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Abstract

Fuzzy rule-based image segmentation techniques are able to incorporate human expert and/or
domain specific knowledge, however, they tend in general, to be image and application dependent
with predefined membership function structures and in certain cases, the corresponding parameters
being manually determined. This thesis proposes a new flexible integrated fuzzy rule-based image
segmentation (object-based) framework, which automates many aspects of previous systems as well
as enabling new rules, special domain information, and high-level semantics of an object to be
easily incorporated.

The framework comprises four novel dedicated fuzzy rule-based segmentation algorithms that
seek to exploit particular image attributes for perceptual grouping. These are: a generic fuzzy rule
based image segmentation (GFRIS) algorithm, which is both application and image independent
and also importantly exploits inter-pixel spatial relationships. The second algorithm comprises a
series of refinement rules which are collectively called fuzzy rules for image segmentation (FRIS)
and are primarily based on region splitting and merging techniques, combining uniquely the
topological feature of connectedness and object surroundedness. The third algorithm, fuzzy rule for
image segmentation incorporating texture features (FRIST), integrates the fractal dimension and
contrast features of a texture by considering image domain specific information within the GFRIS
algorithm. Finally, since GFRIS, FRIS, and FRIST are developed for gray level images, a new

Juzzy rule based colour image segmentation (FRCIS) algorithm is introduced, which is an extension
of GFRIS and inciudes a special algorithm for cal-ulating the average of hue components of the
HSV (hue, saturation, and value) colour model.

A comprehensive qualitative and quantitative evaluation is presented together with a time
complexity analysis for all four major algorithms. A statistical significance test, namely the sign fest
is used to assess the performance improvement achieved by each algorithm. This new flexible
tramework provides significant segmentation improvements over traditional fuzzy c-means (FCM)
and possibilistic c-means (PCM) algorithms for many different image types and with the single

exception of FRIS, without any increase in the overall order of computational complexity.
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Acronyms and Abbreviations

asd Average sum of differences.

CAT Computed axial topography.

DBC Differential box counting.

FCM Fuzzy ¢-means.

FD Fractal dimension.

FDF Fractal dimension based feature.

FRCIS Fuzzy rule-based colour image segmentation.

FRIS Fuzzy rules for image segmentation: a refinement algorithm.
FRIST Fuzzy rule for image segmentation incorporating texture features.
GFRIS Generic fuzzy rule-based image segmentation.

HSV Hue, saturation, and value,

MRI Magnetic resonarnce image.

nasd Normalised average sum of differences.

OCA Object-count-agreement.

PCM Possibilistic c-means.

RGB Red, green, and blue.

sofd Absolute sum of differences.
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Nomenclature

Symbols Denotation

b Number of bits.

C; The total number of both surrounded and connected objects of other
regions with the main object of region R; .

contrasr(Oy) Contrast of object 0.

C(r J-) Centre of region R;.

diff (b, 1) Difference between two hue angles A and #, .

d(Px‘y, R,‘,) The city block distance between pixels P, , and F,,.

FD(W,, ,(s.1)) The fractal dimension based feature (FDF) of a candidate pixel £, .

Sir ’ () Polynomial for the pixel disuit;ution for the i colour component of
region R ..

f R, () Polynomial for the pixet distribution of region R; for gray level
image.

h; The i* hue angle.

hist(P,) Gray level histogram hist(F;) for pixel intensity F;.

K An arbitrary constant.

large(Om* i Ry ) Function that determines whether the main object O,, ; is
sufficiently large with respect to its own region R, .

Oy The i* object of region R;.

O, j The main object of region R;.

outer(R,) Function that determines whether R; is an outer region.

P, A pixel with a gray level or colour value F; , at location (s,7).

R A set of all regions.
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Symbols Denotation

r Neighbourhood radius.

R; The j* region.

similar (O,,,Ji £:0i ) Membership function that measures the similarity between two
objects, O, ; and Oy .

S; The total number of objects that are surrounded by the main object of
region R ;.

T The threshold for the variations of gray level pixel intensity.

T, Approximate threshold.

unifomizy(oy ) The entropy which measures the uniformity of the gray level
distribution of object O .

v A set of centre pairs of all regions.

W, (5,0) A window W, ,(s,7) of size #x A with its centre at (s,/).

Wy The weighting factor for the { * membership function,

x(P:) The x coordinate of pixel 2.

y(P,) The y coordinate of pixel Z,.

¥4 Threshold for similarity measure.

T Scale down ratio.

o The number of colour components,

PN A threshold thut defines the minimum size of a main object.

Ay A threshold that defines the maximum size of the main object.

K Membership function.

Hap, () The overall membership value for region R; .

Hcr () Membership function to measure the closeness of a region for region
R;.

Her, () Membership function to measure the closeness of region for the
i"™ colour component of region R ;e

Hepr, ) Membership function for the contrast of region R;.
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Symbols Denotation

Hpg; () Membership function for the pixel distribution of region R ;.

HDR ; () Membership function for the pixel distribution for the i colour
compon=it of region R ;.

Hrr, () Membership function frp, (F;,;) of fractal dimension based feature
for region R;.

() Membership function to determine the size of main object.

He Oy Ri) The size of the main objeci within its own region R;.

U NRj(') Membership functicn for spatial relations for region R;.

Hunr, () Membership function for spatial relations for the /% colour
component of region R;.

1. (.) Membership function for estimating the degree of surroundedness.

Og, Standard deviation of region R ;.

& A threshold that determines the minimum degree of surroundedness.

{ (F; . r) Neighbourhood system with radius r, of a candidate pixel F; .

R The number of segmented regions.
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Chapter 1

Introduction

1.1 Image Segmentation Background

The use of digital images is increasing rapidly due to the development of the Intemet and
related multimedia technologies, such that the focus of much recent research has been directed
towards the field of digital image processing. Digital image processing covers a wide range of
application areas from medical science to document processing. In general terms, it refers to the
manipulation and analysis of pictorial information and is mainly classified into five categories: (i)
enhancement, (ii) restoration, (iii) analysts, (iv) compression, and (v) synthesis. Image analysis in
particular, includes image segmentation, feature extraction, and object classification [113.

Image segmentation is the process of separating mutually exclusive homogeneous regions
(objects) of interest from other regions (objects) in an image. It is one of the most important and
chalienging tasks of digital image processing and analysis systems, due to the potentially inordinate
number of objects and the myriad of variations among them. Most natural objects are not
homogeneous, which contradicts the above definition for object-based image segmentation. This is
because in general there is no universal standard definition of image segmentation. [t is essentially
an ad hoc process, which depends on the emphasis given to particular desired properties and a
trade-off between them [2, 12].

Image segmentation has been extensively used in a wide range of diverse applications. These
include, but are not limited to, automatic car assembly in robotic vision, airport identification from
aerial photographs, object based image identification and retrieval, object recognition, second
generation image coding, criminal investigation, computer graphic, and medical science (cancerous
cell detection, segmentation of brain images, skin treatment, and intrathoracic airway trees) [13-15].

Many of the above applications, however, require different types of digital images. The most
commonly used are light intensity (LI) images, range images (RI), computed tomography (CT)

images, thermal images, and magnetic resonance images (MRi). However, much of the research
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published in the image segmentation area is highly dependent on the type of image, its dimension,
and its application domain. No single unified technique is suitable for every type of image [14].

The literature reveals a wide variety of image segmentation techniques that are broadly
classified into two approaches: region-based and boundary or contour-based {16, 17]. The former
uses the homogeneity of pixels or features, while the latter finds the contour of a region of interest.
Two types of contours are: active contours {18-21] and deformable contours {17, 22, 23}.

Haralic [24] went a step further and divided image segmentation techniques into four classes: -

1. Measurement space guided spatial clustering (e.g. thresholding and muitidimensional
measurement space clustering) [25-28].

2. Region growing (e.g. single linkage, hybrid linkage, and centroid linkage region
growing approaches) [29-32].
Spatial clustering {33-35].

4, Split and merge [36-39].

The first technique assigns each pixel a cluster index of an appropriate cluster of the
measurement space. Pixels having the same cluster index are treated as the connected component
and in the same class. Generally, clustering and histogram mode seeking techniques are used in this
approach, though they do not work well when the gray level intensity of an object of interest for
segmentation varies extensively and the background is not uniform,

In the second of the above categories, the image is divided into an arbitrary number of regions.
The gray level intensity variation of all the pixels of a region lies within the limit of a specified
threshold. The region is grown by taking a pixel as a starting point and then adding all pixels into
the region whose gray level intensity variation lies within the threshold [40). This technique is
expensive both in terms of computation and memory [41]. A short review of the three linkage
approaches identified above is now provided. The single linkage region growing approach applies
graph theory to segment the image with each vertex of the graph representing a pixel of the image.
Pixels containing similar characteristics are connected by the links of the graph. This approach
suffers from the problem of chaining, whereby if a chain is broken, it loses all the pixels of the
other part. The hybrid linkage region growing approach allocates a property vector to each pixel,
which is a function of its kxk neighbourhood values. In the centroid linkage region growing
approach, the image is firstly scanned and then a region is formed by comparing the pixel value
with the mean of that region. Pixels are added into the region if they are close enough and then the
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mean of the region is updated. Similar regions (if any) are merged. The effectiveness of this
approach depends on the combining criteria.

The third segmentation approach, spatial clustering, forms the clusters by considering both the
measurement space as well as spatial space between the parent pixels and their neighbours, while

the fourth approach initially assumes the image as one segment and then divides it into a number of
sub-divisions (4" where n=1,2,...) based on a guadiree [40, 42). Adjacent regions are merged if

they are sufficiently homogenous, while the quadrants are further subdivided if they are not.

Pal and Pal [14] stated that image segmentation approaches could be generally classified into
two approaches: classical and fuzzy mathematical. Classical approaches include histogram
thresholding, edge detection, and semantic and syntactic. Fuzzy mathematical approaches are
categorized as edge detection, thresholding, and relaxation. They also mentioned some other
approaches [43-46] that are not classified into either of the above-mentioned classes. They
classified all image segmentation into six main classes: -

1. Gray level thresholding {47-49].
2. lerative pixel classification (e.g. relaxation, Markov random field (MRF) based
techniques, and neural network based approaches) [50-59].
Surface based segmentation [60-62].
Segmentation of cclour images (63, 64].
Edge detection [65-68].
6. Methods based on fuzzy set theory (e.g. fuzzy thresholding and fuzzy edge detection).

ok W

Although the final category describes fuzzy segmentation approaches, [14] did not include the
segmentation approaches based on fuzzy rule, fuzzy integral, genetic aigorithms, and soft
computing. Genetic algorithm based image segmentation is described in [69-71). Zadeh [72] first
introduced the term soft computing in the early 1990s and it includes all of the approaches that are a
synergistic combination of artificial neurai networks, fuzzy logic, genetic algorithms, and
probabilistic computing.

Image segmentation is one of the most complicated tasks in image processing and computer
vision due to many factors, some of which are summarized as follows [14, 17, 24}:

s Any image processing system possesses some inherent constraints, so the resulting

image is not perfect and will contain artifacts.
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¢ Image data can be susceptible and ambiguous. For example, SPECT (Single Photon
Emission Computed Tomography) imaging often deforms the high frequency
information of the image data and produces fuzzy and non-reliable edges.

e The shape of the same object can differ from image to image. The structures of the
objects are not well defined in most natural images and it is very difficult to find the
accurate contour of an object.

o The gray level pixel values and their distributions of the same object are not the same
for all images. Even in the same image, pixels belonging to same class may differ in
their pixel intensities and distributions.

o The objects to be segmented are highly domain and application dependent.

o The properties of an object can differ in their representation, depending upon the type
of the image and their domain It also needs a trade off between the desired properties.
For example, gray level distribution follows the Poisson distribution for some visual
images but this is not valid in the case of both MRI and RI images, so segmentation
techniques need semantic and prior information on the type of image, in addition to
other properties. |

It may be easily deduced from these observations that most images contain some form of
ambiguity. For example, it is not possible to define precisely the contour of an object in an image,
region, and the relation between the regions, edge, surface, and corner. Pal and Pal [14] confirmed
that LI images contain ambiguities because of their multi-valued gray level pixel intensity. This
ambiguity may be defined in two ways: grayness and spatial. The former represents the whiteness
or blackness of a pixel, while the latter covers the shape and geometry of a region contained in an
image. In classical methods, each is taken as a crisp or hard decision. Hard decisions are however
not suitable for image processing because of the aforementioned ill-defined data. Itis of paramount
importance that image processing systems should have a recognition strategy, which can handle all
types of uncertainty arising at any level of the processing. Prewitt [73) recognized this when he
introduced image segmentation by exploiting fuzzy regions.

In a fuzzy system, each image consists of a number .” 2y regions, R,,...,R, where n is the

number of regions {74]. Each region contains a set of pixels, with each pixel assigned a grade (a
degree of membership value), which measures the possibility of a pixel belonging to a region. The

membership function maps each of the feature values f{(x, ) of a pixel I{x,y)of image I having
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coordinate (x,y) into the closed range from 0 to 1. The membership function # for image I can

be defined as: -
#(x )=o) (1. 1)

where € represents a universal set of all feature values for all pixels in image 7 .

It is evident that the fuzzy approach can handle uncertainty better and use the membership
value (varying grade) to define the imprecise or ifl-defined property of an image. It was previously
mentioned that the membership value denotes the possibility of a pixel befonging to a region (or
more than one region), which distinguishes the fuzzy from the classical (hard decision-based)
approach, The fuzzy approach can also interpret very well linguistic variables such as VERY
BRIGHT, BRIGHT, and BLACK. Medasani, Krishnapuram, and Keller [74] measured geometric
(area, perimeter, height, and length) and non-geometric (average pixel intensity, entropy, and
homogeneity) properties for both real and artificial images using both fuzzy and crisp approaches.
Experimental results proved that the fuzzy approach gave more accurate values for both geometric
and non-geometric properties than the crisp approach. They also examined their performance by
adding different levels of noise for both approaches. Again the fuzzy approach produced improved
estimates compared with the crisp approach for both properties, ¢ven in the noisy image. They also
proved that there was no need for noise removal during the measuring of fuzzy properties, which is
especially useful in overcoming some of the difficulties raised in eliminating noise in textured
images.

One of the most intractable tasks in image segmentation is to define the properties for
perceptual grouping, which requires human expert knowledge to be incorporated in order to achieve
superior segmentation results, Fuzzy rule-based image segmentation techniques are able to
incorporate such expert knowledge and this was one of the key factors behind the motivation to
investigate fuzzy image segmentation techniques. Before exploring which particular fuzzy based
system was applied in this research, a brief overview of fuzzy image segmentation techniques is
presenied.

1.2 Fuzzy Image Segmentation Techniques

Fuzzy image segmentation has increased in popularity because of the rapid extension and
development of fuzzy set theory based on mathematical modelling, synergistic combination of
fuzzy, genetic algorithms, and neural networks, and its successful and practical application in image
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processing, pattern recognition, and computer vision systems. Fuzzy image segmentation
techniques may be broadly classified into the following six categories [73]: -

Fuzzy clustering-based image segmentation.
Fuzzy geometry-based image segmentation.
Fuzzy thresholding-based image segmentation.
Fuzzy integral-based image segmentation.

oR W -

Soft computing-based image segmentation.
6. Fuzzy rule-based image segmentation.

A brief review of each of these techniques is now presented.

1.2.1 Fuzzy Clustering

Clustering is known as class discovery [76] or unsupervised grouping of data based on a
similarity measure [13, 77]. There are mainly two types of clustering: hard and fuzzy clustering. In
the former, a datum is classified ii:iv only one group, i.e. the groups are mutuaily exclusive, while
in fuzzy clustering a membership value is assigned to & datum, which supports the group to which it
belongs. A datum may belong to more than one class. The basis of fuzzy clustering is on the
iterative minimization of an objective function, with the most widely used and popular algorithms
being fuzzy c-means algorithm (FCM) [78-80] and possibilistic c-means algorithm (PCM) [81-83].
The main problems associated with fuzzy clustering algorithms are [2]: -

e The initialisation of the membership functions.

e The objective function is unable to achieve a local minimum in the case of FCM or a
global in the case of PCM.

¢ It cannot directly incorporate human expert knowledge.

o Number of clusters must be known a priori.

Despite these apparent drawbacks, fuzzy clustering algorithms such as FCM are frequently used
to achieve initial segmentation of an image and itis in this context that FCM will be applied in this
thesis.

1.2.2 Fuzzy Geometry

Geometrical properties such as perimeter, area, length, width, extrinsic diameter, intrinsic
diameter, index of area coverage (I0AC), and compactness are used to describe any object [84-88].

Such properties can be derived using fuzzy membership values without segmenting the object from
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the image and hence they are dependent on the fuzzy membership function (u). Segmentation is

achieved through the utilization of a minimum value of compactness or JOAC [88-90].

The optimum value of JOAC is calculated by considering the predefined membership function
called standard § type and in terms of area, length, and breath of an object. It is very difficult to
accurately calculate the area, length, and breath of an object with a wide range of gréy level pixel
intensity variations. The resultant segmentation will not be good if there exists a significant number
of overlapping pixels. This technique is also computatiohally expensive, as it needs to calculate the
value of the membership function for c;wh pixel, every time the cross-over point that is the point at
which the value of the membership function is 0.5, is adjusted.

1.2.3 Fuzzy Thresholding

Thresholding-based image segmentation is one of the oldest and well-known techniques with
its main function being background and foreground separation {77). It is very difficult to producs
appropriate threshold since the real image is itself ambiguous and there is almost always overlap
between background and foreground pixels. Fuzzy thresholding based image segmentation has the
potential to handle imprecise data, and to date there are generally two ways to calculate the optimal
threshold in the fuzzy system: -

1. Techniques based on minimum values of index of fuzziness and entropy [91].
2. Fuzzy image thresholding based on minimization of fuzziness using histogram [77, 92].

In the first technique, the optimal threshold is determined by adjusting the cross-over point so
that optimal {minimum) values of index of fuzziness and entropy are achieved. Thresholding is not
however a goe:' solution for image segmentation if there is a significant overlap between the
background and w:i¢ object pixels, which is a typical characteristic of many real wotld images.

1.2.4 Fuzzy Integral

Keller [93] proposed image segmentation based on the fuzzy integral. Fuzzy integral is a fuzzy
aggregator operator on multi-attribute fuzzy information and provides a natural coupling of
objective evidence and expectation. Besides this, it was used in combining the results from
different classifiers i.e. in classifier fusion [94). The segmentation of colour image using fuzzy
integral and mountain clustering has also been reported in [95]. The techniques used in colour
image segmentation of this method contain the following two steps: -
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1. {dtermination of the number of clusters and the initial values of the cluster centres
using mountain clustering and fuzzy integral.

2. FLM classification of colour image pixels by measuring the similarity between a colour
image pixel and cluster centres using fuzzy integral.

The sitential of this technique depends _:: the number of grid points and the vaiue of the
threshold 7 wused in the mountain clustering algorithm, Very few technmigues ov image
segmentalion based on fuzzy integral have been published to date, due to the high mathematical
complexity involved.

1.2.5 Soft Comguting

Soft computing is an integrated method, which is a synergistic combination of fuzzy togic (FL),
neurocommting (NC), penetic computing (GC), and probabilistic computing (PC) [96). Each of
these techniques has a distinguished capability to solve problems that enables soft computing to
manipulate imprecision, uncertainty, and partial truth in a better way compared to traditional
approaches and to vield promising results.

Image segmentation based on fuzzy-genetic computing has been presented in [97, 98]. In [97]
the objective function of FCM ealgorithm is optimised using a genetic algorithm. Ishibuchi and
Murata {98} classified thie high dimensional patterns by genetically selecting the minimum number
of fuzzy sies that maximize the classification performance. A method of MRI segmentation based
on neuro-fuzzy computing has been described in [99], where the MRI scan of the brain was
segmented using a fuzzy algorithm for unsupervised linear vector quantisation neural network. Due
to the synergistic combination of techniques, most soft computing based techniques are
computationally expensive,

1.2.6 Fuzzy Rule

Fuzzy (IF-THEN) rule-based modelling is = very promising field of research because of its
increasingly usage in a wide range of applications including the fields of industrial robotic, control
engineering, medical imaging, and complex non-linear system recognition. The advantages of this
approach are [72, 100]: -

1. Potential capability to represent the knowledge explicitly using I[F-THEN rule and
capture the knowledge from imprecise information in linguistic as well as numerical

terms.
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2. The ability of partial reasoning in human understandable terms. It determines the
similarity based on the degree of condition satisfied in the antecedent clause of the rule.
This is in contrast wath the classical approach.

3. Humans can more easily understand the problems by using the linguistic representation
of numeric vaniables.

4. Approximating capsbility of complex non-linear systems.

Fuzzy rule-based segmeitation techniques are generally used in MRI and are dependent on
image type and application donxain. The performance of the technique is sensitive to the selection
of the structure of the membesship functions as well as their associated parameters [101].

In evaluating the above fuzzy image segmentation techniques, they all have advantages and
disadventages. From the viewpoint of object-based image segmentation however, whose
appiications encompass such diverse and challenging areas as MPEG-4 video object (VO)
segmeitation for content-based video coding {102] through to object-based description of
multimedia content for MPEG-7 [103], the requirement for considering the human expert and/or
domain specific knowlcige is paramount. Indeed without such knowledge, accurate and effective
segmentation would be impossible and thus fuzzy rule-based image segmentation is the only
technique so far, winch aifords the potential for achieving this goal.

1.3 Motivation and Contributions

While fuzzy ruie-based image segmentation techniques are able to incorporate human expert
knowledge, they are very much application domain and image dependent. The structures of all of
the membership functions are manually defined and their parameters are either manually or
automatically derived. The performance of fuzzy rule-based techniques depends on selecting the
structure and their associated parameters of the membership function. Fuzzy rule-based techniques
have been popular engineering tools, but their application has been limited because of their
exponential complexity property {104]. This dissertation is motivated by the following three key
factors: -

1. Development of a general fuzzy rule-based image segmentation (object-based)
framework considering the most important general attributes for perceptual grouping so
that they can be applied in a wide range of image types and applications.

2. Incorporation of human expert and/or domain specific knowledge into the framework

for a particular application.
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3. Heuristic definition of a small number of rules in order to reduce the complexity of the
algorithms.

It was 1o directly address these three key objeclives that the integrated fuzzy rule-based
segmentation framework shown in the block diagram Fig. 1.1, was formulated and developed. The
original and segmented images are included as a representative example. The framework
specifically incorporates four innovative fuzzy rule-based image segmentation algorithms, which
are identified as Blocks 1, 2, 3, and 4 in Fig. 1.1. An important feature of this framework is its
flexibility as while the research has focused on perceptual grouping and other related key features,
new rules relevant to special domain and/or applications can be inicgrated easily into the

framework.

Refinement o

(FRINE 2

Manual
Reference
Gray tevel , Image

Sewenttion -

T GERING

A Ak

lLacorporaling
lexture
(RIS 3

C ulour o .
Sewmentation Seamented Numerical

(FRCIN): 4 : R . ) Rt'.‘._ullllﬁ Results

Fig. 1.1: Block diagram of the integrated tuzzy rule-based image segmentation framework.




Chapter 1 Introduction 11

The theory and performance of these constituent biocks will be fully analysed in subsequent
chapters. The key contributions to the research can be identified as follows: -

¢ Development of a generic fuzzy rule-based image segmentation (GFRIS) algorithm,
which considers region pixel distributions, similarity based on gray level pixel
intensity, and the proximity and good continuation principles (Block 1 in Fig. 1.1). This
algorithm is both application and image-type independent and exploits inter-pixel
spatial relationships [3, 4, 6].

¢ Development of an algorithm for the automatic data mining of the key weighting factor
and threshold for the GFRIS algorithm (Block 1 in Fig, 1.1).

¢ While GFRIS has provided significant improvements in the overall segmentation
performance compared with FCM and PCM, it has proved to be ineifective for image
regions that are characterised by ecither being non-homogeneous or possessing sharp
variations in pixel intensity. To address this, a new segmentation refinement algorithm
called fuzzy rules for image segmentation (FRIS} is presented for integration into the
generic fuzzy rule-based framework. This utilises a combination of an object’s
connectedness, surroundedness, uniformity, and contrast properties (Block2 in
Fig. 1.1)[5,7,9].

o The performance of the FRIS algorithm depends entirely on the results of the initial
segmentation algorithms. This is because FRIS is a refinement algorithm, so in order to
improve the performance of the GFRIS algorithm for non-homogeneous and textural
regions, a new algorithm, namely fuzzy rule for image segmentation incorporating
texture features (FRIST) is proposed. This integrates two new membership functions
based upon the texture features of fractal dimension and contrast considering image
domain specific information into the GFRIS algorithm. (Block 3 in Fig, 1.1) [8].

*  While the main focus of the research has been on gray level images, the framework is
also able to process colour information. A fuzzy rule-based colour image segmentation
(FRCIS) algorithm is developed by extending the GFRIS algorithm (Block 4 in
Fig. 1.1) and implemented using one of the popular perceptual colour models, namely
HSV (hue, saturation, and value) and the basic colour model, namely RGB (red, green,
and blue). An algorithm for calculating the average of hue angles of the HSV colour
model is also presented.
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o Detailed computational complexity analysis of all algorithms in the framework has
been undertaken and is included in each representative chapter.

¢ The segmentation performance of all the key constituent blocks is analysed and
numerically evaluated using the two powerful objective and quantitative segmentation
evaluation techniques, namely discrepancy based on the number of miss-segmented
pixels and discrepancy based on the number of objects in the image. A statistical
significance test, namely the sign fest is applied to test the statistical significance
improvements of ali proposed algorithms. A comparison is made with GFRIS, FCM
and PCM algorithms using many different image types (Block 6 in Fig. 1.1).

Finally, Biock § in Fig. 1.1 represents the initial segmentation algorithms that are needed for
the FRIS algorithm. In principal, this includes any segmentation algorithm such as FCM, PCM, and
GFRIS, which does not consider the perceptual properties of connectedness and surroundedness.
Given the large reservoir of literature covering basic segmentation techniques (see the
comprehensive literature review in Chapter 2), this block will not be considered further in the

thesis.

1.4 Structure of the Thesis

The thesis is organised as follows: -

Chapter 2 includes a contemporary review of fuzzy clustering, fuzzy based and colour image
segmentation techniques and explores some of the existing texture estimation techniques and colour
models. The advantages and disadvantages of each technique are described in this chapter. Sections
from this chapter have previously been published by Karmakar e al. in {1] and as a book chapter in
[2].

Chapter 3 proposes the new generic fuzzy rule-based image segmentation (GFRIS) algorithm,
which considers region pixel distribution, closeness to a region and spatial relations. The algorithm
for automatically data-mining both the key fuzzy rule weighting factor and the thresholid is aiso
discussed in this chapter, This work has already been published by Karmakar et a/. in [3, 4, 6).

Chapter 4 introduces the fizzy rule-based refinement (FRIS) algorithm, which unifies the
properties of connectedness, surrcundedness, uniformity, and contrast and has previously been
published by Karmakar et al. in {5, 7. 9).

Chapter $ presents a new algorithm, fizzy rules for image segmentation incorporating texture
Jeatures (FRIST) by integrating two new membership functions into the set of GFRIS membership




Chapter 1 Introduction 13

functions, based upon fractal dimension and contrast, and image domain specific information,
which has been published by Karmakar et al. in [8].

Chapter 6 details the jfuzzy rule-based colour image segmentation (FRCIS) algesi:hm by
extending the GFRIS algorithm from gray level to colour images. This algorithm is applied to both
the HSV and RGB colour models. This chapter also defines a novel algorithm for calculating the
average of hue components of the HSV colour model.

Chapter 7 provides a comprehensive qualitative and quantitative analysis of the performance of
all the proposed algorithms in the framework. These are compared with the FCM and PCM
algorithms and analysed using many different types of image. This chapter also examines the
implementation details of all algorithms, the methods of numerical evaluation, and a statistical
significant test for the overall segmentation performances.

Finally, Chapter 8 details the conclusions derived from this research as well as defining future
potential directions for this work.




Chapter 2

A Review of Relevant Fuzzy Clustering, Rule-Based,
and Colour Image Segmentation Techniques

Sections 1.2.1 and 1.2.6 have respectively identified the potential of both fuzzy clustering and
fuzzy rule-based image segmentation atgorithms to be used for image segmentation. This chapter
provides a comprehensive overview of the various methods used in fuzzy clustering and rule-
based image segmentation techniques [2] as well as brief descriptions of a number of texture
representation techniques, popular colour models, and fuzzy colour image segmentation
techniques. Fuzzy clustering algorithms are used in pixel-based classifications for image
segmentation, while fuzzy rule-based modelling is a very challenging field of research, It is
widely used in the field of industrial applications including robotics, control engineering, medical
imaging, ar< complex non-linear system recognition. Fuzzy rule-based segmentation techniques
are abie to incorporate domain expert knowledge and manipulate numerical as well as linguistic
data. They are also capable of drawing partial inference using fuzzy IF-THEN rules [72, 100]. For
these reasons they have been extensively applied in medical imaging. Fuzzy rule-based image
segmentation techniques tend in gen val, to be application dependent with the structure of the
membership functions being predefined and in certain cases, the corresponding parameters being
manually determined. The overall performance of these segmentation techniques is very sensitive
to parameter value selections. Chapter 3 will address these issues by introducing a generic fuzzy
rule-based image segmentation (GFRIS) algorithm, which is both application independent and
exploits inter-pixel spatial relationships.

This chapter is organized as follows: In Section 2.1, fuzzy clustering algorithms are
described, with fuzzy rule-based image segmentation techniques being presented in Section 2.2.
A brief description of texture feature approximation techniques are given in Section 2.3.
Section 2.4 looks at colour models in the context of image segmentation, while Section 2.5

provides a brief outline of various popular fuzzy colour image segmentation techniques.

14
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2.1 Fuzzy Clustering Based Image Segmentation

Clustering means unsupervised grouping of data based on a similarity measure [77]. An

example of four clusters having different colours is given in Fig. 2.1.

Fig. 2.1: An example of clusters.

There are mainly two types of clustering: hard clustering and fuzzy clustering. In the former,
a datum is clearly classified into only one group i.e. the groups are mutually exclusive, while in
fuzzy clustering a membership value is assigned to a datum, which supports the group to which it
belongs. A datum may also belong to more than one class. The two most popular and extensively
used fuzzy clustering algorithms are [2]: -
1. Fuzzy c-means algorithm (FCM).
2. Possibilistic c-means algorithm (PCM).

These will now be discussed in greater detail.

2.1.1 Fuzzy C-Means Algorithm (FCM)

FCM 1s the oldest and most popular fuzzy based clustering technique. It was developed by
Bezdek {79] and is still being applied in image segmentation. It performs classification based on

the iterative minimization of the foliowing objective function and constraints [77-81, 105, 166): -

FulpeV X)= 5 3 (psy et )? @1

i=] j=l

0<py <t iefl,....c} and je{,...,n} (2.2)
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Suy =k jefl,...,n} (2.3)
i=]
n
0<Ypy<nm iefl..c} 2.4)

J=

where cand n are respectively the number of clusters and data, u is a fuzzy partition matrix

containing membership values [,u,),], V' is a prototype vector containing the values of cluster
centres [v;], m is the fuzzifier 1<m<oo, X isadata vector [x j], and d(x j,v,-) is the distance
between x; and v;. The following two equations are derived by minimizing the function

SV, X) in (2.1) with respect to z and V.

1
Hy= 2.5}
’ i( d(x;,v;) J%ﬂ-l)
B\ d(x;,v)
(s )",
= @.6)

£y

The set of cluster centres is initialised either randomly or by using an approximation method
and the membership values and cluster centres are updated through an iterative process until the
maximum change in u; becomes less than or equal to a specified threshold.

The number of clusters, the fuzzifier (m), and the threshold need to set empirically in FCM.
Equations (2.5) and (2.6) are insufficient to achieve the local minimum of £, (4,7, X) [107]. The
selection of the value of m is especially important, as if it is equal to 1 then FCM produces a

crisp instead of a fuzzy partition. If any of the distance values d(x j»v:)=0, then (2.5) will be

undefined. FCM strongly supports probability as it has set the constraint in (2.3), which prevents
the trivial solution y=90.
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2.1.2 Possibilistic C-Means Algorithm (PCM)

FCM arbitrarily divides the data set based on a selected number of clusters. The membership
values generated by FCM represent the degrees of sharing. In order to eliminate the constraints
in (2.3), Krishnapuram and Keller introduced PCM whose membership values represent the
degrees of fypicality, instead of degrees of sharing and =" -“sters are independent to each other
{82, 83). They modified the FCM objective function and - .- ..ned the PCM objective function as,

c n m ¢ n "

fm(ﬂ,VsX)=ZE(ﬂy) dz(x;,*'.-)+2 ﬂfZ(l‘ﬂy) 2.7
i= j=1 =l j=l

with the corresponding constraints given by: -
0 uy <l iefl,....c} and f&{l,...,n} (2.8)
0< i,u,j <n iefl,...,c} 2.9)
Jj=1
max g >0; Jjefl,...n} 2.10)

where 7; is the scale parameter, which determines the zone of influence of a poini and the
suggested value for 7, is the variance of cluster / and other parameters are as defined in Section
2.1.1. The membership values u; and prototype centres v; are obtained by minimizing the

objective function f,(x,V,X) in (2.7) and then iteratively updating using the following two

equations.

1

1+ (ﬂ&ﬂg}]%m-l)

i

sy = @.11)




Chapter2  Review of Relevant Fuxzy Clustering, Rule-Based, and Colour image Segmentation 18
Techniques

i(/‘r} fx;
y, =33 A (2.12)

£

When fuzzifier m =1, PCM produces a crisp partition. PCM gives promising results in the
presence of noise but it is highly dependent on initialisation and estimation of the scale
parameters, The output of FCM cun be used for initialisation and scale estimation however FCM
is very sensitive to noise. Barni also noted that PCM achieves local minimum but is unable to
minimize f,{x,V,X) globally [108). The overall time complexity of the PCM algorithm is

O(ncp) where pis the dimension of the feature.

2.2 Fuzzy Rule-Based Image Segmentation

As discussed in Section 1.2.6, this approach offers considerable potential for exploitation in

image segmentation. Initially fuzzy IF-THEN rules were extensively used in control engineering

problems but now their application in image segmentation 1s increasing. Their advantages may be

summarised as follows [109, 110}: -

e Human can easily understand the problems due to the linguistic representation of numeric
variables.

» Computationally less expensive than fuzzy clustering methods.

¢ Has the potential ability to integrate domain expert knowledge.

The general format of fuzzy IF-THEN rule can be defined as follows: -

IF <antecedent -condition> THEN <consequence>

There are two parts to this fuzzy rule: the antecedent-condition and the consequence. The rule
evaluates the former and determines its amount of truthfulness. The consequence is measured
based on the quantity satisfied in the antecedent condition. The general model of the fuzzy rule-
based system is given in Fig. 2.2 75, 111).

Fuzzy rule-based image segmentation mainly consists of three parts: image fuzzification,
fuzzy rules, and defuzzification (if necessary). The first step is to fuzzify the pixels of the image
and determine the degrees for the regicns to which they belong using the appropriate membership
functions. The model can, if required, take into account human expert knowledge. Once the pixels
are fuzzified, the rules are applied to determine the outcome (consequence) of each rule. In this
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step, if essential, human expert knowledge is used to define the fuzzy rules and/or for some
mcdels feedback is taken from human experts in order to reduce the conflicts arising among the
rules. The resuits of the fuzzy rules can be applied to the output membership functions if needed.
Finally, if there is more than one non-mutually exclusive rule, the results are combined and
defuzzified in order to calculate a single output value,

Human Expert
Knowledge §

|, Apply Fuzzy
Fuzzify Rules

Image 8 Defuzzify

Segmented Result

Fig. 2.2: General model of fuzzy ruic-hased image segmentation sysiem.

Due to its limited application and dependency on image types, fuzzy iule-based image
segmentation has generally only been applied to three image types: ight intensity (LI}, magnetic
resonance (MR), and computed tomography (CT) images [1]. The various fuzzy rule-based image
segmentation techniques relevant to these 3 image types ave described in the following sections.
Each technique is discussed in detail to highlight the problems and drawbacks of contemporary
fuzzy rule-based techniques, and to place in context the originality of the research findings
presented in this thesis.

2.2.1 Fuzzy Rule-Based LI Image Segmentation a

Chi and Yan utilized the fuzzy IF-THEN rules in the segmentation (separation of background _ 3
and foreground pixels) of 8-bit (256 gray levels) geographic map images. These composed text, 5?
streets, roads, and boundaries, which were considered foreground pixels [77, 112]. The muin
processing steps of this approach are described as follows: -

Features Used in Segmentation

Three features, difference between pixel intensity (DI), local standard deviation (5D) and
local contrast of darker pixel (CD) were used in the segmentation and defined as: -

DI(x, y) = PI(x, y)~ LA(x, ) (2.13)
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x+3 +3
S (P16, )- 146G, HF

SD(x,y) = | 22122 5 (2.14)

CD(x,y)= max(0, BR(x, y) - PI(x, y)) sgn{Ci(x, y))

2.15
LA, y) @1

where PI{x,y)is pixel intensity in the location (r,y), LA(x,y) is local average pixel intensity in
a 7x7 window, sgn{C/(x,y)) is the sign operator, which is -1 when CI(x,y)s0 for 2 brighter
pixel PI(x,y); otherwise it is 1, CI(x, y)is the difference of pixel intensity at location (x,y), and

the average of its neighbours and can be defined as; -

3 3
Clx =gl T PRe+i )+ MPhs -+ |-Phs) 2.16)

122 22

BR(x,y) is the average of relative brighter pixels and is defined as:-

BR(x,y)=—  ZPIG,)) @17)
N s-4sisxvd
Gina

where N indicates the number of brighter pixels {(C/(x, ¥)<0) contained in a 9x9 window.
Membership Functions

The input domain is divided into five fuzzy regions named as L2, L1, M, Ht and H2 while
the output domain is split into two fuzzy regions, background and foreground. Triangular
membership functions are utilized for the input regions. The input and output membership
functions are shown in fig. 2.3 (a) and 2.3(b) respectively.

Development of Fuzzy Rules

Fuzzy rules are developed by learning from examples [113], with the input and output
domains divided into the fuzzy regions shown in Fig. 2.3. The membership values of all regions

for each input are calculated and each input is assigned to the region having the maximum
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membership values, So a pair of rules is generated for each training sample. An example of such
a rule could be

IF DI is L1 AND 5D is Hl AND CD is H2 THEN it is a fireground pixel

IF DI is HI AND 8D is M AND CD is L1 THEN it is a background pixel

] L1 M Hi H2 background ! foreground
1.0

l 1 I { |
0.0 0.25 0.5 0.75 1.0 0.0 0.5 1.0
(a) (b)
Fig. 2.3: Input and cutput membership functions, (a) Input membership functions, (b) Qutput
membership functions.

Fig. 2.4: Fuzzy rule bank for geographic map image segmentation,

DI=L2 [L2| L1 (M| HI | H2 DI=L1 |L2 (L1 | M H1 H2
]]ﬁ L2 F F
M L1
HI F |[F{ F Cb M F F F | CD
H2 F] F | F H1 F | F F F
FI F | F H2 F F F
SD SD
DI=M |L2] L1 |M [ Hl | H2 DI=HI [L2 | LI [ M Hl H2 :
L2 | F{ F |F[ F |B L2 F | F B B
LI 'B{ B |B|] FIB LI |[B|[B (B B B :
M [FIL FITFI'FJTFJ]lcop M F{ B B B | cD
HIL 'F] F [F] F |F HI B B B
H2 F [F| F F H2 B B
SD SD
DI=H2 |L2| L1 { M| HI | H2 1
L2 B 3
L1 BB B I8
M CD
Hi 3
H2
SD
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The learning set produced by this method may contain a larger number of iules including
repeated and conflicting rules. To avoid these, the rules are selected that are supported by a large
number of examples. Each ruleis kept in a fuzzy rule bank, which is shown in Fig. 2.4,

Defuzzification

The centroid defuzzication method used to calculate the output for each input pixel is defined

as. -

noo
MG
Cp=t— @.18)
5
i=

where C; is the class produced by the i™ rule, n is the number of rules and M L is the matching

degree of the antecedent of i* rule for the p® pattern. If C, <05, the input pixel is

categorised as a backgrourd pixel otherwise it is categorised as a foreground pixel, which works
well for two class problems, but a large number of fuzzy mies are needed for multiple classes
114).

Concluding Comments

This approach is faster than neural network technigues but it has been found that some parts
of the text characters of the maps are missed for standard triangular function [77], because the
shape and parameters of the membership functions were intuitively selected. For this they used an
automatic method based upon FCM to determine the parameters of the membership functions.
The drawback however was the fundamentai probiem of manual determining the shape of the

membership function. Heuristic rules were also not used in this technique.

2.2.2 Fuzzy Rule-Based MRE. Segmentation

Magnetic resonance images (MRI) are onc of the most important and complicated images
used in medical hnaging. They are extensively used in various types of disease diagnostic tasks.
Medical experis generslly draw the conclusion in regard to the disease by manually scanning such
images [109], whichi is both a tedicus and time-consuming task. Analysis, espucially

segmentation of MR images using automated computer techniques saves iime and helps the
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doctor to detect irregulanity in diagnosis. Fuzzy rule-based MRI image segmentation techniques
may be broadly classified into two classes:
1. Hybrid fuzzy rule-based MRI segmentation.
2. Conventional fuzzy rule-based MRI segmentation.
Both methods are discussed fully in the following sections.

2.2.2,1 Hybrid Fuzzy Rule-Based MRI Segmentation

A hybrid fuzzy rule-based segmentation system combines fuzzy rules with a fuzzy c-means
clustering algorithm, Clustering is computational expensive, does not incorporate human expert
knowledge, and thus does not produce appropriate class [115]. For these reasons, a set of fuzzy
rules is applied to classify the pixels/voxels, where a voxel represents a pixel in three-dimensional
space. It is very difficult to define fuzzy rules that cover all pixels/voxels, so the FCM algorithm
is used to classify the remaining pixels/voxels and those classified by the fuzzy rules are used to
initialise the centre of the clusters. Hybrid fuzzy rule-based segmentation systems are faster than
clustering.

Two examples of a hybrid fuzzy rule-based system are: - (i} adapting fuzzy rules for the brain
issue segmentation [115] and (ii) a rule-based segmentation system with aufomatic generation of
membership functions for pathological brain MR tissues [109]. A description of these two

systems is now given.

Adapting Fuzzy Rules for the Brain Tissue Segmentation

The technique [115] utilising adapting fuzzy rules for segmenting the brain tissue into six
classes: white matter (WM), gray matter (GM), cerebro-spinal fluid (CSF), pathology, skull
tissues, and background is described in the following,

Database and Features

105 axial brain slices, 5 mm thick from 15 people (39 norma! slices from 8 people and 66
abnormal slices from 7 patients) are used for experimental purposes. Relative pixel intensities of
T1, T2, and Proton Density (PD) weighted images are used as features.

Membership Functions

The triangular and trapezoidal membership functions used in the experiment are shown in
Fig. 2.5. The parameters of the membership finctions (al, a2, b1, b2, b3, b4, b5, and b6) are
calculated by determining the turning points of intensity histograms based on a training set
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consisting of 6 normal and 4 abnormal slices and incorporating suggestions from expert
radiologists. The turning points are regarded as peaks, valleys or the starting point of the
histogram, and indicate the estimated boundary of the tissue types. The turning points of the
histograms are shown in Fig. 2.6.
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Fig. 2.5: Definition of membership functions [115], (a) Membership functions for T1 weighted
image, (b) Membership function for T1 weighted image, (¢) Membership function for T2
weighted image.

Patients having brain tumours usually receive radiation and chemotherapy treatment. For this
the PD histogram of the patient with a brain tumour becomes like the PD histogram for abnormai
slice shown in Fig. 2.6 due to the change of properties of gray and white matter. The turning
points of this histogram are obscure and difficult to select. An edge detection technique [116] is
used in order to sharpen the boundary between gray and white matter and utilizes a suitable
threshold to detect the peaks. The initial value of threshold is chosen as § and increased by 5 until
two peaks have been found. If peaks are not found, two peaks are assumed at 1/3 and 2/3 of the
regiori berween bl and b2.
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Fuzzy Rule Generation

The tuming poiats of three histograms (T1, T2, and PD histograms) are used to separate the
fissue into white matier, gray matter, cerebro-spinal fluid (CSF), pathology, background (air), and
other skull tissues. The heuristics used liere to generate the rules are that all voxels between b2
and b4 are usually white matter, below bl are air in PD histogram, and between al and a2 are a
mixture of white and gray matter in the T1 weighted histogram. A set of rules used to classify the
brain tissue is described as follows: -

IF voxel in T1 in set-E AND voxel in T2 in set-F THEN voxel is CSF

IF voxel in PD is set-C AND voxel in T1 in set-A THEN voxel is white matter

IF voxel in PD is set-D AND voxel in T1 in set-A AND NOT (voxel in T2 is set-F AND voxel in
T1 is Set-E) THEN voxel is gray matter

IF voxel in T1 is set-B AND voxel in T2 is set-F THEN voxel is pathology

IF voxel in T1 is set-B AND NOT (voxel in T2 is sei-F) THEN voxel is other

IF PD voxel intensity < bl AND T2 voxel intensity < c1 THEN voxel is background

Rules adapt themselves to each slice during processing as they are generated from the turning

points of the histograms.
. I ™ I
wul A1
oy
E - £ 3T l
- =0 :5 il
¥ A%h nl a2 & It bS
E AN vl V2 B v6
o |
“NF
vl ! |
. . Yoo
Y wad LT y etramkomclariats’ . ;’
T Imrensiny ) " win
D lntendiy
7:0“ o
nh
g mn |
- 50
2 axn] et
¥
1 '
u -~

€ j =l 1203
T2 Intensity

L 1] !
Abnormal PD image Slice PD Intensity
Fig. 2.6: Histograms with turning points [116].
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Classification Techniques

Voxels are classified into six classes by applying the above rules. The unclassified and
isolated voxels (voxels whose membership values are 1 but have no neighbourhoods) for each
class are assigned the membership values with the average membership values of their
neighbourhoods and zero respectively. Finally the voxel membership values are normalized {0 to
1) using the following equation.

_ i)

Hi = Z_*”J’ ) (2.19)
J

where 7/ and j represent each of the six classes. The incorrectly classified voxels (voxels whose

membership values is < 0.80) are classified using the semi-supervised clustering algorithm [117],
The correctly classified voxels are used as training set and weighted by 100.

Concluding Comments

This system is faster than FCM, but while the parameters of the membership functions are
adjusted automaticaily during the processing of each slice, it does not produce superior results
compared with FCM. Rules are generated based on turning points of the histogram but the turning
points are not sufficient to distinguish the voxels if there is a significant number of overlapping
voxels. The spatial information is not well considered as it is taken into account for only
unclassified voxels. The threshold and approximate peaks (when there is no peak in the PD
histogram) are chosen empirically and extra cranial tissues are not removed before classification.

The second of the hybrid fuzzy rule-based systems is discussed in the next section,

A Rule-Based Fuzzy Segmentation System with Automatic Generation of Memberships for
Pathological Brain MR Images

This hybrid fuzzy rule-based brain MR image segmenfation system automatically generates
the memberships for pathological brain MRI images [109] in order to separate white matter
(WM), gray matter (GM), cerebro-spinai fluid (CSF), and cytomegaiovirus (CMV) lesion from
the brain. It works as follows: -




Chapter2  Review of Relevant Fuzzy Clustering, Rule-Based, and Colour Image Segmeatation 27
Techniques

Database

A set of T1, T2 and PD weighted images containing 12 normal images and 3 abnormal
images with lesions are used for experimental purposes. GE Signa 1.5T MRIJ and a Technicare
0.6T instruments are used t0 access these images.

Preprocessing Stage

This comprises image registration and the selection of a region of interest (ROI). The former
ensures the same coordinates for the same pixels in two different images using the method of
shifting of coordinates. For example, if the two images T2 and PD weighted are not matched, the
coordinates of the PD image are shifted to match with T2 weighted image. The shified
coordinates of the PD image are recorded and the shifted PD image is regarded as a registered
image,

The intracranial region of the brain is selected as the ROI, which has to be separated from the
skull and scalp. It is anatomically separated from the scalp and skull by a layer of CSF, except for
the fact that there are a few connections, where the layer of CSF is thin. To separate the
intracranial region, the image is first threshold and then a region growing technique is applied to
grow the empty space surrounding the intracranial region. The probiem of the connections
between brain and scalp is solved by applying the two morphological operators, erosion and
dilation [118].

Determination of Parameters of the Membership Functions

The membership functions are perceptually identified. Three different types of tissue, namely
WM, GM and CSF were identified for T2 weighted images. The T2 weighted images as well as
its edges that are determined by Cohen's edge detection method described in [84] are classified
into five classes WM, GM, CSF, WM-GM, and GM-CSF using the standard FCM algorithm. The

mean intensity (;) and variance (o;) of i class are used to calculate the parameters of the

membership function for i* class. The membership functions for the T2 weighted images are
shown in Fig, 2.7.

The PD weighted image and its edge values are used by FCM to classify them into four
classes. The class containing the highest pixel intensity is discarded in order to eliminate the high
edge values at the boundary of the brain. The techniques used to generate the membership
function for PD weighted images are the same as for T2 weighted images. The membership
function for PD weighted images is shown in Fig. 2.8.
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Fig. 2.7: Membership function for T2 weighted images.
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Fig. 2.8: Membership function for PD weighted images.

PD weighted abnormal images contain periventricular hyperintensity, which have higher
pixel intensities in brighter class than other pixels in the same class. So the membership function
for PD weighted abnormal image is presented in Fig. 2.9.

A membership function to represent the closeness of a pixel from the centre of the brain as
the ventricle is considered a major connected CSF area adjacent to the centre of the brain. This
membership function is used to discover the periventricular hyperintensity, which represents the
lesions of the PD weighted images. The membership function to measure the closeness to the
ventricle is given in Fig. 2.10,
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Fig. 2.9: Membership function for PD weighted abnormal images.
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Fig. 2.10: Membership function to represent the closeness to ventricle.

Development of Fuzzy Rule-Based Segmentation

Two groups of fuzzy rules have been developed. The first group is used to segment the T2

weighted images and to recognize CMYV lesions.
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IF pixel in T2 is Dark THEN pixel is White Matter

IF pixel in T2 is Grey THEN pixel is Grey Matter
IF pixel in T2 is Bright THEN pixel is CSF

The second group is formulated by splitting the last rule of the first group into three new rules
that discriminate between CSF and CMV lesions,

Second Group:

IF pixel in T2 is Dark THEN pixel is White Matter

IF pixel in T2 is Grey THEN pixel is Grey Maiter

IF pixel in T2 is Bright AND pixel in PD is Dark-Grey THEN pixel is CSF

IF nixel in T2 is Bright AND pixel in PD is Very Bright AND pixel is not close to the ventricle
Tn €N pixel is CSF

IF pixel in T2 is Bright AND pixel in PD is Very Bright AND pixel is close to the ventricle
THEN pixel is CMV lesion

The AND operator is evaluated by applying the fuzzy logic minimum operator [119]. All
pixels are classified using the above rules, with those whose membership values<0.5 and the
pixel having two maximum membership values being declared as unclassified pixels.

Modified FCM Segmentatior:

The initial value of each cluster centre is derived from the average value of each respective
classified class. All unclassified pixels are classified using FCM with the derived initial ciuster
centres. If the number of classified pixels in CMV lesion is very small (from 10 to 20), they are
reclassified as CSF.

Concluding Comments

This system is 10 to 20 times faster than FCM, and produces better results for abnormal
images containing lesions but it does not exhibit such promising result compared to FCM for
normal images. The parameters of the membership functions have been derived automatically but
the structure of the membership functions have been defined according to the knowledge of

medical experts. Although anatomical position of the lesion has been taken into account, inter-
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pixel correlations have not been considered. Some additional criteria may be included in addition
to gradient and pixel intensity in order to define the membership functions' parameters.

2.2.2.2 Conventional Fuzzy Rule-Based MRI Segmentatics

Conventional fuzzy rule-based segmentation techniques wse only fuzzy rules to segment the
MR image and do not apply FCM in addition to the fuzzy rul¢s. Sasaki ef al. introduced such a
fuzzy rule-based method to segment the menisci region from MR images {120].

Database

Five normal MR data sets consisting of three normal and two injured knees are used in the
experiments. T1 weighted 3D SPGR with TR=100 msec, TE=15 msec, and flip angle=30 degree
images are acquired with Genesis Sigma 1.5 Tesla MRI scanner. Each image contains 60 separate
1.5 mm thick slices.

Knowledge Used to Segment the Menisci Region

The anatomical position of the menisci region is shown in Fig 2.11. The following
knowledge is used to generate the fuzzy rules.

muscle

meniscus

meniscus cartilage

fat

@
Fig. 2.11: Anatomical location of menisci region [120], (a) MRI and enlarged Image, (b)
Anatomical location of knee.

1. Voxel intensities of cartilage regions are high.
2. The menisci region lies in between the thigh and shinbone.

3. The cartilage regions are adjacent to the centre of gravity of the knees.
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4, The menisci are aniomatically located near the cartilage.

5. The voxel intensities of the menisci regions are coherent.

Fuzzy Rules Generation and Segmentation

Two different sets of fuzzy rules are developed as the segmentation is performed in two
stages. Firstly the candidate region of the menisci is segmented whereas the menisci are extracted
from the candidate region in the second stage. The candidate region is defined as the region
between the cartilages as menisci are located between the cartilages. A set of voxels represented
by straight contiguous two-dimensional data(x, 2)is called unit(x,z). Two types of units, 4
and B are defined to segment the candidate region. Unit 4 contains the candidate region while
unit B does not contain any candidate region voxels. Fig 2.12 shows the model of candidate

region and representation of the smallest unit.

cartilage

Fig. 2.12: A model of candidate region and representation of the smallest unit [1201.

D and d denote the constant distance of the most distance unit and distance of the interested
unit from the centre. Unit A and B are shown in Fig. 2.13.

thigh
contilage t:dispaﬂty of intensity is large
meniscus / (=4 /
disparity of intensity is small

cartilage (n=0)
shinbone
unit A

Fig, 2.13; Unit A and unit B {120].

The number of disparity between two adjacent voxel intensities on a unit is defined as: -
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n="2C0) (220
J=0

where C(j)is calculated as: -

COi)= {l, Jor pG)-vG +1)|>T; (2.21)

0, otherwise,

and J is the range of candidate region, v(y) is the voxel intensity at coordinate j and T is the

threshold.
The membership functions of distance and disparity to measure the values of linguistic

variables, small and large are shown in Fig. 2.14.

ud 4
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Fig. 2.14: Membership functions for distance and disparity of intensity [120].

From the previously defined knowiedge 1, 2, and 3, the following two rules are defined using
the membership functions shown in Fig. 2.14 in order to segment the candidate region.

IF dis small AND n is large THEN degree of belonging to unit A is large
IF dis large AND n is small THEN degree of belonging to unit B is large

The degrees of belonging to units 4 and B are calculated using the following equations.

graded =w, x udsmall(d) + w, x unl arge(n) (2.22)

gradeB =w, xudl arge(d} + w, x unsmall(n) (2.23)

where w;and w, are weights. The unit is classified into unit 4 if graded > gradeB , otherwise

the unit 1 classified into unit B
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The coherent
intensity of the
menisci

(@)
Fig. 2.15: Membership functions for segmenting menisci from cartilage region [120]), (a)
Distance from cartilage, (b) Membership functions for distance from cartilage, (c) Membership
functions for voxel intensity.

From the above defined knowledge 4 and 5, two membership functions #c and i shown in
Fig. 2.15 are derived for segmenting the menisct from the candidate region. Fig. 2.15(a) shows
that the menisci exist near the cartilage. Both wcand w calculate respectively the degree of
belonginess to the menisci from the distance of a voxel from the cartilage region and the voxel
intensity. The parameters df and dM used in the membership functions shown in Fig. 2.15(b)

and Fig. 2.15(c) respectively are the widths of the one side of the triangles whereas aM is the

coherent intensity.
The calculation of uc for two cartilages is defined: -

ue()= ucl() +ucl(j), foruc F)) +ucfj) <1 2.24)
1, otherwise,
while for one cartilage it is: -
uc(j) = ucl(j) (2.25)

The following two rules are developed from the membership functions shown in Fig. 2.15
and the knowledge 4 and 5.

IF a voxel is anatomically adjacent fo the cartilage THEN the degree of menisci voxel for uc is
high

IF the intensity of the voxel is the same as coherent intensity of the menisci voxel THEN the
degree for ui is high

The total degree, gradeM =wiuc(f) + w ui(m) (2.26)
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where w3 and w,are the weights. If gradeM > wrbitrary threshold T then the voxel is

classified as a menisci voxel.

Concluding Comments

This method can successfully separate the menisei, 3D construction and display of menicci
has been performed for both normal and injured knees in order to identify cartilage tears. The
rules have been heuristically defined from the anatomical position and coherent intensity of the
menisci voxels. The structure of the membership function is predefined with the corresponding
parameters being directly determined from the MR device parameters.

2.2.3 Fuzzy Rule-Based CAT Image Segmentation

CT imaging is also known as Computed Axial Tomography (CAT) scanning [121] and is
one of the most important medical imaging techniques and used in various types of disease and
wound diagnosis. A fuzzy rule-based segmentation of intrathoracic airway trees on CAT image
has been described in [101).

Database

Five canine data sets are scanned using EBCT scanner from five anaesthetised dogs. Each
data set contains 40 slices of 3mm thick. 40 slices, 8 per data set are randomly selected and their
airways are perceptually determined by an expert in order to determine both the training and test

sets.

Stages in Airway Tree Segmeniation
This consists of the following five steps: -
Separation of lungs from the volumetric data set.
Definition of primary airway tree.

1

2

3. Preprocessing of all individual image slices.

4. Fuzzy rule-based identification of airways in all image slices.
5

Construction of airway tree using 3-D connectivity.
The techniques used for steps 1, 2, and 3 are described in [101, 122-124]. The primary airway

tree contains the major branches of the tree and is defined as the 3-D connected components of

the image voxels below a threshold, which is formed by 3-D seeded region growing approach
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[125, 126]. The main task of this preprocessing step is to identify the background and all possible
Jocations of airways and vessels for each slice. The pixels having from 55 to 110 gray level
intensities are considered background pixels. Voxels darker and brighter than background are

treated as candidate airways and vessels respectively.

Fuzzy Rule-Based Identification of Airways in All Image Slices

The following anatomical information is used to determine the airways.
1. Airways are generally dark |
2. Airways are encompassed by airways wall

3. Airways are near to airway vessels

The anatomical position of airways and their vessels are shown in Fig. 2.16,

l’l"" -l Nnd ......'-...'-:'-1.........-?. S

Fig. 2.16: Anatomlcal posmon of airways [101], (a) Alrways detectlon principles, (b)
Assessment of wall evidence.

The following three features are defined according to a region adjacency graph property
[127].
1. Brightness: Uses minimum and maximum grey level regions to represent the airways
and vessels candidate regions respectively.
Adjacency: Represents the grey level of the brightest adjacent region.
Degree of Wall Existence: Determines the existence of the wall and is calculated by
the ratio of the total number of concentric rays possessed dark-bright-dark profile and

the total number of concentric rays directed from the centre of the candidate region.
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The membership functions for Brighiness, Adjacency and Degree_of Wall _Existence
including their linguistic variables are shown in Fig. 2.17.

The parameters of the membership function are determined from a manuatly tracking training
set containing etght randomly selected slices of a single volumetric data set. The conflict arising
amongst membership functions is solved manually in order to obtain optimum classification
results {128, 1291, The rule banks developed for the segmentation are represernted in tabular form
and shown in Fig. 2.18.

Low Medium High
]
43 50 80 115 140 . 223
Brightness
1
High
Low M Med \ &

02 025 03 043 045 05 052 1
Degree_of_Wall_Existence

140 145 150 160 165  Adjacency 225

e
? £ R = a: Very High
i b: High
¢: Medium
d: Low Labellin,,
e: VeryLow  Confidence
i 2

Fig. 2.17: Membership Functions for Brightness, Adjacency, and Degree _of Wall_Existence.
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Degree_of Wall_Existence Degree_of_Wall_Existence
Low Med High Low Med  High
Brightness . Very Brightness .
Low Med High High Low Low Med High
Med | Low | Med | High Md | Y | Low | Med
. Very . Very Very
High Low Low Med High Low Low Low
Adjacency=High Adjacency=Med
Degree_of Wali_Existence
Low  Med High
Brightness | Very { Low Med
Low Low
Med Vety { Very Low
Low Low
High Very | Very | Very
Low Low Low
Adjacency=Low

Fig. 2.18: Fuzzy rule banks to determine the confidence level of airway.

The value of each cell indicates the confidence level of airway, as for example in the following
rule,

IF Brightness is Low AND Adjacency is Low AND Degree_of Wall_Existence is High THEN
region is airway with Medium confidence
Finally, centroid defuzzification is applied in order to obtain numerical confidence level for
each region, which indicates the possibility that the region belongs to airway.

Construction of Airway Tree Using 3-D Connectivity

Airway tree named C-tree is constructed by stacking al! the regions whose airway confidence
level is greater than 73% utilizing shape based interpolation along the z-axis [130]. From C-tree,
A-tree and B-tree are created. A-tree is defined as a 3-D connected region and subset of C-tree,
which contains the airway-tree root. B-tree is the combination of A-tree and disconnected airway
tree branches of C-tree that contains above the empirically selected threshold for volume,

Concluding Comments

This method has constructed three trees named A-tree, B-tree, and C-tree. The medical
specialist may use any of the trees according to their needs though the parameters of the
membership function are not automatically derived. It showed good performance in vivo analysis
of 3-D human CAT image data sets.
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While each of the reviewed fuzzy ruie-based systems has particular merits, they also each

have some inherent limitations. They may be summarised as follows: -

L
2
3.
4

5.

The systems are both image and application dependent.

The structures of the membership functions are manually defined.

Spatial relations of pixels are not exploited by all systems.

In certaisi cases, the paraineters of the membership functions are perceptually
derived,

None of the systems considered texture.

As will be proven in subsequent chapters, the fuzzy rule-based framework solution proposed

in this thesis specifically addresses all of the above limitations.

2.3 Texture Features

Texture representation is one of the fundamental problems of digital image processing since

there is no widely accepted definition of texture and generally it represents the structural

arrangement of the surfaces and their relationships. Most natural objects contain texture and are

usually identified by shape, colour, and texture [10], so it is crucial to give consideration to

texture feature for object based image segmentation. There are a large number of techniques

available in the literature to estimate the texture. Some of the most common techniques are [10,

131}: -

e  Gray level histogram.

e  Gray-tone co-occurrence matrix.

¢ Fourier transform energy.

¢ Dominant local orientation and frequency.

e Gradient analysis,

¢ Relative extrema density.

*  Markov random field model.

e Gibbs random field model.
¢ Gabor filters.

¢ Fractal dimension.

A brief description of the gray level histogram technique will be given in Section 4.3 where it

is employed for measuring the uniformity. The main limitation of this approach is that the gray

level histogram only considers first order statistics and so does not consider the relative position

of the pixels [10]. Sharma er al. [132] performed an evaluation between five different texture

3
’%
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extraction techniques for image analysis and proved the gray-tone cc-occurrence matrix the best.
This technique measures the second order joint probability between a pair of pixels separated by a
particular distance in a specific direction [10]. The features obtained from the gray-tone co-
occuit¢nce matrix however are not truly rotation jnvariant and thus not suitable in the context of
the framework because in calculating the membership functions for texture for each pixel, a small
window is used, typically of size 4x4. Higher sized windows are‘not suitable to calculate the
membership functica for each pixel. |
A broad tutorial review of many of these different techniques including their advaniages and
disadvantages is given in {10][133]. Of the above, in the context of the thesis and particularly the
role of texture in the fuzzy based framework, the fractal dimension (FD) is especially
advantageous for the following reasons:
1. Tt is relatively scale insensitive and corresponds to human perception of texture that
is, there exists uniformity between the human perception and the surface roughness
{131].
2. It is suitable for describing the erratic and complex behaviour of the surface of
natural abjects {134].
3. The FD based feature is also appropriate to consider image domain specific
information based on a window in segmentation.
This final attribute is very important in being able to take image domain specific information
into account and was one of the key reasons for selecting FD in the fuzzy rule-based framework

(Fig. 1.1) for texture segmentation purposes. This wiil be discussed in greater detail in Chapter S.

2.4 Colour Models

Colour is a physiopsychological phenomenon and exists in every aspect of human life.
Colour analysis has been essential in computer vision based on the simple notion the more
information helps to more accurately represent the visual scene [135]. The following two primary
aspects inspire the application of colour in image processing {84); -

1. Colour is a very important attribute, which makes easier the object recognition and
extraction from the image.

2.  Colour has a huge number of shades and intensities, whereas gray level has only
about 24 shades of gray.

All colours are generated by the combination of three primary colours: red, green, and blue.

The amounts of red, green, and blue used to generate a particular colour are known as tristimulus
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values. So 2 colour is represented by a point within a subspace of 3-D coordinate system. The
specifications of 3-D arrangements of the colour sensations are called colour models or colour
spaces or colour coordinate systems, The colour models used in image processing are generally
developed from following sources [136]: -

o Human visual systems: for example, RGB, opponent, and HSV colour models.

¢ Technical Domain: for example, XYZ (colorimetry) and YUV (television) colour models.

e Developed specifically for image processing: for example, Otha and Kodak Photo YCC

models. '
A brief description of some of the colour models is presented in the following sections.

2.4.1 RGB Colour Model

Blue
Cyan
(0,0,Bmax) (0.Gmax,Bmax)
White
Magenta (Rmax,Gmax,Bmax)
(Rmax,0,Bmax)
o
Line of Gray
(G.Gmax.0)
P Green
Yellow
(Rmax,Gmax,0)

Fig. 2.19: RGB Colour Model (RGB Cube).
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RGB model is the basic colour model and in general it is used to derive other colour models.
Each colour is represented by the three components: red (R), green (G), and blue (B) using 3-D
Cartesian coordinate system. The RGB colour gamut uses a unit cube called RGB cube shown in
Fig. 2.19 assuming all three components are normalized within [0, 1], in which the positions of
red, yellow, green, white, magenta, cyan, blue, and black are shown. The gray level is shown by
the dotted lines connecting the black (0,0,0) and white (1,1,1) points {84, 136].

While the RGB colour model is used in many colour applications, such as cameras, scanners,
and displays and aerial and multispectral image processing [84], it has some significant
disadvantages when considered from a segmentation perspective.

¢ TheR, G, and B components are highly correlated.

e A non-intuitive colour model, which means that it is very difficult to perceive the colour

based on the values of the R, G, and B components.

¢ A non-uniform colour model, which means that usually the perceptual difference Lxtween

two colours does not conform to the corresponding Cartesian distance.

As mentioned earlier, since RGB is the fundamental colour model and extensively used in
colour image processing, its application to image segmentation will be examined in detail in
Chapter 7.

2.4.2 HSV Colour Model

HSV is one of the perceptual colour models, in which human can easily perceive the basic
attributes; hue (H), saturation (S), and value (V) [136}. Hue represents the dominant wavelength
of the colour stimulus, while saturation denotes the relative purity of the colour. V corresponds to
the gray level intensity of a colour that is, the luminance. HSV colour system uses a cylindrical
coordinate system and the colour subspace is a hexcone, as shown in Fig. 2.20 [137].

The angle around the vertical line starting with O represents the hue and the saturation is
measured by the distance of the colour point from the vertical line (V axis) within the normalised
range of [0,1]. The advantages of the HSV colour model may be summarised as follows [136]: -

¢ Intuitive colour model.

» Separation of chrominance from luminance.

¢  Only hue component (H) can be used in object recognition and segmentation.

The main disadvantages of this model are: -

¢ Perceptually non-uniform.
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e The inevitable singularities arising during the transformation from the RGB to HSV
model.

¢ Difficulties in some arithmetic operations on hue angles e.g. averaging,
v
A

1.0

S
1.0

Fig. 2.20: HSV Colour model (Hexcone).

Since hue is expressed using the cylindrical coordinate system, the calculation of the average
of hue angles based on Cartesian coordinates does not make sense. For this reasons, an alternative
strategy be specifically proposed in Section 6.4, where an algorithm is developed for calculating
the average of hue angles for the processing,

HIS (hue, intensity, and saturation) and HLS (hue, lightness, and saturation) are the same as
the HSV colour model. In the light of the above mentioned advantages, especially its potential
capability for object recognition and segmentation, the HSV colour model will be utilised in the
proposed fuzzy rule-based colour image segmentation (FRCIS) algorithm (Block 4 in Fig. 1.1)
and analysed in greater detail in Chapter 7.

2.4.3 Television Colour Models

The television models were mainly created in order to reduce the bandwidth of the composite
video signal (CVS), so that it can be transmitted through existing TV channels used by
monochrome television systems [136]. These are opponent colour models, where the luminance
(Y) and chrominance components (U and V or | and Q) are separated. The two chrominance
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components are derived from the colour difference signals: R-Y and B-Y. YUV and YIQ colour
models are used in the analogue PAL (625 lines) and NTSC (525 lines) TV signal coding
systems respectively, while YCyC, is independent of the actual TV signal coding system and is
suitable for the digital coding of TV pictures [136].

2.5 Fuzzy Colour Image Segmentation Techniques

As alluded in Section 2.4, the human eye can discern a huge number of shades and intensities
of colour but only around two-dozen shades of gray. Using this additional information, objects,
which are not possible to be segmented using gray level information, may potentially be able to
be segmiented using colour information {138]. |

Lim and Lee [139] proposed a colour image segmentation using multilevel thresholding and
the FCM algorithm. There are two stages: coarse and fine, associated with this algorithm. In the
coarse stage, the segmentation is performed using multilevel thresholding, while in the fine stage,
the segmented results produced by the coarse stage are refined using the FCM algorithm. Its
application is limited due to applying the histogram mode seeking technique [ 138], which usually
uses the peaks in the histogram to determine the number of regions (clusters). It is difficult to
calculate the number of regions (clusters), if there is no distinct peak in the histogram.

Another colour image segmentation technique using fuzzy integral and the RGB colour
model has previously been discussed in Section 1.2.4.

Moghaddamzadesh and Bourbakis [140] introduced a fuzzy region growing approach for
colour image segmentation, by defining a function contrast(v, ) to measure the contrast between

two pixels with v and w colour vectors in the following way: -

contrast,,, =1I(R,, -&, Y +(G,-G,) +(B,-B,)

(227
The fuzzy membership function for the contrast is defined as:
0, if contrast <ay;
He =31, if contrast > a,; (2.28)
(contrast - a))/(as - a), otherwise.

where ajand ajare two predefined thresholds. The contrast is deployed to measure the

homogeneity during region-growing approach. Two types of contrast are determined, namely

absolute contrast (contrast between a pixel and a region) and relative contrast (contrast betweena
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pixel and its neighbours in the growing direction). The membership function for farness, 4,

which is used in classifying a pixel to the appropriate cluster is defined as: -
By =y X, (2.29)

where u,is the membership function for measuring the distance. The contrast defined by this

technique is not reliable because of the high correlation between the colour components of the
RGB colour model and riot being illumination invariance [138].

Chien and Cheng [141] proposed a colour image segmentation approach based on fuzzy
similarity measure by defining a set of fuzzy colours based on hue and tone using the HLS colour
model. The tone is developed based on lightness and saturation. The predefined triangular
membership functions are used for both hue and tone. Each pixel is represented by a set of fuzzy
colours that are defined in the colour palette selected by human. They also defined a fuzzy
similarity measure to calculate the similarity between two fuzzy colours. The adjacent pixels are
merged based on their similarity value.

Cheng et al. {142] introduced a fuzzy colour image segmentation technique based on
homogram mode seeking approach using the RGB and HSI colour model. In this technique, a
homogram is defined in terms of gray level occupancies and fuzzy homogeneity among the
neighbouring pixels. The two main processing steps of this technique are as follows:

1. The image is classified into major homogeneous regions by the homogram analysis
based on entropy.

2. The final segmented results are produced by merging the smaller and closest regions
with their closet regions in order to avoid over segmentation.

The segmented regions produced by these techniques are not perceptually meaningful objects
and as mentioned before, the mode seeking approach is not suitable for object based image
segmentation. This technique fails to separate the regions if there is no peak in the homogram at
all. The approach also omits how to actually calculate the similarity for the HSI colour model,
especially for the hue values.

2.6 Summary

This chapter has outlined some of the popular fuzzy clustering and rule-based image
segmentation techniques. The simplest, oldest, and most widely used clustering algorithm is
fuzzy c-means clustering algorithm (FCM), which arbitrarily divides the data sets and the
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equations provided for the cluster centre and the membership function are not sufficient to
achieve the local minimum of the object function. It also strongly follows the probability, which
avoids the trivial solution for the membership function. Although the possibilistic ¢-means
algorithm (PCM) considers the underlying meaning of data and hence has solved the problems for
the degrees of sharing and strongly supporting the probability of the FCM membership function,
its objective function cannot achieve a global minimum. The main two drawbacks of these
clustering algorithms are the number of clusters and their initial values. -

In contrast, fuzzy rule-based image segmentation techniques are able to integrate expert
knowiedge and are less computationally expensive compared with fuzzy clustering. They are also
able to interpret linguistic as well as numeric variables. The performance of fuzzy rule-based
segmentation in many applications however, is sensitive to both the structure of the membership
functions and associated parameters used in each membership function. The example in
Section 2.2.1 of a rule-based LI segmentation technique for geographic map images, intuitively
defined the structure of the membership functions with the related parameters being automatically
determined.

It is evident from the various examples and commenting that fuzzy rule-based image
segmentation techniques offer much greater potential, though both the structure of membership
functions and derivation of their relevant parameters are still very much application domain and
image dependent.

The chapter has also reviewed ways of representing both texture and colour in images. The
motivation for choosing fractal dimension (FD) to incorporate texture together with the image
domain specific information for segmentation and the descriptions of different colour models
including their respective advantages and disadvantages have been provided. Colour image
segmentation techniques based on histogram/homogram mode seeking or thresholding have also
been reviewed for few suitability for object based image segmentation.

The next chapter will introduce a new generic fuzzy rule-based image segmentation (GFRIS)
algorithm, which will address a number of the aforementioned issues, most crucially by
incorporating spatial pixel information and automatically data-mining both the key fuzzy rule
weighting factor and its threshold.




Chapter 3

A Generic Fuzzy Rule-Based Image Segmentation
Algorithm

The literature review in Chapter 2 highlighted that fuzzy rule-based image segmentation
techniques tend in general, to be application dependent with the structure of the membership
functions being predefined and in certain cases, the corresponding parameters being manually
determined. The net result is that the overall segmentation performance of a technique is very
sensitive to parameter value selections. This chapter addresses these issues by introducing a generic
Juzzy rule-based image segmentation (GFRIS) algorithm (Block 1 in Fig. 1.1), which is both
application independent and exploits inter-pixel spatial relationships. The GFRIS algorithm
automatically approximates both the key weighting factor and threshold value in the definitions of
the fuzzy rule and neighbourhoud system respectively. A detailed time complexity analysis of this
algorithm is also presented in this chapter. A complete quantitative evaluation will be presented
between the segmentation results obtained using GFRIS and the two popular fuzzy ¢-means (FCM)
and possibilistic c-means (PCM) algorithms in Chapter 7.

This Chapter is organised as follows: In Section 3.1, the three membership functions used in the
GFRIS algorithm are defined. The fuzzy rule definition and underlying theory, together with the
data-mining algorithm for obtaining both the key weighting factor and threshold are presented in
Sections 3.2 and 3.3 respectively. Section 3.4 details the full GFRIS algorithm, together with a full
time complexity analysis, while Section 3.5 addresses the performance of the GFRIS algorithm.

3.1 Defining the Membership Functions

The definition of the membership function lies at the heart of any fuzzy logic system and the
capability of fuzzy rule-based techniques significantly depend upon it. The Gestalt principle states
that visual elements may be perceptually grouped together based on the principles of: proximity,
similarity, common fate, good continuation, surroundedness, closure, relative size, and symmetry
[143}. Of these perceptual characteristics, three membership function types are defined based on the

47
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Gestalt principles of similarity, proximity, and good continuation, to respectively represent the: (i)
region pixel distributions, (ii) closeness to a region’s centre, and (iii) pixei spatial relations. The
first and second membership functions characterise similarity based on a region's pixel distribution
and gray level pixel intensity respectively, while the third reflects the characteristics of both
proximity and good continuation. Each membership function has a corresponding membership
value for every region, which indicates the degree of belonging to that region. These three

membership functions will now be individually discussed.

3.1.1 Membership Function for Region Pixel Distributions

In gray level images, every region has a distinctive pixel distribution, which characterises to
some extent that region’s properties. The approach adopted here is to automatically define the
membership function including its structure from the pixel distribution of that particular region.
This is achieved in three steps: -

1. Segment the original image into a desired number of regions by applying a clustering
algorithm such as fuzzy ¢-means (FCM),
Generate the gray level pixel intensity histogram for every region and normalise the
frequency for each gray level into the range [0 1),

3. Use a polynomial representation to approximate each region, The polynomial value of a
region, for every gray level pixel corresponds to the membership value of that pixel in that
region, with the actual gray level intensity values being the parameters of the membership
function,

As an example, the reference image shown in Fig, 3.1(a) is classified into two separate regions,

namely R, (cloud) and R, (urban scene) using the standard FCM algorithm. The respective pixel

distribution of each region is used to produce the corresponding membership function and a gray
level intensity histogram (gray level histogram) is generated for both regions, with the frequencies
of occurrence being normalized. A polynomial then approximates the histogram of each region. As
an example, a 3" order polynomial is given by: -

f(x)=ao +alx+azx2 +a3x3 (31)

where x is an independent variable, which in this example is the 8-bit gray level pixel intensity.
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The coefficients ay, a,, a5, and a; are computed by applying a least squares (LS) fit to the
histogram for each region. The values of f(x) are constrained between 0 and 1, and represent the
membership vaiue of each gray level pixel. The 3™ order polynomials for the segmented regions R,

and R, in the example image are shown in Fig. 3.1(b) and 3.1(c) respectively.

@® ®) ©

Fig. 3.1: Reference image and its membership function for each region: (a) Origina! image, (b)
Membership function for R, , (c) Membership function for R, .

The degree of belonging to a region of a candidate pixel, that is the pixel to be classified, is
determined from the respective membership function. Hence, for a pixel having a gray level value

of 150, the membership values for regions R, and R, can be easily determined from the respective
polynomials as 0.425 and 0.125 respectively. Considering the general case of a pixel with a gray

level value of Py, atlocation (s,¢), then the two membership functions ppg, (P, ) and p1pe (2,)

for the pixel distribution of regions R, and R, respectively, are expressed as: -

Hpr, (P s.r)=f R (P s,t) (3.2)

and
tor, Py )= fr, (P:,) 33)

where fp (PS_,) and fp (Ps,,) are the respective polynomials of regions R, and R,.
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3.1.2 Membership Function to Measure the Closeness of a Region

This membership function represents the similarity between a candidate pixel and the centre of
a region based on gray level pixel intensity. A pixei must always be closer to the belonging region
than any other region and the degree of belongingness of a candidate pixel to a region is determined
from the k-means clustering algorithm [144]. When a candidate pixel joins its nearest region, the

centre of that particular region is recomputed. The centroid of a region R;is defined as: -

1% -

ClR;)=~- > ,(0) (3.4)
=l

where N is the number of pixels and P; (i} represents the i” pixel gray level intensity in the ;/*

region.
A membership function should reflect the axiom that the closer a pixel is to a region, the larger

the membership value that pixel should have. Hence, the membership function Hew, (Px‘,), which

determines the degree of belongingness of a candidate pixel P, at location {s,r), to a region R ; is

defined as: -

IC(R )‘ PSJI

35
A 3.3)

Her, (P, )=1-
where a b-bit gray level image is assumed.

Lemma 3.1: The maximum value of the membership function Hei, (Fy ) will always be at the
centre of the region and the structure of the function will be symmetrical about a vertical line that

passes through the centre of the region.

Proof: For positive values of {2° 1), lc(";i)"f"’l 20. The function pcp, (p,,) win

therefore be a maximum whenever IC(Rj)— P,’,|=0, i.e. when C(Rj)= Py, , 50 the maximum

always occurs at C(R j), which is the centre of region R T
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To prove the membership function is symmetrical about C(Rj ), consider the values of

Her, (Ps,,) for P, = C(R ; )+ S and P, =C(R j)— & , where &is an arbitrary censtant.

Hcr (C(Rj)+6)=1-F(Rf)'C(Rf)‘5!=1_ 161

0 R )

_,_[e®)-cR)+d g
HCRJ(C(RJ)“S)‘J‘ ¢ -1) =1 —(25 ~1)

Since e, (C[Rj )+ 5): Hewr, (C{R )-5), HCR, (P&,) is also symmetrical about a vertical line

passing through the centre of region R;. "

3.1.3 Membership Function for Spatial Relations

The principles of proximity and good continuation are used to define this particular
membership function. Wherever pixels are close together and exhibit reiatively smooth variations,
there is an obvious expectation that strong spatial relationships will exist between neighbouring
pixels within that region. In the preceding two sections, the respective membership functions have
been constructed using only feature values, i.e. gray level pixel intensities. Spatial relations between
pixels within an identified region have not been considered, yet are vital since they characterise the
geometric features of a region as any spatial object contains two descriptors: feature and geometric
[145, 146).

In many natural images, there are a large number of overlapping pixels between regions, so that

effective segmentation cannot be expected unless these overlapping pixels are taken into account.
By considering the neighbourhood relationship between the candidate pixel and the pixels of a
region that surround it, a farge number of overlapping pixels can be reduced. Based on the
neighbourhood relations, te candidate pixel can then be assigned to the appropriate region.

Many approaches exist to define neighbourhood relations [147], such as minimum spanning
tree, fixed size neighbourhoods, and Voronoi tesseliation. This paper concentrates upon only fixed
size neighbourhoods around the candidate pixel, since the number of pixels and their distances from

a candidate pixel has to be calculated.

[
2
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The neighbourhood pixel configurations for =1, r=2, and r=4 are shown in Fig. 3.2(a), 3.2(b),
and 3.2(c) respectively [148] where r=1 denotes the neighbourhood radius, while O and #
represent the candidate and neighbourhood pir=ls raspectively. The number of neighbours will be

(r+1)? for r=1and (r +1)* -1 otherwise.

% # # #
# # # # # # #
# 0O # O # # 0O # #
# # # # # # # # #
# # # # #
(a) r=1 ) =2 (c) r=4

Fig. 3.2: Neighbourhood configurations.

As previously mentioned, the principles of proximity and good continuation imply that pixels,
which are close together and have smooth variations should be part of the same region, that is,
segmented regions are homogeneous and mutually exclusive, ft is thus assumed that the variation of
neighbouring pixels in a region is limite: to some threshold 7, and the neighbourhood system of a
region based or this premise is defined as: -

Definition 3.1—A Neighbourhood System: A neighbourhood system ¢ (Ps,, . r) with radius r,

of a candidate pixel P, is the set of all pixels P, such that
()= 1P [Py P )s ) P, - | ST where the distance,

d(Px.y P )= - s+ [y -1, Py, is the gray level value of the pixel at Cartesian coordinates (x,y),
and 7' is the threshold.

To construct a membership function, the number of neighbourhood pixels and their distances
from the candidate pixel must be considered, while to achieve proximity and good continuation, the
membership function 4 should possess the following properties: -

1. x4 o« N whereNis the number of neighbours.
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i
2 px
P, P.,)

where d(P, yoPay ) is the distance between pixels P,, and P,,. The second property may

intuitively be interpreted as the smaller the distance between a candidate pixel Py, and its
neighbour P, ,,, the larger the value of the membership function u .

The summation of all inverse distances of a region R, is: -

3.6
gd(PxJ,PsJ) ( )

where N =|c_:' (Ps .,,rx is the number of neighbourhood pixels of the candidate pixel F;, in the
region R; and d;\P ( X ,,) is the city block distance between the i* pixel P, » of region R; and
the candidate pixel P,

By considering the number of neighbours N, and the sum of their inverse distances G 3 from

the candidate pixel P, , the membership function u MR, ( P )of the region R; becomes,

NJ. XGRJ

ttam, (PegsP) =5 3.7)

Z(Nj "GR,)
=

where R is the number of segmented image regions. Eq. (3.7) shows that the greater the number of
neighbours in a region, the larger the membership function value will be for that region. Hence, if
all neighbours fall into a single region, the corresponding membership function value will be one
for that region, since the sum of the membership function values for all regions aiways equals unity.

It is worth mentioning that (3.7) is not a probability function, since it is does not use any
random data or samples to develop the membership function. Rather it uses actual data to
approximate spatial relationships. The sum of all the membership function values for all regions is
deliberately kept equal to unity in order to reward regions that have and are close to neighbours, and
to do the converse for regions that is further away and have a smaller number of neighbours.

Experiments were performed with this restriction relaxed, but they did not produce very promising
results.
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3.2 Defining the Fuzzy Rule

Having defined the three membership functions, the next step ts to combine them ‘using a fuzzy
rule. The definition of the fuzzy rule is the single most important and challenging aspect of fuzzy
rule-based image segmentation, as its effectiveness is vital to the overall performance. In this
section, the fuzzy rule is heuristically defined using the three membership functions defined in
- Section 3.1, in combination with the widely used fuzzy IF-THEN mnule structure,

" The overall membership value AR, (Ps ,,r) of a pixel P, for region R ; represents the overall

degree of belonging to that region, and is defined by the weighted average of the three individual

membership function values HpR, (Ps,, ), Hr, (P_g,,) and u MR, (Ps_,, r), which were given in (3.2),

(3.5) and (3.7) respectively.

WiHDR, (7, )+ Wakicr, (. s,r)"' W3R, (Ps,n r)
W+ Ws + Wy

Har, (Prpor)= (3.8)
where wy, w,, and w; are the weightings of the membership values for pixel distribution,
closeness to the cluster centres, and neighbourhood relations respectively. The overall membership

value 1 p (R, 45 r) is used in the antecedent condition of the fuzzy IF-THEN rule.

Definition 3.2—Fuzzy Rule: IF 41, (P, )= max {as, (P, )} THEN pixel P, belongs to

region R;.

This rule is made deliberately generic so that it can be applied to any image type thus adhering
to one of the key objectives that the GFRIS algorithm should be both image and application
independent. Clearly the weightings in (3.8) applied to each membership function have to be
calculated and play a vital role in the performance of the GFRIS algorithm. In the next section, a
strategy will be discussed to calculate each weighting value.

3.3 Determination of Weighting Factors and the Threshold

The threshold value T introduced in Section 3.1.3, plays a major role in defining the spatial
relationship between pixels in any region, because it regulates the level of variation between the
candidate pixel and its neighbours. The greater the variation between a candidate pixel and its
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neighbours, the larger the standard deviation will be, which pro rata results in poor continuation.
Two issues need to be considered in determining the threshold value; - )

1. The degree to which pixels of one region overlap with those of another region.

2. The pixel standard deviations in each region.

The approximate threshold 7, is computed using step 1, by considering the centres of the
initially segmented regions, while the status of this approximate threshold as to whether it is
actually an overestimation of the final threshold value, is determined using step 2. Estimation of
both the status and final threshold value is detailed in Algorithm 3.1. If the centre of a particular
region is two standard deviations away from the boundary of another region and the pixels in that
region are normally distributed, there ts at best a 5% probability that the pixels of that regién will

overlap with the other. The procedure to determine the approximate threshold 7, for two regions

may be formalized as follows: -

Theorem 3.1: If wo regions with centres cjand c, have pixels that are normally distributed,
then for at least 5% levels of significance, the approximate threshold will be bounded by
T, $|c} —cz|/-1.

Proof: Assuming that the pixels are normally distributed, then in a region having a centre ¢
and standard deviation oy, the 5% level of significance means the probability of pixels falling
outside ¢ 20, will be 0.05 [149]. The same is also true for the other region, which has a centre

¢, and standard deviation ¢, . Thus, for at least 5% levels of significance,

2(o, —;-az)slcl —02|

Since the threshold is considered the same for both regions, it may be written as T, = Si79%
such that,
c, ~C
4T, sle) —¢5| =T, s|_‘..2__21 -

This theory may be extended to an arbitrary number of regions for determining the weight and
the threshold values. If the approximate threshold is overestimated, the minimum value between the
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standard deviations and the approximate threshold is used as the final threshold. This is conditional
on the value not being either zero or very small (less than some arbitrary percentage of T,), s0
ensuring that some spatial relationship exists. The weight w, in (3.8) govemns the importance
assigned to region pixel distributions, and extensive empirical observations revealed that the
resultant segmentation was not very sensitive 10 variations in this particular parameter.

The important weighting factors are w, and w,, as their values represent a trade-off between
the gray level pixel intensity and spatial relationship. Prominence was initially given to the former,
because it contributed more to the human visual perception and for this reason, following empirical
evaluation; w, was set equal to 1.8, with the other two weighting factors being set to one. If the
standard deviation in a number of regions is high with respect to the approximate threshold, then
the spatial relationship will be ineffective and greater emphasis needs to be given to w, by
increasing its value. In all other instances, importance should be given to the pixel spatial
relationships so that the value of w, should be reduced. The following details the various stages of

the algorithm to automatically determine this key weighting factor and its threshold.

Algorithm 3.1 Determining the weighting factors and threshold T

1. Set the initiat values for the three weighting factors as w; =1;w, =1.8;w; =1.

2, Define a set of all regions ( R) and a set of centre pairs of all regions (V).

R={R; (1< jsM)}

vy ={CRACR WS Ri.R; € R)AG=1)

3. Compute the absolute sum of differences (sofd) between the elements of all pairs.

sofd = QF’: )-72)
=1

)
where ( ]is the number of combination pairs of all regions.
2

b

Determine the approximate threshold 7, using Theorem 3.1,
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5. Calculate the average sum of differences (asd ) between the various standard deviations and

approximate threshold.

where op is the standard deviation of region R;.

6. If the approximate threshold is overestimated, i.e. asd <0 then the minimum of the
standard deviation and 7T,, is taken as the final threshold value T, provided this value is
neither too small (less than K% of 7, where X is positive arbitrary constant) nor zero.
Otherwise T, becomes the final threshold, T .

7. Normalise the average sum of differences between the standard deviation and approximate

threshold.
nasd = asd
T
max( o, } 7 )

8. Adjust the weight w, accordingly.

W,y =w, +nasd

This algorithm has been experimentally tested upon various different image types and as results
will prove in Chapter 7, the automatic data mining of the key weighting factor and threshold value
is a significant reason for the superior performance of the GFRIS algorithm compared with other
segmentation techniques such as FCM and PCM. The complete GFRIS algorithm is now discussed.
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3.4 The GFRIS Algorithm
3.4.1 The Algorithm

As discussed before, the GFRIS algorithm is specifically designed so that it can be applied to
any type of image and application. The detailed stages involved in the GFRIS algorithm may be

formalised as follows; -

Algorithm 3.2 GFRIS

1. Classify the pixels of an image into a desired number of regions using any appropriate
clustering algorithm.
2. Derive the key weight w, and threshold value by applying the data-mining Algorithm 3.1

and the membership function for each region pixel-distribution (Section 3.1.1).

3. Initialise the centre of all regions required to define the membership function in Section
3.1.2, with the respective centres produced in step 1.

4. Sequentially select an unclassified pixel from the image and <alculate each membership
function value in each region for that pixel.
Classify the pixet into a region applying the fazzy rule (Definition 3.2).

6. Return to step 4 until every pixel is classified.

It is also noteworthy from a computational perspective, that since all three membership
functions are independent of each other, the GFRIS algorithm possesses a high degree of inherent
concurrency, which could be exploited by a paraliel implementation, with a dedicated processor

being used for each function.

3.4.2 Time-Complexity Analysis of the GFRIS Algorithm

34.2.1 Fundamental Assumption for the complexity analysis of GFRIS

Without loss of any generality, the following assumption is made for the sake of simplicity in
the complexity analysis. Any perceptually meaningful object is considered the region of interest for
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object-based image segmentation and hence the number of regions to be segmented is limited to a
certain extent.
Assumption 3.1: The number of regions Ris so small compared with the total number of

pixels # such that % can be considered a constant, i.e. O{t) with respect to 7.

Unless otherwise annotated, the above assumption holds for the remainder of the thesis.

3422 Time-Complexity Analysis

In the results in Chapter 7, FCM is applied to segment the original image into a desired number
of regions to calculate region pixel distributions (Section 3.1.1). The following two Lemmas 3.2
and 3.3 describe the computational processing time required to derive the membership function for
region pixel distributions, including the initial FCM segmentation: -

Lemma 3.2: Given n pixels in an image, the FCM algorithm can be completed in O(n) time
for calculating the region pixel distribution..

Proof: Let 9and p be the number of regions and the dimensions of a feature vector
respectively. The overall time complexity of the FCM algorithm is O(SF{2 ,az) [150]. Since the gray
level pixel intensity is the only feature used to calculate the region pixel distributions, p=1.
Moreover, by applying Assumption 3.1, R =0(1), so the overall complexity of the FCM algorithm

in determining region pixel distributions will be O(n). .

Lemma 3,3; For an image containing » pixels, the membership function for region pixel
distributions in Section 3.1.1, based on *he initial segmentation using FCM, can be computed in
O(n) time.

Proof: Given » pixels in an image, the initial segmentation using FCM can be performed in
O(n) time using Lemma 3.2. The calculation of histograms and their normalisation also requires
Ofn) time, while the polynomial approximation requires 0(256)=O(1) time [151]. The total time

required for the region pixel distribution membership function is O(n)+ O(n)+O()=0(n). =

The next pair of lemma deal with the computational complexity of the other two membershii:
functions used in GFRIS.
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Lemme 3.4: The membership function measuring the closeness of a region (Section 3.1.2)
requires Ofn)time. '

Proof: Let 3 be the number of segmented regions then, the time to progressively calculate the
centres using the previous centres and the membership function for each pixel in each region is

0(n) and O(R) respectively. As R =O(1), the total time is O(n)+ O(nR)= Ofn). .

Lemma 3.5: Membership function for spatial relations (Section 3.1.3) can be computed in
O(n) time.

Proof: Let the number of neighbours considered in segmentation be 7. The time required to
count the neighbours and to calculate the membership function for each pixel of all regions can be
determined in Onny) and O(n%)respectively, Total time is' Olny)+ O(nR)=0O(n) since 75 is a
7(r) where r=0(1) with respect to . .

Lemma 3.6;: The implementation time of the fuzzy rule (Section 3.2) is O(»). ]

Lemma 3.7: Determining the weighting factors and the threshold values in Algorithm 3.2, can
be completed in O(n) time.

Proof: To calculate the standard deviations for all regions requires O(n) time, Steps 2 and 6 of
the Algorithm 3.2 can be computed at 0(932) time while the other remaining steps can be

performed in O®). As % = O(1), this algorithm needs time in O{n)+ OR? )+ O@)=0(r). =

Lemma 3.8: The time-comptlexity of the GFRIS algorithm (Algorithm 3.2) is O(n)time.
Proof: By applying Lemma 3.2, step 1 of requires time in O(#). From Lemmas 3.3 and 3.7,
steps 2 and 3 can be performed in Ofn) time. Steps 4 to 6 can also be completed in O(r) time

using the Lemmas 3.2 to 3.7. n

In conclusion, Lemmas 3.2 and 3.8 and Section 2.1.2 prove that GFRIS has exactly the same
computational complexity as FCM and PCM, O(n) and as Chapter 7 will show, it provides

significantly enhanced segmentation performance.
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3.5 Discussion of the Performance of the GFRIS Algorithm

Section 7.5 will provide a complete analysis of the performance of the GFRIS algorithm,
however in order to qualitatively illustrate the improvement obtained and also some limitations of
using GFRIS, an example is included in this chapter.

The cloud image shown in Fig. 3.3(a) contains two regions (objects), namely cloud (Rl) and

urban scene (R,). The cloud (R,) region is homogeneous, while the urban scene (R; ) has sharp

variations in pixel intensity, i.e. it is non-homogeneous. The segmented results of the cloud image
in Fig. 3.3(a) into two regions produced by GFRIS for r=1, FCM, and PCM algorithms are
presented in Fig. 3.3 using a separate colour for each region so that both correctly and incorrectly
classified pixels are visible.

i, bl 1

Tt o b

Y

(a) Cloud Image (b) GFRIS, r =1 (d) PCM

Fig. 3.3: The segmented results of the cloud image in Fig. 3.3(a) into two regions using the
GFRIS, r =1, FCM, and PCM algorithms.

From the Fig. 3.3(b), it is clear that almost all of the pixels of the cloud (R,) region have been
correctly classified by GFRIS using r=1 because it is essentially a homogeneous region. A
qualitative comparison of Fig. 3.3(b) to 3.3(d) reveals that GF™IS exhibited a substantial
improvement over both FCM and PCM. The example in Fig. 3.3(b) . -so highlights however that

GFRIS did not produce superior results for the urban scene (R,) region, because it is a non-

homogeneous region. A number of pixels in (R; ) have been misclassified into (R, ), which means

a poorer performance for the non-homogeneous region. The reason for this is that one of the
fundamental principles of GFRIS is proximity and good continuation and non-homogeneous
regions violate this premise. Solutions to this problem wilt be presented in the subsequent chapters.




Chapter 3 A Generic Fuzzy Rule-Based Image Segmentation Algorithm 62

3.6 Summary

This Chapter has presented a new generic fuzzy rule-based image segmentation (GFRIS)
algorithm, which crucially has incorporated spatial relationships between pixels. Chapter 7 will
provide the analysis of performance of the GFRIS algorithm in comparison with both FCM and
PCM.

A singlc fuzzy rule has been defined in order to classify the pixels, and three weighting factors
W, W, and wy applied to stress the importance attached to feature based and spatial information

in the image. Another important advantage of the GFRIS algorithm was that the structure of the
membership functions and associated parameters were automatically derived and a new data-
mining algorithm presented to determine both the key weighting factor and threshold value. The
vital role of the threshold to the performance of GFRIS in controlling the maximum permitted pixel
intensity variation between neighbouring and candidate pixels was highlighted.

A full computational complexity analysis has been presented and shown that it has exactly the
same order O(n) complexity as other segmentation algorithms FCM and PCM.

As GFRIS is fuzzy rule-based, the algorithm has the capability of incorporating any type of
image attribute in any special application, by simply defining new membership functions, so
making this solution both image and application independent.

As altuded in Section 3.5, the one major drawback of GFRIS is that it does not produce"
improved resuits for such regions. In order to improve the effectiveness of the GFRIS algorithm for
non-homogeneous regions, the next chapter will introduce a generic segmentation refinement

algorithm based un connectivity, surroundedness, uniformity, and contrast properties.




Chapter 4

Fuzzy Rules for Image Segme:sitation: A Refinement
Algorithm

The generic fuzzy rule-based image segmentation (GFRIS) aigorithsn, which has been
articulated in the preceding chapter, attempted to solvé a number of the identified limitations of
modern fuzzy-based segmentation techniques. While GFRIS outperformed both FCM and PCM in
segmenting many images, it did not prove to be so effective for image regions characterised by
either being non-homogeneous or possessing sharp vatiations in pixel intensity. This is because it is
developed mainly based on homogeneity and does rot consider the two important properties of
perceptual grouping, namely surroundedness and cotinectedness (see Secion 3.5). To address these
disadvantages, this chapter introduces @ rew fuzzy rulz-based refinemer:t algorithm called FRIS,
which unifies the aforementioned properties of zonnectedness, surroundedness, uniformity and
contrast (Block 2 in Fig. 1.1). A full time-compiexity analysis of the proposed FRIS algorithm is
also presented in this chapter. An analysts and numerical evaluation of the results produced by this
new refinement algorithm will be undertaken iz Chapter 7.

This chapter is organised as follows: Section 4.1 iliustrates the connectedness and
surroundedness properties. Section 4.2 provides a brief description on the region splitting
techniques and image preprocezsing ussd. The underlying theory of the various membership and
other functions used is descrived #1 Section 4.3, while the fuzzy rules applied in the FRIS algorithm
are given in Section 4.4. The FRIS algoritim is formalised in Section 4.5, together with a detailed
time-complexity analysis. Section 4.6 presents a representative performance of the FRIS algorithm
to illustrats ite potential.

4.1 Counectedness and Surrcundedness

A topological relation of the parts or features of the data represents their mutual spatial as well
as structural selationships [152]. Connectedness, a topological feature, indicates whether a

63
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topological space is contiguous or not. A topological space, which cannot be divided into two

disjoint, nonempty and closed sets, is called the connected space. For example, suppose @, and ¢,
are two nonempty and closed sets of the set ¢ . @ will be disconnected when ¢, "¢, =0 and
@ =@ Y @, [153]. The neighbourhood system has already been defined in Definition 3.1, however

in this chapter, a slightly different representation of neighbourhood system is defined for
connectivity. For the sake uf consistency, the definitions of & -neighbourhood and
& —connectivity [154] are formally provided: -

Definition 4.1—3-neighbourhood: The & -neighbourhood ¢5(P) of a candidate pixel P, is

the set of all pixels P, such that Ca(P):{F}

d(P,-,P)s%} where & {48},

d(R, P)={x(R)-x{P) +| y(P,.)- #(P)|is the city block distance, with x(P,) and y(F;) being the x

and y coordinates respectively of pixel P;.

Definition 4.2—3-connectivity: Let P, and P;be two neighbouring pixels, and R;and R jbe

two regions, Then & -connecred(Pi,Pj ) and & - conmecred(R;, R j) are defined as foilows: -

tue,  if P els(R);

é -connecred(P,-,Pj)= {f alse otherwise

& ~ connected(R;,R; )= (3P, € R,) A\3P, € R, )A
o~ connec:ed(P,- , Pj)

As alluded in the previous chapter, surroundedness is one of the eight Gestalt perceptual
principles, which implies that the surrounded areas could be interpreted as a single object [155,
156]. The surfaces of most natural objects are connected, oriented, and closed [157), so effective
segmentation cannot be expected unless properties such as connectedness and surroundedness
(closeness) have been incorporated. Exploitation of these two properties is rare in the image

segmentation literature, and this is the first fuzzy rule-based segmentation technique to propose [2,
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14, 12, 158] using them. In addition, other key features suci: as uniformity and the contrast
properties of a group of pixels comprising an object are also incorporated with the overall goal of
reducing the segmentatior. error due to non-homogeneity.

4.2 Region Splitting and Image Preprocessing

4.2.1 Initial Segmentation

The initial image segmentation phase may be undertaken using any standard segmentation
algorithm [2, 14] (Block 1 in Fig. 1.1). In this paper, the initial segmentation was performed using
one of following three algorithms: - GFRIS [6], FCM {79], and PCM {82]. The results were
subsequently refined using fuzzy rules based on the principles of connectedness, surroundedness,
uniformity, and contrast criteria.

4.2.2 Region Splitting Techniques

This section discusses the splitting techniques applied to the initially segmented %R regions,

represented by R, j=1,.,R. Each region is split into a number of mutually exclusive objects

using the 4-connected neighbourhood property. The reason for applying 4-connectedness in the
splitting process, instead of the more usual 8-connectedness is to avoid weak connections within an
object and also to maximize the number of possible objects in any region.

Let the set of all objects in region R; be denoted as pl ;202 j,...,O,,j jiwhere 1 represents
the number of 4-connected objects in that region. It is interesting to note that

O,juozju...uo,,JJ-:Rj and O; nOzjn...nO,,jj=¢. Now let object O,,,jj, be the main

object of region R;,where lO,,,j J,-l=max{[0, j |,|02 j|,..., } and |Q| denotes the number of

pixels in object (region) Q.
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4.2.3 Image Preprocessing

The result from the initial segmentation of each region is split into a number of objects
exploiting the connectedness property for refinement. Connectedness however assumes all
background pixels have a gray level intensity of zero, so a DC level AJ shift is introduced to ensure
all pixel values are non-zero and positive. This requirement is also essential for the numerical
evaluation of the segmented results, which will be discussed in Section 7.3. Concomitant with this
objective is that any DC bias must not affect the visual perception of the image, and so it was
empirically chosen that Al =5 during the preprocessing phase, as this provides an imperceptible

change to 8-bit gray level images [84].

4.3 Defining the Membership and the Other Functions

Before detailing the new refining fuzzy rules, a collection of membership and other functions
are firstly defined.

Surroundedness is by its very nature fuzzy, since any object may either be or not be entirely
surrounded by another object. This leads to the definition of a membership function for estimating
the degree of surroundedness of an object (region) 4 by another object (region) B as: -

AN
#s (A,B)=-'—|;I-|ﬂ @
The largest object within a region R is designated as the main object, and its size is defined by

the membership function u,(0,, ;,R; )as follows: -

myk >

19)
#:(OM,R;;F%T—I (4.2)

The segmented results of the Indira Gandi image shown in Fig. 4.1(a) for two regions, namely

the person Indira Gandi (R} and background {R,) produced by GFRIS, r=1 are shown in

Fig. 4.1. The segmented result for the R, region and its main object are shown in Fig. 4.1(b) and
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4.1(d) respectively. The size of the main object with respect to the segmented R, region
(Fig. 4.1(b)) is 0.947 that is in this examgie, the main object is 94.7% of region R, .

Two other functions, namely outer(R, } and large(Omk,,,Rk) can now be defined using (4.1)
and (4.2) respectively. The former determines whether R, is an outer region, which is the region

not surrounded by any other region and encompassing all regions. This function is true provi ded the

degree of surroundedness of every region, except R;, is greater than or equal to the specified

threshold & : -

OUtel'(Rk)=_l§I(ﬂs R.R)2£) 43)

itk

The segmented result in Fig. 4.1(c) for the background R, region is an example of an outer

region because it is not surrounded by any other region and also encloses the segmented R, region

in Fig. 4.1(b).

(b)
Fig. 4.1: Segmentation resulis of the Indira Gandi Image for two regions produced by GFRIS, r =1,

(&

(a) Original Indira Gandi image, (b) Segmented Indira Gandi (R) region, (c) Segmented
background (R;) region, (d) The main object of the segmented Indira Gandi (R,) region.

The Iarge(Omk,,,Rk) function determines whether the main object O, is sufficiently large

with respect to its own region Ry, by using a threshold 4, that defines the minimum size of a main

object. This function is formalized as follows: -




£
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(4.4)

if #¢Oma ;
targelOp e, R )= {:.;l:;, Lfthl:en(”i:g B

As mentioned above, the size of the main object in Fig. 4.1(d) for the segmented R, region
(Fig. 4.1(b))is 0.947. This is sufficiently large with respectto R, asitis greater than the predefined
threshold 4, in (4.4), which is empirically set for all the experiments at 0.70.

Two other functions zmifomio{o,}-)and contrasr(Oﬁ }arc also defined at this stage. Using a
gray level histogram hist(F;}, the occurrence probability for pixel intensity F; in object Oy is

obtained, where » discrete gray-level values are assumed. The entropy is then used as a measure of
the uniformity of the gray level distribution of object O, [10]: -

un{fbrmio’(Og)=—g hist{P,Yloglhist(P,)] @4.5)

The standard deviation ¢ of the gray level probability distribution reflects the dynamic range
of pixel values and is the preferred measure of contrast [144]. The kurtosis a , which represents the

polarization of the distribution of the black and white on the gray ievel histogram (the ratio of black
and white areas in the image), is given as [159): -

e

o4
a=2 (4.5)

o
where ,is the fourth moment about the mean and the contrast of an object 03- . comrasr(oﬁ )is

defined as: -
contrast(0; )=-2— @7

¥
o

where ¢ is a positive number in the range [%,8} , which is empirically selected as 0.25.
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A,

By now using (4.5) and (4.7), the membership function similar{O,, ;,0; ) can be defined as a
measure of the similarity between a main object O, ; and its siblings (all other objects Oy
belonging to the same region): -

[unifonnity(omkk )— unifonnily(O,-kﬂ]

imilano ’O' =
stmilanO,, 4 tk) [5 x(unifomiity(omkk]

A (]contrast(O,,,* % )-— contrast(O,-;.)l < xkontrast(omkk l)

(4.8

where y is the maximum permitted percentage variation in the similarity measure.

To define the final function, let

maxs(O,j )= Kiug (Og s Ok )= llgg(ﬂs (ng s Oy ))
Izj

be the set of indices of all regions for which the degree of surroundedness of an object Oy of

another region, by the main objects of those regions, is a maximum. The function connect 5(0,3-)
represents the set of indices of those regions returned by maxs(Og-)for which object Oy is

& - connected (Definition 4.2) with the main object of another region O, ;.

connect g (Og )

= {k'k € maxs(O,}- )/\ J- connected(oy, Oy )} 4.9

All these functions are now used in defining the FRIS rules in the following section.

4.4 Defining Fuzzy Rules

As was discussed in Chapter 3, the fuzzy rule definitions are the most important and
B challenging aspect of fuzzy rule-based image segmentation. In the refinement phase, three different
classes of fuzzy rules are heuristically defined covering three totally different scenarios.
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There will always exist the possibility after the initial image segmentation, of obtaining 2 small
main object, that is an object less than or equal to 4 x100% of its region (see (4.4)), after splitting.

This is very much dependent upon the pixel distribution of the regions and the type of objects in an
image. If the main object of a region is not sufficiently large it will be unable to enclose all the
other objects or components in that region. To address such a problem, any small main objects
(except the main object of the outer region) need to be grown, as otherwise the new refinement
algorithm will wrongly classify these objects, leading to poor segmentation results.

The main object of the outer region is prevented from being grown as otherwise objects inside
this region may be incorrectly merged with its main object. As mentioned in Section 4.3, the cuter
region encapsulates all other regions and in general, the ouier region is & background region. The
first fuzzy rule definition, called the growing up rule, has the express purpose of growing small
main objects according to the similarity between the main object and its siblings, provided the main
object is not the main object of the outer region. The growing up rule is defined as: -

Definition 4.3—Growing Up Rule: IF NOT largelO,+,R;) AND NOT outer(R,) AND
similarO,,,4, 0y ) THEN merge Oy, with Oy .

©

Fig. 4.2: Example of a main object, (a) Original aerial image (b) Segmented land region (Rl)
of the aerial image produced by GFRIS, r=1, (c) The majn object of the land region after
splitting based on 4-connectedness.

Some objects of a region may be enclosed by the main object of another region, but not covered
by their own main object. In such circumstances, the objects will be misplaced even though their
own main object is large. For example, the aerial image in Fig. 4.2(a) has two regions, namely land
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(R,) and water (R,). The segmented land {R;) region produced by GFRIS, r=1 and its main
object are shown in Fig. 4.2(b) and 4.2(c) respectively. It is obvious that the main object in
Fig. 4.2(c) of the land (R,) region does not cover all the objects in R; and that all the parts, except
the main object of R, are enclosed by the other region, namely the water (R, ) region.

To address this matter, three conditions are tested to see if (a) such objects are similar to their
main object, (b) whetherhe size of their main object lies between the range (4;,4, ], and (c) their
region is not an outer region, If all thres conditions are met then these objects are prevented from
merging with any other main object by applying the following fuzzy definition, called the

preventive rule.

Definition 4.4—Preventive Rule: IF similarl0,, ;.04 JAND A < ;{0 4, Re )< 2, AND

NOT outer(R, YTHEN prevent O,, from merging.

The final set of definitions concern a group of mutually exclusive merging rules, which are
applied to coalesce suitable objects with the main objects of other regions, based upon the
principles of connectedness and surroundedness, 8-connectedness is selected for merging in order
to consider all possible connected objects, including those with weak connections. If there is one
maximum degree of surroundedness of an object by the main object of another region, the degree of
surroundedness is greater than or equal to the threshold &, and the object is 8-connected with that

main object, the object is merged using the first merging rule: -

Definition 4.5—Merging Rule1: IF  |max§=1 AND  u5{0;,0,,)2¢ AND
8- connected(0;, 0, 4 ) THEN merge Oy with O, .

Two other merging rules (2 and 3) are also defined for selecting the most suitable surrounding
main object. If there is more than one maximum degree of surroundedness of an object, the smallest

4-connected main object is selected, provided there are 4-connected main objects (merging rule 2),
otherwise the smallest 8-contnected main object is chosen for merging (merging rule 3).
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Definition 4.6~MergingRule2. [ |max{>1 AND  45(0;,0,,)2¢ AND
4 —connected(o,j s Ok ) THEN merge Oy with O SUCh that

*ul(omkk’RkJ= min ){'“C{Omrr’Rr)}-

recommt4(0y
Definition .7~MergingRule 3: T jmaxd>1 AND  4(0;.0,,:)2¢ AND
8-comnected(0;,0,,;) THEN merge O,  with  0,,  such that

H) (Omkk Ry )“ min (oy){ﬂt (Om,.nRr J}

reconnecty
Note, that in all the above definitions, it is assumed & # j to ensure that object Oy always
merges with the main object O,, ;, of another region. The perceptual selection of all the various

parameters used by the fuzzy rules namely, 4, 4;, &, and y have been also proven to be suitable

for all image types. The complete FRIS algorithm will now be described using the defined
membership and other functions (Secticn 4.3) and the above fuzzy rules.

4.5 The FRIS Algorithm

4.5.1 The Algorithm

The FRIS segmentation refinement algorithm can be formalised in the following steps: -

Algorithm 4.1 FRIS

Precondition: Initially segmented image regions using any standard segmentation algorithm such
as FCM [79] or PCM [82] or GFRIS [6] (Block 5 in Fig. i.1).
Postcondition: Refined segmented regions,
1. Each segmented regions is split into a number of objects based upon 4-connected
neighbourhoods. The main object, that is the object in each region containing the maximum

number of pixels, is then determined.
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2. If the size of the main object of a region is small, and it is NOT an outer region, then it is
grown using the growing rule (Definition 4.3).

3. Objects in a region, except the outer region, which are similar to their main object, are
prevented from merging with the main object of another region by applying the preventive
rule (Definition 4.4),

4. A candidate object is tested for merging with the main objects of another region based on
one of the three merging rules (Definitions 4.5, 4.6, and 4.7).

5. If the object is merged, the algorithm repeats for all other objects, which were previously
surrounded but not connected to the merged main object.

6. Return to step 4 until all candidate objects have been merged.

4.5.2 Time-Complexity Apalysis of the FRIS Algorithm

As with GFRIS, a computational complexity of the FRIS algorithm is presented by applying a
series of lemmas. In order to calculate the degree of surroundedness, firstly the boundary, i.e the
convex hull of the main object, needs to be computed and secondly a decision needs to be made as
to whether a particular pixel lies inside the convex hull. The first pair of lemmas consider the

former,

Lemma 4.1 {151]: The convex hull of # pixels can be computed in Oy log n)time. .

Lemma 4.2: Consider a region of » pixels whose height and width are of O[Jr_: ) The convex

hull of this region cant be computed in Of)time.

Proof: The region can have at most 4><O(J};)=O(J;) boundary pixels and these boundary

pixels can be found for both the average and worst cases in Ofn)time. The convex hull of the
region can now be computed using only the boundary pixels in O(J; log Jn_) }, so that the total

time required to construct the convex hull is O(n)+ O(J; log/n )-- ofn). .
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The next is to calculate the computational complexity for deciding whether a pixel lies inside
the convex hull of the main object i.e. the convex polygon, This is defined using the following
lemma: -

Lemma 4.3 [151]: The decision as to whether a pixel lies inside the convex polygon having

N vertices can be determined in Oflog N )time, .
Lemma 4.4: The decision as to whether a pixel lies inside the convex hull of a region of »n
pixels, whose height and width are of O(J; ), can be determined in O(log Jn )time.
Proof: In the proof for Lemma 4.2, it was shown that such a regton has a maximum of O(J; )
boundary pixels and hence the convex hull of that region will be a polygon of at most O(\/Fr)

vertices. Applying L.emma 4.3, the decision can therefore be made in O(log\/; ) time. m

Let 4 and B be two objects (regions) whose height and width are bounded by o(Jl'I] ) and
O(J]E[ ) respectively. By using Lemma 4.4, it can be easily shown that the number of pixels € 4
that lie inside the convex hull of B can be determined in 00A|log|~/§|) time. In the worst case, both

|4]and |B|will be Ofr), where n is the number of pixels in the image. Thus, for an image with »
pixels, the membership function for the degree of surroundedness defined in (4.1), and the two
functions (4.3) and (4.9) can computed in O(n log n ) time, while membership functions (4.2} and
(4.8), as well as function (4.4) can be computed in O(n) time.

Lemma 4.5 {160}: The connected components of a set of » pixels can be found in O(mtime.

]

Lemma 4.6: Given » pixels in an image, the FRIS algorithm can be completed in
Ofrlogn)time.

Proof: Based on Lemma 4.5, step } of the FRIS algorithm (Section 4.5) can be performed in
Of{n) time. All the membership and other functions (Section 4.3) required for steps 2 and 3 can be

computed in O(n} time, so by inference steps 2 and 3 can also be completed in O(n) time. To

evaluate the time-complexity for steps 4, 5, and 6, fet S; be the total number of surrounded objects,

and C; be the total number of both surrounded and connected objects of other regions with the

main object of the j™ region, where C j S35 ;. Asstep 5 of the FRIS algorithm points out, after the
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merging of an object, all other objects that were previously surrounded, but not connected to the
main object, are recursively tested for connectedness and hence for merging. Step 6 confims the
iterative nature of the algorithm for all candidate objects. Given R segmented regions, in the worst

case, the total number of recursions required to check for connectedness is: -

® C,-1 R
e =‘El %(Sj "i)=_Z;[SJ-Cj ~C;(C; -1)/2] . (4.10)
J=1 1= I=

Main objects will dominate the major proportion of image pixels and even if this is relatively
small, it will be increascd using the growing-up rule (Definition 4.3 in Section 4.4). The number of
objects will therefore be negligible compared with the number of pixels. Al split objects may not
be surrounded by the main objects of other regions and some objects, similar to their main object,
will be prevented from merging in the algorithm (Definition 4.4), so the total number of surrounded

objects is generally less than the total number of split objects, so C; <§;, which yields n, <<n.

Since the maximum order of the time-complexity of the membership functions and functions in

steps 4 and 5 is O(nlogJ;), the time-complexity for the entire FRIS algorithm will be the
smneO(nlog-J; ), ie,Onlogn). a

4.6 Discussion of the Performance of the FRIS Algorithm

As with GFRIS, a qualitative example is included in this chapter to illustrate the main
advantages and problems associated with using this refinement algorithm. Qverall, the FRIS
algorithm has shown significantly improved results when the initial algorithm is able to separate the
regions. The results produced by GFRIS, r =1and PCM for the Brodatz texture segmentation for
two regions, namely d8 (R,) and d94 (R,) without and with the FRIS algorithm are shown in
Fig. 4.3. If the segmented result produced by GFRIS, r =1 shown in Fig. 4.2(b) is compared with
the result produced by GFRIS, r=1 incorporating the new refinement rules (Fig. 4.3(c)), it is
visually apparent that FRIS gives an improved segmentation. This will be discussed fully in
Chapter 7.

Since FRIS is a refinement algorithm, however, its performance depends very much on the

effectiveness of the initial segmentation. If the result of the initial segmentation is poor for a region
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(object), the FRIS algorithm will produce little or no improvement for that particular regton
(object).
To confirm this, the segmented result in Fig. 4.3(c) shows that PCM could not separate d8 (R, )

from d94 (R,) at all and for this reason, FRIS provided very little improvement upon the results

produced by PCM for this image, especially the d8 (R, )region (Fig. 4.3(d)).

@) (b) (©) @ ()
Fig. 4.3: An example of Brodatz texture segmentation into two regions, (b) Original Brodatz
texture (d8 and d94), (b) Segmented results produced by GFRIS, r=1, (c) Segmented results
produced by GFRIS, r=1with using FRIS, :d) Segmented results produced by PCM, (e)
Segmented results produced by PCM with using FRIS.

Thus far in the framework (Fig. 1.1), texture has not been directly considered. The GFRIS
algorithm described in Chapter 3 was unable to resolve accurately non-homogeneous regions, while
the refinement rules in FRIS are very dependent on the initial segmentation. There is cicarly scope
for integrating texture into the basic GFRIS algorithm. This is the motivation behind the algorithm

that will be presented in the next chapter.

4.7 Summary

This chapter has shown that the characteristics of both connectedness and surroundedness are
not only very important in providing high-level visual features, but also can play a vital role in

reducing and eliminating segmentation errors. A new image segmentation refinement algorithm
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called, fuzzy rule-based refinement algorithm (FRIS) has been presented that exploits the principles
of connectedness, surroundedness, uniformity, and contrast properties amongst an object’s pixels.
Objects were defined as a 4-connected component of a region’s pixels, when splitting the regions
into objects to avoid weak connections between objects. During the merging however, 8-
connectedness v:as used to explore all possible connections. A set of fuzzy rules covering the
growing of @ small main object, preventing similar siblings from merging with other main objects,
and selecting the best surrounding main object were defined in this new algorithm. The growing
and prevention rules handled a disconnected object if there existed some similarity based on
uniformity and contrast between the different components of that object. The algorithm was tested
using a wide variety of images types containing different numbers of regions.

The time complexity of the new algorithm was analysed and shown to be nlogn . The initial

segmentation can be performed using any suitable standard segmentation algorithm.

The FRIS aigorithm produced significant improvement, however, it depends very much on the
initial segmentation (see Section 4.5). As mentioried in Section 3.5, GFRIS could not produce good
results for non-homogeneous region and does not directly consider texture. In this context, it needs
to develop the original GFRIS algorithm by incorporating texture, which will be fully explained in
the next chapter.




Chapter §

Fuzzy Rule for Image Segmentation Incorporating
Texture Feawures

Section 4.6 has shown that the segmentation performance of the FRIS algorithm depends very
much on the initial segmentation. The generic fuzzy rule-based image segmentation (GFRIS)
atgorithm does not produce good results for images containing non-homougeneous regions (see
Section 3.5). This means it does not directly consider texture, however, texture is one of the most
important attributes of any image. It represents the structural arrangement of the surfaces as well as
the relations among them and is widely used in image segmentation [131]. Most natural images
contain textures, some examples of which include the Brodatz (d12) and background textures given
in Fig. 5.1.

: Fig. 5.1: Examples of textural images, (a) Brodatz texture (d12), (b) Background texture.
It needs to be emphasised that this chapter deals with a very challenging task, incorporating :

texture together with spatial relations. This is however, a fundamental contradiction since texture

direc:'y opposes spatial relations. The latter as has been highlighted in Chapter 3, is usually ;

| 7
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measured based on the principles of proximity and good continuation, while texture clearly is not.
For this reason, the variation amongst neighbourhood pixels must be controlled and kept within a
limit using a threshold for spatial relations. If the variaticn exceeds this limit for a pixel, it will not
be considered a neighbourhood of the candidate pixel. Using this rationale, highly textural surfaces,
which exhibit sharp variations that oppose the principle of spatial relations defined in Section 3.1.3,
can therefore still be considered and membership functions that represent texture can be integrated
in the fuzzy rule-based framework.

In this chapter a new algorithm called fiizzy rule for image segmentation incorporating texture
Jeatures (FRIST) is proposed, which includes two additional membership functions to those aiready
defined in the framework (Block 1 in Fig. 1.1). FRIST (Block 2 in Fig. 1.1) incorporates the fractal
dimension (FD) and contrast features of a texture by considering image domain specific
information. Quantitative evaluation of the performance of FRIST wili be discussed and contrasted
with GFRIS in Chapter 7.

This chapter is organised as follows: Section 5.1 briefly describes the fractal dimension and the
differential box-counting method. In Section 5.2, the membership functions used in the FRIST
algorithm are described. The definition of the fuzzy rule, and also the determination of the
weighting factors are presented in Sections 5.3 and 5.4 respectively. The FRIST algorithm as well
as its time-complexity analysis is given in Section 5.5. The performance of the FRIST algorithm is
discussed in Section 5.6.

5.1 Fractal Dimension Representation

A set whose Hausdorff-Besicovitch dimension is strictly greater than its topological dimension
is called a fractal set [161]. The central notion of fractal is the concept of self-similarity, which is

used in estimating the fractal dimension. A self-similar set (A)is the union of N, mutually

exclusive copies of itself that are similar to 4 and scaled down by a ratio r where r<1. The FD
of A can then be defined as,

log N
=N = FD=——% 5.1
* tog(l/7) ©-D

Most natura! objects are full of textures, which are very complex and erratic in nature and
cannot be readily approximated using classical geometry. Fractal dimension (FD) has been chosen
to describe these high degrees of irregularity and complex behaviour of the surface of the natural
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objects [134] because as described in Section 2.3, it offers scale insensitive and uniform surface
behaviour. In describing such erratic behaviour of objects, it is very important to consider the
domain specific information of that object for image segmentation, which will be discussed shortly.
A brief overview of texture representation and the rationale of choosing fractal dimension to
estimate the texture have already been presented in Section 2.3. FD can be derived in a variety of
ways but the motivation in this research is to use an efficient differential box-counting (DBC)
method as it is faster and more efficient than other methods [131] and is suitable for incorporating

image domain specific information.

5.1.1 Differential Box Counting (DBC) Method

The estimation of FD using the DBC method [134] is described as follows: -

1 :J -2~ Image intensty Surface

Image Plane

Fig. 5.2: Estimation of n,using the DBC method [162].

For an image of size M xM to be scaled down to a size of xxx where 2 < x <|M /2], the

ratio of scale down is r = x/M . The image is then extended into 3-D space by introducing a 3™ co-
ordinate for the 8-bit gray level intensity of 256 levels. If the image is partitioned into grids of size

xxx, then each grid will comprise a column of boxes of size xxxxx shown in Fig. 5.2, which

implies ,_256/.1:'_!: |41 /x]. If the maximum and minimum gray level values in the (u,v)" grid are




Chapter 5 Fuzzy Rule for Image Segmentation Incorporating Texture Features 81

in the [*and %™ boxes, the thickness of the blanket (surface variations) covering the image surface

on the grid (u,v) is: -

n(u,v)=1-k+1 (5.2)
- Since the blanket effectively describes the surface variations of the image, the smaller the size
F of the grid, the greater their number and the finer the variations of the surface though of course this
camenensurately increases computational complexity. For the example, in Fig. 5.2, the blanket
thickness is n, (u,v)=3~1+1=3. The contribution from all the grids defining the blanket is: -
N =Xn:(v) (53)
uyv
85 T T T !
T8 1
: ! >
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/ g
6.5} i
: 55k i
o _
*3s 5 2fs :1, 3'5 4
] Log(1/t)
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Fig. 5.3: Least square linear fit of log{N, ) versus log(1/7) of the cloud image in Fig. 3.1(a).
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The value of N, is calculated using different values of t. The FD can then be estimated as the
slope of the least square (LS) linear fit of log(N, ) against log{1/7) using (5.1), an example of
which, for the cloud image in Fig. 3.1(a), is shown in Fig. 5.3.

5.2 Membership Functions

The GFRIS algorithm, described in Chapter 3, uses three types of membership functions to
represent the region pixel distributions (Section 3.1.1), the closeness to their centres (Section 3.1.2),
and the spatial relations among the pixels in a particular region (Section 3.1.3). Each membership
function possesses a membership value for every region, which indicates the degree of belonging to
that particular region. FIRST incorporates two additional membership functions based on the fractal
dimension and contrast features of a texture by considering image domain specific information. A
detailed description of these new membership functions is provided in the following section.

5.2.1 Membership Functions for Fractal Dimension

Fractal dimension (FD) is used to estimate the texture in an image. To define the membership
function for fractal dimension, the fractal dimension based feature (FDF) of a candidate pixel 2, is

used. Since the DBC method has been chosen to calculate the FDF for a candidate pixel, it is
necessary to consider all the neighbourhoods around the candidate pixe) in a window. The FDF of a

candidate pixel 7, is calculated on a window W, ,(s,f)of size hx h with its centre at (5,¢)(sce

Fig. 5.4) rather than the entire image and defined as: -

FDF(P; )= FD(W} 4 (s,1)) G4

where FD(W), y(s,t)) denotes the FDF on W), ,(s,f) derived using the DBC method in the following
manner. The bound of the grid size is chosen as 2< £ <|h/2], the scale down ratior =| £/ | and

in order to consider the finer variations of the gray leve! values or the surface, x is taken as
| 256 % &/ height | where height is the height of the image.

The value of FD(W), ;(s,£)) will not be the exact fractal dimension of the window W), (s,£)

because the height of the image is used in calculating x rather than the height of the window, h.
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v /
/ /

7777
e/

Fig. 5.4: A column of boxes on the(s,f)grid in the window W, ,(s,)for
calculating the fractal dimension based feature (FDF).

Fig. 5.4 shows an example of a wiiidow W), (s,t) together with all its grids and the column of
boxes on grid (s,7} required to calculate the FDF of the candidate pixel P ,. Instead of considering

the log-log plot in Fig. 53 to reduce computational complexity, the average value of

log(N,)/log(l/ 7) is used to obtain the fractal dimension. The membership function HrR, (Ps) of

fractal dimension based feature for the region R; and the pixel P, is formulated as: -

FDFy, (P, )~ FDF;(P,,)
max{FDFy (;,),FDF;(P,,))

Hrr, (Psy)=1- (5.5)

where FDRRJ (P;,)and FDF;(P;,)are the fractal dimension based features for the segmented

region R; and the original image respectively, so this membership function does consider imsige

domain specific information for segmentation. FDF;(P,,) is determined from the ratio of the
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number of contributory and total grids during the corresponding FDFRI (P, ) calculation for each

valueof r.

As an example, the window W), , (s,¢) shown in Fig. 5.5 is scaled down by a ratio 7=1/2, so

the four resulting grids are represented by different colours. Some grids in the window of a
segmented region will not be filled with previously classified pixels, especially those grids
containing pixels that have already been classified into another region and that will be referenced

later. Assume that the grids containing the blue circles are already classified into a segmented
region R;. These grids are called contributory grids for the regions R; as cnly these grids will be
used in calculating the FDF for this region.

In the Fig. 5.5 example thers are four grids in total and two of them are contributory, so the
ratio of the contributory grids in this example will therefore be 2/4=0.5. For the sake of
accuracy, it is essential that in the membership function defined in (5.5) betwee: the region R ; and

the original image, the proportion of the FDF of the original image, for a specific value of the ratio

of the scale down, is always considered.

Fig. 5.5. Window W), ,(s,r) located in a scgmented region R p

for a specific value of the scale down ratio r=0.5.
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5.2.2 Membership Functions for Contrast

Contrast provides the measure of the texture of an image and is measured by considering the
dynamic range of gray levels and the polarization of the distribution of black and white on the gray

level histogram. The contrast of a window W, ,(s,¢) ir an image is calculated using the technigue
described in [159]. The membership function for the contrast of the region R; and the pixel 7,

can be defined as: -

Icontrast R (st ‘ ) —~contrast; (P_,' ; 1

- maxtcantrastRj (P& ,I contrast; (Ps. . ) (5.6)

HCR; (Ps,l)=l

where contrastg, (P_,.,) and contrast, (P,‘,) represent the contrast of the portions of the segmented

region R; and the original image covered by the window ¥, (s,) respectively. " gain note that

image domain specific information is incorporated into this membership function.

5.3 Defining the Fuzzy Rule

The original fuzzy rule defined in Section 3.2 has utilised three membership functions. In this
section the fuzzy rule is heuristically defined incorporating two additional membership functions,
which relate to texture, namely FD and contrast.

The overall membership value u AR, (Ps,,r) of apixel Py, forregion R represents the overall
degree of belonging to that region, and is defined by the weighted average of the five individual
membership function vatues HpR, (PS y ), Her, (Ps J), KR, (PS.,, r), HER, (Ps‘,), and uc, R, (Ps‘,).

P wittp, (P )+ wastcr, (Pr )+ Wiping, (Poy7)
N ;
P
i=}
| P, (Pos )+ wscp (Py,)
5
W

i=l

Har, (Ps,u

(.7
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where w;, w,, w;, w,, and ws are the weightings of the membership values for pixel

distribution, closeness to the cluster centres, neighbourhood relations, fractal dimension, and
contrast respectively.

Definition 1—Rule: /F 4,5 (P_,’,,r)-—: 1‘?%{” AR, (Ps J,r)} THEN pixel P, belongs to region
)

R,.

This straightforward extension of the original fuzzy rule in Section 3.2 illustrates how new
membership functions (gttribuivs) can be integrated and highlights one of the key advantages of the
approach adopted in this research, which is the flexibiiity of the framework or the fuzzy rule-based
system. As with the original rute, this new rule is also generic and thereby application and image
type independent. Further attributes or new features, such as for example, object motion in video
segmentation can easily be included into the framework. Since all of the membership functions are
independent of each other, one other interesting feature to highlight is that they each can be
implemented concurrently using a parallel algorithm.

5.4 Determining the Parameters

The weighting factors wy, w,, and w;, and threshold T for neighbourhocd system are
automatically determined using the algorithm by Karmakar et al, {6]. The other two weighting
factors w, and ws are approximated based on the FD of the entire image and the standard

deviations ( rstd ) of pixel intensities of the initially segmented regions, as follows: -
W, =wg = a(FD - 2)/van(rstd) (5.8)

where var(rstd} is the variance of the standard deviations of all segmented regions.

Since 2< FD <3 and 2 is the topological dimension of the 2D image, this value is deducted
from the FD thereby keeping the original contribution of the fractal within [0,1]. This ensures that
the contributions of ail the weights are constrained within their limits. From the observations, it was
found that the regions having high texture suppressed regions containing less texture because they
produced higher FD values. The standard deviation approximates the texture and the variance of the

standard deviations of all regions measures the spread across the regions, that is the variability of
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the texture in those regions. In order to prevent high textured regions from suppressing the less

textured regions, the weights w and 1w, are normalised using the variance of the standard
deviations var(rstd) of the initially segmented regions i.e. the higher the value of the var(rsid)
then the lower the values of the weights w,and ws and hence smaller their contributions to the

segmentation. This will be experimentally tested upon various image types in Chapter 7.
The following section describes the steps of the complete FRIST algorithm utilising the
membership functions (Sections 3.1 and 5.2) and the fuzzy rule defined in Section 5.3.

5.5 The FRIST Algorithm

5.5.1 The Algorithm

The detailed stages involved in the FRIST algorithm can now be formalised are as follows: -

Algorithm 5.1 FRIST

1. Classify the pixels of an image into a desired number of regions using any appropriate
clustering algorithm (Bleck §in Fig 1.1).

2. Derive the weights and threshold value by applying the data-mining algorithm,
Algorithm 3.1 and (5.8).

3. Derive the membership function for each region pixel distribution (Section 3.1).

4. Initialise the centre of all regions required to define the membership function in Section
3.1.2, with the respective centres produced in step 1.

5. Sequentially select an unclassified pixel from the tmage and calculate each membership
function value in each region for that pixel.

6. Classify the pixel into a region applying the fuzzy rule defined in Section 5.3.

7. Return to step 5 until every pixel is classified.

It is important to reiterate that the FRIST algorithm considers image domain specific
information when segmenting. The reason for this is that the membership functions for both the
fractal dimension based feature (5.5) and the contrast (5.6) of a candidate pixel are developed for
each region by comparing the physical structural characteristics of the surface of the respective

segmented region with that of the original image within a window i.e. the segmentation is based on
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information directly related to the original image. If a group of pixels is close together and has
sharp variations, the membership function (3.7) for spatial relations will be ineffective, but the
membership functions (5.5) and (5.6) for texture will be effectual and vice versa, This is because
the variations among the pixel intensities are not limited by the threshold T for the membership
functions (5.5) and (5.6). In this way, the algorithm addresses the obvious centraction that has been
identified at the beginning of this chapter, between spatial relations of pixels and texture.

5.5.2 Time-Complexity Analysis of the FRIST Algorithm
Lemma 5.1: The fractal dimension (FD) using the differential box counting (DBC) method
can be computed in Ofn) time for an image of » pixels.

Proof: To calculate the n,{i, j) for a grid of size xx y, needs O(xy) tirue in the worst case.
The whole image consists of —— grids and hence N, can be computed in ~ 5 O(xy)=Ofs) time.
xy xy

To calculate the FD using DBC method for v different values of ¢ can be estimated in

vx O(n)=0(n) since v can be considered constant with respect to ». "

Lemma 5.2: The time complexity of the FRIST algorithm (Algorithm 5.1) is Of{n} for an
image containing » pixels.

Proof: The initial segmentation can be performed in On) time using the FCM algorithm
(Lemma 3.2), while the membership functions defined in Section 3.1 are determined in O(y) time

(Lemmas 3.3 to 3.5). From Lemma 5.1, the membership functions of FDF and contrast for each

pixel on the window of size hx h require O{4? ) time, The FRIST algorithm (Algorithm 5.1) for

the whole image can be performed in O(n)+n x O(h2 )= O(n) since hcan be-considered constant

with respect to n. ]

Here, the order of computational timic of the FRIST algorithm remains the same as the GFRIS
algorithm (Section 3.4.1) i.e.O(n), although it incurs some additional computaiional cost for

caiculating the FD and the two related membership functions for texture, namely FDF and contrast.
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5.6 Discussion of the Performance of the FRIST Algorithm

For completeness and to present a qualitative evaluation of the potential capability of the
FRIST algorithm, the segmented results of the Brudatz texture image in Fig. 5.6{a) containing two
regions, namely d8 (R,) and d94 (R,) produced by the GFRIS and FRIST algorithms using the
neighbourhood radius #=1 are shown in Fig. 5.6. If the result (Fig. 5.6(b)) produced by GFRIS,
r =1 is contrasted with the resuit (Fig. 5.6(c)) produced by FRIST, r =1, itis perceptually apparent
that the FRIST algorithm exhibits considerable improved segmentation results compared with the
GFRIS algorithm, FRIST correctly classified in Fig. 5.6(c) a significant number of pixels that
GFRIS misclassified in Fig. 5.6(b) for both d8 (R,) and d94 (R,) regions. A detailed performance
analysis of the FRIST algorithm will be given in Chapter 7.

(a) (b) GFRIS, r =1 (c) FRIST, r =1
Fig. 5.6: The segmented results of the Brodatz texture (d8 and d94) image shown in Fig. 5.6(a) into
two regions produced by GFRIS and FRIST using r=1.

5.7 Summary

This chapter has outlined the development of a new general fuzzy rule-based image
segmentation algorithm, namely firzzy rile for image segmentation incorporating texture features
(FRIST) by integrating fractal dimension and contrast and also considers domain specific
information about an object. The weighing factors for the membership functions for FD and
contrast have been automatically derived by considering the FD of the entire image and the

variability of the texture in all regions produced by the initial segmentation.
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The analysis of the computational complexity of the FRIST algorithm has been performed and

proven that it requires O(n) time for an image containing » pixels.

So far all of the algorithms in the framework have been developed for gray level image
segmentation. In many real world images, there exist some information of an object such as edges,
that cannot be separated using gray level information alone but that can be separated using colour
information. Colour provides more information conceming an object and fience plays an important
role in enabling the separation of an object (region) from an image, which is the main motivation to

develop a fuzzy rule-based cotour image segmentation aigorithm. This will be the focus of the next

chapter.




Chapter 6

A Fuzzy Rule-Based Colour Image Segmentation
Algorithm

Colour ts a very common attribute of all natural and artificial objects, which contains far more
information about an object than gray level intensity [163] and plays an imporiaat role in separating
an object from its domain. There is some information about an object, such as edge, that is only
visible in the colour domain, So the greater the visual information concerning an object potentially
helps to improve the accuracy of the segmentation of that object. For these reasons, it is frequently
easter to segment a colour image than a gray level image [135]. An example of a colour image
separated into its gray level (luminance) and colour (chrominance) components is shown in
Fig. 6.1. This confirms that perceptually colour provides additional information (Fig. 6.1(b)) to the
gray level information (Fig. 6.1(a)) of the original object crocodile shown in Fig. 6.1(c).

A brief review of fuzzy colour image scgmentation techniques has been provided in
Section 2.5. To date, most fuzzy rule-based segmentation techniques are based on gray level pixel
intensity (see Section 2.2). This chapter introduces a new colour image segmentation algorithm,
namely a fuzzy rule-based colour image segmentation (FRCIS) algorithm by extending the GFRIS
algorithm described in Chapter 3, from gray level to colour and developing a new algorithm for
averaging hue angles (Block 4inFig. 1.1). The proposed FRCIS algorithm will be both
perceptually and numerically evalvated and compared with FCM and PCM using the HSV and
RGB colour models (see Section 2.4) in the next chapter.

This chapter is organised as follows: In Section 6.1, the membership functions used in the
FRCIS algorithm are defined. The definition of the fuzzy rule, and also the determination of the
weighting faciors are presented in Sections 6.2 and 6.3 respectively. The algorithm required for
averaging the hue angles together with the operator for measuring the difference between two hue
angles is described in Section 6.4. The complete FRCIS algorithm with its time-complexity analysis
is given in Section 6.5. Finally, a qualitative performance analysis of this algorithm using the HSV
colour model is provided in Section 6.6.

91
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Fig. 6.1: An example of colour image, (a) Gray level (luminance) information, (b) Colour
(chrominance) information, {c) Original image.

6.1 Defining Membership Functions

The FRCIS algorithm uses three membership functions namely, the membership function for
region pixel distributions, the closeness to their centres, and the spatial relations among the pixels in
a particular region. These have already been fully described in Section 3.1 and are the bedrock of
the GFRIS algorithm. However, all these membership functions have been defined for only gray
level pixel intensity. In this section, these membership function definitions are extended for each
colour component of each region. As mentioned in Section 2.4, each colour is represented by a
point within the colour space of a 3D-coodinate system, so each colour will have three components.

All of the membership functions for each colour component are defined in the following sections.

6.i.1 Membership Function for Region Pixel Distributions

As alluded above, a detziled description of this membership function has been provided in

Section 3.1.1. The membership function for the pixel distribution of region R, MR, (P,‘,) of a

pixel with a gray level value of P, at location (s,7) for the i % colour component can be defined

as: -
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ﬂD,R, (Ps,r)= .flnj (Ps,r) 6.1)

where fip (P, J) is the polynomial for the i* colour component of region R; and ie {,....4}

where ¢ is the number of components for a particular colour model, i.e. ¢=3 for HSV, though in

certain cases it may not be equal to 3.

6.1.2 Membership Function to Measure the Closeness of a Region

The definition of this particular membership function differs slightly from the definition
presented in Section 3.1.2. This is because it uses a normalised difference with respect to the

maximum value of the candidate pixel F;, and the respective centre C; (R j) of aregion R, instead

of fixed value (2b —l) where b-bit gray levels or colour components are presumed. The

membership function for the closeness to a region R;, HeR, (PS‘,) of a candidate pixel F;, for the

i colour component is defined as: -

Hep, (7, )=1-IC; (r;)-P sl max{C; (R f) P} ' 6.2)

where C,{R J-) is the centre of the i” colour component of region R ;- This membership function
considers more accurately the human visual perception than (3.5) in the GFRIS algorithm. For

example, if the difference i.c. |C,(R g )— Ps',l is the same for a Juminance component for two

regions, namely R, and R, , the membership function (3.5) wilt generate exactly the sam¢ - alue for

both regions. However, the new membership function (6.2) will produce a different value thereby
reducin the inclination towards the less bright region.

To illustrate this, et the values of the centres of regions R, and R, for a luminance component

be 60 and 200 respectively. If a candidate pixel value is 130, the difference
|60 - 130} =|200 - 130} = 70 is the same for the two regions. It is essential to determine which region

would be more appropriate for this pixel. Perceptually 130 is closer to region R, than R, because
R, possesses a lower percentage difference. The ratio of the difference for region R, is

[60 - 13|/ max(60,130)=7/13, while it is [200~130|/max(200,12. )=-7/20 for R, where

.
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7/20<7/13. The comresponding values of the membership function (6.2) for this example for
regions R, and R, are (1-7/13)=6/13=0.46 and {1-7/20)=13/20=0.65 reSpectiveljr. Since

the value of the membership function for R, is greater than that of R,, (6.2) conforms more to

human visual perception, which was the main reasoning for defining this membership function.
While the above example only considered the luminance component, it can also be extended to
include the chrominance components.

6.1.3 Membership Functions for Spatial Relation

The membership function for spatial relation between the pixels of the i* colour component of

aregion R;, uy, R (Ps’,,r) for the neighbourhood radius r is defined as: -

¢ A
ting, (Pes) =V, % G V5 2 Wi <G ) 63)
=l j=

where N, and GiR, are respectively the number of neighbours and the sum of the inverse distances

of the i* colour component of a region R ; from the candidate pixel P;,. 9tis the number of

segmented regions.

6.2 Defining the Fuzzy Rule

In contrast to the fuzzy rule defined in Section 3.2 for only one component (gray level pixel
wntensity), in this section a fuzzy rule is heuristicaily defined for all three colour components.

The overall membership value u4p (P,,,r) of a pixel P,, for a region R; represents the
overall degree of belonging to that region for ail colour components. This is defined by the

weighted average of all membership functions for all colour components HpR, (Ps,, ), HeR, (Ps', ),

and tyug, (1)

ﬁwuﬁqnj (P st )"' ﬁwzgﬂc,nj (P .s,r)"‘ i“’s&ﬂhf,nj (P 57 )
JuARj ( Ps,r , f') = f=1 i=l i=1 (6 . 4)

if"’n‘

x=li=]
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where wy;,w,;, andwy; are the weightings of the membership valu:s of i* colour component for

pixef distribution, closeness to the cluster centres, and neighbourhood relations respectively.

Definition 6.1—Rule: IF 4 AR, (P, J,r)= max {p AR, (Ps,, ,r)} THEN pixel F;, belongs to region

R;.
As in Section 3.2, this rule is general enough to ensure that this algorithm is both application
and image independent. The effectiveness of this rule will be assessed using one of the perceptual

colour models (HSV) and the basic colour model (RGB) in Chapter 7.

6.3 Determining the Weighting Factors and the Threshold

The data mining Algorithm 3.1, which was articulated in Section 3.3, is extended to incorporate

colour components and determine the weighting factors wy;,wo;, andwy;, and threshold 7;. The
spatial relationship weighting factors w,, and w,, for the hue and saturation colour components of

the HSV colour model were empirically chosen as 0.2. The reason for the low value of doth
parameters is that hue denotes the dominant colour and already represents spatial relations by
suppressing the minor variations of a colour, while saturation represents the relative colour purity,
that is the whiteness of hue [136).

6.4 Arithmetic Operators for Hue in the HSV Colour Model

The hue in the HSV colour mode! represents the dominant wavelength of the colour stimulus.
The HSV colour model is represented by a cone shown in Fig. 2.20, where the hue is the angle of
each colour within the cone starting from 0 point on the x-axis [164]. Hue angles are used in
calculating the membership functions defined in Sections 6.1.2 and 6.1.3 and automatically deriving
the key weighting factors and thresholds described in Section 6.3 for the hue component of the
HSV colour model. Since hue is expressed in angles, the arithmetic operations for Cartesian
coordinates are not suitable for hue and as mentioned in Section 2.4.2 this leads to some difficulties
when applying certain arithmetic operations on hue angles e.g. averaging. The definition of the

difference between two hue angles /4 and A, where both & and %, are bounded in the range the

[0, 2zz] and the formula for calculating the average of n hue angles are given as foliows: -
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Definition 6.2—Difference Between Two Angles: The difference between two hue angles
hyand hy, diff (b, )is defined as: -

diff (hy, by )= min(hy ~ by}, 27 by —h,}) (6.5)

As mentioned in Section 3.1.2, when a candidate pixel joins its nearest region, the centre of that
particular region is recomputed. The rationale behind recomputing the centre of a region, which
considers the previous values of the centre and its candidate pixels, is best understood using an
analogy from basic force analysis.

Let the initial hue value of the centre of a particular region be #; shown in Fig 6.2. If the
saturation is assumed as 1, this can be considered a unit force F, with direction A;. If a candidate
pixel 5, joins this region, this can be regarded as a unit force F, with direction A, . The resultant
force of F; and F,, namely R, and resultant hue angle y, of h and A, shown in Fig. 6.2 are

computed using the force analysis technique, which will be formalised in Algorithm 6.1. Note, that

the magnitude of R, may not be unity. If another candidate pixel A; with unit force F; joins this
region, the resultant force of R, and ¥, namely R, and resultant hue angie y, of y and h; can
also be calculated in exactly the same way. Therefore, y, is the average angle of /4, h,,and h;. A

similar process is applied to recalculate the centre of this region for all candidate pixels that join
this region.

This process can be formalised as follows: -

1. The initial value of the centre of a region and the first candidate pixel are
considered two anglus of unit force, since the respective saturation values are
always one.

2. The resultant angle of the two forces (the initial value of the centre and the
candidate pixel, is regarded as the current value of the centre.

3. When another candidate pixel joins this region, the resultant force (angle and

magnitude) for the current centre and the force for the candidate pixel are used to

recalculate the centre of this region. This process is repeated for all candidate pixels
that join this particular region.

T ST LT
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Fig. 6.2: Resultant (average) hue angle v, of &, 4, ,and h,.
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Fig. 6.3: The sign of X and Y components of the resultant force.

The actual magnitude of the resultant angle depends on the sign of both the X and Y
components of the resultant force because of the # radians periodicity of the tangent function
shown in Fig. 6.3. This means that the resultant angle will be in first, second, third, and fourth
quadrant depending on the respective signs of the X and Y components.

The algorithm for calculating the average angle of two hue angles based on force analysis is
formalised as follows: -
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Algorithm 6.1 Calculation of the average of two hue angles

Precondition: Two hue angles h, and h, with magnitudes F, and F, of the forces F, and F,

respectively.
Postcondition: Resultant direction y (average angie) and magnitude R of the force R.

1. Calculate the X and Y components of the resultant force R.

R, = F cos(hy )+ F, cos(h, )

R, = Fysin(fy) + F sin(h, )

2. Compute the magnitude of the resultant force R.If it is zero, mark the resultant angle y as
undefined by setting its value as -1 and go to step 4. -"
R=yR? +R}?
IF (R=0) THEN
y =1
GOTO step 4

3. Determine the resuitant direction (average angle).

Ly
v =tan I[ﬁ

IF (R, 20) THEN
IF (R, <0) THEN
y=27-y
ELSE
IF (R, >0) THEN

ELSE
y=T+y

y=m-y E
]

4. STOP
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All those pixel values, for which the average angle becomes undefined are blocked from the

process for modification of each region centre in Section 6.1.2.

6.5 The FRCIS Algorithm

Many of the steps of the FRCIS algorithm are the same as the GFRIS algorithm in
Algorithm 3.2, described in Section 3.4. There are however some subtie differences in certain the
stages of processing, so for completeness, the entire FRCIS algorithm is formalised in
Algorithm 6.2. '

Algorithm 6.2 FRCIS

1. This step is same as Algorithm 3.2, however the initial segmentation uses (6.5) to calculate
the distance between two hue angles for the HSV colour model. |

2. Derive the weighting factors and threshold values by applying the data-mining
Algorithm 3.1 and the membership function for each region pixel distribution for each
colour component (Section 6.1.1). This step again uses (6.5) for the hue component in the
HSV colour model.

3. Initialise the centre of all regions for each colour component required to define the
membership function in Section 6.1.2, with the respective centres produced in step 1.

4. Sequentially select an unclassified pixel from the image and calculate the membership
function value for each colour component in each region for that pixel. This step uses (6.5)
and Algorithm 6.1 for the hue component of the HSV colour model.

5. Classify the pixel into a region applying the fuzzy rule (Definition 6.2).

6. Return to step 4 until every pixel is classified.

It is important :o reiterate that as with GFRIS, this algonthm is image and application

independent. The time complexity of this algorithm is described using the following lemma.

Lemma 6.1: The computational complexity of the FRCIS algorithm is O(n) for an image
containing » pixels.

Proof: For a specific colour component, the time complexity for the FRCIS aigorithm
(Algorithm 6.2) is same as the GFRIS algorithm (Algorithm 3.2) assuming the same initial
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segmentation. This is because the computational time of the membership functions defined in
Section 6.1 is the same as those defined in Section 3.1 for a particular colour component. Although
steps 2 and 4 of Algorithm 6.2 uses (6.5) and step 4 also uses Algorithm 6.1 for the hue component
of the HSV colour model, these do not change the order of the computational time. The
computational time complexity of the FRCIS algorithm is greater than the GFRIS algorithm
because three colour components are considered, so the order of time complexity of the FRCIS

algorithm is three times of that of the GFRIS algorithm, i.e. 3x0(n)=0(n) (see Section 3.4.2)

where n is the total number of pixels of an image. "

6.6 Discussion of the Performance of the FRCIS algorithm

As in other chapters, a representative sample of the performance of this algorithm in
segmenting the cloud image in Fig. 6.4(a) for two regions, namely the cloud (R,) and urban scene
(R, ) produced by the FRCIS using » =1, FCM, and PCM algorithms using the HSV colour model

is shown in Fig. 6.4.

n .l e B . 8 Pt AL, Y b

{b) FRCIS, r =1 (c) FCM (d) PCM
Fig. 6.4: The segmented results of the cloud image in (a) into two regions for the HSV colour

model produced by the FRCIS using r =1, FCM, and PCM algorithms.

The segmented results shown in Fig, 6.4(b) visually confirm that FRCIS using r =1, separated
almost the entire cloud (R,) region from the urban scene (R,). It also exhibits considerable
improvement over both the FCM and PCM algorithms (Fig. 6.4(c) and 6.4(d)) with FCM again
produced better results especially for the cloud (R, ) region than PCM. An extensive performance

analysis of this algorithm will be presented in the next chapter using both the HSV and RGB colour
models.

6.7 Summary

Colour is an additional attribute of an object, which leads to more appealing and easy

interpretation of the object. There are some edges of an object that are only visible in the colour
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domain. In this chapter, a new fuzzy sule-based colour image segmentation algorithm called FRCIS
has been proposed by extending the original gray level fuzzy rule-based image segmentation
algorithm GFRIS described in Chapter 3. The difference operator and an algorithm for calculating
the average of hue components of the HSV colour model have been defined.

The computational complexity of the FRCIS algorithm is also the same as the GFRIS algorithm
i.e. O(n) for an image containing » pixels.

Numerical evaluation of this algorithm using one of the perceptual colour models, namely HSV
and the basic colour model RGB will be performed in the next chapter.




Chapter 7

Experimental Results and Discussions

In this chapter, the performance of all the various constituent blocks in the fuzzy rule-based
image segmentation framework shown in Fig. 1.1 is analysed and discussed. The GFRIS (Block 1),
FRIS (Block 2), FRIST (Block 3), and FRCIS (Block 4) algorithms are applied to a wide range of
real images containing different features and number of objects/regions (Block 6). The results
produced by the proposed algorithms are compared with those obtained using FCM and PCM, and a
numerical evaluation is undertaken using the two powerful objective and quantitative segmentation
evaluation methods, namely discrepancy based on the number of mis-segmented pixels and
discrepancy based on the number of objects in the image. A statistical significance test, called the
sign fest, is also applied to determine the worthiness of any improvement in each segmentation
algorithm's performance. All algorithms including FCM and PCM were implemented using
MATLAB version 6.0.

This chapter is organised as follows: In Section 7.1, the segmentation evaluation methods used
in the experiments are described. The statistical significance test (sign fest), the image database and
manually segmented reference images, and the parameter settings are presented in Sections 7.2, 7.3,
and 7.4 respectively. The performance analysis of the GFRIS, FRIS, FRIST, and FRCIS algorithms
are given in Sections 7.5, 7.6, 7.7, and 7.8 respectively. Finally, some general issues relating to the

framework are discussed in Section 7.9.

7.1 Segmentation Evaluation Methods

Segmentation evaluation methods can be generally categorised into the following two classes
[165]: -
1. Analytical methods
2. Empirical methods

102
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Analytical methods directly assess the segmentation algorithms by examining their principles,
requircments, utilities, and complexity, while empirical methods indirectly evaluate the results of
the segmentation algorithms based on some test images and by measuring the quality of the
segmented results. Empirical methods are generally divided into two classes: goodness and
discrepancy. Goodness methods appraise the performance of a segmentation algorithm by
determining the quality of the results based on primarily some predefined goodness parameters such
as entropy and gray-tevel uniformity. Discrepancy based methods judge the segmentation
performance by calculating the disparity between the segmentation résults and the corresponding
ideal or expected results (reference images). It has been experimentally shown that generally,
discrepancy methods are more powerful than other methods [165]. In this chapter, the numerical
evaluation of each segmentation algorithm in the framework (Fig. 1.1) is performed based on two
powerful discrepancy methods, namely: -

1. Discrepancy based on the number of mis-segmented pixels.
2. Discrepancy based on the number of objects in the image.
These are discussed in the following sections.

7.1.1 Discrepancy Based on the Number of Mis-segmented Pixels

This measures the percentage error of misclassified pixels due to the segmentation. The
confusion matrix C isa Rby® square matrix, where R is the number of segmented regions and
Cjydenotes the number of ;* region pixels that are wrongly classified in region i by the
segmentation algorithm. Two error measures Type I, errorl, and Type !I, errorll,, are defined as

performance measures {163, 166] as follows: -

R
zlcﬁ _Cif
M 100

errorl; = 5 (7. 1)
2Cj
J=l
9
( 2G5 - Cff]
erroril, =L x 100 7.2)

2 % n
(Z 2.Cy5 - ZCﬂJ

i=] j=l J=1
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Type 1, errorl, gives the percentage error of i” region pixels that are not classified in the i*
region, whereas Type II, erroril,, is the percentage error of all other region pixels wrongly

classified in the i region. For the case of R =2 (two regions), the error rates (7.1) and (7.2) for
one region will therefore be the reverse of those of the other region.

7.1.2 Discrepancy Based on the Number of Objects in the Image

The total number of objects in any region of a segmented image should be equal to that in the
respective region of the reference image where ideal segmentation is assumed. Any discrepancy in

the number of objects between the segmented and reference images leads to poorer results. Let S,

and R, be the respective number of objects in the i” region of the segmented and reference
images. The probability that both S, and R, are taken from the same distribution that is used to

measure the ohject-count-agreement (OCA) is defined as [165, 167}: -

% i "
P = fe (22 p-x12 73
ocA £ 22 (n }2)x e . (73)

where n=R-1 and T'()are the degrees of freedom and the gamma function respectively. The

value of ¢ is determined from the following: -

2S5 -R
R

4
il BX th (7 )

where @ is the correlation parameter. This evaluation is important because for example, the
principle behind the refinement algorithm described in Chapter 4 i:; fundamentally based upon
splitting and merging of region objects. Every segmented and reference region is split into objects
using 8-connected neighbourhood for the purpose of this evaluation. The reason for using 8-
connected instead of 4-connected neighbourhood is to find as many as possible perceptually
meaningful objects by considering all weak connections between the pixels.

7.2 Statistical Significance Test

To determine whether or not the results of one algorithm provided a significant improvement,

i.e. positive differences over the other, a statistical significance test was applied. The signm fest has
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been extensively used to measure the differences between related samples, considering as it does,
only the direction and not the magnitude of any differences [168). The sign fest is appropriate for
determining the differences between two segmentation results for the same image or a region
produced by two different algorithms, since it only checks whether a pixel has been correctly
classified or not. If 4, and A, are two algorithms, the null hypothesis 4 is rot betrer than A;can

be assessed based on the classification of each pixel of an image, by applying the truth table in
Table 7.1.

Table 7.1: Truth table for 4 is better than 4, .

A A A, is better than A4,
Correct Incorrect +
Correct Correct %
Incormect Correct -
Incorrect Incorrect X

Correct and Incorrect respectively denote the classification of a pixel,
either by algorithin 4 or 4, ; X means don't care.

If the number of plus signs is considerably greater than the minus signs, the sign fest detects a
significant difference using the equation for the 2z value defined in [168] and hence the null
hypothesis is rejected. This z value yields the significance level of the differences from the table of
the standard normal curve. Note, that the sign fest is only performed on the Type I error since it
only considers correctly classified pixels for a particular region and not those pixels from other
regions that are misclassified into that region, which is what the Type I error in (7.2) measures.

7.3 Image Database and Manually Segmented Reference Images

The image database used throughout the evaluation comprised 18 different natural images
consisting of two (9), three (8) and five (1) regions. The images were collected from the IMSE,
Brodatz album’, and the Internet. In order to fully evaluate the performance and potential of the
GFRIS, FRIS, FRIST, and FRCIS algorithms, these different natural 18 images were selected
because they possessed a range of disparate features such as homogeneous and non-homogeneous
regions, low pixel contrast regions, perceptually distinct regione, 770 -.. " types of natural objects,
Brodatz textures, and colours.

f IMSI's Master Photo Collection, 1895 Francisco Blvd. East v Rafa2), {4 =201 ,006, USA.
Brodatz Textures, http://swww.ux.his.no/~tranden/brodatz.ht -::.
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(m) ) (p)

Fig. 7.1: A sample of original and their mznually segmented reference images, (a) and (b) The
cloud and its reference image (2 regions), (¢} and (d) The Brodatz texture (d8 and d94) and its
reference image (2 regions), (¢) and (f) The forest and its reference image (3 regions), (g) and (h)
The hill and its reference image (3 regions), (i) and (j) The food and its reference image (5
regions), (K) and (1) The gorilla and its reference image (3 regions), (m) and (n) The crocodile and

its reference image (2 regions), (0) and (p) The fish and its reference image (3 regions).

As mentioned in Section 4.2.3, for the sake of the numerical evaluation and the connectedness

property, all zero pixel values were pre-processed by adding 5 to each of them before applying any
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of the segmentsiion algorithms. This has not effect upon the visual perception of the images [84].
A representative sample of these and their manually segmented reference images are shown in
Fig. 7.1. The remainder of the images are included in Appendix B.

7.4 Setting the Framework Parameters

For the implementation of all algorithms in the framework (Fig. 1.1) as well as the PCM and
FCM algorithms, the derivation of key algorithm parameter values were as follows: -

For FCM, initialisation of the cluster centre was performed randomly. The maximum number of
iterations, the minimum level of improvement, and the value of the fuzzifier {m) were empirically
selected as 100, 0.00001 and 2, respectively. Note, that the threshold (the maximum level of
improvement) was chosen as 0.00001, which is a very small value and sufficient to ensure good
convergence. FCM converged at this threshold in all our experiments with the number of iterations,
always being less than the maximum number of iterations i.e. 100.

For PCM, initigisation of the cluster centres used the output of FCM. The value of the scale

parameter 7; was taken as the variance of the cluster i produced by FCM. The maximum number
of iterations, minimum level of improvement and value of fuzzifier (m) were empirically chosen as

200, 0.00001 and 1.5, respectively. The maximum number of iterations was chosen to be greater
than for FCM (100) as PCM took more iterations than FCM to converge. The approach adopted to
set the values of the threshold and the maximum number of iterations for PCM was exactly the
same as FCM.

For GFRIS, FRIST, and FRCIS, the membership function for region pixel distribution

Hpr, (%) was developed using the clusters produced by the initial segmentation results using the

fuzzy c-means (FCM) algorithm [80]. The centre values were used {o initialise the centres of the
clusters required to define the membership function for the closeness of a region. The respective
weighting and threshold values were automatically data-mined by the algorithm delineated in {6},
using the arbitrary constant X =0.25. The neighbourhood radius (r) was taken as 1, 2, and 4, with

the size of the window W), ,(5,#) used in the FRIST algorithm (see Section 5.2.1) being 4 x4 pixels.
In FRIS, the values of the three thresholds &. 4, and A, were empirically selected as 0.8, 0.7,

and 0.9 respectively. The dependency of the overall segmentation performance to slight variations
in the values of these three parameters has proven to be negligible. The values of y were also

intuitively chosen as 1 and 0.8 for the growing up and preventive rules respectively.
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In the numerical segmentation evaluation, namely discrepancy based on the number of objects
in the image described in Section 7.1.2, the value of the correlation parameter # was empirically
selected as 200.

7.5 Performance Analysis of the GFRIS Algorithm

While some sample preliminary results of the GFRIS algorithm were included in Section 3.5,
this section provides a complete analysis and evaluation of this algorithm. The segmentations were
performed using eight different gray level images containing two regions. A representative sample
of the segmented results of the two images in Fig. 7.1(a) and 7.1(c) for the two regions, cloud (R,)

and urban scene (R;) of the cloud image and d8 (R,) and d94 (R,) of the Brodatz texture

produced by GFRIS, FCM, and PCM respectively are shown in Fig. 7.2 and 7.3. The segmentation
results for the remaining six images shown in Fig. B.1, are included in Fig. C.1 (Appendix C).

a y.w e

(a) GFRIS, r=1 (b)GFRIS, r=2 (c¢)GFRIS, r=4 (d) FCM (e) PCM
Fig. 7.2: The segmented results of the cloud image in Fig. 7.1{a) into two regions using the GFRIS,
FCM, and PCM algorithms.

The results confirm that GFRIS separated almost the entire cloud (R, )and Brodatz texture d8
{R,) regions from the urban scene (R;) and Brodatz texture d94 (R, ) regions respectively. It
produced significantly better results than both FCM and PCM for these two as well as the other six
images shown in Fig. B.1. FCM and PCM gave approximately equal performance for the cloud
image (Fig. 7.1(a)), since as alluded earlier, both algorithms do not consider the spatial relationships
between the pixels in each region, while PCM could not separate the Brodatz texture regions at atl
(Fig. 7.3(e)). GFRIS also exhibited better results for larger values of neighbourhood radius r
(Fig. 7.2(b) and 7.2(c), and Fig. 7.3(b) and 7.3(c)), since the region pixels in both the cloud (R,)
and Brodatz texture d8 (R,) possess strong spatial correlation. Evaluation of the segmentation
results for the cloud and Brodatz texture images, compared with the manually segmented reference
images in Fig, 7.1¢a) and 7.1(c), are shown in Table 7.2 with the results for other images shown in
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Table D.1 (Appendix D). Note, that only the error rates for the segmented cloud (R,) and Brodatz
texture d8 (R,) regions are displayed in Table 7.2, since as explained in Section 7.1.1 for two
regions, the error rate of onc region will be the reverse of the other region. The shaded entries
correspond to the best GFRIS results. While GFRIS provided particularly good performance in
segmenting the cloud (Rl) and Brodatz texture d8 (R,) regions, it is worth noting that the error
rates of GFRIS for the Type I error of the cloud (Rl)and Brodatz texture d8 (R,)regions
respectively were higher than those for both PCM and FCM. This was because not all the pixels in
these regions possessed good continuation due to the abrupt changes in the Brodatz texture d94

(R,) region as well as in the urban scene (R,). The urban scene for instance does not constitute a

single object and so opposes the necessary condition for good inter-pixel relationships. This issue
has been addressed by the refinement (FRIS) algorithm described in Chapter 4 and will be analysed
further in Section 7.6.

(@ GFRIS, r=1 (b)GFRIS, r=2 (c)GFRIS, r=4 (&) FCM (e) PCM
Fig. 7.3: The segmented results of the Brodatz texture image (d8 and d94) in Fig. 7.1(c) into two
regions using the GFRIS, FCM, and PCM algorithms.

The average GFRIS error rates (the average of Type I and Type II errors) with respect to the
corresponding manually segmented reference regions are plotted in Fig. 7.4 for the Brodatz texture,
the cloud, and an average of all eight sample images. This shows that GFRIS performed
significantly better than both FCM and PCM for each value of the neighbourhood radius r . The
overall error improvements for GFRIS were 35.1% and 51.5% over FCM and PCM respectively for

the eight images. Note, that the overall average error for GFRIS was calculated considering all

iii TR e el e
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S

values of the neighbourhood radius r . Unless otherwise stated, this will hold for the remainder of

this chapter.
3 Table 7.2: Error percentages for the cloud (R;} and Brodatz texture d8 (R, ) regions of the cloud
i (Fig. 7.1(a)) and Brodatz texture (Fig. 7.1(c)) image segmentations respectively using the GFRIS,
FCM, and PCM algorithms.
Cloud (R,)Region Brodatz Texture d8 (R, ) Region
Algorithm Type | Type Il Type Type Il
GFRIS r=1 17.0513 § 13.991
GFRIS r=2 21.2500 § 14.542
GFRIS r=4 23.6218 § 13.600
FCM 28.0000 15.7372 29920 13.156
PCM 26.8939 16.3141 96.089 10.044
65 -
- 55 4
E 459 ——Brodatz
& 35 - —&--Cloud
g 25 - Avg. 8_lmages
< -
151 ;J
5 M-

GFRIS, GFRiIS, GFRIS, FCM PCM
=1 (L4 =4

Aigorithm

Fig. 7.4: Average error rates of GFRIS, FCM, and PCM for the Fig. 7.1(a) and 7.1 (c),
and average of the eight image segmentations.

Another evaluation was conducted utilising the method of discrepancy based on the number of
objects for all eight images. The probabilities of object-count-agreement (OCA) for each algorithm

for the cloud and Brodatz texture images are given in Fig. 7.5, while the probabilities of OCA for
the algorithms applied to other images are given in Table D.1. The probabilities of OCA for the
GFRIS algorithm were much better (overall 35.9% and 41.6% for the eight images) than those for
the FCM and PCM algorithms, which represent far better agreement between the number of objects
in the segmented and the corresponding reference regions.

HIRERT,
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0.80 -
0.70 4

0.60 —o— Brodatz
0.50 - —m—Cloud

0.40 - Avg_8_Images

0.30 - \

0.20 : ; . —
GFRIS, GFRIS, GFRIS, FCM PCM
=1 =2 =4

Algorithm

Probability of OCA

Fig. 7.5: Probability of object-count-agreement (OCA) for GFRIS, FCM, and PCM for
the Fig. 7.1(a) and 7.1(c), and an average of the eight image segmentations.

Table 7.3: The overall results of the statistical significance test, sign test for the cloud image in

_Fig. 7.1(a).
Algorithm Ref Algorithm  Percentage Percentage  Z Value Significance

: of + Pixels  of - Pixels Level
GFRIS r=1 FCM 10.715 1.03% -34.610 Beyond 0.0001
GFRIS =2 FCM 13.393 3.013 -35.459 Beyond 0.0001
GFRIS r=4 FCM 13.483 4.327 -32.950 Beyond 0.0001
PCM FCM 0.553 0.288 ~5.661 Beyond 0.000]
GFRIS r=1 PCM 10.250 0.838 -34.106 Beyond 0.000i
GFRIS r=2 PCM 12.93¢6 2.821 -34.929 Beyond 00001
GFRIS =4 PCM 12.986 4.094 -32.398 Beyond 0.000!
FCM PCM 0.288 0.553 -5.661 Beyond 0.0001
GFRIS =1 with FRIS GFRIS r=1 3.285 0.000 -14.248 Beyond 0.0001
GFRIS r=2 with FRIS GFRIS =2 3.654 0.000 -15.033 Beyond 0.000!
GFRIS =4 with FRIS GFRIS r=4 2.772 0.000 -13.077 Beyond 0.000]
FCM with FRIS FCM 3.032 0.0006 -13.89%3 Beyond 0.0001
PCM with FRIS PCM 3.220 0.008 -14.037 Beyond 0.000]
FRIST =1 GFRIS r=1 6.426 1.758 -7.131 Beyond 0.0001
FRIST =2 GFRIS r=2 8.542 3.721 -1.345 0.0893
FRIST r=4 GFRIS r=4 9.792 2,742 ~7.951 Bevond 0.0001

A further quantitative evaluation was conducted using the statistical significance test called the
sign test, The results of this test are presented in Tables 7.3 and 7.4, which again demonstrate that
GFRIS accomplished significant progress over both FCM and PCM for both images at a
significance level beyond 0.0001, that is 0.01%, which is a very high significance indeed.
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Table 7.4: The overall results of the statistical significance test, sign fest for the Brodatz image in

_Fig. 7.1(c).
Algorithm Ref. Algorithm Percentage Percentage  Z Value Significance
of + Pixels of - Pixels Level
GFRIS =1 FCM 9.911 5.316 -12.467 Beyond 0.0001
GFRIS r=2 FCM 16.080 4.684 -26.504 Beyond 0.000!
GFRIS r=4 FCM 15.680 3.227 -30.356 Beyond 0.0001
PCM FCM 8.533 40.062 -47.958 Beyond 0.0001
GFRIS =1 PCM 43.911 7.787 -53.276 Beyond 0.000]
GFRIS r=2 PCM 50.618 7.093 -60.232 Beyond 0.0001
GFRIS r=4 PCM 50.782 6.800 -61.464 Beyond 0.0001
FCM PCM 40.062 8.533 -47.958 Beyond 0.0001
GFRIS r=1 with FRIS GFRIS =1 6.640 0.089 -26.750 Beyond 0.000]
GFRIS r=2 with FRIS GFRIS r=2 8.969 0.000 -31.733 Beyond 0.0001
GFRIS r=4 with FRIS GFRIS =4 7.964 0.044 -29.650 Beyond 0.000]
FCM with FRIS FCM 7.467 0.000 -28.948 Beyond 0.000!
PCM with FRIS PCM 0.400 0.089 -4.585% Beyond 0.000]
FRIST r=1 GFRIS r=1 13.591 0.667 -36.280 Beyond 0.000!
FRIST =2 GFRIS r=2 6.356 0.569 -23.289 Beyond 0.0001
FRIST r=4 GFRIS r=4 5.431 0.000 -24.678 Beyond 0.0001

s

(d) FCM (e) PCM

Fig. 7.6: The segmented results of the forest image in Fig. 7.1(e) into three regions using the
GFRIS, FCM, and PCM algorithms.

: R s 30 e i
(a) GFRIS, r=1 (b)GFRIS, r=2 (¢)GFRIS, r=4 (d) FCM (e) PCM
Fig. 7.7. The segmented results of the hill image in Fig. 7.1(g) into three regions using the GFRIS,
FCM, and PCM algorithms.

A second series of experiments were performed using the six natural images containing three
different objects shown in Fig. 7.1(e), 7.1(g), and B.2. The forest an«. hill images in Fig. 7.1(e) and
7.1(g) comprise three distinct regions, namely forest (Rl), sky (Rz), and water (R3) and sky (R]),
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hill {R,), and field (R,) respectively. The segmentation performance for the three regions using

GFRIS, FCM, and PCM is presented in Fig. 7.6, 7.7, and C.2.

Table 7.5: Error percentages for the forest and hill image segmentations respectively using the

GFRIS, FCM, and PCM algorithms.
Forest (Fig. 7.1(e)) Hiil (Fig. 7.1(g))
Algorithm Region Typel Typell Region Typel Typell
Forest (R;) Sky (R)) 0.475 &
GFRIS r=1 Sky (R,) Hill (R,) 43.411
Water (R;) Field (R;)
Forest (R,) Sky ()
GFRIS r=2 Sky (R,) Hili (R;)
Water (R;) Field (R;)
Forest (R,) Sky (R,) 0.475
GFRIS r=4 Sky (R:) Hill (R,) 37.961
Water (R;) Field (R;) 56.891
Forest (R)) 25353 5528  Sky (R) 0.440 1680
FCM Sky (R;) 0730 353  Hill () 44836  33.233
Water (B,) 15761 16485  Field (R;) 54720 32799
Forest (R) 3578 49484 Sty (R) 0387  3.484
PCM Sky (R,) 1141 2284  Hill (R) 5317  58.497
Water (R;)  s3oo8 2208  Field (R) 97.338  3.420

It was visually apparent again that the GFRIS algorithm produced more distinctive regions in

both images for all values of the neighbourhood radius r and hence considerably outperformed both
FCM and PCM. PCM could not separate the water (R;) (Fig. 7.6(¢)) and field (R;) (Fig. 7.7(¢))

regions from the forest and hill images respectively because it was unable to distinguish between

regions exhibiting a poor gray level contrast. In Fig. 7.7(a)-Fig. 7.7(c) GFRIS provided better

results for the hill image compared with FCM and PCM, even though it could not separate the hill

(R;) and field (R;) regions well because as mentioned earlier, they are very similar in gray level

and exhibit strong spatial correlation, which means they perceptually appear aimost the same.

The error rates for the segmentation of the forest, hill, and additional four images compared

with the manually segmented reference images are given in Tables 7.5 and D.2 respectively. Again
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the shaded entries in Table 7.5 highlight the best GFRIS results. Overall, GFRIS obtained improved
results especially for all regions and the sky (R,) and field (R,) regions of the forest and hill
images respectively because there exists good continuation among the spatially correlated pixels of
these regions.

The mean error rates shown in Fig. 7.8 of GFRIS for the forest, hill, and the average of the six
images containing three regions were considerably lower than for both FCM and PCM, while the
error was the highest for the PCM for all cases. As mentioned before, this was due to PCM being
unable to segment poorly contrasted regions. GFRIS achieved 14.8% and 31.2% of the overatl error
improvements over FCM and PCM respectively for the six images.

- R L
o 25- v
|§ 20 —o—Hil
g, —p— Forest
s 15
;.: Avg_s_ln'ages
< 10 |
5 i )

GFRIS, GFRIS, GFRIS, FM PCM
r=1 r=2 r=4
Algorsithm

Fig. 7.8: Average percentages of error rates of GFRIS, FCM, and PCM for the
Fig. 7.1(e), 7.1(g), and average of the six image segmentations.

Fig. 7.9 shows better probability of object-count-agreement for GFRIS for all the sample
images. The best probability was obtained for GFRIS using neighbourhood radius r =4 because the
higher order spatial relationship reduces the scattering regions therefore keeping the spatially
correlated pixels together. Overali GFRIS provided significant improvements (34% and 50.6%
over FCM and PCM respectively for the six images) for all values of r and both forest and hill
images at a significance level greater than 0.0001 as shown in T»' " 276 and 7.7.
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Probability of OCA

0.60 -
0.50
0.40 -
0.30
0.20
0.10 -

—e—Hill
—m-——Forest

Avg_B_lmages

0.00

T T L] T 1

GFRIS, GFRIS, GFRIS, FCM PCM
=1 =2 r=4

Algorithm

Fig. 7.9: Probability of object-count-agreement (OCA) for GFRIS, FCM, and PCM for
the Fig. 7.1(e), 7.1(g), and average of the six image segmentations.

Table 7.6: The overall results of the statistical significance test, sign fest for the forest image in

_Fig. 7.1(e).
Algorithm Ref Algorithm  Percentage Percentage  Z Value Significance
of + Pixels _ of - Pixels Level
GFRIS r=1 FCM 2.398 1.36% -11.2%7 Beyond 0.000]
GFRIS =2 FCM 2.649 1,768 -8.998 Beyond 0.0001
GFRIS r=4 FCM 3.073 1,514 -14.427 Beyond 0.000]
PCM FCM 7.258 22.553 -46.585 Beyond 0.0001
GFRIS r=1 PCM 22.903 6.57% -50.964 Beyond 0.000]
GFRIS r=2 PCM 22.867 6.691 -50.347 Buyond 0.06001
GFRIS =4 PCM 23.527 6.673 -52.044 Beyond 0.000]
FCM PCM 22.553 7.258 -46.585 Beyond 0.0001
GFRIS r=1 with FRIS GFRIS =1 3.375 0.013 -33.408 Beyond 0.0001
GFRIS =2 with FRIS GFRIS r=2 4.029 0.008 -37.068 Beyond 0.0001
GFRIS r=4 with FRIS GFRIS r=4 3.691 0.013 -35.540 Beyond 0.0001
FCM with FRIS FCM 9.358 0.011 -58.095 Beyond 0.0001
PCM with FRIS PCM 0.176 0.247 -1.762 0.0392
FRIST r=1 GFRIS r=1 0.564 0.021 -13.567 Beyond 0.0001
FRIST =2 GFRIS r=2 0.611 0.000 -14.697 Beyond 0.0001
FRIST r=4 GFRIS =4 0.543 0.6568 -14.000 Beyond 0.6001

In the above experiments, the number of segmented regions was coustrained to either two or

three. In order to examine the full discriminating potential of the GFRIS algorithm for a larger

number of regions, a comparison was made with the FCM and PCM algorithms on the image in

Fig. 7.1(i) that possessed five regions [6). The regions were: - egg (R, ), glass of milk (R, ), curtain
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(R3), cheese (R, ), and table (Rs). Fig. 7.10 shows the respective ssgmentation performance of
the GFRIS, FCM, and PCM algorithms.

Table 7.7: The overall results of the statistical significance test, sign fesr for the hill image in

Fig. 7.1(g).
Algorithm Ref Algorithm  Percentage Percentage  Z Valuve Significance
of + Pixels  of - Pixels Level
GFRIS =1 FCM 4,792 .194 .393  Beyond 0.0001
GFRIS =2 FCM 7.871 .805 .814 Beyond 0.0001
GFRIS r=4 FCM 13.269 .713 .472  Beyond 0.0001
PCM FCM 15.628 .643 .060 Beyond 0,0001
GFRIS =1 PCM 16.228 614 .051  Beyond 00001
GFRIS r=2 PCM 17.179 .098 .484  Beyond 0.0001
GFRIS =4 PCM 15.087 515 .209  Beyond 0.0001
FCM PCM .643 .628 .060  Beyond 0.0001
GFRIS =1 with FRIS GFRIS r=1 .934 .080 .718 Beyond 0.0001
GFRIS =2 with FRIS GFRIS r=2 .512 .256 .430 Beyond 0.0001
GFRIS r=4 with FRIS GFRIS r=4 .752 .006 .202  Beyond 00001
FCM with FRIS FCM .205 .000 .324  Beyond 0.0001
PCM witih FRIS PCM .Q74 .000 .570 Beyond 0.0001
FRIST =1 FRIS =1 710 .910 .339  Beyond 0.000]
FRIST r=2 GFRIS =2 .779 .980 .974  Beyond 0.0001
.113 .591 .543 Bevond 0.0001

2 2

(b)GFRIS, r=2 (c)GFRIS, r=4 (d) FCM {e) PCM
Fig. 7.10: The segmented results of the food image in Fig. 7.1(i} into five regions using the GFRIS,
FCM, and PCM algorithms.

From Fig. 7.10(d)-7.10(e), it is clear that both FCM and PCM arbitrarily divided the image into
five regions without considering any semantic meaning of the data, The results produced by GFRIS
for =1 and =2, in Fig. 7.10(a) and 7.10(b) showed much greater consistency with the information
derived from the manually segmented regions. There are some regions such as egg (RI) and milk
(R;), curtain (R;) and cheese (R, ), which overlap with each other because their gray level pixel

intensities are very similar. The most promising results in Fig. 7.10(c) were obtained for GFRIS
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using r=4, with the exception of region cheese (R,), which partially merged with region milk (R;)
because cheese (R,) and milk (R,) possess almost exactly the same gray leve! intensities. Again

the GFRIS algorithm considered the underlying meaning of data far better than both the FCM and
PCM algorithms when compared with the manually segmented results.

Table 7.8:; Error percentages for the food image segmentation in Fig. 7.1(i).

Egg (R,) Milk {(R;)  Curtain (R;)  Cheese (R,) Table (Rs)

Algorithm ~ Error Type  Error Type  Error Iype Error Type Error Type

I It 1 I I 1 I Il I a

GERIS r=1 8205 1838 §9.86  2.77
GFRIS r=2 9135 946 215
GFRIS r=4 j 33.21 8143 1122 3.02
FCM 5390 27.79 7817 1757 5773 1938 7368 1832 6417 167
PCM 2458 5936 9722 385 9821 110 6125 3053 10000 233

The numerical evaluations of the image segmentation given in Table 7.8, reveal that the mean
errors for the egg (R, ), curtain (R;), and cheese (R, ), egg (R,), curtain (R, ), and table (R;),
and egg (R,), milk (R,), curtain (R,), and table (Rs) regions were appreciably lower using
GFRIS with =1, r=2, and r=4 respectively than for either FCM or PCM. In general, the results
confirm that a significant improvement was achieved for all regions using GFRIS with

neighbourhood rrdius r=4, except for the cheese (R, Jregion, for the reason alluded above.

The average -rror rates and the probabilities of object-count-agreement (OCA) for each
algorithm in the food image segmentation are shown in Fig. 7.11 and 7.12 respectively. These show
lower average errors and better object-count-agreement for GFRIS for all values of neighbourhood
radius r over both the FCM and PCM algorithms, GFRIS obtained 17.9% and 29.2% improved
overall errors and 203.9% and 2127.4% (1) better overall probability of OCA than FCM and PCM
respectively. The inordinately high improvement over PCM for overall probability of OCA is due
to the very poor performance of PCM highlighted in both Fig. 7.10(e) and Fig, 7.12 caused by the
poorly contrasted regions in the food image (Fig. 7.1(i)). This five region example confirms that
just as with FCM and PCM, the GFRIS algorithm can be extended to separate an arbitrary number

P oy L
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of vegions (objects) in an image, though there will be a commensurate increase in the computational
corplexity.

60 -~
50 4
(=] =
§ 0 \/*
13
& 30 -
$ 204
$ 2
<
10 4
0 1 | L) L1 1
GFRIS, r=1 GFRIS, =2 GFRIS, r=4 FCM PCM
Algorithm

Fig. 7.11: Average percentages of error rates of GFRIS, FCM, and PCM for the
Fig. 7.1(i) image segmentation.

Probabliity of OCA

B 1 L il

GFRIS, r=1 GFRIS, r=2 GFRIS, =4 FCM PCM
Algorithm

Fig. 7.12: Probability of object-count-agreement (OCA) for GFRIS, FCM, and
PCM for the Fig. 7.1(i) image segmentation.

The results of the sign fest in Table 7.9 also support the significantly improved results of the
GFRIS algorithm over both the FCM and PCM algorithms at a significance level greater than
0.0001. J
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In comparison with both FCM and PCM, GFRIS provided significantly superior results for a
variety of different image types, including image examples having multiple regions. Its
performance in considering the underlying meaning of data was also better when the results were
compared with the manually segmented reference regions. However, it proved ineffective for image
regi-ns characterised by either being non-homogeneous or possessing sharp variations in pixel
intensity (see urban scene (R,) in Fig. 7.2(a)-(c) and Brodaiz texture d8 (R,) and d94 (R,) in
Fig. 7.3(a)-(c) regions). To :(idress these disadvantages, new refining rules have been developed for
integration into the integrated fuzzy rule-based image segmentation framework (Fig. 1.1), by
utilizing a combination of 4n object’s connectedness, surroundedness, uniformity, and contrast
properties. These refinement rules have been fully explained in Chapter 4 and the performance
analysis of the FRIS algorithm will now be discussed.

Table 7.9: The overall results of the statistical significance test, sign test for the food image in
Fig. 7.13).

Algorithm Ref. Algorithm  Percentsge Percentage Z Value Significance
- of + Pixels  of - Pixels Level
GFRIS r=1 FCM 15.597 7.502 -72.576 Beyond 0,0G01
GFRIS r=2 FCM 24.504 11.292 -89.370 Beyond 0.0001
CFRIS =4 FCM 34.821 8.833 -176.214 Beyond 0.0001
PCM FCM 13.326 24.046 -122.966 Beyond 0.0001
GFRIS r=1 PCM 27.364 8.549 -177.769 Beyond 0.0001
GFRIS r=2 PCM 30.967 7.036 -203.151 Beyond 0.0001
GFRIS r=4 PCM 41.86% 5.157 -269.828 Beyond 0.0001
FCM PCM 24.046 13.326 -122.966 Beyond 0.0001

7.6 Performance Analysis of the FRIS Algorithm

Since FRIS (Block 2 inFig.1.1) is a refinement algorithin, GFRIS will be used together with
FCM and PCM in order to initially segment an image. The refinement process will be applied to all
three algorithms and the performance corcespondingly evaluated. The segmentation results of the
cloud (Fig. 7.1(2)), Brodatz texture (Fig. 7.1{(c)), and the other six images (Fig. B.1) comprising the
two regions are shown in Fig. 7.13, 7.14, and C.3 respectively for FCM, PCM, and GFRIS.

It is visually apparent that the segmentation results especially for the urban scene (R,) and
d8(R, )and d94 (R, ) of the cloud and Brodatz texture regions respectively (Fig. 7.2(a) - 7.2(¢) and
7.3(a) - 7.3(e)) produced by FCM, PCM, and GFRIS algorithms, without applying FRIS contain a
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large number of misclassified pixels from the other region. This is because in all cases they possess
very sharp variations in pixel intensity. Nearly all the misclassified pixels of all regions, except the
text caption for cloud and the misclassified pixels by PCM for Brodaiz texture were correctly
clagsified when the refinement rules of FRIS were incorporated into GFRIS, FCM, and PCM
(Fig. 7.13(a) - 7.13(e) and 7.14(a) - 7.14(d)). FRIS improved very little for PCM for the Brodatz
texture image (Fig. 7.14(e)) because the initial PCM segmentation could not separate the texture
regions at all for this image. This reiterates the point that FRIS refines effectively an initial

segmentation, but is unable to improve a very poor initial segmentation.

(a) GFRIS, r=1 (b)GFRIS, r=2 () GFRIS, r=4 (d) FCM (e) PCM
Fig. 7.13: The segmented results of the cloud image in Fig. 7.1(a) into two regions using FRIS with
the GFRIS, FCM, and PCM algorithms.

(a) GFRIS, r=1 (b)GFRIS, r=2 (¢)GFRIS, r=4 (d) FCM (e) PCM
Fig. 7.14: The segmented results of the Brodatz texture image (d8 and d94) in Fig. 7.1(c) into two
regions using FRIS with the GFRIS, FCM, and PCM algorithms,

The numerical segmentation results of the cloud, Brodatz texture, and supplementary six image
segmentations with respect to the manually segmented reference images (Fig. 7.1 and B.1) using

the discrepancy based on the number of mis-segmented pixels method are shown in Tables 7.10 and
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D.3 respectively. In Table 7.10, only the error rates for the cloud (R, } and Brodatz texture d§ (R, )
regions are shown. The improvements achieved using FRIS are highlighted in Table 7.10.

Table 7.10: Error percentages for the cioud and Brodatz texture d8 regions of the cloud (Fig. 7.1(2))

and Brodatz texture (Fig. 7.1(c)) image segmentations respectively using FRIS with the GFRIS,
FCM, and PCM algorithms.

Cloud (R,) Region Brodatz Texture d8 (R,) Region
Algorithm Typel Type I Typel Typell
GFRIS r=1 73333
GFRIS r=2 1.7273

e

T Rt

R AT T O

TR s g T e

GFRIS r=4 803
FCM B
PCM
B0 -
50 —e— Without FRIS Brodatz
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Fig. 7.15: Average percentages of error rates of GFRIS, FCM, and PCM with and without using
FRIS for the Fig. 7.1(a) and 7.1(c), and average of the eight image segmentations.
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The average error rales for all three algorithms with and without using FRIS are plotted in
Fig. 7.15. This reveals very promising results for all algorithms for all images including the average
results of the eight images when FRIS was integrated within these algorithms. The exception was
PCM for the Brodatz texture, which as mentioned above failed because PCM could not segment the
Brodatz texture d8 (R, ) region at ali. 48.4%, 37.2%, and 20.7% improvements of the overall errors

were obtained for the GFRIS, FCM, and PCM algorithms respectively for the eight images, again
emphasising the merit of incorporating the refinement rules.

The probabilities of object-count-agreement (OCA) for all algorithms with and without using
FRIS are shown in Fig. 7.16 and reveal considerable improved probabilities of OCA for the
refinement algorithm than those for all algorithms without FRIS. The GFRIS, FCM, and PCM
algorithms produced 45.5%, 123.5%, and 48.9% higher probabilities of OCA for the eight images.

1.2 - —e—Without FRIS Brodatz
g -
S 15l ;@‘K_ —a—With FRIS Brodatz
S
£061 ) Without FRIS Cloud
E 0.4 -
2 02 ~3¢~With FRIS Cloud
0 - - . - + | —%—Without FRIS
GFRIS, GFRIS, GFRIS, FCM PCM Avg_8_Images
=1 m2 4 —e—With FRIS
Algorithm Avg_8_Images

Fig. 7.16: Probability of object-count-agreement (OCA) for GFRIS, FCM, and PCM with
and without using FRIS for the Fig. 7.1(a) and 7.1(c), and average of the eight image

segmentations.

The results of the statistical significance test (sign fes?) in Tables 7.3 and 7.4 show that all of
the algorithms incorporating FRIS exhibited significant improvement at the significant level beyond
0.0001 for the cloud and Brodatz texture image segmentations,

The segmented results of GFRIS, FCM, and PCM integrating FRIS for the forest (Fig. 7.1(¢)),
hill (Fig. 7.1(g)), and the remaining four images (Fig. B.2) containing three regions are shown in
Fig. 7.17, 7.18, and C.2 respectively. The results for the forest image (Fig. 7.17(a) -7.17(d)) exhibit
the perceptually improved regions for all algorithms, except PCM, by applying the FRIS algorithm.
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It is important to emphasise that FRIS is a refinement algorithm, so its performance depends very
much on the initial segmentation algorithm and for PCM the improvement is negligible because
PCM could not initially separate the water (R, )region from the forest {R,) region in Fig. 7.17(e).
The best improvement achieved for the FCM algorithm is shown in Fig. 7.17(d), where almost 2™
three regions have been completely separated.

The segmentation potential of the FRIS algorithm was tested again using the hill image
(Fig. 7.1(g)), which contains extremely poor contrast regions, namely the hill {R,) and field (R;)
shown in Fig. 7.1(g). If the results produced by the original initial algorithms (Fig. 7.7(a) - 7.7(¢))
are compared with the results (Fig. 7. 18(a)- 7.18(e)) after applying FRIS, it can be seen that the
latter ensures better results, even though the initial segmentation for these two regions was not
promising (see Fig. 7.7). The numerical results using the FRIS algonthm, shown in Table 7.11,
prove that FRIS accomplished better resuits for all regions of the forest and most of the regions in

the hill image for all algorithms, except in the case of the hill {R,) region for GFRIS, r=2 and

r=4 and PCM because of poor initial segmentation. The numerical results for the remaining four

images are given in Table D 4.

(d) FCM (e) PCM
Fig. 7.17: The segmented results of the forest image in Fig. 7.1(e) into three regions using FRIS
with the GFRIS, FCM, and PCM algorithins.

Eh L) .*:‘
(a)GFRIS, r=1 (b)GFRIS, r=2 (c¢)GFRIS, r=4 (d) FCM

Fig. 7. 18: The segmented results of the hill image in Fig, 7.1(g) into three regions using FRIS with
the GFRIS, FCM, and PCM algorithms,
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The overall improvement in all three algorithms compared with obtained by using the FRIS
algorithm in terms of both the average error percentage and the probability of object-count-
agreement are shown in Fig. 7.19 and 7.20 respectively. Fig. 7.19 shows that FRIS obtained slight
better overall errors for the hill image for all initial algorithms because of the inferior initial
segmentation, but it achieved much higher probability of object-count-agreement for the hili image
as shown in Fig. 7.20, since it reduced the scatter parts of some of the segmented regions of this
image. The average error percentages and probability of object-count-agreements for the forest, the
hill, and the six natural images containing three different regions clearly emphasise the improved
performance of the FRIS algorithm. The overall error improvements obtained were 15.2%, 16.2%,
and 9.3% for the GFRIS, FCM, and PCM algorithms respectively, whereas the respective gains for
the probabilities of OCA were 27.7%, 58.5%, and 14% for the six images.

Table 7.11: Error percentages for the forest and hill image segmentations respectively using FRIS
with the GFRIS, FCM, and PCM algorithms.

Initial Forest Image (Fig. 7.1(e)) Hill Image (Fig. 7.1(g))
Algorithm Region Typel  Typell Region Type | Type Il
Forest (R;) Sky (&)
GFRIS r=1 Sky (R,) Hill (R,)
Water (R;) Field (R;)
Forest (R, ) Sky (R,)
GFRIS r=2 Sky (R,) Hill (R,)
Water (R;) Field (R;)
Forest (R,) Sky (R,)
GFRIS =4 Sky (R;) Hill (R;) 36.562
Water (R;) Field (R;) 27.838
Forest (R, ) Sky (%)
FCM Sky (R,) Hill (R;)
Water (R;) Field (R;)
Forest (R, ) Sky (R;)
PCM Sky (R,) Hill (R,)
Water (R;) Field (R;)
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Fig. 7.19: Average percentages of error rates of GFRIS, FCM, and PCM with and without
using FRIS for the Fig. 7.1(e), 7.1{g), and average of the six image segmentations,

33 - —o—Without FRIS Hill -'3'-'

5 28 1 —&—With FRIS Hill
= 23 -
w With FRIS 4
& 18 - Avg_6_lmages
g 13 - -3—-Without FRIS 4
:: Avg_6_Images
8 ~3Without FRIS Forest

3 ' | —e—With FRIS Forest 3
GFRIS GFRIS GFRIS FCM PCM 1

r=1 r=2 r=4 1
Algorithm

08 - —e— Without FRIS HIll
a 071 —m—With FRIS Hill
8 061
S 0.5 - Without FRIS
£ 04 - Avg_6_Images
= —x—With FRIS
ﬁ 031 Avg_6_Images
e 021 —w—Without FRIS Forest
o 0.1 p

0.0 . ’ : : . | ~e—With FRIS Forest

GFRIS GFRIS GFRIS FCM PCM
r=1 r= r=4
Algorithm

Fig. 7.20: Probability of object-count-agreement (OCA) for GFRIS, FCM, and PCM with
and without using FRIS for the Fig. 7.1(e), 7.1(g), and average of the six image

segmentations.

The sign test also confirmed these improvements for all algorithms using the refinement ruies
except PCM for the forest image at a significance level greater than 0.0001 shown in Tables 7.6 and
7.7. Table 7.6 illustrates that the significance level of improvement for PCM for the forest image
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was 0.0392 i.e. 3.92% significance level of improvement, which means that this achievement is also
noteworthy since it is more significant than the usual 5-10% significant levels.

From the analysis of the experimental results it has been proven that the FRIS algorithm has
certainly enhanced segmentation of all algorithms, however, its potentiality depends on the
performance of the initial segmentation algorithm. In this context, this demands improvement in the
basic GFRIS algorithm. Note, that it was mentioned in Section 3.5 that the GFRIS algorithm did not
generate good results for regions that contain irregular texture. The next section will describe the
petformance of the FRIST algorithm (Block 3 in Fig. 1.1), which incorporates membership

functions to consider texture features,

7.7 Performance Analysis of the FRIST Algorithm

The results of segmenting the cloud, Brodatz texture, and the additional six images into two
regions using the FRIST algorithm, articulated in Chapter §, are shown in Fig. 7.21, 7.22, and C.5
respectively. Fig. 7.21 and 7.22 demonstrate that a considerable number of the misclassified pixels

of the urban scene (R, ) in Fig. 7.2 and the Brodatz texture 494 (R, ) in Fig. 7.3 produced by the

GFRIS algorithm have been correctly classified by the FRIST algorithm for all images. Note, also
that the FRIST algorithm correctly classified all most the entirely text caption of the cloud image
(Fig. 7.21), which was not accomplished even by the FRIS algorithm (Fig. 7.13) because these two
regions contain a number of sharp variations in the pixel intensity. As mentioned in Chapter 5, these
sharp variations directly oppose the spatial relationships between the pixels, which is the basis of
the GFRIS algorithm, however, the merit of the strategy adopted by FRIST to relax the condition
upon the variance of spatial relations (see (5.5) and (5.6)) is fully vindicated by the results in
Fig. 7.21 and 7.22.

(a) FRIST, r =1 (b) FRIST, r =2 (c) FRIST, r =4
Fig. 7.21: The segmented results of the cloud image in Fig. 7.1(a) into two regions using the FRIST

algorithm.
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(2) FRIST, r =1 (b) FRIST, r =2 (c) FRIST. r =4
Fig. 7.22;: The segmented results of the Brodatz texture image (d8 and d94) in Fig. 7.1(¢) into two

regions using the FRIST algorithm.

The numerical segmentation results of the cloud and Brodatz texture images together with the
other six image segmentations with respect to manually segmented reference images are shown in
Tables 7.12 and D.5 respectively. FRIST achieved improved Type II error and Type I and II errors
for the cloud and Brodaiz texture images respectively, especially for the regions that contain
textures i.e. the urban scene (R,) and d94 (R,) regions of the cloud and Brodatz texture

respectively.

Table 7.12: Error percentages for the cloud and Brodatz texture (d8) regions of the cloud
(Fig. 7.1(a)) and Brodatz texture (Fig. 7.1(c)) image segmentations respectively using the FRIST
algorithm.

Cloud (%) Region Brodatz Texture d8 (R, ) Region

Algorithm Type |
FRIST r=1 10.560
FRIST r=2 9.106
FRIST r=4 7.287

The average error rates and prebability of object-count-agreement (QOCA) for the FRIST and

GFRIS algorithms for the cloud, Brodatz texture, and average of the ¢ight images are graphically
shown in Fig. 7.23 and 7.24 respectively. From Fig. 7.23 and 7.24, it is clear that FRIST achieved
considerable improvements over GFRIS. The best performance was obtained for the Brodatz

texture image, because both its regions contain textures. The average over the eight images also

illustrates the potential performance (25.5% and 15.3% improvements of the overall average efror

and probabilities of OCA respectively over GFRIS) of the FRIST algorithm.
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Fig. 7.23: Average percentages of error rates of FRIST and GFRIS for the Fig. 7.1(a) and
7.1(c), and average of the eight image segmentations.
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Fig. 7.24. Probability of object-count-agreement (OCA) of the FRIST and GFRIS
aigorithms for the Fig. 7.1(a) and 7.1 {c), and average of the eight image segmentations,

The significance levels of the improvement for the cloud and Brodatz image segmentations for
the FRIST algorithm compared v.'th GFRIS were greater than 0.0001 (Tables 7.3 and 7.4) except
for the case of =2 for the cloud image, which provided a significance level of 0.0893. This was
because FRIST could not segment the entire cloud (R, ) region as GFRIS did for #=2. The reason

for this is that there is no distinct boundary between the cloud (R)) and urban scene (R,) regions,

s0, GFRIS interpreted some sections of the urban scene (R, ) as cloud (R, ) for higher order spatial
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relations. FRIST, because it is specifically designed to consider texture, relaxes the condition for
good continuation and so prevents this misclassification thereby improving the segmentation
performance and justifying the integration of this algorithm into the framework. This is also a
rignificant improvement since the significance level of 0.0893 i.e. 8.93% is less than the standard
significance level of 10%.

@ FRIST el CUTBERIST, r=2 (@) FRIST, r=4
Fig. 7.25: ", .~ segmented results of the forest image in Fig. 7.1{e) into three regions using the

FRIST algorithm,

@FRiST =1 CUGRST =2 (OTRIST, red
Fig. 7.26; The segmented results of the hill image in Fig. 7.1(g) into three regions using the FRIST

algorithm.

The segmentation results of the forest (Fig. 7.1(e)), hill (Fig. 7.1(g)), and four supplementary
images (Fig. B.2) into three regions produced by FRIST are shown in Fig, 7.25, 7.26, and C6
respectively. If the segmented results of FRIST (Fig. 7.25 and 7.26) are compared with the
corresponding segmented results of GFRIS (Fig. 7.6 and 7.7), the improvement of the FRiST
algorithm is perceptually better despile the example of r=4 for the hill image. This case

misclassified some portions of the field {R,} region into sky (R;) and hill {R,) because a portion
of the field (R;) has a similar gray level intensity to the sky (R,). In addition the hill (R,) and

field (R;) regions exhibit very poor contrast, are spatially correlated, and have the same surface

A e AR
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characteristic i.e. texture. The highest improvement was obtained using FRIST, r=2 for the hill
image (Fig. 7.26(b)), which completely separated the three regions except a small portion of the hill
(R, ) region, which was misclassified into the field (R;) region.

The numerical error rates of the misclassified pixels of the forest, hill, and additional four
image segmentations with respect to the manually segmented reference regions (Fig. 7.1 and B.2)
are given in Tables 7.13 and D.6 respectively. FRIST improved for all regions of the forest and the
hill (R,) and field (R;)regions of the hill images except r=4. For such high order spatial
relationship FRIST clearly identified the three regions (Fig. 7.26(c)) of the hill image but as
mentioned previously, a part of the field (R;) region is very similar to the sky (R, ) region, which
resulted in it being misclassified as the sky, which is shown by the erroneous namrow blue band in
the field (R, ) region in Fig, 7.26(c).

The comparative values of the average of error percentages and the probabilities of the object-
count-agreement for the sez:inentation of the forest (Fig. 7.1(e)), hi.l (Fig. 7.1(g)), and the average
of the six images (Fig. B.2) are plotted in Fig. 7.27 and 7.28 respectively. These illustrate that
FRIST provided better performance compared with GFRIS except as mentioned above for the case
of r =4. The average error (5.9% of overall error improvement) and probabilities of OCA (17.6%
of overall probabilities of OCA) for the six image segmentations confirm both the potentiality and
improvement of integrating these additional texture-based membership functions in the overall
segmentation framework.

Table 7.13: Error percentages for the forest and hill image segmentations using the FRIST

_algorithm.
Initial Forest Image (Fig, 7.1(¢)) Hill Image (Fig. 7.1(g))

Algorithm Region Region Type | Type 11
Forest (R,) Sky (R)) 1408 1248

FRIST r=1 Sky (R) Hill (R,) 57.470 SR RN
Water (R;) Field (R;) '
Forest (R,) Sky (R,)

FRISTe2  Sky (R,) Hilt (R,)
Water (R;) Field (R;)
Forest (R,) Sky (®,)

FRIST=4 Sy (R,) Hill (R;)

Water (R;) Field (R,)
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The sign test also confirmed significant improvement of FRIST aigorithm over GFRIS

algorithm at a significance level greater than 0.0001, except for » =4 (Tables 7.6 and 7.7).

Fig. 7.27: Average percentages of error rates of FRIST and GFRIS for the Fig. 7.1(e),
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7.1(g), and average of the six image segmentations.

1.0 - —e—FRIST Hill
0.9 - . -
So8q —a—GFRIS Hill
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.'....? 0.5 -] [ it
g 0.4 4 —s—GFRIS Forest
£ 034 % X
0.2 1 —%—FRIST
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Fig. 7.28: Probability of object-count-agreement {OCA) of the FRIST and GFRIS
algorithms for the Fig. 7.1(¢), 7.1(g), and average of the six image segmentations.

So far, the segmentation of only gray level images have been considered for all algorithms,
however, colour is the most important attribute of an object. It provides additional information in

addition to the gray level, which can assist the segmentation of an object from an image. The next




Chapter 7 Experimental Results and Discussions 132

section will provide the effectiveness of the fuzzy rule-based colour image segmentation (FRCIS)
algorithm {Block 4 in Fig. 1.1), which has been analysed in Chapter 6.

7.8 Performance Analysis of the FRCIS Algorithm

In this section, colour image segmentation performance using FRCIS, FCM, and PCM based on
the HSV and RGB colour models will be described. The detailed underlying theory of the FRCIS
algorithm and the motivations for choosing the HSV and RGB colour models hav: been presented
in Chapter 6 and Section 2.4 respectively. The results produced by the FRCIS, FCM, and PCM
algorithms for the cloud (Fig. 7.1(a)) and crocodile (Fig. 7.1(m)) images based on the HSV and
RGB colour modeis are presented in Fig. 7.29 and 7.30 and Fig. 7.31 and 7.32 respectively. FRCIS
provided better results than FCM and PCM when the segmented results of the FRCIS are visually
compared with the respective results of FCM and PCM.

.\‘ oY : '.::.-\.”. RS 3
(O FRCIS, r=1  (®)FRCIS, r=2 () FRCIS, r=4 (d) FC (e) PCM

Fig. 7.29. The segmented resulis of the cloud image in Fig. 7.1(a) into two regions for the HSV
colour model using the FRCIS, FCM, and PCM algorithms,

(@ FRCIS, r==1 (BFRCIS, r=2 (¢)FRCIS, r=4 {d) FCM (e) PCM
Fig. 7.30: The segmcnied results of the crocodile image in Fig. 7.1(m) intc two regions for the HSV
colour model using the FRCIS, FCM, and PCM a]gorithrris.

The results produced using the HSV colour model (Fig. 7.29 and 7.30) outperformed those
abtained utilising the RGB colour modet (Fig. 7.31 and 7.32) for all images and algorithms except
PCM for the crocodile image (Fig. 7.30(e) and 7.32(¢)), wkich was ictally unable to separate the
background (R,) region from crocodile (R,). This is because the background (R,) and the
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crocodile (R;) regions are very poor in contrast and PCM could not separate regions in such

circumstances. The main reason for the superiority of the HSV colour model compared with the
RGB model for colour image segmentation is that HSV is a perceptual colour model i.e. humans
can recognise the basic attributes of the colour. H (hue), S (saturation), and V (value), while
conversely RGB is a non-uniform colour model [136].

D Aeah m.ouw A = Ly

3 T

(@ FRCIS, r=1 O®)FRCIS, r=2 (¢)FRCIS, r=4 (d) FCM (e) PCM
Fig. 7.31: The segmented results of the cloud image in Fig, 7.1(a) into two regions for the RGE
colour model using the FRCIS, FCM, and PCM algorithms,

(@) FRCIS, r=1 (b)FRCIS, r=2 (¢)FRCIS, r=4 (d)FCM (e) PCM
Fig. 7.32: The segmented results of the crocodile image in Fig. 7.1(m) into two regions for the
HSYV colour model using the FRCIS, FCM, and PCM algorithms.

Table 7.14: Error percentages for the cloud (R;) and crocodile(R,) regions of the cloud

(Fig. 7.1(a)) and crocodile (Fig. 7.1{m)) image segmentations respectively for the HSV and RGB
colour models using the FRCIS, FCM, and PCM algorithms.

HSV Colour Model RGB Colour Model

Algorithm Cloud Region Crocodile Region Cloud Region Crocodile Region

Type I pe 11 : Type 11 pe 1 pe 11
4 33.37

4

FRCIS, =1 |
FRCIS, =2 35.53
FRCIS, =4 | i  33.79 : . 59.41

FCM 21.12 13.24 57.00 32.88 21.12  14.97 56.63 46.43
PCM 28.33 10.67 0.00 99 .89 28.33 15.80 0.00 100.00

The error percentages for the cloud R, ) and crocodile (R, ) regions of the image in Fig. 7.1(a)
and 7.1(m) respectively using the HSV and RGB colour models, and the FRCIS, FCM, and PCM
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algorithms are tabulated in Tabie 7.14. It can be scen that the error rates of FRCIS for all values of
r are better than both FCM and PCM using both the HSV and RGB colour models,

Average Error

Algorithm

f

BHSY Cloud
QO RGE Cloud
OHSY Crocodile
BRGB Crocodile

Fig. 7.33: Average etror rates of the FRCIS, FCM, and PCM aigorithms using the HSV and RGB

colour models for the Fig. 7.1(a) and 7.1(m).

Table 7.15: The overall results of the statistical significance test, sign rest for the cloud image in

Fig. 7.1(a) using the HSV colour model.

Algorithm Ref. Algorithm  Percentage Percentage Z Value Significance
of + Pixels  of - Pixels Level

FRCIS =1 FCM 6.242 0.720 -24.015 Beyond 0.000%
FRCIS r=2 FCM 6.523 0.667 -25.060 Beyond 0.0001
FRCIS r=4 FCM €.864 0.4%2 -26.957 Beyond 0.0001
PCM FCM 0.606 3.606 -16.752 Beyond 0.G001
FRCIS r=1 PCM 9.220 ¢.687 -31.067 Beyond 0.0001
FRCIS r=2 PCM 9.545 0.689 -31.777 Beyond 0.0001
FRCIS r=4 PCM 9.697 0.326 ~33.981 Beyond 0.0001
FCM PCM 3.606 0.606 -16.752 Beyond 0.0001

Table 7.16: The oversll results of the statistical significance test, sign test for the cloud image in

Fig. 7.1(a) using the RGB colour model.

Algorithm Ref. Algorithm  Percentage Percentage Z Value Significance
of + Pixels _of - Pixels Level

FRCIS r=1 FCM 3.856 0.720 -16.805 Beyond 0.0001
FRCIS r=2 FCM §.803 0.644 -25.899 Beyond 0.0001
FRCIS r=4 FCM 6.962 0.545 ~26.874 Beyond 0.0001
PCM FCM 0.515 0.197 -4.229 Beyond 0.0001
FRCIS i=1 PCM 3.455 0.636 ~15.965 Beyond 0.0001
FRCIS r=2 PCM 6.371 0.530 -25.511 Beyond 0.0001
FRCIS —4 PCM 6.545 0.447 ~-26.464 Beyond (.000]
FCM PCM 0.197 0.515 ~4.229 Beyond 0.0001
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Table 7.17: The overall results of the statistical significance test, sign test for the crocodile image in
Fig. 7.1(m) using the HSV colour model.

Algorithm Ref Algorithm Percentage  Percentapge Z Value Sigaificance
of + Pixels of - Pixels Level
FRCIS =1 FCM 11.671 6.689 -23.289 Beyond 0.0001
FRCIS r=2 FCM 11.519 9.015 -11.066 Beyond 0.0001
FRCIS r=4 FCM 11.865 8.153 -16.616 Beyond 0.0001
PCM FCM 28.493 74.584 -90.982 Beyond 0.000]
FRCIS r=1 PCM 74,042 22.969 -103.921 Beyond 0.0001
FRCiS =2 PCM 71.647 23.051 -100.080 Beyond 0.0001
FRCIS r=4 PCM 73.576 23.773 -101.161 Beyond 0.0001
FCM PCM 74,584 28.493 -90.982 Bevond 0.0001

Table 7.18: The overall results of the statistical significance test, sign fest for the crocodile image in
Fig. 7.1(m) using the RGB colour model.

Algorithm Ref. Algorithm  Percentage  Percentage Z Value Significance
of + Pixels _ of - Pixels Level

FRCIS r=1 FCM 9.351 4.967 ~23.208 Beyond 0.0001
FRCIS r=2 FCM i2.85¢ 5.512 -34.333 Beyond 0.0001
FRCIS r=4 FCM 14.422 7.035 -31.948 Beyond 0.0001
PCM FCM 2B.31s 59.632 -66.920 Beyond 0.0001
FRCIS =1 PCM 63.546 27.84¢6 -74.839 Beyond 0.0001
FRCIS =2 .PCM 67.559 28.898% ~78.887 Beyond 0.0001
FRCIS r=4 PCM 68,405 29,703 -78.307 Beyond 0.000]
FCM _ PCM 59.632 28.316 -66.920 Beyond 0.0001]

A comparison of the average error rates between the algorithms using the HSV and RGB
models for the cloud and crocodile images are displayed in Fig. 7.33. The average error rates of the
FRCIS algorithm for both images using the HSV and RGB models are lower than those of FCM
and PCM algorithms. The overa!! error improvements of FRCIS over FCM and PCM for the cloud
and crocodile images were 17.4% and 26.2% using the HSV colour model respectively, while the
corresponding values for the RGB colour model were 10.1% and 8%, which again confirms the
superiority of HSV for colour image segmentation since it is a perceptual colour model. The results
of statistical significant test (Tables 7.15-7 . 8) prove that FRCIS produced significant better results
compared with FCM and PCM for both the cloud and crocodile images for both the HSV and RGB
colour models at a significance level greater than 0.0001.

Further experiments were conducted using the gorilla (Fig. 7.1(k)) and fish (7.1(0)) images
consisting of three distinct regions. The gorilla (Fig. 7.1(k)) image has background (R;), gorilla

(R;), and field (R; ) regions, while the fish (7.1(0)) image comprises water (R, ), ground and trees
(Ry), and fish (R,) regions. The segmented results of these two images produced by the FRCIS,
FCM, and PCM algorithms using the HSV and RGB colour models are presented in Fig. 7.34 and
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7.35 and Fig. 7.36 and 7.37 respectively. Fig. 7.34 clearly illustrates that FRCIS separated gorilla
(Fig. 7.34(a) - 7.34(c)) better for the HSV colour model and all values of » than FCM and PCM
(Fig. 7.34(d) and 7.34{e)). For this, FRCIS provided improvzd results for all values of r especially
for gorilla region than both FCM and PCM (Fig. 7.34(d)«(e)). FRCIS also outperformed both FCM
and PCM especially for ground and trees (R, ) and fish (R;) regions for the fish image (Fig. 7.35
and 7.37) for both the HSV and RGB colour models. PCM could not separate at all the fish
(R; ) from ground and trees (R, ) region shown in Fig. 7.35(¢) and 7.37(e).

() FRCIS, r=2 (d) FCM
Fig. 7.34: The segmented results of the gorilla image in Fig. 7.1(k) into two regions for the HSV
colour model using the FRCIS, FCM, and PCM algorithms.

(@)FRCIS, r=1 () FRCIS, r=2 (c)FRCIS, r=4 (d) FCM (e) PCM
Fig. 7.35: The segmented results of the fish image in Fig. 7.1(0} into two regions for the HSV colour
model using the FRCIS, FCM, and PCM algorithms.

(a) FRCIS, r =1
Fig. 7.36: The segmented resuits of the gorilla image in Fig. 7.1(k) into two regions for the RGB
colour model using the FRCIS, FCM, and PCM algorithms.
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(a) FRCIS, r=1 (b)FRCIS, r=2 (c)FRCIS, r=4 (d) FCM (e) PCM
Fig. 7.37: The segmented resuits of the fish image in Fig. 7.1(o) into two regions for the RGB
colour mode] using the FRCIS, FCM, and PCM algornithms.

Table 7.19: Error percentages for the gorilla and fish image segmentations for the HSV colour
model using the FRCIS, FCM, and PCM algorithms.

Gorilla Image (Fig. 7.1(k)) _ Fish Image (Fig. 7.1(0))

Algorithm Region Typel  Typell Region Type 1 Type 1l
Background (R;) 46,058 36,982 Water (R,) 2.057 2618
FRCIS, =1 Gorilla (R, ) 45.555 30008  Ground (R;) 24.161 20.050
Field (R;) 27.525 2850  Fish (R;) 35502 12.593
Background {R;)  s4.850 35.854 Water (R,) 0.434 3.557
FRCIS, r=2 Gorilta (R ) 43.072 33701  Ground (R,) 25386  20.343
Field (R;) 39.471 5.972 Fish (R;) 38.179 12744
Background (Ry) 61,565 36.184 Water (R;) 0.468 3.966
FRCIS. r=4 Gorilla(R,) 42,566 36589  Ground (R;) 26.145 19.93%
Field (R;) 12,145 6.784 Fish {R;) 37834 12931
Background (R,) 88712 39,985 Water (R, ) 1.014 1.597
FCM Gorilla (R, ) 55.752 19240  Ground (R,) 34.294 19.099
Field (Ry) 7576 24.905 Fish (R;) 33283 18.903
Background (Ry) 85250 44563 Water (R)) 36,008 0.002
PCM Gorilla (R, ) 65.117 8558  Ground (R,) 0.990  71.810
_field (B;) 3.066 30,963 Fish (R,) 97.588 0.578

In all these three region examples, it is clear again that the HSV colour model has consistently
provided improved results over the RGB mode!l from a scgmentation perspective.

The numerical results of the gorilla and fish image segmentation using the FRCIS, FCM, and
PCM algorithms for the HSV and RGB colour models are shown in the Table 7.19 and 7.20
respectively. The results using the HSV colour model shown in Table 7.19 exhibit that FRCIS
provided better results for both images than both FCM and PCM, which was confirmed by the
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comparative average error rates presented in Fig. 7.38. The FRCIS algorithm obtained 4.9% and
26.3% of the overall errcr improvements over FCM and PCM respectively for the gorilla and fish
images using the HSV colour model, compared with corresponding values of 2.4% and 12.5% for
the RGB colour model.

For the RGB colour model, FRCIS gave improved performance over FCM for all values of
neighbourhood radius r, for the gorlla (Fig. 7.1(k)) and r=1 and r =2 for the fish (Fig. 7.1{0))
images. FRCIS also produced better average errors than PCM for all values of r for fish image only

(Fig. 7.38).

Table 7.20: Error percentages for the gorilla and fish image segmentations for the RGB colour
model using FRCIS, FCM, and PCM algorithms.

Gorilla Image (Fig. 7.1(k)) Fish Image (Fig. 7.1(0))

Algorithm Region Type 1 Type {1 Region Type { Type 11
Background (R, ) 91.840 1279  Water (R)) 1.995 2467

FRCIS, r=1 Gorilla(R; ) 42867 27.646  Ground (R;) 24.495 19459
Field (R;) 17320 47631 Fish (R;) 34372 12821

Background (R,) 92.701 1,128 Water (R,) 2023 2711

FRCIS, r=2 Gorilla (R, ) 42890  28.190  Ground (R;) 25533 19.154
Field (R;) 18348  47.998 Fish {¥;) 33876 13.176

Background (R, ) 93.078 0.915 Water (R,) 1.820 2827

FRCIS, r=4 Gorilla(R, ) 41910 28912  Ground (R,) 24348 20.106
Field (R;) 20837  47.820 Fish (R;) 35.763  12.404

Background (R, ) 83363 42795  Water (R)) 2186 0.890

FCM Gorilla(R, ) 61.095 27.165  Ground (R,) 34482  20.700
Field (R;) 22769 22.395 Fish (R;) 35.053  19.755

Background (R, ) 80371  33.110 Water (R,) 14.757 0.147

PCM Gorilla(R,) 46963 27640  Ground (R,) 3.936  60.211
Field (R;) 17139 24344  Fish (R) 03.041  2.159

For the HSV colour model, FRCIS produced significantly superior results to FCM and PCM for
both the gorilla and fish images (Table 7.21 and 7.23), whereas for the RGB colour model, it
provided significant improved results with respect to FCM, for all values of r (Table 7.22) and
r=2 and r=4 (Table 7.24) for the gorilla and fish images respectively. FRCIS also showed
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significant improvements over PCM for the fish image for the RGB colour model at a significance
level beyond 0.0001 (Table 7.24).
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Fig. 7.38: Average percentages of error rates of the FRCIS, FCM, and PCM
algorithins for the Fig. 7.1(k) and 7.1(0) image segmentations using the HSV and
RGB colour models.

Table 7.21: The overall results of the statistical significance test, signm fest for the gorilla image in
Fig. 7.1(k) using the HSV colour model.

Algorithm Ref, Algorithm  Percentage Percentage Z Value Yignificance
of + Pixels  of - Pixels Level

FRCIS r=1 FCM 11,671 6.689 -23.289 Beyond 0.000]

FRCIS r=2 FCM 11.319 9.015 -11.066 Beyond 0.0001

: FRCIS r=4 FCM 11.865 8.153 -16.616 Beyond 0.0001
: PCM FCM 28.493  74.584 -90.982 Beyond 0.0001
FRCIS r=1 PCM 74.042 22.969 -103.921 Beyond 0.0601
FRCIS r=2 PCM 71.647  23.0651 -100.080 Beyond 0.0001
FRCIS r=4 PCM 73.576  23.773 -101.161 Beyond 0.000i
k FCM PCM 74.584 28.493 -90.982 Beyond 00001

Table 7.22: The overall results of the statistical significance test, sign test for the gorilla image in
Fig. 7.1(k) using the RGB colour model.

Algorithm Ref. Algorithm  Percentage Percentage Z Value Significance

1 of + Pixels  of - Pixels Level

FRCIS r=1 FCM 3.868 2.146 -21.926 Beyond 0.0001
FRCIS r=2 FCM 5.408 2.81¢  -29.202 Beyond 0.0001
3 FRCIS r=4 FCM 5.980 2.681 -36.092 Beyond 0.0001
PCM FCM 8.157 2.931 -50.713 Beyond 0.0001
j'f FRCIS r=1 PCM 2,858 6,412 -37.723 Beyond 0.0001
3 FRCIS r=2 PCM 2.396 5.031 -31.233 Beyond 0.0001
FRCIS r=4 PCM 2.578 4,515  -23.491 Beyond 0.0001
FCM PCM 2.931 8.157 -54%.713 Beyond 0.000]1
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Table 7.23: The overall results of the statistical significance test, sign fest for the fish image in
Fig. 7.1(0) using the HSV colour model.

Algorithm Ref, Algorithm  Percentage Percentage Z Value Significance
of + Pixels  of -~Pixels Level
FRCIS r=1 FCM B8.478 4.686 -24.104 Beyond 0.0001
FRCIS r=2 FCM 8.499 4.977 -22.124 Beyond 0.0001
FRCIS r=4 FCM 8.303 5.026 -20.702 Beyond 0.0001
PCM FCM 15.724 41.387 -78.352 Beyond 0.0001
FRCIS r=1 PCM 41.062 11.607 -93.646 Beyond 0.0001
FRCIS r=2 PCM 41.214 12.030 ~92.284 Beyond 0.0001
FRCIS =4 PCM 40.480 11.539 -92.583 Beyond 0.0001
FCM PCM 41.387 15.724 -78.352 Bevord 0.0001

Table 7.24: The overall results of the statistical significance test, sign fesr for the fish image
Fig. 7.1(0) using the RGB colour model.

Algorithm Ref. Algorithm  Percentage  Percentage Z Value Significance

of + Pixels _of - Pixels Level

FRCIS =1 FCM 5.597 5.214 -2.876 0.00375

FRCIS r==2 FCM 5.450 5.197 ~-1.780 0.0375

FRCIS r=4 FCM 5.794 5.296 ~3.436 0.0003
PCM FCM 14.430 30.982 -56.670 Beyond 0.0001
FRCIS r=1 PCM 29.303 12.368 -60.529 Beyond 0.0001
FRCIS r=2 PCM 29.363 12.557 -59.887 Beyond 0.06001
FRCIS r=4 PCM 29.675 12.8625 -60.484 Beyond 0.0001
FCM PCM 30.982 14.430 -56.670 Beyond 0.0001

Overall, the FRCIS algorithm produced improved results for the FCM and PCM algorithms for
both the HSV and RGB colour models, while the HSV colour model proved its superiority to the
RGB colour model for image segmentation particularly that involving object-based segmentation.

This is because, as mentioned before, HSV is a perceptual colour model.

7.9 General Framework Issues

To conclude this chapter we briefly discuss some broader issues relating to the fuzzy rule-based
framework. One of the key advantages of the framework is its inherent flexibitity, that is its ability
to integrate any type of image attribute in any special application, which has been experimentally
proven by integration of the texture features into the FRIST algorithm. Possible examples for
further extending the framework include text and video object segmentation, which will be briefly
explored in the future work section of Chapter 8.
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One requirement that is enforced it that the actual number of regions % to be separated needs to
be stipulated prior to the segmentation, however, possible solutions to automate this will also be
discussed in the future work in section.

There are also domain specific issues that cognisance must be made of, such as that

segmentation may be ineffective in separating regions, which are adjacent and have similar colours
or exhibit very strong spatially correlation, which has been highlighted in Fig. 7.10 for the food
image segmentation, where certain regions were not able to be completely segmented. This is
however a fundamental challenge for any image segmentation system.

Finally, from a computational perspective, since #ll the membership functions are independent
of each other, every algorithm except FRIS, in the framework possess a high degree of inherent
concurrency, which could be exploited by a parallel implementation, with a dedicated processor
being used for each membership function,

7.10 Summary

A full evaluation of the performance und the potential capability of the proposed four (GFRIS,
FRIS, FRIST, and FRCIS) algorithms for object-based image segmentation have been examined
using an image database comprising 18 different natural images consisting of two, three, and five
objects (regions). The images were selected considering natural objects as regions and possessing
diverse characteristics including homogeneous, non-homogeneous, very poor contrast, perceptually
distinct, and natural textured regions. All the results have been numerically evaluated, statistically
tested for significant improvements, and contrasted with the standard fuzzy image segmentation
clustering algorithms, namely FCM and PCM. The methods of numerical evatuations and the
statistical significant test have also been described in this chapter.

The generic fuzzy rmle-based segmented algorithm (GFRIS) has showed promising
performance for the regions (objects) that are homogenous i.e. having proximity and good
continuation relation (spatial relation) and some Brodatz texture images compared with FCM and
PCM. The segmentation refinement algorithm (FRIS) has provided significant improved resuits
than all of the original initial algorithms (GFRIS, FCM, and PCM) except some cases for PCM.
Since it is a refinement algorithm, its performance crucially depends on the initial algorithm and for
this reason FRIS could not always provide good results for PCM. The algorithm incorporating
texture features based on image domain specific information (FRIST) achieved superior results to
GFRIS for the selected Brodatz texture as well as the natural images, especially for images that
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have texture to some degree. The GFRIS algorithm has been extended to colour image
segmentation with an algorithm for calculating the average of the hue components of the HSV
colour model and named as FRCIS. The FRCIS algorithin has produced enhanced results over FCM
and PCM for both in the HSV and RGB colour models. FRCIS provided better results for the HSV
colour model than the RGB.

The numerical evaluations have been conducted based on two powerful objective and
quantitative segmentation evaluation methods, namely discrepancy based on the number of mis-

segmented pixels and discrepancy based on the number of objects in the image. A statistical

significant test called sigrm fest has also been implemented. Almost ail of the algorithms for all

images achieved an overall significant improvement at a significance level greater than 0.0001.




Chapter 8

Conclusions and Future Work

8.1 Conclusions

Image segmentation particularly that involving object-based segmentation, is very complex and
demands fuzzy image processing due to the imprecise nature of the data invoived. It is also

necessary to incorporate human expert and/or domain specific knowledge. Fuzzy rule-based

techniques afford the potential of integrating such knowledge into a segmentation system, however,
such techniques are very much application domzin and image dependent. The structures of the
membership functions are perceptually defined and their corresponding parameters are either
manually or automatically derived.

This thesis has directly addressed these issues, by presenting the development and
implementation of a novel, flexible, general-purpose integrated fuzzy rule-based image
segmentation (object-based) framework. The framework considers all possible general attributes of
the perceptual grouping so that users can incorporate their own application specific information in
order to obtain perceptually meaningful segments. In pursuit of this aim, four dedicated fuzzy rule-
based image segmentation algorithms have been developed for the framework.

The first of these is a generic juzzy rule-based image segmentation (GFRIS) algorithm, which is
both image and application independent and also exploits inter-pixel spatial relationships. GFRIS
has three membership functions, which considers the principles of similarity based on a region's
pixel distribution and gray level pixel intensity, together with proximity and good continuation. The
algorithm automatically approximates both the key weighting factor and threshold value in the
definitions of the fuzzy rule and neighbourhood system respectively, The performance of GFRIS
has proven very effective, outperforming both FCM and PCM in segmenting many image types

with no increase in the order of computational complexity, which is O(n) for an image containing

n pixels. One issue identified within the GFRIS algorithm was that it was not so effective in

segmenting regions characterised by non-homogeneity or possessing sharp variations in pixel
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intensity. This lead to the second major algorithm in the framework, which is a refinement
algorithm called fuzzy rules for image segmentation (FRIS).

FRIS is mainly based on region splitting and merging techniques and utilises the principles of
connectedness, surroundedness, uniformity, and contrast properties amongst an objects’ pixels. A
series of mutually exclusive rules covering the growth, prevention, and merger of objects were
developed to help FRIS provide significant improvements to the initial segmentations produced by
algorithms such as GFRIS, FCM, and PCM. The computational complexity of this algorithm is
- Onlog(r)), which is however higher than FCM and PCM. The performance of FRIS also depends

on the initial segmentation and in this context, meant that the basic GFRIS algorithm needed to be
enhanced, since it does not directly consider texture.

The third algorithm, called flizzy rules for image segmentation incorporating texture features
(FRIST), integrates the fractal dimension and contrast features of texture together with image
domain specific information within the GFRIS algonthm. This new algorithm exhibited
significantly better results than the original GFRIS algorithm, however, it incurs an additional
computational cost for integrating these membership functions, though the order of the

computational complexity remains the same at O(n).

Finally, as all three framework algorithms (GFRIS, FRIS, and FRIST) have been developed for
gray level images, the fourth algorithm deals with colour segmentation. Colour often provides
additional information and in many cases makes it easier to separate an object from an image. A
new fuzzy rule-based colour image segmentation (FRCIS) algorithm has been presented by
extending the original gray level GFRIS algorithm to process colour model components including
RGB and HSV. A special algorithm has been developed to calculate the average of the hue
components in the perceptual HSV colour model. The FRCIS aigorithm significantly outperformed
the FCM and PCM algorithms for both the HSV and RGB colour models and importantly it also

does not alter the order of the computational complexity, which remains at O(n).

All framework algorithms have been both quentitatively and qualitatively evaluated using a
database containing 18 different types of real images having two, three, and five objects. A
statistical significance test called sign fest has also been conducted. The overall conclusion being
that all four algorithms in the framework produced significantly improved segmentation
performance. One additional major advantage of the framework is its flexibility, with the potential
for integrating new membership functions into this system for high-level semantics of an object for

object-based image segmentation.
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8.2 Future Work

There are a number of potential areas where this research may be fruitfully extended within the

framework in Fig. 1.1. Some of them are summarised as follows: -

1.

The framework currently requires the number of regions to be segmented fo be pre-
defined prior to the segmentation. All the proposed algorithms except FRIS, could be
extended in order to automaticaily estimate the explicit number of regions in an image
possibly using histogram analysis or mountain clustering techniques [95]. This is
however one of the most difficult and challenging tasks in object-based image

segmentation.

Since the framework is fuzzy rule-based, it is capable of incorporating any type ot:

attribute of any special application domain. For example, algorithms could be
introduced to segment objects in video sequences, text or particular medical imaging
applications by incorporating domain specific information. For instance, in the case of
video, object motion in the form of motion vectors and motion compensation could be
exploited as feasible membership functions. Again the flexibility of the framework
means that application specific information from medical experts could be incorporated
to assist in identifying for instance, abnormalities in MR1, X-ray, and CAT scans for
detecting brain tumours and siin cancers. Dedicated membership functions could be
defined based upon expert knowledge from medical practitioners.

It is important to state that while the research focus has been on segmenting images, the
flexibility of the framework means that it can equally be applied to audio segmentation
for exampie, by incorporaiing membership functions relevant to audio features such as
pitch and frequency content.

The FRCIS algorithm could be developed by intuitively defining fuzzy colour model
exploiting human visual perception. The fuzzy colour model could be defined by
quantising and combining the components of existing colour models [141] and the

membership value estimated from the predefined fuzzy colour.
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Abstract

Fuzzy rule based image segmentation techniques tend in general, to be application dependent with the structure of
the membership functions being predefined and in certain cases, the corresponding parameters being manually deter-
mined. The net result is that the overall performance of tiie segmentation technique is very sensitive to parameter value
selectionss, This paper addresses these issues by introducing a generic fuzzy rule based image segmentation (GFRIS)
algorithm, which is both application independent and exploits inter-pixc! spatial relationships. The GFRIS algorithm
automatically approximates both the key weighting factor and threshold value in the definitons of the fuzzy rule and
neighbourhood system, respectively. A quantitative evaluation is presented between the segmentation results obtained
vsing GFRIS and the popular fuzzy c-means (FCM) and possibilistic c-means (PCM) algorithms. The results dem-
onstrate that GFRIS exhibits a considerable improvement in performance compared to both FCM and PCM, for many

different image types. © 2002 Elsevier Science B.V. All rights reserved.

Kepwords: Generic (uzzy rules; Image segmentation; Spatial information; Fuzzy clustering

1. Introduction

Classical, so-called “crisp” image segmentation
technigues, while eflective for images containing
well-defined structures such as edges, do not per-
form as well in the presence of ill-defined data. In
such circumstances, the processing of images that
possess ambiguities is better performed vsing fuzzy
segmentation techniques, which are mors adept at
dealing with imprecise data. Fuzzy techniques may

" Corresponding author, Tel: +51-223-884; fax: +99-026-
842,

E-mail addresses: Gour, Karmakar@infotech.monash.edu.au
{G.C. Karmakar), Laurence.Dooley@in{otech.monash.edu.au
{L.8. Doaley).

be broadly classified into five main categories:
fuzzy clustering, fuzzy rule based, fuzzy geometry,
fuzny ihresholding, and fuzzy integral based seg-
mentation techniques (Tizhoosh, 1998). Of these,
the most widely used are fuzzy clustering and fuzzy
rule based segmentation.

The two most popular fuzzy clustering tech-
niques are the fuzzy c-means (FCM) (Bezdek,
1981; Chi et al., 1996) and possibilistic ¢-means
(PCM) algorithms (Krishnapuram and Keller, 1993).
While both these methods have been applied ex-
tensively, neither integrates human expert knowl-
edge nor includes information about pixel spatial
relations. Image segmentation which relies upon
only feature based information without consid-
ering inter-pixel relationships, does not generally

0167-8655/02/% - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: 80167-8655(02)00069-7
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produce good results, because there are usually a
large number of overlapping pixel values between
different regions.

In contrast, fuzzy rule based image segmen-
tation techniques are able to integrate cxpert
knowledge and are less computationally expensive
compared with fuzzy clustering. They are also able
to interpret linguistic as well as numeric variables
(Chang et al., 1998). The performance of fuzzy rule
based segmentation in many applications however,
is sensitive to both the structure of the membership
functicns and associated parameters used in each
membership function. For example, the fuzzy rule
based segmentation technique proposed by Chi
and Yan (1993) for geographic map images, intu-
itively defined the structure of the membership
functions with the related parameters being auto-
matically determined, while Hall and Namasiva-
yam (1998) and Chang et al. (1998) used a different
approach for segmenting magnetic resonance
images (MRI) of the brain. They predefined the
membership furctions so the corresponding pa-
rameters could be automatically derived. Another
approach (Sasaki et al., 1999) was used for seg-
menting the menisci region from MRI slices, with
the structure of the membership functions defined
from the anatomical knowledge of the knee and
the parameters being taken from actual MRI de-
vice data. A different strategy was proposed by
Park et al. (1998) who used perceptually selected
structures and parameters for the membership
functions, in the segmentation of intrathoracic
airways trees in computer tomography (CT)
images,

Karmakar et al. (2000) presented a contempo-
rary review of fuzzy rule based image scgmenta-
tion techniques, and confirmed that despite being
used in a wide range of applications, both the
structure of membership functions and derivation
of their relevant parameters were still very much
application domain and image dependent.

This paper presents a new generic fuzzy rule
based image segmentation (GFRIS) algorithm,
which addresses a number of the aforementioned
issues, most crucially by incorporating spatial pixel
information and automatically data-mining both
the key tuzzy rule weighting factor and its
threshold (Karmakar and Dooley, 2001). The

paper is organised as follows: In Section 2, the
three membership functions used in the GFRIS
algorithm are defined. The fuzzy rule definition and
underlying theory, together with the data-mining
algorithm for obtaining both the key weighting
factor and threshold are presented in Sections
3 and 4, respectively. Section 5 details the full
GFRIS algorithm, while Section 6 discusses the
experimental results and performance of this new
segmentation technique when applied to a range of
different images. All the results are quantitatively
evaluated using the empirical objective segmenta-
tion assessing method (Zhang, 1996), “discrepancy
based on the number of mis-segmented pixels”.
Finally, Section 7 concludes the paper.

2, Definition of membership functions

The definition of the membership function lics
at the heart of any fuzzy logic system and the ca-
pability of fuzzy rule based techniques significantly
depend upon it. The eminent psychologist Gestalt,
discovered that visual elements may be perceptu-
ally grouped together based on the principles of:
proximity, similarity, common fate, good con-
tinuation, surroundedness, closure, relative size
and symmetry (Wertheimer, 1923). In this section,
three membership function types are defined to
respectively represent the: (i) region pixel distri-
butions, (ii) closeness to a region’s centre, and
(1i1) pixel spatial relations. The sccond member-
ship function for instance, characterises similarity
based on gray level pixel intensity, while the third
reflects the characteristics of proximity and good
continuation. Each membership function has a
corresponding membership value for every region,
which indicates the degree of belonging to that
region,

2.1. Membership function for region pixel distribu-
tions

In gray level images, 2very region has a dis-
tinctive pixel distribution, which characterises to
some extent that region’s properties. The approach
adopted here is to automatically define the mem-
bership function including its structure from the
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pixel distribution of that particular region. This is
achieved in three steps:

1. Segment the original image into a desired num-
ber of regions by applying a clustering algo-
rithm such as FCM.

. Generate the gray level pixel intensity histo-
gram for every region and normalise the fre-
quency for each gray level into the range (0 1].

. Use a polynomial representation to approxi-
mate each region. The polynomial value of a re-
gion, for every gray level pixel corresponds to
the membership value of that pixel in that re-
gion, with the actual gray level intensity values
being the parameters of the membership func-
tion,

As an example, the reference image shown in Fig,
1(a} is classified hito two separate regions, namely
R, (cloud) and R; (urban scene) using the standard
FCM algorithm. The respective pixel distribution
of each region is used to produce the correspond-
ing membership function and a gray level intensity
histogram (gray level histogram) is generated for
both regions, with the frequencies of occurrence
being normalised. A polynomial then approxi-
mates the histogram of each region. As an exam-
ple, a 3rd order polynomial is given by

f(x) = ag + a1x + a2x? 4 aax?, (1

where x is an independent variable, which in this
example is the 8-bit gray level pixel intensity.

The coefficients ay, a1, a2, and a; are computed
by applying a least squares (LS) fit to the histo-
gram for each region. The values of f(x) are con-

strained between 0 and 1, and represent the mem-
bership value of each gray level pixel. The 3rd
order polynomials for the segmented regions R,
and R; in the example image, are shown in Fig.
1(b) and (c), respectively.

The degree of belonging to a region of a candi-
date pixel, that is the pixe! to be classified, is de-
termined from the respective membership function.
Hence, for a pixel having a gray level value of 150,
the membership values for regions Ry and R; can be
easily determined from the respective polynomials
as 0.425 and 0.125, respectively, Considering the
general case of a pixel with a gray level value of P,
at location (s,¢), then the two membership func-
tions ppp (Py) and ppe, (Pey) for the pixel distri-
bution of regions R, and R;, respectively, are
expressed as:

Hor, (Pey) = fur(Prs) (2)
and
HDR;(Ps.:) = fr{Pia)s (3)

where fr (P} and fi,(P,) are the respective
polynomials of regions R, and R,.

2.2. Membership function to measure the closeness
of a region

This membership function represents the simi-
farity between a candidate pixel and the centre of
a region based on gray lcvel pixel intensity and
is measured using the city block distance. A pixel
must always be closer to the belonging region than
any other region and the degree of belongingness of
a candidate pixel to a region is determined from

Fig. 1. Reference image and its membership function for each region: (a) original image, (b) membership function for Ry, (¢) mem-

bership function for R;.
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the k-means clustering algorithm (Gose et al,
1996). When a candidate pixel joins its nearest
region, the centre of that particular region is re-
computed. The centroid of a region R, is defined as

(9)

where N; is the number of pixels and P{i) repre-
sents the ith pixel gray level intensity in the jth
region.

A membership function should reflect the
axiom that “the closer a pixel is to a region, the
larger the membership value that pixel should
have”. Hence, the membership function pc (P),
which determines the degree of belongingness of
a candidate pixel Py, at location (s,¢}, to a region
R; is defined as

C(R;) - P,

ter(Psg) =1 = 'I'""("'Qﬁ""ﬁ‘l y (5)
where D is a constant equal to the difference be-
tween the maximum and minimum gray level in-
tensity values in an image, so using an 8-bit gray
scale, D = 253.

Theorem 1. The maxinmum value of the membership
Junction peg (Ps,) will ahways be at the centre of the
region and the structure of the function will be
symmetrical about a vertical line that passes through
the centre of the region.

Proof. For positive values of D,

\C(RJ) —Ps,fl >
= “"D“'—“"" =

The function piep (£,) will therefore be a maximum
whenever JC(R;) — P,| = 0, i.c. when C(R;) = F,,
so the maximum always occurs at C(R,), which is
the centre of region R;.

To prove the membership function is symmet-
rical about C(R;), consider the values of #cr, (P
for £y = C(R;) + 8 and P,, = C(R;) — 8, where § is
an arbitrary constant.

_le@) - cr) - |
D
9l

=]-=

o
D ¥

0.

FCRj(C(Rj) +d)=1

|C(R;) ~ C(R)) + §|
D

Hep, (C(R) —0)=1~-
i)

Since pep (C(Ry) + ) = pcp, (C(R;) — 8), Her,(Prs)
is also symmetrical about a vertical linc passing
through the centre of region R;. O

2.3. Membership fimction for spatial relations

The principles of proximity and good continu-
ation are used to define this particular membership
function. Wherever pixels are close together and
exhibit relatively smooth variations, there is an
obvious expectation that strong spatial relation-
ships will exist between neighbouring pixels within
that region. In the preceding sections, the respec-

- tive membership functions have been constructed

using only feature values, i.e. gray level pixel in-
tensities. Spatial relations between pixels within an
identified region have not been considered, yet are
vital since they characterise the geometric features
of a region as any spatial object contains two de-
scriptors: feature and geometric (Kellogg et al.,
1996; Yip and Zhao, 1996).

In many natural images, there are a large
number of overlapping pixels between regions,
so that effective segmentation cannot be expected
unless these overlapping pixels are taken into ac-
count. By considering the neighbourhood rela-
tionship between the candidate pixel and the pixels
of a region that surround it, a large number of
overlapping pixels can be reduced. Based on the
neighbourhood relations, the candidate pixel can
then be assigned to the appropriate region.

Many approaches exist to define neighbourhood
relations (Tuceryan, 2000), such as minimum span-
ning tree, fixed size neighbourhoods, and Voronoi
tessellation. This paper concentrates upon oanly
fixed size neighbourhoods around the candidate
pixel, since the number of pixels and their distances
from a candidate pixel has to be calculated.

The neighbourhood pixel configurations for » =
1, r =2, and r = 4 are shown in the Fig. 2(a)-(c),
respectively, (Geman and Geman, 1984) where
r 2 1 denotes the neighbourhood radius, while o
and # represent the candidate and neighbourhood
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#
# O #
#

(a) r=1 by r=2 () r=4

Fig. 2. Neighbourhood configurations.

pixels, resgectively. The number of neighbours will
be (r+1)* for » = 1 and {» + 1)’ — 1 otherwise.

As previously mentioned, the principles of
proximity and good continuation imply that pix-
els, which are close together and have smooth
vatiations should be part of the same region, that
is, segmented regions are homogeneous and mu-
tually exclusive, It is thus assumed that the varia-
tion of neighbouring pixels in a region is limited to
some threshold 7, and the neighbourhood system
of a region based on this premise is defined as

Definition 1 (Neighbourhood system). A neigh-
bourhood system {(P.,,r) with radius r, of a can-
didate pixel B, is the set of all pixels P, such that
((Frr) = {Peyl(d(Peg Pea) S ) A({(Pry ~ P} S TY)
where the distance, d(Py,F)=ix—s|+iy—1|,
P,, is the gray level value of the pixel at Cartesian
coordinates (x,y), (P, ~ P,,) is the absolute value
of the difference between the gray level values of
the pixels P, and F,,, and T is the threshold.

To construct a membership function, the num-
ber of neighbourhood pixels and their distances
from the candidate pixel must be considercd. The
membership function g should possess the fol-
lowing properties:

1. pox N where N is the number of neighbours.
2. JLRR (l/d(ﬁ‘wﬂ,f))’

where d(P,,, F,,) is the distance between pixels A,
and P,,.
The summation of inverse distances of a region
Rf is
Nj 1

Gp. = ——
PV o ©)

where N; = |[[(P.,,r)| is the number of neighbour-
hood pixels of the candidate pixel Py, in the region
R; and di(P,,, P.,) is the distance between the ith
pixel P, of region R, and the candidate pixel F,;.

By considering the number of neighbours N;
and the sum of their inverse distances Gz, from the
candidate pixel P,,, the membership function
pnr,(Psir 1) of the region R; becomes

Nj x G.R;
a,€ 1
> j=1 (Ny % Gg))

where 9 is the number of segmented image re-
gions. Eq. (7) shows that the greater the number of
neighbours in a region, the larger the membership
function value will be for that region. Hence, if all
neighbours fall into a single region, the corre-
sponding membership function value will be one
for that region, since the sum of the member-
ship function values for all regions always equals
unity.

pwg, (Preiy ) = (7)

3. Fuzzy rule definition

The definition of the fuzzy rule is the single
most important and challenging aspect of fuzzy
rule based image segmentation, as its effectiveness
is vital to the overall performance. In this paper,
the fuzzy rule is heuristically defined using the
three membership functions defined in Section 2,
in combination with the widely used fuzzy IF-
THEN rule structure.

The overall membership value p1,p () of a
pixel P,, for region R; represents the overall degree
of belonging to that region, and is defined by the
weighted average of the three individual mem-
bership function values ppe (Prr), Her,(Ps) and
tng,(Psc), which are given in Egs. (2), (5) and (7),
respectively.

Wittpp,(Fss) + Wapicp,(Pry) + Waptng (Pry)
W+ W+ W '

“AR;(P ) =
(8)

W, W5, and W5 are the weightings of the mem-
bership values for pixel distribution, closeness

to the cluster centres, and neighbourhood rela-
tions, respectively. The overall membership value
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#sz,(Pss) is used in the antecedent condition of the
fuzzy IF~-THEN rule.

Definition 2 (Rule). IF u, (P,) supports region
R; THEN pixel P, belongs to region R;.

#ur,(Pes) will give support to the region R; if
!‘AR)(RJ) = max_{‘udﬂl (Pee)s o, (er,), ceslbarg (P}
This rule is deliberately generic so that it can be
applied to any image type thus adhering to one
of the key objectives that the GFRIS algorithm
should be both image and application indepen-
dent,

4. Determination of weighting factors and the
threshold

The threshold value T introduced in Section 2.3,
plays a major role in defining the spatial relation-
ship between pixels in any region, because it reg-
ulates the level of variation between the candidate
pixel and its neighbours. The greater the variation
between a candidate pixel and its neighbours, the
farger the standard deviation will be, which pro
rata results in poor continuation, Two issucs need
to be considered in determining the threshold
value:

1. The degree to which pixels of one region over-
lap with those of another region.
2. The pixel standard deviations in each region.

The approximate threshold T, is computed
using 1, by considering the centres of the initially
segmented regions, while the status of this ap-
proximate threshold as to whether it is actually an
overestimation of the final threshold value, 15 de-
termined using 2. Estimation of both the status
and final threshold value is detailed in the algo-
rithm below. If the centre of a particular region is
two standard deviations away from the boundary
of another region and the pixels in that region are
normally distributed, there is at best a 5% proba-
bility that the pixels of that region will overlap
with the other. The procedure to determine the
approximate threshold 7, for two regions may ke
formalised as foliows

Theorem 2. If two regions with centres ¢, and ¢
have pixels that are normally distributed, then for at
least 5% levels of significance, the approximate
threshold will be bounded by T, £ |ey — ¢2}/4.

Proof. Assuming that the pixels are normally dis-
tributed, then in a region having a ceatre ¢y and
standard deviation oy, the 5% level of significance
means the probability of pixels falling outside
c1 =20y will be 0.05 (Zaman et al., 1982). The
same is also true for other region, which has a
centre ¢; and standard deviation ¢>. Thus, for at
least 5% levels of significance,

2(0’1 + 0'2) S |6‘1 - Czl.

Since the threshold is considered the same for both
regions, it may be written as 7, = (o) + 62/2) such
that

ley ~ &
—_

This theory may be extended to an arbitrary
number of regions for determining the weight and
the threshold values. If the approximate threshold
is overestimated, the minimum value between the
standard deviations and the approximate thresh-
old is used as the final threshold. This is condi-
tional on the value not being either zero or very
small (less than some arbitrary percentage of T3),
so ensuring that some spatial relationship exists.
The weight W in Eq. (8) governs the importance
assigned to region pixel distributions, and empiri-
cal observations reveal that the resultant segmen-
tation results are not very sensitive to variations in
this particular parameter.

The important weighting factors are #5 and 1,
as their values represent a trade-off between the
gray level pixel intensity and spatial relation-
ship. Prominence was initially given to the former,
because it contributed more to the human visual
perception and for this reason, following empirical
evaluation; #; was set equal to 1.8, with the other
two weighting factors being set to one., If the
standard deviation in a number of regions is high
with respect to the approximate threshold, then
the spatial relationship will be ineffective and
greater emphasis needs to be given to H; by in-
creasing its value. In all other instances, impor-

i<l —al=>Th< O
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tance should be given to the pixel spatial rela-
tionships so that the value of ¥ should be re-
duced. The following details the various stages of
the algorithm to automatically determine this key
weighting factor and its threshold.

1. Set the initial values for the three weighting fac-
torsas Wy =1 =18 W= 1.

2. Define a set of all regions (R) and a set of centre
pairs of all regions (V)

R={RJ(1<i<R)},

v = {(CR), CRN(Vi, jRi, R; € RY A (i # )}
. Compute the absolute sum of differences (sofd)
between the elements of all pairs

ned
sofd =Y |W(1) — K(2)],
i=1
where ne? is the number of combination pairs
of all regions.
. Determine the approximate threshold T, using
Theorem 2

_ sofd
T2 x 4’

. Calculate the average sum of differences {arstd)
between the various standard deviations and
approximate threshold

Z?l: (rstd; — 7o)
m b
where rstd; is the standard deviation of the ith
region.

. If the approximate threshold is overestimated,
(arstd < 0), then the minimum of the standard
deviation and T, is taken as the final threshold
value T, provided this value is neither too small
(less than K% of T,, where K is an arbitrary con-
stant) nor zero. If this condition is invalid, then
T, becomes the final threshold.

. Normalise the average sum of differences be-

tween the standard deviation and approximate
threshold

narstd =

arsid =

arstd
max(rstd, T,)
. Adjust the weight #; accordingly

W, = W, 4 narsid.

This algorithm has been experimentally tested
upon various diflerent image types and as results
will prove in Section 6, the automatic data mining
of the key weighting factor and threshold valueis a
significant reason for the superior performance of
the GFRIS algorithm.

5. The GFRIS algorithm

The detailed stages involved in the GFRIS al-
gorithm can now be formalised as follows:

1. Classify the pixels of an image into a desired
number of regions using any appropriate clus-
tering algorithm.

. Derive the key weight and threshoeld value by
applying the data-mining algorithm in Section
4, and the membership function for each pixel
distribution from the theory given in Section
2.1.

. Initialise the centre of ali regions required to de-
fine the membership function in Section 2.2,
with the respective centres produced by the clus-
tering algorithm in step 1.

. Sequentially select an unclassified pixel from the
image and calculate each membership function
value in each region for that pixel.

. Classify the pixel into a region applying the
fuzzy rule defined in Section 3.

. Return to step 4 until every pixel is classified.

. Discussion of experimental results

The GFRIS algorithm, FCM, and PCM were
all implemented using MATLAB version 6.0. In
order to evaluate the performance of the new
GFRIS algorithm, a variety of different image
types were applied possessing diverse characteris-
tics, including homogeneous and non-homo-
geneous regions, low pixel contrast regions and
perceptually distinct regions. Three imuges in
particular, Figs. 1(a), 5(a) and 6(a), were used for
demonstration and numerical evaluation.

All quantitative cvaluations were performed
using the powerful empirical discrepancy method
(Zhang, 1996) discrepancy based on the number of
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mis-segmented pixels, The confusion matrix C is
a R xR square matrix, where C; denotes the
number of jth region pixels wrongly classified in
the ith region by the segmentation algorithm. Two
error measures Type 1, errord; and Type 11 erroril;,
were defined as performance measures:

(Zjl: Cii = Cﬁ)
2jm G

(Shico-ci)
a E?::l Cy— E}?f_.. Cﬁ)

errorl; = b4 100, (9)

x 100.

errorll; = (

(10)

Type 1, errorl; represents the percentage error of
all ith region pixels that are not classified in the ith
region, whereas Type 1, errorll;, is the percentage
error of all other region pixels wrongly classified in
the ith region. The two manually segmented ref-
erence regions of the image in Fig. 1(a) used in the
evaluation, are shown in Fig, 3.

For FCM, initialisation of the centre of the
iegions was performed randomly. The maximum
number of iterations, the minimum level of im-
provement and the value of the fuzzifier (n) were
empirically selected as 100, 0.00001 and 2, re-
spectively,

For PCM, initialisation of the centre of the re-
gions utilised the output of FCM. The value of
the scale parameter », (Krishnapuram and Keller,
1993), was taken as the variance of the region i
produced by FCM. The maximum number of it-
erations, minimum level of improvement and value
of fuzzifier (m) were empirically chosen as 200,
0.00001 and 1.5, respectively.

(a}

Fig. 3. Manually segmented reference regions of Fig. 1{a): {a)
cloud, (b) urban scene.

For the GFRIS algorithm, the membership
funciion defined in Section 2.1 was constructed
using the regions produced by FCM, with their
centre values used to initialisec the centre of the
regions required to define the membership func-
tion (Section 2.2). The respective weighting and
threshold values were automatically data mined
using the algorithm described in Section 4, with
the consiant X = 0.25. The segmented resuits of

0 R,,r=4 M R,,r=4

Fig. 4. Avtomatic segmentation of Fig, 1(a) into 1wo regions
using FCM (a)}-(b), PCM (c)-(d), and GFRIS (e)-(j).
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Table 1 _ o the image Fig. 1(a) for the two regions, cloud (R;)
Error percentages for the cloud region (R,) segmentation in Fig. and urban scene (R,) produced by FCM, PCM and
@) — GFRIS, respectively are shown in Fig. 4.
Algorithm Error The results confirmed that GFRIS separated
Type | Type H Mean almost the entire cloud region from the urban
FCM 28.0000 15.7372 21.8686 scene and produced significantly better results
Pif;‘lw . 2333;3 :gg;‘g ?',?g;g than both FCM and PCM. FCM and PCM gave
gFRI; :; ) 19973 21.2500 11,4887 approximately equal performance since as alluded

GFRIS r =4 1.8030 236218 12.7124 earlier, both algorithms do not consider the spatial

(m) R, r=2 (n) R, r=4 R,, r=4

Fig. 5. Original iceberg image (2), and the segmented resulls for three regions produced by FCM (b)-{d), PCM (¢)~{g), and GFRIS
(h)(p).
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relationships between the pixels in each region.
GFRIS also exhibited better results for larger
values of neighbourhood radius r, since the pixels
of region R; (cloud) are homogeneous and possess
strong spatial correlation. Evaluation of the seg-
mentation results for the cloud image, compared
with the manually segmented reference images in
Figs. 3(a) and (b), are shown in Table 1, where the
final column is the average of the Type I and Type
H errors. Note that only the error rates for the
segmented cloud region are displayed in Table 1,
because only two regions were identified, and the
error rate of one region would be the reverse of
that of the other region. The values given in italics
correspond to the best GFRIS results.

The average GFRIS error rates for Fig. 1(a)
were significantly better than those of both FCM
and PCM for each value of the neighbourhood
radius . While GFRIS provided particularly good
performance in segmenting the cloud region (R,), it
is worth noting that the error rates of GFRIS for
the type 11 error were higher than those for both
PCM and FCM. This was because not all the
pixels in this region possessed good continuation
due to the abrupt changes in the urban scene,
which did not constitute a single object and so
opposed the necessary condition for good inter-
pixel relationships.

A second series of experiments were performed
using the image in Fig. 5(a), which comprised three
distinct regions, namely water (R,), iceberg (Ry),
and sky (R;). The segmentation performance for
the three regions using FCM, PCM and GFRIS is
presented in Figs. 5(b)}(p).

It was visually apparent again that the GFRIS
algorithm prodriced more distinctive regions for all
values of neighbuurhood radius r and hence con-
siderably outperformed both FCM and PCM.
PCM divided the iceberg image into only two re-
gions (Figs, 5(c) and (f)) instead of three, because
it was unable to distinguish between regions hav-
ing a poor gray level contrast. The error rates for
the segmentation of the iceberg image compared
with the manually segmented reference images are
given in Table 2.

The mean error rates of GFRIS for the iceberg
and sky regions were considerably lower than for
both FCM and PCM, while the error was slightly

Table 2
Error percentages for the iceberg image segmentation in Fig.
5(a)

Alporithm

Region Error
Type 1 Typeil  Mean

FCM Water 72228 207483 139856
Iceberg 625797 0848 317141
Sky 1.0421 243015 126718

Water 89581 19.1153  14.0367
Teeberg 283612 59.5832 439722
Sky 100.0000  0.0000  50.0000

Water 74898  21.3213  14.4055

Tceberg 51.5495 09331 262413
Sky 11869  15.8559 85214

Water 70449 22.2586  14.6517

26,3822
14.965% 81343

214849 153142

Teeberg 51.8344 0.9299
Sky 1.3027

Water 2.1435

51.7933 0.5006  26.3470
16.3272 8.7339

Teeberg
Sky 1.1406

higher for the water region. This was due to
floating ice on the water, which was classified as
water in the manually segmented reference region
but was misclassified as sky using GFRIS.

In the above experiments, the number of seg-
mented regions was constrained to two and three,
respectively. In order to examine the discriminat-
ing potential of the GFRIS algorithm for a larger
number of regions, a comparison was made with
FCM and PCM algorithms on the image in Fig.
6(a) that possessed five regions. These were: cgg
(R)), glass of milk (R,), curtain (R3), cheese (Ry)
and table (Rs). Fig. 6 shows the segmentation
performance of all three algorithms.

From Fig. 6(b)~(k), it is clear dist both FCM
and PCM arbitrarily divided the image into five
regions without considering any semantic meaning
of the data. The results produced by GFRIS for
r=1 and r=2, in Figs. 6(1)-(u) showed more
typical information of the regions. There are some
regions such as egg and milk, curtain and cheese,
which overlap with each other because their gray
level pixel intensities are very similar. The most
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(o) R, r=l

(P} R, r=1

{u} Ry, r=2 {v} R, r=4 - W) Ry, r=4

W) R, r=4 @) R, r=4

Fig. 6. Original food image (a), and its segmented results [or five regions produced by FCM (b)-{f), PCM (g)-(k), and GFRIS ()}-(2).

promising results in Fig. 6(v)~(z) were obtained 6(w). Again the GFRIS algorithm considered the
for GFRIS using r =: 4, with the exception of re- underlying meaning of data far better than both
gion R, (cheese) in Fig. 6(y), which partially the FCM and PCM techniques when compared
merged with region R, (milk) as shown in Fig. with the manually segmented results.
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g::: :ercentagcs for the food image segmentation in Fig. 6{(a)
Algorithm Region Error
- Typel Type Il Mean
FCM Egg 53,8987 27,7937 40.8462
Milk 781723 175717 478720

Curtain 519310 19.3766  38.5538
Cheese 736814 183165 45.9990
Table 64.1724 1.6680 329202

PCM Egg 24.5806  59.3575  41.96%0
Milk 97.2167 3.848%  50.5328
Curtain 98.2103 1.0998  49.6551
Cheese 61,2456  30.5258 45.8857
Table 1€0.0000 2.3314  51.1657

GFRISr=1 Egg 27.5875  19.8809 23.7342
Milk B2.0478  18.3831 50.2155
Curiain 349451 15174 250683
Chrese 727393 18.4654 456024
Table 69.8608 27781 36.3155

GFRISr=2 Egg 212948 252192 23.2570
Milk 91.3547 9.4606 504077
Curtain 16.2273 199142 ]8.0708
Cheese 81,0402 12,0240 46,5321

Table 51,6803 21541 26.9172
GFRISr=4 Egg 5.8837 0.2062  3.0450
Milk 14,8145 33.2056 24.0099

Curtain 49.5865 6.2920 27.9397
Cheese 814295  11.2236 46.3266
Table 46.0001 3.0249 245125

The numerical evaluations of the image seg-
mentation given in Table 3, revealed that the mean
crror rates for the egg, curtain and cheese, egg,
curtain and table, and egg, milk, curtain and table
regions were appreciably lower using GFRIS with
r=1],r=2, and r = 4, respectively than for either
FCM or PCM. Overall the results confirmed that a
significant improvement was achieved for all re-
gions using GFRIS with neighbourhood radius
r =4, except for the cheese (R,) region, for the
reason alluded to above.

7. Conclusions

This paper has presented a new generic fuzzy
rule based image segmentation (GFRIS) algo-

rithm, which crucially has incorporated spatial
relationships betwezn pixels. It has been experi-
mentally shown that in comparison with both
FCM and PCM, GFRIS provided significantly
superior results for a variety of different image
types, including image examples having multiple
regions. Its performance in considering the un-
derlying meaning of data was also better when the
results were compared with the manually seg-
mented reference regions.

A single fuzzy rule was dcfined in order to
classify the pixels, and three weighting factors ¥,
Wi, and W; applied to stress the importance at-
tached to feature based and spatial information in
the image. Another important advantage of the
GFRIS algorithm was that the structure of the
membership functions and associated parameters
were automatically derived and a new data-mining
algorithm presented to determine both the key
weighting factor and threshold value. The vital
role of the threshold to the performance of GFRIS
in controlling the maximum permitted pixel in-
tensity variation between neighbouring and can-
didate pixels was highlighted.

From a computa‘ional perspective, since the
three membership functions are independent of
each other, the GFRIS algorithm possesses a high
degree of inherent concurrency, which could be
exploited by a paralie} implementation, with
a dedicated processor being used for each func-
tion.

Finally, as GFRIS is fuzzy rule based, the al-
gorithm has the capability of incorporating any
type of image attribute in any special application,
v+ simply defining new membership functions, so
n..king this solution both image and application
independent.
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Chapter XIV

Review of Fuzzy Image
Segmentation Techniques

Gour C. armakar and Laurence Dooley
Monash University, Australia

Mahbubur Rahman Syed
Minnesota State University, Mankato, MN, USA

This chapter provides a comprehensive overview of various methods of fuzzy
logic-based image scgmentation techniques. Fuzzy image segmentation tech-
nigues operfornt conventional techniques, as they are able to evaluate impre-
cise data as well as being more robust in noisy environment. Fuzzy clustering
methods need fo set the number of clusters prior to segmentation and are
sensizive to the initialization of cluster centers. Fuzzy rile-based segmentation
techniques can incorporate the domain expert knowledge and manipulate
numerical as well as linguistic data. It is also capable of drawing partial
inference using fuzzy [7-THEN rules. It has been also intensively applied in
medical imaging. Theie rules are, however, application-domain specific and
very difficuit to acpne either manually or automatically that can complete the
segmentation alone. Tizzy geometry and thresholding-based finage segmenta-
tion techniques are suitable only for bimodal images and can be applied in
anltimodal images, bur they don't produce a good residt for the images that
contain a significant amount of overlapping pixels between background and
foreground regions. A few techniques on image segmentation based on fuzzy
integral and soft computing techniques have been published and appear to offer
considerable promise.

INTRODUCTION

The usage of digital images is increasing rapidly due to quick development of Internet
and multimedia technologies, so the recent research interests are being directed towards
the fields of digital image processing. There are various types of digital images, as they are
geaerated from the diverse fields of application. Most commonly used are light intensity
{LI) images, range images (RI), computed tomography (CT) images, thermal images and

Copyright @ 2001, idea Group Publishing:
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magnetic resonance image (MRI). Image segmentation can be defined as the process for
separating the mutually exclusive homogeneous interested region(s} from other regions of
animage. Image segmentatior is becoming an active and promising field of research since
it is the most challenging and difficult task of image processing and computer vision
systems. Much research to date has been done in (uis field, but it is highly dependent on
the type of image, its dimension and jts applications. None of them is suitable for all types
of images. Image segmentations are being extensively used in the various types of
applications such as automatic car assembly in robotic vision, airport identification from
aerial photographs, object-based image identification and retrieval, object recognition,
second-generation image coding. criminal investigation, computer graphic and medical
science (cancerous cell detection, segmentation of brain images and intrathoracic airway
trees, etc.) (Phan and Prinle, 1999; Pal and Pal, 1993).

Image segmentation may beachicved inalarge variety of ways. Generally itis divided
into two approaches: region-based approach and boundary or contour-based approach
{Ballard and Brown, :982; Chakrabotry, Staib and Duncan, 1994), The first one uses the
homogeneity of the pixel or features while the later one finds the contour or the boundary
of the interested region. The two types of contours mainly used are: active contours (Kass,
Witkin and Terzopoulos, 1988; Cohen and Cohen, 1993; Ronald, 1994; Caselles, Kimmel
and Shapiro, 1995). and deformable comtours (Chakrabory et al., 1994; Grzeszczuk and
Levin, 1997; Grzeszczuk and Levin, 1993).

Haralic (1985) divided the image segmentation techniques into four classes: measure-
ment space guided spatial clustering. region growing (single linkage, hybrid linkage and
centroid linkage region growing approaches), spatial clustering, and split and merge.
Measurement space puided spatial clustering assigns each pixel a label of a cluster of the
measurement space in which it feels right. The pixels bearing the same label are treated as
the connected component and in the same class. Generally clustering and histogram mode-
seeking techniques are used in this approach. This method does not work well when the gray
label intensity of an object in the interest of segmentation varies extensively and the
background is not uniform. In region growing the image is divided into some regions. The
gray level intensity variation of all the pixels of a region lies within the limit of the specified
threshold. The regionis grown by taking a pixel as a starting point and then adding all pixels
into the region whose gray level intensity variation lies within the selected threshold (Reid,
Millar and Black, 1997). This technique is expensive in terms of computation and memory
{Moghaddamzadeh and Bourbakis, 1997). The single linkageregion growing approachuses
the graph theory to segment the image. Each vertex of the graph represents each pixel of the
image. Pixelscontaining similar characteristics are connected by the linksof the graph. This
approach suffers from the problem of chaining. If the chain cuts, it loses all the pixels of the
other part. Hybrid linkage region growing approach allocates a property vector to each
pixel, which is a function of its kxk neighborhood values. One of the hybrid linkage
approaches used information on the edges to connect the link, but this depends on the edge
detection method used. In the centroid linkage region growing approach, the image is first
scanned and then a region is formed by comparing the pixel value with the mean of that
region. Pixels ara added into the region if they are close enough and then update the mean
of the region. The similar regions (if any) are merged. The effectiveness of this approach
depends on the combing criteria. The spatial clustering approzch forms the cluster by
considering both the measurement space as well as spatial space between the parent pixels
and their neighbors. Initially, split and merge approach assumes the image as one segment
and then divides the image into some subdivisions {number of subdivision=4" where
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n=1.2,3...) based on quadtree (Samet, 1989a; Reid et al.,, 1997). Adjacent regions are
merged if they are sufficiently homogenous, but if the quadrants are not sufficiemly
homogeneous they will again be subdivided.

Pal and Pal (1993) stated that the image segmentation approaches couid be generally
classified into two approaches: classical and fuzzy mathematical approaches. The classical
approach includes histogram thresholding, edge detection, and semantic and syntactic
approaches, Fuzzy mathematical approaches arecategorized as edge detection, thresholding
and relaxation. They also mentioned that there are some other approaches (Hansen and
Elliott; Derin and Eliott, 1987; Derin, Elliott, Cristi and Geman, 1984; Geman and Geman,
. 1984) that are not classified into either of the above mentioned classes. They described all
image segmentation approaches in seven sections: gray level thresholding, iterative pixel
classification (relaxation, MRF-based techniques and neural network-based-approaches),
surface-based segmentation, segmentation of color images, edge detection and methods
based on fuzzy set theory (fuzzy thresholding and fuzzy edge detection). Although the‘v
described the fuzzy segmentation approaches, they did not include the fuzzy segmentation
approaches on fuzzy rule, fuzzy integral, genetic algorithm-based approaches and soft
computing approaches. Genetic algorithm-based image segmentation approaches are
described in Cognoni, Dobrzeniecki and Yanch {1999), Bhanu, Lee and Ming (1995} and
Andrey and Tarroux (1994). Zadeh first introduced the term soft computing in the early
1990s and it includes all of the approaches that are a synergistic combination of neural
networks, fuzzy logic, genetic algorithms and probabilistic computing (Yen, 1999).].

Image segmentation is one of the most complicated tasks in image processing and
computer vision due to a lot of factors, some of which are summarized below (Pai and Pal,
1993; Chakraborry et al., 1994; Haralic and Shapiro, 1985).

» The image processing system possesses some inborn constraints, so the resulting
image is not perfect and will contain artifacts.

The image data can be susceptible and ambiguous. For example, SPECT imaging

often deforms the high frequency information of the image data and produces fuzzy

and non-reliable edges.

The shape of the same object can differ from image to image. The structures of the

object are not well defined for most natural images and very difficult to find the

accurate contour of an object.

The gray level pixel values and their distributions of the same object are not the same

for all images. Even in the same image, the pixels belonging to the same class may

differ in their pixel intensities and distributions.

The object(s) to be segmented are highly domain and application dependent.

The properties of an object used in image segmentation differ in the way of

representations, the types of the images and their domains. It also needs a trade off
between the desired properties. For example, gray level distribution follows the

Poisson distribution for some visual images, but this is not a valid case for MRI and

RI images. So segmentation techniques need semantic and prior information on the

type of image in addition to other properties.

From the above-mentioned problems, it is obvious that an image itself contains a lot
of ambiguities. For example, it is not possible to define precisely the contour of an object
in an image, region, the relationship between the regions, edge, surface and corner, etc. Pal
and Pa! (1993) mentioned that L1 images contain ambiguity because of their multi-valued
gray level pixel intensity. This ambiguity may be defined in two ways: grayness and spatial.
Grayness ambiguity represents the whiteness or blackness of a pixel, while spatial




ambiguity deals with the shape and geometry of aregion contained in an image. In classical
methods. each is taken as a crisp or hard decision. Hard decision is not suitable for image
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processing because of its ill-defined data. It is of paramount impestencetiaran-inrage
processing system need a recognition strategy, which can handle any type of uncertainty
arising in any level of the processing steps. Prewitt (1990} recognized this when he
introduced image segmentation by exploiting fuzzy regions.

In a fuzzy system each image is considered as a number of fuzzy regions, such as
R,...R where n denotes the number of regions (Medasani, Krishnapuram and Kelleer,
1999). Each region contains a set of pixels, and each pixel is assigned a grade (a degree
of membership value), which measures the possibility of a pixel belonging to aregion. The
membership function maps each of the feature values f{x,y) of a pixel I{(x,y) of an image

! in coordinate (x,y) into a range of value from O to 1. The membership function of pixels
for image [ can be defined as

B (fey): Q= [01] (1)

where (2 represents a universal set of all feature values for all pixels contained in image /.
It is evident that a fuzzy approach can handle many uncertainties well and use the
membership value (varying grade) to define the imprecise or ill-defined property of an
image. It was mentioned that membership value denotes the possibility of belonging to a
region or more than one regions which contrasts the fuzzy approach with the classical
approach (hard decision-based approach). Fuzzy approach can also interpret linguistic
variables such as VERY BRIGHT, BRIGHT and BILLACK, etc., very well. Medasani,
Krishnapuram and Keller, J. (1999) measured geometric (area, perimeter, height and
length) and non-geometric {average pixel intensity, entropy and homogeneity) propertics
for both real and artificial images using both fuzzy and crisp approaches. Experimental
results showed that fuzzy approach give more accurate and better values in both cases than
crisp approach. They also calculated those properties by adding different levels of noise for
both approaches. It was shown that the fuzzy approach produced more improved estimates
than the crisp approach for both properties even in the noisy image. They also showed that
there was no need for noise removal during measuring of fuzzy properties, which is
especially useful in overcoming some of the difficulties raised in eliminating noise
especially for texture images.

Fuzzy rule-based modeling is a very interesting and promising field of research. It is
widely used in various fields of industrial applications such as robotic, control engineering,
medical imaging and complex nonlinear system recognition. The advantages of this
approach are given below Yen, 1999; Yen and Wang, 1999).

+ Potential capability to represent the knowledge explicitly using IF-THEN rule and
capture the knowledge from fiprecise informaticn of linguistic as well as numerical
terms.

The ability of partial reasoning in human understandable terms. It determines the
degree of stimilarity based onthe degree of condition satisfied in the amecedent clause
of the rule.

* Approximating potency 6l complex nonlinear system.

This chapter will examine the different methods used for fuzzy image segmentation.
The types of fuzzy image segmentation approaches deveiuped so far will be described in

the next section, while a detailed description of each approach is then presented. Finaily
a conclusion is provided. ‘
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TYPES OF FUZZY IMAGE SEGMENTATION

Fuzzy image segmentation is increasing in popularity because of the rapid extension
of fuzzy set theory, the development of various fuzzy set theory-based mathematical
modeling, synergistic combination of fuzzy, genetic algorithm and neural networks, and its
successfui and practical application in image processing, pattern recognition and computer
vision system. One may classify fuzzy image segmentation in a variety of ways, however
thcy may be broadly classified as Tizhoosh (1998). '

« Fuozzy clustering-Based Image Segmentalion
Fuzzy Rule-Based Image Segmeniation

Fuzzy Geometry-Based Image Segmentation
Fuzzy Thresholding-Based Image Segmentation
Fuzzy Integral-Based Image Segmentation

Soft Computing-Based Image Segmentation
A review of the different techniques available in each category will now be provided.

FUZZY CLUSTERING-BASED
IMAGE SEGMENTATION

Clustering means unsupervised grouping of data based on similarity measure (Chi,

Yan and Pham, 1996). There are mainly two types of clustering: hard clustering and fuzzy
clustering. In hard clustering, data is clearly classified into only one group, i.e., the groups
are mutually exclusive. But in fuzzy clustering a membership value is assigned to data,
which supports the group(s) into which it belongs. One data may belong to more than one
group. Fuzzy clustering techniques can be classified into the following.

+ Fuzzy C-Means Algorithm (FCM)

+ Possibilistic C-Means Algorithm (PCM).

* Adaptive Fuzzy C-Means Algorithm (AFCM).

Fuzzy C-Means Algorithm (FCM)

FCM is the oldest and most popular fuzzy-based clustering technique. It was

developed by Bezdek (1981) and is still being used in image segmentation, It performs
classification based on the iterative minimization of the following objective function and

constraints (Chi, Yan and Pham, 1996).
2
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Where ¢ and n are the number of cluster and data respectively. U is a fuzzy partition

matrix containing membership values [ £, ), V is a prototype vector containing the values

of cluster centers [v], m is the fuzzifier (1<m<oes), d is the distance between X, v, and X is
a data vector. The next two equations are derived after minimization of funcuon f(V
X) in equation (2) with respect to 4 and V.

]

Hm-1
S dx;,v) /Am=1)

E d(x;,v,)

k=]

H; =

i=l

z“: (“‘j )m

j=!

i (‘“u)m X

Y, =

The set of cluster centers is initialized randomly or by an approximation method. The
membership values and cluster centers are updated through an iterative process until the

maximum change in l;; becomes less or equal o a specified threshold.

The number of clusters, the fuzzifier (m), and the threshold are needed to set up
empirically in FCM. Equations (6) and (7) are not sufficieat to achieve the local minimum
of f (i, V, X) (Tolias and Panas, 1998). The selection of the value of m is also important,
asifitis equalto |; FCM produces crisp partition instead of fuzzy patron. If any of the values
ofthedistances (d{.t’, v}) is zero, the equation (6) will be undefined. FCM strongly supports
probability as it has set the constraint in (4), which prevents the trivial solution u=0.

Possibilistic C-Means Algorithm (PCM)

FCM arbitrarily divides the data set based on the selected number of clusters. The
membership values generated by FCM represent the degrees of sharing. In order to ¢liminate
the constraints in equation (4), Krisheapuram and Keller first introduced PCM whose
membership values represent the degrees of typicalily, instead of degrees of sharing, and
clusters are independent of each other (Krishnapuram and Kelleer, 1993; 1994. They
modified the FCM objective function and defined the PCM objective function as:

(V. X) = g;(uu) d"( X;,1 ,) L IJ.E( ' .lt,,)m (8)

and the constraints are:
OsM <l ie{l..c)and je{ l..n} (9)

O< DU < ic(lc) (10)

j=l
max Lt > C je {1..n} . (11)
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where 7), is the scale parameter, which determines the zone of influence of a point, and other
parameters are as defined previously. The following are obtained after minimizing the

function f_(i, V, X).

‘lu =

i (12)

|
o ) s

(13)

, The membership value { £;) and protolype center ( V;) are updated using the equations
(12) and (13) through an iterative process. When fuzzifier m=1, PCM produces crisp
partition. PCM gives promising results in the presence of noise but it is highly dependent 3
on initialization and estirmation of the scale parameters. The output of FCM can be used
for initialization and scale estimation, but FCM is very sensitive 1o noise. Barni also
mentioned that PCM achieves local minimum but it can’t minimize f (1, V, X) globally

(Barni, Cappeilini and Mecocei, 1996).

Adaptive Fuzzy C-Means Algorithm (AFCM)
Image data are intrinsically correlated. It is essential for segmentation techniques to
adapt themselves to local features of an image, which is the important disadvantage of both
FCM and PCM, In FCM and PCM, the prototype vectors don’t vary spatially and inter-pixel
correlation and intensity inhomogeneities are not considered. The adaptive fuzzy C-means
algorithm in which prototype vectors are varied along the image have been described in
Pham and Prince {1993) and Tolias and Panas (1998). Inter-pixel correlation and intensity
inhomogeneities are taken into account in Pham and Prince (1993) and Tolias and Panas
(1993} respectively.
Both algorithms degenerate into crisp clustering as m tends to one. The selection of as
optimum number of cluster automatically remains unsolved, which is the crucial problem 8
of clustering algorithms. Some of the parameters especially for Pham and Prince {1993)

are selected empirically.

FUZZY RULE-BASED IMAGE SEGMENTATION -
This is a promising field of research. [nitially fuzzy IF-THEN rules were extensivel

used in control engineering problems but now the application of fuzzy IF-THEN rules !
image segmentation is increasing. Their advantages in image segmentation are mainly 1 - i3

the following (Chang et al., 1998).
* Human can easily understand the problems due to linguistic representation ¢

tumeric variables.
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It is computationally less expensive than fuzzy clustering methods. :
It has the potential ability to integrate the domain expert knowledge. ’
: The general format of fuzzy IF-THEN rule can be defined as follows.

4 IF antecedent-condition THEN consequence

The consequence is measured based on the quantity satisfied in the antecedent ;
condition. Generally fuzzy rule-based image segmentation has been applied to three image '
' types: LI, MR and CT images. These are described in the following subsections.

Fuzzy Rule-Based Ll Image Segmentation

Chi and Yan utilized the fuzzy IF-THEN rules in the segmentation (separation of
background and foreground pixels) of 8 bits (256 gray scales) geographic map images :
containing strings, streets, roads, boundaries, etc., that are considered foreground pixels

of the images {Chi, Yan and Pham, 1996; Chi and Yan, 1993). The main processing steps
of this approach are described in ine following.

Features used in segmentation

Three features, difference between pixel intensity (D), local standard deviation {SD) ';:
and local contrast of darker pixel (CD), are used in segmentation and they are defined as:

DI(x,y) = Pl{(x,y)~ LA(x,) (i4)
+3 y+3
> > (PLL)) - LAG, Y
) = fsx=3j=y=3 (15)
SD(x,y) 0
_ max({0, RB(x,y))sgn(CI(x,y))
CD(x,y) = LACx.y) (16)

Where Pl(x,y) is pixel intensity in the location (x,y}, LA(x,y) local average pixel
intensity in 7x7 window, sgn ( CI(x.y)) is sign operator and it is -1 when Cl{x,y) <0
otherwise it is 1. CI(x,y) is the difference of pixel intensity in location (x,y) and the average

of its neighbours and can be defined as:

CHxy) = -é-[m.r = 3,4 PHx~2,5)+ PHx +2, )+ PHx +3,3)+ Plx,y =3) + PH{x,3 = 2)+ Pl(x,y +2)
+ PHa,y+3)) = PI(x.)) {in

BR(x,y) is the average of rclative brighter pixels and is defined as:

1 .

BR(xy) = — > PIG, j)
R a9
Cif st

where N indicates the number of brighter pixels contained in 9x9 window.

Membership functions

The input and output domains are divided into five fuzzy regions named as L2, L1,
M, H1 and H2 and two fuzzy regions such as background and foreground respectively.
Triangular membership functions are utilized for input regions. The input and output
membership functions are shown in Figures 1(a) and 1(b) respectively.
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Figure 1: Input and output membership functions

{a): Input membership funciions {b): Output membership functions
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Development of fuzzy rules

Fuzzy rules are developed by learning from examples as outlined bv Wang (Wang and
Mendei, 1991). The input and output domains are divided into fuzzy . . = that are shown
in Figure 1. The membership values of all regions for each input are _. ..:alated and each
input is assigned to the region of the maximum membership values. So a pair of rules is
generated for each training sample. Aa exampie of such rule would be

IF DI is 1.1 AND SD is Hl AND CD is H2 THEN it is a foreground pixe!
IF DI is Hl AND SD is M AND CD is L{ THEN it is a background pixel

A learning set produced by this method may contain alarger number of rules including
repeated and conflict rules. To avoid these the rules are selected that are supported by a large
number of examples. Each rule is kept in a fuzzy rule bank and is shown in Figure 2.

Defuzzification
The centroid defuzzication method used to calculate the output for each input pixel is
defined as:

]
i
2 M,C
C = =1
P a
#
i=}
Figure 2: Fuzzy Rule Bank for Geographic Map Image Segmenration.
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where C, is the class produced by the ith rule. n is the number of rules and M ! is the

mat=hing degree of the antecedent of ith rule for pth pattern. If C 0.5 . the input p:xe! is
caizgorized as background pixel, otherwise it is categorized as foreground pixel.

Concluding remarks

This system is faster than neural network techniques. It was found that some parts of
characters of the maps are missed for standard triangular function (Chi, Yan, and Phan,
1996). This is because the selecling of the shape and parameters of the membership
functions was done intuitively. For this they used an automatic method using fuzzy C-
means clustering (extension factor = 3.0 and merging threshold=0.08) to determine the
parameters of the membership functions. But there still exists the problem of manuat
determination of the shape of the membership function. Heuristic rules are not used in this
method.

Fuzzy Ruie-Based MR Image Segmentation

Magnelic resonance images are the ost important and complicated images used in
medical imaging. Magnetic resonance images are extensively used in the various types of |
disease diagnostic tasks. Medical experts generally draw the conclusion in regard to the
disease by manually scanning the images (Chang, Ying, Hilim:an, Kent, and Yeu, 1998),
which is both a tedious and time-consuming task. Analysis, especially segmentation of MR
images using automated computer techniques, saves the time and helps the doctor to detect
irregularity in diagnosis. The fuzzy rule-based MRI image segmentation methods may be
broadly classified into two ¢lasses: hybrid fuzzy ruie-based MRI segmentation and
conventional fuzzy rule-based MRI segmeniation. Both of the methods are described in the
following sections.

Hybrid fuzzy rule-based MRI segmentation

Hybric fuzzy rule-based segmentation system consists of fuzzy r ulc—ba;ed and fuzzy
C-means clustering algorithm. Clustering is computational expensive, does not incorpo-
rate human expert knowledge and thus does not produce appropriate class (Hall and
Namasivayam, 1998}, For these reasons, a set of fuzzy rulesis applied to classify the pixels/
voxels. It is very difficult to define fuzzy rules that cover all pixelsfvoxels. So fuzzy C-
means algorithm is used to classify the remaining pixels/voxels, and the pixels/voxels
classilied by the fuzzy rules are used to initialize the centers of the clusters during
clustering. Hybrid {uzzy rule-based image segmentation systems are faster than clustering
and are described in Chang et al. (1998} and Hall and Namasivayam {1998}.

The tachniques (Hall and Namasivayam, 1998) utilizing adapuing fuzzy rules for
segmenting the brain tissue into six classes—white matter (WM), gray matter (GM),
cerebrospinal fluid (CSF), pathology, skull tissues and background—-are desctibed in the
following.

Database and features

105 axial brain slices, 5 mm thick from 15 persons (39 normal slices from § persons
and 66 abnormal slices from 7 patients) are used for experimental purposes. Relative pixel
intensities of T1, T2 and PD weighted images are used as features.
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Figure 3: Membership functions (Source ref: Hall & Namasivayam, 1995)
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Membership Functions

Triangular and trapezoidal membership functions used in the experiment are shown in
Figure 3.

The parameters of the membership functions (al, a2, bl, b2, b3, b4, b5 and b6) are
calculated by determining the turning points of intensity histograms based on a training
set consisting of 6 normal and 4 abnormal slices and suggestions from expert radiologists.
The turning points are regarded as peaks, valleys or the starting point of the histogram and
indicate the estimated boundary of the tissue types. The turning points of the histograms
are shown in Figure 4.

Patients having brain tumors usualiy get treatment with radiation and chemotherapy.
For this the PD histogram of the patient with brain tumor becomes like the PD histogram
for abnormal slice shown in Figure 4 due to the change of properties of gray and white
matter. The turning points of this histogram are obscure and difficult to select. An edge
detection technique (Weszka and Rosenfeld, 1979) was used in order 10 sharpen the
boundary between gray and white matter and utilized a svitable threshold to detect the
peaks. The initial value of threshold is chosen as 5 and increase by 5 unti! two peaks are
found. If peaks are not found, two peaks are assumed at 1/3 and 2/3 of the region between
bl and b2.

Rules generation

The turning points of three histograms (T1,T2 and PD histograms) are used to separate
the tissue into white matter, gray matter, cerebrospinal fluid (csf). pathology, background
(air) and other skull tissues. The heuristics used here 1o generate the rules are ‘all voxels
between b2 and b4 are usually white matter, below bl are air in PD histogram, and between
al and a2 are the mixture of white and gray matter in T1 weighted histogram’, A setof rules
used to classify the brain tissue is described as follows:

IF voxel in T1 in Set-E AND voxel in T2 in Set-F THEN voxel is CSF

IF voxel in PD is Set-C AND voxel in T1 in Set-A THEN voxel is White matter

IF voxel in PD} is Set-D AND voxel in T1 in Set-A AND NOT (voxef in T2 is Set-F

AND voxel in T1 is Set-E) THEN voxel is Gray matter

I voxel in Tl is Set-B AND voxel in T2 is Set-F THEN voxel is Pathology

IF voxel in T1 is Set-B AND NOT (voxel in T2 is Set-F) THEN voxel is Other

IF PD voxel intensity < bl AND T2 voxel intensity < ¢]1 THEN voxel is Background

Rules are adapted themselves to each slice during processing as they are generated
from the turning points of the histograms.

Classification techniques

Voxels are classified into six classes by applying the above rules. The unclassified
voxels and isolated voxels {(voxels whose membership values are | but no neighborhoods)
for each class are assigned the membership values with the average membership values of
their neighborhoods and zero respectively. Finaily the voxel membership values are
normalized (0 to 1) using the following equation:

u0)

e NP

24, )
i
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where i and jrepresent each of the six classes and vis a voxel. The incorrect classified voxels
(voxels whose membership values is less than and equal to 0.80) are classified using semi-
supervised clustering algorithm (Bensaid et al., 1996). The correctly classified voxels are
used as training set and weighted by 100.

Concluding remarks

This system is faster than FCM and the parameters of the membership functions are
adjusted automatically during the processing of each slice, but it does not produce better
results than FCM. Rules are generated based on turning points of the hislogram, but the
turning points are sufficient fo distinguish the voxels if there is a significant amount of
overlapping voxels. Thespatial information is not weli considered as it is taken into account
for only unclassified voxels. The threshold and approximate peaks (when there are no peaks
in PD histogram) are chosen empirically, and extra cranial (issues are not removed before
¢classificztion,

Another hybrid fuzzy rule-based brain MR image segmentation technique (Chang et
al., 1998) used to separate WM, GM, CSF and CMV lesion from the brain is as follows.

Database _

A set of T1, T2 and PD weighted images containing 12 normal images and 3
abnormal images with lesions are used for experimental purposes. GE Signa 1.5T MRIand
a Technicare 0.6T instruments are used to access these images.

Preprocessing

Preprocessing stage comprises image registration and selection of region of interest
(ROI). Image registration makes the same pixeis" coordinates for the same pixels contained
in two different images by the method of shifting of coordinates. For example, if the two
images T2 and PD are not matched, the coordinates of PD image are shifted to match with
12 image. The shifted coordinates of PD image are recorded, and T2 and shifted PD images
are regarded as registered image.

Intracranial region of the brain is selected as ROl It is needed to separate the
intracranial region from the skull and scalp. The intracranial region is anatomically

. Figure 5: Membership Function for T2 Weighted Images
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separated from the scalp and skull by a layer of CSF, except there are a few connections
where the layer of CSF is thin. To separate the iatracranial region, the image is first
thresholded and then a region growing techaique is applied to grow empty space
surrounding the intracranial region. The problems for the connections between brain aid
scalp are solved by applying the morphological operators erosion and dilation (Kapur,
1993).

Determination of parameters of the membership functions

The membership functions are identified perceptually. Three different types of tissue
such as WM, GM and CSF were identified for T2 images. T2 image as well as its edges that
are determined by Cohen’s edge detection method described in Gonzalez and Woods {1992)
are classified into five classes WM, GM, CSF, WM-GM and GM-CSF using standard FCM
algorithm. The mean intensities (M} and variance (O) of ith class are used (o calculate the
parameters of the membership function for ith class. The membership functions for T2
images are shown in Figure 5.

The PD weighted image and its edge values are given te FCM, which classifies them
into four classes. The class containing highest pixel intensity is discarded in order to
eliminate the high edge values on the boundary of the brain. The techniques used to
generate the membership function for PD weighted images are the same as T2 weighted
images. The membership function for PD weighted images is shown in Figure 6.

PD weighted abnormal images contain periventricular hyperintensity which have
higher pixel inensities in brighter class than other pixels in the same class. So the
membership function for PD weighted abnormal image is presented in Figure 7.

A membership function to represent the closeness of a pixel from the center of the
brain as the ventricle is considered a major connected CSF area adjaceat to the center of
the brain. This'membership function is used to discover the periventricular hyperintensity
which represents the lesions of the PD weighted images. The membership function to
measure the closeness {0 the ventricle is given in Figure 8,

Development of fuzzy rule-based segmentation

Twao groups of {uzzy rules have beer developed. The first and the second group are
used to segment the T2 weighted images and to recognize the CMV lesions.

Figure 6: Membershiy function for PD weighted images
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Figure 7: Membership function for PD weighted abnormal images
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IF pixel in T2 is Dark THEN pixel is White Matter
IF pixel in T2 is Grey THEN pixel is Grey Matter
IF pixel in T2 is Bright THEN pixel is CSF
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IF pixel in T2 is Dark THEN pixel is White Matter

IF pixel in T2 is Grey THEN pixel is Grey Matter

IF pixel in T2 is Bright AND pixel in PD is Dark-Grey THEN pixel is CSF

IF pixel in T2 is Bright AND pixelin PDis Very Bright AND pixel is not closetott
ventricle THEN pixel is CSF

IF pixet in T2 is Bright AND pixel in PD is Very Bright AND pixel is close tol
ventricie THEN pixel is CMV lesion

Figure 8: Membership function lo represent the closeness to ventricle
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AND operator is evaluated by applying the fuzzy logic minimum operator (Zadeh,
1965). All pixels are classified using the rules described above. The pixels whaose
membership values are less than 0.5 and the pixel having two maximum membsrship
values are declared as unclassified pixels.

Modified FCM segmentation

The initial value of each cluster center is derived from the average value of each
respective classified class. All unclassified pixels are classified using FCM with the derived
initial cluster centers. If the number of classified pixels in CMV lesion is very small (from
10 10 20), they are reclassified as CSF.

Concluding remarks

This system is 10 to 20 times faster than FCM, and produces better results for
abnormal images containing fesions but it has not given promising result compared to FCM
for normal images. The parameters of the membership functions have been derived
autormatically, but the structure of the membership functions have been defined according
to the knowledge of medical experts. Although anatomical position of the lesion has been
taken into account, the inter-pixel correlation has not been considered. Some other criteria
may be included in addition to gradient and pixel intensity in order to define the
membership functions’ parameters.

Conventional fuzzy rule-based MRI segmentation

Conventional fuzzy rule-based segmentation uses only fuzzy rules to segment the MR
image and does not apply FCM in addition to the fuzzy rules. Sasaki et. al. introduced such
a fuzzy rule-based method to segment the menisci region from MR images (Sasaki et al.,
1999). .

Figure 9: Anaiomical location of menisci region {Source ref: Sasaki et al., 1999)

{a) MRl and enlarged hiage (b) Anatomical location of knee
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Database

Eive norinal MR data seis consisting of three normal and two injured knees are used
in the experiments. T weighted 3D SPGR with TR=100 msec, TE=15 msee and flip
angle=30 degress image are acquired with Genesis Sigma 1.5 Tesla MR1 scanner. Each
image contains 60 separate 1.5 mm thick slices.

Knowledge used to segment the menisci region

The anatomical position of the menisci region is shown in Figure 9. Knowledge is
used to generate the fuzzy rules.

1. Voxel intensities of cartilage regions are high.

2. The menisci region lies in between the thigh and shinbone.

3. The cartilage regions are adjacent to the center of the gravity of the knees.

4. The menisci are automatically located near the cartilage.

5. The voxel intensities of the menisci regions are coherent.

Fuzzy rules generation and segmentation

Twodifferent sets of fuzzy rules are deveioped s the segmentation is performedintwo
stages. Firstly the candidate region of the menisci are segmented whereas the menisci are
extracted from the candidate region in the second stage. Candidate region can be defined
as the region between the cariilages as menisci are located between the cartilages. A set
of voxels represented by straight contiguous two-dimensional data (x,z) is called unit (x.2).
Two types of units, A and B, are defined to segment the candidate region. Unit A contains
the candidate region while unit B does not contain any candidate region voxels, Figure 10
shows the mode! of candidate region and representation of the smallest uni.

D and d denote the constant distance of the most distance unit and distance of the
interested unit from the center. Units A and B are showa if Figurell.

Figure 10: A model of candidate region and representation of the smallest unit (Sowrce

unit B ;o
shinbone SERtERUnI the candidate region

l ! meniscus
D !

Figure 11: Unit A and unit B (Source ref: Sasaki et al., 1999)
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The number of disparities between two adjacent voxel intensities on a unit is defined

-1
n= E C(j) 21
j=0
where C(j) is calculated as

_ 1 for|v(j)-vj+ I)’ >T.
HE _ (22)
0 otherwise

and J is the range of candidate region, v(j) is the voxel intensity at coordinate j and T is the
threshold.

The membership functions of distance and disparity to measure the values of linguistic
variables, small and large, are shown in Figure 12.

From the knowledge, 1,2 and 3, the following rules are defined using the membership
functions described above in order to segment the candidate region:

IF d is small AND n is large THEN degree of belonging to unit A is large
IF d is large AND n is small THEN degree of belonging to unit B is large

The degree of belonging to unit A and B are calculated using the foliowing equations:
gradeA = wl udsmall(d)+ w2 unlarge(n) 23y

gradeB = wl udlarge(a)+ w2 unsmall(n) (24)
where wl and w2 are weights. The unit is classified into unit A if gradeA > gradeB,
otherwise unit is classified into unit B.

Figure 12: Membership functions for distance and disparity of intensity ( Source-reﬂ.S‘amki
et al.. 1999}

Euclidian distance disparity /

Figure 13: Membership functions for segmenting menisci from cartilage region (Source
ref: Sasaki et al., 1999)
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From knowledge 4 and 3, two membership functions uc and ui shown in Figure 13 are
derived for segmenting the menisci from the candidate region. Figure 13(a) shows that the
menisci exist near the cartilage. uc and ui map the distance of a voxel from the cartilage
region and the voxel intensity into degree of belonginess to menisci respectively. The
parameters dj and dM used in the membership functions, shown in Figure 13(b) and 13(c)

respectively, are widths of the one side of the triangles, whereas aM is-the cohereny
intensity.

The calculation of uc for two cartilages is defined:

M ucl(j)+uc(j) for ucl(j)+uc2(j) <1

Hin =

/ 1 otherwise (23)
For one cartilage:

we(j) = ucl(j) (26}
The following two rules are developed from knowledge 4 and 5.

IF a voxel is anatomically adjacent to the cartilage THEN the degree of menisci voxel i
for uc is high . o

IF the intensity of the voxe! is same as coherent intensity of the menisci voxel THEN
the degree for ui is high

The total degree, gradeM = w3uc(j) + waui(m) (27)

where w3 and w4 are the weights. If gradeM > Th then the voxel is classified as a menisci
voxel. Where Th is a threshold.

Concluding remarks
3D construction and display of menisci has been performed for both normal and
injured knees. This method can successfully identify cartilage tears. The rules have been

. defined based on anatomical position and coherent intensity of the menisci voxels, The

structure of the membership function is predefined. The parameters used in the member-
ship functions are taken from the MR device parameters.

amET g

Fuzzy Rule-Based CT Image Segmentation

CT imaging is also known as Computed Axial Tomography (CAT) scanning (CT
2000). CT is one of the most important medical imaging techniques and is used in variotfs
types of disease and wound diagnosis. A fuzzy rule-based segmentation of intrathoracic
airway trees on CT image has been described in Park and Hoffman (1998).

Database

Five canine data sets are scanned using EBCT scanner from five anesthetized dogs-
Each data set contains 40slices of 3mm thick 40 slices, 8 per data set are randomly selected

and their airways are perceptually determined by an expert in order to determine both the
training and test sets.

Steps of airway tree segmentation

Segmentation technique consists of the following five steps.
» Separation of tungs from the volumetric data set
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Definition of primary airway tree

Preprocessing of all individual image slices

Fuzzy rule-based identification of airways in all image slices

Consiruction of airway tree using 3-D connectivity.
The techniques used for steps 1,2, and 3 are described in Park and Hoffman (1998) and
Sonka, Park and Hoffman (1996). Primary airway tree contains the major branches of the
tree and is defined as the 3-D connected components of the image voxels below a threshold,
which is formed by 3-D seeded region grov ing approach. The main task of the preprocess-
ing step is to identify the background and all possible locations of airways and vessels for
each slice. The regions having from 55 to 110 gray level intensities are considered
background. The regions darker and brighter than background are treated as candidate
airways and vessels respectively.

[

-

Fuzzy rule-based identification of airways in all image slices
The following anatomical information is used to determine the airways.

1. Airways are generally dark

2. Airways are encompassed by airways wall

3. Airways are near to airway vessels
The anatomical position of airways and their vessels are shown in Figure 14.

The following three features are defined according to a region adjacency graph
properties (Sonka, Hlavac and Boyle, 1993).

+ BRIGHTNESS: Uses minimum and maximum grey level regions 1o represent the
airways and vessels candidate regions respectively.

+ ADJACENCY: Represents the grey level of the brightest adjacent region.

+ DEGREE OF WALL EXISTENCE: It determines the existence of the wall. The
degree of wali existence is determined by the ratio of the total number of concentric
rays possessed dark-bright-dark profile and the total number of concentric rays
directed from the center of the candidate region.

Figure 14: Anatomical position of ainvays (Source ref: Park and Hoffman, 1998}

(a) Ainvays detection principles  (b) Assessment of wall evidence
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Figure 15: Membership Functions for BRIGHTNESS, ADJACENCY and
DEGREE_WALL_EXISTENCE
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The membership functions for BRIGHTNESS, ADJACENCY and
DEGREE_OF_WALL _EXISTENCE, including their linguistic variables, are shown in

Figure 15.
The parameters of the membership function are determined from a manuaily tracking

training set containing eight randoraly selected slices of a single volumetric data set. The

conflicts arising among membership functions are solved manually in order to obtain

optimum classification resuits.
The rule banks developed for the segmentation are represented in the tabular form and

shown in Figure 16.
The value of each cell indicates the confidence level of airway. For example of a rule,

IF BRIGHTNESS is LOW AND ADJACENCY is LOW AND
DEGREE_OF_WALL_EXISTENCE is HIGH THEN region is airway with ME-
DIUM confidence

Finally adefuzzification method, namely, centroid defuzzification is applied in order to get
numerical confidence level for each region, which indicates the possibility that the region

belongs to airway.

Figure 16: Fuuy Rule Banks to Determine the Confidence Level of Airway

DEGREE_OF_WALL_EXISTENCE DEGREE_OF_WALL_EXISTENCE
LOW MED HIGH LOW MED HIGH
BRIGHTNESS MED HIGH VERY BRIGHTNESS { LOW MED HIGH
LOW HIGH Low
MED LOW MED HIGH MED VERY LOW MED
LOW
HIGH VERY LOwW MED HIGH VERY VERY Low
LOW LOwW LOW
ADIACENCY=HIGH ADJACENCY=MED

DEGREE OF _WALL_EXISTENCE
LOW MED HIGH

BRIGHTNESS [ VERY LOoW MED
LOW LOW
MED VERY | VERY Low
LOW LOW
HIGH VERY | VERY | VERY
LOW LOW LOW
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construction of airway tree using 3D connectivity

confidence level is more than 73% utilizing shape-based interpolation along z-axis. From
C-tree, A tree and B-tree are created. A-tree is defined as a 3D connected region and subset
of C-tree, which contains the airway-tree root. B-trze is the combination of A-tree and
disconnected airway tree branches of C-tree that contains above threshold volume.

.,

)

pme

ST

i

Concluding remarks
This method has constructed three trees named A-tree, B-tree and C-tree. The medical

specialist may use any of the trees according to his need. The parameters of the membership
function have not been derived fully automatically.

FUZZY GEOMETRY-BASED
IMAGE SEGMENTATION

Geometrical properties such as perimeter, area, length, width, extrinsic diameter,
inirinsic diameler, index of area coverage (I0AC} and compactness of an object can be used
to describe an objoct (Rosenfeld, 1984; 1992; Dubois and Jaulent, 1987; Pal and Gosh,
1990). Such geometrical properties of an object can be derived using fuzzy membership
values without segmenting the object from the image, and they are dependent on fuzzy
membership function (1), Segmentation is achieved through the utilization of minimum
values of compactness or IOAC (Pal and Gosh, 1990; 1992; Pal and Rosenfeid, 1988).
Geometrical properties of an object in an image are determined using fuzzy membership
in the following ways (Rosenfeld, 1984, Pal and Gosh, 1990).

I
b ?ﬂ*“-)ﬁ.&

I

oy !'\:.;:-

R T

Area

The equaticn to calculate the area of fuzzy subset pt is expressed as:

a(p) = Iu (28)
where integration covers the region whose outside u=0. The equation of area for piecewise
or digital image is defined as:

w A
a() = 3,y u(x,) | (29)
x=] y=l

where w and h are the width and height of the image respectively.

Perimeter ‘
The equation of perimeter for piecewise constant function p is expressed as:

pl) = X I = w(HIAG, j,K) (30)

if.k

where A(i j.k) is the kth common arc length between m(i) and m{j) meet. The common are
length between neighboring pixels of digital image is one. So the equation (30) for digital
image is defined as:

p{p) = ZIN(I') - 4“(])| | (31)
i

otk R ) l

Airway tree named C-tree is constructed by stacking all the regions whose airway '
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Height
The height of p is defined as:
h(p) = Imgx[u(-t.}’)] dy (32)

For digital image,

h(uy = 3 max{u(x,y)] (33)

Width
The width of 4 is defined as:

wipl) = _[ maxfe(x,y)] dx (34)
y .
For digital image, 8

wipl) = mex[ﬂ(x,y)] (35)

Length
The length of fuzzy subset p is defined as:

)= mflx Iu(.r,y) dy] (36)

For digital image,

) = max EU(x,y)] (37)

Breadth
The breadth of fuzzy subset p is defined as:

bit) = m;ax[ 1(xy) d.r] (38)

For digital image,

bipt) = myax[Eu(x,yJ} (39

X

Compactness

The compactnessof fuzzy subset )t means the portion of maximum area covered by the
object and is defined as:

af)
p(uy

where a(it) and p(lt) denote the area and perimeter of fuzzy subset | respectively.

o) =

(40)
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Index of Area Coverage (I0AC)
The IQAC of fuzzy subset pt is defined as:

a(y)
1() x b(1)

where a(j), (1) and b(pt} are area, length and breath of p respectively.

I0AC(u) = (41)

Techniques of Segmeriation Using I0AC

The techniques used in segmentation are described in detail in Pal and Gosh (1990).
The input pixels are fuzzified using standard S or Z (1-S) type membership function for
bright or dark object pixels respectively and then the crossover point is calculated. In the
crossover point, the value of the membership function is 0.5 and it is below or above 0.5
inbelow or above of the crossover point. The IOAC is calculated using equation (41). IOAC
and compactness measures decrease for increasing y and are lowest for a crisp one. The
crossover point is adjusted in order to get the minimum value of I0AC. The [ plane
obtained for minimum value of 1OAC is used for segmentation. For image containing
multiple objects. multiple optiaum U planes can be used.

Concluding remarks

The optimum value of JIOAC has been calculated considering the predefined member-
ship function, ramely, standard S type membership function. The IOAC has been
calculated using arez, length and breadth of an object. It is very difficult to calculate the
accurate area, length and breadth of an object with wide range of gray level pixel variations
and the result of segmentation will not be good if there exists a significant amount of
overlapping pixels. It is computationally expensive, as it needs to calculate the value of the
membership function for each pixel everytime the crossover point is adjusted.

FUZZY THRESHOLDING-BASED IMAGE
SEGMENTATION

Thresholding-based image segmentation is one of the oldest and most well-known
techniques. Its main function is background and foreground separation. It is very difficult
to produce appropriate threshold since the real image is itself ambiguous and there is
overlap between background and foreground pixels, Fuzzy thresholding-based image
segmentation is potential as it can handle imprecise data (Chi, Yan and Pham, 19906). So
far there are the following two ways to calculate the optimal threshold in the fuzzy system:

*+ Techniques based on minimum values of index of fuzziness and entropy (Pal and
King. 1983).

+ Fuzzy image thresholding based on minimization of fuzziness using histogram (Chi,
Yan and Pham, 1996; Huang and Wang, 1995).

In the first technique the optimal threshold is determined by adjusting the cross over
point so that optimal {minimum) values of index of fuzziness and entropy are achieved. The
segmentation based on index of fuzziness and entropy is described in the following.
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Segmentation based on index of fuzziness and entropy
The input image is fuzzified using the standard $-function in the following ways.
0 ifflijse
A(fij)-aMic-al)  ifas flij)<h
L2f(rij)-che-a)f  ifb< flijisc  (42)

H othenvise

ARG = Sifiij) a b, c) =

Where f(i,j) is the grey level pixel intensity at (i,j) location, X is the fuzzy property plane

1
of image f(i.j).b = ;(a +cC ) is the crossover point where the value of the membership

function is 0.50 and Ab=b-a=c-b is the bandwidth.
The linear and quadratic index of fuzziness measure the distance between properiy
plane X and its nearest ordinary plane X. The linear index of fuzziness is defined as:

1(X) = -—-—EEL:YU(:,;)) ~ix (i) (432)
i=0 j=0
2 w=-14~1
== > i i) (43b)
wh i=0 j=0 ' .

where w and h are the width and height of the image respectively and ¥ is the complement
set of X.
The quadratic index of fuzziness is defined as:

w=| k=1 %
1(X)= N[ZZ{uﬂf(hﬂ) ~six(Ei))} } (44)

i=0 js0

The entropy is defined as:
1 wel b=

——— " ) S, (flij)) (45)

wh In2 {575

where Sn(at, (f(0, /) = = (G NI (G N— (= py (FG NI (L= g (FGL N

The crossover point is adjusted so that optimum (minimum) values of ¥(X) and E(X)
are achieved. The crossover point corresponding to the minimum values of 1(X) and E(X}
represents the optimum threshold, which provides the appropriatc segmentation of the
object and background. This technique may be applied to the segmentation of an image
contains more than two regions or multiple objects by obtaining each local minimum of {X)
and E{X) for each optimum threshold value.

This method needs to compute the membership values for each pixel for all possible
values of crossover point in order to calculate the optimum values of I{X) and V(X). For
this the computational cost increases rapidly with the increase of the size of the image (Chi,
Yan and Pham, 1996).

E(X) =

Segmentation based on minimization of fuzziness using histogram

In this method the image is segmented using the threshold, which is determined by
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computing the minimum value of fuzziness between the regions, i.e., object and background
for bimodal images (Huang and Wang, 1995). The techniques used in this method are
described in the following.

Caleulating expected values of background and object regions
For 2 given threshold T, the expected values of background () and object (u,) are
defined as:

.
> phip)

v p=0

Ho =77
46
3 (p) (40
p=0

[ ]

> ph(p)
py = S —

X h(p)

p=T+l -

“n

where h(p} denotes the frequency of gray level p and 0..L-1 is the range of the gray level
intensity of the image.

Calculation of membership function

The value of niembership function is calculated by considering the notion that each
pixel should be classified into its nearest region, i.e., the less distance between the pixel and
its belonging region, the more value of the membership function. The membership function
is defined as:

( 1
i ffixy)sT
fixy) -1,
%

1+

Hy(flx,y)) = 1 )

1+

1
y iffixy)>T
fixy) -ﬂy
\ D
where f(x,y) is the gray level pixel intensity at the position (x,y) and D is chosen in such
a way that0.5 £ ?,(fx,y)) £ | is achieved. The usual value of D is taken as the absolute
difference between the maximum and minimum gray level values.

Entropy and Yager's fuzziness measure
The entropy has already been defined in equation (45) and using the histogram it is
defined as:

i L-1
= —— ) Snfit /
) hing gl‘; nity(p))h(p) (49)
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Yager {1979) defined the measure of fuzziness of a set as its lack of distinction from
its complement set. The fuzziness between fuzzy image set X and its complement set } is
defined as:

D(XX) = pixX)
| Xi° (w,)*

where DC(X,-)_(.) is the distance between X and y and it is defined as:

u(X)=1- (50)

wel #-1 . yc
DX, %)= (2 >l (P = a5 (Fx ) ] S

azp y=0

using histogram:

A
—_— ¢
D(XX)=| Yo -nglp) | Hp) 52)
» .
where p=0, 1,...L-1 and e is I for Hamming distance and 2 for Euclidean distance.

Determination of optimum threshold

The fuzziness of an image is calculated using equation (48 and 49) or (52) considering
all gray level pixel intensity, i.e., for all values from 0 to L-1. The optimum threshold is
regarded as one of the gray level pixel intensities for which the fuzziness is a minimum
value. Sometimes this optimum threshold does not locate in the deepest valley between the
peaks. A fuzzy range: (R) is defined in the following way in order to make sure that the
optimum threshold falls in the real valley.

R=minf+{maxf-minf}xa% (53)
where minf and maxf are the minimum and maximum measure of fuzziness respectively
and the value of ocis between 0 and 100 inclusive. The optimumi threshold is determined by
minimizing h(p-1)+h(p)+h(p+1) where peR. It is possible to calculate the multilevel
threshold using this method.

Concluding remarks
Thresholding is not & good solution for the image segmentation if there is a significant
overlap between the background and the object pixels.

FUZZY INTEGRAL-BASED
IMAGE SEGMENTATION

A few techniques on image segmentation based on the fuzzy integral have beed

published so far. Fuzzy integral has been used in image segmentation (Keller, Qiu a0
Tahani, 1986) and classifier fusion (Chi, Yan and Pham, 1996; Tahani and Keller, 1990
Recently segmentation of color image using fuzzy integral had been done {(Pham and Yan,

1999). The techniques used in color image segmentation of this method contain the :
following two steps. '
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« Determination of number of clusters and the initial values of the ¢luster centers using
mountain clustering and fuzzy integral respectively.

« FCM classification of color image pixels by measuring the similarity between a color
image pixel and cluster centers using fuzzy integral.

Determination of number of ckusters and the initial values of the

cluster centers using mountain ciustering and fuzzy integral

The image space is divided into a specific number of grid points that are initially
considered possible cluster centers and denoted by ¢ where i=1.... .M and M is the number e
of grid points. The correct number of clusters and their centers are determined using the
mountain function, which has been described in Phan and Yan (1999). The mountain

function MI(C,-) for grid pointc, is defined as:

_ - ~adip,c,)

Mc)= Ee (54)
j=h _
: where ¢ is a constant, n is the number of pixels, P; is the jth pixel and d(pj. ¢, is the distance
8 . between jth pixel P, and c, grid point using fuzzy integral is defined as:
and S(p,, c) the similarity between pixel p, and cluster center ¢, using Choquet integral is
defined as:
3
S(ppe) = Y ()= flx)}8(A) (56) 4
k=1 2
where f(x) is extended m-membership funciion, which was introduced by Zadeh (1976),
f(xo)=0. X = ij’XZ = pJ.G,x3 = pjg A= {xl = c‘_k,xz = Cfs’x3 = cis} and g(A)
is fuzzy density measure, which is measured by scaling the individual color component of

all pixels using the following exponential equation as the R, G and B component of each

pixel is in the range [(0,1]:
-t §

x=by+b(l—e %) (57)
where b,=0.2, b=1 and a=1 for this particular problem. The techniques used in fuzzy
measure are described in Tabani and Keller, (1990). In the first step the giid point, which
achieves the largest mountain vaiue, is regarded as the lirst cluster center. The next cluster
center is identified by setting the previous cluster to zero and utilizing a specified thre .aold
T instead of adopting subtractive techniques used in mountain clustering. If the fuzzy :
integral similarity values between a grid point having largest mountain value and all
previously identified clusters are less than threshold, T is treated as the next cluster center. b
This also ensures that there cxists some dissimilarity between cluster centers,
FCM classification of color image pixels by measuring the similarity g
beiween a color image pixel and cluster centers using fuzzy integral
In this method the distance between RGB color components of a pixel and cluster

e
g
8
i,
e
T
it
L
]
h

center is determined using the fuzzy integral in equation {55) instead of using traditional
distance measure method during FCM classification of the color image pixels.
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Concluding remarks

This method has 50lved the two main drawbacks of fuzzy clustering—the number of
cluster centers and thei” initial values utilizing mountain algorithm. But there exists a trade
off between the number ©f grid points and computational cost, especially for a large image.
The potentia) of this method alse depends on the value of threshold T used in mouniain
algorithm. :

SOFT COMPUTING-BASED
IMAGE SEGMENTATION

Soft computing 5 an integrated method, which is a synergistic combination of fuzzy
logic (FL), neurocomputing (NC), genetic computing (GC) and probabilistic computing
(PC) (Zadeh, 1998), Each part has distinguished capability to solve the problzm that
enables soft computing 0 manipulate imprecision, uncertainty and partial truth in a better
way than compared to traditional approaches, and yields low cost and promising results.

Image segme. tation based on fuzzy-genetic computing has been presented in Hall,
Ozyurt and Bezdek (1999) and Ishibuchi and Murata (1997). In Hall, Ozyurt and Bezdek
(1999) the objective function of FCM algorithm is optimized using a genetic algorithm.
Ishibuchi et.al. classified the high dimensional patterns by genetically selecting the
minimum number of fu22y rules that maximize the classification performance. A method
of MR{ segmentation based on neuro-fuzzy computing has been described in Karayiannhis
and Pai (1999). In this Method the MR image of the brain was segmented using a fuzzy
algorithm for unsupervised linear vector quantization neural network.

CONCLUSION

This chapter hag outlined some of the existing fuzzy image segmentation techniques,
which have been shown to perform better than conventional techniques as well as coping
with the noise. The most difficult task of fuzzy image segmentation is to determine the
shape and parameters of the membership functions. Some of the methods have calculated
the parameters of the Membership functions automatically, but alf of the methods have
applied the predefined Structures of the membership functions.

The leading techniques for fuzzy image segmentation are fuzzy clustering and rule-
based techniques. The Main two drawbacks of the former are to select the appropriate
number of clusters and their initial values. Fuzzy rule-based image segmentation tech-
niques seem promising. but they are very much application specific and very difficult to
define and select fuzzy tules that cover all voxels/pixels. They can incorporate domain
expert knowledge, process the linguistic variables and draw partial inference. FFor this
fuzzy rule-based segmeniation, techniques have been extensively applied to medical
imaging. Fuzzy geometry and thresholding-hased image segmentations are suitable for
bimodal images and don’t produce a good result if there exists a significant amount of
overlapping pixels between the background and foreground regions. The literature on
fuzzy integral and soft cOmputing-based image segmentation techniques is not so rich. The
fuzzy integral is pood for integraiing the results produced from different sources. Solt
computing-based techniques are very promising for future research in the field of image
segmentation,

1
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ABSTRACT

This paper describes the various fuzzy rule based
techniques for image segmemation. Furzy ride based
segmentation Jdechniques can incorporate the domain
expert knowledge and manipulate numerical as well as
linguistic data, They are also capable of drawing partial
inference using fuzzy IF-THEN rules. For these reasons
they have been intensively applied in medical imaging.
But rhese rules are application domain specific and it is
very difficult to define the rules either manually or
aulomatically so that the segmentation can be achieved
successfully.

1 INTRODUCTION

Prewitt first stated that image segmentation should
produce fuzzy regions [1]. Fuzzy image segmentation
techniques are advantageous over classical methods as
they are capable of handling imprecise data and they
may be broadly classified in five classes [2): fuzzy
clustering, fuzzy nrule, fuzzy pgeometry, fuzzy
thresholding, and fuzzy integral, Initially fuzzy IF-THEN
rules were extensively used in control engineering
problems but now they are being increasingly applied in
image segmentation. The advantages of the fuzzy rules
based image segmentation over other methods are
mainly [3] that humans can more easily understand the
problems due to linguistic representation of numeric
variables, it is computationally less expensive than fuzzy
clustering methods, and it has the potential ability to
integrate the domain expert knowledge, Generally fuzzy
rule-based image segmentation has been applied in three
types of images: light intensity (LI), magnetic resonance
(MR), and computed tomography (CT) images and they
are described in the sections 2, 3 and 4 respectively.
Section § provides the conclusion.

2 FUZZY RULE BASED LI IMAGE
SEGMENTATION

Chi and Yan utilized the fuzzy IF-THEN rules in the
segmentation (separation of background and foreground
pixels) of 256 gray scale geographic map images
containing strings, streets, roads, boundaries ete. that are
considered foreground pixels of the images [4-5). Three
features such as difference intensity (DI), local standard
deviation (SD) and local contrast of darker pixel (CD)
are used in segmentation. The input and output domains

are divided into five fuzzy regions named as L2, 11, M
H1 & H2 and two fuzzy regions such as background g
foreground respectively. Triangular memhership
functions shown are utilized for input regions. Fuzzy
rules are generated by leaming from examples. A pair of
rules shown below is generated for each training sample,

IFDIis L1 AND SD is HI AND CD is H2 THEN it js,
foreground pixei
I[FDIis Hl AND SDis M AND CD is L1 THEN itisq
background pixel

To avoid repeated and conflict rules, the rules selected
are supported by a large number of examples. If the
centroid defuzzification value Cy<=0.5, the input pixel i
categorized as background pixel otherwise it is
categorized as foreground pixel. This system is faster
than neural network techniques and superior to the
adaptive thresholding techniques. It was found that some
parts of characters are missed for standard triangular
function [4). This is because of selecting the shape and
parameters of the membership functions was done
intuitively. For this they used an automatic method
using fuzzy C-means clustering (FCM) to determine the
parameters of the membership functions, The shapes of
the membership functions have been determined
manually and heuristics rules are not used in this method.

3 FUZZY RULE BASED MR IMAGE
SEGMENTATION

The fuzzy rule based MRI image segmentation methods
may be broadly classified into two classes; Hybrid and
conventional fuzzy rule based MRI segmentation.

31 HYBRID FUZZY RULE BASED MRI
SEGMENTATION

Hybrid fuzzy rule based segmentation system consists of
fuzzy rule based and FCM. Clustering is computationtl
expensive and does not produce appropriate class alone
due to inability of incorporating human expeft
knowledge [6]. For these reasons, a set of fuzzy rules IS
applied to classify the pixels/voxels. It is very difficult ©0
define fuzzy rules that cover all pixels/voxels. So the
classified pixels/voxels are used to initialize the clustef
centers and FCM is used to classify the remaining
unclassified pixelsivoxels. Hybrid fuzzy rule based
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image segmentation systems are faster than clustering
and are described in [3)([6].

The method using adapting fuzzy rules for segmenting
the brain tissue into six classes: white matter (WM), gray
matter (GM), cerebro-spinal fluid (CSF), pathology,
skull tissues and background is described in [6). In this
method 105 axial brain slices, 5§ mm thick from 15
persons {39 normal slices from 8 persons and 66
abnormal slices from 7 patients) are used for
experimenta! parposes. Relative voxel intensities of T1,
T2 and PD weighted intensity images are used as feature.
The shapes of the membership functions are triangnlar
and trapezoidal. The parameters of the membership
functions {(al, a2, bl, b2, b3, b4, b5 and bb) are
calculated by determining the tuming points (peaks,
valleys or the starting point of the histogram) of intensity
histograms of T1, T2 and PD images using a training set
consisting of 6 normal & 4 abnormal slices and
suggestions of expert radiologists. The PD histogram of
the patient with brain tumor become like the PD
histogram for abnosrmal slice due to the change of
properties of gray and white matter. The turning points
of this histogram are obscure and difficuit to select. They
used an edge detection technique in order to sharpen the
boundary between gray & white matter utilizing a
sujtable threshold to detect the peaks. The initial value of
threshold is chosen as 5 and increased by 5 until two
peaks are found. If peaks are not found, two peaks are
assumed at 1/3 and 2/3 of the region between b1 and b2,
The Set-A, Set-B, Set-C, Set-D, Set-E, and Set-F are
defined from the membership funciions. A set of the
following fuzzy rules are defined heuristically.

IF voxel in T1 in Set-E  AND voxel in T2 in Set-F
THEN vozxel is CSF

IF voxel in PD is Set-C AND voxel in T1 in Set-A
THEN vozxel is White matter

IF voxel in PD is Set-D AND voxel in'T1 in Set-A AND
NOT (voxel in T2 is Set-F AND voxel in T1 is Set-E)
THEN voxel is Gray matter

IF voxel in T1 is Set-B AND voxel in T2 is Set-F
THEN voxel is Pathology

IF voxel in'T1 is Set-B AND NOT (voxel in T2 is Set-F)
THEN voxel is Other

IF PD voxel intensity < bl AND T2 voxel intensity < ¢l
THEN voxel is Bcakground

Rules adapt themselves for each slice during processing.
After classification using fuzzy rules the unclassified
voxels and isolated voxels for each class are assigned the
membership values with the averape membecship values
of their neighbors and zero respectively. Finally the
voxel membership values are nommatized (0 1o 1). The
incorrect classified voxels (voxels whose membership
value <= 0.80) are classified using semi-supervised
clustering algorithm [7]. The correctly classified voxels
are used as training set for the clusiering algorithm. This
system is faster than FCM. Rules are generated based on
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tuming points of the histograms that are not sufficient
cnough to distinguish the brain tissues containing a
significant amount of overlapping voxels. The threshold
and approximate peaks {whun there are no peaks in the
PD histogram) are chosen empirically.

Another hybrid fuzzy rule based brain MR image
segmentation method, which separates WM, GM, CSF
and CMV lesion from the brain is desciibed in [3]). In
this method a set of T1, T2 & PD weighted images
containing 12 normal images and 3 abnormal images
with lesions are used for experimental purposes.
Preprocessing step consists of two sub-steps: Image
registration and selection of region of interest (ROI).
Image registration makes the same pixel coordinates for
the same pixels contained in two different images by the
method of shifting of coordinates. Intracranial region of
the brain is selected as ROL The shapes of the
membership functiond are identified perceptuaily. Three
different types of tissue such as WM, GM and CSF were
identified for T2 images. T2 image as well as its edges
that are determined by Cohen's edge deiection method
[8] are classified into five classes WM, GM, CSF, WM-
GM and GM-CSF using standard FCM algorithm. The

mean intensities ( 4, } and variance ( G;) of ith class are

used to calculate the parameters of the membership
function for ith class. The PD weighted image and its
cdge values are given to FCM, which classifies them into
four classes. The class containing highest pixel intensity
is discarded in order to eliminate the high edge values on
the boundary of the brain. The techniques used to
generate the membership Ranction for PD  weighted
images are same as T2 weighted images. For PD
weighted abnormal images contain  periventricular
hyperintensity which have higher pixel intensities in
brighter class than other pixels in the same class. So
another membership function for PD weighted abnormal
image is generated. A membership function is used o
represent the closeness of a pixel from the center of the
brain as the ventricle is considered a major connected
CSF areas adjacent to the center of the brain. This
membership function is used to discover the
periventricular hyperintersity, which represents the
lesions of the PD weighted images. Two groups of fuzzy
rules have been developed. First and the second group
are used to segment the T2 weighted images and to
recognize the CMYV lesions respectively. The first group
is shown below.

IF pixel in T2 is Dark THEN pixel is White Matter
IF pixei in T2 is Grey THEN pixel is Grey Matter
IF pixelin T2 is Bright THEN pixe! is CSF

Second group shown below is formulated by splitting the
last rule of the first group into three new rules that
discriminate CSF and CMV lesions.

IF pixel in T2 is Dark THEN pixel is White Matter
IF pixelin T2 is Grey THEN pixel is Grey Matter
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TF pifel in T2 is Bright AND pixel in PD is Dark-Grey
THEN pixel is CSF

IF pixel in T2 is Bright AND pixel in PD is Very Bright
AND pixel is not close to the ventricle

THEN pixe} is CSF

IF pixel in T2 is Bright AND pixel in PD is Very Bright
AND pixel is close to the ventricle

THEN pixel is CMV lesion

All pixels are classified using the rules described above.
The pixels whose membership values are less than 0.5
and the pixe] having two maximurn membership values
are declared as unclassified pixels. The initial value of
each cluster center is derived from the average value of
each respective classified class. All unclassified pixels
are classified using FCM. If the number of classified
pixels in CMV lesion is very small (from 10 to 20), they
are reclassified as CSF. This system is 10 to 20 times
faster than FCM and gives better result for abnormal
images containing Jesions. The structures of the
membership functions have been defined according to
the knowledge of medical experts.

3.2 CONVENTIGNAL FUZZY RULE BASED
MRI SEGMENTATION

Conventional fuzzy rule based segmentation uses only
fuzzy mles to segment the MR image, Sasaki et. at.
introduced such a fuzzy rule based methed to segment
the menisci region frorm MR images [9). Five T1
weighted images (three normal and two injured knees),
each contains 60 separate 1.5 mm thick slices are used in
* the experiments. The knowledge used to generate the
fuzzy rules is : voxel intensities of cartilage regions ate
high, thc inenisci region lies in between the thigh and
shinbone, the cartilage regions are adjacent to the center
of the gravity of the knees, the menisci are automatically
located near the cartilage, and the voxel intensities of
the menisci regions are coherent . Two different sets of
fuzzy rules are developed as the segmentation is
perforimed in two stages. In first the candidate region of
the menisci are segmented whereas the menisci are
exiracted from the candidate region in the second stage,
Candidate region can be defined as the region between
the cartilages as menisct are always located between the
cartifages. A set of voxels represented by straight
contiguous two dimensional data(x,z) is called unit(x,z).
Two types of units such as unit A and unit B are defined
o segment the candidate region. nit A contains the
candidate region while unit B does not contain any
candidate region voxels. From the knowledge, 1, 2 and
3, the following rules are defined functions in order ta
segment the candidate region.

IF d is small AND n is large THEN degree of belonging
to unit A is large

IF d is large AND n is small THEN degree of belonging
to unit B is large
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Where d and n denote distance of the imeresteq . 3 3
from the center, and the number of disparity of "%ll
intensity on a unit respectively. The Mmembergp; -
functions for distance and disparity to meagye lhz
values of linguistic variables, small and large are degy, "y
intuitively. The degree of belonging to unit A and g e
calculated using equations: gradeA=w] Udsma"(d}q.“q i3
unjarge(n) and gradeB=wl unlarge(d)+w2 unsmalf(y, § 4
where wi and w2 are weights. The unit is classifieqd intg . 3
unit A if gradeA > gradeB, otherwise the ypj is [h 3
classified into unit B. From knowledge 4 and 5, ,, & 3
membership funciions ue & vi, and the following 1y, ! 3
fuzzy rules are derived to segment the menisci from the i
candidate region. P

IF voxel is anatomically adjacent to the cartilage THEN |5 §
the degrée of menisci voxel for uc is high

IF the intensity of the voxel is same as coherent intensiy
of the menisci voxel THEN the degree for ui is high

The total degree, gradeM=w3uc(i)+w4ui(m) where w3 |? 4
and w4 are the weights. If gradeM > T, the voxe!is |} *
classified as menisci voxels where T is the threshold Y |
This method can successfully identify the tears. The
rules have been defined based on anatomical position
and coherent intensity of the menisci voxels. The
structure of the membership function is defined from the
knowledge of the expert. The parameters used in
membership function are taken from the MR device
parameters.

ot AR R TN RS

4 FUZZY RULE BASED CT
SEGMENTATION

IMAGE

A fuzzy mle based automatic segmentation of
intrathoracic airway trees on CT image has been
described in [10]. Five canine data sets, each contains 40
slices of 3mm thick are scanned from five anesthetized
dogs. 40 slices, 8 per data set are randomly sele.ted and
their airways are perceptually determined by an expertin
order to determine the (raining and test sels.
Segmentation consists of the following five sieps:
separation of lungs from the volumetric data scf.
definition of primary airway tree, preprocessing of all
individual image slices, fuzzy rule based identification of
airways in all image slices, and construction of airway
tree using 3-D connectivity. The techniques used for
steps 1, 2, and 3 are described in [10-11]. Primary
airway tree contains the major brancies of the tree and is
defined as the 3-D connected components of the image
voxels below a theeshold, which is formed by 3-D
seeded region growing approach. The main task of
preprocessing step is to identify the background and alt
possible Tocations of airways and vessels for each slice.
The pixels (55 to 110 gray level intensities) are
considered background pixels. The voxels darker and
brighter than background are treated as candidalc
airways and vessels respectively, The anatomical




AP i e "

bt D - e PR e e b

T T N o Ty Sy T e T L P g s it
! i

¢

information used 1o determine the airways is; airways are
generally dark, airways are encompassed by airways
wall, and airways are near (o airway vessels. The
following three features are defined according to a
region adjacency graph properties {12).

¢ BRIGHTNESS: Uses minimum and maximum grey
level regions to represent the airways and vessels
candidate regions respectively.

» ADJACENCY: Represents the grey level of the

" brightest adjacent region.

+» DEGREE OF WALL EXISTENCE: It determines
the existence of the wall. The degree of wall
existence is determined by the ratio of the total
number of concentric rays possessed dark-bright-
dark profile and the total number of concentric rays
directed from the center of the candidate region.

The membership functions for BRIGHTNESS,
ADJACENCY and DEGREE_OF_WALL
_EXISTENCE including their linguistic variables are
determined perceptually. The parameters of the
membership function are determined from a manually
tracking training set containing eight randomly selected
slices of a single volumetric data set, The conflicts arisen
among membership functions are solved manually in
order to get optimum classification results. The rule
banks are developed for the segmentation. For example,
a rule of the rule bank,

IF BRIGHTNESS is LOW AND ADJACENCY is LOW
AND DEGREE_OF WALL_EXISTENCE is HIGH
THEN region is airway with MEDIUM confidence

Centroid defuzzification is :pplied to get numerical

_confidence level for each .egion, which indicates the

possibility that the region beiangs to airway. Airway tree
named C-tree is construcied by stacking of all the
regions whose airway confidence level is more than 73%
utilizing shape based interpolation along z-axis. From
C- tree, A tree and B-tree are created. A-tree is defined
as a 3-D connected region and subset of C-tree, which
contains the airway-tree root. B-tree is the combination
of A-tree and disconnected airway tree branches of C-
tree that contains above ¢hreshold volume, This method
has constructed three trees; A-tree, B-tree and C-tree and
is not fully automatic.

5 CONCLUSION

This paper describes some of the existing fuzzy rule
based image segmentation techniques. The most difficult
task of fuzzy image segmentation is to detcrmine the
shape and parameters of the membership functions,
Some of the methods have calculated the parameters of
the membership functions automatically but all of the
methods have applied the predefined structures of the
membership functions. It has been seen from the
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literature that fuzzy rule based image segmentation
techniques seem promising but they are very much
application specific and very difficult to define angd
select fuzzy rules that cover all voxels/pixels. Fuzzy ryle
based techniques are capable of incorporating expert
knowledge, processing the linguistic variables ang
drawing partial inferences.
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ABSTRACT

Many furzy clusiering based 1echnigues do not incorporate
spatial relationships of the pixels, while all fizzy rile-based
image segmentation (technigues tend io be wery muck
application dependent. in most technigues, the struciure of the
membership functions are predefined and their parameters are
either automaticatly or manually determined. This paper
addresses the aforementioned problems by introducing a
general furzy rule based image segmentation technigue, which
ir application independent and can also incorporaie the spatial
relationships of the pixels. It also proposes the acutomatic
defining of the structure of the membership funcrions, 4
qualitative comparison is made between the segmentaiion
results using this method and the popular fuzzy c-means (FCM)
applied to two types of images: light intensity (Li} and X-ray of
human vocaf tract. The results clear show that this method
exhibits significant improvements over FCM jor both types of
images.

1. INTRODUCTION

Clagsical so-called “crisp”, image segmentetion technigues
while effective when an image eontains well-defined structures,
such as edges and regular shapes, do not perform nearly so well
in the presence of ill-defined data, In such circumstances, the
processing of such imeges that possess ambiguities produces
fuzzy tegions. Fuzzy image segmentation techniques can cope
with the imprecise data well and they can be classified into five
classes: fuzry clustering, fuzzy rule based, fuzzy geometry,
fuzzy threshoiding, and fuzzy integral based image
segmentation technigues [1] but among them the most dominant
are fuzzy clustering and fuzzy rule based segmentation
techniques. The most popular end extensively used fuzzy
clustering techniques are: ficzy ¢-means (FCM) [2-3] and
possibilistic e-means (PCM) algorithms [4]. These clustering
techniques however cannot incorporate human  expert
knowledge and, spatial relation information. Image segmentation
wiihout considering the spatial relationships among pixels docs
not produce good result, as there is a huge amount of
overlapping pixel values between different regions. Fuzzy rule
based image scgmentation techniques can incorporzte human
expert knowledge, are fess computational expensive than fuzzy
clustering and able to interpret Knguistic as well as numeric
variables [5]. Bui they are very much gpplication dependent and
very difficulty to define fuzzy rules that cover all of the pixels.
In most techniques, the siructures of the membership functions
are predefined and their parameters are either manually oc
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automatically determined [5-9). In addition to the sbove-
mentioned advantages, & fuzzy rule based image segmentation
technique should be both application and image independent,
be capable of incomposting spatial information of the regions
and he able to define the membership functions and their
paramcters aptomatically,

This paper explores a new approach in the development of such
8 type of fuzzy rule based image segmentation techniques.
Section 2 explores the technique used to define the membership
function, while the underlying theoretica! concepts and fuzzy
rule definition and the experimental resulis are presented in
sections 3 and 4 respectively, Finally the discussions and
conclysion are provided in section 5.

2.  DEFINITION OF MEMBERSHIP
FUNCTIONS

In this scciion three types of membership functions are
automatically defined to rcpresent respectively the region pixel
distributions, the closeness 16 their centers and their spatial
reiztions. Each membership function possesses a membership
vaiue for each region, which indicates the degree of belonging
to that particular region. The techniques used lo automatically
define the structures of the membership functions and hence the
membership funclions from the region pixel distributions are
described in the following subsection

2.1, Membership Function for Region Pixel
Distributions

In this subsection an attemps is made to automatically define the
metnbership function including its structure from the region
pixel distributions. The steps needed 10 define the membership
function are: classification of the somple or the image to be
scgrmented inte desired number of regions using manual
segmentation or automatically by applying any of the fuzzy
clustering algorithms, gencration of the gray level pixel
intensity histogram for each region and map the frequency for
each gray tevel into {0 1), and approximation of the polynomial
for cach region. This polynomial represents the membership
function for that particular region and the value of the
polynomial for each geay level denotes the membership value of
that particular geay level value. The cloud image shown in
figure 1(a) is divided into two regions namely cloud (R, ) and
urban scene (R,) nsing FCM. The membership functions

shown in figures )(b)-1(c} of these two regions are determined
from respective region pixel distributions using third order
polynomial approximation.

e o




(a): Cloud {b): Membership (¢} Membership
image function for R, function for R,
Figure 1: Cloud image and its region membership functions

e T T TSR

The degree of belonging of a candidate pixel (the pixel to be
classified} (o a region is determined from the respeciive
membership function. The structures of the membership
functions are automatically generated from the region pixels
and hence relieve us from manually defining the structure and
puameters of the membership function for each region, The
membership function 24, (P,,) of the region R, for the pixel

distribution can be defined as
l‘I'DR} (P-.l)=fa,’ (P.J) (i

Where f',tj (P )and P, are the polynomial of the region

R, and the pixel value at the position (s,1) respectively.

2.2. Membership Fuaction to Measure the Closeness
of the Region

Each pixel should be more compact i, more close to the
belonging region than other regions. The degree of
belongingness of a candidate pixel to a region is detenmined by
following the sirategy of k-ncans clustering nlgorithm.
Candidate pixe! joins in it9 nearest region and afiter joining the
center of that region is recomputed. The centroid of a region
R, can be dafined as

N B
C(R) ’Tq“?.:.pi(" {2)
§

Where N, and P,(i} represent the number of pixels and the ith
pixel gray level intensity ofthe jth region sespectively,

The membership function should reflect the relation " the more
close to a region the larger membership value the pixel should
have". So the mombership funcion 1., (P}, which

determines the degree of belongingness of a candidate pixel
P,, at s location (s,1) 10 a region R, ean be defined as

C(R,)-PF,,
= 122 &)

Where the constant D can be defined as difference of maximum
and minimum gray level intensity values of an image i.e. here D
equals lo 255, The maximum value of the membership function
will be always at the center of the region and the structure of the
membership function will be symmetrical around the vertical
line passes through the center of the region,
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2.3. Membership Functions for Spatial Relation

In the previous two sections the membership Functions have
been developed only based on the feature values ie. gray level
pixel intensities of an image. They donl consider any spatial
relationships of the pixels of a region, but there exists strong
spatial relations between the pixels of a region. Spatial refations
also represents the geometsic features of a region and a spatial
object contains two descriptors- feature and geometric [11).
There is a large amount of overlapping pixels between the
regions. Segmentztion does not produce good result without
taking into account of these overlapping pixels. The number of .
overlapping pixels can be tim downed by considering the
neighborhood relation among a candidate pixel and the
classified pixels of the regions i.¢. once we get the some region
pixels we can casily calculaste the nacighborhood relation
between the candidate pixel and the region pixels. Based on the
scighborhood relation the candidate pixe] can be assigned to the
appropriate cluster or group. The neighborhood relation can
mainly be defined using the three techuiques- fixed size
neighborhoods around candidate pixel, minimum spanning tree
and Voronoi tessellation cven though there are many ways to
define a ncighborhood relation [12). We are interested in fixed
size neighborhoods around a candidate pixel, as we need to
caleulate the number of pixels and their distances from the
candidate pixels inside the necighborhood area. The
neighborhood configurations of the pixels for =1, =2 and r=4
arc shown in the figures 2(s), 2(b) and 2(c} respectively [13]
where O, # and r represent the candidate pixel, neighborhood
pixels and neighborhood radius respectively.

# 4 8 ##

# # # #  # # # #
# O # # 0O # # & O # 4
# LI A # ¥ B #

# # d4 4 #

(@) r=| Mrr=2 )y =4 -

Figure 2: Neighborhood configuration

The number of neighbors would be (r+1)*for r=1

otherwise (r+§)* -1, The main task of the segmentation
is to divide the image into desired number of mutually
cxclusive homogeneous regions. It is thus assumed that
the variation of the pixe! intensities of a region is in a
limited extent but there is a sharp vatiation of the pixel
intensities on the boundaries of the regions that divides
the image into some ropions, We are interested in
determining the spatial relationships among the pixels of
a region. So the neighborhood system of 2 region can be
defined as, .

Definition 1 (Neighborhoad sysiem} A neighborhood system
with radius r.{(P,,,r} of a candidate pixel P,  is a set of all

pixels P, such that  C(P,.,9)={P |W(P,,.P)cr)A
(P, ~ P ) ST)} where distanced(P, ,,P,,) =|x~5|+|y—t],
P, is a 2D image pixel ai Cortesian coordinate (xy). and T is




the threshold, whick denotes the maximum pixel intensity
variation of a region .

Now it i3 nceded 10 define & membership function, which
considers the number of neighborhood pixels and the distances
berween the neiphbors and candidate pixel. A membership
function & of the spatial relation should possess two

characteristics; pa N where N depotes the pumber of

ighbo! i .
neighbors and pa FTRCH,

The summation of inverse distances of a region R, can be
defined as
N 1
Gu gtw’,..,r.p.,.)
Where N, =[5(P, 1)} = the number of neighborhood pixels of
the candidste pixel F,, inthe region R, and d,(P, P, ) is
the distance berween the ith pixel P, of the region R ; & the

“

candidate pixel P, , .
So considering the number of neighbors ( ¥ ) and their sum of
inverse distances (Gg’) from the candidate pixel (P, , ), the

membership function fye (P, ,,7)of the region Rcan

defined as
N;xG,

N
?‘.( 3%Giyy)

Where 90 is the desired number of regions of an image.

"Mj(Punr) = (5)

3. FOZZY RULE DEFINITION

The cffectiveness of the fuzzy rle plays the vital role for the
segmentation resell.  In this paper, a fuzzy rule is heuristically
defined using the threc membership functions defined in section
2 and the most wide used fuzzy IF-THEN rale siraciure.

The overall membership value p,, (P, ) of a pixel F,, for the
region R, which represent the overall degree of belonging to
the region R, can be define:: by the weighted avernge of the

values of the membership functions (P}, puj(l’,‘,) and

l"’h‘ks(Pn.r) -

w.l-'g.jﬂ'.,.)* wl"ll‘il' (F.)+ Wnll,.,(?...) (6)
WoeW W,

Where W,, W,and W, represent the weight of the

membership values for the pixel distribution, claseness to the

cluster cenlers and neighbor relation respectively. The overall

membership value ., {Pyy) is used in the antecedent
§

Hany (P )=

condition of IF THEN RULE and the rule can be defined as,

Definition 2 (Rule) IF | . (P,,) supports region R THEN
pixel P,, belong.r' toregion R,.
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#a;(P,) will give suppon 1o the region R, if

I-'-nj (P“) wriax l'lsm (Pu 1B Boasqy (Pu) veeer Hamey (Pu) }

where R indicates the number of region. As this is the only
sule, it is generalized one and can be applied in any type of
imape,

4. EXPERIMENTS

The proposed systern and FCM had been implemented using
MATLAB 5.3.1 (The Mathworks, Inc.). Two types of images
such ng light intensity (L1) shown in figure 1 (a) and X-ray
imsage of the human vocal tract shown in figure 4(a} were used
in the experiments. For FCM, the initialization of the cluster.~
center was done randomly. The maximum ntimber of iterations,
minimum amount of improvernent &nd the value of the fuzzifier
{m) were taken as 100, 0.00001 and 2 respectively. For our
proposed system, GFRIS the mermbership function defined in
section 2.1 was developed using the clusters produced by FCM
and their center values were used to initialize the centers of the
clusters requited to define the membership function described
in section 2.2, The values of weights and the threshold were
determined empirically and taken as W, =1, W, =2, W, =1,
T=25,and W, =1, W, =15, W, =1, T=30 for cloud and X-
ray image of the human vocal tract respectively. The segmented
results of the original cloud image (figure 1(g)) for two regions
namely cloud (R, ) and urban scene (R, ) produced by FCM

aad GFRIS arc graphically displayed in the figure 3.

():FCM - (0):FCM  (Cy: GFFIS (f:GFRIS
for R, for R, for R, fore=l . forR,forr=|

(e):GFRIS  ():GFRIS (e} GFRIS (f): GFRIS for
for R, for  for R,for for R forr=4 R, forr=4
=2 2

Figure 3: The segmented results of the cloud image into two
regions produced by FCM and GFRIS

L g

From the results it is visually shown that GFRIS separated
almost the whole cloud from the imsge and produced
significantly better results than FCM because FCM did not
consider the spatial relationships among the pixels of a region.
GFRIS aiso showed better rtesults for - larger .values of
neighborthood radius r, because the pixels of R, (cloud) are
homaogencous and very much spatially correlated.

Another experiment was pesformed using an X-ray image of the
human vocal tract shown in figure 4(a) and its segmentation
results into two regions namely human vocal tract (R, ) and

background (R, ) produced by FCM and GFRIS are presented

in the figures 4(b} — 4(i). It is visually evident that the proposcd
technique GFRIS considersbly outperformed FCM, There are
no isclated pixels at oll in the regions produced by GFRIS
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whereas the regions (figures 4(b) ~4(c)) producea by FCM
contain significant amount of isolated pixels,

{a): x-ray imageof  (b): FCM for R

(c): FCM for R,
human vocal tract

o
(f): GFRIS for
R, forr=2

(d): GFRIS forR,  (c): GFRIS for
for r=1 R, forr=l

(@:GFRISfor R, () GFRIS for @) GFRIS for R,
for r2 R, forr=4 for r=4

Figure 4: X.ray image of the human vocal wact and its results
for two regions produced by FCM and GFRIS

This also ensures that the spatially related pixels had been
classified successfully by GFRIS. The image shown in figure
3(a) contains two regions such as human vocal tract (lips,
tongues, teeth) and background. The soft part of the human
vocal tract is not clearly visible and has low local contrast
pixels [14]. Almost the whole of the vocal tract had been
successfully separated by GFRIS using r=4, which ensures the
larger values of r, the better representution of the spatial
relation. It also considered the underlying meaning of data
better while FCM did not consider at all,

5. DISCUSSIONS AND CONCLUSION

In this paper a general fuzzy rule based image segmentation
technique has been proposed. The proposed technique includes
the spalial relationships among the pixels. It is also image and
application independent like the standand fuzzy clustering
algorithm FCM. The results have shown that it has represented
the spatin) relationships as well as the underlying meaning of
the data better than FCM. Only one fuzzy rule is capable to
classify all the pixels, The stractures of the membership
functions have been aulomatically detived and there is no need
of defining the parameters. It is visually apparent that this
system has shown promising result over FCM,

The values of the weighting factars W, & W, and W,

imposes the importance of the feature based and spatial
information. There is a trade-off between feature based and
spatial information. It depends on the application, which one is
assigned to how much importance. It is apparent (hat feature-
based infarmation should be given more emphasis than spatial
information s it represents more human visual perspective than
spatial information, Another parameter is the value of the
threshold T, which represents the maximum amount of pixel
intensity variation between neighbor and candidate pixels. Tt is
intuitively determined that the suiteble range of the value of
W, and T &re 1.5 to 2, and 25-30 respectively and others are 1,

1580

K also needs more rescarch for determining the suitable values
of weighting factors and the threshold. As the proposed
technique is Fuzzy rule based technique, il is capsble to
incorporate any types of atiributes of any speeial application. It
is also possibie 1o add membership function from the high level
semantics of an object for object based image sepmentation.
Like FCM the proposed technique needs to provide ihe desired
number of regions. It also needs more investigation for
autermatically determine the optimum number of regions.
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Absiract

Generic fuzzy rule based technique for image
segmentation is a fuzzy rule based, application and
image independent image segmenitation technique.
Fuzzy clustering algorithms are the most popular and
widely used in image segmentation. This paper
presents a rigorous performance analysis of fuzzy
clustering algorithms and generic fuzzy rule based
technique for image segmentation using light
intensity and medical images. A gquantitative
evaluation is also conducted based on @ standard
segmentation  evaluation technigue called the
empirical discrepancy method. Generic fuzzy rule
based technique for image segmentation outperforms
both fuzzy clustering algorithms FCM and PCM for
both types of images. It also represents the
underlying meaning of data better. PCM shows
slightly better results and underlying structure of
data than FCM.

Keywords: Fuzzy Rule, Image Segmentation, Fuzzy
Clustering, and Generic,

1 Introduction

Classical so-called “crisp”, image
segmentation techniques while effective when an
image contains well-defined structures, such as edges
and regular shapes, do not perform nearly so well in
the presence of ill-defined data. In  such
circumstances, the processing of such images that
possess ambiguities produces fuzzy regions. Fuzzy
image segmentation techniques can cope with the
imprecise data well and they can be classified into
five classes: fuzzy clustering, fuzzy rule based, fuzzy
geometry, fuzzy thresholding, and fuzzy integral
based image segmentation techniques [1] but among
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them the most dominant are fuzzy clustering and §
fuzzy rule based segmentation technigues. The mos; §
popular and extensively used fuzzy clustering _'
techniques are: fuzzy c-means (FCM) [2-3) an? |
possibilistic c-means (PCM) algorithms [4]. Fuzzy
rule based image segmentation technigues cap
incorporate  human expert knowledge, arc Jess |
computational expensive than fuzzy clustering and |
able to interpret linguistic as well as numerc
variables [5]. But they are very much application §
dependent and very difficulty to define juzzy rules
that cover all of the pixels. In most techniques, the
structures of the membership functions are predefined
and  their parameters are cither manually or
aute natically determined (5-9]). Generic fuzzy rule
based technique for image segmentation (GFRIS) isa
general fuzzy rule based image scgmentation
technique, which is application and image
independent. It also automatically derves the
structures of the membership functions and
incorporates the spatial relation information [10-11].
The performance evaluation of image segmentation is
most critical task of computer vision system. This
paper carries out an extensive comparative study of
the performances of fuzzy clustering algorithms and
generic  fuzzy rule based technique for image
segmentation. It employs the more suitable and better
objectively assessing segmentation  evaluation
method, discrepancy based on the number of mis-
segmented pixels, one of the empirical discrepanc:
methods [12] using two quite different types of
images: fight intensity and medical image (x-ray of
human vocal act).

Section 2 gives a bref of the techpique of
generic  fuzzy rule based technique, and the
underlying theoretical concepts of FCM and PCM.
The techniques of evaluation ard experimental resulis
are given in section 3. Finally some conclusions are
provided in section 4.
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A brief description on generic fuzzy rule
. 4 iechnique for image segmentation (GFRIS),
c-means and possibilistic c-means are given in

e ;"M"“'v”:uww -

Generic Fuzzy Rule Based Technique For
Image Segmentation (GFRIS)

: The GFRIS technique uses three types of

bership functions 10 respectively represent the
yegion pixel distributions, the closeness 1o their
“ and the spatial relations among the pixels in a
Soarticular  region.  Each  membership  function
imaaleasses a membership value for every region,

Which indicates the degree of belonginz to that
Fekrticular region [10,11]. It also uses a single fuzzy
R etle. Details of the algorithm applied to automatically
\sfine the membership function and fuzzy rule are

gscribed in the following sections.

This section outlines the stages used to
Bgprautomatically define the membership function
: %Ijgluding its stucture from the region pixel
1 distributions. The three steps required to define the
Riegimembership function are: -

2 Classify the image into a desired number of
regions using manual segmentation or
automatically by applying any fuzzy
clustering algoritl.ms.

G.cncrau: the gray level pixel intensity
histogramn for cach region and normalise the
frequency for each gray level into the range
013

4 Approximate the polynomial for each
region, This polynomial represents the
membership function for that particular
Tegion and the value of the polynomial for
cach gray level denotes the membership
value of that particular gray level value.

The degree of belonging of a candidate pixel

Analysis of Fuzzy Clustering and A Generic Fuzzy Rule Based Image Segmentation Technique

(the pixel 10 be classified) to a region is determined
from the respeciive membership function. The
membership function Ho,, (P, ) of the regionR for

the pixel distribution is defined as

Hpr, (P,.,)=fRJ(Ps‘,) )]

where f, (P, )and P, are the polynemial of the

region R and the pixel at position (s,1) respectively.

2.1.2 Membership Function to Measure the
Closeness of the Region

This tvpe of membership function represents
the similarity between the candidate pixel and the
centre of a region based on the gray level intensity,
and is based upon a Euclidean distance measure. The
degree of belongingness of a candidate pixel to a
region is determined by following the strategy of k-
means clustering algorithm. Candidate pixels join
their nearest region and after joining, the centre of
that particular region is recomputed. The centroid of a

region R, is defined as

1M
C(Rj)=*§fzpj(i) (2)
] ji=l
where N, and Pj(i) represent the number of pixels

and the i® pixel gray level intensity of the j region
respectively.

The membership function should reflect the
axiom that " the closer to a region, the larger the
membership value a pixel should have”. So the
membership function ucgj(P”), which determines

the degree of belongingness of a candidate pixel
P, at alocation (,7) to aregion R can be defined as

le®~Py,|

= 3

Her, (P =1~

where the constant D is defined as the difference
between the maximum and minimum gray level
intensity values of an image, so for an 8 bit gray scale
image, D=2535. The maximum value of the
membership function will always be at the centre of
the region and the struciure of the membership
function will be symmetrical about the vertical line
that passes through the centre of the region.

emat . . .
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2.1.3 Membership F, unctions for Spatial Relation

In the previous sections, the
functions have beep developed based oniy on feature
values i.e. gray leve] intensities of a particular image,
and thus did not consider any spatial relacionships of
the pixels within an idemified region. Clearly, there is
an expectation that strong spatial relationships wiil
exist between neighbouring pixels within a region,
while at the same time there also could be a
considerable number of overlapping pixels between

the regions. Good SEgmentation cannot therefore be
expected unless these overlapping pixels are taken
into account. By considering the neighbourhood
relation between a candidate pixel and the classified
pixels of the regions, the number of overlapping
pixels can be reduced, Based on the neighbourhood
relation the candidate pixel can be assigned to the
approprizte groun. In this Paper, we concentrate
especially on fixed size neighbourhoods around a
candidate pixel. The neighbourheod configurations of
the pixels for r=1, =2 and r=4 are shown in the

figures 1(a), (b) and (¢) respectively, where O and &
Tepresent the candidate apg neighbourhood pixels

membership

Tespectively,
# oy sy
# # % # ## B o# oy
# O # # O # ## 0w ¢
# # # ¥ #HE e
## o #
(a) r=] (b) r=2 {c) r=4

Figure 1; Neighbourhoog system

Clustering and A Generic Fuzzy Rule Based Image Segmeniation Technique

N,xG,.
”.vnj{P..vr) Sg— ?

E(N,XGH)

where N ; =fg" (P,_‘.r)l' s the humber of
neighbourhood pixels of the candidate pixe] F, in

the region R, (Gx,) is the sum of inverge pixel

distances, and R is the number of regions iy g,
image to be segmented.

The membership function of a region
defined in (4) considers the number of neighbours
and their sum of inverse distances for alj regions. The
greater the number of neighbours in 2 region, the

larger the value of the membership function wil] be
for that region,

2.1.4 Fuzy Rule Definition

The overall membership value Han(F,) of

a pixel P, for the region R,, which represents the

overall degree of belonging to the region R ;» Can be
defined by the weighted average of the values of the
membership - functions Mox; (P, ), Hexy (P} and

p’.\‘nj (Ps.t ) b

(.P )_ ‘V%ij.l)+\vbuﬂjm.i)+wﬂl.\‘nj(at) 5)
T W+ W, W, (

Hayy

T S A RS L TR T et o

The neighbourhood System of a region is defined as,

Definition (Neighbourhopd system) A
neighbourhood system with radius r,{(P, 1) of q

candidate pirel P is a set of alf pixels P,, such

that &P, .r)= (P,  1(d FopRISDA(P,~B) <T
M where distance d(P,,.F.) =|x =l +fy -], P.isa

2D image pixel as Cartesian coordinate (x, Y), ris the

radius of the neighbourhood system, and T is the
threshold .

The membership funciion Hax; (R, r)of the region
R, is det_'méd as

70

relations re

Definition 2 (Fuzzy Rule) IF Ho, (P,
region R THEN pixei P, belongs 1o region R

where W, W,and W, are the weighting factors of
the membershi

p values for the pixel distibution,
closcness to the cluster cenwes ang neighbour
spectively. The overall membership value
u“ (B,,) is used in the antecedent condition of the

J

fuzzy IF.-THEN rule, which is defined as,

) Supports

Mai (PL) will give Support to the regjon R, if

‘“‘“j (P‘.t J '—'max{ p“l (P,‘. ) ’ “m; (P‘_t )., P‘AR-){ (P“) ]
where R Indicates the number of reg

ions,
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( .

2.2 Fuzzy ¢-Means (FCM) Algorithm

FCM 15 the most popular fuzzy based
clustering technique. Developed by Bezdek [3], it is
still being used today in image segmentation. It
performs classification based on the jterative
minimization of the following objective function and
associated constraints [2).

LeVX)=53 0, Jax,) @
0<p, €t iefl.c) and je{l.n) )
gpﬂzl je{l.n) @®)
0<§pu<n ie{l..c} %)

where ¢ and n are the number of cluster and data
respectively, u is a fuzzy partition matrix containing

membership values [ £/}, V is a prototype vector
containing the values of cluster centres [V, ], mis the
fuzzifier (l<m<e<), d is the distance between
X, & v, , and X is a data vector. The foliowing two

equations are derived after minimization of the
function f_ (4, V,X) in (6) with respect to J1 and V.

1
5: d(x,s"-‘) 1)
£y 6(x,.v,)

()%,

vo= (1)

T

J=1

py= (10)

The set of cluster centres is initialised either
randomly or by an approximation method. The
membership values and cluster centres are updated
through an iterative process until the maximum

change in f; becomes less than a predefined
threshold. The selection of the value of m is
important, as if m=1, then FCM produces a crisp
instead of a fuzzy pariitioning. Note, that if any of
the distance values d(x,,v,) is zero, then equation

(11} is undefined.

2.3  Possibilistic ¢-Means (PCM) Algorithms

FCM arbitrarily divides the data set based on
a selected number of clusters. The membership values
generated by FCM represent the degrees of sharing.
In order to eliminate the constraints in equation (8),
Krishnapuram and Keller first introduced PCM
whose membership values represent the degrees of
typicality, instead of degrees of sharing and clusters
are independent with each other {4,13]. They
modificd the FCM objective function and defined the
PCM objective function as,

£

[V X)= zz(}s“)md’(xj.\'l)+

B
iml el

3 0-n) a2

sl

with the constraints being

Osp, =1ie(l.cland je{l..n} (13)

0<Ep <n ie{l.c) (14)
J=l

max p, >0 je{l.n} (15)

where 1, is the scale parameter, which determines

the zone of influence of a point and other parameters
are as defined in section 2.2. The following are
obtained after minimizing the function f_ (1, V,X).

1

Hy= , (16)
1+[d:(xl'v|)J {2~}
1,
3,
v, = an
E(_uu,)‘”

o

The membership value (M) and prototype

centre (v, ) are updated using the equations (16) and

(17) through an iterative process. As with FCM, when
fuzzifier m=1, PCM produces a crisp partition., PCM
offers more promising results in presence of noise but
it is highly dependent on initialisation and estimation
of the scale parameters. The output of FCM can be
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used for initizlisation and scale estimation but FCM is
very sensitive to noise. ¢

3 Experiments and Discussions

GFRIS, FCM., and PCM were implemented
using MATLAB 5.3.1 and (wo different example
images were used in the experiments, namely a gray
scale image showing a cloud and urban scene shown
in figure 2(a) and a medical X-ray image of the
human vocal tract shown in figure 2(d).

g

- :.v

(a) Cloud (b Ref. image (<) Ref. image
image for cloud for urban
scene

(d) Human (e) Ref. (D) Ref. image
vocal tract image for
for vocal tract background
Figure 2: Original cloud and x-ray of human
vocal tract and their reference images

For FCM the initialization of the cluster
centre was performed randomly. The inaximum
number of iterations, the minimum level of
improvement and the value of the fuzzifier (m) were
empirically evaluated as 100, - 0.00001 and 2
respectively,

For PCM, the initialization of the cluster
centres used the output of the FCM. The value of
scale parameter 1), was taken as the variance of the

cluster { produced by FCM [13).

For GFRIS, the membership function
defined in section 2.1.1 was developed using the
clusters produced by FCM and their centre values
were used to initialise the cenires of the clusters
required to define the membership function, as
described in section 2.1.2. The respective values of
the weights and threshold were determined
empirically as W, =1, W, =2, W, =1, T=25, for the
image in figure 2(a) and W, =1, W, =15, W, =1,
T=30 for the X-ray image in figure 2(d). The
segmented resuits of the gray scale image for the two

regions (cloud, R;and urban scene. R, ) produced by

FCM. PCM and GFRIS respectively are displayed iz
the figure 3.

(i) R, =4
Figure 3: The segmented results of the cloud image
with two regions by FCM ((a) and (b)), PCM ((c)
and (d)) and GFRIS ((¢) to (3))

The results clearly show tha GFRIS
separated aimost all the cloud from the image and
produced significantly betier results than both FCM
and PCM. FCM and PCM gave approximately equal
performance since as alluded carlier, both techniques
do not consider the spatial relationships between the
pixels comprising each region. GFRIS also exhibited
better results for larger values of neighbourhood
radius r, because the pixels of region 1 (cloud) are
homogeneous and possess very strong spatial
correlation,

The quantitative evaluations were performed
using one of the most powerful empirical discrepancy
methods [12] based upon the number of wrongly
segmented pixels. The confusion matrix C, is a
RbyR squarc matrix where R represents the
number of segmented region and C, denotes the

numnber of j™ region pixels classified as region i by
scgmeniation. Type I ervor, errorf is defined as,

iy
2.Ci -Gy
error]; = L2 x100 (18)

R
2.Ci
)=

while a Type Il error, errorll is defined as,
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R
(Zcij"cii ]
= (<100 (19)

R R R
[Ejécii"zcji]

i=

erorl]; =

The reference images in figure 2 were again
used for evaluation purposes. The results of the cloud
image segmentation with respect to reference images
(figures 2(b) and 2(c}) are shown in Table 1,

Table 1: Percentage errors for cloud {region R;)
segmentation in figure 2(a).

Method Error Type | Ecror Type ll
FCM 28.7335 17.4194
PCM 27.1375 18.3409

GFRIS r=1 8.8332 20.4783
GFRIS r=2 1.9749 21.4497
GFRIS r=4 2.0388 23.9742

In the above table, the image is segmented
into two regions, so the error rates refer to incomrect
segmentation for region R, (clouds). Since the error

rate of one region will be the inverse of the error rate
of other region, the resulis reveal that GFRIS
provides superior performance for region R,, which

- indicates that GFRIS successfully separated the cloud

from the image and represents the underlying
structure of data far better than FCM and PCM. The
error rates of GFKIS for type II error are higher than
for both PCM and FCM because the pixels in this
region do not have good continuation i.c. they are
abruptly changing, which oppose a strong spatial
relation. In fact, the urban scene is not a single
object. Good continuation is one of the seven
properties of grouping of the visnal elemeants [14).
The average error rates of the three techniques are
shown in the figure 4.

This graph shows that the average error rates
of GFRIS are much less than those of PCM and FCM.
Average ervor rate of GFRIS for r=4 is higher than
that of for r=2 because there is no sharp boundary
between cloud and urban scene. For this case, GFRIS
interpreted some sections of the urban scene as cloud
for r=4. PCM again showed slighily better
performance than FCM.

Percentage o!
Average Errar
vl
o

S

0 + " * -
FCM  POM  GFRIS GSRAIS  GFAIS
r=1 rs2 tad
Technique

Figure 4: Average error rates of PCM. FCM and
GFRIS for cloud image scgmentation

A second series of experiments were
performed using a medical x-ray image of the human
vocal tract (figure 2(d)). The segmentation was again
for two regions, namely the human vocal tract (region
R;, figure 2(e)) and general background (regionR, ).

The comresponding results produced by FCM, PCM
and GFRIS are presented in figure 5.

(C) Rl r=]

NS
{HR, r=4 (j)R,r=4

Figure 5. Segmented resulis of human vocal wact
intc wwo regions produced FCM ((a) and (b)),
PCM ((c) and (d)} and GFRIS ((e) 10 ()

It is visually evident that the proposed
technique GFRIS considerably outperforms both the
FCM and PCM techniques for this image type as
well. The image (figure 2(d)) contains two regions,
the vocal tract (cornprising the lips. tongues, teeth,
aural cavity) and general background. The soft part of
the human vocal tract is not clearly visible and has
low local contrast pixels {15). Almost the entire
vocal tract had been successfully separated by GFRIS
ustng r=4, which confirms that the larger values of r,
provide a betier representation of the spatial relation.
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Here PCM showed slightly better performance than
FCM. The error rates of human wvocal tract
segmentation with- respect 1o the reference images
(figures 2(e) and 2(f)) are shown in the table 2. Both
types of errors for human vocal wact segmentation are
less than FCM and PCM except the error rate of error
type II of GFRIS using r=4. This is caused by the
fact there is good continuation of low contrast pixels
of human vocal ract with the background and it takes
some portion of the background as a part of human
vocal tract for higher order of spatial relation i.e. r=4.
The numerical results and average ervor rates of the
hurnan vocal tract segmentation are shown in Table 2
and figure 6 respectively.

Table 2: Error percentage for human vocal tract
(region R;) of x-ray of human vocal tract

segmentation
Method | Error Type l| Error Type i
FCM 429797 7.5045
PCiM 38.409 7.5716
GFRISr=1{ 38.0529 7.477
GFRISr=2 ] 30.1424 7.47776
GFRIS r=4 3.903 14,5789

All the average error rates for GFRIS are
Jess than those of FCM and PCM. The ervor rate is
decreasing rapidly for higher orders of spatial
relation, because the pixels of both regions are almost
homogencous. The error rate of FCM is higher than
PCM.

ustering and A Generic Fuzzy Rule Based Image Segmemation Technique

For all of the above experiments the numb:-§
of regions to be segmented was two. It is impurtanf}
however to use a larger number of regions in order 1,
check the underlying meaning of data. To achiey
this. another experiment was performed using (8
above techniques identifying three regions 1o he
segmented. From the experimental results, it wy
shown that GFRIS considered the underlying
meaning of data better than FCM and PCM and oy B
performed both of them for both types of images fo;
three regions. PCM again showed berter underlying §
structure of the data than FCM for both types of
images when three regions were 1o be segmented

4 Conclusions

In this paper both quantitative apg
gualitative performance analysis of FCM, PCM and
GFRIS have been performed based on the standard |
segmeniation  evaluation  method,  empirical §
discrepancy method using two different types of |
images. Both results proved that generic fuzzy rule
based technique for image segmentation (GFRIS) |
provided significantly better results than either FCM
or PCM. The reasons for this are that GFRIS has
considered spatial relationships very well and hence
1 :presented the underlying meaning of data better
than both FCM and PCM. PCM has considered the
underlying structure of data in some extent but FCM
has arbitrarily divided the data into region without
considering any underlying meaning of data.

The vaiues of the weighting factors W,,
W, ., and W of GFRIS were determincd empirically.

More research needs to be undertaken in order to
determine the suitable vajues of both the three

30 o weighting factors as well as the threshold.

_ g8 25 o
g£e5 2 Finally, as the proposed technique is fuzzy
gaum qof E~ rule-based, it is capable of incorporating any type of
: £% 51 atribute of any special application. It is thus possible

a 0 Lt AP e PRI to add membership tunctions from the high level

. o POw G GRS GRS semantics of an object for object-based image
Technique segmentation, such as in MPEG-4 applications. Like

FCM and PCM, the GFRIS techaique needs to be

: P O PR provided with the desired number of regions to be _;
Figure 6: Average emor rates of PCM, FCM and segmented. It also needs further investigation for 1
GFRIS for human voral tract segmentation automatically deienmining the optimal number of
: regions.
| 9
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ABSTRACT

The generic fuzzy rule-based image segmentation technigue
(GFRIS) does not produce good results for non-homogeneous
regions that possess abrupt changes in pixel intensity, because it
Jails 1o consider two important properties of perceptuol
grouping, namely surroundedness and connectedness. In this
paper a new technique called extended fizzy rules jor image
segmentation (EFRIS) is proposed, which includes a second rule
to that defined already in GFRIS, that incorporates both the
surroundedness and connectedness properties of a region’s
pixels, This additional rule is based on a spilt and merge
aigorithm and refines the ouipur front the GFRIS technigue. Two
different classes of image, namely light intensity and medical X
rays are empirically used (o assess the performance of the new
technigue. Quantitative evaluation of the performance of EFRIS
is discussed and contrasted with GFRIS using one of the
standard segmentation evaluation methods. Overall, EFRIS
exhibits significantly improved results compared with the GFRIS
approach,

1, INTRODUCTION

Image segmentation is the most important and difficuit task of
digital image processing and analysis systems, due to the
potentially inordinate number of objects and the myriad of
vartations among them. The most intractable task is to define
their properties for percesuzt grouping, a demand that requires
human expert knowledge be incorporated to achieve a superior
segmentation result. Fuzzy rule-based image segmentation
systems can incorporate this expert knowledge, but are very
much application domain and image dependent. The structures
of all of the membership functions are manually defined and
their parameters are either manually or automatically derived [1-
5). Karmakar and Dooley {6-8] proposed a novel generic fuzzy
role based technique for image segmentation {GFRIS) by
addressing these aforementioned problems. The technique
however, does not work very well for image regions that are
non-homogencous and have sharp variations in pixel intensity.
The eminent psychologist Gestalt stated that visual clements are
_grouped perceptually upon the principles of: proximity, closure,
simifarity, good continuation, common fate, surroundedness,
relative size and symmetry (9], The proximity, similarity and
good continuation elements are all reflected in GFRIS. In this
paper an extended fuzzy rule-based image segmentation (EFRIS)
technique is proposed by integrating a rule, based upon the
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surroundedness and connectedness properties of region’s pixels
in combination with the GFRIS rule. The performance analysis
of both methods is conducted by applying a superior objective
segmentation evaluation technique called the "discrepancy based
on the number of mis-segmented pixels”, which is one of the
powerful empirical discrepancy methods [10). This method is
subsequently applied to two different classes of image: light
intensity and medical x-ray of the human vocal tract.

Section 2 provides a brief overview of the technique used to
define the fuzzy rules. The processing steps of the proposed
methods are presented in sections 3. The evaluation and
experimental results are discussed in section 4, with conclusions
provided in section 5.

2. FUZZY RULES

Two fuzzy rules are used for two different purposes. The first
represents the similarity, proximity, good continuation and
spatial information of a region, while the sccond considers the
surroundedness and connectedness of a region's pixels. Both
rules are described in the following sections,

2.1. First Rule

Full details of this ruie and its membership functions are given in
[6-8]. It uses three membership functions to represent the region
pixel distribution {1, j(I-‘,,.} ) closeness of a region

( Ken; (P..)), and spatial information among region pixels
(uNR,(pﬁ,l) )' Hemﬂ ] RJ ] and P

are the membership function,

j™ region and the pixel at location (s,t) respectively. The two
membership functions W, (P} and pey;(F,,) represent the

similarity based on gray level pixel distribution and intensity
respectively, while the third . (P..) characterizes the

proximity, good continuation and spatiz! information of a region,
The overall membership value 1,q,(P,,) of a pixel P, for the

region R, which represents the overall degree of belonging to
the region R, is defined by the weighted average of the values
of the three membership functions Ppy (P, s Ke;(P,, ), and
uunj(Ps.:) .

Witpn, (P} + Watteg (B )+ Wik, (P ) )
W. + W; +W3

Pak,("-.;)’
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where W), W,and W, represent the weightings given to the

respective membership values for pixel distribution, closeness to
the cluster centres and neighborhood relation. The rule is defined
as:-

Definition 1 (First Rule) IF AR’,(P,',) supports region
R THEN pixel P, belongs to region R ;.

pARj(Ps_,) will give support to the region R,  if

BaR, (Fs ) =max{ B (F,,), Har, (Pse) oo MRy (Pya) )}

where R indicates the number of regions.
2.2. Second Rule

The second rule deals specifically with two perceptual properties
of a region, namely surroundedness and connectedness. This rule
is pipelined with the above rule, so that its output is refined
using the surroundedness and connectivity properties of a region
based on the split and merge aigorithm. If the segmented regions
produced by the first rule are denoted as R; where j=1... R,

then all segmented regions (every R j) are split into a number of
objects using 4-connected neighborhood property. Following
the splitting, region R; = iOlj,Ozj,....O,,jj} is a set of objects
where o,jnoz,-n,...,no,,jj =0 and n;represents the number
of 4-connected neightorhood objects in region Rj;. The main

object of a region Rj, 0mj ;=05 for

|Oij| = max{loljl;loﬁl""‘ o“ij

a set i.e. the number of pixels beionging 10 an object. The
membership function for the surroundedness of an object (Oij)

} where | |is the cardinality of

surrounded with 2 main object { Gy « 7 15 then defined as:-
Hso, (04 Om, k) = il @
(C00m of
where nj;is the number of pixels of an object Qy;, inside the
main object O, \ . The contour of the main object is determined

by constructing the convex hull for that object. The merging
operation is performed by the following rule:-

Definition 2 (Second Rule) IF Mso, (O Op,x )2Th AND
izmy Akej
Oy is 8-connected neighborhood with Oy,  THEN Oy
‘—v——l
izm;akej
merges with  Op,
._"V-"
izm; Ak#)
Where i#mjak#j cnsures that an object Oy is not a main
object of its region R; and merges with a main object of another

region. Th is a threshold, which defines the degree of
surroundedness used in the experiments,

3. SEGMENTATION STEPS

The segmentation consists of the following steps:-
Step 1:  The image is initially scgmented using the first rule.

Step2: [Each segmented region is spilt into a number of
objects based vpon 4- connected neighborhood. The
main object, which is the object that contains the
maximum number of pixels of each region, is then
determined.

Step 3:  Objects are merged with a main object of other regions
based on the second rute (see section 2.2). Once an
object is merged, the merging algorithm repeats for all
other objects belonging to the same region that were
previously surtounded and not connected to the main
region.

4. EXPERIMENTAL RESULTS

Both the new EFRIS and GFRIS systems were implemented
using MATLAB 5.3.1 (The Mathworks, Inc.). Two different
image types were uscd in the experiments, namely a light
intensity gray-scale image shown in figure 1(a) which comprises
on¢ homogeneous and one non-homogeneous region, and a
medical X-ray of the human vocal tract shown in figure 1(d),
which contains two separate homogeneous regions.

(d)
Figure 1: Original cloud scene, X-ray of the human vocal tract
and their reference images: {a) Cloud image, (b) Ref: image for
cloud, (c) Ref: image for urban scene, (d) Human vocal tract, {e)
Ref: image for vocal tract, (f) Ref: image for the background

N

As alluded previously, quantitative evaluation of the
sepmentation process was achieved using discrepancy based on
the number mis-segmented pixels [10]. The confusion matrix C,
is an RbyR square matrix where R represents the number of
segmented regions and C;denotes the number of i region

pixels classified as region i by the segmentation process. For the
i region, type I eror, erorf, and type W emor, emorl], arc

defined as:-
%
2.C;i -Cji
error]; = ! 5 x100 (3)
X.Cii
=

1100 -




R
(glcij"cii]

errorll e p
{Z 2Ci-2 C.ii]

i=lj=l j=l

x100

For both GFRIS and EFRIS, the membership function for
region pixel distribution o (P, ) was developed using the

clusters produced by the fuzzy c-means (FCM) algorithm [11}]
and their centre values were used to initialize the centres of the
clusters required to define the membership function for closeness

of a region ( uuj(P,_‘) ). The values of weights and the threshold
were empirically determined as W, =1 W, =2, W =1,
T=25,and W, =1, W, =15, W, =1, T=30 for the cloud and
human vocal tract images respectively, The neighborhood radius
(r) was taken as 1, 2 and 4. The threshold Th was empirically
selected as 0.8, The segmented resuits of the cloud image (figure
1(a)) into two regions namely, the homogenous clouds (R;) and
non-homegenous urban scene (Rj ) produced by GFRIS and

EFRIS are shown in figure 2,

@: Ry, =1 G)Ry, L

: R, r=2 (@ Ry,r=2 (kkRi,r=4 ()R, r—4

Figure 2: The segmented results of the cloud image into two
regions by GFRIS (a) to (f) and EFRIS (g) to ()

The numerical segmentation results of cloud image
segruentation with respect to reference images (figures 1(b) and
1{c)} are shown in the following table 1.

Table 1: Error percemtage for cloud (region R} of cloud image
segmentation

Metho¢ | ErrorI | Eror 11 | Method | Ermorl | Error 11
GFRIS =1 | 8.8332] 20.4783| EFRIS r=1] 8.8332 12.9107
IGFRIS =2 | 1.9749] 21.4497EFRISr=2 | 1.9749 13.4333
IGFRIS r=4 2.0388l 23.9742EFRIS =4 2.03081 17,7535

In table 1, only the error rates for region R, are shown
since the error rates of the other region R will simply be the
reverse order of region R;. The segmentation results for the

cloud image using GFRIS show that region R; ie. cloud
{figures 2(a), 2(c) and 2(e)) contains a large number of
misclassified pixels from region R,, the nen-homogencous
urhan scene region, which has sharp variations in pixel intensity.
Type 1! error rates for region Rjusing GFRIS (Table 1) are
higher than type 1 error rates. Almost all of the misclassified
pixels, except the text caption were comrectly clascified using the
second rule of EFRIS (figures 2(g)-2(1)). The type 1 emors of
region R, for EFRIS were caused almost exclusively by the text
caption, The average error rates for both techniques are
graphically shown in figure 3.

—4—GFRIS
—8—EFRIS

m

B
o

Averge Error
-l —
S th © O

1 2 4
Neighborhood Radius

Tigure 3: Average error rates of GFRIS and EFRIS for cloud
image segmentation

From figures 2 and 3, it is cl2ar that EFRIS achieved
significant improvements over the GFRIS approach. The average
error rates of both techniques for r=4 are higher than that for =2
because there is no sharp boundary between cloud and urban
scene. As a vesult, some portions of the urban scene have been
interprefed as part of the cloud segment for higher orders (r=4)
of spatial information,

A second series of experiments was performed using a
medical X-ray image of the human vocal tract {figure 1(d)}. The
segmentation results for the twe separate regions namely, the
human voca! iizet R, figure 1(e)) and background (Rj).

produced by both GFRIS zud EFRIS are given in figure 4.

=1 (B:R,, =1 (c): Ry, =2 (d): Ry =2

@hhm (D:Rp,r=4  (g) Ry, =1 (h):Ry, r=l

G): Ry, =2 () Ry, m2 (k): Ry, =4 ()R, rs4

Figure 4: Segmented results of human vocal tract into two
regions produced by GFRIS (a) to (f) and EFRIS (g) to (1)
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The emor and average error rates of human vocal tract
segmentation with respect to the reference images (figures 1(¢)
and 1(f)) are shown in Table 2 and figure 5 respectively. The
segmented results (figures 4(g)-4{j} and Table 2) usirg EFRIS
for =1 and =2 are not significantly beiter compared with
GFRIS, because there are no meaningful objects of a region that
are surrounded and connected with other region and vice versa.
EFRIS demonstrated superior performance compared with
GFRIS for r=4, as depicted in figures 4(k), 4(1) and 5.

Table 2: Ermror percentage for human vocal tract (region R;) of
*-ray of human vocal tract segmentation

Method [ErrorI [Brroril | Method [Emorl [Ermor 1l
GFRIS r=1| 38.0529%4 7.477|EFRIS r=1| 37.7601 7.47341
GFRIS r=2| 30.1424 747776/ EFRIS r=2] 297274 7.4772
GFRISr=4]| 3903 145789 EFRIS =4 19118 14,3982

GFRIS was unable to separate a small scction of the human
vocal tract (figures 4(¢) and 4(f)) because of the very low pixel
contrast, however EFRIS was able 1o successfully separate the
entire human vocal tract (figure 4(k}}.

23 1
19 1
15 -

Average Error

11 1

1 2 4
Neighberhood Radius

Figure 5: Average emror rates of GFRIS and EFRIS for human
vocal tract segmentation

Both the error and average error rates decrease rapidly for
higher order of spatial information because the both regions are
hemogeneous,

5. CONCLUSIONS

This paper has outlined the development of a generic fuzzy rule-
based image segmentation technique by incorporating two of the
most important perceptual properties of region grouping namely,
surroundedness and connectedness. A new technique called the
extended fuzzy rules for image segmentation (EFRIS), has been
proposed and both 2 quantitative and qualitative 2nalysis
underiaken to compare it with the generic approach (GFRIS),
The experimental results have shown that EFRIS cutperforined
GFRIS, despite being more computationally expensive because
of the additional rule integrated into the GFRIS model. The
weighting factors and the thresholds were empirically
determined, though a fully automnated technique is cure ntly
being developed to determine these parameters, Since the

1102

proposed technique is fuzzy rule based, it is capable of
incorporating any type of attribute of any special application
domain. [t is possible to add membership functions for high level
semantics of an object for object based imzge segmentation,
More research however is required in order to sutomatically
determine the explicit number of regions in an image.

ACKNOWLEDGEMENT

The authors would panicularly 1ike to acknowledge and thank
Dr. Manzur Murshad for his support and suggestions.

REFERENCES

[1] C.-W.Chang, H. Ying, G.R. Hillman, T.A. Kent, and J.
Yen, “A rule-based fuzzy segmentation system with
automatic gencration of membership functions for
pathological brain MR images®, Computers and
Biornedical Research, 1998, hup:/gopher.cs.tamu.edw/
faculty/yen/publications/index.html.

[2} 2. Chi, and H. Yan, "Segmentation of geographic map
images using fuzzy rules", Proccedings of DICTA-93,
Digital Tmage Computing, Techniques and applications,
Aunstralian Pattern Recogaition Soc., 1, 95-101,
Broadway. NSW, Australia, 1993.

{3 L.C. Hall, and A Namasivayam, "Using adaptive fuzzy
ntles for image segmentation”, FUZZ-IEEE'98, 1998,
hitp://modern.csee.usf.edu/~halladrules/segment.htm]

f4] T. Sasaki, Y. Hata, Y. Ando, M. Ishikawa, and H.
Ishikawa, "Fuzzy rule based approach to segment the
menisci region from MR images”, Proceedings of SPIE
Medical {maging, 3661, 258-, San Diego, California,
USA, 1999

[5]  W. Park, E. A. Hoffman, and M. Sonka, "Segmentation
of intrathoracic airway trees: a fuzzy logic approach”,
IEEE Transactions on Medical Imaging, 17(4), 489-497,
1998,

(6] G.C Kanmnakar,. and L.S. Dooley, "Generic fuzzy rule
based image segmentation technique", Technical report
series, August 6/2000, GSCIT, Monash University,
Australia, 2000.

[71 GC. Karmakar, and L. Dooley, "Generic fozzy rule
based technique for image scgmentation”, IEEE
International Conference on Acoustics, Speech, and
Signal Processing, Salt Lake City, Utah, May 7-11, 2001.
Accepted for publication.

[8] G.C. Karmakar, and L. S. Dooley, "Analysis of fuzzy
clustering and a generic fuzzy rule based image
segmentation technique”, International Conference on
Intelligent Multimedia and Distance Education, Fargo,
North Dakota, USA, June 1-3, 2001. Accepted for
publication,

[91 M. Wertheimer, "Laws of organization in perceptual
forms”, Pshychologische Forschung, 6, 1923,

f10] Y.J. Zhang, A survey on evaluation methods for image
segmentation”, Pattern Recognition, 29, 8, 1335-1346,
1996,

[11] J.C. Bezdek, "Pattern Recognition with Fuxzzy Objective
Function Algorithms”, New York: Plenum, 1981,




|
ESatdeaing

7 F T

el S lEi

£

B

PHYSICAL AND LOGICAL STRUCTURE OF PRINTED BILINGUAL DICTIONARY
ITEMS: LINGUISTIC REPRESENTATION AND RECOGNITION

Song Mao, University of Maryland at College Park, United States; Tapas Kanungo, IBM Almaden Rescarch Center, United
States

Parsing bilingual dictionaries is importait for building cross-langunage retrieval systems and speech recognitios algorithms,
We describe a general purpose algorithm that can be easily modified to convert printed bilingual dictionaries in various
layouts and language pairs into electronic/symbolic lexicons. In a previous paper [SPIE Document Recognition and
Retrieval, San Jose, January 2002), we described an algorithm for segmenting the physical layout of dictionaries into
columns and lines. In this paper we assume that the physical lines arc given then recognize the lines that constitute a
dictionary item. Furthermore, the algorithm simultaneously recognizes the logical structure within the dictionary items
(head-word, pronounciation, part of speech and definition). We demonstrate our algorithm on 30 scanned Chinese-English
dictionary pages which include more than 2500 lexicon items,

NEW FUZZY RULES FOR IMPROVED IMAGE SEGMENTATION

Gour Karmakar; Laurence Dooley; Manzir Murshed, Monash University, Australia

The extended fuzzy rules for image segmentation (EFRIS) algorithm initially splits al! segmented regions into mutually
exclusive 4-connected objects, from which the largest one in each region is designated as its main object. A drawback of this
approach is that it is less effective when the main objects are relatively small and some of the minor objects are completely
surrounded and connected to the main object of another region. Besides, defining insufficient merging rules, EFRIS also enly
considers the surrounding main objects in the original order that the regions were segmented, which is undesirable. [is this
paper, a new general segmentation algorithm called modified extended fuzzy rules for image segmentation (MEFRIS) is
presented, which addresses these problems and whose improved segmentation performance is analysed and numerically

cvaluated. The resuits are also contrasted with both the original generic fuzzy rule-based image segmentation (GFRIS) and
EFRIS algorithms,

DSP CONTROLLED LOW-VOLTAGE HIGH-CURRENT FAST-TRANSIENT VOLTAGE
REGULATOR MODULE

Jaber Abu-Qahoug; Nattorn Pongratananukul; Issa Batarseh; Takis K - paris, University of Central Florida, United States

Future generation of microprocessors will require high pecformance Voltage Regulator Modules (VRMs) that produce tightly
regulated low supply voltage with very small deviation window and able to respond very quickly to a large and continuous
load transients at high output current while maintaining a high power density. On one hand, the current drawn from the
VRM by the microprocessor is continuously changing since it depends at the current use of the microprocessor. On the other
hand, High Frequency VRMs as any Power Electronics System is a complex combination of linear, nonlinear, and switching
elements that is required to have fast dynamics. Moreover, this complex combination is also real-time system that needs to
continuously and instantly monitor and respond to the load changes (the microprocessor). A high performance basic control
loop is essential to follow up with such transients. Such controller design is usually complicated especially since it requires
high knowledge of the converter and its behavior and accurate converter model that inctudes nonlinearities and parameters and
components variations. DSP has many advantages over the anaiog circuits when it comes to applying high performance
sophisticated control techniques such the simplicity in applying sophisticated control algorithms and modifying them via
software revision, lower environmental and noise sensitivity, and less components count. In this paper, a DSP sctup to be

0-7803-7402-9/02/$17.00 ©2002 IEEE 1v-4192
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ABSTRACT

The generic fuzzy rule-baxed image segmentziion algorithm
(GFRIS) does not produce good results for images confaining
non-homageneous regions, as it does not directly consider
texture. In this paper a new algorithm colled fizzy ndes for
image segmentation incorporating fexture features (FRIST) is
proposed, which includes two additional membership functions
to those already defined in GFRIS. FRIST incorporates the
Jractal dimension and contrast features of a fexture by
considering image domain specific information. Quantitative
evagluation of the performance of FRIST is discussed and
contrasted with GFRIS using one of the standard segmentation
evaluation methods. Overall, FRIST exhibits considerable
improvement in the reswits obiained compared with the GFRIS
approach for many different image types.

1. INTRODUCTION

Image segmentation is the most important and difficult task of
digital image processing and anmalysis systems, due to the
potentially inordinate number of objects and the myrad of
variations among them. The most intractable task is to define
their properties for perceptual grouping, a demand that requires
human expert and/or domain specific knowledge to be
incorporated 1o achieve a superior segmentation result, Fuzzy
rule-based image segmentation systems can incorporate this
experl knowledge, but they are very much application domain
and image dependent. The structures of all of the memberslip
functions are manually defined and their parameters are either
manuaily or automatically derived [1]-{5). Karmakar and Dooley
[6][7] proposed a novel genmeric fizzy rule based image
segmentafion (GFRIS) algorithin to address the aforementioned
problems. This algorithm however, does not work well for
images containing texiure, which is for regions that are non-
homogeneous and have sharp variations in pixel intensity.
Texture is oie of the most important attributes of any image that
represents the structural armangements of the surface as well as
the relations among them and is widely wsed in image
segmentation {8]. In this paper a new algorithm, fiezzy rules for
image segmentation incorporating texture features (FRIST) is
proposed by integrating two new membership functions into the
set of GFRIS membership functions, based upon the texture
features of fractal dimension and contrast. These additional
membership functions consider the image domain specific

0-7803-7622-6/02/817.00 ©2002 IEEE
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information. The performance analysis of both the GFRIS and
FRIST is conducted by applying a superior objeclive
segmentation evaluation technique called the discrepancy based
on the rumber of mis-scgmented pixels [9]. The new algorithm is
subsequently applied 1o many different types of images.

The remainder of the paper is organized as follows. Seciion
2 provides a brief overview of the techniques used to define the
membership functions. The definition of the fuzzy rule, and also
the determination of the weighting factors and threshold used are
presented in Sections 3 and 4 respectively, The evaluation and
experimental resulls are discussed in Section 5, with conclusions
provided in Section 6.

2. MEMBERSHIP FUNCTIONS

The GFRIS algorithm uses three types of membership functions
1o represent the region pixel distributions, the closeness to their
centres and the spatial relations among the pixels in a particular
region. Each me:mbership function possesses a membership
value for every region, which indicates the degree of belonging
lo that particular region. Full details of these membership
functions are given in [6}[7). For the sake of compiciencss, a
brief description of them is now provided.

Tk approach adopted for the membership function for
region pixel distributions is to automatically define the
membership function, including its structure from the pixel
distributions of a region. This is obtained from the initial
segmentation results of the respective region and a polynomial
approximation of the pixel distribution of each region. The
membership value of a pixel at location (s,s}, having a gray

level value of P, inregion R, is defined as: -
nunkj(‘t:.:) =flj(‘pu) (1)
where f, ; (%,,) is the polynomial for the region R, .

The membership function to measure the closcness of a
pixel to a region represents the similarity between the pixel to be
classified, called the candidate pixel, and the centre of a region
based on the gray level intensity. The membership function
reflects the axiom that the closer to a region, the larger the
snembership value of the candidate pixel and is defined as: -

Her, Py =1-|C(R))~ B, | (2 ~1) @)
where C(R,) is the centre of the region R, it is assumed that a
b-bit gray scale image is used.
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The membership function for spatial
relations gy, (7,,,r) of the region R, for the neighbourhood

radius » represents the spaiial reiations between the candidate
pixel P, and its neighbours, and with a total of | segmented

image regions, is defined as: -
bl
Hug, (Poy) = (N xGp )/ 2, (N xGy,) @)
i=l
where N and G,, are the number of neighbours and the t.im of

their inverse distances of the region R, from the candidate pixel

P, , respectively.

2.1. Membership functions for fractal dimension

Fractal dimension (FD) is used to estimate the texture in an
image. There are many different models for estimating FD. One
is called the differential box counting (DBC) method [10}, and
approximates the fractal dimension based feature (FDF) for
developing the membership functions for fractal dimension, The
notion of self-similarity is used to eslimate fractal dimension. A
self-similar set (A)is the union of N, mutually exclusive copies

of itself that are similar to 4 and scaled down by a ratic . The
FD of 4 can then be defined as,

_ . log N, ,
1=NtP = FD=—2*. 4
a log(i/ 1) .

N, is determined using the DBC miethod in the frllowing
way [10). For an image of size M X M 10 be scaled dowvm to a
size of xxx where 2<x ¢ I_.‘.:'}ZJ. the ratio of scale down is
r=x/M, The image is then exieuded to 3-1 space by
introducing a 3" co-ordinate for the 8-bit gray level éntensity of
256 levels, If the image is partitioned into grids of size xxx,
then each grid will have 2 column of boxes of wize xxxxx,
which implies|256/x' J= | M/ x]. 1f the maxirum and minimum
gray level values in the (u,v)th grid are in tie /* and & boxes,
the thickness of the blanket covering the imyge surface on the
grid {,v) is:-

m(u,v)=1-k+1 (5)
The sontribution from all ghz &= Sefiied as: -
N, =2n(u.v) (6)

FD is estimated from the least square linear fit of log(N,)
against log(i/z) .

To define the membership function for fragtal dimension,
the FDF of a candidate pixel P, 1s catculated on a window

W, (s,0) of sizehxh with its centie 2t (s,r) ruther than the

entire image and is dofined as: -
FDF(P,) = FD(W, ,(s,1)) N

where FO(W, ,(s,4)) denotes the FDF on W, (s.¢) derived using
DBC itr the following manner. Thz bound of the box size is
chosen as 2 < & £| A/2], the scale down ratior =} £/ 4] and x’
is taken as {256x&/height| in order 1o consider the finer
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variations of the gray level values, where 4eight is the height of
the image. The value of FD{W,,(s.)) will not be the exact

fracw! dimension of the window W, ,(s,r) because the height of

the image is used rather than 4, the height of the window, in
calculating x . Instead of considering log-log plot, the average
value of log(N,)/log(l/r) is used 1o obtain the fractal

dimension. The membership function g, (F,) of fractal
dimension baesd feature for the region R, and the pixel P,
can be formutaied as: -

FDF, (?,)~FDFP, )
max (FDF,, (F,), FDF(£, )}
where FDR, (¥, Yand FDF/(F, ) are the fractol dimension-

based features for the segmented region R, and the original

Hpny (R.a) =1- {8)

image respeciivaly. This membership function considers the
image sperific information for segmentation. FDF(P,)is

determined frosn the ratio of the number of contributory and
total giids during FDF, ; (£} calculation for each value of r.

2.2. Membership functions for contrast

Contrast provides the measure of the texture of an image and is
measured Hy considering the dynamic range of gray fevels and
the polsrization of the disiribution of black and white on the
gray-leve! histogram. The contrast of a window W, ,(P,)in an

image is calculated using the technique described in [11]. The
whaucsisiy: function for the contrast of the region R, and the
pixel ¥, wun be defined as: -

\contrast, (P, )~ Contrast (P, ]

max (Contrast, (F,), Contrast,(F,, )

Heyny o=i- )]

where  Contrast, ; (£,) and Contrast,(F, jrepresent the
contrast of the portions of the segmented region R, and the
ariginal image covered by the window W, (P ) respectively,

3. DEFINING FUZZY RULE

The overall inembership value g, y (B,.r) of a pixel P, for

region R, represents the overall degree of belonging to that
region, and is defined by the weighted average of the five
individual membership function values g, s B)s Heny (P

f-’m;(ﬁ.n")'Pr-'aj(})..u)va“d ﬂc,n;(ﬁ,«)'

“'uumtj (}:J) + “':.ucnj (R‘;) + wsﬂﬂk; (fia )
F]
§w,
(L] IO)
i, B+ gt 1 (R, (
k]

¥,

iul

Au.tnj (‘Pg‘;sr) =




where w,,wy,w,,w,, andw, are the weightings of the

membership values for pixel distribution, closeness to the cluster
centres, neighbourhoed refations, fracta! dimension and contrast
respectively.

;.|
Definition 1 (Rule) IF 1, (P, pur) = max{ft e (B.r)} THEN

pixel F,, belongs to region R;.

4. DETERMINING THE PARAMETERS

The weighting faciors w;,w,, andw,, and threshold T for
neighbourhood system are automatically determmined using the
algorithin described in [7]. The other two weighting factois w,
and w; are approximated based on the FD of the entire image

and the standard deviations (rstd) of pixel intensities of the
initially segmented regions, as follows:
w, = W, = (FD ~ 2}/ var(rsid) an
Since 2< FD £3 the topological dimension of the image
(2) is deducted from the FD, thercby keeping the original
contribution of the fracta] within [0,1]. This ensures that the
contributions of all the weights are constrained within their
limits. From the observations, it was found that the regions
having high texture suppressed the regions containing less
iexture because they produced higher FD values. Since (be
standard deviation appreximates the texture, the weights w, and

w, are normalised using the variance of the standard deviations
var{rsid) of the initially segmented regions, to minimize this
effect. This has been experimentally tested upon various image

types.
5. EXPERIMENTAL RESULTS

Both the new FRIST and GFRIS algorithms wete implemented
using MATLAB 6.0 (The Mathworks, Inc). A number of
different image types were used in the experiments, but only two
are incinded in this paper, namely the ¢loud shown in Fig. 1(a),
which comprises one homogeneous and one non-homogeneous
region, and the Brodatz texture image shown in Fig. 1{c), which
containg two separate textural regions,

{d
Fig. 1: (a) Cloud image, (b) Ref: images for cloud, (¢) Brodatz
textures, (d) Ref: images (d60 and d98) for Brodatz textures,

®) ©

As alluded previously, quantitative evaluation of the
scgmentation process was achieved using discrepancy based on
the number mis-segmented pixels (9], Type |, errorl, represents
the percentage error of all #* region pixels thal are not classified
in the * region, whereas Type 11, errorll,, is the percentage

error of all other region pixels wrongly classified in the
region,

For both GFRIS and FRIST, the membership function for
region pixel disiribution ype; (P, ) was developed using the
clusters produced by the initial segmentation results using the
fuzzy c-means (FCM) algonthm [12]. The centre values werc
used to initialize the centres of the clusters required to define the
membership function for the closeness of a region (pg j ®.)

The neighborhood radius () was taken as 1, 2 and 4, but only
the results for the r=Yand 2 cases are included in this paper,
with the size of the window i, ,{(s,f) being 4x4 . The results of
segmenting the cloud image (Fig. 1(a}) into two regions namely,
cloud {R) and urban scene (R;)using GFRIS and FRIST are

shown in Fig. 2. The numerical segmentation resulis of (he cloud
image segmentation with respect to manually segmented
reference images (Fig. 1(b)) are shown in Table 1.

" (b)GFRIS, r=2 (@) FRIST,r =2
Fig. 2: The segmented results of the cloud image into two regions
by GFRIS (a) to (b), and FRIST (c) to (d).

Table 1: Error percentage for region R, of cioud {cloud) and

Brodaiz (d60) image segmentations
Image Algorithm Ermorl Erroril Algorithm Error I Emor 11
GFRISr=1 733 17.05 FRIST r=110.560 4.487
GFRISr=2 1.73 2125 FRISTr=2 9.106 4.230
GFRIS™=4 1.8C 23.62 FRISTr=4 7.287 4.038
GFRIS =1 3399 17.11 FRIST r=1 28.247 15.718
Brodaiz GFRIS =2 33.16  19.47 FRIST r=2 25.488 18.687
GFRIS r=4 26.65 21.96 FRIST r=4 19.97 16.269

Clound

In Table 1, only the error rates for region R, are shown
since the error rates of the other region R, are simply the
reverse order of R;. The scgmentation resulis for the cloud
image using GFRIS showed that region R, (Fig. 2(a) and (b))

conizined a large number of misclassified pixels from region !
R, which has sharp variations in pixel intensity. Type I error

rates for region Rjusing GFRIS (Table 1} were higher than type
I error rales, Almost all of the misclassified pixels, including the

I-79%
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text caption were cortectly classified using FRIST (Fig. 2(c) and
(d)). The average error rates for both techniques are graphically

3
g 25 —*—GFRISC
Wog{ T — | —@—FRISTC
2 Bl e——— GFRISB
§ c] W———w o |—FRISTB
o
04 : {
1 2 4
Nelghbourhood Radius

Fig. 3: Average error rates of GFRIS and FRIST for cloud
(GFRISC and FRISTC) and Brodaiz (GFRISB and FRISTB)
images texture segmentation.

shown in Fig 3. From Fig. 2 and 3, it is clear that FRIST
achieved considerable improvements over the GFRIS.

(@) GFRIS, (b FRIST, () GFRIS,  (d)FRIST,

r=1 r=1 r=2 re=2

Fig. 4: Segmented results of Brodaiz texture into two regions
using GFRIS {a}and (c), and FRIST (b) and (d).

A second series of experiments was performed using the
Bodaz texture image (Fig. 1(c)). The segmentalion results for the
two separate regions namely, d60(R,) and d98 (&;) produced

by the GFRIS and FRIST are presented in Fig. 4. The error and
average error rates of d60 segmentation with respect to the
manually segmented reference images (Fig. 1{(d)) are shown in
Table 1 and Fig, 3 respectively. The segmented resuits obtained
using FRIST for all values of »are again considerably better
than GFRIS. Note, that it was shown in [7], that GFRIS
consistently provided superior results to both FCM [12] and
possibilistic c-means (PCM} {13] algorithms for many different
image types.

6. CONCLUSIONS

This paper has outlined the development of a new general fuzzy
rule-based image segmentation technique incorperating texture
based upon fractal dimension and contrast. A new algorithim
litled fuzzy rules for image segmentation incorporating texture
Jeatures (FRIST), has been proposed and both a quantitative and
qualitative analysis have been undertaken 10 compare it with the
generic approach (GFRIS). The experimental results have shown
that FRIST outperformed GFRIS for many different image
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types. Since the proposed technique is fuzzy rule based, it is
capable of incorporating any type of attribute of any special
application domain. It is possible to add membership functions
for high-level semantics of an object for object based image
segmentation. More rescarch however is required in order to
automaticaily determine the explicit number of regions in an
image.
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IMAGE SEGMENTATION USING MODIFIED EXTENDED FUZZY RULES

Gour C. Karmakar, Laurence S. Dooley, and Manzur Murshed
Gippsland School of Computing and Information Technology. Monash University. Churchill. Vie 3842. Australia
t Gour.Karwakar, Laurence Doolev.Manzur Murshed G infotech.monash. edu.au

ABSTRACT

The extended fuzzy rules for image segmentation {EFRIS)
aleorithiy initially splits all segmented regions inte mutualty
oclusive S-connected objects. from which the largest one in
coclt region is designated as its main object. A drawback of this
;.ppma.:h is that it is less effective when l_lu: main objects are
relatively small and some of the other objects are completely
surcunded and connected to the nwain objver of another region.
Besides possessing insullicient merging rules. EFRIS also only
considers the surrounding main objects in the original order that
the regions were segiented. which is undesirable. In this paper.
a new general segmentation algorithin ealled modified extended
fuzzv rules for image segmeniation (MEFRIS) is presented.
‘which addresses  these problemss and  whose  improved
scamentation  performance  is  anmalvsed and  numerically
ct:l]l.lilll“.‘d. The eesults are also contrasted with both the original
generic fuzzy rude-based inage segmentation (GFRIS) and
[FRIS afgorithins.

1. INTRODUCTION

Image segmentation is one of the most important and difficult
tasks of digital image processing and analysis systems. due to
the potentially inordinate number of objects and the mynad of
vartations among them. The most intractable task is to define the
properties for pereeptual grouping. which requires human expert
hiowledee to be incorporated in order to achieve superior
scamentation results, Fuzzy rule-based image segmentation
technigues can incerporate such expert knowledge, but are very
much application domain and image dependent, with the
slructure of the membership tfunctions and the corresponding
paameters  having to be  defined either manually or
astomatically [1-4]. Karmakar and Doolev {3-6] proposed a
hevel generic fuzzv rule based image segmemtation {GFRIS)
dlgocithin,  which atiempted to _solve the aforementioned
problems. The approach however. docs not work effectively for
age regions that were either non-homeogeneous or have sharp
“hations in - pinel intensity.  Subsequently, Karmakar and
Booley |7) introduced a revised algorithn called, extended fuzzy
wles for image segmentation (EFRIS). which incorporated the
Perceptual properties of surroundedness and connectedness in
Sgmented regions, The algorithm split the regions that had
lready been segmented by the fiest rule. which was inherited
fom the GFRIS algorithm. into mutually exctusive d-connected
“t‘J'I:L‘Is, The largest object in eacl region was designated as its
:’\"‘:”_ object and all minor objects were then tested against the

' Aorementioned perceptual properties, with respect to the
"itn objects of other regions. for better placement through the

'6‘"‘-—-—-—.___
~1803-7488-6/02/$17.00 © 2002 IEEE.

merging rule. Thus procedure has been found to be ineffective
under three specilic conditions: (1) when the main object is
relatively small. (it} when some of the minor objects are
completely surrounded and counected 1o the main object of
another region. and (iii) the single merging rule. which formed
the fundamental basis of the EFRIS algorithm. and selected the
surrounding sait obfects in the exact order that the regions were
originallv scgmented by the first rule.

I this paper. a modified vatended fizzy rude bused image
segmentation (MEFRIS) algorithm is proposed which redefines
the merging rule of the EFRIS algorithn, by incorporaling new
fuzzy rules for growing relativels small main objects and
preventing similar objects from merging with other main objects.
Additional merging rules are also defined for selecting the most
suitable surrounding main object,

The paper is organised as follows. Section 2 provides a
brief description on the initial segmentation and splitiing
techiniques  used. The undedving  theorv. and  various
membership and other functions used in MEFRIS are described
in Section 3. while the fuzzy rules used in the MEFRIS
algorithim are provided in Section 4, Some comparative
experimental results with discussions are presented in Sections
3. Section 6 concludes the paper.,

2. INITIAL SEGMENTATION AND SPLITTING
TECHNIQUES

. The initial image segmentation may be undertaken using any
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standard scgmentation algorithm such as juzzy clustering. or the
GFRIS algorithm. The results of this inttiadl phase are then
refined using the fuzzy rules based on he principles of
connectedness. surroundedness. unitormity and contrast eriteria.

Comnectivity is defined [12] as follows; -

Definition 1 (d-connectivity) Let N (P, denote the set of all

the ¢ -neighbours of pixel P,. Then pixel Fis considered §-

counvcted with pixel P, i P e N (P.) where de (48],

Let the initial R segmented regions be represented by
R, j=1.9% Each of these regions is the split tnto a number ol

muteally exclusive objects using the 4-connected neighbourhood
property. The reason for applving 4-connectedness, instead ol
the usual 8-conectedness in the region splitting process, is lo
avoid weak connections within an object and to maximize the
number of possible objects in anv region. Let the set of all
objects in region R be denoted as i()”,()“ ..... (Z,J_,}\\'he‘rc
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n, sepresents the number of 4-comected objects in that region.
It is interesiing to Jote that O, w0, v..v0,, =R, and

0, nO,, ﬁ...nO,U_, =4, Let

o.,| = max{jo, o}

R, where 0] denotes the number of pixels in otject @.

object O,,,J ;» where

}be the main object of region

O, s

3. MEMBERSHIP AND OTHER FUNCTIONS

The surroundedness property is itselt’ fuzzy in natwre as any
object may either be or not be completely surrounded by another
object. This leads to the definition of @ membership function for
estimating the degree of surroundedness. The membership
function for the surmnndedness of an object (region) 4 by
another ohject {1egion} B is defined as:-

4N

,us(A._B)=]———ﬂ (1)
” El

The membership function for the size of the main object

0, With respect to its region Ry is defined as:-

",

IOm kI
M (Om. ?Rk)="__f_'- (2)
(OB
Using membership functions (1) and (2), two other
functions large(O,, ;. R, Yandouter(R) can be  defined as

mrﬁ"
tollows:-
LR A (2 L - 5
targe(Coye-Re) = {l‘alsc. otherwise _ )
. ,
owter(R, ) = I[I (4 (R,R )2 &) 4)

int
where 2 and £ are prescribed thresholds.
Let us now define the function similan@,, ;,0,) between

the main object O, and its sibling Oy, based on uniformity

and contrast, as:-
|1mil'onnir}(0mk &} uniformity(Q, 1

similar(0,,,,0, ) =
o < 111miﬁ‘.)rmit}'(O,,,,‘jt )| (3)

A QCOmrasl(Om o) contrast(()ﬂ)l s r|<:omrast(0,,&, )|)

where r denotes the percentage of variation, while the two
lunctions uniformity and contrast are determined using the
equations given in [9-10].

=
Let MaxS(0, ) = {Alus(Qy,0,, 4 ) = n}_z;x(y,(q,,o,,,, ))
R )

represent the set of indices of regions for which the degree of
surroundedness of an object O, by the main objects of those

regions, is a maximum. The functions p ~connected(0,,0,, ;)
aud connect , (O )can then be defined as follows: -
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true, if Os.’. is p-connecied
with O, (6

false, otherwise

p~comected(0;,0,,4)=

connect p(Oy. )= {l.lln € Max§(0,) A p~ connected(0, .0, . ;1} '
(7

where pe (4.8},

Al these functions are used in defining the MEFRIS fuzz
rules in the following section.

4. FUZZY RULES

Three different types of fuzzy rules are now defined ror thre.
totally different purposes. The first type comprises only one rule
known as the growing up rule, and is used simply to arow sma!
main obfects, while the second tvpe, namely the provenrive rule
secks 1o block objects similar to their main objeci from mergin;
with any other main object. The final type represents a group o
mutually exclusive merging rules that are applied o joi;
together suitable objects with the mai objects of other region
based on the principles of connectedness and swroundednes:
These fuzzy rules ore fomalised as follows, where it i3 asstne
thronghout that & = j to ensure that object O; merges wit

the main object O, ; of another region and2,is a thresho]

value: -

Definition 2 (Growing Up Rule) IF NOT large{()mik M AN
NOT outer(R,) AND similan(0,, ,,0, ) THEN merge O widi
O -
iefinition 3 (Preventive Rule) IF similan(0,, ;.0,) AN
A < (0,0 R )S 2, AND NOT outer(R,) THEN proven
Oy from merging.

Definition 4 (Merging Rule 1) JF I_\In.\-S|=l ANT
45(0;,0,,.)2 € AND 8~comnected(0, .0, , ) THEN merz
Oy witl O, . )

Definition 5 (Merging Rule 2) IF [MaxS|>1 AN
Mg [0!,,0,,‘1&)2:: AAD 4-comlec1ed{()y.,0md THEN merg.
0, with O, such that “mﬂi{: 0, ,{“!'(O"uk'Ri')}'

Definition ¢ (Merging Rule 3) IF p 1:':3‘.5]:*! AN
ys(Oy,O,,,ﬁjzz_f AND S-conmccted(oy,()m] THEN merg
O, with O tu{ (O R )},

" k. StICH et min

ksconnectg i,y

5, EXPERIMENTS

The new MEFRIS, EFRIS, and GFRIS svstems wer
muplemented using MATLAB 6.0 (The Mathworks. Inc.) Fe
the implementation of the membership functions defined in (!
and (2), the contour of the regions and their main objvcts wet




4 en.rmlﬂed using their respective convex hulls. The two
Jference bnages in Fig. 1(a) and (c) were used lor empirical

[t.

evalnation of e MEFRIS algorithm.
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Fig 1: Original images and reference regions. (a): Church

mmage. (b) Ref. regions for church image, (¢} Sand image,
(dy: Rel. regions for Sand image.

‘L"d.'\
l

. (c) r=1 (nr=2
Fig. 2. The segmented results of the church unmage into two
:‘;‘0!1‘- by (J]-R.H (a) & (b), EFRIS {¢) & (d). and MEFRIS {c)
)
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For the MEFRIS algoritiun, the initial segmertation was
carried owt using GFRIS [6). In GFRIS, the membership
function for a region's pixel distribution 4, (P,,) was

developed using the clusters produced bv the fuzzy c-means
{FCM) algoritiun [I1] and their centre values were used to
initialize the centres of the clusters rcquircd to define the
membership function for closeness of a region i, % (P,). The

values of e three thresholds &, A4, and 2, were ewmpincally

sclected as 0.8, 0.7 and 0.9 respectively. The values of 7 was
also inuitively chosen as 1 and 0.8 for the growing up
{definition !} and prevensive (defition 2) rules respectively.
while a neighbourhood radius () of 1 and 2 was chosen, The
results of segmenting the chwrch unage (Fig. 1{a)) into two
regions, namely the church (R} and the sky (R.}. using the
GFRIS, EFRIS, and MEFRIS algonithuns are displaved in Fig. 2

If the results shown in Fig. 2(a)-2(d) are compared with the
results presented in Fig. 2(e)-2(£), it is visually apparent that the
MEFRIS algorithm separated more distinet regions {church and
sky) than the GFRIS and EFRIS algorithms. The reason for the
poot EFRIS perfonnance in not achieving superior resuits was
as alluded earlier, because of small main objects and merging
similar objects with other main objects (Fig. 2(c)-2(d)).

-
*
r
*

@ et
Fig. 3: The segmented results of the image into three regions by
GFRIS (a) & (b), EFRIS (¢} & {d), and MEFRIS (e) & (.

nHr=2

Al segmentation results were quantitatively  evaluated
using the powerful discrepancy based on the nmmber mis-
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segmented pixels 8] objective assessment method. Type I,
error; represents the percentage error of i region pivels that
are not classified in the i region, whereas Type If, errorll;, is
the percentaue error of all other region pixels that are wrongly
¢lassified in the i™ region. The munerical segmentation resulls of
the church region for the Fig 1(a) sezmentation with respect to
manuwally segmented reference images are shown i Table 1.
This reveals that the emor rates (Tipe I) of MEFRIS are
considerable lower than those of both GFRIS and EFRIS for all
valuesof r.

Another series of experiments were perfonned using the
image i Fig. 1{c). which comprised three distinct regions,
pamely sky (R). sand (R.), and rock (R,). The segmentation

performance for the three regions using GFRIS, EFRIS and
MEFRIS is presented in Fig. 3. EFRIS produced almost exactly
the same reswlts as GFRIS because of having small main objects.
11 is perceptually apparent that the MEFRIS algorithm exhibited
significantly improved results compared with both GFRIS and
EFRIS for both values of the neighbourhood radivs. The
munerical error rates of the sand image segmentation with
respect to the manually segmented reference images are shown
in Toble 2. Both ervor rates for MEFRIS are noticeably lower
than the GFIRIS and EFRIS for both values ol ». The best result
is achieved by using MEFRIS at »=1. A statistical sigmficance
test, called sign test was also conducted, and confinned the
significance improvements of MEFRIS over GFR'S and EFRIS

(i3]

Table I: Ervor percentages for the church region (R,) in Fig.
1{a).

Emorr=1 Eror r=2

Algorithm Tvpe ] Tyvpe Il Typel Tyvpe 1

GFRIS 33.5207 0.4700 32.8810 0.3302
EFRIS 67.3970 0.1588 54.0143 .2286
MEFRIS 489372 .4700 426316 0.3302

Table 2: Error percentages of the sand image in Fig. 1(b).

Emror r=1i Error r=2

Aleorithm  Region  Tvpel . Tvpell Twvpel  Typell

Sky 36.916 33980 19.067 31342

GFRIS Sand 66.092 22831 87714 12037
Rock 19.125 7.619 10383 15153

Sky 36,988 33533 18995 16732

EFRIS Sand 66.092 23241 §7.714 0 11928
Rock 19.125 7619 6479 25288

Sky 37455 33451 19212 13093

MEFRIS Sand 20100 30.081 54128 13975
Rock 19.073 6.196 10614  14.067

6. CONCLUSIONS

This paper has addressed the three fundamental limitations of the
extended firzzv riles for image segmentation (EFRIS) algorithun
by proposing a new general segmentation technique called
modified extended  fizzy e based image segmentarion
(MEFRIS). New niles for growing a small main objeer,
preventing stmilar siblings from meraing with another main
object, and selecting the best swrounding main object have been
mcorporated into (his new algorithm. Experimantal results and

944

statistical significance test have conclusively shown that the
MEFRIS signilicantly outperformed both the EFRIS and GFRIS
algoritluns for different image tvpes. Since the proposed
technique is fuzzy rule based, it is capable of incomorating an
tvpe of atiribute of any special application domain. It is therefore
possible to add membership Nmections for high-level semantics
of an object tor object based unage segimentation.
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Appendix B

Supplementary Original and Their Manually Segmented
Reference Images

@® (b) © @
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(¢) () (@ (h)

(M) @) (k) 0

Fig. B.1: The other gray level original and their manually segmented reference images used in the
evaluation in Chapter 7 for two regions.
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(e) (® (8) (h)

Fig. B.2: The other gray level original and their manually segmented reference images used in the
evaluation in Chapter 7 for three regions.




Appendix C

The Segmentation Results for Supplementary Images
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Appendix C The Segmentation Results for Supplementary Images C-2
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Fig. C.1: The segmented results of the images shown in Fig. B.1(a), B.I(c), B.1(e}. B.1(g), B.1(3), and

B.1(k) are (a) to (e), () to (j), (k) to (0), (p) to (1), (u) to (y), and () to (ad) respectively for two regions
using the GFRIS, FCM, and PCM algorithms.
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T
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(p) GFRIS, r=1 (q) GFRIS, r=2 {r) GFRIS, r=4 (s) FCM (1) PCM

Fig. C.2: The segmented results of the images shown in Fig. B.2(a), B.2(c), B.2(e), and B.2(g) are (a) to

(e), () to (j), (k) to (0), and (p) to (t) respectively for three regions using the GFRIS, FCM, and PCM
algorithms.
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(a) GFRIS, r=1 (b) GFRIS, r =2 (c) GFRIS, r =4

(f) GFRIS, r=1 () GFRIS, r =2 (h) GFRIS, =4

(k) GFRIS, r =1 () GFRIS, r=2 (m) GFRIS, r=4 (n) FCM {0) PCM
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(z) GFRIS, r=1 {aa) GFRIS, r=12 {ab) GFRIS, r=4 {ac) FCM {ad> PCM

Fig. C.3: The segmented results of the images shown in Fig. B.1(a), B.1(c), B.1(e), B.i(g), B.1(i),
and B.1(k) are (a) to (¢), (f) to (j}, (k) to (0}, (p) to (1), (u) to (¥), and (2) to (ad) respectively for two
regions using FRIS with the GFRIS, FCM, and PCM algorithms.
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Wt
e

(m) GFRIS, - 4

'; (P GFRIS, r=1 {5) GFRIS, r=2 (1) GFRIS, r=4 () PCM

Fig. C.4: The segmented results of the images shown in Fig B.2(a), B.2(c), B.2(¢), and B.2(g) are (a)
to (e), (f) to (§). (k) 10 (0), and {p) to (t) respeci:vely for three regions using FRIS with GFRIS, FCM,
and PCM aigorithms.
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(N r4

(m) r=1 (mr=2 ) r=4
Fig. C.5: The segmented results of the images shown in Fig. B.1(a), B.1{c), B.1(e), B.1{g), B.1(i),
and B.1{(k) are (a) to (c), (d) to (f}, (g) 1o (i), (§) to (1), (m) to (0), and (p} to (r) respectively for two
regions using the FRIST algorithm.

Fig. C.6: The segmented results of the images shown in Fig. B.2(a), B.2(c), B.2(¢), and B.2(g) are
(a) to (c), (d) to (), (g) to (i), and (j) to (I) respectively for three regions using the FRIST algorithm.
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Appendix D

Numerical Segmentation Results for Supplementary
Images

Table D.1: Error percentages, average errors (average of Type I and II), and probability of object
count agreement P(OCA) for other images shown in Fig. B.1, having two regions using the GFRIS,

FCM, and PCM algorithms.

Algorithm Region Typel Typell Average P(QCA) Region Type 1 Typell  Averasge P(OCA)
GFRIS r=1 7.97  1.17 4.57 0.344 5.24  0.00 2.62 0.465
GFRIS r=2 . 7.95  0.89 4,42 0.352 . 4.17  0.00 2.08 0.491
GFRIS r=4 ;f"“g”:(';’) 7.84  0.67 4.25 0.352 ga‘g‘l’}c) 2.99  0.00  1.49 0,543
FCM 8. 5. 7.52 24.35 15,94 0.231 8.2 12.45 3.81 B.18 0.210
PCM 0.74 87.24 43.99 0.244 5.47  7.65 6.56 0.300
GFRIS r=1 20.85  0.17  10.51 0.200 10.28 13,05 11.66 0.517
GRRISr=2 g 18.89 0,17 9.53 0,263 Lowerhalf  9.05  9.96 9.50 0.543
GFRIS/=4  ppye 10-02  0.15 5.09 0.337 {d69%)in 8.16  0.98 4.57 0.590
FCM &5 34,02 0,06 17.04 0,170 Fig.Bl(® 10.01 8.21 9,11 0.404
PCM 23.83 0.10 11.% 0.175 9,19 9.72 9.46 0.398
GFRIS r=1 25.17 28.66  26.92 0.411 16.85 29.32 23.08 0.328
GFRIS/=2  Lowerhall 23.50 27.89 25.70 0.446 Lowerhalf 316.48 29.48 22,98 0.343
GFRISr=4  (d18)in 25.00 27.95 26.47 0,431 (d8))in 12.68 30.42 21.55 0.364
FCM Fig. B.A() 36.68 23.11  29.89 0.374 Fig.BA(K} 22.79 27.43  25.11 0.279
POM 32.53  25.99  29.26  0.390 15.86 30,33 23.09 0.290

Table D.2: Error percentages, average errors (average of Type I and II), and probability of object
count agreement P(OCA) for other images shown in Fig. B.2, having three regions using the
GFRIS, FCM, and PCM algorithms.

Image and its Type [ Type 11
__Algorithim Regions R, R: R; R Rz R, Average  P(OCA)
GFRIS/=1 ) ®) 0.00 49,00 10.16 9.14 5.61 2.94 12.81 0.486
GFRIS r=2 ﬂmm)';nd 0.00 49,94 14.44 9.36 B.71  3.01 14.24 0.492
GFRIS r=4 muzm’;of 0.00 49,33 34.43 9.67 23.32  2.66 19.90 0.554
FCM Fi Bz(;) 30.21  44.03 6.87 6.83 11.67 4.43  17.3¢ 0.449
PCM L 87.99 i6.06 §.95 0.87 27.75 4.34  23.99 0.457
GFRIS r=1 Pot(Ry) 53.89 8.81 6.39 4.30 33.29 2.51 19.13 0.698
GFRIS r=2 aspm' ’S(R) and 61.44 6.19 7.73 3.62 33,891 2.69 19.25 0.707
GFRIS r=4 backgg“und (’R’)or 62.58 6.80 3,91 3.29 33,30 31.11  18.83 0.72%
FCM Fig. B.2(c) * 64.48 40.38 0.86 1.82 32.05 28.58 28.03 0.562
PCM <= 14.41  78.27 4,83 52,59 7.28 6.56  27.32 0.445
GFRIS r=1 House (Ry) 48.21 2.88 27.06 1.29 26.12 6.41 18.66 0.688
GFRIS r=2 sky (Ro) and 48.21 3.08 27.59 1.32 26.23 §.54 18.83 0.694
GFRIS r=4 m(R)’of 47.41 3,48 27.04 1.56 25.36 6.59 18.57 0.694
FCM Fig B;(c) 45.87 22,93 23.83 6.85 22,32 7.22  21.50 0.600
PCM - B 48,08 8.35 25,69 2.60 26.72  6.62 19.64 0.649
GFRIS r=1 Hill (Ry) 36.57 1,87 34.85 15.12 8.42 13.13 18.33 0.414
GFRIS r=2 s}q(R'}'and 37.97 1,58 38.15 16.78 8.95 13.29 19.45 0.444
GFRIS r=4 wam(‘li)of 35.47 1.56 40.32 20,11 6.54 12.44  19.40 0.452
FCM Fig Bz(i;) 40.76 1.78 47.11 14.37 19.01 13.88 22.82 0,276
PCM i §5.06 63.70  30.11 41.01 1.42 23.95 37.54 0,229
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Numerical Segmentation Results for Supplementary Images  D-2

Table D.3: Error percentages, average (average of Type 1 and II), probability of object count
agreement P(OCA) for other images shown in Fig. B.1, having two regions using FRIS with the

GFRIS, FCM, and PCM algorithms.

Algorithm Region Typel  Typell Avermge POCA) Region Typel Typell Average P(OCA)
GFRIS r=1 0.00 1.17  0.59  1.000 4.0 0.00  2.05 0.713
GFRIS r=2 . 0.17 0.89  0.53 1.000 , 0.26  0.00  0.13 1.000
GFRIS r=4 ;f’mg“;(’:) 0.40 0.66  0.53  1.000 g;"’g’f(c) 0.21  ©0.00  0.11 1.000
FCM g5 0.00 23.64 11.82 0.764 B 0.08 3.13  1.60 0.920
PCM 0.67 86.31 43.4%9 0.294 3.91  4.92  4.42 0.651
GFRIS r=I 0.79 0.19  0.49 0.931 8.94 4.48  6.71 0.746
GFRIS/=2 v 6.73 0.19 0.46 0.960 Lowerhaf  6.29 4.09  5.19 0.888
GFRISr=  po g 0-74 0.17  0.46 1.000 (@69in 5.74  0.20  2.97 0.862
FCM g B. 20.37 0.08 10.22 0.669 FigB.I(g  6.86 3.64  5.25 0.777
PCM 1,0  0.11  0.80 0.931 5.81 4.16  4.99 0.841
GFRIS r=1 25.23  5.97 15.60 0.689 0.07 268.87 14.47 0.689
GFRISr=2  Lowerhalf 24.18 6.19 15.18 0.685 Lowerhalf  0.07 28.85 14.46 0.708
GFRIS/=4  (d18)in 25.64 4.55 15.09 0.752 (d81)in 0.21 29.78 15.00 0.718
FCM Fig. B.IG) 35.84 0.43 18.13 0.724 FigB.IX)  0.07 26.93 13.50 0.718
PCM 32,14 3.96 _18.05__ 0.703 0.07 29.65 14.86 0.699

Table D.4: Error percentages, average errors (average of Type I and II), and probability of object
count agreement P(OCA) for oth:er images shown in Fig. B.2, having three regions using FRIS with
the GFRIS, FCM, and PCM a!gorithms.

image and its Type | Type Il
Algorithm Regions Ry Rz R; R: R2 R, Average_ P@CA)
GRRIS =1 i ms) 0.00  31.39 7.31 5.42 5.38 0.04 8.26 0.689
GFRIS r=2 ﬂm(R)‘;nd 0.00  31.68  13.7% 5.37 10.20 0.04 10.17 0.805
GFRIS r=4 wanszior 0.00  46.56  31.44 5,20 23.32 5.94 18.74 0.705
FCM Fig Bz(;) 30.25  32.76 5.47 6.16 11.21  0.31  14.36 0.760
PCM it 88.08 4.30 3.58 0.60  25.34 0.42  20.39 0.777
GRRISr=l o o+ 56.19 7.61 7.98 4.95 32,36 1.71  18.47 0.722
GFRIS r=2 aspm‘;s(R)md 56,35 6.01 9.47 3.89  31.89 2.27 18.31 0.745
GFRIS r=4 hackgrimd (ZR',') of 56.78 6.88 5.44 4.85  30.19 2.02 17.69 0.768
FCM Fig. B.2(0) 59.22  41.52 1.26 8.09  29.28 23,46 27.14 0.621
PCM g. B. 14.91  77.39 4.73  S51.74 7.77  6.59  27.19 0.569
GRRIS/=l o Ry 32.17 7.10 9.15 0.92 9.79 8.05 11.20 0.890
GRRIS /=2 g g s o 32.32 6.41  16.10 1.12 13,16 7.47 12.77 0.866
GFRIS r=4 mm’a)’of 33.39 4.11  20.45 1.38  15.79 6.52  13.61 0.840
FCM Fig. B.2(0 26.24  27.90  10.21 7.66 7.41  8.01  14.57 0.811
PCM s 33.23  12.05  11.29 2.26  11.65 7.72  13.03 0.862
ORRIS /=1 oy 33.44 1.60  22.81  14.23 0.81 11.33 14.04 0.807
GRRISr=2 o™ g 36.98 1.40  27.51  16.20 1.86 12.58  16.09 0.659
GRRISr=4 Ry of 13.64 1.27  35.90  20.69 2.75 11.27 17.59  0.752
FCM Fig Bz(’) 42.02 1.69  41.49  13.16 16,47 13.95 21.46 0.497
PCM - B8 74.73 _ 37.54 _28.21 __ 28.48 5.41 24.07 _ 33.07 0.342
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Table [.5: Error percentages, average errors (average of Type I and II), and probability of object
count agreement P(OCA) for other images shown in Fig. B.1, having two regions using the FRIST

algorithm.

Algorithm

FRIST Region Typel Typell  Average  P(OCA) Region Type Typell  Average P(OCA)
=1 ) 7.45  1.43 2.4 0.357 - 4.74  0.00  2.37 0.462
=2 ;f"“é“;(‘:) 7.70 0.60  4.15 0.361 l\:’i\fatgr];‘r: 31.68  0.00  1.84 0.493
r=4 B. B. 7.78  0.39 408 o0.361 T&BM9 939 900 1.45 0.551
r=1 Hilli 19.9%  0.17 10.06 0.205 Lowerhalf  0.23 6.17  3.20 0.815
r=2 E mn 17.75  0.18 8.97 0.263 (d6%)in 0.23 0.21 0.22 0.841
r=4 igBIe) 965 .15 4.90 0.341 Fig.Bi(®  0.20  0.20  0.20 0.852
r=1 Lowerhalf 23.50 27.61  25.56 0.418 Lowerhalf 16.32 20.72 23.02 0.334
=2 (d18) in 17.94 27.43 22.68 0.458 (d81)in 15.70  29.60 22.65 0.347
r=4__ FgBI@) _ 17.42 2850 2296 0444 FigBI(K) _11.66  30.44  21.0¢  0.376

Table D.6: Error percentages, average errors (average of Type I and II), and probability of object
count agreement P(OCA) for other images shown in Fig. B.2, having three regions using the FRIST

algorithms. .
Algorithm Image and its Typel Type 1l
FRIST Regions K R % R Ry R; Avemge  P(OCA)
=1 Walll (Ry), 0.00  48.56 10,04  9.13  8.52 2.81  12.66 0.489
r=2 floor (Ry), and 0.00 49.53 13.91  9.32  8.34 2.87 13.99 0.500
=4 wall2 Rs) of 0.00  48.70  24.76 9.56  16.24 2.42  16.94  0.543
Fig. B.2(a)
=1 Pot (Ry), 59.00  7.80 6,50  4.90  33.40 1.79  18.90 0.697
r=2 asparagus (R and  61.46  6.14  7.73  3.58  33.83 2.68  19.24  0.707
r=4 %’;‘;“g’gg"(“’)“ 62.80  6.28  3.91  2.90  33.42 3.11 18.74 0.726
=1 House (Ry), 50.29  2.94 24,01  1.00 26.24 6.3¢ 18.47 0,702
r=2 sky (R2), and §1.72  3.07  25.26  1.04  27.68 6.2  15.18 0.708
=4 iy g";)(:)f 49.55  3.61  24.65  1.23  26.11 6.33  18.58 0.705 .
=1 Hill (Ry), 36.45  1.87  34.65  15.30  8.05 13.08  18.23 0.418 !
=2 sky (Ry), and 37.91  1.53  37.92  16.79  8.77 13.25 19.36 0,449 -
water (R} of ‘
r=4 35.47  1.56  41.00  20.58  6.47 12.44  19.59  0.457 ,

Fig. B.2()






