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ERRATA

p 108 last para, line 3: "CBIR" for "GBP.

ADDENDUM

p iii para 3, line 5: Insert "of the six colour spaces evaluated," after "It also shows that".

p iii para 4, line 4: Add at the end of the sentence "among the methods evaluated".

p iv para 2. line 3: Delete "eyeMap is the best way of" and add "eyeMap is a better

method than the traditional methods for".

p 154: Add at the end of para 1:

"One possible theoretical explanation for the increased performance is as follows.

Visual perception requires two types of processing: first, visual system for receiving

stimulus; and second, further neural processing to actively select which stimuli to attend

to (attention) [1]. Attention directs the visual system to stimuli we want to perceive

and affects how the information is processed. Consequently, attention can enhance the

perception of stimuli we are paying attention to and decrease the perception of stimuli

being ignored. The increased performance of eyeMap suggests it is more sympathetic to

this phenomenon. Images in eyeMap were organised in such a way that locations which

were more likely to contain target images attracted more attention, thus enhancing

users' perception of images in those areas. For this reason, users could find target

images faster using eyeMap than ;"ing the traditional display."
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The large volume of digital image databases challenges the usefulness of the classical

means of manual image annotation and demands a more efficient and effective way

to generate feature vectors and retrieve images. Tins need inspires the research into

image retrieval using feature vectors generated from the content of the images rather

than their annotation, hence the name content-based image retrieval (CBIR). It has

been an active research area for over a decade but to date has not been widely used in

real world applications.

This thesis aims to make CBIR more useful in real world applications by using

innovative approaches to (1) evaluate the suitability of colour spaces for colour-based

CBIR (2) develop a new feature extraction method to generate feature vectors for colour

images (3) formulate a framework for facilitating intuitive and effective image browsing

and retrieval (4) evaluate the performance of this framework for image browsing and

retrieval.

To improve the retrieval effectiveness and efficiency for retrieving colour images,

this research first resolves which colour space is most suitable for colour-based CBIR

by evaluating the suitability of six colour spaces. This is crucial because it justifies

the choice of colour space and provides insights into why some colour spaces are more

suitable than others. It also shows that HSV colour space is most suitable for colour-

based CBIR. as it is at least as effective as but more efficient than any of the other

colour spaces.

Further, this research determines how to best use the spatial relationships of colours

for retrieving colour images. It proposes a new feature extraction method, I-autocorrelo-

gram (I-auto). for colour images and compares it against contemporary methods. I-auto

is found to be, overall, the most preferred method.

• • •
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In addition, to facilitate intuitive and effective image retrieval, this research first

formulates eyeMap. an image browsing framework for large image databases which can

he integrated into a CBIR system. eyeMap not only provides users an overview of all

images in the database, but also helps them to select an appropriate sample image to

start the query-by-example retrieval process. This research, then develops colour-based

eyeMap for browsing colour image databases and integrates it into a colour-based CBIR

system developed using I-auto for retrieving colour images.

Significantly, when colour-based eyeMap and traditional methods were tested on

users, colour-based eyeMap was found to be more effective, efficient and most preferred.

It thus shows that eyeMap is the best way of interacting with CBIR systems in the real

world. This research finally demonstrates how eyeMap can be used with texture image

databases by creating texture-based eyeMap.
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Chapter 1

Introduction

1.1 Background

The birth of digital devices for capturing data and the low cost of electronic storage saw

an explosive increase in the volume of archived data. The first stage of this revolution

was marked by the storage of textual documents and, later, other media such as audio,

video and still images. Research in text retrieval for the last thirty years has made

the retrieval of textual data a breeze; thus, images are often annotated with text,

thereby transforming the problem of image retrieval to text retrieval. However, text

annotation is tedious, expensive, and for image databases it is also inaccurate because

of the subjectivity and difficulty of describing the visual features; consequently, the rate

of successful retrieval is low [42. 74].

Another approach to image retrieval is to automatically generate feature vectors

from the content of images so that retrieval can be performed by searching the feature

vectors; hence, the name content-based image retrieval (CBIR). CBIR differs from

the traditional text-based systems in two ways: generating of feature vectors (feature

extraction) and initiating a query. In terms of feature extraction, text-based systems

can directly use the content of a document to build the feature vector. In contrast,

CBIR cannot directly use the content of an image to build the feature vector as images

are made up of pixel arrays which are meaningless; image feature extraction can only

be achieved by extracting useful features from the raw data. The retrieval effectiveness

largely relies on feature extraction, and tins has been the research focus in CBIR for the

last decade [3, 34, 71, 142, 155, 162]. Because object recognition is highly unreliable,
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feature extraction has been and still is limited to low level features such as colours,

shapes, textures, or combinations of these, and in most cases, this is acceptable given

that similar objects tend to have similar low level features.

The second difference between CBIR and text-based systems lies in how to initiate

a query. The input into text-based systems is obviously text whilst for CBIR, it. is no

longer as straightforward. This issue receives far less attention than feature extraction,

for it has always been assumed that users must first issue a text, query, and once they

have a sample image, then they issue a visual query, that is, by supplying a sample

image to retrieve a set of relevant images. In the absence of text annotation or a sample

image, users are assumed to be capable of sketching a sample image. This expectation is

unrealistic as it requires users not only to sketch, but also to have an intimate knowledge

of the system's use of the feature in order to sketch successfully. This problem, the

problem of initiating a visual query without a sample image, is known as the Page 0

problem.

1.2 Objectives

To date, CBIR systems have had little practical use mainly because of low retrieval

effectiveness, poor efficiency and the Page 0 problem. The main objective of the re-

search in this thesis is to bring CBIR systems one step closer to real world applications

by improving the effectiveness and efficiency of colour-based feature vectors and image

retrieval, and solving the Page 0 problem. The framework developed for solving the

Page 0 problem is useful for browsing and searching large collections of different image

database types. A colour-based implementation of this framework is suitable for use

with large general colour image databases i.e. commercial photo stock libraries, per-

sonal photographs and digital art collections, whereas a texture-based implementation

is appropriate for texture images in the real world i.e. textiles, carpets and wallpapers.

§1.3 Contributions of Thesis

1.3 Contributions of Thesis

The research contributions of this thesis can be divided into six major sections:

1. evaluating the suitability of colour spaces for colour-based CBIR;

2. improving the effectiveness of colour-based feature vectors;

3. formulating eyeMap, a framework for browsing large image databases;

4. developing colon*-based eyeMap for colour images;

5. evaluating the usability of colour-based eyeMap; and

6. creating texture-based eyeMap for texture images.

1.3.1 Evaluating Suitability of Colour Spaces for Colour-Based CBIR

A colour is described in at least three coordinates and a collection of all colours in

the coordinate system is called a colour space. Evaluating the suitability of colour

spaces is important because colour-based features remain popular for describing the

content of general colour images, and the use of any colour-based features requires

the selection of a colour space. However, there has been no comprehensive study on

how to select a suitable colour space. The research in this thesis comprehensively

studied the effectiveness and efficiency of the most commonly used colour spaces (that

is, RGB, LUV and LAB in Cartesian co-ordinates as well as HSV, LUV and LAB in

polar coordinates) for colour-based CBIR. This study is important because it justifies

the choice of colour space and provides insights into why some colour spaces are more

suitable than others. We found that HSV is most suitable for colour-based CBIR

because it is both effective and efficient, and reported the results in [62].

1.3.2 Improving Effectiveness of Colour-Based Feature Vectors

More recent colour-based feature vectors have incorporated the rich information pro-

vided by the spatial relationships of colours previously ignored. In this thesis, we
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studied autocorrelogram, a well known and promising feature vector, which incorpo-

rates the spatial relationships of colours. The findings acquired from the study led

us to the discovery of I-autocorrelogram (I-auto), an even more effective and efficient

feature vector. I-auto was then evaluated against other contemporary feature vectors

and was found to be most preferred. The findings related to the research in feature

vectors incorporating colours spatial relationships are published in [63. 64].

1.3.3 Formulating eyeMap, a Framework for Browsing Large Image

Databases

Research in CBIR is mostly restricted to retrieval but browsing is equally important,

as it allows users to have an overall view of the entire database and to more easily

find a sample image to initiate a visual query, practically solving the Page 0 problem.

Browsing a large scale image database is difficult because the area required to display

ail images easily exceeds the available screen area. The requirements of browsing are

different from those of retrieval. For browsing, the browser must display all images in

the database so that users have an overview of its content. The relationships between

images must also be clear to users so they can decide where to browse next. These

relationships can only be established if the display or layout is contextually meaningful;

that is. the display reflects the perceptual differences and similarities of the images: a

random display does not facilitate browsing.

The development of the browsing framework in this thesis. eyeMap, took a more

holistic approach to solving the issues related to browsing large image databases. We

investigated techniques for handling large amounts of data and adapted these tech-

niques so that they are suitable for browsing large image databases. These techniques

are generic, so they can be used for other image database types. eyeMap differs from

existing image browsing frameworks in that it facilitates the display of a large image

collection at any one time and allows users to intuitively focus on the area of interest.

The implementation of eyeMap provides a powerful browsing tool and. when it is inte-

grated with a CBIR system, it is a useful tool for finding a sample image to initiate a

§1.3 Contributions of Thesis

visual query, thus solving the Page 0 problem.

1.3.4 Developing Colour-Based eyeMap for Colour Images

Because eyeMap is a browsing framework which can be used for browsing any types

of image databases, we first explored the use of eyeMap for browsing colour image

databases by creating colour-based eyeMap. To illustrate why eyeMap is useful for

browsing. Fig. 1.1 on the following page shows a layout of a general colour image

database produced by colour-based eyeMap. The images are grouped by visual simi-

larity, so users can direct their attention to the area of interest by moving the ellipse.

The ellipse identifies the area of interest (focal region), and users can clearly see all im-

ages within the ellipse because the images are enlarged and any image overlapping can

be removed. In order to ensure that layouts of images are meaningful, we established

which colour feature, among several, was more suitable for browsing. It was found

that a cumulative histogram colour feature is more suitable for browsing general colour

images. The work related to the development of colour-based eyeMap was published

in [65].

1.3.5 Usability Study of Colour-Based eyeMap

This usability study pioneers the evaluation of image browsing systems. The purpose of

the study was to show that eyeMap is useful for browsing and solving the Page 0 problem

by comparing colour-based eyeMap against traditional linear browsing methods. The

study establishes that eyeMap is the best framework, as the systems developed based

on eyeMap are most effective, efficient and preferred by users. In addition, this study

provides insights into how humans search for images, so the findings are also useful for

designers of any image browsing or search applications.
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Figure 1.1: A screen shot of an image layout produced by colour-based eyeMap, an imple-
mentation of the proposed browsing framework, showing an overview of a general colour image
database.

1.3.6 Creating Texture-Based eyeMap for Texture Images

eyeMap is a browsing framework and can be used for browsing other types of images,

such as texture images in the real world i.e. textiles, carpets and wall papers. In this

thesis, we demonstrate how to use eyeMap for browsing texture images by selecting

appropriate texture feature; tins implementation of eyeMap is known as texture-based

eyeMap. This research is more than just an evaluation study because it also shows how

to use existing texture features for browsing. This study concludes that the texture

feature proposed by MPEG-7 for retrieval is most suitable for browsing. The findings

related to this study are published in [Gl].

§1.4 Research Overview

1.4 Research Overview

A visual summary of the research is given in the concept map in Fig. 1.2. It describes

the scope of the research and the relationships between the research activities. The

white boxes relate to strategic points in the research and contain nouns. The relation-

ships between these boxes are denned by the arrows labelled with verbs. This makes

the map easy to read as "»ne can easily construct a sentence using the nouns and verbs

by following the arrows. A concept map, theoretically, has no starting point and can

be read from any point. One way to read this concept map is by starting from the

green box i.e. users, for example,
search for, have i ;—— 1

[ users 1 »j sample image \- imagesf
using „

visual query
by searching ftony^ j m a g e d a t a b a s e

indexes

image
database

using. image j ae"ct"br > | images visual query

The purple boxes are the research questions and therefore are the research contribu-

tions of this thesis.

How to improve colour features for image retrieval?
How to improve browsing method?

Is the browsing method
effective?

usability study

evaluated using

image database

T
— using eyeMap

How to browse large
scale image databases?

impacts on -

Which colour features are
more useful for browsing

colour images?

layout

browse find

How to use eyeMap
for browsing texture images?

A

determines

have—>[sample image]
T

search for

used by

image database
feature vectors

by searching from

images | us in9—>j visual query

A

generates

Which colour space is more
suitable for CBIR?

tion Ifeature extraction
methods | How to improve colour-based

feature vectors incorporating
spatial relationships?

Figure 1.2: A concept map setting out the scope of the research and the relationships between
research activities. The purple boxes are the research questions.
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1.5 Structure of Thesis

Chapter 2 contains an overview of existing CBIR techniques which use colours, textures,

shapes and combinations of these. The aim of this chapter is to review and analyse the

strengths and limitations of relevant work in CBIR by reviewing the current literature.

Chapter 3 presents the results of experiments in different colour spaces. The pur-

pose of tin's chapter is to identify which colour space is most suitable for colour-based

CBIR and to explain why some are more suitable than others by conducting retrieval

experiments in different colour spaces.

Chapter 4 describes the studies related to colour-based feature vectors which in-

corporate colours spatial relationships. The objective of this chapter is to demonstrate

how to improve the effectiveness and efficiency of these feature vectors.

Chapter 5 focuses on browsing large image databases. The purpose of this chapter

is to solve the problems associated with browsing large image databases by formulating

eyeMap. a new image browsing framework.

Chapter 6 discusses the use of eyeMap for browsing general colour images, and

this implementation of eyeMap is known as colour-based eyeMap. In order to imple-

ment colour-based eyeMap. we demonstrate which colour features are more suitable for

browsing colour images by evaluating different colour features.

Chapter 7 aims to determine whether eyeMap is useful for browsing and solving

the Page 0 problem by having users test colour-based eyeMap and traditional methods.

This study also provides insights into how humans search for images and the findings

are useful for designing any image browsing or search method.

Chapter 8 describes texture-based eyeMap. This chapter shows how to use eyeMap

for browsing homogeneous texture images by investigating different texture descriptors.

The purpose of the study is to demonstrate how to visualise texture images and to

determine which texture descriptor is more suitable for browsing.

Chapter 9 summarises the main findings and provides potential future directions.

Chapter 2

A Review of Content-Based

Image Retrieval

When computers were first used to store a large volume of textual digital documents,

searching for a specific document was challenging. The solution to tin's problem was the

use of automatic feature extraction to generate feature vectors to facilitate retrieval.

This marked the birth of information retrieval. The need for a good search engine is

more important than ever as the volume of documents will only increase. With cheaper

and higher storage capacity, we can now even store large quantity of digitised multime-

dia data, such as still images. Searcliing for images presents research communities with

an even bigger challenge because extracting features from text documents is straight-

forward as the words in the documents can be directly used as the feature vectors; but,

for images, what aspects could be used as feature vectors?

Traditionally, each image is manually annotated and users search the annotation to

find the desired images. However, manual annotation is expensive, time consuming and

subjective. For example, Furnas et al. reported that the probability of two people using

the same words to describe the same objects varies between 7%-18% depending on the

objects [42]. The effectiveness of the search engine is largely influenced by the degree

of agreement between the annotator and users; as a result, searching annotated images

remains ineffective. Another approach to image retrieval is to extract feature vectors

using the content of images so that they can be retrieved by searching from these feature

vectors, hence the name content-based image retrieval (CBIR). It is a simple concept

but extremely difficult to implement accurately because automatic image and object

9
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recognition is a very difficult task. The alternative is to extract the low level features

such as colours, textures and shapes. This is acceptable under most circumstances

because visually similar images or objects tend to have similar low level features.

This chapter contains a review of feature extraction methods, and a taxonomy

of these methods is given in Fig. 2.1. Colour-based methods are normally used for

general colour images; texture-based methods for homogeneous texture images such as

textiles, carpets, wall papers and finger prints; and shape-based methods for bi-level

shape images i.e. images which have only black and white pixels such as logos. This

literature review also covers feature extraction methods which generate feature vectors

by integrating several low level features.

Feature Extraction Methods

Colour Shape Texture Integrated

General Colour Images Bi-Level Images
(black and white)

Homogenous Texture General Colour Images

Figure 2.1: Taxonomy of feature extraction methods used in CBIR.

2.1 Colour-Based Methods

All colour-based methods are proposed based on the observation that similar images

tend to have similar colour content. So, all these methods evolve around how best to

describe the colour content of the images so that similar images will have similar colour

descriptions and dissimilar images will have dissimilar colour descriptions. Colours are

described using at least three coordinates, and a collection of all colours in a coordinate

system is called a colour space. The very first decision in extracting colour-based feature

vectors is to choose a colour space to describe the colours. (The methodology of colour

space selection is beyond this chapter; it is an objective to be studied in Chapter 3).

Computers can differentiate over 2 million colours but human eyes can differentiate

i

I

substantially fewer colours. To describe the colour content effectively, all colour-based

methods massively reduce the number of colours either by quantising the colour space

or describing only their statistical properties. Colour space quantisation can be written

formally as follows [124]. Let C be a colour space. Let P be a quantisation space

(a subset of C) and P = {ci,c2, ...,Cj. ... ;cn | a € C.n < | | C ||} where n is the bin

size, the number of groups of colours. The groups of colours are generated by using a

quantisation function Q, which maps each colour in C to P, and it is defined as:

Colour-based feature extraction methods can be broadly classified into colour dis-

tribution and colour spatial methods based on whether they capture only colour dis-

tribution or the spatial relationships of colours. The colour distribution methods are

further classified into three classes i.e. globally quantised colours, locally quantised

colours and no quantisation, depending on whether they use any quantisation function,

and if they do, the nature of the quantised colours.

The second main category of feature extraction methods is colour spatial methods.

Unlike the colour distribution methods, which capture only the distribution of colours,

these methods capture the spatial relationships of colours. These methods can be

further divided into two types i.e. pixel-based or block-based depending on whether

they operate at pixel level or groups of pixels (block-based) level. Pixel-based methods

can be further classified into two main classes: pixel classification and spatial descriptors

based on how the spatial information among colours are captured. The taxonomy of

colour-based feature extraction methods can be found in Fig. 2.2 on the following page.

The following sections describe all of these methods.

2.1.1 Colour Distribution

Colour distribution methods capture the distribution of colours in an image. The

methods in this category are further classified into three classes: glob*liy quantised
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Colour-Based Feature Extraction Methods

Colour
Distribution

Globally
Quantised Colours

Colour Histogram,

Cumulative Histogram,

QblC's Colour Feature,

Perceptually Weighted
Histogram,

Colour Spatial

No
Colour Quantisation Pixel-Based

Colour Moments.

Locally
Quantised Colours

Block-Based

Vector Quantisation.

Pixel
Classification

Spatial
Descriptors

Dominant Colours
Descriptors.

Region Partitioning.

Colour Coherency Vectors,

Layered Colour Indexing.

Autocorrelogram,

MPEG-7 Colour
Structure Descriptor.

Figure 2.2: Taxonomy of colour-based feature extraction methods.

colours, locally quantised colours and no quantisation. The methods using globally

quantised colours use the same quantised colours to describe the colour distribution

of any image. Examples of such methods are colour histogram, cumulative histogram,

QBJC's colour feature extraction and perceptually weighted histogram. In contrast,

methods using locally quantised colours generate a new set of quantised colours for each

image, and examples of these methods include variations of dominant colour descriptors.

At the other extreme of the colour quantisation spectrum, the last type of colour

distribution methods does not use any quantised colours. An example of this method

is colour moment.

All colour distribution methods generate feature vectors which are rotation and

translation invariant; however, only methods using globally quantised colours and meth-

ods using no quantised colours can generate the feature vectors more efficiently.
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2.1.1.1 Globally Quantised Colours

This section describes four feature extraction methods using globally quantised colours:

colour histogram, cumulative liistogram, QBIC's colour feature and perceptually weighted

histogram.

Colour Histogram

In the early nineties, Swain and Ballard proposed an algorithm which recognises

objects by measuring the colour distribution of the image in which the object is

present [141). This algorithm is known as colour liistogram, which is simply a count of

pixels of the quantised colours in the image. The histogram feature vector for an image

I is (h\,..., h1^) where fy is the count of pixels for bin i and M is the number of bins.

The distance between feature vectors for image Q. and I is calculated using histogram

intersection:
£ & minjh?, hj)

d" 1 F ~ T (2.1)
i=l ni

If the total count of both histograms are equal, or normalised to one, then rfn is equiv-

alent to the L\ dissimilarity metric [142]:

A/

t=i

(2.2)

Colour histogram has since been extended from object recognition to image recognition.

The main weaknesses of the simple histogram are that:

1. it is highly sensitive to the number of quantised colours;

2. it ignores the contribution of colours in the neighbouring bins which could be of

perceptually similar colours; and

3. it ignores the spatial relationships of colours.
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Several methods have been proposed to solve these problems. Strieker and Orengo

overcame the first problem by proposing the cumulative histogram method with which

they claimed to have reduced the effect of quantisation intervals [139]. Faloutsos et

al. [34] and Lu and Phillips [67] addressed the second problem by considering the

contribution of pixels in the neighbouring bins. The last, problem was overcome by

methods which incorporate colours spatial relationships, and these methods belong

with the colour spatial methods (see Fig. 2.2). This section discusses the methods

which attempt to solve the first two problems, and discussions on the methods for

overcoming the last problem will be covered in Section 2.1.2.

Cumulative Histogram

The cumulative histogram method first constructs a histogram feature vector, then

it accumulates the value from the previous bin to the next bin [139]. This process can

be illustrated with the following simple example. Suppose ail colours are quantised

into four bins and the histogram feature vector of an image is normalised to one:

(0.25. 0.75, 0, 0). The cumulative histogram for the same feature vector is derived by

adding the value of bin 0 to bin 1, and then from bin 1 to bin 2, so the cumulative

histogram for the same image is now (0.25, 1, 1, 1). The LI dissimilarity metric used

for colour histogram can also be used for cumulative histogram.

QBIC's Colour Feature Extraction

The QBIC's colour feature method quantises the colour space into M number of

bins using agglomerative clustering. Then, a representative colour is chosen for each

bin [34]. Finally, a histogram is constructed by counting th° number of pixels closest to

•each representative colour. To also include the contribution of pixels in neighbouring

bins, a correlation matrix is constructed for the quantised colour space. This correlation

matrix is supposed to capture the colours correlation of perceptual similarity among
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different bins. The difference between feature vectors for image Q and X is defined as:

,X) = (Q - 1)A(Q - ? ) =

where M is the number of bins and the dissimilarity matrix A contains Oj,j entries,

which describe the perceptual similarity of colour i and colour j .

This method is less efficient than the traditional histogram method for two reasons.

First, during feature extraction, it has to find the closest representative colour for each

pixel. Second, thr* use of a correlation matrix A increases the computational cost during

retrieval. It is unclear if the additional processing time is justified, as there has been

no comparative study.

Perceptually Weighted Histogram (PWH)

PWH is another feature vector which considers the contribution of pixels in neigh-

bouring bins [67]. Like the colour feature in QBIC, it finds M representative colours

by clustering the colour space. The difference between PWH and QBIC is in feature

extraction. PWH finds ten closest bins to a pixel and calculates the pixel's colour dis-

tance to each representative colour of the ten bins. It then assigns the weights to each

bin in inverse proportion to the colour distance. The weight for bin i is calculated as:

(2.4)
1/rfi + l/d2 + . . • + l/d10

where di is the colour distance of the pixel to the ith closest representative colour.

The distance between two feature vectors is calculated using the LI dissimilarity

metric. During feature extraction, PWH is more computationally expensive compared

to QBIC's colour feature; however, it is more efficient during retrieval, as the distance

between two bins is calculated only once. In QBIC, to consider the contribution of

neighbouring bins, the calculations between two bins takes place more than once, and

the number of calculation is dictated by the size of the correlation matrix.
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2.1.1.2 Locally Quantised Colours

It is argued that using globally quantised colours is inflexible as the retrieval effective-

ness is dictated by the quantisation intervals granularity [154]. A coarse quantisation

has lower effectiveness than fine quantisation but it is more efficient; however, increasing

the number of quantisation intervals does not necessarily guarantee higher effectiveness.

The level of quantisation is a complex issue, as it is not only an issue of balancing effec-

tiveness and efficiency but there also seems to exist an optimum number of quantisation

intervals. This issue receives little attention within the CBIR community, and it is an

objective to be studied in Chapter 3.

To overcome the inflexibility of global colour quantisation, dominant colour feature

extraction methods generate a new set of quantised colours for each image. The dom-

inant colour feature vector for an image is (ci, hi, • • • ,CM-. h\i), where Cj is dominant

colour i, h{ is the histogram of dominant colour i, and M is the number of dominant

colours (the value of M is variable). A quantised colour is considered dominant if

its number of pixels exceed a predefined threshold. Each feature vector not only has

its own dominant colours but also a different number of dominant colours. For these

reasons, the similarity or dissimilarity metrics need to (1) consider the dissimilarity

of dominant colours including their histograms and (2) deal with feature vectors with

different number of dominant colours. In fact, the main difference between dominant

colour feature extraction methods lies in the types of metrics.

Rubner et al. used Earth Mover's Distance (EMD) as their dissimilarity metric [105,

117, 118, 119]. This dissimilarity metric will be used in Chapters 6 and 8, so it is

discussed here in detail. The EMD is based on a problem in operations research more

commonly known as the transportation problem, in which the goal is to optimise the

cost of transporting goods from a set of sources to a set of destinations. The amount of

goods and routes for transporting the goods is defined by the flow T = [/,-_,-], where fij

is the amount of goods to be transported from source i to destination j . To use EMD

for image retrieval, Rubner et al. redefined the cost of transporting goods from sources

to destinations into transforming one feature vector to another [119]. To calculate the
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distance between two adaptive feature vectors Q and X, the optimal T for transforming

Q into 1 is found. Once the optimal !F is found, the distance between the two feature

vectors is calculated using EMD:

(2.5)

where d\j is the dista- ., between colours i and j . fij is the amount of colours to be

transformed from colours i to j , M® is the number of dominant colours in Q and M1

is the number of dominant colours in I . The d+j is also known as the ground distance.

Rubner showed how EMD could be used for other feature vectors, such as texture

feature vectors, by simply changing the ground distance [118], thus demonstrating the

flexibility of this metric. In fact, in Chapter 8. we use EMD to measure the distance

between two texture feature vectors by simply changing the ground distance,

Another approach to calculating the distance between two dominant colour feature

vectors is by using a weighted correlation Wij of colours i and j in the dissimilarity

metric. Variations of this dissimilarity metric can be found in the work of Leow and

Li, Kankahalli et al. and Ohm et al. [52, 58, 97].

Dominant coHir feature vectors have the advantage of having a smaller size com-

pared to feature vectors using globally quantised colours, as these feature vectors de-

scribe only about eight to nine colours. The smaller size, however, comes at the coot

of effectiveness: it is even less effective than the traditional histograms [58, 113, 119].

The solution to this problem would be to increase the number of dominant colours in

each image, but unfortunately, doing so will increase the computational cost during

feature extraction, as the clustering process is computationally expensive [117]. It also

increases the computational cost during retrieval because even the most efficient metric

is computationally expensive; for example, the complexity of Leow and Li's distance

metric is O(M® x Mx). where M& and M1 are the number of dominant colours in

feature vectors Q and 2 respectively.
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2.1.1.3 No Colour Quantisation

All colour feature extraction methods described above require colour quantisation.

Colour moments is a feature extraction method which requires no colour quantisa-

tion. This method will be used to generate feature vectors in Chapter 6, so it will be

described in detail here. Strieker and Orengo proposed colour moments as a means of

capturing the statistical contents of the colours in an image [139]. The colour moments

are the average, the standard deviation and the skewness of colours in an image and

they are defined as:

N

• Si = (2.6)

where i is the colour channel, j is the pixel number and Ar is the total number of pixels

in the image. So pij is the value of pixels number j for channel t. They used HSV

colour space, so there are three colour channels: H, S and V; therefore, the feature

vector of an image is (/J.H,crH,SH,HS:VS:SS:Pv<o'v,sv)- The distance between two

feature vectors Q and 1 is defined as:

(2.7)
t = l

where wn > 0 is the weight for channel i and statistical measure I (either /i, a or s), and

C is the number of colour channels, which is normally 3. Strieker and Orengo proposed

tliree different sets of um but found their effect on retrieval effectiveness is negligible.

One set of the recommended wu is:

a

s

H

1

1

1

S

2

2

2

V

i—
i

1

1

Based on the table above, the weight for channel H and statistical measure fj,

1, and the weight for channel 5 and statistical measure ^ (u>sp)is 2.

is
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Compared to dominant colour feature vectors, the size of colour moments feature

vectors is even smaller. The main weakness of this method is that it extracts informa-

tion from each colour channel separately, and as a consequence, perceptually different

colours can have exactly the same feature vectors. This defect, of course, has a neg-

ative impact on retrieval effectiveness. Colours are described by combinations of at

least tliree colour channels, but by describing each channel separately, colour moments

treats the colours as though they can be described independently. Figure 2.3 illustrates

this problem. It shows thiee bi-colour images, including then: HSV values and their

colour moment feature vectors in HSV colour space. Of these three images, image (b)

is visually most different from (a) but they both have exactly the same colour moments

feature vectors. In contrast, image (c) is visually most similar to image (a) but they

have different feature vectors. If we use these feature vectors to retrieve one image

most similar to (a), then (b), which is least similar to (a), will be retrieved. This is why

why extracting the information from each colour channel independently has a negative

impact on retrieval effectiveness.

Image

H S V
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Figure 2.3: The main weakness of colour moments feature enaction. The arrows point to
tho HSV values of each colour in each image. Image (b) is visually most different to (a) but
cheir feature vectors are exactly the same. On the other hand, image(c) is visually most similar
to (a) but they have different feature vectors.

2.1.2 Spatial Relationships of Colours

All feature extraction methods discussed above can only extract information about

the distributions of colours (that is. the quantity of colours) in an image, not the

spatial relationships between colours. As a result, an image where the pixels have been
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scrambled will have exactly the same feature vectors as the original even though they

are visually very different. As an example, Fig. 2.4 shows three bi-colour images. The

ranking of the other two images in terms of visual similarity to image (a) should be

(b) followed by (c); however, by using histogram feature vectors, it is impossible to

differentiate image (c) from (b) because the quantity of each colour in each image is

exactly the same. Although the example uses the colour histogram method, the use

of any other methods described earlier will result in exactly the same ranking. This

problem can be rectified by incorporating the spatial relationships of colours.

colour

B8 red
•™ yellow

colour

• • yellow
« • u
• B "^rcd

• . ye l low
• • •

Query Image
histogram

0.25
0.75

Other Images
histogram

0.25
0.75

0.25
0.75

LI
0.0

0.0

(b)

Figure 2.4: These three images are perceptually very different but they have exactly the same
histograms.

The methods which incorporate spatial relationships of colours can be broadly cat-

egorised into two classes: pixel-based and block-based. Pixel-based methods operate

at the pixel level, while block-based methods operate at the block-of-pixels level. This

section first describes the pixel-based methods, then discusses the block-based meth-

ods. The pixel-based methods are further divided into pixel classification and spatial

descriptors, depending on how they capture the spatial relationships of colours.

2.1.2.1 Pixel-Based: Pixel Classification

The feature extraction methods which derive spatial relationships using pixel classifica-

tion perform two operations. First, they classify every pixel in the image into different

categories using either one of Vie two following classification criteria. The first clas-

sification criterion is the location of the pixel in the image. The use of this criterion

implies that the image is partitioned into sub-images (regions) and each region con-

stitutes a category. The methods using this criterion are collectively known as region
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partitioning. The second pixel classification criterion is based on the coherency of the

quantised colour a pixel belongs to. The methods using this criterion include colour

coherency vectors and Spectrally Layered Colour Indexing (LCI).

After classifying the pixels into different categories, these methods then extract

features from each category to form the feature vector F = (/i, fa. • • • , / n ) , where fi

is the feature vector for category i. and n is the number of categories; / generally

includes one of the colour distribution methods described earlier. By describing the

colour distribution of each category separately, these methods thus capture the spatial

relationships of colours. The main drawback of these methods is that they are highly

inefficient because the size of their feature vectors is large i.e. n x sizeof(f).

The three methods using pixel classification are described in the following sections.

Region Partitioning

The simplest way to incorporate the spatial relationships of colours is by parti-

tioning an image into sub-images (regions) [130, 138], so each region constitutes one

category. Figure 2.5 shows several methods of partitioning, and each region could be

either overlapping or non-overlapping. For non-overlapping partitioning, a pixel can

only belong to one category whilst for overlapping partitioning, a pixel can belong to

more than one category.

Figure 2.5: Several methods of partitioning an image.

Smith and N.itsev partitioned an image into 16 non-overlapping regioas [130],

thereby creating 16 categories. The feature vector of tin's method is Fregion = (/i , . . . , /i6),

and /,• is the colour histogram, texture and edges of pixels in category i. Strieker and

Dimai partitioned an image into five overlapping regions, and the importance of each

region is indicated by its weight - the region in the centre has the highest weight [138].
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The feature vector of this method is Fres;oni = (/i,. . . , / s ) , and to reduce the size

of feature vector F, they used colour moments for / . Feature vectors of overlapping

regions are relatively more robust when subject to translation, rotation or both than

those of non-overlapping regions. The level of robustness depends on the degree of over-

lapping, and it is most robust with a 100% overlapping; however, such a high degree of

overlapping makes it equivalent to the colour distribution methods.

Colour Coherent Vectors (CCV)

CCV was proposed based on the observation that the spatial relationships of pixels

are either coherent (clustered together) or incoherent (spread far apart) [101]. A pixel

is classified as coherent if it is part of a region, which is a group of similar-coloured

pixels of which the number exceeds a predefined threshold. The number of categories

in CCV is two i.e. coherent and incoherent, and Fccv = (hih)i where f\ is the

histogram for coherent pixels and /2 is the histogram for incoherent pixels.

Spectrally Layered Colour Indexing (LCI)

The two methods described above classify pixels in the spatial domain. Qiu and

Lam proposed LCI, which classifies pixels in the frequency domain [107]. In the spatial

domain, the measurement revolves around the value of a particular pixel at column x

and row y in an image but in the frequency domain, it revolves around the frequency of

pixels in an image. An image is said to have a high frequency if the pixel values change

rapidly and it has a low frequency if the pixel values change slowly, as seen in Fig. 2.6.

(a) (b)

Figure 2.6: The pixel values of image (a) in the vertical direction change more frequently than
that of image (b), so image (a) is said to have a higher frequency than image (b).
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The frequency domain is often used in digital signal processing as it allows one

to perform frequency analysis or to analyse the physical properties of a signal. An

image can be viewed as a series of digital signals where the rate of change of the

signal is indicated by the rate of change of the pixel values; therefore, a high frequency

signal can be associated with a high variation in pixels which may indicate object

boundaries, while a low frequency signal can be associated with a smooth area. By

classifying pixels into different frequencies, LCI effectively separate coherent pixels

from less coherent ones. LCI classifies the pixels into four levels of frequency, so the

feature vector FLCI = (fir" ? h)> where fc is the histogram of colours at frequency

level i.

2.1.2.2 Pixel Based: Spatial Descriptors

All colour spatial feature extraction methods described earlier are based on pixel clas-

sification. As mentioned before, these methods are highly inefficient because the sfoe of

the feature vector F — (/i, • • • , fn) i !>!V1.̂  i-e« n x sizeof(fi), where n is the number

of categories and /» is the feature (it or for category i. Spatial descriptors are much

more efficient because they capture ii« .patial relationships of colours by calculating

numerical values to capture the coherency of colours in the image. The methods which

use spatial descriptors include colour autocorrelogram and MPEG-7 Colour Structure

Descriptor (CSD).

Colour Autocorrelogram

Huang et al. propose using colour autocorrelogram to describe the spatial rela-

tionships of colours in images [49, 48]. Among all feature extraction methods which

incorporate spatial relationships, colour autocorrelogram is the most well known and

is cited more frequently in the CBIR literature than any of the other methods [106,

107, 121, 124, 130, 145]. We found a weakness with autocorrelogram which adversely

affects its retrieval effectiveness, and propose a method to improve its effectiveness, and

to a certain extent, its efficiency. The proposed method is known as I-autocorreiogram
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(I-auto) and will be described in Chapter 4.

MPEG-7 Colour Structure Descriptor (CSD)

The CSD method is defined in the MPEG-7 standard. To capture the spatial

relationships of colours, CSD uses a histogram-like method as follows. An 8x8 pixel

mask visits each pixel in the image at least once and when a particular colour appears in

the mask, the count for the corresponding bin is incremented by one. After incrementing

the count of the corresponding bins within the mask, the mask moves by one pixel. The

spatial relationships of colours are described by the histogram because given the same

number of pixels, coherent colours will have higher histogram count than incoherent,

ones. CSD will be described in more detail in Chapter 4 where it is compared with

I-auto.

2.1.2.3 Block-based: Vector Quantisation (VQ)

The feature extraction methods described above operate at pixel level, while VQ oper-

ates at group of pixels (block) level. The VQ methods are, in principle, most similar to

colour histogram but instead of counting the occurrence of each quantised colour in an

image, it counts the occurrence of each block pattern in an image. The block patterns

are stored in a codebook. The first step in using VQ is, therefore, the generation of

a codebook; an entry in the codebook stores the pattern of a block of pixels and the

spatial relationships of colours are captured within the block. The VQ feature vector

is defined as (hi, • • • , hM), where hi is the histogram count of "k pattern i and M is

the size of the codebook.

The use of VQ for extracting features and retrieving images was first proposed by

Idris and Panchanathan [50] for grey level images, and later, by Teng and Lu, Qiu,

and Zhu for colour images [106, 149, 163]. Zhu treated each entry in the codebook as a

keyblock and extended the spatial relationships of the keyblock to two blocks (bi-block)

and three blocks (tri-block) hoping that the feature vector could capture more spatial

information, and consequently, increase the overall retrieval effectiveness. Surprisingly,
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the use of bi-block and tri-block did not result in increased effectiveness [163].

The main shortcoming of VQ methods is that the codebook is database dependent,

so a codebook must be generated for every image database. Also, a new codebook

needs to be regenerated as new images are added to the database. Apart from being

database dependent, the size of the feature vector based on VQ is large. Zhu reported

that retrieval effectiveness is highly dependent on the quality of the codebook, w* ;ch is

proportional to the number of codewords [163]. Unfortunately, a good quality codebook

requires large number of codewords - the minimum recommended size of a codebook

is 1024 codewords [149]. These two problems (database dependence and large feature

vector size) may make the use of VQ methods for real world applications less practical.

2.2 Texture-Based Methods

Tne previous sections discuss feature extraction methods which extract colour features

from colour images. This section covers methods which extract texture features from

homogeneous texture images.

Texture is hard to define but we often know what it is when we see it: the pattern

of fabrics, barks, grass and sand. It is important to accurately define what texture is

because the definition dictates the type of information to be extracted. Unfortunately,

there is no universally accepted definition for texture except to say that it is the rep-

etition of perceptually similar patterns over a region [98]. The type of information to

be extracted was eventually determined in several 4)sychophysics experiments, and it

includes repetitiveness (periodicity), directionality, granularity, complexity, coarseness,

contrast, busyness and texture strength [34, 39]. A texture descriptor therefore must

capture some, if not all, of these features, and ideally, be rotation and scale invariant.

Extraction of texture features was initially restricted to grey-scale texture images,

and later, some researchers extracted colour texture features from colour texture im-

ages [79, 80, 106]. When colours are involved, the measure of similarity depends on

who makes the judgement. In the textile industry, textile designers consider similar-
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ity of textures to be more important than similarity of colours; on the other hand,

the novice considers similarity of colours is more important [37]. Feature extraction

methods found in the literature include coloured pattern appearance model, fractal

dimensions, Wold model, Gabor filters and wavelet filters [66, 71, 73, 79, 80, 104. 1QG,

117, 118, 151, 155, 160, 163].

Although texture feature extraction is not the focus of this research, in Chapter 8,

we will describe Gabor filters and illustrate how this method can be used to generate

a layout suitable for browsing. The description of texture feature extraction is now

complete, and the next section covers methods which extract shape features from shape

images.

2.3 Shape-Based Methods

Methods which extract shape features normally work on bi-level images, that is, images

which have only black and white pixels, so images which are not already in black and

white require some preprocessing. Shape images can be broadly classified into two

types: contour and region. Contour shapes have no information within the boundary

but region shapes do (see Fig. 2.7). Methods for extracting shape features, similarly,

can be classified into contour and region methods; however, some contour methods are

generic enough and can also be used to extract meaningful features from region shapes.

(a) Contour (b) Region

Figure 2.7: Two types of shapes. Contour shapes have no information within the boundary
but region shapes do.

For contour shapes, Fourier descriptors are most popular. To use Fourier descrip-

tors, it is necessary to first extract the contour shapes' properties, which could be the

position of the boundary from its centroid, distance of the boundary from its centroid,
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chord length, cumulative angular function, curvature signature and area. To achieve

rotational invariance, the extracted properties are then transformed into the frequency

domain using one dimensional discrete Fourier transform (hence, the name Fourier

descriptors):

A r - 1

= jf E «(*)e(-J'2jrt)/jV, n = 0 , 1 , . . . , N - 1 (2.8)
t=o

where u(t) is the value of the measurement sampled at t and N is the number of

samples taken. If the shape is described using distance of boundaries from the centroid,

then u(t) is the distance sampled at t. Traditional Fourier descriptors are sensitive

to affine transformation i.e. transformation where parallel lines remain parallel, but

contemporary Fourier descriptors are insensitive to affine transformation [4, 5j.

Other contour shape descriptors include contour scale space descriptor (CSSD),

anglogram. grid descriptor and generic Fourier descriptor (GFD) [7, 69, 86, 87. 144,

161]. The main disadvantage of CSSD is that it cannot capture shallow concavities

of shapes correctly, and as a result, two shapes with very different concavities are

considered similar. The enhanced CSSD is more sensitive to concavities, and therefore,

can represent the shapes more faithfully [3].

Capturing the information in region shapes, the second type of shape image, is

more complex than that for contour shapes because of the additional region informa-

tion within the boundary. Of all contour shape methods mentioned above, only GFD

and grid descriptor can capture region information [159, 161]. Other region shapes

feature extraction methods include geometric moment descriptor and Zernike moment

descriptor [10, 31, 85, 103, 147].

2.4 Integrated Methods

The previous sections contain a survey of methods which extract colour features from

general colour images, texture features from homogeneous texture images and shape

features from shape images. This section discusses ii^egrated methods, that is methods
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which use combinations of these three features to describe the content of general colour

images.

To use either texture or shape features for CBIR, it is better to segment the images

first because texture features are meaningful only if the texture is homogeneous and

shape features are useful only if the objects have been segmented. Most integrated

methods in the literature automatically segment the images into regions where each

region is a section of the image with uniform colours or textures or both. Others create

the regions by simply partitioning the images [134]. Each region is then described by

its colours, textures, shapes or combinations of these.

"Blobworld" is the first true region-based CBIR, and later, many others were pro-

posed [13. 14. 15, 20, 22, 36, 53, 78, 127, 145, 155]. It was found that the retrieval

effectiveness of region-based CBIR is high only if the image has a distinct object and if

the object can be successfully segmented from the background [14, 124. 163]. Another

problem facing region-based methods is the issue of over segmentation. To address this

problem, Chen [20] and Wang [155] employed fuzzy matching which matches a region in

the query image with multiple regions in another image, but it is unclear how effective

this method is in overcoming the problem because there was no comparative study.

Because the use of either texture or shape features requires image segmentation,

which is inaccurate when automated [124] and time consuming when segmented either

manually or semi-manually, colour-based feature extraction methods remain popular

for generating the feature vectors from general colour images.

extract low level features such as colours, textures and shapes. This chapter reviewed

existing feature extraction methods in the literature.

The texture or shape features extracted from general colour images will be more

meaningful if the images are segmented first, but as automatic image segmentation still

remains an open question, colour features remain popular for describing the content

of general colour images. Because all colour-based methods require a colour space,

the choice of colour space is an important decision. The focus of the next chapter is

to evaluate which colour space is most suitable for colour-based CBIR. Once we have

determined the most suitable colour space, it is appropriate to improve the effectiveness

of colour-based feature extraction methods which incorporate spatial relationships of

colours (Chapter 4).

2.5 Conclusions

In traditional image databases, each image is manually annotated and retrieval is per-

formed by searching the annotation; however, manual annotation is expensive, time

consuming and highly subjective. Content-based image retrieval (CBIR) systems auto-

matically generate feature vectors from the content of images. Because it is impossible

to accurately extract semantic information from images, current CBIR systems only
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Evaluating Suitability of

Different Colour Spaces for

Colour-Based CBIR

Colour is a very distinct feature of images. As discussed in the previous chapter, it is

widely Used for extracting features from general colour images. A colour is described

in at least three coordinates and a collection of all colours in the co-ordinate system is

called ft colour space A plethora of colour spaces exist in the colour science literature

where more than ten been reviewed [32, 33, 38, 125]. The more commonly used ones

for colour-based CBIR include RGB, HSV, LUV and LAB [12, 29, 47, 99, 100, 108,110,

129, 130, 135,142]. Although the choice of colour space is fundamental to any colour-

based feature extraction method, to date, very little research has been undertaken on

evaluating the suitability of colour spaces for colour-based CBIR. The research reported

in this chapter addresses that gap. The purpose of this chapter is to establish which

colour sp a ce is more suitable for colour-based CBIR by using different colour spaces to

extract Colour features and conducting retrieval experiments. This study is important

because it justifies the choice of colour space and provides insights into why some colour

spaces a r e more suitable than others.

Previous work by Tan fit al. [143] and Mathias and Conci [76] on this issue is

incomplete; hence, the findings remain inconclusive. The main problem with their

studies is that they used very small image databases which had only about two hundred

images, So the results could be biased towards a certain colour space. To reduce the

31
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bias, a large database (5,000 or more images of wide varieties) should be used instead.

To further reduce the bias, more than one database should be used whenever possible.

The research in this cliapter reduces the bias by using two databases and each database

has at least 5.000 images.

This cliapter is divided into three main sections. It starts by describing the eval-

uation method and experimental design, then it identifies the characteristics and ex-

perimental parameters of the colour spaces to be evaluated. Finally, it presents the

experimental results and analysis.

3.1 Evaluation Method and Experimental Design

The colour spaces evaluated in this study were RGB, LUV and LAB in Cartesian co-

ordinates, as well as HSV. LUV and LAB in polar co-ordinates. To resolve which colour

space is more suitable for colour-based CBIR. we first generated colour histogram fea-

ture vectors from two image databases using uniform colour quantisation. The distance

between any two feature vectors were calculated using (2.2). the LI dissimilarity. Then,

after performing retrieval experiments, we compared the suitability of the colour spaces

for colour-based CBIR using the evaluation criteria described in Section 3.1.1.

To evaluate the suitability of the colour spaces, one could use any colour-based

feature extraction method as long as the same method is used throughout the experi-

ment. In this study, the uniform colour quantisation histogram method was chosen for

two reasons. First, we could gain more insights by using colour distribution methods

because any differences could then be attributed to the differences of the colour spaces,

and not due to any inaccurate spatial information of the method. Second, among colour

distribution methods, there is no conclusive result which proves that other methods are

much better than the simple uniform quantisation histogram.

The following sections discuss other issues related to the evaluation method such as

the evaluation criteria, image databases and software used for retrieval.

I)

3.1.1 Evaluation Criteria

The suitability of a colour space was established by comparing the retrieval effectiveness

and efficiency of the feature vectors generated in that colour space.

3.1.1.1 Retrieval Effectiveness

The first evaluation criterion was retrieval effectiveness, which was determined using

precision and recall graphs (PR graphs). A PR graph is defined as:

P"Jf'aiRmfR (3.1)

where r is the number of relevant images retrieved, N is the number of images retrieved,

and TR is the total number of relevant images in the database. In evaluating the

effectiveness of two feature extraction methods, the more effective one has a higher

precision value at the same recall value; in the graphs, this curve is further away from

the origin as illustrated in Fig. 3.1. The main purpose of this evaluation criterion was

to establish which colour space, regardless of feature vector sizes, is most effective.

PR Graphs
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Figure 3.1: Comparing two feature extraction methods A and B using PR graphs - A is more
effective than B.
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3.1.1.2 Retrieval Efficiency

The second evaluation criterion was the retrieval efficiency of the colour spaces which

was measured using two methods:

1. by comparing the size of feature vectors at their most effective quantisation in-

tervals; and

2. bj' comparing the effectiveness of feature vectors of similar size.

The first method simply measures the feature vector size i.e. given two feature vectors,

the shorter one is more efficient. In contrast, the second method measures the effec-

tiveness of feature vectors of similar size. Although the second efficiency measurement

compares retrieval effectiveness, it serves a different purpose than the first evaluation

criterion described earlier. The second measurement was necessary because in practice,

due to the issue of efficiency, we may not be able to use the most effective quantisation

option. In order to find the most effective quantisation option at an acceptable feature

vector size, it was essential to compare the effectiveness of the colour spaces quantised

to the same size. More specifically, it was used to find a compromise between retrieval

effectiveness and efficiency.

3.1.2 Image Databases

Most studies in CBIR are restricted to only one image database. Unless there is a

standard database commonly used by most CBIR researchers for evaluating the effec-

tiveness of feature vectors, more than one database should be used to reduce the bias

towards any colour space. Because there is no standard database yet, retrieval experi-

ments should be conducted using more than one database. All retrieval experiments in

this chapter and Chapter 4 were tested on two databases: MPEG-7 Common Colour

Database (CCD) and Proprietary Colour Database (PCD).

CCD is a database compiled by the MPEG-7 committee, and it is used widely

within the MPEG-7 group [72]. It has 5466 images and established ground truths
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making up the 50 Common Colour Queries (CCQ) with defined relevant images. PCD

is a proprietary database of 10,112 images used within our research group, and it also

has established ground truths. There are 32 queries in PCD, and the relevant images for

each query were established from a subject test. In the study, 29 volunteers identified

the relevant images, and these were then divided into four levels of agreement: 20%,

30%, 50% and 70% [148]. If the level of agreement is 20%, then at least 20% of the

participants selected the images as relevant to the query image.

The main difference between CCD and PCD is in how the relevant images were

obtained. In CCD, the relevant images for each query are often generated from a se-

quence of video shots and only images from the same video sequences are considered

relevant. For this reason, the relevant images in CCD have no different levels of agree-

ment. On the other hand, in PCD, the relevant images for each query were established

from a subject test, and because the similarity judgement was subjective, they were

divided into several levels of agreement. In short, the relevant images in PCD are more

subjective compared to those of CCD.

3.1.3 Retrieval Software

A CBIR system is made up of three components: (1) building of feature vectors using

feature extraction methods, (2) ranking of retrieval results using a similarity or dis-

similarity metric and (3) displaying of ranked retrieval results. Research in CBIR is

mostly conducted using a specially written software in which all three components are

rewritten each time; hence, productive time and effort are spent on developing software

irrelevant to research questions. To speed up software development, several researchers

in CBIR produced open frameworks which allow component reuse; for instance, Gun-

ther and Beretta developed BIRDS-I and Miiller et al. developed GIFT [43, 44]. Both

BIRDS-I and GIFT provide the second and third components of a CBIR system i.e.

the ranking and display components, so experimenters only need to build feature vec-

tors and provide a similarity or dissimilarity metric to the ranking component. The

frameworks thus cut down software development time and effort.
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Both GIFT and BIRDS-I run in client and server mode, where the server stores

the feature vectors and performs the retrieval whilst the client queries the server and

displays the ranked retrieval results. GIFT, however, is more flexible because its server

can be installed locally. For this reason, all retrieval experiments in this thesis were

conducted using GIFT. Note that GIFT is only a framework: experimenters must

build the feature vectors, then develop and link the dissimilarity metrics to GIFT as

plug-i)?1} [43, 89. 90, 91, 92, 93]. We, therefore, implemented all the feature extraction

methods and dissimilarity metrics, and linked the dissimilarity metrics to GIFT as

plug-ins.

3.2 The Six Colour Spaces Evaluated

The purpose of this study was to evaluate the suitability of six commonly used colour

spaces for colour-based CBIR: RGB, LUV and LAB in Cartesian co-ordinates, as well

as HSV. LUV and LAB in polar co-ordinates. The following sections describe the char-

acteristics of the six colour spaces (Section 3.2.1) and explain how they were quantised

(Section 3.2.2).

3.2.1 Characteristics of Six Colour Spaces

This section describes the characteristics of the six colour spaces and their relationships

with each other. It is necessary to know their characteristics because the quantisation

parameters of each colour space in Section 3.2.2 depend on the characteristics of the

colour space.

•

H
t i
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3.2.1.2 Characteristics of HSV

RGB is hardware oriented, and can be easily used by monitors but not by humans.

HSV is a user oriented colour space proposed in 1978 [128], and it is more intuitive to

use because the description of colours corresponds to how humans describe colours:

• hue (H) describes the colourness or tint - such as red, green, yellow;

• saturation (S) describes the intensity or colourfulness - less saturated colours are

equivalent to adding white to water colours; and

• brightness (V for value) describes the darkness or brightness.

The shape of the HSV colour space is a hexcone. The H axis is in polar co-ordinates

specified from 0° to 360°, S from 0 to 1, and V from 0 to 1. A cross section of HSV

at V = 1 is the same as viewing the RGB cube from the main diagonal axis from

achromatic white to black (see Fig. 3.2(a) and (b)). A cross section of HSV at V < 1 is

a view of the RGB subcube in the same direction (see Fig. 3.2(c)). When each subcube

is viewed in the same direction, the result is a single-hexcone (see Fig. 3.2(d)).

(a) (W

Figure 3.2: (a) RGB cube and a subcube. (b) RGB cube viewed from achromatic diagonal
when V = 1 (c) when V < 1. (d) Single-hexcone HSV colour model.

3.2.1.1 Characteristics of RGB

The RGB colour space is used in CRT monitors. A colour is described by the values of

Red, Green and Blue. A display device capable of differentiating 256 intervals for each

R, G and B channel has a colour depth of 24 bits and can show about sixteen million

colours.
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Figure 3.3 shows the HSV colour space when taken at V = 0.1 through to 1.

Although the size of the hexagon is smaller as the value of V is smaller, the range for

the value of S is constant. The algorithm for transforming RGB into HSV is given

by [38]:

max = MAXCr.g.b)

min = MIN(r,g,b)

v = max

if max != 0

s = (max-min) / max}

else

s « 0

endif

i f (s « 0)

h = UNDEFINED

return

endif

del*". » max-min

if (r = max)

h " (g-b)/delta

else if (g » max)

h - 2 + (b-r)/delta

else if (b • max)

h - 4 + (r-g)/delta

endif

h *« 60

if (h < 0)

h+= 360

endif
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Figure 3.3: Display of HSV colour space for V=0.1 through to 1.

> i
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3.2.1.3 Characteristics of LUV and LAB in Cartesian Co-ordinates

In 1976, Commission Internationale de l'Eclairage (CIE) introduced LUV and LAB

colour spaces. L specifies the lightness (like V in HSV), while u* and v* as well as a*

and b* are the opponent colour axes: approximately red-green versus yellow-blue, that

is u* versus v* and a* versus b*. In LUV, changes in u* or v* axes result in changes

of hue and chroma. Similarly, in LAB, changes in a* or b* axes result in changes of

hue and chroma. Chroma is similar to saturation in that it defines the intensity or

colourfulness of a colour. However, there is some technical difference between chroma

and saturation. Chroma is the colourfulness of a stimulus "relative to the brightness

of a similarly illuminated white", whereas saturation is "the colourfulness of stimulus

relative to its own brightness" [33]. In this study, this difference is subtle enough to be

ignored because we are not concerned with how chroma or saturation is obtained, but

rather how chroma or saturation is quantised. From this point onward, saturation also

means chroma. More discussion on opponent axes colour theory can be found in [120].

It is important to note that the valid ranges of u* and v* fluctuate as illustrated in

Fig. 3.4, which shows the LUV colour space when L=0.1 through to L=l. Consequently,

the geometrical shape of the LUV colour space is irregular. The implication of this

irregular shape is that during uniform quantisation in Section 3.2.2, some bins will

always be empty.

Figure 3.4: Display of LUV colour snace when L — 0.1 through to 1. Note that the valid
ranges of u* and v* fluctuate, so the g^netrical shape of LUV is irregular.
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Like LUV, the LAB colour space also has irregular geometrical shapes because the

valid ranges of a* and b* also fluctuate (Fig. 3.5 shows the LAB colour space when

L=0.1 through to L=l). So, the implication is similar as in LUV: some bins will always

be empty during uniform quantisation.

Figure 3.5: Display of LAB colour space when L = 0.1 through to 1. The valid ranges of a*
and b* fluctuate, so like LUV, the geometrical shape of LAB is also irregular.

Both LUV and LAB are supposed to be perceptually uniform, that is, if the Eu-

clidean distance between colours c, and Cj is d, and if the Euclidean distance of colours

Cj and Cf. is also d. then Cj and Cj should look as different as c.j and c*. However, it has

been found that this property is true only for small colour differences [120].

3.2.1.4 Characteristics of LUV and LAB in Polar Co-ordinates (pLUV and

pLAB)

The CIE also describes both LUV and LAB in perceptual properties of hue, chroma,

and lightness or darkness by using polar co-ordinates [120, 156]. The transformation

f 1
If
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of LUV into polar co-ordinates is given as:

= tan~l —

2 + v*

= L

(3.2)

(3.3)

(3.4)

where Hw is hue, Cuv is chroma and Luv is lightness or darkness. For convenience,

LUV in the polar co-ordinates from now on will be known as pLUV, where p stands

for polar. Cuv in this co-ordinate system is similar to saturation or S in HSV, and Luv

is similar to the V axis in HSV.

Unlike the transformation of RGB into HSV, where the geometrical shape of the

colour space is transformed from a cube into a single hexcone, the transformation from

LUV into pLUV does not change the geometrical shape of the colour space: both

LUV and pLUV have the same geometrical shape. This is because (3.2) and (3.3) is a

transformation in R2 from Cartesian co-ordinates into polar co-ordinates, which does

not change the positions of the points being transformed. As an illustration, a simple

example involving a transformation of point p in R2 from the Cartesian co-ordinates

into the polar co-ordinates is given in Fig. 3.6. Because Cuv is directly derived from u*

and u*, for which valid values fluctuate, valid ranges of Cuv also fluctuate. So, during

uniform quantisation, some bins will always be empty.

Figure 3.6: Transforming point p from the Cartesian co-ordinates (x, y) into polar co-ordinates
(r,0). Although the values of p's polar co-ordinates are different from those of the Cartesian, p
remains at the same physical location.

The description of LAB in the perceptual properties of hue, chroma, and lightness,

similarly, only requires a transformation from Cartesian co-ordinates into polar co-
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ordinates [120, 156]:

Hah =

= Va*2 + b*2

Lab = L

(3.5)

(3-6)

(3.7)

For convenience, LAB in the polar co-ordinates from now on will be known as pLAB,

where p stands for polar. In this transformation, the geometrical shape of pLAB re-

mains the same as in LAB for the same reason as in pLUV. Similar to Cuv, Cab is directly

derived from a* and 6*. and the valid ranges for both a* and b* fluctuate; consequently,

the valid ranges for Cab also fluctuate. This means during uniform quantisation some

bins will always be empty.

The description of the colour spaces is now complete and the next section explains

how they were quantised.

3.2.2 Parameters for Colour Space Quantisations

To perform uniform quantisation, each axis in a colour space is quantised into uniform

intervals, and this results in grouping the colours into bins. To illustrate this process.

Fig. 3.7 on the following page shows the quantisation of RGB where each axis is quan-

tised into four intervals. With uniform quantisation for all colour spaces, it is hoped

that perceptually similar colours are quantised into the same bin, and perceptually

different colours are quantised into different bins. These two conditions ensure that

each bin contains only perceptually similar colours, and the colours in each bin are

visually distinct from other bins. The effectiveness of a colour-based CBIR system is

strongly influenced by how well these two conditions are adhered to. In this study,

these two conditions are useful for explaining why some colour spaces are more suitable

for colour-based CBIR than others.

The number of quantisation intervals for each axis depends on the importance of an

axis, which in turn, relies on the nature of the axis. Hue is the most important property
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binl bin2

Figure 3.7: Uniform quantisation in RGB when each axis is quantised into four intervals.
Each bin contains a group of colours.

of a colour because changes in hue have more effect on the perception of colours than

changes in saturation or luminance; for example, peoph with normal colour vision

would agree that yellow and blue are more different compared with yellow and light

yellow. For this reason, the axis that controls hue is considered most important, and

it should be quantised more finely than the axis that controls saturation or luminance.

Besides this, saturation and luminance are easily affected by lights or shadows. To

reduce this effect, they should be quantised more coarsely than hue.

The upper bound on the number of quantisation intervals for each axis was de-

termined by slowly incrementing the number of quantisation intervals until there was

no further noticeable difference in retrieval effectiveness. This method makes it possi-

ble to observe the effect of quantisation on each axis and to obtain the most effective

quantisation option for each colour space.

3.2.2.1 Colour Space Quantisations in Cartesian Co-ordinates

Quantisation Parameters for RGB

In RGB, all three axes control the hues of colours. As a result, all axes are equally

important, so they were quantised into the same number of intervals. The axes were

quantised ranging from four intervals for each R, G and B axis to 28 intervals (from

RGB 4 x 4 x 4 to RGB 28 x 28 x 28) with an increment of two. four or eight numbers

of intervals, which gives a total of 64 to 21952 bins.
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Quantisation Parameters for LUV

In LUV, L controls the luminance of colours while both u* and v* control the hue

and saturation. The separation of luminance makes it possible to quantise luminance

independently of hue and saturation. It was mentioned earlier that changes in hue have

the largest effect on the perception of colours, and it should be quantised more finely.

Thus, both u* and v* were quantised more finely than L. L was quantised into three

intervals, while u* and v* were quantised from four to 40 intervals (from LUV 3 x 4 x 4

to LUV 3 x 40 x 40) with an increment of four or eight numbers of intervals, giving

a total of 48 to 4800 bins. As mentioned earlier, the geometrical shape of LUV is

irregular; hence, some bins will always be empty. Out of 48 bins, for example, only

36 bins are effective because 12 bins are always empty, and out of 4800 bins only 2167

bins are effective.

Furthermore, to study the effect of quantisation on the L axis, L was quantised

into two, three, four and five intervals, while u* and v* were quantised into 20 intervals

(LUV 2 x 20 x 20 to LUV 5 x 20 x 20). This approach keeps the number of PR graphs

to a minimum without risking the quality of this study.

Quantisation Parameters for LAB

In LAB, L controls the luminance of colours while both a* and b* control the hue

and saturation of colours. For the same reason as in LUV, L was quantised more

coarsely than a* and b*. L was quantised into three intervals while a* and 6* were

quantised from four to 40 intervals (from LAB 3 x 4 x 4 to LAB 3 x 40 x 40) with an

increment of four or eight numbers of intervals, which results in a total of 48 to 4800

bins. Recall that the geometrical shape LAB is irregular; hence, t>rae bins will always

be empty. So, out of 48 bins, only 39 bins are effective because 9 bins are always empty,

and out of 4800 bins only 2410 bins are effective.

In addition, to study the effect of quantisation on the L axis, by using the same

approach as in LUV, L was quantised into two. three, four and five intervals, while a*

and 6* were quantised into 20 intervals (from LAB 2 x 20 x 20 to LAB 5 x 20 x 20).
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This keeps the number of PR graphs to a minimum without affecting the quality of the

study.

3.2.2.2 Colour Space Quantisations in Polar Co-ordinates

Quantisation Parameters for HSV

As described in Section 3.2.1.2, each axis in HSV describes a different aspect of a

colour. V controls the luminance, and in this regard is similar to L in LUV or LAB.

However, unlike LUV or LAB, hue and saturation are described in two independent

axes: H for hue and S for saturation. H was quantised from nine to 30 intervals with

an increment of three or six numbers of intervals, while S and V were quantised into

three intervals (from HSV 9 x 3 x 3 to HSV 30 x 3 x 3), giving a total of 81 to 270

bins. To study the effect of quantisation on the S and V axes, they were quantised

into two. three, four and five intervals, and H was quantised into 18 intervals (from

HSV 18 x 2 x 2 to HSV 18 x 5 x 5).

Quartisation Parameters for pLUV

For the same reason as in HSV, Huv was quantised into more number of intervals

than Cuv (chroma) and Luv (luminance). Huv was quantised from nine to 30 intervals

with an increment of three or six numbers of intervals, while Cuv and Luv were quantised

into three intervals (from pLUV 9 x 3 x 3 to pLUV 30 x 3 x 3), giving a total of 81 to 270

bins. As mentioned before, the valid ranges of Cuv vary; therefore, some bins are always

empty. Out of 81 bins, only 59 bins are effective because 22 bins are always empty, and

out of 270 bins, only 175 bins are effective. Although the geometrical shapes of pLUV

and LUV are the same, two of the three axes which control the quantisation process

differ: in LUV, it is controlled by u* and v* axes whilst in pLUV, it is controlled by

Cuv and HUv axes. To illustrate this difference, Fig. 3.8 on the following page shows a

slice of LUV at L = 0.7 and pLUV at Lw = 0.7 when quantised uniformly (note that

Luv = L).
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(a) LUV (b) pLUV
Figure 3.8: A visual description of the quantisation process in LUV and pLUV at L-0.7 (note
that Luv = L).

To study the effect of quantisation on Cuv and Luv axes, they were quantised into

two, three, four and five intervals, and Huv was quantised into 18 intervals (pLUV 18 x

2 x 2 to pLUV 18 x 5 x 5). As mentioned earlier, the valid ranges of Cuv vary; hence,

quantising the saturation axis (Cuv) in pLUV into three intervals is actually coarser

than that (5) for HSV: the geometrical shape of LUV in Fig. 3.4 reveals more colours

are quantised into lower values of Cuv than for higher values of Cuv. This suggests

that pLUV 1 8 x 3 x 3 may be less effective than HSV 18 x 3 x 3. If this is true,

then increasing the number of quantisation intervals of Cuv may also increase retrieval

effectiveness. For this reason, we were interested to see the effect of quantisation on

Cuv, so it was also quantised from five to 11 intervals with an increment of two number

of intervals, while fixing Huv at 18 intervals and Luv at three intervals (pLUV 18 x 5 x 3

topLUVl8 x 11 x3) .

Quantisation Parameters for pLAB

For the same reason as in HSV and pLUV, Hab was quantised into finer intervals

than Cab (saturation) and Lab (luminance). Hab was quantised from nine intervals to

30 intervals with an increment of three or six numbers of intervals, while Cab and Lab

were quantised into three intervals (from pLAB9 x 3 x 3 to pLAB30 x 3 x 3). giving

a total of 81 to 270 bins. Because the valid ranges of Cab vary, some bins are always

empty. Out of 81 bins, only 64 bins are effective because 17 bins are always empty, and

out of 270 bins, only 193 bins are effective.

I ;
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Like pLUV and for the same reason, Cab and Lab axes were also quantised into two,

three, four and five intervals; and Hab was quantised into 18 intervals (from pLAB 18 x

2 x 2 to pLAB 18 x 5 x 5). Also, quantising the saturation axis (Cab) in pLAB into

three intervals is coarser than that (S) for HSV. Therefore, Cab was quantised from

five to 11 intervals with an increment of two number of intervals, while fixing Hab at

18 intervals and Lab at three intervals (from pLAB 18 x 5 x 3 to pLAB 18 x 11 x 3).

3.3 Results and Discussion

To evaluate the suitability of colour spaces for colour-based CBIR, we first generated

colour histogram feature vectors from two image databases (CCD and PCD) using

uniform colour quantisation. In total, twelve sets of feature vectors were built using

six colour spaces, one set of feature vectors for each colour space in each database.

We then conducted retrieval experiments in each database using GIFT, and calculated

the distance of two feature vectors with (2.2), the LI dissimilarity metric. All queries

have predefined relevant images: 50 query images for CCD and 32 query images for

PCD. The PR graphs for a database presented here (please see Section 3.1.1.1 for the

definition of a PR graph) were generated by averaging the PR graplis from the queries

in that database; that is. a PR graph in CCD is the average of 50 PR graphs and

a PR graph in PCD is the average of 32 PR graplis. In PCD, because the relevant

images were divided into four levels of agreement, the PR graplis for PCD were also

divided into four levels of agreement i.e. PCD 20%, PCD 30%, PCD 50% and PCD

70%. Finally, we analysed the results using the two evaluation criteria described in

Section 3.1.1, that is retrieval effectiveness and retrieval efficiency.

3.3.1 Retrieval Effectiveness

We first analysed the retrieval effectiveness, regardless of retrieval efficiency, of each

colour space starting from those in Cartesian co-ordinates followed by those in polar

co-ordinates, then compared the effectiveness of all six colour spaces.
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3.3.1.1 Effectiveness of Each Colour Space in Cartesian Co-ordinates

Figure 3.9 on the following page shows the PR. graphs for CCD and PCD 20%. For

LUV and LAB. the number of quantisation intervals of u* and v*. as well as a* and b*

varies, but the number of quantisation intervals of L axes for LUV and LAB are fixed

at three. Figure 3.10 on the following page shows the PR graphs of LUV and LAB

when the numbers of quantisation intervals of the L axes for LUV and LAB vary. For

PCD. as the trend for all levels of agreement is similar, only the graplis from the 20%

level of agreement are presented. The graplis for all levels of agreement can be found

in Appendix B.I.

Effectiveness of RGB

As shown in Fig. 3.9 on the following page, it is clear that the effectiveness of RGB

increases in proportion to the number of quantisation intervals, with RGB 4 x 4 x 4

being the worst. It was mentioned earlier that retrieval effectiveness depends on whether

perceptually similar colours are quantised into the same bin, and perceptually different

colours are quantised into different bins; therefore, the retrieval trend can be explained

by observing the colours in each bin from RGB 4 x 4 x 4 . In RGB, we found that

perceptually different colours are quantised into the same bin; for example, bin 21 in

Fig. 3.11 (a) on the following page has orange, yellow, green, cyan, blue, purple and

red. As the number of quantisation intervals increases, fewer bins have perceptually

different colours; therefore, the effectiveness increases. However, up to a certain number

of quantisation intervals (RGB 16 x 16 x 16), no meaningful improvement is observed.

In fact, at RGB 28 x 28 x 28. the effectiveness starts declining. We suspect this is

because perceptually similar colours are quantised into different bins.

Effectiveness of LUV

From Fig. 3.9 on the following page, we can see that the effectiveness of LUV 3x4x4

is the worst. Up to a certain number of quantisation intervals, retrieval effectiveness

increases as the number of quantisation intervals increases. This happened for the same
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Figure 3.9: Performance of RGB, LUV and LAD colour spaces at different quantisation optioas
in CCD and PCD.
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Figure 3.10: Performance of LUV and LAB colour spaces in CCD and PCD when the number
of quantisation intervals of T<uv and Lab varies.

reason as in RGB; that is. some bins have perceptually different colours. An example

of this is given in bin 38 of LUV3 x 4 x 4 (see Fig. 3.11(b) on the following page). As

the number of quantisation intervals increases, fewer bins have perceptually different

colours; therefore, the effectiveness increases. At very fine quantisation, perceptually

similar colours are quantised into different bins and the effectiveness decreases: the

effectiveness starts declining at LUV 3 x 40 x 40. Thus, the finding for RGB is also

true for LUV in that higher effectiveness can be gained by having finer quantisation

but only up to a certain number of quantisation intervals.

From Fig. 3.10, it appears that quantising L finer than three intervals has little

impact on retrieval effectiveness. In CCD. incrementing the number of quantisation in-

tervals of L from two to three results in a noticeable increase in retrieval effectiveness,

i i
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(a) RGB 4 x 4 x 4 bin 21 (b) LUV3 x 4 x 4 bin 38 (c) LAB3x 4 x 4 bin 41.

Figure 3.11: Perceptually different colours are quantised into the same bin.

and the effect of quantising L beyond three intervals is negligible. This observation

confirms the statement made at the start of Section 3.2.2 that luminance only needs to

be quantised coarsely. It also appears that quantising L at three intervals is optimum.

Upon reaching the optimum number of quantisation intervals for L, to achieve more

effective retrieval, we must increase the number of quantisation intervals of u* and v*

axes. Hence, to achieve higher effectiveness than LUV 3 x 20 x 20, instead of incre-

menting L, we incremented n* and v* from 20 to 36 intervals (from LUV 3 x 20 x 20

to LUV 3 x 36 x 36). As shown in Fig. 3.10, in CCD, LUV 3 x 36 x 36 is more effective

than LUV 3 x 20 x 20 and LUV 5 x 20 x 20. From Fig. 3.10, in PCD 20%, we can also

see LUV 3 x 36 x 36 is most effective. To sum up, the retrieval results of LUV in CCD

and PCD establish that L should be quantised coarsely, and the optimum number of

quantisation intervals for L is three.

Effectiveness of LAB

As shown in Fig. 3.9, the finding for RGB and LUV colour spaces is also true for

LAB. that higher effectiveness can be gained from having finer quantisation, but only

up to a certain number of quantisation intervals. For the same reasons as in RGB and

LUV, this is because some bins have perceptually different colours. An example of this

can be found in bin 41 of LUV 3 x 4 x 4 (see Fig. 3.11(c)). As the number of quanti-

sation intervals increases, fewer bins have perceptually different colours; therefore, the
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effectiveness inc •••••••>. However, up to a certain number of quantisation intervals, the

effectiveness declineb , ^ the same reason as in RGB and LUV: the effectiveness starts

declining at LAB 3 x 40 x 40.

With reference to Fig. 3.10. the most effective quantisation option for LAB in

CCD is the same as those for LUV in CCD, that is 3 x 36 x 36 is most effective.

Likewise, it appears that quantising L at three interval? is optimum. To achieve better

retrieval effectiveness, we must further quantise a* and b* when reaching the optimum

quantisation of L. For PCD in Fig. 3.10, the most effective quantisation option is the

same as those for LUV in PCD, that is 3 x 36 x 36 is most effective. In summary, the

retrieval results of LAB in CCD and PCD suggest that L should be quantised coarsely,

and the optimum number of quantisation intervals for L is three.

3.3.1.2 Effectiveness of Each Colour Space in Polar Co-ordinates

Figure 3.12 to 3.14 on the following pages show the PR graphs for the three colour spaces

in polar co-ordinates HSV, pLUV and pLAB, where only the number of quantisation

intervals in hue varies, and later, when the number of quantisation intervals in hue

v/as fixed, whilst the numbers of quantisation intervals in other axes vary. The graphs

show that increasing the number of quantisation intervals for saturation and brightness

increases the effectiveness of all colour spaces. The trend is similar in all levels of

agreement in PCD, and the complete results for PCD can be found in Appendix B.2

(Fig. B.4 and B.5).

Effectiveness of HSV

From Fig. 3.12(a) on the following page, we can see that HSV 24 x 3 x 3 is most

effective, and the gain in effectiveness from 9 x 3 x 3 to 18 x 3 x 3 is most noticeable. In

this respect, HSV is less sensitive to the number of quantisation intervals, and therefore

more robust. As shown in Fig. 3.12(b), increasing the number of quantisation intervals

of S or V increases retrieval effectiveness, and the increase is most noticeable when

changing the number of quantisation intervals of S and V from two to three.

J
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(b) Varying the number of quantisation intervals of S and V

Figure 3.12: Performance of HSV quantised at different number of intervals for H, S and V
in CCD and PCD.

Effectiveness of pLUV

\t can be seen from Fig 3.13(a) on the following page that pLUV at 9 x 3 x 3 is least

effective, and increasing the number of quantisation intervals results in higher effective-

ness. Increasing the number of quantisation intervals for hue affects the effectiveness

of pLUV more significantly than that of HSV. From Fig. 3.13(b), it is obvious that

increasing the number of quantisation intervals of Cuv and Luv also increases retrieval

effectiveness; for example, pLUV 18 x 5 x 5 is more effective than pLUV 1 8 x 3 x 3 .

Likewise, increasing the number of quantisation intervals of Cuv from three to five (from

pLUV 18 x 3 x 3 to pLUV 18 x 5 x 3) also increases retrieval effectiveness.

I
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Figure 3.13: Performance of pLUV quantised at different number of intervals for Hu C
and Luv, or only Cuv in CCD and PCD. ' "V

The analysis on pLUV in Section 3.2.2.2 suggests that quantising saturation into

three intervals for pLUV results in coarser quantisation than that for HSV; as a result,

pLUV 18 x 3 x 3 is less effective than HSV 18 x 3 x 3 (see Fig. 3.13(a)). So, quantising Cuv

into greater number of intervals may increase retrieval effectiveness. The PR graplis

from Fig. 3.13(b) show that increasing the number of quantisation intervals of Cuv

when fixing the number of quantisation intervals of Luv at three results in increasing

pLUV's effectiveness: the effectiveness of pLUVlS x 11 x 3 is very close to that of

HSV 1 8 x 3 x 3 . This result seems to support the analysis made earlier.

Because pLUV30 x 3 x 3 is more effective than pLUV 18 x 3 x 3, it was interesting

to see if finer quantisation of Cw and Luv, or Cuv only when Hm is quantised at 30 in-

1:1
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tervals, is better than when Huv is quantised into 18 intervals. To answer this question.

Huv was quantised into 30 intervals, and the same number of quantisation intervals of

Cuv and Luv when Huv was quantised into 18 intervals were applied. To recap, Cuv

and Luv were quantised into two, three, four and five intervals (from pLUV 30 x 2 x 2

to pLUV 30 x 5 x 5) and Cuv was quantised into five, seven, nine and 11 intervals (from

pLUV30 x 5 x 3 to pLUV30 x 11 x 3). The complete results can be found in Fig. B.6

of Appendix B.2.

For CCD, there are several quantisation options which are most effective and

pLUV30 x 11 x 3 is one of them; for PCD, the most effective one is pLUV30 x 11 x 3.

Because pLUV30 x 11 x 3 is at least as effective as others, it was chosen for further

comparison. So, pLUV30 x 11 x 3 was compared with pLUV18 x x x x as shown

in Fig 3.13(b). It seems that pLUV30 x 11 x 3 is only slightly more effective than

pLUV 18 x 11 x 3, which is the most effective quantisation option when / / was quan-

tised into 18 intervals. This means there is an optimum quantisation option, and using

much finer quantisation intervals does not guarantee much higher effectiveness. This

observation is consistent with the one made earlier for HSV and the colour spaces in

Cartesian co-ordinates.

Effectiveness of pLAB

From Fig. 3.14(a) on the following page, it can be seen that like HSV and pLUV,

pLAB 9 x 3 x 3 is least effective. As the number of quantisation intervals increases, the

effectiveness increases as well. Changing the number of quantisation intervals affects

the effectiveness of pLAB more than HSV. From Fig. 3.14(b), it is clear that like pLUV,

increasing the number of quantisation intervals of Cab and Lab also increase the retrieval

effectiveness.

Like pLUV, the analysis on pLAB in Section 3.2.2.2 suggests that quantising satu-

ration into three intervals for pLAB results in coarser quantisation than that for HSV,

so pLAB18 x 3 x 3 is less effective than HSV 18 x 3 x 3 (see Fig. 3.14(a)). We rec-

ommended that increasing the number of quantisation intervals of Cab when fixing the
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Figure 3.14: Performance of pLAB quantised at different number of intervals for H „ C u
and L^, or only Cab in CCD and PCD.

number of quantisation intervals of Lab at three may improve retrieval effectiveness.

The PR graphs in Fig. 3.14(b) show that the effectiveness of pLAB 18 x 11 x 3 is now

very close to that of HSV18 x 3 x 3. The result appears to support the analysis made

earlier.

Similarly, like pLUV. the quantisation option 30 x 3 x 3 is more effective than

18 x 3 x 3. To find out if finer quantisation of Cab and Lab axes, or only the Cab

axis will increase the effectiveness, the Cab and Z-a6 axes were quantised finer. The .

same approach used in pLUV was also used here; that is Cab and Lab were quantised

into two, three, four and five intervals (from pLAB30 x 2 x 2 to pLAB30 x 5 x 5)

and C was quantised into five, seven, nine and 11 intervals (from pLAB30 x 3 x 3 to

•I

§3.3 Results and Discussion 57

pLAB30 x 11 x 3). The complete results can be found in Fig. B.6 of Appendix B.2.

For CCD. there are several quantisation options which are most effective, and

pLAB30 x 11 x 3 is one of them; for PCD, the most effective one is pLAB30 x 11 x 3.

For this reason, pLAB 30 x 11 x 3 was chosen because it is at least as effective as others.

So, pLAB30 x 11 x 3 was compared with pLAB 18 x x x x as given in Fig 3.14. It

appears that for CCD, pLAB 30 x 11 x 3 is only as effective as pLAB 18 X 11 x 3, the

most effective quantisation option when H was quantised into 18 intervals. For PCD,

it is slightly more effective than pLAB 18 x 11 x 3 at recall value of 0.1. This obser-

vation is consistent with the observation made in other colour spaces that much finer

quantisation does not always guarantee higher effectiveness.

3.3.1.3 Comparing Retrieval Effectiveness of Six Colour Spaces

The previous sections showed the analysis on retrieval effectiveness of each colour space,

whereas this section contains the comparison of retrieval effectiveness of all colour

spaces. Figure 3.15 on the following page shows the PR graphs for each colour space at

their most effective quantisation options. It can be seen that the retrieval effectiveness

for the colour spaces are quite similar, and that only the difference between the best and

the worst colour spaces is noticeable. It appears that with the appropriate quantisation

options, the effectiveness of all colour spaces are reasonably close. The trend for PCD

is the same for all levels of agreement, so only the results for PCD 20% is presented

here. The complete results for PCD are given in Appendix B.3.

Discussion and Analysis

From the PR graphs, it is clear that for the CCD images, HSV is the most effective

colour space followed closely by LUV and LAB, and lastly, pLUV, pLAB and RGB.

For PCD 20%, RGB and HSV are equally effective, followed closely by LUV and LAB,

and finally pLUV and pLAB. It is only at PCD 70% that HSV is more effective than

RGB (see Appendix B.3). With RGB, although it is impossible to quantise either hue,

brightness, or saturation independently, it is still effective with very high number of
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Figure 3.15: PR graphs of RGB, LUV, LAB, HSV, pLUV and pLAB colour spaces at the
highest effectiveness in CCD and PCD.

quantisation intervals: RGB 16 x 16 x 16 at 4096 bins.

Recent studies find that LAB is more uniform than LUV. even recommending LUV

not be used at all [33]. Any differences between the two colour spaces appear to have

no meaningful impact on the effectiveness of colour-based CBIR.. This is because both

LUV and LAB were created for a very different application in mind. In colour re-

lated industries, small colour differences are important, whereas in colour-based CBIR,

small colour differences are much less important and colours with small differences are

considered the same.

This completes the analysis on the effectiveness of the colour spaces, and we con-

clude that HSV is, overall, most effective because it is at least as effective as other colour

spaces. The next section evaluates the efficiency of the colour spaces for colour-based

CBIR.

§3.3 Results and Discussion 59

3.3.2.1 Method one: comparing the size of feature vectors

The quantisation options given in Fig. 3.15 in the previous section (Section 3.3.1.3)

have the most similar retrieval effectiveness, and therefore, they were used for this

comparison. As mentioned earlier, given two feature vectors, the one having fewer

number of bins is considered more efficient.

Discussion and Analysis

Table 3.1 lists the number of bins for each colour space, sorted in ascending order

of number of bins. It is clear that HSV is most efficient given that it has the least

number of bins at 450, followed by pLUV at 525. pLAB at 560, LUV at 1759, LAB at

1950, and lastly, RGB at 4096. HSV, in addition to being the most efficient, is also

the most effective one. In PCD, the effectiveness of HSV and RGB are very similar,

but the size of the RGB feature vector is nearly ten tunes that of HSV. In other words.

HSV is nearly ten times more efficient than RGB.

Colour spaces and their number of quantisation intervals
HSV 1 8 x 5 x 5

pLUV30x 1 1 x 3

• pLAB30x 11 x 3
LUV 3 x 36x36

• LAB 3 x 36 x 36
RGB 16 x 16 x 16

no. of bins

450
525
560

1759

1950

4096

Table 3.1: Evaluating the efficiency of the colour spaces by comparing the number of bins
of the colour spaces at their most effective quantisation options. M number of effective bins as
some bins are always empty (see Sections 3.2.2.1 or 3.2.2.2 for the definition of effective bins).

3.3.2 Retrieval Efficiency

As mentioned before, there are two methods for evaluating the efficiency of the colour

spaces: (1) by comparing the size of feature vectors with most similar effectiveness and

(2) by comparing the effectiveness of feature vectors with similar size. The evaluations

using these two methods are discussed as follows.

3.3.2.2 Method two: comparing the effectiveness

The purpose of this comparison is to find a compromise between effectiveness and

efficiency. Figure 3.16 on the following page shows the PR graphs of the six colour

spaces quantised so that they have about the same number of bins as HSV 18x3x3 (162

bins) - the complete results for PCD can be found hi Appendix B.4. The quantisation

at 18 x 3 x 3 intervals is not the best quantisation option for HSV, but it, was chosen
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as a trade off between effectiveness and efficiency. For RGB. the quantisation option

closest to 162 bins was chosen, that is RGB 6 X 6 x 6 at 216 bins. For LUV, LAB,

pLUV and pLAB, the quantisation options with the number of effective bins closest

to 162 were chosen (see Sections 3.2.2.1 or 3.2.2.2 for the definition of effective bin).

LUV 3 x 10 x 10 has 170 effective bins, LAB 3 x 9 x 9 has 157 effective bins, pLUV

18 x 5 x 3 has 164 effective bins, and pLAB 18 x 5 x 3 has 177 effective bins.

CCD Same Size

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

PCD 20% Same Size

(— RGB666
" X - LUV 3 1010
—JK-LAB399
••-+.3— HSV 18 3 3
— • — pLUV1853

0 0.1 0.2 0.3 04 0.5 0.6 07 08 09 1
R«Ca»

1

0.9

o.e

0.7

o.a

0.5

0.4

0.3

0-2

0.1

0

— t— RGB666
— M - - LUV 3 1010
• M LA839e
-fi> HSV 16 3 3

— • » - JH.UV18 53
pLAB185j

01 0.2 03 0.4 0.5 0.3 07 0.8 09 1
Racal

Figure 3.16: Effectiveness of RGB, LUV, LAB. HSV, pLUV and pLAB colour spaces having
similar number of bins in CCD and PCD.

Discussion and Analysis

In CCD, it is clear that for the same number of bins, HSV is the most effective,

followed by pLUV, pLAB, RGB then LUV, and lastly, LAB. In PCD, HSV and RGB

are most effective at 20%, 30% and 50% levels of agreement; it is only at PCD 70%

that HSV is clearly more effective than RGB (see Appendix B.4). Surprisingly, pLUV

and pLAB were found to be now less effective than RGB. It appears that RGB is more

effective in PCD than in CCD. This could be because PCD is a more subjective database

than CCD. and some images which have different colours are considered similar. These

different colours then happened to be quantised into the same bin in RGB. Tins would

also explain why only in the 70% level of agreement that HSV clearly outperforms

RGB. At the 70% level of agreement, only images which are visually very similar have

been chosen to be relevant. These images are often the rotation or translation of their

original, and therefore they have very similar colours. This is why HSV is clearly far
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more effective than RGB in PCD 70%. For the same reason, pLUV and pLAB are

more effective than RGB in PCD 70%.

Note that for ftbout the same number of bins, pLUV and pLAB are more effective

than LUV and LAB. This is because colour quantisation in polar co-ordinates is more

efficient: H, the axis which contributes more to colour differences perceptually was

quantised into finer intervals independent of other axes. In their Cartesian co-ordinates,

both hue and saturation are controlled by a* and b* as well as u* and v*. so to achieve

fine quantisation of hue both axes were quantised finely.

The literature in colour sciences [33, 120. 156] describes LUV, LAB, pLUV and

pLAB as perceptually uniform colour spaces, so in comparison with HSV, why do they

require higher number of quantisation intervals? For LUV and LAB, the reason is

because the opponent colour axes (it* and v*, as well as a* and 6*) control both the

hue and the saturation of a colour; consequently, it is impossible to quantise hue more

finely without quantising saturation. Unless they are quantised verv finely, perceptually

different colours will be quantised into the same bin as demonstrated in Fig. 3.11. For

pLUV, the separation of hue from the saturation axis has made it much more efficient

than LUV but, it is still less efficient than HSV.

To explain why pLUV is lass efficient than HSV, we observed the visual differences

between these two colour spaces (see Fig. 3.3 for HSV and Fig. 3.4 for pLUV; note that

LUV and pLUV have the same geometrical shape). One noticeable difference between

both colour spaces is the arrangement of hue and saturation. For HSV when V = 1

(brightest), the colours forming the complete spectrum of hue from yellow, green, blue

and so on are clearly visible. In addition, the complete range of saturation for different

hues is visible when the value of V is high enough; for example, we can see the complete

range of saturation for blue when V = 1. For pLUV when L = 1.0, hardly any colours

are visible. When L — 0.9, more colours are visible but only colours perceived as

bright are visible, and as L decreases, darker colours are visible. As an example, fully

saturated blue which is perceived to be darker than fully saturated yellow is only visible

at lower values of L. Also, we fail to see the complete range of saturation for different
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hues at any value of L; for example, less saturated blue is only visible at higher values of

L and fully saturated blue is only visible at lower values of L. In summary. pLUV does

not show the complete spectrum of hue and saturation for a given value of L. It could

be these differences of colour arrangement which cause pLUV to be less efficient. It

seems that HSV arrangement of hue and saturation are more suitable for colour-based

CBIR. The same observation with pLUV can also be seen in pLAB, so this would also

explain why pLAB is. relatively, less efficient than HSV.

From the above analysis, we conclude that HSV is, overall the most efficient colour

space for colour-based CBIR. We. however, do not conclude that LUV, LAB. pLUV

and pLAB are less useful than HSV. brt only suggest that they may be more suitable

for other applications.

3.4 Conclusions

This chapter resolved which colour space is most suitable for colour-based CBIR by

conducting retrieval experiments and by comparing the effectiveness and efficiency of

six colour spaces: RGB, LUV and LAB in Carwjian co-ordinates, as well as HSV, LUV

and LAB in polar co-ordinates (pLUV and pLAB). This study also provides insights

into why some colour spaces are more suitable than others, and concludes with the

following main findings.

With the appropriate number of quantisation intervals, there is little variation be-

tween the effectiveness of one colour space over the next best effective one, so only the

difference between the most and least effective colour spaces is noticeable. It means

that while it is difficult to rank the effectiveness of each colour space individually, it is

possible to identify the more effective ones. In both CCD and PCD. HSV is at least

as effective as all the other colour spaces; therefore, it is. overall, more effective. In

practice, it may not always be possible to use the best quantisation option because

of the efficiency issue. For this reason, it is necessary to find a compromise between

effectiveness and efficiency. The recommended colour space for colour-based CBIR, if
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efficiency is an issue, is HSV at the quantisation intervals of 18 x 3 x 3 as the best

compromise between effectiveness and efficiency. This study finds that HSV is, overall,

most suitable for colour-based CBIR because it is at least as effective as and more

efficient than any of the other colour spaces.

By analysing the results from this study, we found that colour space quantisation in

polar co-ordinates is more efficient than in Cartesian co-ordinates because it is possible

to quantise hue. the most important axis, independently of other axes. The quantisation

of hue in Cartesian co-ordinates requires at least two axes: u* and v* in LUV, a* and

b* in LAB, and all three axes in RGB. In addition, an investigation of the results also

suggested that among the polar coordinate colour spaces, pLUV and pLAB are different

from HSV in terms of saturation axis quantisation. The saturation axis in pLUV and

pLAB needs to be quantised into finer intervals than that for HSV because the valid

ranges for pLUV and pLAB are variable, whereas the valid range for HSV is constant.

Further analysis on LAB and LUV suggested that any difference between LAB and

LUV has negligible impact in colour-based CBIR despite recent studies in colour science

which favour LAB and suggest that LUV should not be used at all. This is because the

colour science focuses on small colour differences, whereas colour-based CBIR focuses

on large colour differences for reasons of effectiveness and efficiency.

Having resolved that HSV is the most suitable colour space for colour-based CBIR,

we now can move forward to improving the effectiveness of colour-based CBIR. As

mentioned in the previous chapter, the main problem of basic colour-based CBIR is

that they ignore the richness of information provided in the spatial relationships of

colours. In fact, the shape and texture features found in an image are provided by these

relationships. Unfortunately, the use of these two features requires image segmentation

which, to date, is inaccurate when automated and is time consuming when segmented

either manually or semi-manually. By incorporating spatial relationships into colour-

based feature vectors, we can still harness the richness of the spatial information without

performing image segmentation. The next chapter focuses on colour-based feature

vectors which incorporate spatial relationships of colours.
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I

Chapter 4

Spatial Information for Image

Feature Extraction

The main problem with feature extraction methods based on colour distribution is

they ignore the rich information provided by the spatial relationships of colours in the

image. As a result, their retrieval effectiveness tends to be low because feature vectors

of images with similar colour content but different spatial distributions are considered

similar although, visually, they can be very different. To address this problem, more

recent methods incorporate these spatial relationships and their retrieval effectiveness

tends to be higher compared to that of colour distribution methods.

The purpose of the work covered in this chapter is to improve the effectiveness and.

to a certain extent, the efficiency of colour-based feature extraction methods which

incorporate spatial relationships of colours by first analysing colour autocorrelogram,

one of the most promising existing methods, and then proposing a new method. We

then compare the proposed method with two other contemporary methods.

4.1 Colour Autocorrelogram

Huang et al. [47] proposed the colour autocorrelogram method to capture the spatial

relationships of colours in images. A colour correlogram "expresses how the spatial

correlation of pairs of colours changes with distance" [47]. A colour autocorrelogram is

concerned with how the spatial correlations of similar colours change with distance.

65



66 Spatial Information for Image Feature Extraction

4.1.1 Feature Extraction

Let J be an image of n x n pixels. A colour correlogram is calculated as [47]:

Ai(l)x8k
(4.1)

where T\j(I) is the count of colour i when it is at k pixel away from colour j , k e [d],

[d] is the set of pixel distances to be considered, and Ai(l) x 8k is the maximum number

of neighbours Ai can have. Thus, when A{ is 1 and k is 1. the maximum number of

neighbours it can have is 8 and when k is 2, the maximum number of neighbours it can

have is 16. A correlogram considers the spatial relationships between any pair of colours,

whereas an autocorrelograin considers the relationships between two similar colours (i

= j). The feature vector of image Q using an autocorrelograin with [d] = {1,2} and

M bins is (7iS1,7i22- • -ifj-.lf?)- The size of an autocorrelograin feature vector is

therefore d x M.

4.1.2 Distance Calculation for Retrieval

The distance between two autocorrelograin feature vectors is defined by the Canberra

dissimilarity metric [28]:

1 '* . h—L
c + 7** + 7?k (4.2)

ie[M).k€[d]

where c is a constant > 0, to prevent division by 0. The distance can also be measured

using LI:

Ll(autocorrelogram) = (4-3)
te[A/],*€[d|
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4.1.3 Analysis

Huang et al. observed that a colour histogram describes the probability of colours

i occurring in an image by measuring the count of colours i occurring in image X.

Autocorrelogram, in contrast, describes the coherency of colours by measuring the

probability of pickuig colour i in image 1 at k pixels away. From (4.1), it can be seen

that the value of 7 depends on A and F. For a fixed value of A. 7 could be high or low

depending on F. This property is useful because 7 can be used to differentiate coherent

pixels from incoherent ones. A high value of 7* indicates that colour i is highly coherent

and a low value of 7* indicates that colour i is less coherent [49]. Likewise, for a fixed

value of F, 7 could be high or low depending on A. This property is also useful because

a colour with the same F but different A (pixel count) will be visually different.

The main problem with autocorrelogram is that 7 reaches infinity when Ai = 0.

Traditionally, in spatial statistics, this is not a problem because there is no need to

compare non-existent data. However, when used for CBIR, the dissimilarity metrics

defined in (4.2 and 4.3) require a comparison even though Ai — 0. Therefore, it is

necessary to assign a number to 7 when it reaches infinity as it is meaningless to

compare any number to infinity. Huang et al assigned it to 0 [49],

The replacement of infinity with zero means that the intended meaning of 7 no

longer holds; one can no longer assume that a low value of 7 is an hidication of inco-

herency. This problem is best illustrated visually using Fig. 4.1 on the following page,

which shows four images of 8x8 pixels. Note that the 7red of both image (a) and (c)r

printed in red, is 0 although image (c) has no red pixels. It also shows their histogram

features and autocorrelogram features at [d] = {1} and [d] = {1,2} as well as the LI

distance between these features from image (a). If image (a) is the query image and LI

is the dissimilarity metric, then the ranking of retrieval results with autocorrelogram

using LI when \d] = {1} is (c), followed by (b) and, lastly, (d). This ranking is incorrect

given that (b) is visually closer to (a). Even when using autocorrelogram feature with

[d] = {1,2}, the ranking remains unchanged. In the next section, we develop a feature

vector for overcoming the weakness in autocorrelogram.
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Figure 4 .1 : Four images with their histogram values and autocorrelogram values when[d] = {1}
and [d\ = {1.2} for illustrating the weaknesses and strengtlis of autocorrelogram and histogram
methods.

4.2 Improving Autocorrelogram

In the previous section, we showed that the spatial description of autocorrelogram is

sometimes inaccurate. This problem can be partially solved with the colour histogram

which can identify that it is image (b), not (c), that is closer to the query image. We

said it partially solves the problem because the histogram method ignores the spatial

relationships of colours, and consequently, the distance between images (b) and (d) to

image (a) is the same i.e. 0, even though image (b) is visually more similar to (a). On

the other hand, autocorrelogram which considers the spatial relationsliips of colours

can correctly identify the distance between image (b) and (d) to image (a).

In summary, colour histogram describes pixel counts and autocorrelogram considers

the spatial relationships, so a combination of these two methods can be potentially effec-

tive. If [d] = {1,2}, the feature vector of imageQ is now: {hfn?\-y?2, •• •./>?* 7& ; 7M )•

."s
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The distance between any two feature vectors is defined as:

w\ * dis(autocorrelogram) + W2 * Ll(histogram)

where w\ + it'2 = 1.0, and dis could be Canberra (4.2) or L\ (4.3).

(4.4)

We then conducted retrieval experiments to show that the proposed method is more

effective than the colour histogram or autocorrelogram alone. As both features have

different physical meanings, it is also necessary to determine the value of w\ and provide

an explanation as to why the value is optimum. Theoretically, the sum of a normalised

histogram is 1.0 and the maximum LI distance between two normalised histograms

Ll(histogram) is 2. On the other hand, the sum of 7s in an autocorrelogram approaches

AL where M is the number of bins - from (4.1), we know that the value of 7 approaches

1. We also know that the upper bound distance between two autocorrelograms is when

one feature vector has 4f bins of maximum coherency and the other feature vector

has the other 4p bins of maximum coherency. In other words, the upper bound of

Ll(autocorrelogram) approaches M. If u>i is used to control the contribution of each

type of feature vector such that the maximum distance for Ll(autocorrelogram) is

equal to the maximum distance for Ll(histograrn) i.e. 2, then the value of w\ is njm\

however, because the maximum distance between two feature vectors in real images

for both Ll(autocorrelogram) and Ll(histogram) does not normally reach this upper

bound, the value of w\ must be determined empirically. This analysis, however, suggests

that wi should be set at a much lower value than 102, and we will investigate if this

analysis is correct. If w\ is set to 0, the feature vector is the same as colour histogram

and if it is set to 1.0, the feature vector is the same as colour autocorrelogram. When

0.0 > w\ < 1.0, the feature vector is known as I-autocorrelogram (I-auto), standing for

improved autocorrelograra.

To illustrate why I-auto is potentially more effective than either histogram or au-

tocorrelogram, we recalculated the distance between the query image with the other

three Images in Fig. 4.1 (the distance calculation was based on the dissimilarity metric

in (4.4), where dis is LI, wi = 0.2 and W2 = 0.8):
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• distance between image (a) and (b) is now 0.032;

• distance between image (a) and (c) is 0.218; and

• distance between image (a) and (d) is 0.114.

Consequently, the ranking of retrieval is now (b), then (d), followed by (c): the results

now conform to visual similarity of the four unages.

4.3 Experimental Parameters

There are three main purposes of the experiments: (1) to show if the proposed method

is more effective, (2) to determine the value of w\ and (3) to explain why this value is

optimum. Besides this, there are other issues which need to be addressed and they will

be described as follows.

Huang et al suggested using RGB colour space with uniform quantisation of four

intervals of R, G and B, which gives 64 bins, and the Canberra dissimilarity metric

with c=l and [d] = {1.3,5,7} [47]. However, no experiment was carried out to test

how these parameters influence the effectiveness of autocorrelogram. The justification

for studying the effect of the dissimilarity metric, the clioice of [d] and colour space is

explained next.

4.3.1 Dissimilarity Metric

LI is used widely in CBIR to measure the dissimilarity between two feature vectors, so

we are interested to know if it can also be used for autocorrelogram. We set c in the

Canberra dissimilarity metric to 1.0 as recommended by Huang et al [49] and evaluated

the effect of both metrics.

§4.3 Experimental Parameters 71

4.3.2 Choice of [d]

Huang et al. recommended using [d] = {1,3,5,7}, but the influence of [d] on the

effectiveness was never studied. Note that as the number of d increases, the sb.e of

the feature vector also increases therefore reducing efficiency. Nevertheless, the choice

of \d\ was never justified. In this experiment, we also studied the effectiveness of

autocorrelogram at different levels of d, that is when [d] = {!}, [d] = {1.3}, \d] =

{1,3,5} and [d] = {1,3,5,7}. The purpose of studying this parameter is to justify the

choice of [d].

4.3.3 Colour Space

Huang et al. also recommended using autocorrelogram in RGB with quantisation inter-

vals of 4 x 4 x 4. It was established in Chapter 3 that the effectiveness of colour-based

CBIR with uniform quantisation is highly dependent on the colour space and quanti-

sation intervals. We found that RGB 4 x 4 x 4 is less effective than the recommended

colour space at the recommended quantisation intervals i.e. HSV 18 x 3 x 3. To be

complete, we first evaluated autocorrelogram in RGB 4 x 4 x 4 and HSV 18 x 3 x 3.

Then, for a fair comparison, we also evaluated RGB 6 x 6 x 6 , which has a similar

number of bins to HSV 18 x 3 x 3.

4.3.4 Weighting of W\

The optimum value of w\ was obtained empirically by varying the value of w\, starting

from ti'i = 0.0 with an increment of 0.05, 0.1 or 0.2 until w\ = 1.0. If there is an

optimum dissimilarity metric and clioice of [d], then we only need to vary the value of

tui at the optimum dissimilarity metric and [d\. However, it is necessary to evaluate

iui at RGB 4 x 4 x 4 and RGB 6 x 6 x 6 as well as HSV 18 x 3 x 3 in order to explain

why there is an optimum valu'j for w\.
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4.4 Experimental Setup and Evaluation Criteria

The experiment setup and evaluation criteria were the same as defined in Section 3.1,

but for the evaluation of efficiency, only method one will be used since we are not making

any recommendation on quantisation option. To recap, the retrieval experiment was

conducted in GIFT using PCD and CCD. The effectiveness was evaluated using PR

graplis and the efficiency was evaluated using only method one, that is by comparing

the size of feature v.vtors. Like the previous chapter, in PCD, 50 images were used as

queries and in CCD, 32 images were u^ed as queries. The PR graphs for each database

are made up of the average PR graplis from all queries in each database.

4.5 Results and Discussion

This section examines the effect of four parameters: the dissimilarity metric, [d], colour

spaces and the values of wi.

4.5.1 Effect of Dissimilarity Metric

Figure 4.2 on the following page shows the P R graplis with CCD using RGB 4 x 4 x 4

at different values of d using LI and the Canberra dissimilarity metrics. It is clear

that the difference between the two dissimilarity metrics at all values of d is negligible.

This observation is also t rue with CCD in HSV 18 x 3 x 3, PCD in RGB 4 x 4 x 4 and

HSV 18 x 3 x 3 (all graphs can be found in Appendix C.I) . The remaining experiments

therefore use only the LI dissimilarity metric, as it is simpler.

4.5.2 Effect of [d]

Figure 4.3 on the following page shows the PR graphs when w\ = 1.0 for CCD Rnd

PCD 20% in RGB and HSV colour spaces. As mentioned before, when w\ = 1.0, the

feature vector is the same as the autocorrelogram. With CCD in RGB and HSV, there

was only a slight difference at recall value of 0.1 and, later, at recall value of 0.7. With
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Figure 4.2: Autocorrelogram at [d] = {1}, [d] = {1,3}, [d] = {1.3, 5} and d = {1,3,5,7} using
LI and Canberra dissimilarity metric.

PCD 20% in RGB, the size of [d] had some effect at recall value of 0.1 and 0.3, but

in HSV, there was an aimost negligible effect (the results with PCD at all levels of

agreement can be found in Appendix C.2). To summarise, the effect of the size of [d]

on the effectiveness is negligible.

This finding is significant because the size of the feature vector when [d] = {1,3,5,7}

is four times the size of the feature vector when [d] = {1}, yet they both have similar ef-

fectiveness. Theoretically, small values of k capture spatial relationships in small blocks

and large values of k capture spatial relationships in large blocks, so higher values of
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Figure 4.3: PR graphs with CCD and PCD 20% in RGB and HSV colour space at different
[d\ for autocorrelogram (wj = 1.0).
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k can better capture overall colour relationships. In practice, when autocorrelogram is

used for CBIR, the majority of spatial relationships are already captured when k — 1,

so the contribution of k when it is large is negligible. Figure 4.4 shows two images of

5 by 10 pixels. The spatial relationships of red in both images are different and tins

difference, to a certain extent, is already captured by autocorrelogram when k=l. Al-

though the difference can also be captured when k = 2 and k = 3, what can be captured

at higher values of k is already captured at k—1. This means that in most cases, using

a higher value of k has little effect on retrieval effectiveness. In the remaining sections,

we will only study the results for [d] = {1}.

red
yellow

red
yellow

atk=l

0.56

0.64

0.72
0.59

autocorrelogram
at k=2 at k=3

0.19

0.41

0.42
0.31

0.0

0.28

0.23
0.14

ire 4.4: Two images at different values of k. The spatial relationships of the colours, to a
certain extent, is already captured by autocorrelogram when k=l.

4.5.3 Effect of Colour Space

Figure 4.5 on the following page shows the PR graphs when w\ = 1.0 with CCD and

PCD 20% in RGB 4 x 4 x 4 , RGB 6 x 6 x 6 and HSV 18 x 3 x 3 (the complete results

with PCD can be found in Appendix C.3). With CCD using RGB, autecorrelogram in

both quantisation levels is more effective than the colour histogram. In Chapter 3, we

showed that in RGB 4x4x4. many perceptually different colours are quantised into the

same bin. In colour histogram, the probability of perceptually different colours having a

similar liistogram count is high; therefore, the retrieval effectiveness of colour histogram

is low. On the other hand, with autocorrelogram, the probability of perceptually differ-

ent colours having similar correlation is lower than that of colour histogram; therefore,

autocorrelogram is more effective than the colour histogram. For HSV 1 8 x 3 x 3 , it is
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hard to say if autocorrelogram or the colour histogram is more effective, as they are

more effective than the other at different recall palues.
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Figure 4.5: PR graphs with CCD and PCD when [d] = {1} for colour histogram (u;i = 0.0)
and autocorrelogram (w\ = 1.0).

With PCD using RGB, autocoirelogram RGB4 x 4 x 4 is more effective than the

corresponding histogram. On the other hand, with RGB 6 x 6 x 6, it is only at PCD

70% that autocorrelogram is more effective (see Appendix C.3). With PCD 20%, 30%

and 50%, it appears that the histogram is more effective. One possible explanation is

that because PCD is a more subjective database, it could be that some images have

similar colour count but different spatial correlations. This would also explain why only

at the 70% level of agreement that autocorrelogram outperforms histogram. This is

because at such a high level of agreement, only images which are visually very similar

have been chosen to be relevant, so the colours are more likely to have similar spatial

correlations.

At HSV 18x3x3, surprisingly, the histogram is more effective than autocorrelogram.

Perhaps in HSV 18 x 3 x 3, the spatial descriptor 7 reaches infinity more often than

both RGB 4x4x4 and RGB 6 x 6 x 4 . The results of autocorrelogram in HSV 18x3 x 3

using CCD and PCD show the importance of testing a new feature vector using several

colour spaces. When autocorrelogram was first proposed, the comparison was made

only in RGB 4 x 4 x 4 , and as a result, it seemed that autocorrelogram was always
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better than the colour histogram, but our study shows otherwise.

4.5.4 Weighting of W\

The value of tt'i was tested using the dissimilarity metrics LI with [d\ at 1 because LI

is just as good as the Canberra dissimilarity metric, and the effect when [d] > 1 is

negligible. The PR graphs in RGB 4 x 4 x 4 , RGB 6 x 6 x 6 and HSV 18 x 3 x 3 ? : h

both CCD and PCD 20% are given in Fig. 4.6 on the following page (the complete

results with PCD can be found in Appendix C.4).

It can be seen from the graphs that the optimal value of w\ for RGB 4 x 4 x 4 is

0.2; the optimal value of w\ for RGB 6 x 6 x 6 is 0.1; and the optimal value of w\ for

HSV 18 x 3 x 3 is {0.05.0.1} (i.e. the results when it'i = 0.05 or when w\ = 0.1 is

very similar). In Section 4.2, we predicted that the value of w\ should be kept much

lower than W2 and the empirical study confirmed this. The reason that the tui of RGB

6 x 6 x 6 is lower than that of RGB 4 x 4 x 4 is because there are more bins in RGB

6x6x6 (216 bins) than in RGB 4x4x4 (64 bins). The sum of 7s in an autocorrelogram

with a greater numbc 1 of bins will be higher than a feature vector with a fewer number

of bins, so tui can also be viewed as the normalising factor.

The discussion on the parameters of I-auto is now complete. The next section

compares I-auto at the appropriate value of w\ with autocorrelogram.

4.5.5 Effectiveness of New Feature Extraction Method (I-auto)

Figure 4.7 on the following page compares the effectiveness of the I-auto at the ap-

propriate value of w\ with autocorrelogram. To make the discussion easier, all I-auto

feature vectors calculated at their optimum w\ are indicated with an asterisk (*); for

example, *HSV 18 x 3 x 3 means I-auto calculated in HSV 18 x 3 x 3 where w\ = 0.05.

It is clear that for the same colour space in the same quantisation level, I-auto is al-

ways better than autocorrelogram. In Section 4.5.3, we found that for HSV 18 x 3 x 3,

histogram is, overall, more effective than autoconoiogram. It is interesting to see how
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Figure 4.6: PR graphs of the I-auto at different weight for the autocorrelogram in RGB
4 x 4 x 4 using CCD and PCD.
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I-auto performs against histogram for HSV 18 x 3 x 3. Figure 4.7 clearly shows that

*HSV 18 x 3 x 3 is more effective than HSV 18 x 3 x 3 in both CCD and PCD, so it

means that I-auto is more stable than the autocorrelogram.

With CCD, *HSV 18 x 3 x 3 is most effective. With PCD 20%, *RGB 6 x 6 x 6

and *HSV 18 x 3 x 3 are the top two most effective feature vectors with the RGB being

slightly better than the HSV; however, *HSV 18 x 3 x 3 is slightly more effective than

*RGB 6x6x6 at PCD 70% (see Appendix C.5). We, therefore, cannot conclude whether

*HSV 18 x 3 x 3 is better or worse than *RGB 6x6x6 but we can confidently conclude

that given the same colour space and the same number of quantisation intervals. I-auto

is always more effective than the histogram or autocorrelogram alone.
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Figure 4.7: PR graphs of CCD and PCD 20% when [d] = {1} aud different values of w\.

This section completes the analysis on I-auto and the comparison of I-auto with

histogram and autocorrelogram. The next section discusses the evaluation of I-auto

against contemporary methods.
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4.6 Evaluating I-auto Against Contemporary Feature Ex-

traction Methods

To show the strength of I-auto, we compared I-auto against other contemporary feature

extraction methods which incorporate the spatial relationships of colours i.e. Spectrally

Layered Colour Indexing (LCJ) and MPEG-7's Colour Structure Descriptor (CSD). The

reason for choosing these two methods is as follows.

Autocorrelogram is one of the best colour-based feature extraction methods us-

ing uniform quantisation which incorporate spatial relationships of colours and is of-

ten compared against other contemporary methods such as colour anglograms and

LCI [107, 145]. Tao and Grosky found that the colour anglograms method is more ef-

fective than autocorrelogram, and Qiu and Lam found that LCI is more effective than

autocorrelogram. In this research, however, we only compare LCI with I-auto. The

colour anglograms method was not used because it requires image segmentation and

the procedure for segmenting the images appears quite specialised. It appears that the

segmentation method will only work for colour images which have distinct large objects

with uniform colours.

The other method compared with I-auto is Colour Structure Descriptor (CSD), one

of the colour feature extraction methods defined in the (MPEG-7) standard. It was

singled out for the comparative study because it is the most effective MPEG-7 colour-

based feature extraction method [72]. The next sections describe LCI and CSD in more

details.

4.6.1 Spectrally Layered Colour Indexing (LCI)

LCI was reviewed in Chapter 2. It belongs to pixel-based classification irethods which

capture the spatial relationships of colours b; classifying pixels into different categories.

LCI classifies the pixels into four categories, and after categorising the pixels, it then ex-

tracts the colour feature at each category using colour histogram [107]. The LCI feature

vector for an image is the aggregation of the histogram at each category: (/i, • • • ,fa),
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where fc is the histogram of colours at frequency level i. To categorise each pixel into

four levels of frequency, we need three thresholds: Ti,2~2 and T3. In this experiment,

we used the threshold values specified by Qiu and Lam {T\ = 6, T2 — 12 and T3 = 18).

The histogram for each layer was then extracted using HSV 1 8 x 3 x 3 . Qiu and Lam

also used the Canberra dissimilarity metric (4.2) to calculate the distance between any

two LCI feature vectors [107]. To be complete, we also performed the experiment using

LI dissimilarity metric.

4.6.2 MPEG-7 Colour Structure Descriptor (CSD)

CSD captures the colour distribution as well as the spatial distribution in images; it is

histogram-like with the additional spatial information. The extraction of CSD feature

vectors is described below with the aid of Fig. 4.8:

1. An element of 4 x 4 pixels which must always be within the image visits every

pixel in the image at least once.

2. If the quantised colour is within the element, the histogram of the corresponding

bin is incremented by 1.

(a)

(b)

colour bin value

m

1*2)+1

colour bin value

h(2)

Figure 4.8: Extraction of the CSD feature vector.

For example, in Fig. 4.8(a), both quantised colours are in the element, so the his-

togram count of both colours are incremented by one. The element is then shifted by

one pixel to the right as seen in Fig. 4.8(b), and only the histogram count of yellow

colour is incremented because the element contains only yellow pixels. If a colour is

coherent, then the histogram count of the corresponding bin will be high, since it will
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be found within the element more frequently. On the other hand, if a colour is incoher-

ent, then the histogram count of the colour will be low. The example uses a mask of

4 x 4 pixels to simplify the discussion, but the actual implementation uses an element

of 8 x 8 pixels, as recommended by the MPEG-7 standard.

The amplitude of the histogram is then normalised to the range [0,1) and non-

uniformly quantised into eight bits - the MPEG-7 group obtained the quantisation

option from an empirical study. It is believed that the nonlinearity of the quantisation

"give[s] the small values greater weight in the similarity measure than they would

otherwise have" [72]. The distance between any two CSD feature vectors is calculated

using the LI dissimilarity metric. CSD uses the HMMD (Hue - Max — Min — Diff)

colour space proposed by the MPEG-7 group [72]. It was claimed that HMMD is "closer

to a more perceptually uniform colour space" [72], but it is not widely used even within

the MPEG-7 community. The HMMD colour space is then non-uniformly quantised

into 32, 64, 128 or 256 bins, with 256 bins being the most effective. For this reason, we

used the quantisation option of 256 bins in this study.

4.6.3 Experimental Setup and Evaluation Criteria

To evaluate which feature extraction method is more effective, several retrieval exper-

iments were conducted in CSD, LCI, and I-auto HSV 18 x 3 x 3 (u>i = 0.05). The

experiment setup and evaluation criteria were the same as in Section 4.4.

4.6.4 Results and Discussion

Figure 4.9 on the following page shows the PR graphs with CCD and PCD 20%. The

trend using PCD is similar at all levels of agreement, and the complete results can

be found in Appendix C.6. With CCD, it can be seen that I-auto and CSD are most

effective, followed by LCI. It is also clear that in LCI, there is not much difference

between using L\ or the Canberra dissimilarity metric. With PCD 20%, I-auto and

LCI are most effective followed by CSD. The next sections will analyse the results of

comparing I-auto with CSD and then with LCI.
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Figure 4.9: PR graphs for LCI, CSD and I-auto with CCD and PCD.

4.6.4.1 Analysing Results of I-auto and CSD

Figure 4.9 shows that CSD is slightly more effective than I-auto in CCD but less effective

than I-auto in PCD. CSD was tested using CCD and the parameters (th? quantisation

intervals of HMMD and the normalisation of the histogram amplit" K< were selected to

maximise its effectiveness. It could be that the parameters are tu^-u „.. only CCD, so

when it is used to extract feature vectors from a different database, tne recommended

parameters are no longer optimum. Having to customise the parameters makes the use

of CSD in real world applications less practical because tliese parameters have to be

recalculated for each database, and "hey may change as new images are added to the

database. In contrast, the parameters in I-auto (the number of quantisation intervals

of HSV and the value of wi) are generic, so the same parameters can be used for other

databases. For this reason, I-auto is preferred over CSD.

4.6.4.2 Analysing Results of I-auto and LCI

With CCD, I-auto is more effective than LCI because I-auto's spatial measurement is

more accurate than that of LCI. LCI uses a pixel classification method which can be

viewed as a quantisation of the spatial correlation. In contrast, I-auto captures the exact

spatial correlation, so it can retrieve more relevant, images. LCI, winch quantises the



84 Spatial Information for Image Feature Extraction §4.8 Conclusions 85

spatial correlation, uses the same quantisation level to describe many more images, and,

as a result, it retrieved more irrelevant images. With PCD. 1-auto is just as effective as

LCI. Recall that the relevant images in PCD are obtained using a subjective +^st. so

releA ânt images may have different spatial relationships. Because of this, the use of LCI

is sufficient and the advantage of a more accurate spatial description is less evident.

In terms of efficiency, LCI captures the relationships of colours by pixel classification,

and the methods using this approach is highly inefficient. In contrast, I-p-uto captures

the spatial relationships using a spatial descriptor, which is a more efficient approach

than pixel classification: the size of I-auto is half the size of LCI.

In summary, I-auto is, overall, more effective than LCI. Given that the size of I-auto

is half the size of LCI, it is therefore also more efficient than LCI.

4.7 Summary

To show that I-auto - the proposed method - is most preferred, we compared I-auto

with two contemporary methods which incorporate spatial relationships of colours (CSD

and LCI) by conducting retrieval experiments. It was found that I-auto is preferred

over CSD because I-auto's parameters are more generic those of CSD, and therefore,

they can be used for other image databases. The parameters for CSD, that is the

quantisation for the colour space and normalisation of amplitude, not only have to be

customised for each database but they also need to be recalculated as new images are

added to the database. This study also found that I-auto is at least as effective as LCI

but twice as efficient. We, therefore conclude that I-auto is preferred over CSD and

LCI for extracting colour features incorporating spatial relationships.

4.8 Conclusions

An analysis of autocorrelogram suggests that colour histogram and autocorrelogram

complement each other, so it is natural to use both methods to extract features from an

image. Because both features have different physical meanings and ranges of values, it

is necessary to control the contribution of each feature to the overall dissimilarity using

a weighting factor in the dissimilarity metric. The value of this factor was determined

empirically, by carrying out retrieval experiments. We found that there is an optimum

value for this factor and explained why. The proposed method is known as I-auto,

standing for improved autocorrelogram. Experimental results showed that I-auto is

more effective than the autocorrelogram and colour histogram.

I-auto is then evaluated against LCI and CSD, two contemporary colour-based fea-

ture extraction methods which incorporate spatial relationships of colours, by carrying

out retrieval experiments. This study found that I-auto is preferred over CSD because

I-auto is more generic than CSD. It also found that I-auto is at least as effective as

LCI but twice as efficient. LCi captures the relationships of colours by pixel classifi-

cation, which is a highly inefficient approach. In contrast, I-auto captures the spatial

relationships using a spatial descriptor, which is a more efficient approach than pixel

classification. We thus conclude that I-auto ?s preferred over CSD and LCI for extract-

ing colour features incorporating spatial relationships.

This chapter concludes the research on feature extraction. The rest of the thesis

will now focus on browsing large scale image databases.
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Chapter 5

Browsing Large Scale Image

Databases

The research in the previous chapters is concerned with image retrieval, that is. given

a sample image, find a set of similar ones. Unlike image retrieval, where we look for

specific sets of images, when browsing, we "examine in a casual way" [26]. The notion

of browsing is that viewers inspect large collections of objects, hoping to discover items

of interest. People browse in their daily life i.e. in shops, supermarkets and libraries.

In these places, the items are arranged systematically so that shoppers or visitors can

find what they want with relative ease. Browsing also implies interaction; for example,

if an item is partially obscured, it is possible to shift or remove the offending item.

Image browsing is far less understood than image retrieval, so we need to establish

what it means. In this thesis, it is similar to browsing in daily life. A computer

program which facilitates image browsing must replicate the two functions that enable

browsing in daily day life i.e. systematic arrangement and interaction. One systematic

arrangement of images is to group them by visual similarity. A program which displays

images in such a layout enables users to visualise the database, that is, to obtain a

quick overview of the content of the entire database. The program must also provide

a set of tools so that users can interact with (navigate) the database. In summary,

image browsing in this thesis refers to the ability to visualise and navigate image

databases. Browsing is another search mode, and it is an important natural complement

to retrieval. In fact, their roles are so complementary that they can be integrated to

support one another. However, the research in image browsing is relatively new in

87
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comparison to image retrieval.

The aim of the research described in tin's chapter is to formulate an image brows-

ing framework appropriate for browsing large image databases by providing users an

overview of the entire database and intuitive navigation tools. To be successful, the

framework must enable users to transfer their daily browsing behaviour into browsing

images. A review of current work finds that no existing system supports browsing.

The proposed framework not only supports browsing but also' allows users to find an

appropriate sample image to initiate a visual query. In a visual query, users submit a

sample image in order to retrieve a set of relevant images (query-by-example).

5.1 Previous Work

The visualisation of image databases is made possible by proximity visualisation in

which the location of images are dictated by their visual similarities and dissimilarities.

Faloutsos and Lin were the first to describe image database visualisation [35]. They

first proposed "FastMap". an algorithm for reducing high dimensional feature vectors

into two or three dimensions (2D or 3D). Then, they plotted the reduced feature vectors

as points, not images, into a 2D or 3D space. The purpose for creating the visualisation

display was to reveal potential clusters and other features useful for data-mining, not

to support browsing.

More recent systems attempted to support browsing by displaying the images [18,

46, 117, 118. 119, 121, 122]. Some of these systems can display only several hundred

images, for instance, Santini and Jain described the El Nino system, winch displays

images in proximity visualisation [121, 122]. They report that "for practical reasons,

an interface can't present more than a small fraction of the images in the database"

[122]. El Nino displays at most 300 images, so it clearly does not support browsing of

a complete image database. Other researchers claimed that their systems can display

thousands of images but unfortunately, the images in most of these systems are overlap-

ping, very small or both, so it is impossible to view them properly. Hence, the systems

i:

are less useful than what they could be [115]. In trying to make the systems more useful,

some researchers rearranged the layouts to reduce or even eliminate the overlapping,

while attempting to preserve the mental map of the original layouts [84, 1. ', 150].

Rodden et al. eliminated all overlapping by using a proximity grid to restrict the

location of the images to regular grids [115]. Figure 5.1 illustrates the difference between

a proximity visualisation and a proximity grid [115]. Although the proximity grid is

effective in removing overlapping, it is less efficient in terms of screen real estate usage.

As a result, only a small number of images, in the order of 100, can be effectively

displayed.

(a) Proximity visualisation. (b) Proximity grid.

Figure 5.1: An example of using proximity grid to eliminate overlapping.

Moghaddam et al. reduced the overlapping using an algorithm they described

as "optimised PCA splat" [84. 82, 83]. It is a non-linear constrained optimisation

algorithm: the goal is to reduce overlapping and the constraint is to preserve the

mental map of the layout. An example of a layout generated using the "optimised

PCA splat" is given in Fig. 5.2 on the following page; note that to further reduce the

overlapping, the images in the optimised PCA splat layout are smaller than those of

the original layout.

Reorganisation of layouts to reduce or remove node overlapping but still maintain-
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(a) Original layout. (b) "Optimised TCA splat".

Figure 5.2: An example of using "optimised PCA splat" to reduce image overlapping.

ing the layouts' mental map is an active research area in graph layout [55. 75. 81]. The

contemporary algorithm for solving this problem is QUAD, proposed by Marriott, ct

al. [75]. However, neither overlapping reduction nor removal is an ideal solution for

solving the overlapping problem because as the number of images increases, the size of

the images to be displayed must further decrease; it is meaningless if the images are

too small to be useful to users. To demonstrate this, we requested Prof. Marriott's

QUAD source code and used it to optimise a layout of 472 images we had generated.

The original layout and the QUAD optimised layout are given in Fig. 5.3 on the fol-

lowing page. As expected, fitting the optimised layout into the screen results in some

overlapping and to reduce all overlapping, the images have to be even smaller. It is

clear that image overlapping removal is not the optimal solution for displaying large

databases.

To manage large databases, other researchers use tree or pyramid structures which

have multiple hidden levels. At each level, a parent node points to a small number of

child nodes, and the number of parent nodes at each level is restricted to 100 [19. 51. 77].

Initially, the systems display only the top most parent nodes. At first, such an approach

seems intuitive as it is similar to the divide and conquer technique so often employed

when dealing with large amounts of data. In the context of visualisation, however, this

approach is inappropriate for two reasons. First, such systems fail to provide an overall

view of the entire database; therefore, it does not. support effective browsing. Second,

•
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(a) Original

(b) Optimised by QUAD

Figure 5.3: Visualisation of 472 images.
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navigation is confusing as users have to backtrack if they wish to visit the children a

different parent.

The system proposed by Pecenovic et al. is by far the most complete and power-

ful [102]. as it can display more than several hundred images at a time (Figure 5.4

shows two screen shots of their system). This system has two windows: one for vi-

sualisation (in the green box) and another for displaying the selected images in the

visualisation window. Users are expected to navigate the database by using the red

box in the visualisation window. The images within the red box are then displayed in a

separate window and users can zoom in to see the images in more detail. Yet. this sys-

tem remains unsatisfactory for browsing for the following three reasons. First, it uses

a tree structure and the use of this structure is unsuitable for the reasons given above.

Second, the images in the visualisation view are too small to be useful for browsing.

The use of such a view is common in image editing programs for panning an image,

such as in Gimp or ImageMagick [1, 2]. However, it is less appropriate to use this

technique for visualisation because the images are too small for navigation. Third, it

is a multi window system which lacks an overall context because there is no continuity

between windows [131].

Figure 5.4: Screen shots of the system described by Pecenovic" et al. Users can zoom and pan
to see the images in more details. However, the images in the visualisation view (in green box)
are too small to be useful.

'i
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5.2 Towards Browsing Large Scale Image Databases

Existing systems are clearly inadequate for browsing large image databases. They

all fail because of the degree of overlapping and the techniques used to resolve the

overlapping are undesirable for browsing. The design of a visualisation system suitable

for browsing large databases requires a more systematic approach, which could be

divided into three steps:

1. The use of an algorithm for generating layouts for image databases (Section 5.3).

2. The selection of image features to generate a suitable layout. This is important to

ensure that the generated layout is useful for browsing because a random display

of images does not facilitate browsing.

3. The introduction of innovative techniques to support browsing of large image

databases (Section 5.4).

The first step can be completed using readily available algorithms, whereas the second

and tlurd steps are previously unanswered research questions, and therefore, are the

research contributions of this thesis. The research into feature selection in the second

step is dependent on the type of images (such as colour or texture images), and because

we are formulating a browsing framework which must be independent of the type of

images, feature selection will only be discussed in Chapter 6 for browsing general colour

image databases and Chapter 8 for browsing grey-scale texture image databases. This

chapter only concentrates on the first and third step, and it is assumed that a suitable

feature for browsing already exists.

5.3 Proximity Visualisation

The very first task to visualise an image database is to select an algoritlmi for generating

a layout required for visualisation. The following sections describe how to achieve this.
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5.3.1 Basic Concept

As mentioned earlier, proximity visualisation is the core of image database visualisation.

This section explains this concept in more detail. Proximity visufi!' -ation, in general, is

a type of display in which the proximity of objects is dictated by their similarities and

dissimilarities. To vise proximity visualisation, the objects must first be represented

in feature vectors so that the distances between the feature vectors can be calculated

using a dissimilarity metric. The distance between two objects in the display is their

Euclidean distance, and it should reflect the dissimilarity of the objects they represent.

After selecting the features and dissimilarity metric, it is possible to generate a layout

for the objects using dimension reduction algorithms such as Multidimensional Scal-

ing (MDS), Principal Component Analysis (PCA), or optimisation algorithms such as

genetic algorithms. They all are equally valid choices [9], but in this research we used

MDS algorithms because they are more versatile [54, 157. 158].

5.3.2 Deriving Layouts for Proximity Visualisation Using Multidi-

mensional Scaling (MDS)

The use of MDS algorithms can be described using the following example. Figure 5.5

on the following page shows the location of six points (A to F) on a two dimensional

map; finding the distances between all points is easy. Using a ruler, Table 5.1, which

lists the distance between any two points, can be easily produced. However, if the

question is reversed, given the distances between all points find the layout of the points,

the task is no longer easy. MDS algorithms are used to answer such a question, and

the layout it produces can then be used to draw a map similar to that of Fig. 5.5,

a proximity visualisation. We say similar because the generated layout may have a

different orientation to the map in Fig. 5.5 but the relationships of all points in the

generated layout are the same as the points in the map.

MDS algorithms find a layout by minimising Stress. Several definitions of Stress

have been given in the literature [9, 25. 28, 88, 117], but in this thesis, it is defined as

Figure 5.5: A map of point A-F.

B
C
D
E
F

A
1.0
2.0
2.5
2.5
2.5

B

1.0
1.5
2.4
1.5

C

0.6

3.2

1.3

D

3.4

1.0

E

2.5

Table 5.1: The distances between all points in Fig. 5.5.

in [25]:

Stress = (5.1)

where dij is the distance between objects i and j in the original dimension and gij is

the Euclidean distance between point i and j in the layout. Stress measures how well

the layout in the low dimension represents the distances between objects in the high

dimension. A lower value of Stress is more desirable, with the ideal value being 0 which

indicates a perfect representation. Stress as defined in (5.1) penalises mismatches

of objects with short distances more heavily than mismatches of objects with long

distances. In other words, it is more important to represent objects with short distances

more faithfully than objects which are far apart. On the choice of the MDS algorithm,

classical MDS is effective but has high complexity i.e. in the order of O(N3). More

recent MDS algorithms are incremental and therefore more efficient [25, 88]. In this

research, we used the hybrid method described by Morrison et al. which has an overall

complexity of O(N)

In the hypothetical example given above, the distances between the features (the

points in the table) are in high dimension, while the distances between the points on
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the map or layout are in low dimension. This means the number of dimensions for

the points in the high and low dimensions happens to be the same, so it is possible to

generate a layout which can faithfully represent the distances between all points. In

real world applications, the number of dimensions for the features are often higher than

those in the layouts, so it is impossible to represent the distances faithfully in the layout,

as illustrated in the following example. If there are only three equidistance objects, they

can be represented in a two dimension layout, but if there are four equidistance objects,

it is impossible to represent the distances faithfully in two dimensions: at knst three

dimensions are needed. This problem is not unique to MDS algorithms; it is common

to all dimension reduction algorithms. The more important issue is how to select a

suitable set of features so that the MDS algorithm can generate a meaningful layout.

The choice of the right features is therefore of prime importance in determining the

usefulness of the display.

Because feature seleo\.2 >n is dependent on the type of image databases and we are a

proposing a framework independent of the type of image databases, the issues related

to feature selection will be explored in Chapter 6 for browsing general colour image

databases and Chapter 8 for browsing grey-scale texture image databases. For now,

we assume that a feature suitable for browsing an image database already exists and a

layout has been generated using the process described above. In the next section, we

investigate techniques suitable for browsing large scale image databases.

5.4 eyeMap, an Image Browsing Framework for Large Im-

age Databases

Browsing large scale image databases are challenging for two reasons. First, many

images need to be drawn on a limited screen area, thereby introducing more image

overlapping. Second, the system's response time is proportional to the number of im-

ages: the more images, the longer response time. For users to feel that their actions

have direct impact, the system must respond within 100 ms [126]. Previously developed
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systems mainly displayed only a smnll number of images, about 200, so image over-

lapping and response time were not major issues. Other systems that do display more

images provide no useful visualisation because either there is too much overlapping or

the images are too small, only several pixels wide.

The central principle of Shneiderman's visual design guidelines is "overview first,

zoom and filter, then details on demand" [126]. The proposed image browsing frame-

work, eyeMap, is designed with this guideline in mind to ensure that it is useful for

browsing large scale image databases. It is possible to address the two problems de-

scribed above and still adhere to the guideline by:

• clustering the images to reduce the number of images to be displayed at any one

time;

• removing image overlapping; and

• allowing users to hide images which are definitely not the target image.

The following sections describe each strategy in detail. The approach taken in

eyeMap for dealing with large numbers of images is innovative because it is efficient in

using screen real estate and intuitive for users to manipulate.

5.4.1 Image Clustering

To facilitate the browsing of large scale image databases, eyeMap reduces the number

of images to be displayed at any one time by clustering the images. The image closest

to the centroid of the cluster is considered the representative image, and initially only

these images are displayed. Note that this approach is different from the tree or dynamic

structures which use multiple hidden levels. eyeMap uses only one hidden level, and

the user interface described in the next section makes eyeMap easy and intuitive to use.

In summary, the steps for producing the final visual layout are:

1. Extract feature vectors from images.
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2. Cluster the images using the k-means clustering algorithm.

3. Find the representative image of each cluster (the image closest to the cluster's

centroid).

. • . u> a visual layout for the representative images.

Find the visual layout for non-representative images for each cluster. These im-

ages are simply placed around the representative image of each cluster.

Initially, eyeMap only displays the representative images and. only if the represen-

tative images are in the area of interest (focal region) it displays the corresponding

non-representative images. Users can intuitively specify the focal region using Distor-

tion Oriented Displays, which will be explained in the next section.

5.4.2 Removal of Image Overlapping

The second strategy to enable browsing of large scale image databases is to provide

intuitive tools so that users can remove image overlapping. This section describes how

eyeMap can effectively remove the image overlapping and still maintain efficient use

of screen real estate using two related approaches: using Distortion Oriented Displays

(DOD) and displaying a small number of images linearly in a separate window, with

the help of DOD.

5.4.2.1 Distortion Oriented Displays (DOD)

Apart from removing image overlapping, DOD allows users to look at the trees without

losing the sight of the forest by displaying different levels of detail on the same screen

using the concept of focal and context regions. The focal region is the area of interest;

it is the focus or the trees, and therefore shows more detail. The context region is the

overview; it is the context or the forest, and therefore shows less detail. A typical use

of DOD is in geographical information systems (a research area involving electronic

maps), where the spectrum of details from the overview to the focus region progresses

§5.4 eyeMap, an Image Browsing Framework for Large Image Databases 99

from state boundaries, then town boundaries and, finally, street boundaries as shown

in Fig. 5.6 [131]. To adapt DOD for eyeMap, we modified this spectrum of details

to progress from the display of representative images in smaller size to the display of

corresponding non-representative images in bigger size.

Figure 5.6: A sample of a geographical information system showing the map of Australia. In
the context region, only the state boundaries are visible, whereas in the focal region (within
the circle), town and street boundaries are visible.

Spence and Apperley proposed the first DOD system using the one dimensional

bifocal display in 1982 for interactive computer applications. It was one dimensional

because the view could only be magnified or demagnified in one dimension [132]. Fig-

ure 5.7 on the following page shows a circle data set (a) undistorted and (b) distorted

using a bifocal display with a distortion factor of four. The red cross is the focal point,

which is simply the centre of a focal region; the region within the red rectangle is the

focal region; and the region outside the rectangle is the context region. A distortion

factor of four means that the distances between the circles in the focal region are now

four times as far as they would normally be had they been undistorted. For a prede-

fined window size, the magnification in the focal region forces demagnification in the

context region to maintain the same overall size. Since the focal region is magnified, it

is now possible to show more detail, which in tin's case simply means bigger circles.

Leung extended the bifocal display into two dimensions for displaying the London

underground map [59], and an example of 2D bifocal display using the circle dataset
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Figure 5.7: (a) Undistorted display of circle data set (b) Bifocal Distortion display of the data
set.
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Figure 5.8: The circle dataset in (a) 2D bifocal (b) fisheye and (c) frustum.

is shown in Fig. 5.8(a). The area within the red rectangle is the focal region, and

the circles within this area are bigger than the circles outside. Unfortunately, this

distortion also magnifies the context region. The context region to the east and west of

the focal region is magnified in the Y axis, while the region to the north and south of the

focal region is magnified in the X axis. This contradicts the idea behind DOD because

the purpose of the context region is to provide an overview, and any magnification

wastes screen real estate. Because of this unnecessary magnification, it is difficult to

maintain a useful context when using bifocal display. In eyeMap. it is important to

use a DOD technique which can maintain a meaningful context because when the size

of the database is large, many images will overlap and a high distortion factor (up to

sixty) is needed to reduce the overlapping.

Other DOD techniques in the literature include fisheye and its many variations, frus-

tum, perspective wall, document lens, table lens and hyperbolic browser [41, 56, 70,109,
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112, 123, l"lj. Leung and Apperley provide a detailed review of DOD techniques [60].

Of all these techniques, fisheye is most popular but it has a major problem: its context

region cannot maintain a useful overview with large distortion factors, typically ten or

over [131]. This problem arises because in fisheye, there is no clear distinction of when

the focal region ends and when the context region starts. As a result, even areas which

are not of interest to users are unnecessarily expanded, so the context region becomes

very small. An example of the fisheye display with a distortion factor of four can be

seen in Fig. 5.8(b). which was implemented in polar coordinates by transforming (r. 9)

into (r;, 6') [123]:

r = r,max' + 1
(5.2)

where r is the original distance from the focal point, r' is the transformed distance from

the focal point, d is the distortion factor, and rmax is the maximum possible value of r

in the direction of 9. Note that the value of 9 remains unchanged, 6' = B.

Another type of DOD in the literature is the frustum technique. The display of

the same dataset and same distortion factor in frustum is given in Fig. 5.8(c). Unlike

fisheye and 2D bifocal, in frustum only the focal region is magnified. The calculation of

the frustum transformation is in polar coordinates, and the transformation from (r. 9)

to (r', 0') is expressed as:

0' =
e

r'
r.MRc -

if r < R, focal region

+ (r — R)MRC otherwise, context region

if r < R, focal region

otherwise, context region

(5.3)

(5.4)

where
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R = focal area radius

Mjif = focal area magnification

MRC = context area demagnification

r = original radial distance to the focal point

r' = transformed radial distance to the focal point

Unlike fisheye, frustum distinctly separates the focal region from the context region, so

the context region still provides a useful overview even at a very high distortion factor

(up to one hundred) [131].

The original frustum projects the dataset onto a square display but monitors are

not square, so some screen real estate is wasted. To efficiently use screen real estate, the

display is scaled, and as a result, the focal region is now elliptical rather than circular

as shown in Fig. 5.9.

Figure 5.9: A frustum display of the circle dataset scaled to make full use of the screen real
estate.

Most image formats are not scalable: the size of the decoded image is the same as

the size of the coded image. To obtain a smaller image, it is necessary to subsample

after a complete decoding. This means that the processing time is longer if we require

a smaller image size than the one coded. JPEG 2000 is a scalable image format: the

size of the decoded image may differ from the size of the coded image. If we require a

smaller image, then we decode only up to the required size [146]. In other words, the

processing time is now proportional to the required image size. For this reason, it is

recommended an implementation of eyeMap uses the JPEG 2000 image format.
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5.4.2.2 Linear Display

The second method of removing image overlapping is by displaying a small number

of images linearly. The use of frustum has another advantage. Because it distinctly

separates the focal region from the context region, it is possible to display all the images

in the focal region linearly in a separate window with the overlapping removed. In this

window, users can also enlarge an image so that they can see the image in full size.

The number of images displayed in this window is relatively small in comparison to the

size of the entire database, so users only need to linearly search from a small number

of images. For this reason, displaying these images linearly should have no effect on

browsing, search effectiveness and efficiency.

5.4.3 Searching for a Target Image by Elimination

The last strategy used by eyeMap to deal with large scale image databases is to allow

users eliminate irrelevant images. Users can hide the images they have seen and display

the hidden images again if necessary. By eliminating images they have seen, users can

reduce the number of images to be displayed and avoid looking at images which they

have inspected; therefore, this functionality helps them to further narrow down their

area of search.

5.4.4 Summary of eyeMap Specification

The specification for eyeMap is now complete and includes the following:

• Cluster images based on visual similarity; each cluster has a representative image.

• Calculate a layout for all representative images, then assign the positions of non-

representative images based on the coordinates of then: representative images.

• Display the images based on the layout using DOD.

• Remove overlapping by either changing the distortion factor of the DOD or by

opening a separate window.
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• Hide and unhide images.

5.5 Applications of eyeMap

This section describes two potential applications for eyeMap: browsing and initiating a

visual query. Because eyeMap is a browsing framework, it may be difficult to imagine

why an implementation of eyeMap is suitable for these two tasks. It is, at this stage,

appropriate to show a layout generated using an implementation of eyeMap for general

colour images developed in Chapter 6 (see Fig. 5.10 on the following page). It can be

seen from the layout that the arrangement of images is systematic, in that they are

grouped by colour similarity. We can also see that the context region displays only

the representative images in smaller size, whereas the focal region (within the ellipse)

displays the representative and the corresponding non-representative images in bigger

size.

5.5.1 Browsing

The use of eyeMap for browsing is obvious. eyeMap can display the whole database

and users simply browse through the collection by going directly to the area of interest.

As they browse, they can change the distortion factor to remove the overlapping in the

focal region or display all images in the focal region linearly without any overlapping at

all. Of course, there is a limit to the size of the image database that can be displayed;

for instance, it would be difficult to display all images in the Internet. In fact, when

it comes to searching images on the Internet, it is a great challenge even for image

retrieval.

eyeMap can also be useful for displaying search results where historical text anno-

tations are already available. It is a practice within the concept-based image retrieval

community to coarsely annotate the images and to then issue textual queries [6, 74].

Because of the coarse categorisation, a query is likely to return many images which are

often displayed linearly; thus, browsing is inefficient. To facilitate efficient browsing,
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Figure 5.10: A visualisation of the CCD database using frustum display with a distortion
factor of 52. Images within the focal region, the red ellipse, are displayed in more detail
(larger). This layout is generated by colour-based eyeMap.
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the images could be displayed using eyeMap. Note that some systems reviewed earlier,

such as the one described by Rodden et al., can also be used for this purpose but be-

cause of the inefficient use of screen real estete, the number of images to be displayed

at a time is limited to at most one hundred [115]. With eyeMap, the only limitation is

the time taken to find a layout. The efficiency issue is beyond the scope of this thesis

but the research conducted in Chapter 6 and Chapter 8, to a certain extent, contribute

to speeding up this process.

The implementation of eyeMap is a powerful browsing tool but it can also be in-

tegrated with a CBIR: eyeMap as the browsing engine and the CBIR as the retrieval

engine. The application of eyeMap is then to find a sample image to initiate a visual

query. The next section illustrates this application.

5.5.2 Finding a Sample Image to Initiate a Visual Query

As previously stated, CBIR has been an active research area in computer vision for

more than a decade yet it has been of little practical use mainly because there is no

convenient way of initiating a query. It is also known as the Page 0 problem.

Existing methods of initiating a query include text searching of annotated images,

specifying the colours (and the percentage of each colour), sketching and query-by-

example (QBE) [11, 153]. They fail for the following obvious reasons. Annotating the

images defeats the purpose of a CBIR system. Specifying the mix of colours is most

unnatural as that is not how humans remember images. Sketching a query is impractical

as users are not only expected to sketch but also have an intimate knowledge of the

internal functions of the system, including the feature extraction algorithms, to sketch

successfully. QBE is by far the most accurate and popular method but is useless when

users do not have a sample image. Locating a sample image is time consuming as users

have to go through the images in the database either linearly or randomly until a target

image is found.

The design of eyeMap is modular in that both the browsing and retrieval engines are

independent of each other, so the retrieval engine can be added or even clianged without
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affecting the browsing engine. Integrating eyeMap with a CBIR system means we can

now solve the Page 0 problem because users can first browse the area of interest, and

then issue a visual query using the sample image they found. The following scenario

illustrates how eyeMap could be used for solving the Page 0 problem.

Alice is looking for an image and she has a pretty good idea what type of image

she wants. She starts using eyeMap which shows a proximity visualisation display of

the database. Now, Alice has an idea what the database looks like, and can use the

display like a map. The images are small (though visible enough) and are overlapping,

but she can still eliminate areas which look totally different from the image she has

in mind. So. she moves the focal region away from those ^reas and starts exploring

areas which look more promising. When the representative image is in the focal region,

it is enlarged and other images in the cluster are displayed as well. To remove the

overlapping, Alice increases the distortion factor or opens up another window which

will display all images in the area she is interested in with the overlapping removed.

Alice is sure that the image she is interested in is not there, so she hides them. She

continues exploring and "bingo", that's it. Alice sees the image she wants and several

similar images nearby. To find out if there are more similar ones, she issues a visual

query using the image she has found as an example.

The above scenario was written based on a real user's experience when looking for

an image in the MPEG-7 CCD of 5466 images using eyeMap integrated with a CBIR.

5.6 Conclusions

In this chapter, we proposed and formulated eyeMap - an image browsing framework

- for browsing large image databases. The philosophy behind the design of eyeMap

was to enable users to transfer their browsing behaviour in daily life, such as browsing

merchandise items, into browsing images. Daily browsing activities are possible and, to

a certain extent, enjoyable because someone has organised the items systematically and

shoppers can access the items. The development of eyeMap closely followed this daily
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browsing paradigm which dictates that the items must be organised systematically and

the embedded interaction is intuitive.

To satisfy the first requirement of this paradigm, it is essential to ensure that the

images are organised systematically by studying the layouts generated. The evaluation

of the layout depends on the type of image databases but because eyeMap is a browsing

framework independent of the type of image databases, it will be covered later in

this thesis. In this chapter, however, we describe Multidimensional Scaling (MDS), a

technique useful for deriving a layout for browsing. Chapter 6 discusses the evaluation

of colour features to establish which one is more suitable for browsing colour image

databases, while Chapter 8 establishes which texture descriptor is more suitable for

browsing grey-scale texture image databases.

The second requirement in the paradigm demands that users can interact with

the images intuitively. To comply with tins requirement, we first solve the problems

associated with browsing large image databases by clustering the images. Then, with

an intuitive user interface, users can access all images by using a DOD technique known

as the frustum display. DOD ensures that users can look at the trees without losing

the sight of the forest by displaying the images of interest in the focal region and other

images in the context region (overview). In addition, by using the focal region, users

can select some images to be displayed linearly (with the overlapping removed) in a

separate window or to be hidden.

The specification for eyeMap is complete and an implementation of eyeMap will

result in a fully functional system. A complete implementation of eyeMap is a powerful

browsing tool, but when integrated with a CBI system, it can be used to solve the Page 0

problem i.e. the problem of initiating a visual query without a sample image. The next

chapter discusses an implementation of eyeMap for browsing colour image databases

(colour-based eyeMap) including the selection of a feature suitable for browsing.

Colour-Based eyeMap: Browsing

Colour linage Databases

The previous chapter describes eyeMap as a concept for browsing any type of large

scale image databases on the assumption that suitable layouts for the image databases

already exist. As mentioned in the previous chapter, the issue of finding a suitable

feature for browsing image databases is unresolved and this is the contribution of the

research in this chapter. The purpose of this chapter is to establish which colour feature

is suitable for browsing general colour images by evaluating several colour features.

After resolving which features are more suitable for browsing, we develop a colour-

based eyeMap, a full implementation of eyeMap for browsing large scale colour image

databases. The colour-based eyeMap is integrated with a CBIR system so it can also

be used to find a sample image to initiate a visual query.

6.1 Feature Selection: Evaluation Method and Design

In generating layouts for colour image databases, it is essential that they are meaningful

to users because a random display does not promote browsing. As defined in the

previous chapter, browsing is made up of two parts: visualisation and navigation.

Visualisation is the part of browsing responsible for the layout of the images. The

purpose of this section is to determine which feature is more suitable for visualisation

by studying the layouts generated from different features using objective and subjective

evaluations. All layouts studied in this chapter were generated using the MDS algorithm

109
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as described in the previous chapter.

General colour images could be described using their colour, shape and texture

features; however, the use of shapes or texture requires image segmentation which is

unreliable when automated and time consuming when segmented either manually or

semi-manually. As mentioned in Chapter 2, colour-based feature extraction methods

can effectively extract useful features from an image without image segmentation, and

for this reason they remain popular. Rogowitz also found that colour features are often

sufficient to capture semantic information of images [116]. It was found in Chapter 4

that I-auto, a feature vector which incorporates the spatial relationships of colours, is

more effective than colour distribution methods. Nevertheless, the experiments in this

section were restricted to colour distribution features. I-auto is a complex feature vector

made up of more basic feature vectors, so the findings from the experiments usirg basic

feature vectors were used as a guide for deciding whether to use more sophisticated

feature vectors.

Unlike previous chapters, all experiments in tins chapter were conducted in only

CCD. This is not a disadvantage because the research from previous chapters suggest

that most results in CCD can be generalised to PC1^.

6.1.1 Evaluation Criteria

A layout is useful for visualisation if perceptually similar or relevant images are located

close to each other and perceptually different ones are located far apart. The first

condition can be measured using a variation of PR graplis called spatial PR graphs but

the second one can only be evaluated qualitatively by visual inspection. In retrieval,

the effectiveness of a feature only requires a comparison of PR graphs. In visualisation,

evaluation includes spatial PR graplis and a visual inspection.

Stress (5.1) is the function that the MDS algorithm optimises, so at first it seems

ideal to use Stress as another objective measurement. Often, it is used to measure

the quality of two layouts [25], but for this study it must not be used, as Stress is

only appropriate for measuring the quality of layouts generated by different algorithms
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using the same feature. This study evaluated layouts generated using different features,

so a comparison of Stress values is meaningless.

6.1.1.1 Spatial Precision and Recall Graphs (Spatial PR Graphs)

PR graphs described in Chapter 3 are frequently used to measure the retrieval effec-

tiveness of a CBIR system and can be adapted, to measure how closely relevant images

are clustered in the two dimensional (2D) layout [57, 114]. The adaptation process

involves first of all, generating a linear ranking from the 2D layout by calculating the

Euclidean distance between all images to the reference image, which is equivalent to a

query image in retrieval. Then, the images are sorted with increasing distance from the

reference image. Finally, the precision at each recall value is calculated: it is now the

same as calculating PR graphs (3.1). To differentiate these graphs from the traditional

ones, they are called spatial PR graplis.

The interpretation of spatial PR graphs for visualisation is similar to that of PR

graphs for retrieval in that the feature with the higher precision at the same recall

value is more desirable. Because of tins, initially it would seem that the feature with

the highest retrieval effectiveness is the most suitable one for visualisation. The validity

of this assumption was evaluated by comparing the spatial PR graplis and PR graphs

generated using the 50 images (same as the previous chapters) and all their relevant

images as references or queries respectively, in total 387 images.

The reason for using all 387 images is that spatial PR graphs are very sensitive to

the location of the reference image, as illustrated in Fig. 6.1 on the following page. Both

displays have exactly the same layout, and differ only in the reference image: image

1 is the reference image in layout A, but image 3 is the reference image of layout B.

However, the values of the spatial precision at the same recall for both layouts are very

different; for example, when recall is 0.5, the spatial precision for layout A is § but, for

layout B, it is §. This problem can be avoided by using each relevant image in turn as

the reference image, so the spatial PR graphs must include all the relevant images as

references. Because of this, the PR graphs must also include these images as queries.
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Two same layouts with different query imagu • Reference image

• Relevant image

• Irrelevant image
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(a) Layout A (b) Layout B

Figure 6 . 1 : The spatial PR graphs are highly sensitive to the location of the reference image.

6.1.1.2 Visual Inspection

Research in proximity visualisation often requires a visual inspection to find out if the

generated layout has a meaningful interpretation [9, 88]. Spatial PR graphs can only

capture how relevant images are organised, but not how the irrelevant or dissimilar

ones are organised. To visualise a collection of images, it is equally important to see

how dissimilar images are organised; however, this information can only be gathered

using visual inspection. A layout has a meaningful interpretation if it is not random.

Because the feature vectors capture colour content, the generated layout is not random

only if it, overall, conveys useful information on the colour arrangement. It means that

given two layouts, the one which appears less random is considered more contextually

meaningful, therefore, more suitable for visualisation.

6.1.2 Generating Layouts: Colour Features and Their Parameters

To determine winch colour feature is more suitable for visualisation, we evaluated

four colour features: colour histogram, colour moments, EMD-based colour signature

(EMDcs) and cumulative histogram. (Please see Chapter 2 for a description of these

features.) All except cumulative histogram have been used for visualisation - EMDcs

in [117]. colour moments in [84, 102, 122] and colour histograms in [46, 102, 113]. The

evaluation of histogram has another importance because it indirectly indicates if I-auto

is suitable for visualisation: I-auto also uses histogram. Because the size and complex-

ity of cumulative histogram is comparable to that of histogram, it was interesting to

Jl
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see if cumulative histogram could be used to generate a meaningful layout.

In database visualisation, the layouts will mostly be generated off-line but it was

interesting to see if it is possible to generate a layout more efficiently without sac-

rificing the quality. EMDcs has been extensively studied in [117], and it was found

that the computational cost of tins feature prohibits its use for generating the layout

on-line. Finding a layout is a computationally expensive process because the MDS

algorithm requires many iterations and a single iteration involves •^~1^ evaluations

of the dissimilarity metric, where N is the number of images.

All colour features were implemented in the HSV colour space. For histogram and

cumulative histogram, the colour space was quantised into 162 bins (18 x 3 x 3) as

recommended in Chapter 3. For colour moments, no quantisation is necessary and the

weight used was the one described in Chapter 2.

6.2 Results and Discussion

To determine which colour features we more suitable for visualisation, this section

discusses the results of the four layouts using the two evaluation criteria: spatial PR

graplis and visual inspection.

6.2.1 Spatial PR Graphs

The spatial PR graplis of the four layouts are given in Fig. 6.2 on the following page.

To show that the image arrangements in all layouts were not organised by chance, they

were also compared with a randomly generated layout. We can clearly see that the

image arrangements in these four layouts did not happen by chance, as they all have

In'gher spatial precision than the randomly generated layout. We can also see that that

cumulative histogram and colour moments are most effective i.e. more relevant images

are located closer to each other.

As stated earlier, it seems fair to assume that features rated highly in the spatial PR
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Spatial PR Graphs of CCD
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Figure 6.2: The spatial PR graphs of the four colour features on CCD and a randomly
generated layout.

graphs should also be rated highly in the PR graphs, Figure 6.3 shows the PR graplis

of the four features. Surprisingly, cumulative histogram and colour moments were rated

poorly in the PR. graplis. This shows that the assumption is untrue: it appears that

the advantage offered by colour histogram during retrieval is not transferred to the 2D

layout. The conclusion above is counter intuitive but we can explain it by discussing

the relatioiisliips between PR graplis and spatial PR graplis.

PR Graphs of CCD

1
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Figure 6.3: The PR graphs of the four colour features on CCD.

6.2.2 Relationships between PR Graphs and Spatial PR Graphs

The relationships between both types of graplis can be established by understanding the

similarities and differences of retrieval and visualisation (see Table 6.1 below). Their
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Similarities
The feature vectors of the images are the same.
The distances between the feature vectors are calculated using the same dis-
similarity metric.

Differences

1.

2.

3.

Retrieval
Purpose
To retrieve n most relevant images,
where n << A/\

Process
The retrieval engine only needs to cal-
culate the distance between the query
image to every other image hi the
database. It is a one to many relation-
ship and the degree of relationship is
M l.

Information
The retrieval engine only needs to
know how similar two images are and
if the images are different it is imma-
terial how different they are.

Visualisation

To browse A/* (all) images.

The MDS algorithm needs to calcu-
late the distance between every image
in the database with every other im-
age in the database. It is a many to
many relationship and the degree of
relationship is J

 2 •

The MDS algorithm needs to know
how similar two images are and if they
are different, how big the difference is.

Table 6.1: Similarities and Differences of Retrieval and Visualisation.

similarities are obvious and, on the surface, they indicate that results from the PR

graplis should correspond to the spatial PR graplis. However, experimental results

show otherwise. This finding is explained by examining their differences.

In a layout, the degree of relationships for an image with other images in a database

is defined as ^ 2~ ' (many-to-many). Because spatial PR graplis are calculated by

transforming the 2D distances in a layout into a linear ranking, the implication of

a many-to-many relatioiisliip is that spatial PR graphs are influenced by not only the

distance between the reference image to other images but also by the distances between

every image to every other image. In contrast, in retrieval, the degree of relationships

for an image to other images in a database is denned as ftf — 1 (one-to-many). Thus,

PR graplis are only influenced by the relationslups of a query image to every other
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image in the database. This explains why the results from traditional PR graphs are

not directly translated into spatial PR graphs.

6.2.3 Visual Inspection

Figures 6.4(a) to (d) on the following pages show the layouts generated using the four

colour features. For colour histogram, the layout appeal's random in many areas; for

example, green images are found in several parts of the layout. Besides that, the display

also appears cluttered around the centre' region.

For colour moment (see Fig. 6.4(b)), the layout appears somewhat random; for

example, blue images can be found on the top right and across the centre of the display.

It is interesting to note that colour moment is rated highly in the spatial PR graphs.

This confirms the observation made earlier that spatial PR graphs do not capture all

information about contextual meaningfulness.

For EMDcs (see Fig. 6.4(c)). the layout appears less random; dark blue images are

concentrated mainly in one corner, green images in another corner. It is also more

spread out compared to colour histogram but the centre of the display has a big hole,

thus wasting screen real estate.

For cumulative histogram (see Fig. 6.4(d)), the layout appears less random than the

histogram and colour moments. However, when compared with EMDcs, it appears a

little cluttered. In short, the layouts generated from EMDcs and cumulative histogram

are less random.

Visually inspecting a layout generated from large databases is less than ideal because

the degree of overlapping is so great that most images are invisible. This problem can

be avoided by also inspecting layouts generated using a small subset of the database.

To ensure that there is a wide range of images with enough visual similarity, the 387

images used for generating the spatial PR graphs are used for generating another four

layouts (one using each feature). These four layouts are shown in Fig. 6.5 on the

following pages.
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(a) colour histogram

Figure 6.4: Generated layouts using all images in CCD - 5466 images... continued on next
page.
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(c) EMDcs

(d) cumulative histogram

m.
Figure 6.4: ... continued from previous page.
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(a) colour histogram - CCD subset

(b) colour moments - CCD subset

Figure 6.5: Generated layouts using a subset of CCD made up of the 50 CCQ and all the
relevant images - 387 images... continued on next page.



120 Colour-Based eyeMap: Browsing Colour Image Databases

(c) EMDcs - CCD subset

(d) cumulative histogram
CCD subset

Figure 6.5: ... continued from previous page.
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For colour histogram in Fig. 6.5(a) and colour moment in Fig. 6.5(b). the layouts

still appear somewhat random. In colour histogram, predominantly blue, green and red

images can be found in many sections of the display. In colour moment, predominantly

blue, green and red images can be found in almost every quadrant of the layout.

For EMDcs (see Fig. 6.5(c)), the layout appears less random because predominantly

blue, green and red images each are concentrated only in a section of the display.

However, notice that the two castle images indicated in the red polygons are located

quite far apart from each other. This is because it is often impossible to represent the

distances faithfully in the low dimension, therefore some images appear to have been

misplaced (see Section 5.3 for more details). However, the number of misplaced images

is so few that EMDcs is, overall, still contextually meaningful.

For cumulative histogram (see Fig. 6.5(d)), the findings for EMDcs are also appli-

cable: the display appears less random and some similar images are located quite far

apart. It can be seen that some predominantly red images indicated by the red poly-

gons are located in two parts of the display but it is unfair to conclude that it is more

random than EMDcs because the cast le images indicated by the green polygon winch

were misplaced in the EMDcs are correctly placed here. In short, like EMDcs, the

number of misplaced images are so few that it is, overall, still contextually meaningful.

Cumulative histogram, however, has an advantage over EMDcs because it is more

efficient than EMDcs: it is simpler and faster to generate and evaluate. On an Intel

P4, 1.4 GHz PC running Linux, extracting a cumulative feature vectors takes 130 ms.

and calculating the distance between two feature vectors needs a negligible 0.004 ms.

Extracting features from the same image in EMDcs requires 620 ms, and calculating

the distance between two feature vectors takes between 0.5 ms to 6 ms. This means

that the use of cumulative histogram will speed up the time taken to find a layout.

6.2.4 Further Discussions on Contextual Meaningfulness

In this section, further analysis on each colour feature and the Stress function reveals

why some colour features are more contextually meaningful or less contextually mean-
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ingful than others. Colour moment is less contextually meaningful because extracting

colour features in each colour channel independently compromises the accuracy of the

colour description (see Section 2.1.1.3). The feature vectors, therefore, may not reflect

perceptual similarity of colours when there is more than one colour in an image.

From Section 5.3, we know that the MDS algorithms find a layout by optimising

the Stress function (5.1). Stress measures how well the layout in the low dimension

represents the distances between objects in the high dimension, therefore smaller values

are more desirable. Colour histogram is less contextually meaningful because it only

captures the similarities and dissimilarities of corresponding bins, not of different bins.

It was established earlier that contextual meaningfulness depends on how dissimilar

images are organised in the layout, so an MDS algorithm has to know how big the

differences are between two dissimilar images so that these differences can be reflected

in (5.1). the function it tries to optimise. For this reason, it is also important to know

the differences between different bins, otherwise the MDS algorithm fails to correctly

arrange the visually dissimilar images. Here is a very simple example to illustrate this

problem.

If we give the colour histogram feature vectors of four different single-coloured

images to MDS to find a layout, then, the MDS optimises the value of Stress, and it

will eventually converge to a layout with the lowest value of Stress. This, however,

does not imply this layout is contextually meaningful. Figure 6.6 on the following page

shows two layouts with four single colour images: (a) red, (b) dark red, (c) green and (d)

dark green. The colour in each image belongs to different bins, so the distance between

any two images is at its maximum i.e. 2. These original distances are reflected well in

the generated layout but not in the preferred layout; however, the generated layout is

less contextually meaningful compared to the preferred layout. In the preferred layout,

dark red is closer to red than it is to green or dark green: the arrangement is more

contextually meaningful than the generated layout. «-

The EMDcs feature, unlike histogram, can capture information from different colours.

For this reason, its layout is more contextually meaningful. For cumulative histogram,

-I*
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Generated layout Preferred layout

Figure 6.6: The problem of using colour histogram feature for proximity visualisation. The
preferred layout is more contextually meaningful than the generated layout.

although it is very similar to histogram, the layout generated using cumulative his-

togram is less random than colour histogram. This occurs because cumulative his-

togram considers the perceptual similarities of colours as explained in the following

simple example. Figure 6.7 shows the feature vectors of three single colour im&ges;

in cumulative histogram, the distance between the red and magenta images is 1 and

the distance between the red and cyan images is 3. In colour histogram, the distances

between all colour images would be 2. The layout generated using the cumulative

histogram feature is, therefore, less random than the layout generated using colour

ln'stogram.

Normal Histogram
Cumulative Histogra

Figure 6.7: In cumulative histogram, the distances between the feature vectors reflect the
perceptual similarity of colours; the distance between red and magenta images is one while the
distance between red and cyan images is three. In histogram, the distances between all images
are two.

To test the validity of the hypothesis that it is important to capture dissimilarities

from different colours, artificial colour images were created and three layouts were

generated based on histogram, EMDcs and cumulative histogram. Each colour image

contains only one colour so that it is easier to compare the randomness of the layouts.

The hue (H) was varied from 0 to 360 in increments of 5 degrees, the saturation (5)

and brightness (darkness or V) were each given values of 0.3, 0.6 and 1 giving a total

of 657 images. Three layouts were then generated using each colour feature and the
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results are given in Fig. 6.8 on the following page.

(a) colour histogram (b) EMDcs (c) cumulative histogram

Figure 6.8: Proximity visualisation using artificial images. The layout generated using colour
histogram is random, while the other two layouts are contextually meaningful.

It is clear that the layout generated using histogram appears random while others

appear less random. The artificial images in the layout generated using EMDcs are

organised into several sets of circles, and each circle is made up of images of different

hues having the same saturation and brightness. The layout from cumulative N^^erram

appears to suffer from two problems. First, it has only one dimension and second,

the most perceptually similar colours are at both ends of the line: the cumulative

histogram fails to capture the circular nature of hue. Because of these two problems,

initially, it appears that cumulative histogram is unsuitable for visualisation; however,

these problems are unnoticeable when used for real colour images as shown in previous

sections. In this display, it has only one dimension because there is only one colour

in each image. General colour images use more than one colour, and as a result, the

layouts for general colour images are comparable to those generated using EMDcs.

6.3 Implementations of Colour-Based eyeMap

Having established a suitable feature for browsing colour images, it is now possible

to implement colour-based eyeMap. eyeMap specification in Chapter 5 requires the

images to be clustered first before generating the layout. The question is which feature

should be used for clustering? In Section 6.2, we demonstrated that the more effective

feature vector for retrieval may not be the most suitable one for visualisation, but in
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clustering, we should use such a feature vector since it is more likely for the relevant

images to be in the same cluster. To solve these two conflicting requirements, we use

two feature vectors: I-auto for clustering and cumulative histogram for visualisation.

Colour-based eyeMap was fully implemented on a GNU/Linux Debian using C++

and FLTK graphical user interface [133]. Also, as recommended in the previous chapter,

the image format used in colour-based eyeMap is JPEG 2000. Screen shots of colour-

based eyeMap can be seen in Fig. 6.9 on the following page. The arrangement of

images is systematic because they are grouped by colour similarity. The context region

displays only the representative images in smaller size, whereas the focal region (within

the ellipse) displays all images in bigger size. Users can also display all images within

the focal region linearly without any overlapping in a separate window as demonstrated

in Fig. 6.9(b). Colour-based eyeMap is also integrated with a retrieval engine developed

using I-auto, which was described in Chapter 4.
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(a) The initial screen

- ...[.-| l-p-fi [ -T-T'ITI" "rUHIilMlfl*"""TfillTlTriiaKliniffi iTMM^ITMiMIITT -T"TitrrniMiiriV I Hi

(b) With linear display

Figure 6.9: Screen shots of colour-based eyeMap. Images in the focal region, within the red
ellipse (a), can be displayed linearly in a separate window (b).
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6.4 Conclusions

It Is important to evaluate the suitability of colour features for visualisation because

random display of images does not facilitate browsing. In this chapter, we established

which colour feature is more suitable for browsing colour image databases by evaluat-

ing four colour features for visualising colour ima^ databases: colour histogram, colour

moments. EMDcs and cumulative histogram. Experimental results showed that cumu-

lative histogram is most appropriate for visualisation because the location of relevant

images are close to each other and the layout is contextually meaningful. In addition,

the distance calculation between any two cumulative histograms is efficient, so using

this feature will speed up the process of finding a suitable layout for browsing.

This research also showed that the feature most suitable for retrieval may not be

suitable for visualisation. This finding has three implications. First, I-auto, although

found to be more effective for retrieval, is unsuitable for visualisation because it is

based on the colour histogram technique. Second, in the implementation of colour-based

eyeMap, I-auto was used for clustering the images whilst cumulative histogram was used

for generating the layout. The final implication is the retrieval engine integrated with

colour-based eyeMap should be built using I-auto because it has the highest retrieval

effectiveness.

Colour-based eyeMap has been implemented and is a fully functional system. Initial

experience, as described in the previous chapter, shows that eyeMap is promising as a

tool for browsing and solving the Page 0 problem. Its usefulness for these two tasks was

confirmed by evaluating an implementation of eyeMap against existing systems. The

next chapter discusses this evaluation of colour-based eyeMap against existing systems.
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Chapter 7

Usability Study of Colour-Based

eyeMap

Research in visualisation has largely centred on the development of new techniques. It

was only recently that the evaluation of the techniques was considered important [17].

The usability study undertaken in this research pioneers the evaluation of visualisation

for image browsing. Rodden and Combs et al. [26, 115] did not, strictly speaking, eval-

uate image visualisation systems because visualisation implies displaying large amounts

of data and in relation to image databases, large numbers of images. They evaluated

systems which display only one hundred or at most two hundred fifty images, while

eyeMap displays thousands of images. Thus, the main contribution of this chapter is

the testing of large image databases which has never been done before.

This chapter describes the evaluation of colour-based eyeMap and existing systems

for browsing and solving the Page 0 problem. The purpose of the study is to show

if eyeMap is better at solving the problems it is designed for, by comparing the per-

formance of colour-based eyeMap and existing systems in a usability study. Recall

that eyeMap is a browsing concept, so only the implementations of eyeMap (such as

colour-based eyeMap) can be tested and the success of the implementation indicates

the success of eyeMap. As mentioned in the previous chapter, the philosophy behind

the design of eyeMap as a concept for image browsing is to enable users to transfer

their daily browsing activity into image browsing; therefore, if eyeMap is better, then

users have successfully transferred that experience into image browsing. In addition,

the study provides insights into how humans search for images, and the findings are

129
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useful for designers of any image browsing or search programs.

7.1 Evaluation Methods and Design

Figure 7.1 on the following page shows different types of usability evaluation methods

and techniques [8]. Only some of these methods require users' participation, and they

include direct and indirect field studies; observation, attitudinal, and experimental

methods in £ laboratory setting; and collection of log files and market performance

for statistical analysis. Other methods are conducted without users' participations

and they include cognitive walkthrough, heuristic, and predictive models. To evaluate

eyeMap. we conducted a usability study on colour-based eyeMap using the attitudinal

and experimental methods (printed in blue).

For the attitudinal method (see Fig. 7.1), we collected users' attitude towards the

programs whilst in the experimental method, we collected their performance in using

the programs. The instructions for the evaluations were carefully controlled to ensure

that all volunteers received the same description by reading the instructions from a

written manuscript. The next sections describe the evaluation criteria, the systems

tested (existing ones and colour-based eyeMap) and the experimental design.

7.1.1 Evaluation Criteria

To evaluate if a program is useful for solving the Page 0 problem, we asked users to

search for a target image using the program. A program is considered useful for solving

the F<\go. 0 problem if users:

• can find the target image and;

• find it quickly;

• rate the program highly; and

• like to use the program.
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Usability Evaluation
Methods and Techniques
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Field
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Laboratory

user
based

1
direct

concui
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think aloud
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j
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1
log-files
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based

1 1
cognitive
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interviews, surveys

model
based

predictive
models
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|

experimental |
benchmarking,
physiological data

Figure 7.1: Different types of evaluation methods and techniques. Techniques and methods
printed in blue were used for evaluating eyeMap.

The first two criteria measure participants' performance in using a program, while

the last two criteria measure participants' perception of the program. The data for the

last two criteria was collected from a post experiment questionnaire, and a sample of

the questionnaire can be found in Appendix D. More discussion on the questionnaire

will be given in Section 7.1.3.1 when we cover the experimental procedures. The above

four evaluation criteria are also appropriate for measuring the usefulness of eyeMap for

browsing, so the same criteria will be used for that purpose as well.

To properly evaluate eyeMap, four programs were developed: two were based on

eyeMap and two were based on the traditional linear display. One eyeMap program did

not have visual query facility but the other one did. To use the visual query facility,

users performed a query-by-example by submitting a sample image to retrieve other
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images; this type of query is more commonly known as a visual query. The other

two programs developed for this study were based on the traditional linear display.

One program in this display did not have visual query whilst, the other one did. The

taxonomy of these four programs are given in Fig. 7.2. The programs using linear

laj'out, that is PI and P2, are the existing methods for browsing and for finding a

sample image to initiate a visual query. The only difference between Pi and P2 is P2

has visual query. The other two programs, P3 and P4, are based on eyeMap. and the

difference between these 1\vo programs is P4 has visual query. These programs are the

combinations of two factors: layout (eyeM^p or linear) and existence of visual query

(with or without).

Programs

Linear display
Existing methods

Visualisation display
eyeMap

Without Query With Query Without Query With Query

PI
Program 1

P2
Program 2

P3
Program 3

P4
Program 4

Figure 7.2: Four programs developed to carry out the usability study. Two programs use
linear display (PI and P2) and two programs use eyeMap (P3 and P4).

To resolve which systems are better for either of the two tasks, we compared which

factor is more useful in helping users in completing the tasks, and performed a statistical

test to establish if the differences were statistically significant. It means that for the

Page 0 problem, if P3 and P4 are found to be more useful, and if only the layout factor

is significant, then P3 is better than PI, and P4 is better than P2. This means eyeMap

with or without visual query is the best system for solvixig the Page 0 problem. If both

factors are significant, then only P4, eyeMap with visual query, is the best system for

solving the Page 0 problem.
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The same principles were also used for browsing, that is if P3 and P4 are found

to be more useful and if only the layout factor is significant, eyeMap with or without

visual query is the best system for browsing. If boch factors are significant, then only

P4, eyeMap with visual query, is useful for browsing.

The description of the evaluation criteria is now complete. The next sections de-

scribe the functionalities of each program.

7.1.2 Descriptions of Existing Methods and Colour-Based eyeMaps

Tha Program - PI

A screen shot of PI is given in Fig. 7.3 on the following page. The width and

height of the display covers the entire viewing area, and one screenful contains 108

thumbnail images of 64 by 64 pixels. The images are displayed linearly, one after the

other, and their order in the display is random. To view more images, users simply use

the scroll bar located on the display's right hand side; alternatively, they may use the

scroll wheel commonly found in the more modern mouse input device. They can also

view the images one at a time in full size by clicking on it and a separate window will

display the image in full size as seen in Fig. 7.3(b).

The Program - P2

As mentioned earlier, P2 is PI with an additional visual query function, so apart

from the visual query, it is exactly the same as Pi. To use the visual query, users

choose a sample image by clicking on one of the thumbnails. Then, to activate the

visual query, they select the visual query function using either a mouse to click on the

pull-down menu or a keyboard stroke as the shortcut. Figure 7.4 on the following page

shows screen shots of P2 before and after the visual query. Initially, the visual query

function returns 40 most relevant images to the query image but at any time, users can

modify the number of images to be displayed easily by using the pull down menu or a

keyboard stroke.

M
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m^fewmtem

(a) Linear display of images

(b) One image displaye<l in full size

Figure 7.3: Snapshots of 1 1 . The images are displayed one after the other, and the order of
the images is random. Users scroll the display to see more images.
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£l
^

(a) Linear display before visual query

1

(b) After visual query

Figure 7.4: Snapshots of P2. It is exactly the same as PI but it has a visual query function.
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The Program - P3

The functions of this piogram were described in the previous chapter, and the

screen shots for this program can be seen in Fig. 6.9 on page 126. Like PI and P2,

the display also covers the entire viewing area. In summary, the functions and their

implementations are given as follow:

• Visualisation display with focal and context regions, and the images are grouped.

For each group of images, a representative image is selected. In the context region,

the size of the images is 32 by 32 pixels and only the representative images are

displayed. In the focal region, the size of the images is 64 by 64 pixels, and the

non-representative images are displayed as well. In this study, the focal region

is initially located at the centre of the screen and none of the target images is

within this focal region.

• Moving the focal point to the area of interest with the mouse either progressively

by dragging, that is left or right press and move the mouse, or directly by clicking

on the area of interest.

• Removing of image overlapping can be done by:

— changing the distortion factor in either of two ways: firstly, by rolling the

mouse-wheel, then a small window pops up for two seconds to display the

current distortion factor; and secondly, by using the pull down menu.

- displaying the images in the focal region in a separate window (see Fig. 6.9(b)

on page 126). Users can also hide all images in this window so that they

will not be shown in the visualisation display. To show these images in the

display again, they click on an option in the menu bar. Similar to PI and

P2, in this window they can view the images in full size one at a time by

clicking on the thumbnail.

• Showing hidden images. Show all images which have been liidden.

I
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The Program - P4

P4 is an enhancement of P3, as it has all the functionalities in P3 as well as the

visual query function. This function is accessible from a separate window which displays

images in the focal region linearly. The screen shots for this program can be seen in

Fig. 7.5 on the following page. This figure shows the linear window before visual query

and aft 3r visual query. Like P2, the visual query function initially returns the 40 most

relevant images to the query image but users have the freedom to change this number

in the same way as in P2, that is, by either using the pulldown menu or a keyboard

stroke.

Summary of Programs

PI is the simplest as it has the least number of functions. In contrast, P4 is the

most complex as it has the most number of functions and most unfamiliar user interface.

Another way of looking at these programs is that a given program is the enhancement

of another. The programs can be enhanced in two ways, in terms of the image layout or

the visual query function. In other words, P3 is the visual enhancement of PI, while P4

of P2; likewise, P2 is the functionality enhancement of PI, while P4 of P3. These two

enhancements constitute the following two factors: image layout (eyeMap or linear)

and existence of visual query (with or without).

7.1.3 Experimental Design

The experimental design is Latin square or within-subjects, meaning that all partic-

ipants use all four programs to search for the same set of images. The independent

variables, variables fixed by experimenters, are target images and the sequence of the

programs. The randomisation of these two variables are given in Table 7.1 on the fol-

lowing page in which each row is unique. Programs are coded from PI to P4 and target

images in letters, so Pip means use PI (program 1) to practice. Pla meaas use PI to

search for image (a). The arrangement of images for all programs and target images

were generated off-line to ensure that all participants who use the same program to
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(a) With linear display before visual query

(b) After visual query

Figure 7.5: Snapshots of P4. The only difference, between P3 and P4 is that. P4 lias a visual
query function.
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search for the same image see exactly the same image layout. All target, images are

given in Fig. 7.6: (p) is the target image for practising and (a) to (d) are the four

target images for the tasks. The four target, images (a) to (d) w(.rc chosen 1o ensure

that they have different characteristics such as dark or bright colours, objects, animals

or humans. To choose these four images, we first randomly selected n number of im-

ages from both CCD and PCD. Then, we chose the four images out of these randomly

selected images to satisfy the criteria mentioned above.

Sequence of Programs and Target Images

1
2

3
4
5

6
7
8
<)

10
11
12

Program and

PlpPla
PlpPlb
Pip Pic
PlpPld
PlpPla
PlpPlb
P2pP2d
P2pP2a
P2p P2b
P2pP2c
P2pP2d
P2pP2a

P2p P2b
P2p P2c
P3p P3a
P3p P3b
P4p P4d
P4p P4a
Pip Pic
PlpPld
P.'ip P.3c

P3p P3d
P4p P4b
P4p P4c

image sequence

P3pP3c
P4pP4a
P2pP2d
P4pP4c
P2pP2b
P3pP3d
P3pP3a
P4pP4c
PlpPla
P4p P4a
Pip Pic
P3pP3b

P4p P4d
P3pP3d
P4pP4b
P2pP2a
P3pP3c
P2pP2c
P4pP4b
P3p P3b
P4p P4d
PlpPlb
P3p P3a
PlpPld

13

14

15

16
17

18

19
20

21
22

23
24

Program and

P3pP3c
P3p P3d
P3p P3a
P3pP3b
P3p P3c
P3pP3d
P4pP4b
P4p P4c
P4pP4d
P4p P4a
P4p P4b
P4pP4c

PlpPla
PlpPlb
P2p P2d
P2p P2a
P4p P4d
P4p P4a
Pip Pic
PlpPld
P2p P2b
P2p P2c
P3p P3a
P3p P3b

image sequence

P2pP2b
P4pP4a
PlpPlc
P4pP4c
PlpPla
P2pP2c
P2pP2d
P3p P3b
PlpPla
P3pP3d
PlpPlc
P2pP2a

P4pP4d
P2p P2c
P4p P4b
PlpPld
P2p P2b
PlpPlb
P3p P3a
P2pP2a
P3p P3c
PlpPlb
P2pP2d
PlpPld

Table 7.1: Programs are coded in numbers and target images in letters: p - practice, a to d
- the four target images (see Fig. 7.G). Pip means use PI (program 1) to practice, Pla means
use PI to search for image (a), that is fruits and flowers.

(p) garlic (a) fruits and
flowers

(b) fireman (c) monkey (d) girl

Figure 7.6: The target, image used in the experiments, (p) is only used in the practice trials
and (a) to (d) are used in the experimental trials. The names of the images are to aid discussions
only, participants were unaware of them during the experiment.
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7.1.3.1 Procedure

The experiment was conducted using a 17 inch CRT monitor. The task in the exper-

iment was to use the four programs to search for four target images after viewing the

images for ten seconds. By showing the target image for ten seconds, we hoped to sim-

ulate long term image memory [94. 136, 137]. The volunteers in this study used each

program once to search for a different target image. The reason for conducting only

one search in each program was to keep the total experimental time to about an hour,

because searching for two target images could take about two and a half hours. This

would not only discourage participation but would also affect the results due to fatigue.

The sample size was increased by using a better alternative, that is by involving more

volunteers. We decided that 24 participants were sufficient as each image would have

been searched for at least six times using each program. It was also adequate to ensure

that any variability between the images was averaged out. Note that 24 participants is

a large sample size compared to most usability studies [96, 111, 115, 116. 140]. Another

aspect that requires consideration is the manner in which the instruction is given to

participants.

Participants in software usability studies often feel that their abilities are being

judged and are consequently nervous [95]. To reduce this side effect in this study, we

decided to allow users to perform the task as long as they wanted to and to be able to

give up at any time. In addition, they wore also told that while they were performing

the task, they were not being visually observed. To further increase their confidence,

they were told that the purpose of the study was 10 evaluate the software programs,

not their abilities in using the programs.

At the start of each search, the target image was at first simultaneously displayed

for ten seconds in full size (256 by 256 pixels) and in thumbnail (64 by 64 pixels) because

participants, in general, prefer to look at target images in full sizes and in thumbnails

before searching [113]. The data collected included:

• the number of successful searches;
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• the time taken to find the target image or the time taken before they gave up in

case they did not find the target image; and

• all functions' usage, including the time at which they were invoked.

All participants received the same instruction, tried each function and had equal oppor-

tunity to practise. Nevertheless, there were some differences in the search techniques

or strategies because they were told to use the programs in any way they liked, that

there was no right or wrong way.

After finishing all trials, they completed a questionnaire and had the opportunity

to give further clarification verbally. A sample of the questionnaire can be found in

Appendix D. The answers to the questionnaire and comments are both quantitative

and qualitative. The quantitative data is useful for evaluating users' perception of the

programs and the qualitative data for explaining the quantitative results. The ques-

tionnaire includes questions such as how they performed the search, program ratings

using a five point Likert scale ranging from "strongly agree" to "strongly disagree".

differences in images and, lastly, the preferred searching method if there was any. The

last question was carefully phrased so that no one felt there had to be a preferred

method.

To evaluate the usefulness of eyeMap for browsing and solving the Page 0 problem,

the participants only needed to complete one task, that is, to find the target image.

The evaluation for browsing differed only in the definition of successful search and the

time taken to complete the successful search. For the Page 0 problem, successful search

meant being able to find the target image, and the search time was the time taken to

find the image. For browsing, on the other hand, successful search meant being able

to find an image similar to the target, and the search timo was the time taken to find

the similar image. The programs logged all functions and the time when each function

wiif invoked, so aftrr the experiment, we checked which images they had looked at to

determine if they lit,, iuund a similar image and when.

The description of the experimental design and procedures is now complete. The
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next section describes how to obtain the sets of images for performing the experiments.

7.1.3.2 Image Sets

The results from this experiment are meaningful only if the number of images is large

enough so that a manual search is tedious; however, there is no guideline or how many

is sufficient due to the lack of research in this area. Ideally, one would use a huge image

database of at least half a million images, but this is impractical because a large image

collection is not readily accessible to the majority of CBIR researchers. Collecting

images from the Internet is infeasible, for they are either copyrighted or too small to

be useful.

The combined size of the two image databases introduced in Chapter 3 i.e. CCD

and PCD, is about 16,000 images, and although bigger than most research in CBIR, it is

still too low for this experiment for the following reason. To ensure that no participant

is advantaged from being familiar with the images, it is essential that the image set is

unique for all trials, including the practice trial. With five trials, one practice trial and

four experimental trials, five image sets are required. This means that each image set

will have only 3,200 images. As a tradeoff between uniqueness and image set size, the

number of images for each set was increased to 5,000 using the following approach.

First, we reserved 7,500 images so that each set had 1,500 unique images. Then,

the remaining images were distributed across all five sets until each set reached 5,000

images. This distribution scheme ensures that each image in the database is used at

least once and no image appears in all sets. The number of images taken from each

database, unique and repeated, is proportional to the size of the database; for example,

PCD is about twice the size of CCD, and therefore, the number of unique images

drawn from PCD is about twice the number drawn from CCD. Finally, after creating

the image sets, the images in CCD require some preprocessing for the following reason.

The images in CCD are of different sizes, and they could be any of the following:

240 x 320, 256 x 384, 320 x 240, 352 x 288 or 384 x 256 pixels. On the other hand, the

size of all images in PCD are 256 x 256 pixels. To guarantee that users search behaviour
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is independent of the image size, the images in CCD were cropped to the size of images

in PCD as follows. It is fair to assume that the most important information is at thn

centre; hence, the edges were removed as illustrated in Fig. 7.7. The width of the

horizontal edges to be cropped = maa;(:Y~2
256,0) and the height of the vertical edges to

be cropped = max(y~2
256.0). where X is the width of the original image and Y is its

height. The final image sizes are now either the same or very close to those of PCD i.e.

256 x 256, or for images which are only 240 pixels wide or high: 256 x 240 or 240 x 256

pixels - these images are slightly smaller but the differences are unimportant because

they are visually undetectable.

to
en

256 pixels

Figure 7.7: An example of image cropping in CCD.

7.1.3.3 Pilot Study

Prior to the experiment proper, we conducted a pilot study involving four computer

literate students but ignorant as far as CBIR is concerned. The aims of the pilot study

were to:

• test if the instructions were clear;

• test if the questionnaire was properly designed;

• determine the number of images to be used in the experiment because the results

from the experiment are meaningful only if the task of looking for the target

image manually using PI is difficult; and

• uncover any unforeseen problems.

The results from the pilot study suggested that searching from 5,000 images is

sufficient for the study. The average searching time using PI is 11 minutes 53 seconds
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compared to P4 at 6 minutes 15 seconds: using Pi is nearly twice as slow. The task

using PI was also rated at 4.5 (with 5 being the most unreasonable task) compared to

P4 at 1.25. Also, two different participants gave up searching for the target image, one

when using Pi and the other when using P2.

As a result of the pilot study, three changes were necessary. First, the instructions

were reworded with jargon removed. Second, the questionnaire was modified slightly

because in the pilot study, the participants were confused when asked if the task was

realistic. We had to explain that "realistic" means if it is tedious, whether it, is a

reasonable task, something that they would like to do; therefore, realistic was changed

to reasonable to better reflect the intended meaning. The final change was to allow

participants to look at the target images whenever required because two participants

had forgotten what the two targets looked like (87.5% recall rate). Research in human

memory shows that human visual memory is unlimited but it is not 100% [94, 137].

This experiment requires a simulation of long term image memory, but not testing the

memory. It is thus reasonable to allow them to view the target images again.

7.1.3.4 Participants

Twenty four volunteers participated in this study. All of them were undergraduate

students or recent graduates from Monash University at the Gippsland Campus, with

the following demography: 25% female, 75% male, 67% Computing and 33% non-

Computing (Arts, Psychology, Easiness and Applied Sciences). The recruitment cam-

paign was campus wide but the respondents were mainly computing students. Two of

the participants have worked briefly on CBIR systems but were unaware of this project

before they were recruited. All participants had normal or corrected to normal vision

and normal colour vision (self reported). They were awarded with $8.00 meal vouchers

for participating in this study, and to avoid any bias, they were told we had developed

all four programs.

m
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7.2 Results and Discussion

The following sections present the results and analysis using the four criteria described

in Section 7.1.1. The participants are labelled from 01 to 24, and any references made

to their comments will be indicated using these labels.

7.2.1 Successful Search

As mentioned earlier, eyeMap could be used for solving the Page 0 problem and brows-

ing. This section discusses the experimental results on the rate of successful search of

all four programs: two programs based on traditional linear display (PI and P2) and

two programs based on eyeMap (P3 and P4). We will first discuss the results related

to solving the Page 0 problem, then results related to browsing.

7.2.1.1 In Solving Page 0 Problem

Table 7.2 provides a summary of the numbers of both successful and unsuccessful

searches for each program using each image - in total, the unsuccessful search rate was

24% ( <fy nooJ fail
T = §§). The profile plots in Fig. 7.8 on the following page show

v total no of search 96> * r °

the average successful search rate for each program • a higher successful search rate is

more desirable. They are useful for visual comparison because we can clearly see which

programs are better. It is obvious that having the visual query increases the chance

of finding the target images, that is, P2 is better than PI. and P4 is better than P3.

Similarly, having the visualisation layout also increases the chance of finding the target

images, that is, P3 is better than PL and P4 is better than P2. This means eyeMap is

better than the traditional systems.

Numbers of Failed and Successful Searches

fruits and flovers
fireman
monkey

girl
Total

PI
fail success

1 5

•2 4

1 5
1

!) 15

fail

2

0
0
;>,

f>

P2
success

4

6

6

3

19

fail
1

1
0

7

P3
success

5
1

5
6

17

fail
{)

2

0

0
o

P4
success

6

4

6

6

22

Table 7.2: A search is unsuccessful if the participant failed to find the target image (in red)
the total failed or unsuccessful rate is 23.9%.
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Figure 7-8: Profile plots for comparing the average successful search rate of PI, P2, P3 and
P4 in searching for exact images, which is the task for testing the programs in solving the Page
0 problem.

The analysis is then followed by hypothesis testing using a two factor Analysis of

Variance (ANOVA), as shown in Table 7.3, with the first factor being the type of image

layout (linear or visualisation), and the second being the existence of query function

(without or with). PI and P2 are both displayed in linear layout but P2 has visual

query. On the other hand, P3 and P4 are displayed in visualisation layout but D4 has

visual query. The null hypothesis, Ho, is that both factors do not significantly affect

the successful search rate. The impon ance of using hypothesis testing is as follows.

Rate of Successful Search - Page 0 problem
Results of Hypothesis Testing

Factor

.1 Type of Image Layout
2 Existence of Visual Query

P
*0.083
*0.057

* indicates significance at 0.1.

Table 7.3: Results of two factor ANOVA hypothesis testing.

In any study, two types of errors can occur: type I error for rejecting the Ho when it

is true and type II error for accepting the Ho when it is false. The P-value indicates the

probability of type I error occurring because "the P-value conveys much information

about the strength of evidence against Ho" [30. p309]. Rejecting an Ho at P-value of

0.05. therefore, means that tto re is a 5% chance of type I error occurring. The accepted

P-value is normally set at 0.05 to 0.1, depending on the seriousness of committing a type

I error. The purpose of conducting a hypothesis test, in this case, is to evaluate if the
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differences of the successful search rate are statistically significant. More specifically,

it is to confirm that the differences do not happen by chance but are strongly backed

by statistically significant evidence. The results of the test are given in Table. 7.3: the

P-values for the layout factor is 0.083 and for the visual query function is 0.057. This

indicates that Ho was rejected at 0.1 confidence level. This means P4, eyeMap with

visual query, is significantly better than all the other programs.

7.2.1.2 In Browsing

The second type of application for eyeMap is in browsing, which will be analysed as

follows. From Table 7.2, we observed that in P3, most participants gave up on fireman

and only one each gave up on f ru i t s and flowers and monkey. In tae questionnaire,

three out of five participants who gave up searching for fireman said that they could

see at least one image similar to the target. The participants in this study normally

enlarged the images to check if they had found the target; hence, we checked the

function logs to see which images had been enlarged to find out which similar images

they had found.

We found that all five participants who gave up on fireman found either visually

or semantically similar images, some of which are given in Fig. 7.9. So, from that point

of view, P3 did help them to find fireman. To be fair, we also checked the function

logs in PI and P4 - there is no need to check for P2, because all participants who had

to find this image using P2 found the target image. For both PI and P4, only one

participant found a similar image.

(a) Target (b) Visually similar (c) Semantically
similar

Figure 7.9: In P3, five participants gave up searching for image (a) but all five found other
similar images like (b) or (c).
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If the task was to be relaxed, that is users were only required to find a similar

image instead of the exact one, then it becomes a browsing task, and as mentioned

in the previous diapter, it is a more suitable task for P3. By redefining the task, the

number of unsuccessful searches using Pi is now eight, P2 remains the same at five,

P3 has two and P4 has one. The data was then reanalysed for tins relaxed task, and

the profile plots are given in Fig. 7.10 and the results of hypothesis test are given in

Table 7.4. The F-value for the laj'out factor is now 0.002 and for the visual query

factor, it is 0.328. Thus, the Ho for the layout factor was rejected at 0.005 confidence

level, but the Ho for the visual query factor must be accepted.
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Figure 7.10: Profile plots for comparing the average successful search rate of PI, P2, P3 and
P4 in searching for similar images, the task for testing the usefulness of programs for browsing.

Rate of Successful Search - Browsing
Results of Hypothesis Testing

Factor
1 Type of Image Layout
2 Existence of Visual Query

P
***0.002

0.328
*** indicates significance at 0.01.

Table 7.4: Results of two factor ANOVA hypothesis testing.

It is now clear that for browsing, arranging images in the visualisation layout is

more useful than using the visual query; however, when looking for the exact image

the visual query function is essential. Searching for the exact image in P3. wliicli has

no visual query function, is difficult because when users found images similar to the

targets in P3, they expected that the target images would be around the images they

had found. When they failed to see the target images at the expected location or

when the target images were not at the expected location, they were disappointed,

therefore, were more likely to give up. We mentioned in the previous chapter that it

is not always poss.:ile to place all images at the correct location. For P4, they could

issue visual queries using the sample images found, so they did not have to Visiy on the

visual arrangement alone. Consequently, P4 is the best for either browsing or finding

the exact image. From this analysis, we conclude that (1) eyeMap with visual query

increases the chance of finding the exact image and (2) eyeMap with or without visual

query increases the chance of finding similar images.

This completes the analysis on the effect of the two factors on the rate of successful

search. The next section describes the analysis of the effect of the two factors on

efficiency of search by analysing the time taken to find target images.

7.2.2 Search Efficiency

The raw data of the search time sorted by program and target image can be found

in Table 7.5 on the following page. To analyse the search efficiency, the response or

dependent variable is obviously the time taken to find the target image. What is less

obvious is how to treat the data when the participants did not find the target image.

We considered three options in treating such data but used only one. The first option

is to naively analyse those data with the assumption that it would take at least as long

as the time at which they gave up the search for the target image. The problem with

this approach is that these two times have different meanings. If a participant gave up

quickly, it indicates that the program failed to keep them r lerested in the task, so a

short give up time is undesirable. On the other hand, if a participant finds the target

image quickly, it indicates that the program helps them in completing the task, so a

short search time is desirable. It is clear that this option is unsuitable for analysing

search efficiency.

The second option for treating the missing data was obtained by consulting two

cognitive scientists from the Centre of Bionics Studies at Monash University, Dr Barry

Richardson and Dr. Dianne Wuillemin. They suggested that the data should be con-
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Search Time sorted by target image and program

fruits and flowers

fireman

monkey

gi r l

PI P2 P3 P4

2m 1.54 l m 2.47 Om 57.99 0m 19.30

2m 3.16 6m 26.45 lm 1.25 0m 27.57

2m 8.89 6m 41.03 lm 22.19 Om 35.46

ii:; r. 1 -..; in,p .in.-.: 3m 40.11 lm 29.30

5m 22.09 I'.!::, •.'.' vj \IN r ,v7'i 2m 13.63

14m 19.82 21m 39.77 10m 7.51 2m 26.33

•.I!;.-."..-.-'. l m 22.92 lm 26.95 3m 21.03

7m 51.83 3m 28.66 m i :i> 3m 46.15

8m 11.72 6m 12.83 'in ".J m. 10m 24.43

M i l ; ' j _'•.> 6 m 4 4 . 0 1 M . I l i> !:; \ ' ' , „ • , v , n :

17m 24.28 7m 35.79 l-Mn •_>> 7'i 13m 11.29

24m 5.78 8m 33.41 :C.iii !') in !'im vj.s;i

l m 35.77 Om 17.99 lm 50.98 l m 5.15

2m 10.53 Om 22.86 3m 27.47 2m 15.85

2m 47.81 Om 34.87 5m 10.03 3m 7.81

4m 3.81 l m 16.22 "m L'.v IT 5m 1.21

••in r.-,.:•,,, lm 27.57 8m 53.74 7m 4.46

7m 3.17 2m 38.51 19m 52.07 18m 13.56

:;in-r,;) s"i . - . m i l l ' ' Om 36.20 Om 37.84

v . n i c i 6m 36.99 l m 49.40 l m 25.26

5m 42.15 mi, i(>.vj 3m 56.74 2m 0.51

1 lm .'•-"'.; 12m 25.10 5m 10.37 2m 51.19

i lm . v . " i-m K7". 7m 2.95 8m 40.84

I.-MII ;!(! 7'» lym 2.13 8m 47.89 21m 30

Table 7.5: The time taken to find a target image or give up (in red).
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sidered as missing and be replaced by the average searching time of all participants

of that program because it is an accepted and commonly used approach by cognitive

scientists and experimental psychologists. This function is also available as an option

in the SPSS statistical package, so it is fair to assume it Ls also a widely used practice

in the research community. Nevertheless, we still had reservations about the use of the

almost blind average replacement.

We used the third option for treating the missing data, that is. to replace the missing

data with the maximum time taken in that program to find the target image. This

option is the most conservative approach compared to the other two. The justification

for using this option Is as follows. In experiments involving humans in which they have

to complete a difficult task and the response variable is the time taken to complete

the task, it is common to set a maximum time. When a participant fails to complete

the task, the value of the response variable is the maximum time set. Because we did

not set the maximum time, we could not use this approach, but we could predict the

maximum tolerable time in completing the task. The maximum tolerable time was

the maximum time taken to find an image using the program. Using this approach to

analyse the search efficiency is extremely conservative considering that a good program

is one that can keep users interested in the task. In spite of this, we decided to take

this approach because it is more justifiable than any of the other options.

Using the rule defined above, when a participant failed to find a target image, the

search time was replaced with the longest time taken in that program to find the target

image. From Table 7.5. it can be seen that for PI the longest time taken was 24 minutes,

for P2 it was 21 minutes 40 seconds, and for P4 it was 21 minutes 30 seconds. These

choices exceeded the longest time in unsuccessful search within the same program. For

P3, the time used to replace the missing data was 19 minutes 52 seconds, the second

longest time. The reason for not using the longest time is as follows. The longest

search time in P3 was 35 minutes from an unsuccessful search by participant 24, and

it is nearly 15 minutes longer than the second longest, which was used to replace the

unsuccessful search. Participant 24 used a most unusual search technique: instead of
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moving to the area where the image is most likely to be located, she moved to the

area where the image is least likely to be and started hiding the images. Such a search

tecluiique is logical but liiglily inefficient. This is evident given that the second longest

search time from another participant using the same program took only 19 minutes 52

seconds; although it is nearly fifteen minutes shorter, he found the target image.

For P4, the longest time was from participant 21 who refused to practise before

performing the task, even though slue was strongly encouraged to. After the experiment,

she indicated that she could not remember some of the functions, so did not use all

the available functions. This is why it took her much longer than other participants

to find the target. In this way. she was very different from most participants, so using

this search time to replace the missing data represents a very conservative approach.

The following sections first discuss the analysis of the results of the four programs

in solving the Page 0 Problem, theii in browsing. The nature of analysis on search

efficiency is quantitative, which is useful to objectively establish wliich program is

better. This type of analysis, however, reveals nothing about why some systems are

better than others. This explanation can only be obtained using the qualitative data

collected from the post experiment questionnaires and interviews. In this section, the

qualitative analysis will follow the quantitative analysis.

7.2.2.1 In Solving Page 0 Problem

The average search time taken for each program is given in the profile plots in Fig. 7.11

on the following page. It is clear that P2 performs better than PI, P4 better than P2

and P3, and P3 better than PI. Next, we performed a hypothesis test using a two

factor ANOVA. The Ho is that both factors do not affect the search time. The results

of the test can be found in Table 7.6 on the following page. The P-value for the type

of image layout is 0.009; hence, we rejected the Ho for the type of image layout. The

P-value for the existence of visual query is 0.106. Because this value is very close to

0.01. so we also rejected the Ho for the existence of visual query. This means P4 is

significantly better than PI, P2 and P3. while both P2 and P3 are significantly better
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Figure 7.11: Profile plots for comparing the search efficiency of PI, P2, P3 and P4 in searching
for exact images, the task used for testing the usefulness of programs for solving the Page
Problem.

Search Efficiency - Page 0 Problem
Results of Hypothesis Testing

Factor*
1 Type of Image Layout
2 Existence of Visual Query

P
***0.009

*0.106
*** indicates significance at 0.01 whilst * indicates significance close to 0.1.

Table 7.6: Results of two factor ANOVA hypothesis testing.

than PI. The results suggest that to search an image from a collection of 5,000 images,

(1) the use of visual query function tends to be faster but the improvement is not as

significant as using visualisation layout (eyeMap-based), and (2) eyeMap is significantly

better than existing systems.

7.2.2.2 In Browsing

As in the analysis of the rate of successful search in the previous section, we were also

interested in how each program performs if the task is relaxed, so that it becomes a

browsing task. Recall that the programs logged not only the functions used but also

the time at which the functions were used; so, we recovered the time at which a similar

image was viewed - the search time is then from the time when such image was first

viewed. The treatment for unsuccessful 'search is the same as before but because of

the redefinition, the maximum time for P I was now 18 minutes 30 seconds - it was 24

minutes. The maximum search times for other programs remain the same.
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The data was then reanalysed using this relaxed rule. The profile plots are given in

Fig. 7.12 and the results of hypothesis testing are given in Table 7.7. From the profile

plots, t is clear that the relationships of the programs' performance remain the same,

but the difference between the existence of the visual query factor is now smaller. The

P-value for the type of layout is now 0.012, and for visual query is 0.669. The Ho for

the type of layout is rejected with 0.05 level of confidence, but the Ho for the visual

query must be accepted. Thus, for browsing a collection of 5,000 images, the use of

visualisation layout is more efficient than visual query; that is, P3 is significantly better

than PI, and P4 is significantly better than both PI and P2. From this analysis, we

conclude that eyeMap is significantly faster than existing systems for finding the exact

images and for browsing.
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in

c
8
H

o

vg
s

800
700
600
500
400
300

Profile Plots

Linear

X

Layout
Visualisation

= Without Visual Query
= With Visual Query

Figure 7.12: Profile plots for comparing the search efficiency of PI, P2, P3 and P4 in searching
for similar images, the task used for testing the usefulness of programs for browsing.

Search Efficiency - Browsing
Results of Hypothesis Testing

1
2

Factor

Type of Image Layout
Existence of Visual Query

P
**0.012

0.669
** indicates significance at 0.05.

Table 7.7: Results of two factor ANOVA hypothesis testing.

Contrary to our expectation, the use of visual query does not significantly increase

the search efficiency and only visualisation layout does. The hypothesis test above

can only indicate the strength of evidence against Ho, but cannot explain why. Such

answers can only be revealed by analysing the qualitative data from post experiment
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questionnaires and interviews. We analysed two components which may have influ-

enced the search time. The first component was the usefulness of the visual query

and visualisation layout, and the second one was the search strategy used. These two

components are discussed in the next sections.

7.2.2.3 Usefulness of Visual Query and Visualisation Layout

Participants in the experiment had mixed feelings about the usefulness of visual query.

Ten of them thought this function was useful and expressed that the task seemed easier

because they only needed to find visually similar images instead of the exact one. On

the other hand, when the visual query did not return the expected image, they became

irritated. The comments from participant 03, 12 and 13 are given in the following:

03 With query, (I) expect that it would be easier but when I can't find the target

image, it becomes irritating.

12 . . . when doing a query, lots of similar images appear bu\. not the one I am

lookirig for. So, it can be hard to search as well.

13 / thought it would be easy with the query tool hut it wasn't. I am not sxLre why.

The truth of these statements can be seen in the search time for f ru i t s and.

flowers: the average search time in P2, excluding the failed search was almost nine

minutes compared to five minutes in Pi (nearly twice as long). We believe that the

search time was longer because of the over-reliance on visual query to find the target

image. As a consequence, when the visual query fails to return the expected image

because of the differences between low level features and human's perception (semantic

gap), the search time becomes even longer than for a manual search. On the other

hand, with P4. the visual query was not the only tool, the image layout was available

too. So, when the visual query does not return the expected results, users can fall back

on the image layout. From this point of view, the visualisation layout is also useful

for bridging the semantic gap. In fact, the visualisation layout is so attractive that

nearly all participants, 83% or 20 out of 24, indicated that the image layout in the
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visualisation view was useful:

01 . . . moved the "ellipse1' in the actual image set to a region I felt had a similar

colour composition to the set image. ... allowed quick search where we could

move straight to a region.

04 Scrolled around a similar colour then slowly looked through.

06 / used the focal point to get the images that looked the same then, went into

linear view and then if the target image was not there I used hide image then

used the focal point again.

09 I just go to the same colour mgion and find it.

15 Firstly, according to the target picture to locate one area and then use the mouse

wheel to clarify the picture.

23 When looking for fruits and flowers, can go directly to the red section.

However, grouping the images based on visual similarity can be a double-edged

sword: while it makes it easy to narrow down a search, it sometimes makes it harder

to find the target image among similar ones:

05 / was unsuccessful in this program. The colour grouping made it easy to pick

where to begin looking. I found MANY similar pictures using this pivgram but

could not find the target image.

13 Same colour in many pictures.

This explains why searching for monkey took longer in P3 and P4 than in PI or P2.

In P3 and P4, the target was surrounded by many images with similar colours, so the

participants found it hard to find. In PI , the images were not displayed by similarity

of colours and monkey was surrounded by images with different colours, so it stood out;

however, being able to narrow down the search area was more important because it,

overall, significantly reduces the search time.
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7.2.2.4 Differences in Search Strategies

Although all participants received the same treatment and had equal opportunity to

practice, there was some variability in the search strategies, which would influence the

search time. The strategy employed depends on several elements among which are

personal preference, programs and the functions of the program that users remember.

Because the functions provided in PI and P2 are more similar compared to P3 and P4,

it is fair to analyse PI and P2 together, then P3 and P4.

For PI and P2, the difference in the search technique appeared to rely on whether

users could extract salient features of the images. Those who could tended to scroll

quickly and their search techniques appeared to be more efficient. Nine participants

indicated that in PI or P2, they scrolled down fast and looked for the salient features

which could be colours or shapes (eight of them indicated it was colours):

06 . . . / used the scroll bar to sca7i the images. I looked for a similar overall colours

in the picture; for example, if the target image was a picture of a golf ball, I

would look for a white image.

07 Looked at the basic colour features of the target image and manually searched

the database for the corresponding image.

14 Remember the main feature of the image; for example, the curve of the water

then check one by one but not very carefully but just very quickly. When there

is a picture with similar curve, then I looked more carefully; for example, the

waterfall has the curve then I looked more carefully.

15 Look at whether it is blight or not and look more detailed later...

Those who did not utilise the significance of salient features reported that it was

very hard to concentrate on an image in the presence of many. Also, they preferred to

process.a small number of images at a time:
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02 Too many images on the screen. Can only concentrate on about a third of the

screen. (The) best way to scan is to take in a small chunk so the "program should

allow people to take in a small chunk at a time.

i '••, I scrolled through the images and tried to find images of similar colour and

texture. As there were so many pictures this was difficult as there was no way

to single out or group similar images.

23 Scroll down fast but can not remember anything. Can not "pay attention.

Their comments suggest that instead of looking for the salient features, they processed

the details of the images. Also, participants who could only process a small number

of images at a time suggested a page up or down function to bring a fresh set of

images each time. These observations suggest that there are differences in how humans

process image collections and the differences have an effect on the choice of tools, so

designers of image browsing or search software program must take these differences into

consideration. This completes the analysis on search strategies in PI and P2. The rest

of this section discusses the search strategies in P3 and P4.

P3 and P4 had the most functions and their user interface was less familiar; con-

sequently, some participants only realised how the functions might be used after they

had started the task:

08 Setting the magnification factor to 4 is very important since there is no query.

It is important to get as many pictums as possible in the linear mew.

11 Only realise how it might be used at the end that I could use hide images to

naivow things down. So it only get used towards the end.

13 Wlien I idealised I could use the linear view,... I tried to get... as many pictures

as possible in the focal region and used the linear view to search for it

17 It then occurred to me that pictures which did not fit could be hidden away
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21 Did not realise I can change the distortion factor ... tried grouping lots of images

at once.

This shows that the learning curve for P3 and P4 was relatively higher than for PI

and P2. but it paid off. as users could find the images faster. The comments from

participants 08, 13 and 21 suggest that when searching from a small number of images,

searching from linear view is more efficient and a smaller distortion factor (four to eight,

as indicated in the function log) is more useful than a high distortion factor - a smaller

distortion factor means that they can view more images linearly.

This completes the analysis on users' performance using each program. The next

two sections provide the analysis on how users perceive the programs.

7.2.3 Program Ratings

Table 7.8 on the following page shows the average rating of each program using a five

point Likert scale, with one being "strongly agree" and five being "strongly disagree"

- lower values are more desirable. In total, there are 10 statements: statements one to

seven are relevant, to all programs; statement eight is relevant only to programs having

the visual query function, P2 and P4; and statements nine and ten are relevant only to

programs with the visualisation display, P3 and P4.

The ratings for the first seven statements were subjected to a two factor ANOVA,

while the ratings for the last three were subjected to a single factor ANOVA. The Ho

for the first seven statements, H^~7- is that both factors have no effect on the ratings;

the Hg is that the layout factor has no effect on the ratings; and the H%~10 is that

the query factor has no effect on the ratings. The column p9uerw s\l0VfS fne p_Value

of the query factor. If HoUery is rejected, then the differences between PI vs P2, and

P3 vs P4 are significant. Likewise, the column play°ut shows the P-value of the layout

factor. If Ho
ayout is rejected, then the differences between PI vs P3, and P2 vs P4 are

significant.
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Statements

1 The task was reasonable

2 The program was easy to use

3 The program was enjoyable to use

4 The image layout helps me in decid-
ing where to start searching

5 The program made it easy to find
the target image

6 The magnification tool was useful

7 The magnification tool was easy to
use

8 Integration of visual query to brows-
ing query was useful

9 The focal/context view was useful

10 Being able to hide images was useful

PI

2.75

2.75

3.67

4.42

4.58

2.58

2.00

-

-

-

P2

1.92

2.08

2.42

3.42

2.75

2.08

1.71

1.71

-

-

P3

2.21

2.67

2.50

1.83

2.71

1.79

1.50

-

2.04

1.88

P4

,1.75

1.79

1.83

1.75

1.87

1.79

1.58

1.50

1.79

2.21

pquery

***0.006

***0.(10G

***0.0

***0.004

***0.00

**0.031

0.285

0.233

-

-

playout

0.141

0.487

***0.003

***0.00

***0.00

***0.005

*0.053

-

0.110

0.224

Table 7.8: A summary of the questionnaire using five point Likert scale, with one being
strongly agree with the given statement, and five being strongly disagree (** indicates signifi-
cance at 0.05 and *** at 0.01)

Statement 1: The task was reasonable.

The first statement is to gauge if the task was reasonable. It is one of the three

criteria for establishing if manually searching an image from 5,000 images is sufficient

to conduct the experiments. The other two are concerned with the rate of successful

search and search time, which were discussed and analysed in the previous sections.

We mentioned earlier that the experiments are sensible only if manually searching the

images are unreasonable but there is no guideline as to how many images would be

sufficient. The pilot study and the analysis of participants' performance using each

program in the previous sections indicate that 5,000 is sufficient for this study but we

were also interested to know if other users also felt the same.

In the experiment proper, P4 had the best rating at 1.75, followed by P2 at 1.92,

P3 at 2.21 and finally PI at 2.75. Coincidentally. this ranking is consistent with the

ranking of the rate of successful search when searching for the exact images; however,
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in this ranking, it appears that only the query factor is statistically significant, which

means that having the query function makes the task perceived to be easier. The results

suggest that searching from 5,000 images is sufficient for the study because PI is ranked

the lowest. In addition, the participants also complained about using PI to search for

an image:

08 / don't like Pjvgram 1. It makes me feel tired.

17 It is very tedious. Took four passes to find the target image.

24 The task was reasonable: being asked to find an image is a reasonable task but

it is actually very hard to find an image from so many images.

The rating for PI has considerably improved from that in the pilot study. It was

now rated at 2.75 instead of 4.5. An interview with the participants revealed that

they interpreted the statement differently: six participants gave a rating of one which

suggests they strongly agree with the statement but it may not reflect the truth because

half of them gave up. One of them said that if she had enough time she would have

found it, so from her point of view it. was a reasonable task. Note that there is no

maximum time limit to perform the task but she was unwilling to spend more than she

already had. Others thought that it was the image they had to search for that made

the task appear reasonable:

05 its a reasonable task to do given more time.

13 The picture was easy to find because of the colour I did not have to look at every

pictwv I just rieeded to locate the colour.

11 . . . / only had to look for a green background.

Statement 2: The program was easy to use.

The second statement evaluates how easy it is to use the programs. P3 and P4

have more functions than PI or P2, and Distortion Oriented Displays (DOD) is still
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an uncommon user interface. We expected that P3 and P4 would be rated harder to

use than P i or P2. Surprisingly, P4 had the best rating at 1.79. followed by P2. then

P3 and. lastly, PI. It. turned out that the participants also interpreted this statement

differently. They rated the programs based on how useful the programs were in helping

them to complete the task, or how much they liked the function or the type of display:

06 There isn't any tools to make the task easier. Not getting any help fivm the

computer. The user interface is easy to use but, the ease of use is rated low

because it is not a very useful program.

08 The program is not helpful so it's perceived to be mo-re difficult to use. Looking

at so many images is difficult.

11 Scrolling through heaps of thumbnail is difficult especially after playing with the

ellipse.

Accordingly, the ratings were very similar to that of the first statement, and only the

query factor is statistically significant.

There was only one participant who expressed that P4 is difficult to use and rated

P4 at four, but rated PI and P2 at, one:

03 With query, expect that it would be easier but when I can't find the target image,

it becomes irritating and there are a lot of functions and it is confusing.

Although mcrt participants interpreted the statement differently from what we in-

tended, it is still fair to conclude that most of them did not have any problems with the

user interface of P3 or P4, because if they did they would not have found the programs

useful and would have given them low ratings.

Statement 3: The program was enjoyable to use.

The third statement finds out how much they liked or disliked the programs. Again,

P4 was ranked highest, followed by P2, then P3 and, lastly, PI. Unlike the previous two
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statements, the differences in the ratings are now significant for both factors. We also

observed that the ratings for P2 and P3 were now very close, so it is fair to conclude

that the visualisation layout is just as attractive to users as the visual query.

Statement 4: The image layout helps me in deciding where to start search-

ing.

The fourth question establishes if users make use of image arrangement based on

visual similarity. As expected, P4 was ranked the highest, followed by P3, then P2, and,

lastly, PI. The effect of the layout factor was extremely «tfrong given that p'0?/0"* is

very small. This ranking is also reflected in users' comments: as mentioned earlier. 83%

of the participants indicated that they used the arrangement of the colours to narrow

down their search. Surprisingly, the query factor was also statistically significant: the

value of _p?ueri' is 0.004. The participants' comments reveal that it was the layout of

the query results that helped them in searching.

02 The query results layout helps me to concentrate better.

10 It docs and it doesn't. I can look for an image with similar colour content and

then use the visual query.

18 The layout fivm the query results window if useful.

Statement 5: The program made it easy to find the target image.

The fifth statement quantifies how useful the programs were, overall, in helping them

to complete the task. Again, P4 was ranked the highest, then P3, followed closely by

P2 and, finally, PI. Also, both factors are statistically significant. The participants felt

that the visualisation layout was just as useful as the visual query function in helping

them to look for the target image.
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Statements 6: The magnification tool was useful.

The purpose of asking the sixth statement is to find out how useful the magnification

tool is. This question is important because the images are displayed in thumbnails. It

is even worse in P3 and P4, because iii the context region, the images are only half the

size of the thumbnails in P i and P2. The participants thought the magnification tools

were equally useful for P3 and P4, followed by P2 then PI. Again, both factors were

statistically significant.

The reason that the tool is more useful in P2 than in Pi is bocause the search

strategy in P2 is slightly different from in PI. In PI, participants simply relied on

colours to search and only used the tool to check if they had found the target. In P2,

they tended to view the images in full size before issuing queries.

08 Use magnification tool to inspect the images more carefully because I need to

select one which has similar colour properties to do the visual query.

09 Use content to search for P2 but for Pi rely on colours no need enlargement

tool.

16 (Pl)Didn't use it a lot, not useful.

Statements 7: The magnification tool was easy to use.

The sev<-;;th statement finds out how easy it is to use the magnification tool. This

question is important for the same reasons as in statement 6. that is, the images are

initially displayed in thumbnails. Its ease of use in P3 and P4 was the highest, followed

by P2 and PI. This time, only the layout factor was significant. We are unsure why

the layout would make the tool easier or harder to use; it could be that, like the first

and second statements, the participants rated the ease of use based on how useful the

tool was.
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Statement 8: Integration of visual query to browsing query was useful.

The eighth statement measures how useful the visual query function is in P2 and

P4. P4 was ranked higher but the difference between the two is not. significant. This

means that visual query is perceived to be as useful whether it is in the linear layout

or visualisation layout.

Statement 9: The focal/context view was useful

The ninth statement evaluates if the functions specific to DOD are used differently

when the query function exists. The focal view was perceived to be more useful in P4

than in P3 because the search behaviour is slightly different when the query function

exists:

6 With P4, use the focal point to find a sample image. But for P3, mainly use the

linear view.

This difference, however, is only nearly significant at 0.1.

Statement 10: Being able to hide images was useful.

Similar to the previous statement, the purpose of this statement is to evaluate

if the functions specific to DOD are used differently when the query function exists.

Participants found that being able to hide images in P3 was more important than in

P4, but this difference is statistically insignificant. Some of them thought it was useful

but had forgotten about it until towards the end of the search. One participant did

not, use it at all until the next search, which was a P3:

11 Only realise how it might be used at the. end that I could use hide images to

narrow things down. So it only get used towaixls the end.

21 Doesn't use it much.
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Summary of Program Ratings

From the program ratings, it is clear that most participants benefited from the visual-

isation layout and enjoyed using such a program. They also liked the visual query and

expected that it would make their task easier but in reality this was not necessarily

true. An analysis of the successful search rate and search efficiency indicates that the

visual layout is, overall, the more important factor. The results show the importance of

verifying what users said against their performance. Some usability studies only asked

users what they felt without measuring their performance [152]; nonetheless, measur-

ing their performance only is insufficient because the information gathered from post

experiment questionnaires or interviews or both (as in this section) is much richer, for

it provides insights into users' thoughts.

7.2.4 Preferred Program

The last question asked was if the participants have any preference for any method,

and if they have, which one. Tliis question was carefully phrased so that users would

not think that they must have a preference. For this reason also, they were not asked to

rank the programs; nevertheless, it was still possible to gauge whether P3 was suitable

for browsing, because P3 is simply a P4 without the visual query: a preference for P4

would also mean a preference of P3 over Pi.

It was found that twenty participants preferred P4, one each for P2 and P3. and two

had no preference. There were two participants who could not find the target image

using P4, and one of them had no preference for any method while the other preferred

P4. We found it intriguing that he preferred a program in which he failed to find the

target image, so we asked him why. His reply was:

15 Even if I can not find the image using the softwaiv, there air, still some functions

that I can use...

Sometimes, users found the target image faster using another program, yet they still

preferred P4. Some of them suggested that they felt P4 helped them to find a sample
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image to start a visual query; for instance, participant 08 found the target image faster

in P2 than in P4, yet he still preferred P4. We asked him why and he replied:

08 The target image in P2 is very bright so it is easy to find a sample image. The

target image in P4 is not so obvious but the program helps me to find an image

to start querying.

The users' preference could also be explained in that they found the program enter-

taining thus did not feel that it took them longer. A recent study in psychology found

the estimation of time taken to perform a task is affected by the type of task and

scientifically proved that "time flies when you are having fun" [16].

The participant who preferred P2 did not like the image overlapping in P4. In fact,

several participants expressed their dislike of the overlap but they found that existing

tools helped them to tolerate it, and they still gained from the colour chart provided

in eyeMap.

17 Dislike the overlapping but hairing the query counter the effect of overlapping.

22 Much more seaivhing required than in Program 4- A- series of linear searches

were performed and the images hidden to make navigation using the ellipse

easier. Searnliing mainly colour based with the ellipse. The target was eventually

located inside a linear search.

Participant 21 is the only one who preferred P3. She used P4 before P3 and when

using P4, she did not practice it on her own; as a result, she did not remember all the

functions in the program and only realised this when using P3. This explained why she

preferred P3 over P4.

7.3 Conclusions

In this chapter, we showed that eyeMap is the best system for browsing and solving the

Page 0 problem by conducting a usability study on colour-based eyeMap and existing

systems. The study confirms that users can successfully transfer their daily browsing
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experience into image browsing using eyeMap because eyeMap has the (1) highest rate

of successful searches, (2) shortest successful search time. (3) highest program rating

and (4) highest preference. The first two criteria indicate participants* performance in

using eyeMap whilst the last two indicate their attitude towards eyeMap. Prom the

analysis of these criteria, it is appropriate to conclude that eyeMap is the best system

for browsing and solving the Page 0 problem. Also, eyeMap is useful for bridging the

semantic gap between human and computer because when the visual query fails to

return the expected image, users can explore the images using eyeMap to find visually

similar ones.

In addition, the evaluation study also provides insights into how humans process

images. We discovered that there are at least two different ways humans process images.

Some look for the salient features in the images and can process many images at a time.

Others look at the details of the images and can only process a small number of images

at a time; they also prefer to display a new set of images at one time instead of scrolling

to the next row of images. Further, we found that when searching from a small number

of images, lineai- search is most efficient but when searcliing from a large number of

images, users value grouping by visual similarity, as it helps them to narrow down their

search. These findings are important for the design of any image browsing and search

method.

eyeMap is a browsing concept suitable for use with other types of images as long

as the correct feature descriptor is selected; for example, it can be used for brows-

ing texture databases by selecting appropriate texture descriptors. The next chapter

demonstrates how to use eyeMap for texture images by focussing on how to use existing

texture descriptors for browsing, thus creating texture-based eyeMap.

Chapter 8

Texture-Based eyeMap:

Browsing Texture Image

Databases

The last two chapters concentrated on browsing general colour image databases, and

research showed that cycMap is the best system for browsing and solving the Page 0

problem. The prime reason behind eyeMap's success is that it enables users to transfer

their daily browsing behaviour into browsing image databases; therefore, image brows-

ing in eyeMap is intuitive. For this reason, the eyeMap framework can be used for

browsing not only general colour image databases but also other image database types

in the real world, such as those for texture i.e. textiles, carpets and wall papers.

The aim of this chapter is to show how eyeMap can be used for browsing texture

databases by evaluating two types of texture descriptors defined in the MPEG-7 stan-

dard. These two descriptors are Texture Retrieval Descriptor (TRD) for retrieval and

Texture Browsing Descriptor (TBD) for browsing. The purpose of the evaluation is to

establish which texture descriptor is more suitable for browsing. The research described

in this chapter is more than just an evaluation study; it also shows how to use TBD for

browsing, and then questions the validity of TBD as a feature for browsing. To date,

there has been no research which investigates how to use TBD for browsing.

169
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8.1 How to Browse a Texture Image Database

From Chapter 6, it is clear that the quality of the layout generated for display depends

on the input, into the MDS algorithm. So, to browse texture images, the input into

the algorithm is texture features (descriptors). The MPEG-7 standard defines two

types of texture descriptors: TRD for retrieval and TBD for browsing. Using TRD for

retrieval is straightforward but using TBD for browsing is less straightforward because

the browsing process is undefined. This section demonstrates how to extract TRD md

TBD from texture images and to generate layouts for browsing using these features.

We then studied the layouts to establish which one is more suitable for browsing using

the two evaluation criteria described in Section 6.1.1: the spatial PR graphs and visual

inspection. For convenience, from this point onwards in this chapter, unless specified

otherwise, database means texture image database.

8.1.1 Texture Retrieval Descriptor (TRD)

8.1.1.1 Feature Extraction

TRD is generated from the following process which consists of two steps. The first step

in this process is to convolve an image l(x. y) with a set of Gabor filters:

A'-l K-l

«=0 t=0
(8.1)

where I'mn is the filtered image at scale m, orientation n. K is the filter mask size, and

g*nn is the complex conjugate of:

9(x,y) =
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where W is the modulation frequency. The filter for scale m and orientation n is

obtained from:

5m,n(z,y) = a~my(x,y)

x = a~m(xcos9 + ysin9)

y — a~m {—xsinO + ycosG)

where a > 1 and 9 = fin. The frequency response of the texture at different scale and

orientation is captured by filters at different m and 9. The variables above are defined

as:

„ , (Uk\Jt=i

Wm.n = a'

2?ram(a - l)Ut

1 "M-
\27raXi,n,n

where M and Ar are the maximum number of scale and orientation. The values of the

constants are: Ut = 0.05, Uh = 0.4, K = 60. M = 4 and JV = 6.

The second step for generating TRD involves calculating the energy of the filtered

image at scale m and orientation n. The energy is simply the sum of magnitude of the

filtered image:
p-i<?-i

**».»= ££|4>.V) I (8-2)
x=0 y=0

where P and Q are the image width and height. The response of the texture at each

scale and orientation can be sununarised as the ratio of the energy at each scale and

orientation to the sum of energy at all scales and orientations (8.3), and the feature
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vector is (8.3) at, different, scales and orientations (8.4).

%Em.n =

ITRD = 3.5

(8.3)

(8.4)

The distance between two TRD feature vectors is calculated using a dissimilarity metric

such as Ll or Earth Mover's Distance (EMD) proposed by Rubner [117]. The next,

section describes how to derive a layout using TRD.

8.1.1.2 Deriving a Layout Using MDS

With any MDS algorithm, it is possible to derive a layout if the distance between any

two objects are known. As described in the previous section, it is possible to calculate

the distance between two textures using TRD, so it is possible to derive a layout using

TRD. As in Chapter 6. the MDS algorithm used is the one defined in [88]. In TRD,

there are three options used for generating a layout using MDS and w» studied all

three options in this experiment. The first option for generating a layout is by using

the EMD dissimilarity metric to calculate the distance between TRD feature vectors

Q and X. Rubner suggested that EMD can be used to calculate two texture feature

vectors by redefining the ground distance dij as [117]:

d{(mQ,ne),(mx,nx)) = Am-fAn

Am = \mQ - m2\

An = roin(|nQ - nx\, N - \nQ - nT\)

where mQ and m1 are the m scales from feature vectors Q and X respectively, while

n^ and n J are the n orientation from feature vectors Q and X respectively.

The second option for generating a layout is by using the Ll dissimilarity metric

instead of EMD. The problem with EMD is that it is computationally expensive. Cal-

culating the distance between two feature vectors using EMD on an Intel P4, 1.4 GHz

PC running Linux 2.4 takes 0.28 ms. Using Ll, it takes a negligible le~7ms. If we are
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calculating only two feature vectors, the speed gained by using Ll is unimportant but

the MDS algorithms need to calculate the distances many times (—' 2~ ' times), and

this needs to be done iteratively until a suitable layout is found. In this case, using Ll

will speed up the process of finding a suitable layout.

The third option for generating a layout is by modifying %Em,n(8.3). The reason

for investigating this option is because in Chapter 6, the colour histogram does not

capture the differences across different bins, and consequently, the generated layout

appears random. For this reason, TRD potentially has the same problem if it fails to

capture the differences of energy across different, scale and orientation. This problem

can be illustrated with the following simple example. Assume that the feature vectors

are generated from niters of two scales and two orientations, so the feature vector is

(%£o,o.%-£b,h%-E'i.o>%-E'i,i)- Also assume that all three texture images (A. B and

C) respond to only one filter; thus, fxRD = (1.0.0,0); fjRD — (0,1.0,0); and fjRD =

(0,0,0.1). The distances between A and the other two images are Ll(A,B) is 2 and

Ll(A,C) is also 2; however, differences of energy' from the same scale and orientation

(between A and B) should be less than differences from different scale or orientation

(between A and C). EMD, unlike Ll. can correctly differentiate dissimilarities of en-

ergy from the same scale and orientation to those from different scale or orientation:

EMD(A.. B) is 1 and EMD(A, C) is 2. Unfortunately, it is computationally expensive;

thus an alternative solution should be considered.

One alternative is by accumulating %E in the same way we have accumulated the

colour histogram (see Section 2.1.1.1 on cumulative histogram). This texture feature

vector is known as fCTRD where c stands for cumulative. By using cTRD, the feature

vectors now become f^rRD = (1,1,1,1); J^TRD ~ (0,1.1,1); and /frfl£) = (0,0,0,1). The

Ll dissimilarity metric can now capture the differences between the feature vectors

more accurately: L1(A.B) is 1 and L1(A,C) is 3.



174 Texture-Based eyeMap: Browsing Texture Image Databases

8.1.2 Texture Browsing Descriptor (TBD)

The previous section discussed three options for using TRD to generate layouts for

browsing. This section describes the relationship between TRD and TBD, and explains

how to use this feature for browsing.

TBD is also extracted from the convolution of the image with Gabor filters as de-

scribed iu Section 8.1.1.1. The relationships between both features are given in Fig. 8.1

on the following page; for a detailed description of TBD, please see [72][p214-223|. The

TBD feature extractor transfonns a set of filtered images into feature vectors under-

stood by human, by extracting three texture properties: regularity or structuredness,

coarseness, and directionality. TBD is formally defined as:

fTBD = [vi,V2.,V3,V4,Vs] (8.5)

v\ € {1 , . . . , 4}: four classes of texture which describe the regularity or structuredness

of the texture with higher value being more regular or structured.

^2) ^3 £ {1; • • •. 6}: two dominant directions of the texture; it is vague what v% means

if there is only one dominant direction. TBD was derived from Gabor filters with

6 orientations, so the maximum value of V2 and v$ is 6.

U4,i>5 €f {1 , . . . ,4}: quantised dominant scales of the texture along the two main domi-

nant directions with higher value being coarser.

Although the browsing feature is defined in the MPEG-7 standard, the browsing

process is undefined in the standard, so it is unclear how to use TBD to browse a

database because the monitor is a two dimensional medium and TBD is a five dimen-

sional feature vector. To display the images on a two dimensional medium, the vectors

must be reduced to two dimensions as well. This can be done either by using MDS or

by selecting only the more meaningful features. These two techniques are described in

the next sections.
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Figure 8.1: Relationship of TRD and TBD.

8.1.2.1 Deriving a Layout Using MDS

The input to the MDS algorithm is TBD. The distance between any two TBD feature

vectors A and B is LI (A, B) with some modification for V2 and vs to take into account

the circular nature of orientation:

(8.6)

(8.7)

8.1.2.2 Deriving a Layout by Feature Selection

Another possible method of reducing the number of dimensions is to use only the

more meaningful features. The dominant directions (v2 and V3) can be discarded for

three reasons. First, unstructured textures do not have dominant directions. Second,

perceptually similar textures which have been rotated would have different dominant

directions, and they would have been considered different which is incorrect. Third,

the structuredness measure, v\, to a certain extent already encodes information about

directionality. The scale information. U4 and i>5, can be reduced to a single value

by adding them up. Eventually, the feature vectors are in two dimensions: v\ and

scale = V4 + i>5 •

The values of v\. v*. and U5 given in (8.5) are obtained from a very coarse quan-
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tisation process, so if these values are used, then the maximum possible number of

combinations is only 28 i.e. 4 levels of regularity x 7 scales (2...., 8). Using the quan-

tised values is clearly insufficient for browsing, so we used the values before quantisation

with scale being the x axis and v\ being the y axis, where a higher value of x means

the texture is coarser, and a higher value of y means the texture is more structured.

We implemented TRD and used the program in [72] to extract TBD, and generated

five layouts to determine which feature is more suitable for browsing. The next section

describes the experiment set up and evaluation criteria.

8.2 Experimental Setup and Evaluation Criteria

A summary of the layouts studied in this chapter is given in Fig. 8.2. In total, five

layouts were generated: three using TRD and two using TBD. All three TRD layouts

(MDS-EMD, MDS-L1 and MDS-Cum) and one TBD layout (MDS-TBD) are generated

using MDS. Note that there is no need to generate the layout for TBD when we select

only the meaningful features because the feature vectors are already in two dimensions

- this layout is called 2D-TBD. For TRD, the feature vector is rotationally normalised

using the circular shift algorithm described by Zhang et al. [160]. Because the TBD

feature itself was derived from Gabor filters, to ensure that all parameters are the same,

we modified the filter mask size (K) to 60 as opposed to 80 as defined by the MPEG-7

standard. A detailed study on the choice of filter mask size (K), number of scale (A/)

and orientation (N) is given in [21j.

Multidimensional Scaling
(MDS) Feature Selection

Texture Retrieval Descriptor
(TRD)

Texture Browsing Descriptor
(TBD) (2D-TBD)

(MDS-EMDj ( MDS-Ll) (MDS-Cum) ( MDS-TBD)

Figure 8.2: The five layouts studied in this chapter. Three layouts were generated using TRD
and two using TBD. One layout from TBD was generated using MDS and the other one by
selecting only the more meaningful features.
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The experiments were conducted on the Brodatz texture database, which contains

1852 images, commonly used by the texture retrieval community [117, 71, 160]. The

images in the database were derived as follows. Initially, there were 112 images of

512x512 pixels; then, each image was partitioned into 16 sub-images of equal size. In

addition, 60 images were created by rotating existing images. The sub-images from

the same original texture form the relevant images, and their names have the format of

dxxx-xx. The first letter is common to all images, and the first three digits indicate the

texture type numbered from 1 to 112 - relevant images have the same number. The last

two digits indicate the sub-images ranging from 00 to 16, and sub-images numbered 16

are rotated textures.

The two evaluation criteria described in Section 6.1.1 are also applicable here. To

recap, they are spatial PR graphs and visual inspection. For visual inspection, instead

of looking for arrangement of colours, we would be looking for the arrangement of

textural properties such as scale, directions and structuredness.

8.3 Results and Discussion

This section compares each layout using the two evaluation criteria i.e. spatial PR

graphs and visual inspection.

8.3.1 Spatial PR Graphs

Figure 8.3 on the following page shows the spatial PR graphs of the five layouts. To

show that the five layouts generated were not arranged by chance, we compared their

spatial PR graplis with the PR graph of a randomly generated layout. It is clear

that the five generated layouts were not arranged by chance as they all have higher

spatial precision than the randomly generated layout. It is also clear that both MDS-

EMD and MDS-Ll have much higher spatial precision, indicating that in both layouts

relevant images are located closer to each other. The graphs also suggest that although

the spatial precisions of MDS-TBD and 2D-TBD are very low, they are not random
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8.3.2 Visual Inspection

The previous section contains the comparison of each layout using

spatial PR graphs. In this section, we compare the performance

of the layouts by visually inspecting each layout. Figures 8.4 to

8.8 on the following pages show the layouts of the Brodatz tex-

ture images in MDS-EMD, MDS-L1, MDS-Cmn, MDS-TBD, and

2D-TBD. Each layout will be discussed in the following sections.

8.3.2.1 MDS-EMD Layout

For MDS-EMD (see Fig. 8.4), the layout appears meaningful. MDS

does not identify which are the axes nor what they mean, so to

understand the layout better, we added some "virtual axes" by in-

specting the layout. We use dashed lines to plot the virtual axes in

order to differentiate them from the null axes used in 2D-TBD. The

layout appears meaningful because textures made up of fine tex-

tons are located correctly as identified by the scale axis, where the

larger value of scales moans coarser texture. The other axis seems

to indicate the strength of dominant direction(s), and the value

increases in the direction of the arrow. When the value is small,

the toxturoi have only one very clear dominaj't direction, and as

the value increases, the second direction, though not strong, starts

appearing i.e. bricks texture. When the value is large, the textures

have two very strong dominant directions. In between the two ex-

tremes, the textures do not have a clear single dominant direction:

they are unstructured. This observation is true except for some in-

correctly placed textures (outliers), which are enclosed within the

dotted polygon. The outliers are so few that the layout is, overall,

contextually meaningful. After visually inspecting all layouts, in

Sw.tion 8.3.2.6 we explain why tins group of textures arc placed

incorrectly.

8.3.2.2 MDS-L1 Layout

For MDS-L1, in Fig. 8.5, the layout also appears leas random.

It could ovon bo argued that it is bettor than MDS-EMD as it is

more spread out. Also note that the group of problematic textures
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in EMD an; also located i correctly in this layout, and this will also

be analysed in Section 8.3.2.6 after visually inspecting all layouts.

The use of LI for TR.D appears to have no adverse effect on the

layout and this could be explained as follows. The example given in

Section 8.1.1.2 which illustrates the problem of using LI for TRD,

is an extreme case as it Ls assumed that each texture responds to

only one filter. In reality, a homogeneous texture convolved with

filters of four scales and six orientations responds to more than one

filter, so it lias a different physical meaning to that of colour his-

togram. Colour histogram measures how many pixels each bin has,

and %E measures how strong the response of the texture is at each

scale and orientation.

8.3.2.3 MDS-Cum Layout

For cumulative %E in Fig. 8.6, it is only possible to assign meaning

to one axis i.e. the scale, and it is unclear what meaning the other

axis conveys. Overall, this layout is less contextually meaningful

compared to MDS-Eh'TD and MDS-L1. It is leas contextually mean-

ingful than MDS-L1 because, as explained earlier, %E has different

physical meaning to that of colour histogram. Consequently, accu-

mulating the energy to the next scale and orientation destroys the

orientation information.

8.3.2.4 MDS-TBD Layout

For MDS-TBD (see Fig. 8.7), it is difficult to extract any meaning

from the display as the images seem to be placed randomly. We

hypothesise that this happened because the dominant directions, as

mentioned earlier, arc sometimes meaningless: both i>2 and V3 are

meaningless if the texture is unstructured, and V3 is meaningless

if the texture has only one dominant direction. If this hypothe-

sis is true, it means that in 2D-TBD, the layout of textures which

have two doimnnnf, directions will be meaningful. The truth of this

hypothesis is examined by visually inspecting the 2D-TBD layout.
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8.3.2.5 2D-TBD Layout

For 2D-TBD (see Fig. 8.8), the x axis is the scale and the y axis is

the structuredness of the texture (the values of both x and y axes

increase in the direction of the arrows). The bottom left quadrant

of the layout is meaningful in that it consists of small scale and

structured textures. As the texture becomes unstructured, the lay-

out loses its meaningfulness; for example, on the top left, several

images look rather coarse yet they are located in close proximity to

textures which are very fine. In fact, the top half of the layout does

not conform with visual perception at all: it is contextually mean-

ingless and similar textures appear scattered. However, compared

to MDS-TBD in Fig. 8.7, 2D-TBD is more contextually meaning-

ful. It. appears that, removing the dominant directions has slightly

improved the layout. This confirms the hypothesis that the domi-

nant directions which are sometimes meaningless cause the display

to appear random. The scale estimation algorithm relies on the

correct detection of the two principal directions to estimate the

value of scale. Because unstructured texture does not any have

principal direction, as mentioned hi Section 8.1.2, the estimated

scale is unreliable.
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8.3.2.6 Outliers in MDS-EMD and MDS-Ll

The previous sectioiLs discuss the comparisons of the five layouts us-

ing visual inspection. We found that both MDS-EMD and MDS-Ll

are, overall, more contextually meaningful; however, a small num-

ber of texture* in MDS-EMD and MDS-Ll are placed incorrectly.

This section explains why these textures are placed incorrectly.

The group of textures placed incorrectly, outliers, in MDS-EMD

and MDS-Ll within the polygons (see Fig. 8.4 and 8.5), belong to

texture type d50. This happened because Gabor filters sometimes

fail to accurately capture texture properties, hence visually dissim-

ilar textures sometimes have similar feature vectors. This means

that occasionally, visually dissimilar textures are considered more

similar than visually similar textures regardless of which dissimi-

larity metrics are used.

To demonstrate this problem, Table 8.1 on the following page

shows the EMD distances of all 17 textures belonging to texture

type d50. Although they belong to the same texture type, their

distancas are non-uniform; for example EMD(01,02) is only 0.08

but EMD(01,00) is* 1.18. To highlight the distances >= 0.9, they

are printed in red. The EMD distance between the outliers in

the MDS-EMD layout (that is, 01, 02, 03, 06, 07, 11, 13, 14, 15)

and texture 00 arc: all >= 0.9. Yet, the EMD distances between

these outliers and their nearby textures in the layout, which are

visually different, are < 0.7 (see Table 8.2). As EMD(d50-01,

d20-ll) < EMD(d50-01, d50-00), IMIHCA on the, ftuitiuv vectors,

d50-01 is considered more similar to d20-ll than it is to d50-00.

Thus, MDS placed it close to d20-ll. The same observation can

be made for the other outliers as well.

The outliers in MDS-Ll (see Fig. 8.5) were placed incorrectly

for the same reason as above. The LI distances between the outliers

(that is, 01, 02, 03, 06, 07, 11, 13, 14, 15) and texture 00 are all

> 0.6, and they are highlighted in red in Table 8.3. Like their

EMD distances, although they belong to the same texture type,

the L\ distances are also non-uniform: Ll(01,02) is only 0.07 but

LI (01,00) is 0.98. However, the distances between 01 and nearby

textures in the MDS-Ll layout, which are visually dissimilar, are

all < 0.6 as given in Table 8.4. As in EMD, Ll(d50-01,d20-ll)

< Ll(d50-01,d50-00) so judging from the feature vectors, d50-01

is more similar to d20-ll than it is to d50-00. Therefore, MDS

placed d50-01 close to d20-ll. The same can be said for the rest

of the outliers.
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8.3.3 Summary and Implications

Based on both evaluation criteria. TRD using EMD and I I (MDS-EMD and MDS-L1)

are most suitable for browsing because they have the highest spatial precisions and

their layouts are most contextually meaningful. This rinding is interesting because it

shows that TBD, which is designed for browsing, is less suitable for browsing than

TRD.

Another way of looking at the TBD feature extraction method is that it is a type of

dimension reduction technique, much like MDS algorithms, but it is a very specialised

one. It reduces the original data in the high dimensions into low dimensions which

have defined meanings. Other types of dimension reduction techniques, such as MDS

algorithms, are generic in that they reduce the original data into a set of low dimensions

without knowing the meanings of the low dimensions (generic). It turns out that this

genei'ic approach is more useful than the TBD feature extraction method because it

successfully discovers prominent texture features.

8.4 Conclusions

This chapter extends the use of eyeMap to browsing texture image databases by evalu-

ating the layouts generated using different texture features. It described two methods

for generating layouts for texture images using two texture descriptors defined in the

MPEG-7 standard: Texture Retrieval Descriptor (TRD) and Texture Browsing De-

scriptor (TBD). The layouts were then subject to quantitative and qualitative evalua-

tions. This study is more than just an evaluation because it also demonstrated how to

use TBD for browsing and questions the validity of using TBD for browsing.

We conclude that TRD is more suitable than TBD for browsing. Because the phys-

ical meaning of energy is different from that of histogram, TRD can be used without

accumulating the energy of each scale and orientation. In fact, doing so destroys the

orientation information. Both EMD and LI are valid distance metrics for MDS al-

gorithms as the qualities of the generated layouts are comparable. It could even be

§8.4 Conclusions 193

argued that the layout generated using LI is better than that of EMD because it is

more spead out. However, if speed is a concern, LI should be used because EMD is

more computationally expensive.

The study also found that, the dominant directions features in TBD are inappropri-

ate for browsing, and only the scale and structuredness features are useful for browsing.

By removing the dominant directions, TBD is good for browsing only if the textures

are structured. The implication of these findings is that MDS. a generic dimension

reduction technique, is more accurate than the TBD feature extraction method, a

specialised dimension reduction technique, for discovering texture features because it

succeeds where the TBD feature method fails.
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Chapter 9

Conclusions

9.1 Summary of Main Findings

The research reported in this thesis aimed to bring CBIR systems one step closer to

real work! applications by improving the effectiveness and efficiency of colour-based

feature extraction methods, as well as by improving retrieval methods by formulating

a framework to facilitate users for browsing and finding a sample image to initiate a

visual query. This section summarises the research that contributes to this goal.

The research for improving the effectiveness and efficiency of colour-based feature

extraction methods started in Chapter 3. In this chapter, we answered the most fun-

damental question, that is which colour space is most suitable for colour-based CBIR

by evaluating six colour spaces: RGB, LUV and LAB in Cartesian coordinates, as well

as HSV, LUV and LAB in polar coordinates (pLUV and pLAB). A colour space is

considered suitable for CBIR if the feature vectors generated from its quantised space

are both effective and efficient. We conclude that HSV colour space is, overall, most

suitable for colour-based CBIR because it is at least as effective as but more efficient

than any of the other colour spaces. The recommended quantisation option for HSV

is quantising the hue axis into 18 'ntervals. the saturation and value axes into three

intervals, as the best compromise between effectiveness and efficiency. The finding that

HSV is the most suitable colour space for colour-based CBIR is significant because it

has always been assumed that perceptually uniform colour spaces proposed by colour

scientists (LUV, LAB, pLUV and pLAB) are more suitable for colour-based CBIR.

Our findings suggest that such an assumption is untrue because those colour spaces

195
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have different purposes from CBIR. In colour science, even small colour differences are

important whereas in CBIR, the small colour differences are less important, which is

why in CL'TR. colour quantisation is necessary.

We then progressed to improving the effectiveness of colour-based feature extraction

methods in Chapter 4 by making use of spatial relationships of colours. The findings in

the colour space studies enable us to make informed decision about the choice of colour

space and quantisation parameters. In this chapter, we proposed I-autocorrelograrn

(I-auto) which describes the distribution of colours and their spatial relationships. An

evaluation of I-auto in comparison with other contemporary tecluiiques establishes that

it is most preferred.

CBIR systems are mainly used for image retrieval and the most intuitive method

for this task is by using query-by-example. The main problem with this process is that

users do not always have a sample image to initiate a query (the Page 0 problem). In

Chapter 5, we formulated the specification of eyeMap. an image browsing framework,

by using the paradigm of daily browsing behaviour in shops or libraries so that users

can transfer that behaviour into image browsing. This paradigm demands that all

images in a database are arranged systematically to enable users to visualise the content

of the database. It also requires that users can navigate the database. To support

visualisation. eyeMap displays the content of the entire database systematically so that

users have a q'jick overview of the database. Systematic arrangement in eyeMap is

achieved by carefully selecting a suitable feature in evaluation studies; for example, in

Chapter 6, to implement a colour-based eyeMap. we evaluated several colour features.

To support navigation. eyeMap provides a user interface for interactive navigation.

Because eyeMap is capable of displaying large numbers of images, it can also be used

to find a sample image to initiate a visual query, thus solving the Page 0 problem.

In chapter 6, as mentioned before, we determined which colour feature, among

several, is more suitable for browsing. The colour features evaluated were colour his-

togram, colour moments, EMD-based colour signature and cumulative histogram. It

was found that cumulative histogram is most suitable for browsing colour images be-
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cause the layouts generated using this feature have high spatial precision and contextual

meaningfulness. We then implemented colour-based eyeMap, a fully functional image

browser for large scale general colour image databases. eyeMap was integrated with a

CBIR system developed using I-auto. so it can be used to solve the Page 0 problem.

In Chapter 7. we showed that eyeMap is useful for browsing and solving the Page 0

problem by conducting a usability study. In 1̂ " study, the participants had a very

specific task, that is, to find a target image using systems developed based on traditional

linear methods and the eyeMap framework. An analysis of their performance in and

perception of each system determined that cyeMap is the most effective, efficient and

preferred method for browsing and solving the Page 0 problem; thus, the research

establishes that eyeMap is the best approach for performing these two tasks. These

positive results are indications that eyeMap has successfully enabled users to transfer

their daily browsing behaviour into image browsing.

As eyeMap is an image browsing framework, it can be used for browsing other

databases such as textures (textiles, carpets or wallpapers) by using a suitable feature:

this version of eyeMap is known as texture-based eyeMap. To show how to use eyeMap

for texture images, we investigated two trxuue descriptors in Chapter 8. These two

texture descriptors are defined in the MPEG-7 standard: Texture Retrieval Descriptor

(TRD) and Texture Browsing Descriptor (TBD). We found that layouts generated

using TRD are more suitable for browsing, and LI and EMD are equally valid choices

for calculating the distance between any two TRD feature vectors. Because LI is more

efficient than EMD, LI should be used instead of EMD if the speed of generating a

layout is a concern.

By improving the efficiency and effectiveness of colour-based CBIR, formulating a

powerful image browsing framework (eyeMap), then developing fully functional pro-

grams based on eyeMap, and then evaluating eyeMap by comparing the developed

programs against traditional methods, this thesis, therefore, has brought CBIR sys-

tems one step closer to real world applications.
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9.2 Potential Future Research Directions

Potential future research directions as a result of the studies conducted in this thesis

fall into two main categories: on cyeMap itself and on the evaluation of eyeMap in a

different environment. The specification of eyeMap is complete and any implementation

from this specification will result in a fully functional system; nonetheless, additional

features for the retrieval engine such as relevance feedback, efficient search techniques

and data structures [23. 24, 27, 45, 68, 134, 135] will make eyeMap even more useful

for expert users. The relevance feedback is useful not only for the retrieval engine but

also for the browsing engine during the generation of layouts. The implementation of

these additional features must be done with care to ensure the programs remain usable

for the novice.

Colour-based and texture-based eyeMap are fully working systems and useful for

browsing and retrieving general colour and texture images; however, the image search-

ing task described in this thesis is simulated in that users were asked to find target

images in a laboratory setting. It will be interesting to evaluate eyeMap in a field

study which involves real users in their working environment. To date, field studies

of image retrieval are only found in concept-based retrieval not content-based [6, 40].

Unlike content-based retrieval, concept-based retrieval uses only text annotation.
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Figure B.I: PR graphs in PCD at 20%, 30%, 50% and 70% levels of agreement using RGB,
LUV and LAB colour spaces at different numbers of quantisation intervals... continued on next
page-

Figure B.I: .. .continued from previous page.
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Figure B.2: PR graplis of LUV colour space in PCD when the value of L is varied. Figure B.3: PR graphs of LAB colour space in PCD when the value of L is varied.
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Figure B.4: PR graphs for PCD at 20%, 30%. 50% and 70% levels of agreement in HSV. LUV
polar and LAB polar colour spaces at different numbers of quantisation intervals . . . continued
on next page.
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Figure B.4: ... continued from previous page.
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Figure B.5: PR graplis for PCD at 20%, 30%, 50% and 70% levels of agreement in HSV, LUV
polar and LUV polar colour spaces at different numbers of quantisation intervals... continued
on next page.



228 Supplementary Results for Colour Space Evaluations Presented in Chapter 3

1

o.g

0.8

0.7

0.6

o.s

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

o.a

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

PCD 50%
HSV 18 2 2
H S V 1 8 3 3
HSV 18 4 4

a HSV 18 5 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

PCD 50%
— X — PLUV18 2 2
— X — pLUV1B3 3

X PLUV1B4 4
- - X - - pLUV18 5 5
•O pLUV18 5 3

pLUV1B7 3
— e — pLUV18 9 3

•*• pLUV18113
A pLUV30113

— • — HSV 18 3 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

PCD 50%
- - K - - DLAB18 2 2

- X pLAB 18 3 3
— X — PLAB18 4 4
••—X-- DLAO18 5 5
— © — pLA818 5 3

PLA818 7 3
— Q — pLAB 18 9 3

* plj^B 18 11 3
— •O— pLAB 30 11 3
— • — HSV f 3 3

•——X

0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

PCD 70%
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

HSV 18 2 2
HSV 18 3 3
HSV 18 4 4
HSV 18 5 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

PCD 70%

pLUV 18 2 2
PLUV18 3 3
pLUV 16 4 4
PLUV18 5 5
PLUV18 5 3
PLUV18 7 3
pLUV 18 9 3
PLUV18113
pLUV3O11 3
HSV 1 8 3 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

PCD 70%

PLAB18 2 2
pLAB18 3 3
PLAB18 4 4
PLAB18 5 5
pLAB 18 5 3
PLAB18 7 3
pLAB 18 9 3
PLAB18 113
pLAB 30 11 3
HSV 16 3 3

0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9
Recall

Figure B.5: . . . continued from previous page.
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Figure B.6: PR graphs for CCD and PCD at 20%,
LUV and LAB polar colour spaces. Similar to Fig.
intervals... continued on next page.
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Figure B.6: .., continued from previous page.
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Figure B.7: PR graphs of RGB, LUV and LAB, HSV, LUV polar and LAB polar colour
spaces at the highest effectiveness in PCD.
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B.4 PR Gr.•;.:!*.« in PCD for Quantisation Options at Sim-

ilar Sizes
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Figure B.8: PR graphs of RGB, LUV and LAB, HSV, LUV polar and LAB polar colour
spaces with similar number of bins.
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C.I Autocorrelogram - Effect of Dissimilarity Metrics in

CCD and PCD
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Figure C.I: PR graplis of autocorrelogram in CCD and PCD at diiferent d with L\ and
Canberra dissimilarity metrics using RGB and HSV colour spaces.. .continued on next page.

§C.l Autocorrelogram - Effect of Dissimilarity Metrics in CCD and PCD 235

Autocorrelogram PCD 30% RGB 4x4x4 w^LC Autocorrelogram PCD 30% [d] HSV 18x3x3 w,= -

0.9

o.a

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1JL1
1} Canberra
1.3} L1
1,3} Canberra
1,3,5) L1
1,3,5} Canberra
1,3,5,7} L1
1.3.5.7} Canberra
I I I i

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Autocorrelogram PCD 50% RGB 4x4x4 w.,=1.C
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

• ~ - (3 -

)
1) Canberra
1.3} L1
1,3} Canberra
1.3,5} L1
1,3,5} Canberra
1,3,5.7} LI
1,3.5.71 Canberra

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Autocorrelogram PCD 70% RGB 4x4x4 w.,=1.C

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-o—

1} Canberra
1,3) L1
1,3} Canberra
1,3,5} L1
1,3,5} Canberra
1,3.5.7) L1
13.5.7} Canberra

1

0.9

0.8

0.7

06

0.5

0.4

0.3

0.2

0.1

• • - B - -

}
1} Canberra
1.3)i.1
1,3} Canberra
1.3.5) L1
1,3.5) Canbern
1,3.5,7) L1
1,3,5,7} Canbe

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Autocorrelogram PCD 50% HSV 18x3x3 w.,=1.i
1 p — H — d]=(1)L1

1} Canberra
n . | —3»— OF 1,3} L1
"•9 r ^ —f+-- d= 1,3} Canberra

= 1.3.5) L1
no L. ">« •-1,3,5)Canbern

{1,3.5,7} Canbe
0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Autocorrelogram PCD 70% HSV 18x3x3 w ^ i . i

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

- .....£}.._

1}L1
1} Canberra
1.3JL1
1,3) Canberra
1,3.5} L1
1.3.5) Canberra
1,3,5.7} L1
1.3,5,7) Canberra

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

Figure C.I: .. .continued from previous page.
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C.2 Autocorrelogram - Effect of d in PCD
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Figure C.2: The PR graphs of the autocorrelogram at different d using RGB colour space in
PCD.
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C.3 Autocorrelogram - Effect of Colour Space in PCD
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Figure C 3 : P R graphs in PCD using RGB 4 x 4
histogram (zt'i = 0.0) and autocorrelogram (wi = 1

x 4 and RGB 6 x 6 x 6 when [d] = {1} for
.0).
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C.4 I-auto - Weighting of w\ in PCD
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Figure C.4: PR graphs of the I-auto at different weight using RGB 4 x 4 x 4 in PCD.
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Figure C.5: PR graplis of the I-auto at different weight using RGB 6 x 6 x 6 in PCD.
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Figure C.6: PR graphs of the I-auto at different weight using HSV 18 x 3 x 3 in PCD.
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C.5 Effect of Colour Spaces on I-auto in PCD
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Figure C.7: PR graphs showing the effect of colour space on autocorrelogram and I-auto (and
histogram for HSV 18 x 3 x 3).
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C.6 Effectiveness of I-auto Compared to LCI and CSD in

PCD
Appendix D
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Figure C.8: PR graphs of LCI with LI and Canberra dissimilarity metrics, CSD and I-auto
in PCD using the HSV colour space.

Each participant fill in a four page questionnaire after completing the task. To assist

the participants in completing the questionnaire, the sequence for questions two and

three are modified according to the order of programs and images being presented.

They are also unaware of the names given to the target images on the last page of the

questionnaire when performing the task.
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Post Experiment Questions

1.Please describe how you performed the search? (e.g. how did you decide where io search)

Program A

Program B

Program C

Program D

Page 1
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2. Please lick to answer the following questions

a. Program A

al. The task was reasonable

s2 The program was easy to use

a3. The program was enjoyable lo use

a4. The image layout helps me in deciding where to start searching

aS. The program made it easy to find the target image

a6. The magnification tool was useful

a7. The magnification tool was easy to use

b. Program B

bl. The task was reasonable

b2. The program was easy to use

b3. The program was enjoyable to use

b4. The image layout helps me in deciding where to start searching

b5. The program made it easy to find the target image

b6. The magnification tool was useful

b7. The magnification tool was easy to use

b8. Integration of visual query lo browsing was useful

Strongly

Agree

• 1

• 1

Dl

Dl

Dl

• 1

Ol

D2

O2

D2

D2

D2

D2

D2

Strongly

Agree

D l

D l

D l

D l

D l

D l

D l

Dl

D2

D2

D2

D2

D2

D2

D2

D2

O3

• 3

• 3

• 3

• 3

• 3

D3

• 3

• 3

D 3

D3

• 3

D3

D3

D3

D4

•4

D4

•4

D4

D4

Q4

O4

D4

•4

D4

D4

•4

D4

D4

Strongly

Disagree

D5

•5

D5

D5

D5

D5

D5

Strongly

Disagree

D5

D5

DS

D5

D5

D5

D5

D5

Page 2
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c Program C

cl. The task was reasonable

c2. The program was easy to use

c3. The program was enjoyable to use

c4. The image layout helps me in deciding where to start searching

c5. The program made it easy to find the target image

c6. The focal/context view was useful

c7. Being able to hide images was useful

c8. The magnification tool was useful

c9. The magnification tool was easy to use

d. Program I)

dl. The task was reasonable

d2. The program was easy to use

d3. The program was enjoyable to use

d4. The image layout helps me in deciding where to start searching

d5. The program made it easy to find the target image

d6. The focal/context view was useful

d7. Being able to hide images was useful

d8. The magnification tool was useful

d9. The magnification loci was easy to use

dlO. Integration of visual query to browsing was useful

Page 3

Strongly

Agree

Dl

Dl

D l

Dl

Dl

Dl

• 1

• 1

Dl

D2

D2

•2
D2

D2

•2

D2

D2

D2

D3

D3

D3

D3

D3

D3

D3

D3

D3

D4

D4

D4

D4

D4

D4

D4

D4

D4

Strongly

Disagree

•5

D5

D5

D5

D5

O5

D5

D5

D5

Strongly

Agree

D l

01

Dl

Dl

Dl

Dl

01

Dl

Dl

Dl

D2

D2

D2

D2

D2

D2

O2

D2

D2

D2

D3

D3

D3

D3

D3

D3

D3

D3

D3

D3

D4

D4

D4

D4

D4

D4

D4

D4

D4

D4

Strongly

Disagree

•5

n5

D5

D5

•5
D5

•5
D5

O5

D5

3. Arc some images easier to search than others? If so, which ones are easy and which ones are difficult and why?

fruits & flowers fireman monkey girl

4. Did you have a preference for any method? If so, which one. and why?

5. Any other comments:
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