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§ S-1. Materials and methods

§ S-1.1 Synthesis

Mn3O,4 nanodeposits were synthesized using a previowesgribed cold-wall horizontal chemical
vapor deposition (CVD) reactor equipped with a tparhamber and an external precursor
reservoir® The Mn(hfaTMEDA precursor (hfa = 1,1,1,5,5,5-hexafluoro-pdnatanedionate;
TMEDA = N,N,N’,N'-tetramethylethylenediamine), synthesized follogvim recently reported
procedure, was vaporized in a glass vessel at a temperafu86°€ throughout each experiment.
Precursor vapors were transported towards the greulistrate by an electronic gradeflow (rate

= 100 standard cubic centimeters per minute (SCCA))auxiliary 100 SCCM oxygen flow was
separately introduced into the reactor. Gas lirssvéen the precursor reservoir and the reaction
chamber were maintained at 100°C in order to pres@mdensation phenomena.

Radio frequency (RF) sputtering for the functiorafion of manganese oxide deposits with noble
metal nanoparticles was performed using a custoifh4wo-electrode plasmochemical apparatus
equipped with a RF generator € 13.56 MHz)"® Depositions were carried out from electronic
grade Ar plasmas using Ag or Au targets (BALTEC A®®.99%). On the basis of previous
results®” silver or gold sputtering was performed using fbowing optimized experimental
conditions: Ar flow rate = 10 SCCM; RF-power = 5 Whe use of higher RF-powers or longer

deposition times was discarded to prevent the foomaof compact systems with an excessive

Ag/Au loading and a reduced active area.

8§ S-1.2 Characterization

Field emission-scanning electron microscopy (FE-$EMages were recorded using in-lens or

backscattered (BSE) electron signals. The meansitefhuckness and nanoaggregate dimensions

were evaluated through the Imagedftware fittps://imagej.nih.gov/ij/accessed November 2018),
averaging over various independent measurements.
Atomic force microscopy (AFM) characterization weried out using an NT-MDT SPM solver

P47H-PRO apparatus equipped with an anti-noise taiplerating in tapping mode and in air. Root

S-2



ACSAppl. Mater. Interfaces 2019, 11, 23692-23700
https://doi.org/10.1021/acsami.9b04875

mean square (RMS) roughness values were obtaioetdSr< 5um? images after plane fitting.

As regards photoelectron spectroscopy analysesMfef,-Ag samples silven; and a, Auger
parameters were calculated as previously rep8itétbr Mn;Os-Au systems, quantitative analyses
were conducted following a recently reported praceft'® which involved the use of the Augsl
signal instead of the most intense Au 4f one dudMt@p/Audp,, and Mn3s/Audf photopeak
overlaps>'! After a Shirley-type background subtractinatomic percentages (at. %) were
determined by peak area integration usfhagv5.4A sensitivity factors. Gold and silver molar
fractions were calculated ag = (M at.%) / (M at.% + Mn at.%)x100), with M = Adwu.****
Whenever necessary, peak fitting was performed byleast-squares procedure with
Gaussian—Lorentzian peak shapes, using the XPS peakoftware

(https://xpspeak.software.informer.com/4ddécessed September 2018).

Secondary ion mass spectrometry (SIMS) measurenaarts carried out in beam blanking mode,
to improve the depth resolution, as well as in fngdss resolution configuration, to prevent mass
interference artefacts. The nominal rastered ar@s 160 x 15Qum? whereas ion detection was

performed from a 8 x Bm? sub-region in order to avoid crater effects.

§ S-1.3 Gas sensing tests

Conductometric device working principle is basedtla variation of the electrical resistance in
presence of the target analyte. Gas sensing measote were performed in the 200-300°C
temperatureT) interval. In fact, lower temperatures did not ldeathe obtainment of appreciable
responses, whereas for > 300°C undesired M@, alterations resulted in a detrimental
performance degradatidn Prior to measurements, sensors were maintaingt atesired working
temperature for 8 h in order to attain materiab#itzation before functional tests. Analyses were
carried out using a standard configuration witteidigitated Pt contactS.IDEs and a Pt heater
were deposited by DC sputtering on the top of thesmg material and on the back of,@d
substrates, respectively (Ar plasma, 7 SCCM gas, fi® W, 510> mbar, room temperature).

All tests were performed using gaseous analytas ftertified bottles with known concentration.

To achieve the desired concentration during gasiisgnests, the analyte was diluted further with
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synthetic air by mass flow controllers (MKS, Germamesolution 0.1% full scale), and then
introduced into the chamber. Humidity was contiebltg/ generating a water-saturated synthetic air
flow, which was mixed with the desired analyte atle experiment.

For ap-type semiconductor like M@, in the presence of reducing analytes [like acetettenol

and di(propyleneglycol) monomethyl ether (DPGMHE)E sensor response was definei®as™®
Response =Rz —Ry) x 100 /R, = AR/ Ry x 100 (S1)

whereR, andRg are the air resistance and the corresponding sttath/value reached after analyte
exposure.

Experimental data were fitted by the relatfon®2
Response AxC® (S2)

whereA is a constant, C is the concentration of the gas@amalyte in ppm, an8 is an exponent
dependent on the reaction stoichioméfrpon assuming the validity of equation (S2) eveloa
analyte concentration, detection limits were exdtaged for a fixed response value of'30.

The response timergs) was calculated as the time requested for the kanegistance to reach

90% of the equilibrium value after exposure to amalyte'®232°

whereas the recovery time.f)
was the one necessary to return to 70% of the nadigiesistance in aff'>**’ The maximum

uncertainty on these values was estimated to 1@%.

Bottom face Top face

\Pt heater

Pt interdigited
electrodes

3 mm

. . Mn;0,
3 mm

Figure S1. Sketch of the sensor device structure utilizethénpresent work.
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8 S-2. Material characterization

8 S-2.1 Atomic force microscopy (AFM)

Figure S2. Representative AFM micrographs for dMi-Ag and MiRO4-Au specimens.

AFM analyses evidenced a uniform surface topogragpitty a granular-like texture and enabled to
estimate a RMS roughness @27 nm for all the target specimens, irrespectiveAdf or Au

functionalization.
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§ S-2.2 Energy dispersive X-ray spectroscopy (EDXS)

Intensity (a.u.)

0 10 20 3.0 40 50 6.0
Energy (keV)

—
(2)
A d

(d) |

Arb. Units
Arb. Units
Arb. Units

0 0.5 10um O 05 10um O 0.5 1.0 ym
Ag La1 Mn Ka O Ka

Intensity (a.u.)

Au

0 10 20 3.0 40 50 6.0

Energy (keV)

h)

Arb. Units
Arb. Units
Arb. Units

0 05 10pm O 05 10um O 0.5 1.0um
Au La Mn Ka O Ka

Figure S3. EDXS spectra and cross-sectional line scan dataMfeO,-Ag (a—e) and MBO4,-Au (f-))
specimens, recorded along the yellow lines markettass-sectional FE-SEM images. Arrows indicate th
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direction of abscissa increase.
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§ S-2.3 X-ray diffraction (XRD)
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Figure $4. (a) XRD patterns of MyD4, Mn;O4-Ag and MnO,-Au. Reflections pertaining to tetragonal

o-Mn3;0, are marked by vertical orange b&tsyhereas the circles indicate the reflections eelab the
Al,O5 substrate.
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§ S-2.4 X-ray photoelectron spectroscopy (XPS)
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Figure Sb. Surface XPS analysis of the samples fabricatetienpresent work: (a) wide-scan spectra; (b)
Mn3s and (c) Au4d photopeaks.
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Figure S6. Surface O1s signals, along with the resultingnfittcomponents, for My, (a), MnO4-Ag (b)
and MnO,-Au (c) specimens.
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§ S-2.5 Gas sensing tests

After MnsO,4 contact with air, active oxygen generated upemri@misorptiorf26:2%31
Oz T 20 (@ug+ 20" (S3)

yield the formation of a near-surface hole-accutimielayer (HAL)****3*The subsequent analyte

chemisorptior®>° whose stoichiometry can be formally described as:

CH;COCH; + 80 == 3CQp (g + 3HO (g + 86 (S4)
CHsCH;OH + 60 == 2CQ, () + 3H,0 (g + 66 (S5)
CiHi1e0s + 190 == 7COp (g + 8HO (g + 1% (S6)

and the concomitant electron reled$8 produce a decrease in the hole concentration mral i
parallel reduction of the material HAL width, acating for the observed conductance drop33ff

Upon switching off gas pulses, the original airddeee is recovered.

Despite the gas-sensing mechanism of DPGME hasr rien reported in the literature, it is
reasonable to suppose that under the adopted wockimditions, DPGME decomposition might be
also triggered by adsorbed water/hydroxyl surfaceigs, as well as by Qlerived species on the
sensor surface. In this regard, the former spacakl be responsible for the hydrolysis of DPGME
methoxy group to form dipropylene glycol f€;403) and of the dipropylene glycol backbone of
DPGME to form PGME (propylene glycol methyl eth€sH100,) and propylene glycol (EsO,).
This partial hydrolysis might be caused by the Hdityi present in the gas flow, and is also
supported at atomistic level by the very short bgeén bond (1.86 A) between a water proton and
the methoxy oxygen of DPGME obtained from our clatans (see Figure 6, main text). In parallel,
surface adsorbed oxygen species could promote tigatmn of DPGME and of the above

by-products, virtually yielding to their final futixidation to CQ and HO.
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Mn3O,4 Mn304-Ag Mn3O4-Au
Analyte A B A B A B
Acetone 26 0.34 39 0.32 136 0.23
Ethanal 18 0.46 29 0.41 a7 0.50
DPGME 98 0.40 67 0.22 346 0.33

Table S1. Representative parameters obtained by fittingcéiération curvesResponse = AxC®?! The
data are obtained at 300°C, apart for the detecifoDPGME by MnO4-Au, for which the values are

reported at 200°C, corresponding to the maximurarced response.
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Response time (min) Recovery time (min)

M N304 M n304-Ag MnzO04-Au M N304 M n304-Ag MnzO04-Au

Acetone 12 11 11 13 10 8
Ethanol 8 7 5 9 8 4
DPGME 20 18 9 93 81 28

Table S2. Response and recovery times for acetone, ethamu, DPGME detection by the target
nanomaterials. Data are obtained at 300°C for ¢thedr two analytes, and at 200°C for DPGME, these
temperatures yielding the best response valueshforcorresponding gases. The obtained response and
recovery times clearly highlight the beneficial map of MnsO, functionalization.

For Au-MnsO4, response and recovery time values reported ineTab were of the same order of
magnitude of metal-functionalized §&*' and FeOs*® sensors, and lower than those reported for
commercially produced Sn@anoparticles®

For DPGME detection, at the optimal working tempane of 200°C, typicalespand rec Values by
Mn304-Au sensors were estimated to be 9 and 28 mingctisply. At 300°C the corresponding
values werefesp= 27 min andrec = 57 min. The increase @kspand rrec With temperature is in line
with a decreased analyte adsorption, and posssomping effects, respectively. Nonetheless, the
obtained values, and, especially, the very longvery times, are consistent with other literature
works on CWA simulant detectidi.Nevertheless, given the importance of these pamméor a
possible practical use of the developed sensadutiire minimization of these values undoubtedly

deserves further attention and efforts.
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Figure S7. Dynamic responses at 300°C to different DPGME eatrations for MgO,; and MnO,-Ag
specimens.
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Figure S8. Dependence of response values on DPGME concemtrti MO, and MnO,-Ag samples.
Working temperature = 300°C.
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§ S-2.6 Computational Details

The Quantum Espresso suite of programs was adoptgtcalculations? The stoichiometry of the
resulting model slab is MgMn'1¢0ss (Mn' = tetrahedral Mfi cations). The slab was cut by
leaving oxygen anions and octahedral*Meations on the surfacé$The calculated magnetization

was the same as reported fausmannite,***°

where the tetrahedral sites have spin-up arrangigme
whereas the octahedral ones assume an antiferretagmdering. The exposed surface area is
125.84 K (see cell parameters in the caption for FigureASyacuum layer of 15 A was added in
order to reduce the inter-slab interactions. Geomeptimizations were performed allowing all
atoms to move, up to a convergence criterion okT05 Hartree- Boht. The active surface was
modelled by adding an Aicluster and two water molecules to one of the fiwe surfaces of the
slab. The size of the cluster was chosen in omendtch one of the so-called “magic numbers’—

that is, the number of valence electrons for whighd nanoclusters are particularly staffle.

Specifically, A corresponds to the smallest -(Ag)uster featuring a magic-number.

8§ S-2.7 Structure comparison for the Mn3;O4-Au-ethanol and Mn3;O4-Au-DPGME systems

The investigation of the M,-Au-ethanol system was performed by applying thenesa
methodology adopted for the case of thes®lRAU-DPGME interaction. A careful comparison of
the optimized geometries of the two models highieghboth similarities and differences between
the two analytes. Significantly, the hydroxyl oxpgef ethanol is coordinated to a surface’Mn
cation located close to the Au cluster, like in tiase of DPGME. Specifically, the ethanol hydroxyl
oxygen is at 2.09 A from a Mhcation, to be compared with 2.18 A in the DPGMEec&Similarly

to DPGME, which forms hydrogen bonds with two wateolecules, ethanol interacts with one
water molecule, but the hydrogen bond is weakerQiia: distance = 2.11 A), as depicted in
Figure S9a, while the second water molecule isectosa gold atom.

For the ethanol case, the three shortest@w distances are 2.09 A, 2.17 A and 2.21 A. They are
similar to the corresponding values found in theGME case — namely, 2.10 A, 2.13 A and 2.24 A.

Nevertheless, as can be seen in Figure S9a, taratAu distances are longer than the sum of the
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respective van der Waals radii, whereas the DPGMEreal oxygen is clearly in contact with the

noble metal (Figure S9b).

Figure S9. Graphical representations (top view) of the geoynaptimized (a) MpO,-Au-ethanol model and
(b) Mn;O4,-Au-DPGME model. The Au cluster, the analytes ahd tvater molecules are shown in
van-der-Waals representation. Color codes: redg@xyyellow, tetrahedral Mf blue (up-spin) and green
(down-spin), octahedral M orange, Au; cyan, C; white, H.
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