Mn3O4 (a), Mn3O4-Ag (b) 

and Mn3O4-Au (c) specimens. 
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§ S-2.5 Gas sensing tests 

After Mn3O4 contact with air, active oxygen generated upon O2 chemisorption:21,26,29-31 

O2 (g)  2O−
 (ads) + 2h+                  (S3) 

yield the formation of a near-surface hole-accumulation layer (HAL).24,31-35 The subsequent analyte 

chemisorption36-39, whose stoichiometry can be formally described as: 

CH3COCH3 + 8O−
  3CO2 (g) + 3H2O (g) + 8e−            (S4) 

CH3CH2OH + 6O−
  2CO2 (g) + 3H2O (g) + 6e−            (S5) 

C7H16O3 + 19O−
  7CO2 (g) + 8H2O (g) + 19e−            (S6) 

and the concomitant electron release24,40 produce a decrease in the hole concentration and in a 

parallel reduction of the material HAL width, accounting for the observed conductance drop-off.30,35 

Upon switching off gas pulses, the original air baseline is recovered. 

Despite the gas-sensing mechanism of DPGME has never been reported in the literature, it is 

reasonable to suppose that under the adopted working conditions, DPGME decomposition might be 

also triggered by adsorbed water/hydroxyl surface groups, as well as by O2 derived species on the 

sensor surface. In this regard, the former species could be responsible for the hydrolysis of DPGME 

methoxy group to form dipropylene glycol (C6H14O3) and of the dipropylene glycol backbone of 

DPGME to form PGME (propylene glycol methyl ether, C4H10O2) and propylene glycol (C3H8O2). 

This partial hydrolysis might be caused by the humidity present in the gas flow, and is also 

supported at atomistic level by the very short hydrogen bond (1.86 Å) between a water proton and 

the methoxy oxygen of DPGME obtained from our calculations (see Figure 6, main text). In parallel, 

surface adsorbed oxygen species could promote the oxidation of DPGME and of the above 

by-products, virtually yielding to their final full oxidation to CO2 and H2O. 
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Mn3O4 Mn3O4-Ag Mn3O4-Au 

Analyte A B A B A B 

Acetone 26 0.34 39 0.32 136 0.23 

Ethanol 18 0.46 29 0.41 47 0.50 

DPGME 98 0.40 67 0.22 346 0.33 

Table S1. Representative parameters obtained by fitting the calibration curves Response = A×CB.15,21 The 

data are obtained at 300°C, apart for the detection of DPGME by Mn3O4-Au, for which the values are 

reported at 200°C, corresponding to the maximum recorded response. 
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Response time (min) Recovery time (min) 

 
Mn3O4 Mn3O4-Ag Mn3O4-Au Mn3O4 Mn3O4-Ag Mn3O4-Au 

Acetone 12 11 11 13 10 8 

Ethanol 8 7 5 9 8 4 

DPGME 20 18 9 93 81 28 

Table S2. Response and recovery times for acetone, ethanol, and DPGME detection by the target 

nanomaterials. Data are obtained at 300°C for the former two analytes, and at 200°C for DPGME, these 

temperatures yielding the best response values for the corresponding gases. The obtained response and 

recovery times clearly highlight the beneficial impact of Mn3O4 functionalization. 

For Au-Mn3O4, response and recovery time values reported in Table S2 were of the same order of 

magnitude of metal-functionalized Co3O4
41 and Fe2O3

25 sensors, and lower than those reported for 

commercially produced SnO2 nanoparticles.35  

For DPGME detection, at the optimal working temperature of 200°C, typical τresp and τrec values by 

Mn3O4-Au sensors were estimated to be 9 and 28 min, respectively. At 300°C the corresponding 

values were τresp = 27 min and τrec = 57 min. The increase of τresp and τrec with temperature is in line 

with a decreased analyte adsorption, and possible poisoning effects, respectively. Nonetheless, the 

obtained values, and, especially, the very long recovery times, are consistent with other literature 

works on CWA simulant detection.27 Nevertheless, given the importance of these parameters for a 

possible practical use of the developed sensors, the future minimization of these values undoubtedly 

deserves further attention and efforts.  
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Figure S7. Dynamic responses at 300°C to different DPGME concentrations for Mn3O4 and Mn3O4-Ag 

specimens.  

 

Figure S8. Dependence of response values on DPGME concentration for Mn3O4 and Mn3O4-Ag samples. 
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§ S-2.6 Computational Details 

The Quantum Espresso suite of programs was adopted in all calculations.42 The stoichiometry of the 

resulting model slab is Mn42MnT
16O88 (MnT = tetrahedral Mn2+ cations). The slab was cut by 

leaving oxygen anions and octahedral Mn3+ cations on the surfaces.43 The calculated magnetization 

was the same as reported for hausmannite,44-45 where the tetrahedral sites have spin-up arrangement, 

whereas the octahedral ones assume an antiferromagnetic ordering. The exposed surface area is 

125.84 Å2 (see cell parameters in the caption for Figure 5). A vacuum layer of 15 Å was added in 

order to reduce the inter-slab interactions. Geometry optimizations were performed allowing all 

atoms to move, up to a convergence criterion of 0.5×10−3 Hartree·Bohr−1. The active surface was 

modelled by adding an Au8 cluster and two water molecules to one of the two free surfaces of the 

slab. The size of the cluster was chosen in order to match one of the so-called “magic numbers”– 

that is, the number of valence electrons for which gold nanoclusters are particularly stable.46 

Specifically, Au8 corresponds to the smallest -(Au)n cluster featuring a magic-number. 

§ S-2.7 Structure comparison for the Mn3O4-Au-ethanol and Mn3O4-Au-DPGME systems 

The investigation of the Mn3O4-Au-ethanol system was performed by applying the same 

methodology adopted for the case of the Mn3O4-Au-DPGME interaction. A careful comparison of 

the optimized geometries of the two models highlighted both similarities and differences between 

the two analytes. Significantly, the hydroxyl oxygen of ethanol is coordinated to a surface Mn3+ 

cation located close to the Au cluster, like in the case of DPGME. Specifically, the ethanol hydroxyl 

oxygen is at 2.09 Å from a Mn3+ cation, to be compared with 2.18 Å in the DPGME case. Similarly 

to DPGME, which forms hydrogen bonds with two water molecules, ethanol interacts with one 

water molecule, but the hydrogen bond is weaker (H−Owater distance = 2.11 Å), as depicted in 

Figure S9a, while the second water molecule is close to a gold atom.  

For the ethanol case, the three shortest Au−OMn distances are 2.09 Å, 2.17 Å and 2.21 Å. They are 

similar to the corresponding values found in the DPGME case – namely, 2.10 Å, 2.13 Å and 2.24 Å. 

Nevertheless, as can be seen in Figure S9a, the ethanol-Au distances are longer than the sum of the 
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respective van der Waals radii, whereas the DPGME ethereal oxygen is clearly in contact with the 

noble metal (Figure S9b).  

 

Figure S9. Graphical representations (top view) of the geometry optimized (a) Mn3O4-Au-ethanol model and 

(b) Mn3O4-Au-DPGME model. The Au cluster, the analytes and the water molecules are shown in 

van-der-Waals representation. Color codes: red, oxygen, yellow, tetrahedral Mn2+; blue (up-spin) and green 

(down-spin), octahedral Mn3+; orange, Au; cyan, C; white, H. 
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