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ABSTRACT

In the finance research, studies of the relationship between different financial

instruments and between financial instruments and real world financial activity

provide important information for financial risk management and investment decision

making. If we consider the diversification of portfolios, for instance, the correlation

matrix of asset returns and the correlation between asset return and real variables are

important in financial decision making. However, the information gleaned from these

analytical tools is very sensitive to the methods and time horizons used. Some

empirical tests also reveal puzzling relationships that are opposite to the predictions

of economic theory. For example, stock returns and investment growth should have a

|j positive contemporaneous relationship, according to Tobin's Q theory; however,

•J much empirical literature reports a negative relationship. Another puzzling

1 relationship can be found in the literature studying the stock returns and inflation.
1
| According to the Fisher hypothesis, stock returns should provide a hedge for

inflation. In other words, stock returns have a positive correlation with inflation.

However, most empirical studies report a negative relationship in the short horizon.

The central focus of my thesis is to examine various relationships between financial

variables in the long-run. In my thesis, five relationships are identified and examined

using various time series methods and using real business cycle model: (1) the

relationship between stock return and real activities, proxied by industrial production;

(2) the relationship between stock returns and inflation; (3) the multihorizon Sharpe

ratio; (4) the relationship between risk and return; and (5) puzzling relationship

between stock returns and investment growth.
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I 1 Introduction

) In the finance research, studies of the relationship between different financial

1
I instruments and between financial instruments and real world financial activity

I provide important information for financial risk management and investment

decision making. If we consider the diversification of portfolios, for instance, the

correlation matrix of asset returns and the correlation between asset return and

real variables are important in financial decision making. However, the
3 information gleaned from these analytical tools is very sensitive to the methods

i
fi and time horizons used. Some empirical tests also reveal puzzling relationshipsI
i
j that are opposite to the predictions of economic theory. For example, stock returns

] and investment growth should have a positive contemporaneous relationship,
»
1 according to Tobin's Q theory; however, much empirical literature reports a
I

\ negative relationship. Another puzzling relationship can be found in the literature

studying the stock returns and inflation. According to the Fisher hypothesis, stock

returns should provide a hedge for inflation. In other words, stock returns have a
I
f

i positive correlation with inflation. However, most empirical studies report anegative relationship in the short horizon.

The centra] focus of this thesis is to examine the relationship between financial

variables and the relationship between financial variables and real economic

variables. This relationship has been studied in previous literature, mostly by

paying attention to the short-run relationship. This thesis focuses on the long-run

relationships rather than short-run. The natural question to arise is why we need to



study not only the short-run relationship but also the long-run relationship. The

research on stocks, for instance, provides one pointer to this need. Stocks are

considered as a long-run investment, but previous studies have focused on the

contemporaneous (short-run) relationships. This thesis investigates long-run

relationships for two reasons. First, in the short-run, the relationship between

variables could be affected by various factors, such as market frictions and

investor's sentiments. That is, evidence at longer horizons may provide additional

information. Second, from a practical point of view, many investors hold financial

instruments over long holding periods. Therefore, it is important to know the

manner in which stock returns move with the other variables over longer horizons.

Another example can be found in investment in fixed income securities. The

desired maturity for a fixed income security varies depending on the need of

investors' investment horizon. Therefore, from investors' point of view, their

needs are best met by information that is based on analysis of short-, intermediate-

and long-run relationships. Consider investors who invest their funds for 10 years

into a stock and a bond. If they try to minimize the total risk of their investment,

they will choose a combination that has the lowest correlation between the two

investments. However, if a short-run correlation is adopted for their investment, it

may lead to suboptimal results. They should look at a particular correlation for

their preferred investment horizon.

In my thesis, five relationships are examined using various time series methods
i

and using real business cycle model: (1) the relationship between financial

I
variables and real activities, proxied by industrial production; (2) puzzling



relationship between stock returns and inflation; (3) the multihorizon Sharpe ratio;

(4) the relationship between risk and return; and (5) the relation between stock

returns and investment growth.

Overall, wavelet analysis provides a valuable platform to analyze the diverse

relationships over various time scales. Examining the relationships over the

various time scales shows that these relationships are not stable over the time

i scales, implying that the true dynamic structure of the relationship between

variables varies over different time scales associated with those different horizons.

| However, most studies have been mostly restricted to two time scales (the short-

I run and the long-run). From this limitation, to comprehend only dynamic

j
^ relationships of the financial markets, wavelet analysis is needed in the fields of

jj economics and finance as its analytical tools are able to decompose data into more

< than two time scales.

i In addition, our results indicate that due to presence of the investors who have

1 different investment horizons, the portfolio managers (or investors) have difficulty

• making an investment decisions using contemporaneous data. However,
i
'' decomposition of the movements of the financial markets into several time scales
i using wavelet analysis allows the portfolio managers (or investors) to make the
I
| right decision in the specific time scale. For example, consider an investment
1

company with a large number of investors and money managers. Clearly, the

investors and the money managers make decisions over different time scales.

Suppose, for simplicity, that the investment horizon of an investor is one year and

that the investment company reviews the performance of the money manager



every quarter using the Sharpe ratio. The money manager will therefore focus on

the three-month performance of a portfolio, while the investor will concentrate on

the one-year performance. Thus, for this investor, the money manager may not

provide the best service. To provide the best service for the diversified investors,

the Sharpe ratio needs to be constructed over different investment horizons.

My thesis is composed of 8 chapters. Following this introduction, chapter 2

-I explains wavelet analysis and its use in the thesis. The main advantage of wavelet
i
| analysis is the ability to decompose the data into several time scales. Consider the

•j
I large number of investors who participate in the stock market and make decisions

4 over different time scales. Stock market participants are a diverse group and

1 include intraday traders, hedging strategists, international portfolio managers,

a
| commercial banks, large multinational corporations, and national central banks. It

I
I is notable that these market participants operate on very different time scales.
s

I

* Another key distinctive features of wavelet analysis arises from the fact that

wavelets gives us the ability not only to perform non-parametric estimations of

highly complex structures without knowledge of the underlying functional form

I but also to accurately locate discontinuity and high frequency bursts in dynamic
I

systems. In short, the major aspects of wavelet analysis are the ability to handle

non-stationary data, localization in time, and the resolution of the signal in terms

of the time scale of analysis (Ramsey, 1999).

Chapter 3 investigates the relationship between various financial variables and

real activity, proxied by industrial production. Many empirical studies find

financial variables possess a predictive power of the real activity. To examine this



relationship, I adopt two time-series techniques: spectral analysis and wavelet

analysis. Spectral analysis shows that US industrial production and financial

variables have a common feature in the long-run and a varying lead-lag

relationship depending on the business cycles. It implies that the relationship

between US industrial production and financial variables is not fixed over time.

This result is confirmed by the wavelet analysis. The lead-lag relationship, in the

sense of Granger causality, varies depending on the time scale. From two time-

series analyses (spectral analysis and wavelet analysis), it can be concluded that

the lead-lag relationship between US financial variables and US industrial

1 production varies depending on the time scale and frequency.
'I

< Chapter 4 tests the Fisher hypothesis, which states a positive relationship between

| nominal stock returns and inflation, and also provides a new perspective on the

hypothesis. The new approach is based on a wavelet multiscaling method that

decomposes a given time series on a scale-by-scale basis. Empirical results show

I
v| that there is a positive relationship between stock returns and inflation at the

% shortest scale (1-month period) and at the longest scale (128-month period), while

\ a negative relationship is shown at the intermediate scales. This indicates that the

£ nominal return results are supportive of the Fisher hypothesis for risky assets in

I Dl and S7 of the wavelet domain, while stock returns do not play a role as an

1
inflation hedge at the intermediate scales. The key empirical results show that

time-scale decomposition provides a valuable means of testing the Fisher

hypothesis, since a number of stock returns and inflation puzzles previously noted

in the literature are resolved and explained by the wavelet analysis.
i
4



) Chapter 5 studies the multihorizon Sharpe ratio. Previous studies focus on the

| contemporaneous Sharpe ratio, rather than the multihorizon Sharpe ratio, except
a
1 for Hodges et al. (1997). They examine the multihorizon Sharpe ratio using

i
I randomized historical data from 1926 to 1993 and conclude that bonds outperform

| stocks over sufficiently long holding periods, which is inconsistent with general

belief. Chapter 5 extends their study, following the three critiques of Siegel (1999),

by adopting wavelet analysis to investigate the multihorizon Sharpe ratio. First, it

I examines the mean-reverting property of asset returns using the wavelet-based

J
s^ maximum-likelihood estimation of the long memory parameter. Second, it uses

<\
the real returns of stocks and bonds. Finally, it investigates the multihorizon

Sharpe ratio using wavelet analysis. Adopting wavelet analysis does not require

any assumption on the distribution of returns because wavelet analysis is non-

parametric estimation and decomposes the unconditional variance into different

time scales. The wavelet decomposition shows that the long memory parameter,

calculated from the wavelet-based maximum-likelihood estimation, for all asset

returns are less than 1 and close to 0, indicating that asset returns are mean-

reverting. For the multihorizon Sharpe ratio, the Sharpe ratio of large-company

stock portfolios is a higher value than the other three types of portfolios (small

company stocks, long-term and intermediate-term government bonds) over all

wavelet scales. In other words, large-company stock portfolios outperform the

other portfolios over the different wavelet scales.

Chapter 6 examines the long-run relationship between stock returns and risk

(volatility) using two newly developed methods: the King and Watson (1997) and



Den Kaan (2000) approaches. Many previous studies do not show consistent

results between stock returns and risk (volatility) and focus on the

I contemporaneous relationship. Using the King and Watson method, we find that

long-run relationship highly depends on the contemporaneous relationships. For

the VAR forecast correlation, proposed by Den Haan (2000), most industry

portfolios show a negative relationship in the short-run as well as in the long-run.

For the market portfolio, a negative relationship is dominant regardless of

forecasting horizons. From these results, chapter 6 concludes that the long-run

response of stock returns to a permanent volatility shock is sensitive to the

assumed value of identifying parameters in each industry portfolio and the market

portfolio and that, as in previous studies, the relationship between risk and return

is mixed in the short-run. However, in the long-run, the negative relationship is

dominant. A negative relationship in the long-run means that if investors feel that

the risk of a portfolio is high in the future, the price of the portfolio rises to

compensate the increased expected risk. Therefore, the future return of the

portfolio decreases.

Chapter 7 investigates the puzzling relationship between investment growth and

stock returns in a stochastic growth model. Many empirical studies find a negative

relationship between current investment growth and current stock returns, while

the theory predicts a positive relationship. When investment-specific technology

and capital adjustment costs are adopted in the real business cycle (RBC)

framework, investment-specific technology generates countercyclical movements

of stock returns. A positive shock increases investment growth, while decreasing



stock returns. Capital utilization plays an important role in transmitting the shock.

For example, a positive shock decreases current stock returns because of an

increased capital utilization, which causes more depreciation. In contrast, it

increases investment. Therefore, the correlation coefficient has a negative value.

i
In the long-run, the correlation coefficients are negative in the actual data. The

benchmark model, which has a standard technology shock, generates positive

correlation coefficients in the long-run as well as in the contemporaneous

relationship, while the model, which includes the investment-specific technology

shock and capital adjustment costs, generates negative correlation coefficients in

the long-run. Chapter 8 concludes the thesis by summarizing the findings from the

preceding chapters.

• i
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Chapter 2 Methodology: Wavelet Analysis

2.1 Introduction

The multiscale relationship is important in economics and finance because each

investor has a different investment horizon. Consider the large number of

investors who participate in the stock market and make decisions over different

f | time scales. Stock market participants are a diverse group, and include intraday

traders, hedging strategists, international portfolio managers, commercial banks,

| large multinational corporations, and national central banks. It is notable that these

market participants operate on very different time scales. In fact, due to the

different decision-making time scales among traders, the true dynamic structure of

the relationship between variables will vary over different time scales associated

with those different horizons. However, most previous studies focus on a two-

scale analysis - short-run and long-run. The reason being for this is mainly a lack

of empirical tools. Recently, wavelet analysis has attracted attention in the fileds

of economic and finance as a means of filling this gap.

Wavelet analysis is relatively new in economics and finance, although the

1 literature on wavelets is growing rapidly. The studies, related to economics and

finance, can be divided into four categories: general wavelet transformation,

stationary process (long memory), denoising, and variance/covariance analysis.

The first category includes Davidson et al. (1998), Pan and Wang (1998), Ramsey

and Lampart (1998a, 1998b), and Chew (2001). Another stream of research is

related to the long memory process of time series. Researchers in this field include



tli

ri

Ramsey et al. (1995) for self-similarity (long memory); Jensen (1999b), Tkacz

(2001), Whitcher and Jensen (2000) and Jensen and Whitcher (2000) for wavelet

i OLS; Jensen (1999a, and 2000) for the wavelet maximum likelihood method; and

i Jamdee and Los (2003) and Kyaw et al. (2003) for the wavelet Hurst exponent.

I The third category of recent wavelet analysis is the use of the wavelet denoising

3 (detrending) method, for example, Fleming et al. (2000) and Capobianco (2003).

I The final category involves the application of wavelet analysis to multiscale

\ | variance/covariance analysis. This stream of wavelet analysis is mostly based on

f | Percival and Walden (2000) and Gengay et al. (2002a). Applications of this

1 method include Gengay et al. (2001), Gengay et al. (2003a and b) and In and Kim

(2003).

The purpose of this chapter is to introduce wavelet analysis and to focus on what

features of wavelet analysis can be applied to financial analysis. To examine

wavelet analysis, this chapter begins with Fourier analysis, and then the chapter

moves to the main features of wavelet analysis largely focusing on the application

of time series analysis.

2.2 Fourier Analysis and Spectral Analysis

Fourier analysis and spectral analysis are used in modern signal processing and

business cycle theory. This section introduces and investigates the properties of

Fourier analysis and spectral analysis.

4

' "Si
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I

2.2.1 Fourier Analysis

In the history of mathematics, wavelet analysis has many different origins. One of

them is Fourier analysis. The fundamental idea in Fourier analysis is that any

deterministic function of frequency can be approximated by an infinite sum of

trigonometric functions, called the Fourier representation.

Fourier's result states that any function / e L2[-TC, TC]1 can be expressed as an

infinite sum of dilated cosine and sine functions:

* ) = -a0 (2.1)
7=1

| where an appropriately computed set of coefficients {ao, fli, b\, ...} is a complex

sequence. As can be seen in equation (2.1), in Fourier transform, any signal can be

expressed as a function of sines and cosines. The Fourier basis functions (sines

and cosines) are very appealing when representing a time series that does not vary

over time, i.e., a stationary time series (Gencay et al., 2002a, p97).

The equation (2.1) has to be interpreted with a caution. The equality is only meant

in the L2 sense, i.e.:

hi
I

f fix)- — a r sin(>0) (2.2)

1 L2 is a space of all functions with a well-defined integral of the sequence of the modulus of the

function.
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i . It is possible that / and its Fourier representation differ on a few points (this is the

M
S i
; case at discontinuity points). The summation in equation (2.2) is up to infinity, but

1 o
I $ a function can be well-approximated (in the lr sense) by a finite sum with upper
\\
[ | summation limit index J:
I j

N 1 ,
! •" 1 V ~ >

\ H ,(x) = — a0 + } (a; COS(JJC) + b; sin(jx)) (2.3)
2 " Lu J J

!

I

This Fourier series representation is highly useful in that any Lr function can be

expressed in terms of two basis functions: sines and cosines. This is because of the

fact that the set of functions {sin(y-), cos(y-), j = 1, 2, . . . } , together with the

constant function, form a basis for the function space L?[-n, n] (Ogden, 1997).

The Fourier basis has three important properties. The first property is that it has an

orthogonal basis. Orthogonality implies that the inner product of any two

functions / , , f2 e L~[a, b] is equal to zero, resulting from the sine and cosine

functions.

The second property of Fourier transform is orthonormality, which means that the

sequence of function fj s are pairwise orthogonal and || / , || = 1 for all j . Defining

MJ-(jr) = /r"1/2sin(i/jc) for ;= 1,2,... and Vj(x) = x~in c o s ( » fo r j= 1,2,... with

the constant function vo(x) = \/^[27^ on x e [-71, n] makes the set of functions

o, MI, vi , . . .} orthonormal (Ogden, 1997).

12
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Finally, the Fourier basis is a completely orthonormal system (Ogden, 1997). It is

said that a sequence of function {fj} is a complete orthonormal system if the / , s

; are pairwise orthogonal, || fj || = 1 for each j , and the only function orthogonal to

i
•a

* each fj is the zero function. Thus, the set {/?0, gj, hf. j = 1,2,...} is a complete

I orthonormal system for L [-n, K].
i

I From equation (2.1), the Fourier transform consists of sine and cosine functions,

which are periodic functions. Therefore, if a function, J{x), is a non-periodic

{ signal, the expression of this function as the summation of the periodic functions

(sine and cosine) does not accurately capture the movement of the signal. One

I could artificially extend the signal to make it periodic. However, it would require

I additional continuity at the endpoints. To avoid this problem, Gabor (1946)

* introduces the windowed Fourier transform (WFT, also called the short time

i l

( 1

Fourier transform) to measure the frequency variation of a signal. The WFT can

be used to give information about signals simultaneously in the time and

frequency domains. A real and symmetric window u(t) = u(-t) is translated by k

and modulated by the frequency £(Mallat, 1999):

--e^u(t-k) (2.4)

It is normalized || u ||= 1 so that || uk4 \\= 1 for any (k, $) € SI. The resulting WFT

of/e L\9t) is:

13
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>= £f(t)u(t-k)e^dt (2.5)

where Sf(k,g) is the WFT. Therefore, with the WFT, the input signal f(x) is

divided into several sections, and each section is analyzed for its frequency

content separately. The effect of the window is to localize the signal in time. The

WFT represents a sort of compromise between the time- and frequency-based

views of a signal. It provides some information about both when and at what

frequencies a signal event occurs. However, we can only obtain this information

with limited precision, determined by the size of the window. While the WFT

^ compromise between time and frequency information can be useful, the drawback

I t
1 is that once you choose a particular size for the time window, that window is the
4

I \ same for all frequencies. Another drawback of the WFT is that it will not be able

; j to resolve events if they happen to appear within the width of the window

I (Gencay, et al., 2002a, p99).

I 1 Another extension of the Fourier transform is the Fast Fourier Transform (FFT).

[ I To approximate a signal using the Fourier transform requires application of a

| I matrix, the order of which is the number of sample points n. Since multiplying an

| n x n matrix by a vector costs in the order of n2 arithmetic operations, the

!

computational burden increases enormously with the number of sample points.

However, if the samples are uniformly spaced, then the Fourier matrix can be

factored into a product of just a few sparse matrices, and the resulting factors can

be applied to a vector in a total of order nlogn arithmetic operations. This is the

so-called fast Fourier transform (Graps, 1995).

&
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I?

2.2.2 Spectral Analysis2

As discussed earlier, Fourier analysis transforms time domain data into frequency

j domain data. This feature naturally leads researchers to look for ways of

I determining which are dominant frequencies in a time series. In our research we

I have adopted one method that has proved successful in much researches, namely,

power spectral density. The power spectral density of a time series xt, denoted in

\ S (w), can be defined as the Fourier transform of the autocorrelation function.

? Sx(vv) = P Rx (T)e-j2mi'Tdr where Rx(r) = E{x,xl+T} (2.6)

For example, suppose that we compute the power spectra of a covariance

stationary stochastic process when we know the stochastic process, which has

generated the time series. Note that any covariance stationary stochastic process

can be given an infinite moving average representation or Wold representation as:

2 In relation to the business cycle, the literature includes Howrey (1968), Sargent and Sims (1977),

Baxter and King (1999), and recently Sarlan (2001), while in finance, the literature includes

examination of the stock market (Fischer and Palasvirta, 1990; Knif et al., 1995; Lin et al., 1996;

Asimakopoulos et al., 2000; Smith, 1999 and 2001), and investigation of the interest rates

(Kirchgassner and Wolters, 1987; Hallett and Richter, 2001 and 2002). For a more extensive

survey of the application of spectral analysis to economics and finance, see Ramsey and Thomson

(1999).

15



x, =y/(L)et = > y/jlJe, (2.7)

| where i/f(L) = \ + y/lL + y/2L
2 + ••• is a polynomial in the lag operator, L, and

1 iffo=\. The spectrum of the white noise process is Se (w) = cr~/2;r, and equation
1
\ (2.7) shows that JC, is generated by filtering the white noise process where \//(L)

I
\ are the filter weights. The spectrum of xt is thus the spectrum of the white noise

process multiplied by the effect of the filter (Pedersen, 1999). This is easily

I computed taking the following steps:

$ 1. Formulating the model in terms of its moving average representation (2.7)
i

I using the lag operator.

1 2. Substitute e~wt for the lag operator L to get

xt =

This is the transfer function or the frequency response function of the filter

(2.7)

3. Take the square of the absolute value of the frequency response function,

called the power transfer function of the filter, denoted as:

ys2e ^W^e +*
1 4 H(w) = 1 ~'M ' "" ~~2iw

I 4. The power spectral density function is the power transfer function of the
1

filter multiplied by the spectrum of the white noise process

16
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For example, consider the following ARMA(2,2) process:

X, = #,*,_,

To compute the power spectrum density, we follow four steps mentioned above.

Step 1. Reformulate above equation in terms of its moving average representation

using the lag operator.

'~ }-0,L-0-,L£'

Step 2. Substitute for the exponential function instead of the lag operator.

A, = -2iV £t

Step 3. The corresponding frequency response function can be defined as follow:

w + <p2e-2iw

and the power transfer function becomes:

H(w) =
w -92e

-2iw

Step 4. Finally, the power spectral density function can be defined as:

In

-2iw
i

17
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Figure 2.1 The Power Transfer Function and the Power Spectral Density Function
of ARMA(2,2) Process

Power transfer function of the ARMA(2,2)process

Frequency

Power spectral density of the ARMA(2.2)process

Frequency

Note: This figure plots the power transfer function and the power spectral density function of

ARMA(2,2) process. The upper figure presents the power transfer function, calculated by H{w) in

step 3. The bottom figure presents the power spectral density function calculated by step 4.

The power spectral density function of this ARMA(2,2) process is plotted in

Figure 2.1 with the power transfer function.

This spectral analysis can be applied to the multivariate case. It is known as cross

spectral analysis, and it allows us to examine the multivariate case in the

frequency domain. This presents an alternative method to investigate the lead-lag

relationship and comovements between time series. The cross spectrum is a

complex quantity and can be reformed in terms of two real quantities, the

'd cospectrum, , and the quadrature spectrum, qu{j{w) . Using Euler

18
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Relations and DeMoire's Theorem, the coherence can be decomposed into two

1 terms as follows.
-!
1

Sij=coij(w) + iquij(w) (2.8)

The cospectnim can be expressed by:

ij(w)=~YjRij(s)cos(ws) (2.9)

where Rtj is defined as £[(/, ~ Eit )(;, - Ej,)] . The cospectnim between two

series / and j at frequency w can be interpreted as the covariance between two

series / and j that is attributable to cycles with frequency M\ The cospectnim can

have either positive or negative values, since the autocovariances can be both

positive and negative.

The quadrature spectrum is rewritten as follows:

0& £fy (2.10)

The quadrature spectrum from time series / to time series ; at frequency w is

proportional to the portion of the covariance between two time series i and j due to

cycles of frequency w. From this quadrature spectrum, we can observe which

series has more out-of-phase cycles, because time series / may respond to an

economic recession later than time series j .

19



Next we need to show how to derive the gain in spectral analysis. The gain has a
j
|'J feature which shows how a change of the regression coefficients in the time

I domain can affect the cross spectrum.

+(guij(w))2 (2.11)

The function |G(w)| is called the gain. The gain is equivalent to the regression
!

coefficient for each frequency w. In other words, it measures the amplification of

In
; the frequency components of the /-process to obtain the correspondingr

[ I components of the /-process.

I I The estimated coherence spectrum between two series for various frequencies is

('* given by:

M M O |2
^ ( 2 . 1 2 )

where Su and 5 ,•.• (i=t=j) are the autospectrum estimated from:

AM

AN(s)Ru(s)e (2.13)

! 1
i

where Ri( is defined as E[(i, - Eit)
2]. The coherence is a real-valued function,

which has a value between 0 and 1. The coherence between two time series

measures the degree of which series are jointly influenced by cycles at frequency

20



* w. In other words, as can be seen equation (2.12), coherence is the ratio of the

squared cross spectrum to the product of two autospectrums, analogue to the

| | squared coefficient of correlation. We can use the coherence between two or more

time series to measure the extent to which multiple time series move together over

the business cycle.

The lead-lag relationship between two time series can be captured by the phase.

The phase, defined as q>{w), can be expressed as a ratio between the cospectrum

and quadrature spectrum.

1 I

f 1

<p(w) = tan- l

qutj(w)
(2.14)

In addition, the phase gives the lead of one series over another series at frequency

w. The phase graph gives information about the lag relationship between two time

series. If the phase is a straight line over some frequency band, the slope is equal

to the time lag and thus tells which series is leading and by how many periods

ii
I (Pederson, 1999).

This reveals the lead and lag relationship between two variables at different

i
I
1

frequencies. In other words, a positive phase slope indicates that the input variable

leads the output variables, while a negative phase slope indicates that the input

' 4 variable lags.
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] 2.2.3 Comparison between Fourier Transform and Wavelet Transform
4

\ While Fourier analysis is one of the origins of wavelet analysis, the two methods
i

| have some points of similarity and some important points of difference. The first

^ similarity is reversibility. Both transforms are reversible functions. That is, they

4

i allow going back and forward between the raw and transformed signals. Another

similarity is that the basis functions are localized in frequency, making

mathematical tools such as power spectra (how much power is contained in a

N frequency interval) and scalograms useful at picking out frequencies and

calculating power distributions (Graps, 1995).

I Even though they possess some similarities, the two transforms are different from

each other. Through examining the difference between the two transforms, we can

r« easily see why we need wavelet analysis instead of Fourier analysis. Wavelet

analysis has three distinctive advantages over Fourier analysis. The first advantage

i is that wavelet analysis has the ability to decompose the data into several time

scales instead of the frequency domain. This advantage allows us to examine the

I behavior of a signal over various time scales. The second advantage of wavelet

^ transforms is that the windows vary. In order to isolate signal discontinuities, one

1 would like to have some very short basis functions. At the same time, in order to
I

1 obtain detailed frequency analysis, one would like to have some very long basis

j functions. In fact, wavelet transforms allow us to do both. The final advantage of

wavelet transforms is their ability to handle the non-stationary data. Restricting to

stationary time series would not be very promising and appealing since most

i



: ! interesting time series exhibit quite complicated patterns over time (trends, abrupt

regime changes, bursts of variability, etc).

Figure 2.2 Comparison between Fourier Transformation and Wavelet
Transformation

Original Sine Signal

40 60 80
Fourier Transform

100 120

20

15

10

5

0

20 40 60 80
Continuous wavelet transform

100 120

40 60 80 100 120
time

Note: This figure illustrates the original sine signal, the Fourier transformation, and the wavelet

transformation. The second figure plots the Fourier transformation of the original signal. Clearly it

indicates the original signal has a single frequency. The bottom figure indicates the continuous

wavelet transformation. This figure has been constructed using Haar wavelet filter, which will be

discussed later in this chapter.

To compare Fourier transformation and wavelet transformation, we decompose

the sine signal (st =sin(;z'']/$)) using Fourier transformation and continuous

wavelet transformation. To calculate the wavelet coefficients, the Haar wavelet
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filter has been adopted. More properties of the Haar wavelet filter will be

discussed later. Figure 2.2 plots the original sine signal, Fourier coefficients, and

wavelet coefficients.

As can be seen in Figure 2.2, a plot of the Fourier coefficients of this signal shows

nothing particularly interesting: a flat spectrum with two peaks represents a single

frequency. More specifically, the Fourier transformation picks up the low-

frequency oscillation and lacks strong evidence of the discontinuity. In other

words, the Fourier analysis only shows the global movements, not local

movements. However, by giving up some frequency resolution, the wavelet

transformation has the ability to capture events that are local in time. This makes

the wavelet transformation an ideal tool for studying nonstationary or transient

time series. In contrast to the Fourier transformation, as shown in Figure 2.2, the

wavelet transformation clearly identifies the abrupt change in the function and the

low-frequency sinusoid.

2.3 Wavelet Analysis

As a means of understanding the fundamentals of wavelet analysis, Daubechies

(1992) provides an extensive look at the mathematical properties of wavelets.

Chui (1992), and Strang and Nguyen (1996) are good introductions to wavelets.

The text by Gene.ay et al. (2002a) gives a good discussion on how wavelets can be

applied in economics and finance. Ramsey (1999 and 2002) and Schleicher (2002)

also give some additional insights on how wavelet analysis can be adopted in

economics and finance. In this section., we examine the properties of the

24



continuous wavelet transform, and two discrete wavelet transforms (Discrete

Wavelet Transform and Maximal Overlap Discrete Wavelet Transform).

2.3.1 Continuous Wavelet Transform

The continuous wavelet transform (CWr) is defined as the integral over all time

of the signal multiplied by scaled, shifted versions of the wavelet function

y/(scale, position, time):

C(scale, position) = J~ xt\f/(scale, position,t)dt (2.15)

The results of the CWT are many wavelet coefficients C, which are a function of

scale and position. The scale and position can take on any values compatible with

the region of the time series xt. Multiplying each coefficient by the appropriately

scaled (dilated) and shifted wavelet yields the constituent wavelets of the original

signal. If the signal is a function of a continuous variable and a transform that is a

function of two continuous variables is desired, the continuous wavelet transform

(CWT) can be defined by (Burrus et al., 1998):

F(a,b)=jx,y/(!~)dt (2.16)

with an inverse transform of:
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x, =
J

(2.17)

where y/(t) is the basic wavelet and a, fr e R are real continuous variables.

To capture the high and low frequencies of the signal, the wavelet transformation

utilizes a basic function (mother wavelet) that is stretched (scaled) and shifted.

Figure 2.3 Morlet Wavelets with Different Scales

i

~ 0.5

^ 0

1-0.5

-1

-3 -1

1r
i i i

-4 -3 -2 -1

'Hi

I

I

s

Note: This figure illustrates the effect of changing the scale b. It is observed that the smaller value

of b generates the more compressed wavelet filter.

Scale of wavelets

Scaling a wavelet simply means stretching (or compressing) it. To go beyond

colloquial descriptions such as "stretching", we introduce a scale factor, b, so that

26



I

iS

I
I

y/b{t) = y/[tlb). The smaller the scale factor, the more "compressed" the wavelet

(see Figure 2.3). It is natural to think about a correspondence between wavelet

scales and frequency. A fine and small scale b generates a compressed wavelet. In

turn, this compressed wavelet makes the details change rapidly. In consequence, a

fine and small scale b can capture a high frequency oscillation. In contrast, a

coarse and large scale b can capture low frequency movements.

Figure 2.4 Morlet Wavelets and Shifted Morlet Wavelets

|

1
1

Note: This figure represent the effect of changing a in equation (2.17).

Shifting of wavelets

Shifting a wavelet simply means advancing or delaying it. Mathematically,

delaying a function i//{t) by a is represented by i//(t - a).
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Using these two properties, the wavelet transformation intelligently adapts itself to

capture features across a wide range of frequencies and thus has the ability to

capture events that are local in time.

What conditions must wavelets satisfy?

A wavelet y/(t) is a simple function of time t that obeys some rules (admissibility,

orthogonality, vanishing moments). First, the admissibility condition is:

VV

where //(vv) is the Fourier transform, a function of frequency vv, of \f/{t) in the

CWT. This condition is only useful in theoretical analysis, and as in the Fourier

transform, there is a necessary condition to satisfy the Dialect condition (i.e.

continuous or only limited discontinuous points in the integration span). This

condition ensures that //(vv) goes to zero as vv -»0 (Grossman and Morlet, 1984;

Mallat, 1999).

I In other words, to guarantee that Cv < °° , we must impose the condition,

//(0) = 0. This condition leads us to the first condition of a wavelet function.

(2.18)

If the energy of a function is defined as the squared function integrated over its

domain, the second condition is that the wavelet function has unit energy.
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(2.19)

The second condition is orthogonality. As discussed in Fourier analysis, the

wavelet also has an orthogonal property. Orthogonality means that the shifted

functions in the same scale are orthogonal and also that the functions at different

scales are orthogonal. In the implementation of a wavelet system by filter banks,

orthogonality means that if the inverse of the analysis filter banks is exactly the

transpose of itself, this wavelet is orthogonal. In this case, only one wavelet

mother function is necessary for both analysis and synthesis. It does not have

linear phase. If the wavelet is biorthogonal, the inverse of analysis filter bank is

not necessarily the transpose of itself. In other words, there would be two mother

functions for analysis and synthesis respectively. Some wavelet families can be

both biorthogonal and orthogonal.

The final condition is related to vanishing moments. What is the relevance of

vanishing moments? More vanishing moments means that the scale function is

smoother. The number of vanishing moments comes from the defining wavelet

I equation.
I|
I 2.3.2 Discrete Wavelet Transform
4

In time series analysis, the data has a finite length of duration. Therefore, only a

finite range of scales and shifts are meaningful. In this section, we study the

Discrete Wavelet Transform (DWT).
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To describe the idea of multiresolution, it is better to start from the properties of

scale function (father wavelet). A two-dimensional family of functions is

generated from the basic scaling function by scaling and translation as follows:

-V (t2k
^A A | (2.20)

where 2j is a sequence of scales. The term 2 ^2 maintains the norm of the basis

functions 0(0 at 1. In this form, the wavelets are centered at 2jk with scale 2j.

2jk is called the translation (shift) parameter. The change in; and k changes the

support of the basis functions. 2 j is called the scale factor used for frequency

partitioning. When j becomes larger, the scale factor V becomes larger, and the

function <pi k (0 becomes shorter and more spread out, and conversely when; gets

smaller. Therefore, 2j is a measure of the scale of the functions (pj k (t). The

translation parameter 2Jk is matched to the scale parameter 2j in the sense that

as the function </>j,k(t) gets wider, its translation step is correspondingly larger.

This scaling function spans a space vector over k.

Sj=Span{<t>k(2
jt)) (2.21)

In order to describe multiresolution analysis (MRA) more specifically, the basic

requirement of MRA can be formulated as follows:
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' -1 (2.22)

s

f

1

I

with 5_TO = {0} and 5TC = L2

Each subspace Sj encodes the information of the signal at resolution level j ,

which can be represented by scale functions (Lee and Hong, 2001). This

relationship, plotted in Figure 2.5, indicates that the space, which contains high

resolution, also contains those of lower resolution.

I

s

I

i

Figure 2.5 Nested Vector Spaces Spanned by the Scaling Functions

, • • •

CJ>

Note: This figure illustrates the vector spaces spanned by the scaling functions. From this figure, it

is observed that the higher scaling function nests the lower scaling functions.

From Figure 2.5, we can find a relationship between two adjacent scaling

functions such that if (/){t) is in VQ, it is also in V,. This implies that <p{t) can be

expressed as a weighted sum of shifted (j)(2t) . Therefore, MRA involves
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successively projecting all time series xt to "be studied into each of the

approximation subspaces Sj.

- f c ) , keZ (2.23)

where the coefficients g(k) are a sequence of real (complex) numbers called the

scaling function coefficients (low-pass filter) and V2 maintains the norm of the

scaling function with the scale of two. This equation is called the refine equation,

the MRA equation, or the dilation equation as it describes different interpretations

;g or points of view (Burrus et al., 1998).

To this point, we have discussed some properties of scaling functions. These

properties play an important role in describing the properties of the wavelet
8
I

functions (mother wavelet, ys(t)). The important features of time series can be

captured better by defining a slightly different set of functions y/{i) that span the

differences between two adjacent spaces, spanned by the various scales of the

scaling functions. The relationship between vector spaces of the scaling functions

and those of wavelet functions are plotted in Figure 2.6, based on the

orthogonality condition of the scaling and wavelet functions (see section 2.3.1).

This condition gives several advantages. Orthogonal basis functions allow simple

calculation of expansion coefficients and have a Parseval's theorem that allows a

partitioning of the signal energy in the wavelet transform domain (Burrus et al.,

1998, pl4).
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Figure 2.6 Scaling Function and Wavelet Vector Spaces

S2 C S3

Note: This figure illustrates the relationship between scaling functions and wavelet functions.

Combining this orthogonality with Figure 2.6, we can describe L2 as follows:

]} = So © D, © D2 0 D3 (2.24)

where © denotes the orthogonal sum.

In equation (2.24), we can describe the relation of 50 to the wavelet spaces as

follows:

•••©/)_,
(2.25)

This relationship shows that the key idea of MRA consists in studying a signal by

examining its increasingly coarser approximations as more and more details are

cancelled from the data (Abry, et al., 1998).
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Analogous to this relationship, the wavelets reside in the space spanned by the

next narrower scaling function: i.e., Do c 5, . This leads us to express the

wavelets as a weighted sum of shifted scaling function <f>{2t), which is defined in

equation (2.23), for some coefficients h(k) (high-pass filter):

-k) (2.26)

The function generated by equation (2.26) gives the mother wavelet y/(t), which

has the following form3:

JJ/
yrjlc (t) = 2 2 ¥{2-J / - *) = 2~ / 2 (2.27)

According to equation (2.24), any time series xt e L could be written as a series

expansion in terms of the scaling function and wavelets.

oo oo

(2.28)
;=0 *=-

0,
ft

i In this expression, the first expansion gives a function that is a low resolution or a

coarse approximation of xt. For each increasing index j in the second summation,

3 Intuitively, a small j or a low resolution level can capture smooth components of the signal, while

a large j or a high resolution level can capture variable components of the signal (Ixe and Hong,

2001).
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a higher or finer resolution function is added. The coefficients in this wavelet

expansion are called the discrete wavelet transform (DWT4) of the signal xt.

In another expression, the signal can be expressed as the sum of a finite set of high

frequency parts and a residual low frequency part. The orthogonal wavelet series

approximation up to scale J to a time series xt is given by:

(2.29)

1

i

m

with s J k = j<pJk(t)xtdt and d j k = jy/jk(t)xtdt w h e r e ; = 1 , 2 , . . . , / .

where J is the number of scales, and k ranges from 1 to the number of coefficients

in the specified component. The coefficients sJk, dj k, ..., dlk are the wavelet

transform coefficients. ./ is the maximum integer such that V is less than the

number of data points. Their magnitude gives a measure of the contribution of the

corresponding wavelet function to the approximation sum and wavelet series

coefficients approximately specify the location of the corresponding wavelet

function. More specifically, sJk represents the smooth coefficients that capture

the trend, while the detail coefficients djk , ..., dxk, which can capture the higher

4 Similar to the Continuous Wavelet Transform (CWT), the DWT is a two dimensional orthogonal

decomposition of a time series that is well suited, and is in fact designed, to detect abrupt changes

and fleeting phenomena. The important characteristic of the DWT is that its basis functions have

compact support. Thus, they are able to pick up unique phenomena in the data (Goffe, 1994).
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frequency oscillations, represent increasing finer scale deviations from the smooth

trend.

Given these coefficients, the wavelet series approximation of the original time

series x, is given by the sum of the smooth signal SJk, and the detail signals

DJk, D,_,*,..., Dlk:

(2.30)

where SJk
k

and Djk = / dj<k\ffjk(0 J= 1,2, ...,7-1

I
The original signal components SJk , DJk , Dj_]k, ..., Dlk are listed in the

order of increasingly finer scale components. Signal variations on high scales are

acquired using wavelets with large supports.

The DWT maps the vector f = ( / , , f2 , ..., / „ ) ' to a vector of n wavelet

coefficients w = (w,,w2, ..., wn)'. The vector w contains the coefficients SJJ.,

dj k, ..., dH,j= 1,2, ..., J of the wavelet series approximation, equation (2.29).

ji
* The DWT is mathematically equivalent to multiplication by an orthogonal matrix

W:

(2.31)
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where the coefficients are ordered from coarse scales to fine scales in the vector w.

In the case where n is divisible by 2J :

(2.32)

w h e r e Sj = ( ! ; J A , s J 2 , - - - , s J n f 2 J Y

d, =

Each set of coefficients Sj, dj, d;_,, ..., d, is called a crystal. The term crystal

is used because the wavelet coefficients in a crystal correspond to a set of

translated wavelet functions arranged on a regular lattice.

An alternative way to think about the wavelet is to consider low- and high-pass

filters, denoted in equations (2.23) and (2.26). The natural question is how to

derive these filters so that they can be applied in wavelet analysis. The low- and

high-pass filters can be obtained from the father and mother wavelets using the

following relationships:
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= -l= \\ff{t)\(f{2t-k)dt
V2 J

(2.33)

(2.34)

or

) = (-\)kg{k) (2.35)

The relationship between filter banks and wavelets is extensively discussed in

Strang and Nguyen (1996) and Percival and Walden (2000). The analysis

indicates that one can approach the analysis of the properties of wavelets either

through wavelets or through the properties of the filter banks (Ramsey, 2002).

However, the introduction of filter banks reveals clearly the difficulty of handling

boundary conditions, which will be discussed in ine next section more

extensively.

It is important to examine the properties of the wavelet filter, in a similar manner

to the continuous case. The DWT has counterpart properties to the case presented

in equations (2.18) and (2.19), which show integration to zero and unit energy. Let

h{ =(ho,hl,h2,--',hJ_]) be a finite length discrete wavelet filter. This wavelet

filter holds the same properties as the continuous wavelet function in as much as it

sums to zero and has unit energy.

•/ = 0 and
/=o /=o
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In addition to these properties, since the wavelet filters are orthogonal to its shifts,

the following property also has to hold for all wavelet filters.

= 0, for all non-zero integers n. (2.36)
;=o

This implies that to construct the orthonormal matrix that defines the DWT,

wavelet coefficients cannot interact with one another.

Up to now, we have studied the DWT. To get an idea about how the DWT is

applied in the signal, in this example we use the stock index. We apply the DWT

to the daily S&P 500 stock prices from June 29, 2000 to December 29, 2000. The

return series are computed via the first difference of log-transformed prices - that

is, rt = log(P,) - log(P,_,). This series is plotted in the upper row of Figure 2.7.

There is an obvious increase in variance in the returns toward the latter half of the

series. The length of the returns series is N = 124, which is divisible by 25 = 32,

and therefore, we may decompose our returns series up J = 5.

The wavelet coefficient vectors dx, ..., d5 using the Haar wavelet are shown on

the left hand side of Figure 2.7. The first scale of the wavelet coefficient dx is

filtering out the high-frequency fluctuations by essentially looking at adjacent

differences in the data. There is a large group of rapidly fluctuating returns

between observations from 60 to 100. A small increase in the magnitude is also

observed between 60 and 100, but smaller than the unit scale coefficients. This

vector of wavelet coefficients is associated with changes of /I,, equivalent to 2 - 4
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days. Since the S&P 500 return series exhibits low-frequency oscillations, the

higher (low-frequency) vectors of wavelet coefficients d, and d^ indicate large

variations from zero. Interestingly, as we noted above, the Haar wavelet is called a

step function. As the wavelet time scale increases, the decomposed higher wavelet

coefficients have a step-shape.

Figure 2.7 MRA using Haar and Daubechies 4 Wavelets

Original signal and Haar Original signal and D4

0 20 40 60 80 100 ,0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100

20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100

^Qt 10" 20 40 60 80 100 ~"JX1O 20 40 60 80 100

0 20 40 60 80 100

Note: This figure plots MRA using two different wavelet filters (Haar and D(4)) from June 29,

2000 to December 29, 2000 using daily frequency. The left hand side of this figure is constructed

using the Haar wavelet filter, whereas the right-hand side of this figure is constructed by the

Daubechies wavelet filter with length 4. We observe that the D(4) wavelet filter generates more

smooth wavelet coefficients than the Haar wavelet filter.
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The same decomposition was performed using the Daubechies extremal phase

wavelet filter of length 4 (D(4)) and provided in Figure 2.7. The interpretations for

each of the wavelet coefficient vectors are the same as in case of the Haar wavelet

filter. The wavelet coefficients will be different given that the length of the filters

is now four versus two, and should isolate features in specific frequency intervals

better since the D(4) is a better approximation over the Haar wavelet. Compared

with the Haar wavelet coefficients, the wavelet coefficient of D(4) are smoother

than those of the Haar wavelet, as the wavelet time scale increases.

Figure 2.8 How Diagram Illustrating the Down-sampling

High-pass filter
(wavelet filter)

il

x,

Low-pass filter
(scaling filter) 4,2

Note: This figure illustrates how a time series is down-sampled using the high- and low-pass filters

and shows how to obtain the wavelet and scaling coefficients using a pyramid algorithm.

In practice, the DWT is implemented through a pyramid algorithm (Mallat, 1989),

which starts with a time series x,. The first step of the pyramid algorithm is to use

the wavelet filter and scaling filter to decompose the time series against various

wavelet scales. During this procedure, the time series are down-sampled by two.

Suppose that the original signal xt consists of N (=500) samples of data. Then the

approximation and the detail signals will have 1000 samples of data, for a total of
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IN samples. To improve this sampling efficiency, we perform down-sampling.

This simply means throwing away every second data point, down-sampled by 2,

to produce the length N/2j wavelet coefficients vector d{. In down-sampling,

there is obviously the possibility of losing information, since half of the data is

discarded. The effect in the frequency domain (Fourier transform) is called

aliasing, which states that the result of this loss of information is mixing up of

frequency components (Burrus et al., 1998).

Figure 2.8 gives a flow diagram for the first step of the pyramid algorithm, i.e.,

down-sampling. The symbol \>2 implies that every second value of the time series

vector is removed. More precisely, Figure 2.8 illustrates the decomposition of *,

into the unit wavelet coefficients d\ and the unit scale scaling coefficients s\. The

time series xt is filtered using the wavelet filter and scaling filter and down-

sampled by 2. Therefore, the N length vector of observations has been high- and

low-pass filtered to obtain N/2 coefficients.

The second step of the pyramid algorithm is to treat the scaling coefficients series

{s\} as our original time series, and repeat the filter and down-sampling procedure

using wavelet and scaling filters. In other words, this decomposition process can

be iterated, with successive approximations being decomposed in turn, so that the

time series is broken down into many lower resolution components. For example,

suppose that one wants to decompose the time series xt into a third level. After

decomposing and down-sampling the original time series in the first level, shown

in Figure 2.8T the scaling coefficients are decomposed and down-sampled as we

did in the original time series. Once we finish this procedure, we have the
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following length N decomposition w = [dA ,d2,s2]
T'. After the third iteration of the

pyramid algorithm (once again, we apply filtering procedure to s2), the N length

decomposition w = [d],d2,dJi,s-i]
T is obtained. This procedure may be repeated

up to J times where J =\og2(N) and gives the vector of wavelet coefficients in

equation (2.32). This is called the wavelet decomposition tree and is presented in

Figure 2.9.

Figure 2.9 Analysis of a Time Series by a Wavelet Decomposition Tree

xt

I
I

Note: This figure plots the wavelet decomposition tree. More specifically, the original time series

can be decomposed into wavelet scaling coefficients and wavelet coefficients in the first step. In

the next step, the scaling coefficients, obtained in the first step, is regarded as the original time

series and decomposed as in the first step. This figure illustrates this procedure and continues to

third step.
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2.3.3 Maximal Overlap Discrete Wavelet Transform

We have examined the properties of the DWT as an alternative to the Fourier

transform. In this sub-section, we examine the Maximal Overlap Discrete Wavelet

Transform (MODWT). It is natural to ask why the MODWT is needed instead of

the DWT. The motivation for formulating the MODWT is essentially to define a

transform that acts as much as possible like the DWT, but does not suffer from the

DWT's sensitivity5 to the choice of a starting point for a time series (Percival and

Walden, 2000).

Non-redundancy of the DWT is achieved by down-sampling the filtered output at

each scale. (For detail, refer to Daubechies, 1992; Percival and Mofjeld, 1997).

Importantly, the zero-phasing property of the MODWT permits meaningful

interpretation of "timing" regarding the wavelet details. With this property, we

can align perfectly the details from decomposition with the original time series. In

comparison with the DWT, no phase shift will result in the MODWT.

The MODWT of level J for a time series xt is a highly redundant non-orthogonal

transform yielding the column vectors Dl,D2,-,DJ and Sj, each of dimension

N. The vector D ; contains the MODWT coefficients associated with changes in

xt between scale j - \ and j , while Sj contains the MODWT scaling coefficients

associated with the smooth of JC, at scale J, or equivalently the variations of xt at

5 This sensitivity results from down-sampling the outputs from the wavelet and scaling filters at

each stage of the pyramid algorithm (Percival and Walden, 2000).
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scale J+l and higher. The MODWT also follows the same pyramid algorithm as

the DWT, while it utilizes the rescaled filters, instead of the wavelet and scaling

filters in the DWT. These wavelet and scaling filters can be expressed as follows:

and (2.37)

Utilizing its filtered output at each scale, a time series x, can also be decomposed

into its wavelet details and smooth as follows:

(2.38)

However, this MRA of the MODWT provides some important features, which are

not available to the original DWT. Percival and Walden (2000) present five

important properties which distinguish the MODWT from the DWT:

(1) Although the DWT of level / restricts the sample size to an integer multiple

of 2J, the MODWT of level J is well defined for any sample size N.

(2) As in the DWT, the MODWT can be used to form an MRA. In contrast to

the usual DWT, both the MODWT wavelet and scaling coefficients and the

MRA are shift invariant in the sense that circularly shifting the time series

by any amount will circularly shift by a corresponding amount the MODWT

wavelet and scaling coefficients, details, and smooths. In other words, an

MRA of the MODWT is associated with zero phase filters, implying that
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events, which feature in the original time series xt, may be poorly aligned

with features in the MRA.
i

(3) In contrast to the PWT details and smooths, the MODWT details and

smooth are associated with zero phase filters, thus making it possible to

meaningfully line up features in an MRA with the original time series x,.

(4) As is true for the DWT, the MODWT can be used to form an analysis of

variance based on the wavelet and scaling coefficients. However, the

MODWT wavelet variance estimator is asymptotically more efficient than

the same estimator based on the DWT.

(5) Whereas a time series and a circular shift of the series can have different

DWT-based empirical power spectra, the corresponding MODWT-based

spectra are the same.

To provide an example of the MODWT, we construct the MRA of the S&P 500

returns. The data series are the same as those of Figure 2.7. The number of

observations is 124. Note that with the MODWT, we are no longer limited to

decomposing a sample size of dyadic length, i.e., a power of 2, while the only

limiting factor is the overall depth of the transformation given by

J = log2 (N) = 7. However, in this example we choose a performance level J = 4

MODWT on the return series using Haar and the Daubechies least asymmetric

wavelet filter of length 8 (LA(8)) for display purposes.

46



Figure 2.10 MRA analysis of the MODWT
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Note: This figure plots the MODWT-MAR using two different wavelel filters (Haar and LA(8))

from June 29, 2000 to December 29, 2000 using daily frequency. The left hand side of this figure

is constructed using the Haar wavelet filter, whereas the right-hand is constructed by LA(8). We

observe that the LA(8) wavelet filter generates more smooth wavelet coefficients than the Haar

wavelet filter.

The left-hand side of Figure 2.10 presents the MODWT coefficient vectors of r,

using the Haar wavelet filter. Note that there are N wavelet coefficients at each

scale because the MODWT does not down-sample after filtering. Compared with

Figure 2.7, the MODWT coefficients are smoother than those of the DWT. This is

because the MODWT wavelet coefficients d} contain the DWT coefficients,

scaled by 1/V2 , and also the DWT coefficients applied to x, circularly shifted by
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one. Compared to the MODWT coefficients of the Haar wavelet, the coefficients

filtered by LA(8) wavelet filter are even more smoother. The longer wavelet filter

has induced significant amounts of correlation between the two adjacent

coefficients, thus producing even smoother vectors of wavelet and scaling

coefficients.

Practically, the wavelet coefficients are calculated using the wavelet filters. This

introduces us another practical problem: how to choose a specific wavelet filter to

implement wavelet analysis from the various wavelet filters. According to Gencay

et al. (2002b), to choose an appropriate wavelet filter, there are three aspects to be

considered: length of data, complexity of the spectral density function, and the

underlying shape of features in the data. First, the length of the original data is an

important factor because the distribution of wavelet coefficients computed by the

boundary conditions will be very different from that of wavelet coefficients

computed from complete sets of observations. The shorter the wavelet filter, the

fewer wavelet coefficients produced.

Second, the complexity of the spectral density function has to be carefully

considered to select a wavelet filter, since wavelet filters are finite in the time

domain and thus infinite in the frequency domain. For example, if the spectral

density function is quite dynamic, shorter wavelet filters may not be able to

separate the activity between scales. In this case, longer wavelet filters would be

more preferable to short wavelet filter. Clearly a balance between frequency

localization and time localization is needed.
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Finally, and most importantly, there is the issue of what the underlying features of

the data look like. This is very important since wavelets are the basis functions of

the data. If one chooses a wavelet filter that looks nothing like the underlying

features, then the decomposition will be quite inefficient. Therefore, one should

take care when selecting the wavelet filter and its corresponding basis function.

Issues of smoothness and symmetry/asymmetry are the most common desirable

characteristics for wavelet basis functions.

2.3.4 Boundary Condition

In addition to the problem of choosing a proper wavelet filter, another condition

should be considered when undertaking an empirical analysis using wavelet: the

boundary condition. As indicated in choosing the wavelet filter, the empirical data

has a finite interval. This raises the issue of handling the boundaries6. In applying

the DWT and the MODWT to finite length time series, there must be an

established method for computing the remaining wavelet coefficients. Various

techniques have been proposed to handle this problem, and three techniques in

particular are briefly discussed in this section.

6 Unser (1996) discusses some of the practical problems that arise when implementing these

boundary conditions and argues that care must be given in coding the reconstruction algorithm to

ensure that the original data can be recovered exactly.
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Periodic boundary

The most natural method for dealing with the boundary is to assume that the

length N series is periodic, and to grab observations from the other end to finish

the computations. In other words, any time series /(*) defined on [0, I]7 could

be expanded to live on the real line by regarding it as a periodic function with

period one: f(x) = f(x-[x]) for xe R, This is reasonable for some time series

where strong seasonal effects are observed but cannot be applied universally in

practice (GenQay et al., 2002a, pl44). This technique is generally adapted in

wavelet analysis, partly because it is very easy to implement, and partly because

the resulting empirical wavelet coefficients are independent with identical

variances.

Reflection boundary

The reflection boundary condition is used extensively in Fourier analysis to reflect

the time series about the boundaries. This technique produces a time series of

length 2/V. This reflected series is applied to the wavelet transformation under the

assumption of periodic boundary conditions. More specifically, this technique

consists of two methods: symmetric and antisymmetric reflection (see Ogden,

1997, pi 12 for more detail). In a symmetric reflection, it is required to extend the

domain of the function beyond [0, 1] and define f(x) = f(-x) for x E [ - 1 , 0)

and f(x) = f(2~x) for A' e (1, 2]. This has an advantage over the periodic

7 Since any interval can be translated, we consider here only the unit interval [0, 11 without loss of

generality (Ogden, 1997, pi 10).
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boundary condition in the sense that it preserves the continuity of the function,

though discontinuities in the derivatives of / may be introduced.

In addition, antisymmetric reflection causes the function to be reflected

antisymmetrically about the endpoints. In terms of mathematical notations,

- / ( - J C ) forjce [-1,0] and (1,2).

This can preserve continuity in both the function and its first derivative. As with

periodic boundary conditions, these methods impose their own alterations of the

usual MRA. However, reflecting the time series does not alter the sample mean

nor the sample variance, since all coefficients have been duplicated once (Gengay

et al., 2002a).

Brick wall condition

Another way to handle the boundary is to impose the brick wall condition, which

prohibits convolutions that extend beyond the ends of the series (Lindsay et al.,

1996). In other words, this condition can be implemented to simply remove any

wavelet coefficient computed involving the boundary. Imposing this condition

requires care when we calculate the wavelet variance and covariance.

As indicated in Lindsay et al. (1996), the brick wall condition can be used in an

analysis, where data compression and regeneration is not the goals in which any

convolution that extends beyond the end of the data series is not permitted. This

boundary condition is appropriate in an analysis when there is no compelling

reason to assume that the data are periodic and symmetric in structure.
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2.4 Wavelet Variance, Covariance and Correlation

Variance, covariance and correlation are used to provide useful statistical

information to researchers, and hence they are applied to many financial theories.

In this section, we explain how the wavelet variance, covariance and correlation

are derived in the wavelet domain.

2.4.1 Wavelet Variance

In addition to the features of wavelet transforms (the DWT, the MODWT) stated

in sections 2.3.2 and 2.3.3, an important characteristic of wavelet transform is its

ability to decompose or analyze the variance of a stochastic process. When we

derive the wavelet coefficients using the DWT (or the MODWT), these wavelet

coefficients indicate the changes at a particular scale. Using these coefficients, the

wavelet variance on a particular scale can be obtained. In other words, the basic

idea of the wavelet variance is to substitute the notion of variability over certain

scales for the global measure of variability estimated by the sample variance

(Percival and Walden, 2000). We first examine how the wavelet variances would

be related to a sample variance. This can be seen by examining the sample

variance of the time series v. The sample variance can be expressed as follows:

N

(2-39)
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i

where y is the sample mean. Using orthogonality of the wavelet basis vectors, the

sum of the series can be expressed as the sum of the squares of the wavelet

coefficients.

,=1 ;=1 k=\
(2.40)

Therefore, substituting equation (2.40) into equation (2.39) makes the variance a

function of the wavelet coefficients.

^ 2 (2.41)

Let d and d be the DWT and MODWT coefficient vectors, respectively.

Equation (2.39) can be expressed as a vector notation under the assumption that a

time series v has a zero mean.

(2.42)

The relationship in equation (2.42) provides a decomposition of variance between

the original series and either the DWT or MODWT wavelet coefficients (Gencay

et al, 2002a).
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The wavelet variance for a time series X with a dyadic length TV = 2J is estimated

Husing the DWT coefficients for scale A,; = V through:

N

(2.43)

where Nj = N/2J —Lj is the number of wavelet coefficients at scale X-

unaffected by the boundary8 and L ; = [(L - 2)(1 - 2~j)] is the number of the DWT

coefficients computed using the boundary. While the spectral density function

decomposes the process variance on a frequency-by-frequency basis, the wavelet

variance decomposes the variance of Xt on a scale-by-scale basis.

We denote the MODWT coefficients of X ,,-•-, X N as djt for j = 1,. . . , J and / =

1, ... , N/2J'. Similar to the variance of the DWT coefficients, the wavelet

variance estimated by the MODWT coefficients for scale Xj is as follows:

1 N

(2.44)

where Nj=N- Lj +1 is the number of coefficients unaffected by the boundary,

and L ; = ( 2 ; - 1 ) ( L - 1 ) + 1 is the length of the scale Xj wavelet filter. The

8 How the boundary condition (especially the brick wall condition) affects the number of wavelet

coefficients is explained in section 2.3.4.
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decomposition of a time series as a sum of wavelet variances indicates which

scales are important contributors to the time series variance (Percival and Walden,

2000; Serroukh and Walden, 2000). Percival (1995) and Percival and Walden

(2000, p3O9) provide the asymptotic relative efficiencies for the wavelet variance

estimator based on the orthogonal DWT compared to the estimator based on the

MODWT using a variety of power law processes. In their studies, they find that

the DWT-based estimator can be rather inefficient - in the worst case, its large

sample variance is twice that of the MODWT-based estimator.

To this point we have examined how to derive the wavelet variances. For

statistical inference, the confidence interval for the wavelet variance is required.

Percival (1995) develops a theory for determining the uncertainty in the wavelet

variance estimate for wavelet filters of various lengths under a Gaussian

assumption. Under the assumption that the estimates of the wavelet variance of

the DWT and the MODWT are unbiased and asymptotically normally distributed9

(Lindsay et al., 1996), the approximate 100(1-2/?)% confidence interval for the

DWT estimate, &\ (/Lj) and the MODWT estimate, v% (Aj) can be derived:

(2.45)

(2.46)

9 Serroukh, Walden and Percival (2000) prove the wavelet variance is asymptotically normally

distributed in three cases of the original time series: Non-linear Processes, Non-Gaussian Linear

Process, and Non-stationary Processes and Differencing.
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where 3> ] (1 - p) is the (1 - p) x 100 % point for the standard normal distribution.

2.4.2 Wavelet Covariance and Correlation

In many economic and financial analyses, the temporal structure of the covariance

between two series is of interest. This covariance structure can be applied to the

wavelet analysis. The wavelet covariance is firstly compared to the Fourier cross

spectra by Hudgins et al. (1993) using atmospheric surface-layer measurements of

the horizontal and vertical velocities and the vertical velocity and temperature. In

finance literature, the calculation of the wavelet covariance is a relatively new

technique. Only a few researchers adopt this technique (see Gencay et al., 2001,

2003a and b; In and Kim, 2003).

The wavelet analysis of univariate time series can be generalized to multiple time

series by defining the concept of the wavelet covariance between X, and Yt. As

in standard statistics, the wavelet covariance can be defined as the covariance

between the wavelet coefficients of Xt and Y, at scale Zj.

The sample covariance between X, and Yt is:

A' ^
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The inner product of two vectors in the last equality can be expressed in terms of

their wavelet decompositions as follows:

L ", _ L ",-

S 2J ̂ M ̂ ".* +^ *' S S
> ; = 1 <;=1 ; = 1 k=\

Therefore, using the orthogonality properties of the vectors y/j k, the sample

covariance of the series may be written in terms of the wavelet coefficients.

As with the wavelet variance for univariate time series, the wavelet covariance

also decomposes the covariance between two stochastic processes on a scale-by-

scale basis. The term in the bracket in equation (2.49) indicates the contribution to

the covariance associated with each scale Xj. More specifically, we can express

the wavelet covariance at scale X-} as follows:

( 2-5 0 )

If the brick wall boundary conditions are imposed, i.e., if the wavelet coefficients

affected by the boundary are removed, the DWT estimate for the wavelet

covariance can be derived as follows, analogous to the wavelet variance:
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Af,

(2.51)

The MODWT wavelet covariance can also be expressed in terms of the MODWT

wavelet coefficients:

(2.52)

The MODWT method allows a more accurate determination of the covariance

associated with each scale (Lindsay et al., 1996). Note that the estimator does not

include any coefficients that make explicit use of the periodic boundary

conditions. We can construct a biased estimator of the wavelet covariance by

simply including the MODWT wavelet coefficients affected by the boundary and

renormalizing.

As shown in equations (2.51) and (2.52), the wavelet decomposition of the

covariance is determined by the product of the coefficients from the two

decompositions performed separately. Lindsay et al. (1996) show that the

MODWT estimator &XYj is asymptotically normally distributed with mean

X jY
<JXYJ - 2 J E{djdj } and variance

I,7,2,i sd*d?(>v) i2 (2*53)
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where Sx(w) indicates the power spectral density at the frequency w of variable x.

Based on these findings, an approximate 100x(l - 2p)% the confidence interval

for the wavelet covariance can be constructed as follows:

[aXYj -O"1 (1 -p)^v3.v(<jXYj),aXYJ + 0"1 (1 -P)^\HT(<JX Y j) \ (2.54)

where $ l(\-p) is the (]-p)x 100% point for the standard normal distribution.

Because it is well known that the covariance does not take into account the

variation of the univariate time series, it is natural to introduce the concept of the

wavelet correlation. Although the wavelet covariance decomposes the covariance

between two stochastic processes on a scale-by-scale basis and indicates a

comovement between two series to some extent, in some situations it would be

more informative to normalize the wavelet covariance by the variability calculated

from the observed wavelet coefficients. Statistically, it is necessary to calculate

the wavelet correlation. The wavelet correlation is simply made up of the wavelet

covariance for { Xt, Yt}, and wavelet variances for { Xt } and { Yt}. The wavelet

correlation can be expressed as follows:

COV vy (A : )
= „ (2.55)

tt)tt)
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As with the usual correlation coefficient between two random variables,

I PAT (AJ ) |< 1. The wavelet correlation is analogous to its Fourier equivalent, the

complex coherency (Gencay et al., 2002a, p 258).

We now turn our attention to the confidence interval of the wavelet correlation.

Given the inherent non-normality of the correlation coefficient for small sample

sizes, a non-linear transformation is sometimes required in order to construct a

confidence interval. Let h(p) = tanh~l(p) define Fisher's z-transformation. For

the estimated correlation coefficient p , based on N independent samples,

ylN-3[h(p)-h(p)] is approximately distributed as a Gaussian with mean zero

and unit variance. Based on these findings, an approximate 100x(l - 2p)% the

confidence interval for the wavelet correlation can be constructed as follows:

tanh -, tanh (2.56)

where Nj is the number of wavelet coefficients associated with scale

computed via the DWT - not the MODWT. This assumption of uncorrelated

observations in order to use Fisher's z-transformation is only valid if we believe

no systematic trends or non-stationary features exist in the wavelet coefficients at

each scale.
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2.4.3 Cross Wavelet Covariance and Correlation

The cross correlation is a more powerful tool for examining the relationship

between two time series. The cross correlation function considers the two series

not only simultaneously (at lag 0), but also with a time shift. The cross correlation

reveals causal relationships and information flow structures in the sense of

Granger causality. If two time series were generated on the basis of a synchronous

information flow, they would have a symmetric lagged correlation function,

pT = p_T; the symmetry would be violated only by insignificantly small, purely

stochastic deviations. As soon as the deviations between pT and p_T become

significant, there is asymmetry in the information flow and a causal relationship

that requires an explanation.

The cross correlation can be constructed utilizing the wavelet cross covariance. It

is straightforward to derive the cross covariance, once the wavelet covariance is

derived. For TV > L ; , a biased estimator of the wavelet cross covariance based on

the MODWT is given by:

RXY.r ~

N-T-l

t=L,-\

N-T-]

,=Lr\

0

(2.57)

otherwise
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Allowing the two processes to differ by an integer lag r, the wavelet cross

correlation can be defined as:

Rvy -(A.:)

*- * ; ' , , (2-58)

2,5 Long Memory Estimation Using Wavelet Analysis

Recently, several works have found evidence of stochastic long memory behavior

in the financial time series. The presence of long memory dynamics, which is a

special form of non-linear relationships, indicates non-linear dependence in the

first moment of the distribution, and hence provides a potentially predictable

component in the series dynamics. In this section, we describe and summarize the

estimation procedure of the long memory parameter using wavelet analysis, based

on the studies of Jensen (1999a, b and 2000). More specifically, in section 2.5.1,

the definition of long memory and the meaning of long memory parameter are

described. We present the Wavelet Ordinary Square (WOLS) in section 2.5.2,

while in section 2.5.3, we explain how to derive the maximum-likelihood

1 estimator for the long memory parameter.

\
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2.5.1 Definitions of Long Memory

There are several possible definitions of the property of long memory. According

to McLeod and Hipel (1978), a discrete time series x, , with autocorrelation

function, p} at lag/, possesses long memory if the quantity

lim (2.59)

is non-finite. Equivalently, the spectral density S(w) will be unbounded at low

frequencies. A stationary and invertible ARMA process has autocorrelations,

which are geometrically bounded, and hence is a short memory process (Baillie,

1996). Fractionally integrated processes are long memory processes given the

definition in equation (2.59).

Let xt denote a fractionally integrated process, I(d), defined by:

(1-L)dx,=e,

xt={\-L)-de, (2.60)

where L is the lag operator, e, ~ Ltd. N(0,(J^), and d is the fractional differencing

parameter, which is allowed to assume any real value in (0, 1). The process x, is
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covariance-stationary for 0 < d < 1 / 2, but not otherwise10. While the process x, is

covariance-stationary when 0 < d < l / 2 , its autocovariance function declines

hyperbolically to zero, making xt a long-memory process. If l / 2 < J < 1 , x, has

an infinite variance, but still has a mean-reverting property in the very long run.

2.5.2 Wavelet Ordinary Least Square

As shown in Jensen (1999b), the wavelet coefficient from an I(d) process has a

variance that is a function of the scaling parameter, j , but is independent of the

translation parameter, k. McCoy and Walden (1996) and Jensen (1999b)

demonstrate that wavelet coefficients have a normal distribution with zero mean

and variance, cr22~2jd. Taking logarithms on the wavelet coefficient's variance

yields the following relationship.

.2 i
In R(j) = In al-d In 2lJ (2.61)

where R(j) denotes the wavelet coefficient's variance and is linearly related to

In 2~2j by the fractional differencing parameter, d. However, note that due to the

restriction of the DWT (Discrete Wavelet Transform), the number of observations

for the underlying process, x, , must be a power of 2. Using Monte Carlo

experiments, Jensen (1999b) demonstrates that the small and large properties of

10 When d < 1, the process is called 'mean reverting', although this terminology needs to be used

with care, since the existence of the mean is not easily shown when the variance is undefined.
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the wavelet OLS estimator are superior to the GPH estimator. More specifically,

the WOLS estimator has a lower MSE (Mean Squared Errors) than the GPH

estimator.

2.5.3 Approximate Maximum-likelihood Estimation of the Long Memory

Parameter

Wavelet-based maximum likelihood estimation procedures, related to economic

and finance research, have been studied by Jensen (1999a and 2000). Although

least squares estimation is popular because of its simplicity to program and

compute, it produces much larger mean square errors when compared to

maximum likelihood methods. Another advantage of the wavelet-based MLE is

that the long memory estimator, d, is unaffected by the unknown //, since the

wavelet coefficients autocovariance function is invariant to ju (Jensen, 2000). The

approximate maximum likelihood methodology11, proposed in Jensen (1999a and

2000), overcomes the difficulty of computing the exact likelihood by replacing the

covariance matrix of the process with an approximation using the DWT.12 This is

possible through the ability of the DWT to decorrelate the long memory process.

11 Cheung and Diebold (1994) find that the approximate MLE can be an efficient and attractive

alternative to the exact MLE when // is unknown.

12 The wavelet MLE enjoys the advantage of having both the strengths of an MLE and a

semiparametric estimator, but does not suffer their known drawbacks (Jensen, 2000).
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If x, is a length N = 2J FDP with mean zero and covariance matrix given by

Clx, then the likelihood can be expressed as follow (see Gengay et al., 2002a,

pi 72):

,al | x) = Q , ' 1 ' 2 (2.62)

The quantity | Qx | is the determinant of Qx. The maximum-likelihood estimators

(MLEs) of the parameters (d and o\) are those quantities that maximize equation

(2.62). As in Gencay et al. (2002a), to avoid the difficulties in computing the

exact MLEs, we use the approximation of the DWT as applied to FDPs. In other

words, the covariance matrix Qx is expressed by:

(2.63)

where W is the orthogonal matrix defining the DWT and Lx is a diagonal matrix

containing the variances of DWT coefficients. Using equation (2.62), we try to

find the values of d and <7~ that minimize the following log-likelihood function.

L(d,<r; | x) =-2\o°[i{d,o2
£ (2.64)
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In section 5.4, we apply the approximate maximum likelihood estimator for long

memory parameter to examine the mean reverting property of stock and bond

returns.
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Chapter 3 The Relationship between Financial Variables and

Real Economic Activity: Evidence from Spectral and

Wavelet analyses1

3.1 Introduction

| In the past literature, many empirical studies find that financial variables possess a

I predictive power over real economic activity. It is generally accepted that one of
I
1 the financial variables that predict real activity is stock prices, For example,

I typically, the discounted-cash-flow valuation model states that stock prices reflect
is

I

I investors' expectations about future real economic variables such as corporate

1 earnings, or its aggregate proxy, industrial production. If expectations are correct

on average, lagged stock returns should be correlated with the contemporaneous

growth rate of the future evolution of industrial production (Choi et al., 1999).

Fama (1990) and Schwert (1990) examine the relationship between stock returns

and industrial production of the US and find that stock returns have a predictive

power for the US industrial production using R2 values of simple OLS (Ordinary

Least Square). However, the limitation of their papers is in using an in-sample

procedure such as OLS. To overcome this limitation, Choi et al. (1999) adopt

1 several time-series methodologies such as ECM (Error Correction Model) and a

| cointegration test for in-sample procedures using G-7 data. They find that most

countries enhance predictions of future industrial production.

This chapter has been accepted in Studies in Nonlinear Dynamics and Econometrics.
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Another example can be found in interest rate spread, such as the difference

between commercial paper and Treasury bill rates or the difference between risky

bond yields and risk-free Treasury bill rates. Previous literature (Stock and

Watson, 1989; Friedman and Kuttner, 1992; Kwark, 2002) finds that the interest

spread has a highly predictive power for future business conditions. As for stock

prices, the explanation for the interest rate spread being a leading indicator over

the business cycle is based on investors' perceptions of the future economy. If

investors expect that the future economic growth is favorable and bankruptcy risk

will be reduced for economic growth, they might want relatively small

compensation, i.e., risk premium, compared to economic recession. Accordingly,

the interest rate spread would be decreased. That is, a decrease of interest rate

spread is associated with an increase of output. Kwark (2002) shows that the

interest rate spread between risky bond loan rates and risk-free rates has a

predictive power for subsequent fluctuations in real output using general

equilibrium model, which incorporates heterogeneity among firms by introducing

idiosyncratic shocks as well as aggregate shock.

The reason being why the financial variables have a predictive power, or are a

leading indicator, of real activities is that if investors expect economic recession

and an increased risk in their investment, they want more risk premium for their

investment as compensation.

The chapter contributes the existing literature by examining the predictive power

of the financial variables over real activity, not only over various frequencies but

also over various time scales. To do so, first, we examine interest rate spread and
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stock prices to provide more profound understanding of the relationship between

I
I the financial variables and real activities. Second, we adopt the frequency domain

analysis to analyze the relationship between real activity and financial variables.

Finally, we introduce a new approach to the investigation of the relationship

between financial variables and real economic activity over various time scales.

The purpose of examining the financial variables is not to determine which

variable is most effective and a leading indicator, but to examine how the

relationship differs from variable to variable. To examine this relationship more

concretely, two established methods are used. First, spectral analysis is adopted to

examine their comovements, and the lead-lag relationship. Frequency domain

analysis has been used in macroeconomics, especially in the business cycle and

finance literature since Granger (1966). In relation to the business cycle, the

literature includes Howrey (1968), Sargent and Sims (1977), Baxter and King

(1999), and recently Sarlan (2001), while in finance, the literature includes

examination of the stock market (Fischer and Palasvirta, 1990; Knif et al., 1995;

Lin et al., 1996; Asimakopoulos et al., 2000; Smith, 1999 and 2001), and

investigation of the interest rates (Kirchgassner and Wolters, 1987; Hallett and

Richter, 2001 and 2002)2.

In wavelet analysis, the result of frequency domain analysis shows that US

industrial production and financial variables share long-term features. However, in

terms of the lead-lag relationship between US industrial production and financial

2 For more extensive survey of the application of spectral analysis to economic and financial data,

| | see Ramsey and Thomson (1999, p. 57).
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variables, the results show that financial variables lead US industrial production in

longer cycles, while US industrial production leads financial variables in shorter

cycles. It implies that the relationship between US industrial production and

financial variables is not fixed over time. This result is confirmed by wavelet

analysis. The lead-lag relationship, in the sense of Granger causality, varies

depending on the time scale. More specifically, we find that at the finest time

scale (scale 1), most financial variables show a feedback relationship with US

industrial production. Second, at the intermediate time scale, the results depend on

the variables. Finally, at the long-term trend, feedback relationships are observed

in most variables.

The remainder of the chapter is organized as follows. Section 2 describes the data

used in the study and the basic statistics. In section 3, we describe spectral

analysis and discuss the empirical findings. Section 4 presents the wavelet

analysis and discusses the associated results. A summary and concluding remarks

are presented in Section 5.

3.2 Data and Basic Statistics

The main purpose of this study is to investigate whether financial variables have a

predictive power over industrial production over various frequency domains and

time scales. Previous studies use various financial variables to examine whether

they contain a great deal of information about future economic conditions.

Bernake (1983) has used the difference between Baa corporate bond yields and

long-term US government bonds to examine whether this variable has a predictive
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I power. Friedman and Kuttner (1992) adopt the Granger causality test to
I

investigate whether the difference between the commercial paper rate and the

Treasury bill rate contains significant information about future output. They find

that the spread is a better predictor of economic activities than money, interest

rates, or any other financial variables. Fama and French (1989) and Choi et al.

(1999) use stock prices to check whether the stock return can predict future

economic activity. To enable comparison with these previous studies, we also use

these variables to examine whether financial variables have a predictive power.

Our data set is composed of monthly observations of the aggregate stock price

index and the industrial production index taken from ihe International Financial

Statistics of the IMF (International Monetary Fund). For other financial variables,

we use the 3-month commercial paper rate, the 3-month Treasury bill rate of the

secondary market, the prime rate for short-term business loans, Moody's Aaa and

Baa rates, and the CPI index, which are taken from the US Federal Reserve. To

calculate the real value of each variable, the CPI index has been used. The data

ranges from 1959:1 to 2001:5, except for the commercial paper rate, which ranges

from 1971:4 to 1997:8.3 We construct the four financial variables using the above

data series. We define CORSP as the difference between the Moody's Aaa-rated

and Baa-rated corporate bond interest rates, CPTB3 as the difference between the

difference between the 3-month commercial paper rate and the 3-month Treasury

bill rate, PTB3 as the difference between the Prime rate and the 3-month Treasury

3 Since August 1997, the commercial paper rate has been divided into two categories: financial and

non-financial. To avoid inconsistency of data, we use the period indicated.
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bill rate, respectively. The final variable, Shares, is defined as the first backward

difference of the stock prices.

Table 3.1

IP

CORSP

CPTB3

PTB3

Shares

KPSS Unit Root Test

level
difference

level

difference

level
difference

Level
Difference

Level
difference

L=0
5.586
0.164

7.421

0.040

0.612
0.013

1.324

0.010

10.792

0.061

L=10

0.539
0.071

0.739
0.036

0.085
0.023

0.176
0.017

1.023
0.044

L=20

0.305

0.066

0.421

0.039

0.059
0.032

0.117
0.024

0.561
0.051

Note: Test statistic is T~2isf/S2(L) where S, = I,, t = 1, 2, ..., T.

S2(L) = 7"~ 1 I ?+2r" 1 Z( l -5 /L+l )Z / _ v . The null hypothesis of stationarity is rejected if the

test statistics are greater than the critical values. The critical values are 0.176 at the 5%

significance level, 0.216 at the 1% significance level. This test includes a constant and trend. IP is

industrial production, CORSP is the difference between the Moody's Aaa-rated and Baa-rated

bond interest rates. CPTB3 is the difference between the 3-month commercial paper rate and the 3-

month Treasury bill rate. PTB3 indicates the difference between Prime rate and the 3-month

Treasury bill rate. Finally, Shares are defined as the first backward difference of the stock prices.

The data must be stationary to perform spectral analysis. To test unit root, we

adopt the method (hereafter KPSS) proposed by Kwiatkowski et al. (1992). Using

the KPSS test, stationarity is rejected for the levels, while stationarity cannot be

rejected for the difference as presented in Table 3.1.

Table 3.2 presents the sample moments and the cyclical behavior of various

financial variables and industrial production, focusing on the lead-lag relationship

and cross correlation of variables with real industrial production. Three kinds of

interest rate spreads are provided as measures of default risk. First, we use
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CORSP. This is appropriate because this interest differential reflects a risk

premium due to a difference in default risk. Second, we consider CPTB3. This

interest rate difference has been adopted in our studies because Stock and Watson

(1989) suggest this interest rate difference as a leading indicator. Finally, PTB3 is

considered. As discussed in Kwark (2002), the bank loan rate would be a correct

risky loan rate. However, due to the available measure of bank loan rates, he used

the prime loan rate as a risky loan rate. We follow his view and adopt the prime

rate for our analysis. One problem of using the prime rate is that this interest rate

does not change frequently.

The sample moments of each variable are presented in Panel A of Table 3.2.

Means of all variables are close to zero. The standard deviation ranges from 0.009

(IP) to 0.323 (CPTB3), indicating that the interest rate difference between

commercial paper and Treasury bills is most volatile during the sample period.

The measures for skewness and kurtosis statistics are also reported to check

whether monthly data are normally distributed. These statistics indicates that all

data are not normally distributed.

Table 3.2 Sample Moments and Cyclical Behavior of Financial Variables
Panel A Basic Statistics

IP
CORSP
CPTB3
PTB3
Shares

Mean

0.003
0.000

-0.002
0.002
0.006

Std.Dev.

0.009
0.082
0.323
0.188
0.035

Rel. Std.

1.000
9.400

39.579
21.565
4.025

Skewness

-0.089
0.442

-0.371
0.560

-0.647

Kurtosis

6.101
2.339
0.969
6.360
2.183

Note: Skewness and kurtosis are defined as £[(/?, - p)f and E[(R, - //)]4, where ju is the sample

mean. Std. Dev. and Rel. Std. indicate the standard deviation and relative standard deviation,

resp.;jtively, calculated using the standard deviation of IP.
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Panel B Cross Correlation with Industrial Production

1
I

I
i

j
1

IP
CORSP
CPTB3
PTB3
Shares

-3
0.138

-0.147
-0.119
-0.139
0.138

-2
0.204

-0.207
-0.045
-0.151
0.148

-1
0.380

-0.253
0.056

-0.089
0.056

Corr(AIP,. Ax,

0
1.000

-0.119
0.178

-0.039
0.010

,)
1

0.380
-0.014
0.190
0.060

-0.039

2
0.204

-0.009
0.096
0.126

-0.086

3
0.138

-0.029
0.129
0.144

-0.084
4 Sources: International Financial Statistics (IFS) CD-ROM (June 2002) from IMF, and Federal

< Reserve System statistical release (H.I5). All variables are calculated as a real term using CPI

index.

] Note: The data period of CPTB3 is from 1971:4 to 1997:8 and other variables have a period from

1959:1 to 2001:5. Corr(AIP,, Ax,) is the cross correlation coefficients between IP and financial

" variables, where x, = IP, CORSP, CPTB3, PTB3, and Shares.

The cross correlation of variables with industrial production is reported in Panel B

of Table 3.2. The lagged cross correlations between industrial production and all

previous financial variables are negative except for shares and CPTB3 with first

lagged IP, implying the leading behavior of the interest rate spread is common for

all three measures of interest rate spread. The cross correlations between industrial

production and shares show different pattern from the other correlations. This is

because the share index has a different movement from the interest rate spreads.

When the economy is expected to grow, the interest rate spread is expected to

decrease, because the interest rate for risky loans decreases. However, the share

index increases in an economic boom. This cross correlation structure simply

indicates that the financial variables play a role as a leading indicator of real

activity, implying that if the interest rate spread (share index) decreases

\ (increases) today, then output is expected to increase in future. In other words, the
i
\ financial variables lead the real activity. This tendency is by Figure 3.1.
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Figure 3.1 Business Cycle and Interest Rate Spread
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Note: The x-axis indicates the interest rate spread between the Moody's Aaa-railed and Baa-rated

bond yields, which are obtained from Federal Reserve System statistical release (H.I5). The

vertical lines indicate the troughs of the business cycle obtained from NBER

(http://www.nber.org/cycles.html/). The corresponding months are February 1961, November

1970, March 1975, July 1980,November 1982, and March 1991, respectively.

Figure 3.1 shows the movements of interest rate spread between Baa and Aaa over

the period 1959:1 to 2001:5. The vertical lines indicate the troughs of business

cycles, obtained from NBER4. As found in the cross correlation structures, this

figure gives further evidence that financial variables are a leading indicator of real

activity, showing that the peak of interest rate spread widens before output

decreases. From this simple analysis, we conclude that financial variables can

4 The date of business cycle expansions and contractions can be found on

http://www.nber.org/cycles.html/.
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predict real activity. In the next sections this evidence will be examined more

thoroughly using various time series techniques.

3.3 Empirical Results of Spectral Analysis

Utilizing the cross spectral analysis, presented in section 2.2.2, Table 3.3 presents

the summary statistics for the gain, the coherence and the phase. As discussed in

the previous sub-section, the gain measures the degree by which a change of the

regression coefficients in the time domain can affect the cross spectrum. During

the sample period, the gains are varying depending on the frequency and

variables. For example, the simple mean of the gain between industrial production

and CORSP has higher values (0.036) than those of the others, showing that the

change of CORSP has more amplitude than the other variables on industrial

production. The construction of the coherence as a measure of association for

different frequencies is evident from equation (3.1). In fact, the coherence can be

considered as a square of a correlation coefficient. During the sample period, the

coherence varies at different frequencies. For example, the mean value of

coherence between industrial production and CORSP is 0.349, while the

maximum is 0.783 and the minimum is 0.023. The results of the phase also show

the varying property at different frequencies.

Variance, skewness, and kurtosis are also reported in Table 3.3. These statistics

indicate that the coherences and the phases are characterized by varying degrees

of skewness and excess kurtosis.
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Table 3.3 Descriptive Statistics for Gain, Coherence, and Phase

CORSP
CPTB3"
PTB3
Shares

CORSP
CPTB3"
PTB3
Shares

CORSP
CPTB3a

PTB3
Shares

Note: The ca

Mean

0.036
0.012
0.017

0.079

0.349
0.377
0.326

0.339

-0.954
-0.356

-0.458
-0.016

in is calculated

Variance

0.001

0.000
0.000
0.003

0.026
0.028
0.034
0.026

2.204

1.642
3.067

3.602

as lG(w)l=.

Skewness

gain

1.875

2.501
2.684

1.602

coherence

0.296
0.488
0.230
0.693

phase

0.953
0.810
0.513

-0.229

i l(C0it(w))" +1

Kurtosis

3.260

6.111
7.403
2.577

-0.214
-0.277

-1.063
1.004

0.250
0.930

-0.908

-1.280

(OU;:(W))~ .

Maximum

0.137
0.066
0.098
0.266

0.783
0.814

0.739
0.833

3.069

3.100
3.127
3.072

the coherence

Minimum

0.002
0.000

0.001
0.004

0.023
0.024

0.036
0.015

-3.142
-3.141
-3.142
-3.134

is calculated as

= \Sjj(w)\2/Sjj(w)Sjj(w) , and the phase is calculated as

ij (w)). Skewness and kurtosis are defined as E[(R, - //)]3 and £"[(/?, - //)]4,<p(w) = tan*

where ji is the sample mean.

"The data period of CPTB3 is from 1971:4 to 1997:8 and other variables have a period from

1959:1 to 2001:5.

Figure 3.2 shows the calculated gains of CORSP, CPTB3, PTB3, and shares and

the impact of the US industrial production. In fact, the changes in financial

variables set up the long and short cycles in industrial production, with industrial

production responding to the movements of financial variables with movements

less than one-third of their original sizes. As can be observed in Table 3.3, the

highest value of the gain is 0.137 between IP and CORSP. However, the short

cycles (less than 6 months in length) are clearly weaker than long cycles (more

than 1 year). Comparing responses to various financial variables is of interest.

First, the most striking feature of this graph is that the effect of shares is stronger
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than the otlier financial variables. In this figure, the movements of gain between

US industrial production and shares are placed at the top of the four lines, and can

be seen to be very unstable.

Figure 3.2 Estimated Gains of CORSP, PTB3, CPTB3, and Shares
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Note: The x-axis indicates the frequencies, while the j-axis indicates the gain, which is calculated

as |G(w) \=J(cojj(w))2 +(qiijj(w))2 . CORSP is defined as the difference between the Moody's

Aaa-rated and Baa-rated corporate bond interest rates. CPTB3 indicates the difference between the

3-month commercial paper rate and the 3-month Treasury bill rate. PTB3 is defined as the

difference between the Prime rate and the 3-month Treasury bill rate. Finally, Shares are defined

as the first backward difference of the stock prices.

Second, it is of interest to compare the movements of the gains between longer

cycles (between frequencies 0 and 0.5, which is equivalent to greater than 1-year

cycle) and shorter cycles (between frequencies 0.5 and 1.0, which is equivalent to

the cycles between 6 months and 1 year). Generally, the change of the financial
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variables has greater effects on US industrial production in longer cycles than in

shorter cycles. The gains of CORSP are greater than the other interest rate spreads

during shorter and longer cycles. This is because the default rate of lower credit-

graded companies is increasing when the economy is in recession.

Focusing on the CPTB3, which has been used in the study of Friedman and

Kuttner (1992) as a better predictor of real activities, the movements of the gain of

CPTB3 are quite stable, compared to the interest rate spreads and shares. The

change in the CPTB3 influences US industrial production, and its amplitude is

less than one tenth of the size of the original movements in CPTB3. Compared to

the movements of CORSP and PTB3, its amplitude is less in both longer and

shorter cycles, indicating that CPTB3 has less impact on US industrial production

than the other interest rate spreads. This result would imply that US industrial

production influences CPTB3 less than the other financial variables in terms of its

amplitude.

The coherence plays a role as a correlation coefficient defined at frequency w.

Note that trie coherence can be regarded as a square of a correlation coefficient.

Figure 3.3 presents the coherence of four financial variables with US industrial

production. In particular, the coherence for CORSP shows that CORSP explains

80% of US industrial production at very low frequency (frequency around 0.14),

which is about 0.89 measured as a correlation coefficient. It can be interpreted that

both variables (US industrial production and CORSP) have similar long-term

features. However, the coherence of CORSP starts to decrease to frequency 0.28.

After this, it shows similar cycle as in low frequencies. The other interest rate
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spreads show a similar pattern with CORSP, while the coherence for shares

reaches its peak at shorter cycles than those of the other variables. At frequency

0.20, the coherence is 0.83, which is equivalent to 0.91 of correlation coefficient.

Overall, the coherences for financial variables have a highest value in low

frequencies, indicating that the financial variables and US industrial production

have a similar long-term movement.

3.3 Estimated Coherences of CORSP, PTB3, CPTB3, and Shares

CPTB3

0.0 0.8 1.0 1.2

Note: The x-axis indicates the frequencies, while the y-axis indicates the coherence, which is

calculated as Coh(w) •=|S/y(»v)|2/Sl7(u')5Jf,(H'). CORSP is defined as the difference between the

Moody's Aaa-rated and Baa-rated corporate bond interest rates. CPTB3 indicates the difference

between the 3-month commercial paper rate and the 3-month Treasury bill rate. PTB3 is defined as

the difference between the Prime rate and the 3-month Treasury bill rate. Finally, Shares are

defined as the first backward difference of the stock prices.
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The phase of the cross-spectrum is graphically presented in Figure 3.4. Note that

the phase of shares has positive values between frequencies 0 to 0.59, while those

of the interest spreads are negative. This is because of the different movement of

shares when economic recession is expected. When economic recession is

expected, the interest rate spread between risky bonds and risk-free bonds

increases, while the shares index decreases. We note this opposite response of

shares in interpreting our results. All phases show the different cycles. However,

overall, all variables have a positive slope in longer cycles, but a negative slope in

shorter cycles. For instance, the phase of CORSP increases from frequency 0 to

frequency 0.376 (greater than a 16-month cycles), showing a positive slope. After

this point, it starts to decrease and has a negative slope until frequency 0.75

(around an 8-month cycle), implying that in longer cycles (greater than a 16-

months cycles) US industrial production leads CORSP, while in shorter cycles

(between 8 months and 16 months), US industrial production lags CORSP. In the

less than 8-month cycle (from frequency 0.75 to 0.1), it shows a positive slope

again.

PTB3 shows a longer cycle compared to CORSP. PTB3 shows a positive slope

between frequency 0 and frequency 0.6 (greater than 10-month cycle), while it has

a negative slope for a short period. After frequency 0.70, the slope is positive,

indicating that US industrial production leads PTB3. From this, it can be observed

that the phase cycle is around 6 months.

Turning to CPTB3, we see a negative slope in longer cycles and a positive slope

| in shorter cycles. The phase cycle is much longer than those of the other interest
I

82



rate spreads. For instance, the length of negative slope is between frequency 0.59

and 1.18 (between a 5-month cycle and a 10-month cycle), while CORSP is

between frequency 0.40 and 0.75.

Figure 3.4 Estimated Phases of CORSP, PTB3, CPTB3, and Shares

Shares
PTB3
CPTB3
CORSP

0.0

Note: The A-axis indicates the frequencies, while the )'-axis indicates the phase, which is calculated

as <p(w) - tan"1 [cojj(w)lqujj(w)). CORSP is defined as the difference between the Moody's Aaa-

rated and Baa-rated bond corporate interest rates. CPTB3 indicates the difference between the 3-

month commercial paper rate and the 3-month Treasury bill rate. PTB3 is defined as the difference

between the Prime rate and the 3-month Treasury bill rate. Finally, Shares are defined as the first

backward difference of the stock prices.

As indicated before, the phase of shares has a positive value from the starting

point. The slope of shares also shows a positive value until frequency 0.47

(around a 1-year cycle). After this frequency, the slope is negative, implying that

the US industrial production lags the shares.
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The results from the analysis of phase indicate that all variables do not lead US

industrial production at all frequencies. At some frequencies, US industrial

production leads the financial variables, depending on the variables. Another

finding is that the slope of phase is varying, also depending on which financial

variables have been used. This result implies that the leading or lagging period of

financial variables is also varying.

Overall, the spectral analysis shows that the relationship is not constant over

frequencies, but varying. More specifically, the results from the gain show that the

effects of financial variables on US industrial production are stronger in longer

cycles (at lower frequencies) than in shorter cycles (in higher frequencies). From

the phase analysis, it is found that in longer cycles US industrial production leads

the financial variables, while in shorter cycles, US industrial production tends to

lag. However, the time-length of leads and lags depends on the financial variables.

The coherence indicates that US industrial production shares long term features

with the financial variables.

3.4 Empirical Results Using Wavelet Analysis

There is a large volume of literature on the existence of the lead-lag relationship

between financial variables and real variables, such as output or industrial

production. This relationship can often be captured by the causality test - Granger

or Sim's causality. In the study of Ramsey and Lampart (1998a), they decompose

money and income into various time scales using wavelet analysis and find that at
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the finest scale (D,) income, Granger causes money but at the intermediate scales

(D2 to £>4) money Granger causes income. Feedback relationships exist at the

higher time scales. Gencay et al. (2002a) test this relationship in the UK and find

similar results. As in the previous studies, we also adopt the Granger causality test

to examine the relationship between financial variables and US industrial

production.

Since our focus is on the lead-lag relationship between financial variables and US

industrial production using the wavelet analysis, the relationship is examined

when the variation in each variable has been restricted to a specific scale.

Table 3.4 reports the results of the Granger causality test for the raw data. As

expected, all financial variables lead industrial production, while only PTB3 has a

feedback relationship with industrial production.

Table. 3.4

x -> IP

IP->JC

Granger Causality Test lor Raw Data
CORSP

12.795*

(0.000)

0.696

(0.595)

CPTB3

9.248*

(0.000)

1.779

(0.133)

PTB3

5.461*

(0.000)

3.625*
(0.006)

Shares

4.401*
(0.002)

1.046

(0.383)

Note: significance levels are in parentheses. * indicates significance at 5% level.

Utilizing the MODWT wavelet coefficients in section 2.3.3, the results from

wavelet analysis are presented in Table 3.5. Overall, there are two findings worth

noting. First, there is no consistent direction of causality. The causal relationship

varies depending on the time scale. Second, in the long-term trend (indicated as

56), all financial variables show the feedback relationship, except for CPTB3,

which is consistent with the results of spectral analysis. Comparing the results
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with the coherence, all financial variables in the low frequencies show higher

values than in the high frequencies. This implies that the movements between US

industrial production and financial variables are getting closer.

Table 3
A =

CORSP

CPTB3

PTB3

Shares

.5 Granger Causality Test for Wavelet Analysis

X -> IP

IP ->A-

JC - > I P

IP->.Y

A-»IP

IP->A-

A" -> IP

I P - * *

7.161*

(0.000)
0.558

(0.693)

3.133*

(0.015)
4.296*
(0.002)

2.582*

(0.037)
3.754*

(0.005)

6.807*
(0.000)
4.221*
(0.000)

D2

0.798

(0.527)
0.804

(0.523)

0.424

(0.792)

4.000*
(0.004)

0.088
(0.986)
7.184*

(0.000)

2.616*
(0.035)
4.497*
(0.001)

D3

1.029
(0.392)
0.544

(0.704)

0.244

(0.913)
0.568
(0.686)

0.511
(0.728)
0.841

(0.499)

0.766
(0.548)
0.451

(0.771)

D4

1.493

(0.203)
0.394

(0.813)

0.401

(0.808)

1.540

(0.190)

0.825

(0.509)
1.942

(0.102)

2.572*
(0.037)
0.642

(0.633)

D5

2.869*

(0.023)
0.362

(0.835)

1.661

(0.159)
1.062

(0.375)

0.619
(0.649)

0.628

(0.643)

7.497*
(0.000)
4.667*
(0.001)

^6
1.246

(0.291)
3.442*
(0.009)

1.306
(0.268)

3.630*
(0.007)

0.282

(0.889)

4.371*
(0.002)

3.719*
(0.005)
1.933

(0.104)

4.208*
(0.002)

4.655*
(0.001)

5.388*
(0.000)

1.587
(0.178)

3.009*
(0.018)

5.473*
(0.000)

4.274*

(0.002)
2.334*

(0.055)

Note: The original data has been transformed by the wavelet filter (LA(8)) up to time scale 6. The

significance levels are in parentheses. * indicates significance at 5% level. The first detail (wavelet

coefficient) Dt captures oscillations with a period length 2 to 4 months. Equivalently, D2, D^, D4,

and Z)5 capture oscillations with a period of 4-8, 8-16, 16-32 and 32-64 months, respectively. The

last detail A> captures oscillations with a period of 64 to 128 days. The wavelet smooth 56 captures

the oscillations with a period of longer than 218 months.

More specifically, at the finest time scale, CORSP Granger causes US industrial

production, while at the longer time scale, scale 6 (equivalent to 16-32 months),

CORSP Granger causes US industrial production. Finally, at the long term trend,

two variables (CORSP and the US industrial production) show a feedback

relationship. In the case of PTB3, at the finest time scale, they show a feedback
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relationship, while at scales 2 and 4, US industrial production Granger causes

PTB3. Again, at the long term trend, they show a feedback relationship.

For CPTB3, they show a similar pattern to PTB3. At time scales 2 and 6, US

industrial production Granger causes CPTB3, while at the long term trend, a

feedback relationship is observed. The relationship between share prices and US

industrial production shows a significantly varying relationship among the

financial variables chosen in our study. As in the other variables, at the finest time

scale, both variables show a feedback relationship. At time scale 2 (equivalent to 2

- 4 months), US industrial production Granger causes share prices, while at longer

time scales (scales 4 and 5) share prices Granger cause US industrial production.

Finally, at time scale 6 (equivalent to 32 - 64 months) and the long term trend,

both variables again show a feedback relationship.

In sum, our results indicate that financial variables Grangers cause US industrial

production in the raw data. In contrast, the financial variables and US industrial

production show a feedback relationship at the lower scales and at the higher

scales. This may result from the capacity utilization of the firms and the

investment lag5 and the efficient market hypothesis of the financial variables. In

other words, in the short run, the financial variables absorb all related information

to determine the equilibrium prices, while industrial production may need a

sufficient time to adjust its capacity to absorb the relevant information. Therefore,

5 The evidence of the existence of investment lags has been reported in much research on the

relationship between investment and stock return. For example see McConnell and Muscarella

(1985), Chan et al. (1990), and Lamont (2000). For a more detailed explanation of capacity

utilization, see Burnside and Eichenbaum (1996)
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it is natural for financial variables to lead US industrial production at time t.

However, at the lower scales, the firms adjust their capacity for responding to new

information. In other words, the firms increase (decrease) their capacity following

the good (bad) news. Therefore, at the lower scales, financial variables and US

industrial production show a feedback relationship. As the time scale increases,

the firms increase their investment to keep their optimum capacity, and need time

for the effect of investment to be realized in the production. During these time

scales, this procedure may cause there to be no relationship between financial

variables and US industrial production. However, in the long-run, firms can adjust

their production and capacity utilization without any time delays. Therefore, at the

higher time scales, financial variables and US industrial production show a

feedback relationship.

Our wavelet analysis shows that no financial variable has a constant relationship

with US industrial production, which is a similar result to that of Ramsey and

Lampart (1998a) and Gengay et al. (2002a). The relationship is varying depending

on the time scale.

3.5 Summary and Concluding Remarks

In this chapter, we investigate the relationship between real activities and financial

variables using two time series analyses: frequency domain analysis and wavelet

analysis. In these analyses, it is found that financial variables lead US industrial

production at the raw data, and overall that the relationship between financial

88



variables and US industrial production is not constant depending on the time scale

and frequency.

The results of frequency domain analysis are more complicated than the previous

time series analysis. However, three main findings are worth noting. First, from

the gain of cross spectral analysis, the effects of financial variables on US

industrial production are stronger in longer cycles (at lower frequencies) than in

shorter cycles (in higher frequencies). Among four financial variables, the effect

of shares is strongest. Second, from the phase analysis, in longer cycles, US

industrial production leads financial variables, while in shorter cycles, US

industrial production lags. Overall, the time-length of leads and lags depends on

financial variables. This result implies that the relationship between US industrial

production and financial variables is varying along the business cycle. Finally, the

coherence analysis indicates that US industrial production moves along with

financial variables.

In contrast to the frequency domain analysis, the wavelet analysis has an ability to

decompose the data into various time scales, which allows us to investigate the

relationship in different time scales and locations. In the wavelet analysis, first, at

the finest time scale (scale 1), most financial variables show a feedback

relationship with US industrial production. Second, at the intermediate time scale,

the results are mixed: (1) there is no relationship between financial variables and

US industrial production, PTB3, and CPTB3; (2) financial variables Granger

cause US industrial production; (3) US industrial production Granger causes US
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financial variables. Finally, at the long-term trend (indicated as 56), feedback

relationships are observed in most variables, except for CPTB3.

Overall, from Tables 3.4 and 3.5, our results indicate that financial variables

Granger cause US industrial production in the raw data, while financial variables

and US industrial production show a feedback relationship at the lower and higher

time scales. This finding may result from the capacity utilization and the

investment lag. More specifically, in the short run, financial variables absorb all

related information to determine the equilibrium prices, while industrial

production may need a sufficient time to adjust its capacity to absorb the relevant

information. Therefore, it is natural for financial variables containing more

information to lead US industrial production containing less information at time /.

However, at the lower time scales, the capacity utilization of the firms plays a role

in their ability to adjust their production in response to new information, while at

the higher time scales, firms adjust their production without any time delays.

From two time series analyses (spectral and wavelet analyses), it can be concluded

that the lead-lag relationship between US financial variables and US industrial

production is varying depending on the time scale and frequency. However, both

analyses show that US industrial production and financial variables move along

together with a common long-term trend. Our results are consistent with previous

studies, such as those of Ramsey and Lampart (1998a, 1998b) and Gencay et al.

(2002a).
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Chapter 4 The Relationship between Stock returns and

Inflation: New Evidence from Wavelet Analysis

4.1 Introduction

According to the Fisher hypothesis, in its most common version, the expected

nominal asset returns should move one for one with expected inflation. Essentially,

this implies that real stock returns are determined by real factors independently of

the rate of inflation. However, most past empirical literature shows that stock

returns are negatively correlated with inflation1 (see Fama and Schwert, 1977;

Gultekin, 1983; recently Barnes et ah, 1999). A negative relationship implies that

investors, whose real wealth is diminished by inflation, can expect this effect to be

compounded by a lower than average return on the stock market (Choudhry,

2001 )2.

1 Jovanovic and Ueda (1998) examine the relationship between stock returns and inflation rate

based on a principal-agent economy and find that unexpected inflation shifts real income from

firms (the principals) to workers (the agents), and thereby lowers stock returns.

' Fama (1981) explains the negative short-run correlation between stock returns and inflation by

the negative short-run correlation between inflation and real activity (the 'proxy' hypothesis). The

proxy hypothesis is that the main determinant of stock prices is the company's future earning

potential. If inflation and future expected output in the economy are negatively correlated, then

inflation may proxy for future real output. Recently, Gallagher and Taylor (2002) examine the

proxy hypothesis and find that their model supports strongly Fama's 'proxy hypothesis' in the US

over the last 40 years.
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Most empirical studies, examining the relationship between stock returns and

inflation, focus on relatively short horizons, typically less than a year. However,

examining the long-run relationship is important in at least two aspects. First,

from a practical point of view, many investors hold stocks over long holding

periods. Therefore, it is important to know the manner in which stock prices move

with inflation over longer horizons (Boudoukh and Richardson, 1993). Second,

the relationship between stock returns and inflation at the long horizon is of

particular interest given that at the short horizon, the true long-run relationship

could be obscured by short-term noise, which might derive from agents trading for

portfolio rebalance or unexpected immediate consumption need reasons (Harrison

and Zhang, 1999). Along with these aspects, Boudoukh and Richardson (1993),

Solnik and Solnik (1997), Engsted and Tanggaard (2002), and Schotman and

Schweitzer (2000) examine the relationship between stock returns and inflation

over long-horizons, and their results support the Fisher hypothesis as the horizon

increases.

In short, most previous studies examine the relationship between stock returns and

inflation, either at the short horizon or at the long horizon. Hence, previous

researches have often presented a limited understanding of the true dynamic

relationship between stock returns and inflation, due to the limited time scale.

However, important and interesting questions arise in considering to what extent

stock returns and inflation move together negatively or positively over the

different time horizons and whether expected nominal stock returns, compared to

the real returns, correspond differently to the inflation over the different time
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horizons. In other words, the central issue in studying the true dynamic

relationship between stock returns and inflation is "timing".

The main purpose of this chapter is to propose a new approach, wavelet analysis,

for investigating the relationship between nominal stock returns and inflation over

different time scales. The new approach is based on a wavelet multiscaling

method that decomposes a given time series on a scale-by-scale basis. The main

advantage3 of the wavelet analysis is the ability to decompose the data into several

time scales. Consider the large number of investors who trade in the security

market and make decisions over different time scales. One can visualize traders

operating minute-by-minute, hour-by-hour, day-by-day, month-by-month, year-

by-year. In fact, due to the different decision-making time scales among traders,

the true dynamic structure of the relationship between the stock returns and

inflation itself will vary over different time scales associated with those different

horizons. Economists and financial analysts have long recognized the idea of

several time periods in decision making, while economic and financial analyses

have been restricted to at most two time scales (the short-run and the long-run),

due to the lack of analytical tools to decompose data into more than two time

scales.

Our study extends the current literature in two important ways. First, to the best of

our knowledge, this chapter is the first to investigate the Fisher hypothesis and its

3 The major aspects of wavelet analysis are the ability to handle non-stationary data, localization in

time, and the resolution of the signal in terms of the time scale of analysis. Among these aspects,

the most important property of wavelet analysis is decomposiiion by time scale (Ramsey, 1999).
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examination of the relationship between stock returns and inflation, using wavelet

analysis. This study helps to deepen our understanding of the true relationship

§ between nominal and real stock returns and inflation over the different time scales.

I The results therefore should be of interest to both international and local investors,

as well as monetary and regulatory authorities. Furthermore, to deepen

understanding of the true relationship between stock returns and inflation, we

investigate and analyze variance, covariance of nominal and real returns, and

inflation. Correlations and cross-correlations between nominal and real returns

and inflation are calculated for the different time scales.

Second, we also examine the long-run relationship between stock returns and

inflation not only in nominal but also in real terms. While the previous studies

examine the relationship using nominal stock returns, we are interested in

studying real returns because a security is an inflation hedge if and only if its real

return is independent of the inflation rate (Bodie, 1976). A test of the relationship

between real returns and the inflation rate may provide further evidence on the

I
i ability of stock returns to act as a hedge against inflation.

The main results from the empirical analysis can be summarized as follows. First,

in regression analysis based on wavelet domains, the results are different from

those of long-horizon regression in both the nominal and real returns. The wavelet

correlation also shows a similar result to regression analysis based on wavelet

analysis, which shows a positive relationship at the shortest horizon and the

longest horizon, and a negative relationship at the intermediate horizon.
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The remainder of the chapter is organized as follows: Section 4.2 presents the data

and basic statistics. In section 4.3, we discuss the empirical results. In section 4.4,

a summary and concluding remarks are presented.

4.2 Data and Basic Statistics

We use monthly nominal and real stock returns and inflation rates for the US in

the period January 1926 to December 2000. Data were collected from Stocks,

Bond, Bills, and Inflation (SBBI) sourced from Tbbotson Associates (2001). Table

4.1 presents several summary statistics for the monthly data of nominal and real

stock returns, and inflation. As shown in Panel A of Table 4.1, all sample me- <s

are positive and close to 0.

Table 4.1 Basic Statistics
Panel A Descriptive Statistics

j.

t
,y

"i
t

j

1

k
i

t
1

x =

Mean
Variance

Skewness
Kurtosis

JB

P
LB(15)for x

LB(15)for x2

real stock return

0.007

0.003
-0.071

12.870
6212.489

(0.000)
0.077

37.848
(0.000)

0.194

240.517

(0.000)

nominal stock return

0.010

0.003

0.356
9.941

3724.703
(0.000)

0.099
53.567

(0.000)
0.266

484.619

(0.000)

inflation

0.003
0.000

1.232

14.608
8229.679

(0.000)
0.556

1708.520

(0.000)
0.209

146.191

(0.000)

Note: Data used are monthly U.S. nominal and real stock returns, and inflation for the period
January 1962 to December 2000. Data were collected from Stocks, Bonds, Bills and Inflation
(SBBI) sourced from Ibbotson Associates (2001). Significance levels are in parentheses. LB(ra) is
the Ljung-Box statistic for up to n lags, distributed as X w ' m n degrees of freedom, p and ff
indicates the first-order autocorrelations of returns and squared returns, respectively. Skewness and
kurtosis are defined as E[(R, - ju)f and £[(/?, - fi)]*, where /J is the sample mean. JB indicates the
Jarque-Bera statistics.
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Panel B Correlation

real stock return
nominal stock return

inflation

Matrix
real stock return

1.000

nominal stock return

0.955

1.000

inflation

-0.084

0.008
1.000

Among the stock returns and inflation, first-order autocorrelation of monthly data

ranges from 0.077 (real stock return) to 0.556 (inflation), implying that inflation is

more persistent than stock returns, and the Ljung-Box statistics indicate the

persistence of linear dependency of each set of data. For the squared data, the

first-order serial correlations vary between 0.194 (real stock return) and 0.266

(nominal stock return), and the Ljung-Box statistics show strong evidence of non-

linear dependency in all data. The measures for skewness, kurtosis and Jarque-

Berra statistics are also reported to check whether monthly data are normally

distributed. These statistics indicate that all data are not normally distributed.

We report the unconditional contemporaneous correlation coefficients among

three variables - real stock returns, nominal stock returns and inflation - in Panel

B of Table 4.1. The striking feature is the difference between the correlations of

real and nominal stock returns. The correlation between nominal stock returns and

inflation shows a positive value, while the correlation between real stock returns

and inflation is negative. This result is in contrast tc that of Boudoukh and

Richardson (1993) in nominal terms, while consistent with Choudhry (2001) in

4 real terms. The result suggests that when the monthly data have been adopted, the

results can be altered because of the different time scale.

96



4.3 Empirical Results of Wavelet Analysis

A major innovation of this chapter is the introduction of a new approach to study

the Fisher hypothesis, as it provides a unique approach to addressing the stock

returns inflation puzzle. The stock market consists of thousands of traders and

investors, all with different time scales when it comes to making an investment.

Wavelet analysis is a natural tool used to investigate the relationship between

stock returns and inflations, as it enables us to decompose the data on a scale-by-

scale basis.

Table
Panel

*i

R2

4.2 Regressions in
A Nominal Stock 1

dl d2

0.899 -0.530

(0.491) (0.452)

0.004 0.002

Wavelet
Returns

d3

0.219

(0.383)

0.000

Domain

d4

-1.501*

(0.314)

0.026

d5

-0.958*

(0.246)

0.019

d6

-0.558*

(0.130)

0.025

d7

-0.372*

(0.105)

0.046

s7

1.968*

(0.080)

0.539

Note: Data used are monthly U.S. nominal stock returns and inflation for the period January 1962
to December 2000. Data were collected from Stocks, Bonds, Bills and Inflation (SBBI) sourced
from Ibbotson Associates (2001). Significance levels are in parentheses. * indicates the
significance at 5% level. The wavelet coefficients are calculated using Daubechies 4 (D(4))
wavelet filter.

Panel B Real
dl

bx 0.083

(0.521)

£2 0.000

Stock Returns
d2

-1.514*

(0.469)
0.012

d3

-0.724

(0.391)
0.004

d4

-2.559*

(0.323)
0.069

d5

-1.969*

(0.241)
0.077

d6

-1.448*

(0.131)
0.148

d7

-1.301*

(0.120)

0.194

s7

0.910*

(0.085)

0.180

Note: Data used are monthly U.S. real stock returns and inflation for the period January 1962 to
December 2000. Data were collected from Stocks, Bonds, Bills and Inflation (SBBI) sourced from
ibbotson Associates (2001). Significance levels are in parentheses. * indicates the significance at
5% level. The wavelet coefficients are calculated using Daubechies 4 (D(4)) wavelet filter.

In this section, we analyze and report the empirical results of the relationship

between stock returns (nominal and real) and inflation using wavelet analysis.
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I
i Considering the sample size and the length of the wavelet filter, we settle on the

MODWT based on the Daubechies extremal phasr wavelet filter of length 4

I (D(4)), while our decompositions go to level 7 (equivalent up to the 64-month

period). First, we analyze the relationship based on the Fisher model, using

decomposed data through the MODWT.

< As can be seen in Table 4.2, through decomposition of the MODWT, the 7 levels'

"> data can be generated. We report the estimated coefficient of Z?,, corresponding

standard errors and R2. First, the values of R2 are increasing as the time scale

increases. In dl (equivalent to a 1-month period), the relationship between

nominal stock returns and inflation is significantly positive, implying that stocks

are a good hedge against inflation. The real stock return also has a positive value

of bx. As the time scale increases, the coefficient, bx, shows a positive value at d3

(equivalent to a 4-month period) and s7 (equivalent to greater than a 128-month

period), while showing a negative value at the d2, d4, d5, d6, and d7 (equivalent

of 2, 8, 16, 32, and 64-month period) in nominal return. In the real return, the

values of bx show a similar pattern with those of the nominal stock return.

However, the results of the nominal stock return are different, showing a negative

relationship in most time horizons, based on the wavelet regression. Overall, the

absolute values for coefficient bx have the highest value at the intermediate time

scales (d4 both in nominal and real returns), indicating that the degrees of

correlation between two variables are increasing up to d4 and decreasing after d4.

Overall, our results are consistent with the results of Boudoukh and Richardson

I (1993), Schotman and Schweitzer (2000), and Engsted and Tanggaard (2002),
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since our results support the Fisher hypothesis as the horizon increases using the

nominal term. More specifically, the result from the regression analysis is

statistically supportive in dl and s7 (equivalent to a 1-month period and greater

than a 128-month period).

Next, we move to the variances of nominal and real stock returns, and inflation.

Figure 4.1 illustrates the MODWT-based wavelet variance of nominal and real

stock returns, and inflation. The black line indicates the wavelet variance and the

black dotted line indicates the 95% confidence interval against the various time

scales.4 There is an approximate linear relationship between the wavelet variance

and the wavelet scale, indicating the potential for long memory in the volatility

series. The variance decreases as the wavelet scale increases. Notice that the

wavelet variance has a highest value at the first scale. Similarly, the gray line in

Figure 4.1 displays the wavelet variances and their corresponding confidence

interval of the real return against the wavelet scale. The movement of wavelet

variance of the real return is quite similar to that of the nominal return. The results

of inflation are quite striking, indicated as the thick black line in Figure 4.1. The

wavelet variances of inflation are very stable and close to zero over the wavelet

scale. This result is generally accepted in the literature. As indicated in Schotman

and Schweitzer (2000), the volatility of stock returns is usually much higher than

the volatility of inflation.

11

1

, 4 For a detailed explanation of how to construct the confidence interval of wavelet variance, see
nU Gencay et al., (2002a, p. 242).
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Figure 4.1 Estimated Wavelet Variance of Nominal Stock Returns, Real Stock
Returns and Inflation from January 1926 to December 2000 Using Monthly
Frequency

•nominal stock returns • real stock returns

64 128

•inflation

Note: The MODWT-based wavelet variances of nominal and real returns, ind inflation have been
constructed using the D(4) wavelet filter. The straight lines and dashed lines indicate the wavelet
variances and corresponding 95% confidence intervals under the assumption of Gaussianity,
respectively. Each time scale indicates the month. For example, wavelet scale 8 indicates 8 month.

In addition to examining the variances of three time series, we construct the

wavelet covariance to examine how two series are associated with one another

(between nominal stock returns and inflation, and between real stock returns and

inflation). Figure 4.2 shows the MODWT-based wavelet covariances of nominal

and real returns using the D(4) wavelet filter. Approximate confidence intervals

are also presented. Roughly speaking, the movements of covariance between the

nominal stock returns and inflation have a W-shape. In dl, the covariance shows a

positive value; however, it decreases up to d4 (equivalent to an 8 month period).

After d4, its value starts to increase. Up to d7 (equivalent to a 64 month period)', it

shows a negative value. In s7 (equivalent to greater than a 128-month period), the

wavelet covariance is positive.
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Figure 4.2 Estimated Wavelet Covariance of Nominal Stock Returns, and Real
Stock Returns with Inflation from January 1926 to December 2000 Using
Monthly Frequency

0.00005

-0.00002

nominal stock returns real stock returns

Note: The MODWT-based wavelet covariances have been constructed using the D(4) wavelet

filter. The straight lines and dashed lines indicate the wavelet covariances and corresponding 95%

confidence intervals under the assumption of Gaussianity, respectively. Each time scale indicates

the month.

Although there is a positive or negative association between stock returns and

inflation, it is difficult to compare the wavelet scales due to the different

variabilities exhibited by them. In this case, the wavelet correlation should be

constructed to examine the magnitude of the association of each series.

Figure 4.3 illustrates the correlation of stock returns with inflation against the

wavelet scales. As can be seen in Figure 4.3, the significant positive relationship

can be observed in dl (1-month period) and s7 (greater than a 128-month period),

while in the rest of the wavelet scale, the negative relationship can be found in
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both nominal stock and real stock returns, except d3 (4-month period) of nominal

return. Another thing to note is that the confidence intervals are significantly

increased given the amount of variability in the estimated wavelet variances.

Overall, the result of wavelet correlation is consistent with the wavelet regression

analysis.

I

Figure 4.3 Estimated Wavelet Correlation of Nominal Stock and Real Stock
Returns with Inflation from January 1926 to December 2000 Using Monthly
Frequency

nominal stock returns —^— real stock returns

Note: The MODWT-based wavelet correlations have been constructed using the D(4) wavelet

filter. The straight lines and dashed lines indicate the wavelet correlations and corresponding 95%

confidence intervals, respectively. The approximate confidence interval for the estimated wavelet

correlation does not utilize any information regarding the distribution of the wavelet correlation.

Therefore, these confidence intervals are robust to non-Gaussianity. Each time scale indicates the

month.

It is of interest to compare our results with those of Boudoukh and Richardson

(1993), who find a positive relationship in the long run (5 years). A 5-year

relationship can be captured by analyzing the results of d7 in Figures 4.3 and 4.4.
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In contrast to Boudoukh and Richardson (1993), our results show a negative

relationship in the 5-year cycle. In terms of cross correlation, we also observe a

negative correlation. However, in the higher cycle, the stock return and inflation

have a positive relationship, consistent with the previous studies (see Boudoukh

and Richardson, 1993; Engsted and Tanggaard, 2002). Overall, the Fisher model

holds at the shortest scale (dl) and the longest smooth scale (s7) in the wavelet

analysis (regression analysis based on wavelet domain and wavelet correlation)5.

The cross correlations of nominal and real stock returns with inflation are plotted

in Figures 4.4 and 4.5. Both figures show a similar pattern regardless of the

wavelet scales. At the point of lag zero, the cross correlation shows a negative

value. All wavelet scales appear to be asymmetric. More specifically, the first

three scales, associated with periods of 1, 2, and 4 months, indicate the small

number of cross-correlations and then a group of lags (both negative and positive)

that show a slight positive wavelet correlation. The wavelet cross-correlation

function on d4, associated with 8-month period, is also asymmetric where the

oscillations are much higher in the negative lags than in the positive lags.

5 In the terminology of Schotman and Schweitzer (2000), as can be seen in Table 1, inflation is

persistent. This persistence leads the correlation to be positive at the long horizon.
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Figure 4.4 Estimated Wavelet Cross-correlation between Nominal Stock Returns
and Inflation from January 1926 to December 2000 Using Monthly Frequency
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Note: The straight lines indicate the wavelet cross correlations. Each time scale indicates the

month.

Overall, the relationship between the nominal stock returns and inflation is not

very different to that between the real stock return and inflation. The regression

analysis based on wavelet domain and wavelet correlation show a positive

relationship at the first level (1-month period) and s7 (greater than a 128-month

period), but a negative relationship at the rest of the levels regardless of nominal

or real stock returns. This result indicates that based on our data, the relationship

between stock return and inflation is positive at the longest horizon, which is

consistent with the findings of Boudoukh and Richardson (1993) and Engsted and

Tanggaard (2001).
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Figure 4.5 Estimated Wavelet Cross-correlation between Real Stock Returns and
Inflation from January 1926 to December 2000 Using Monthly Frequency
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Note: The straight lines indicate the wavelet cross correlations. Each time scale indicates the

month.

4.4 Concluding Remarks

The main innovation of this chapter is the introduction of a new approach to study

the Fisher hypothesis. This new approach is based on a wavelet multiscaling

method that decomposes a given time series on a scale-by-scale basis. To test the

relationship, we have adopted regression analysis in the wavelet domain, and

wavelet covariance/corrclation analysis.

However, the results of the regression analysis in the wavelet domain and the

wavelet correlation show that the relationship is positive at the short horizon, i.e.,

dl, equivalent to a 1-month period, while in the rest of the wavelet scale, a
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negative relationship is observed. From our wavelet correlation analysis, it is

found that at the long horizon (around 5 years) the positive relationship between

stock returns and inflation still exists, consistent with the result of Boudoukh and

Richardson (1993), Schotman and Schweitzer (2000), and Engsted and Tanggaard

(2002). Consistent with the results of Rapach (2002), we find that there is a

positive relationship in the long horizon between real stock returns and inflation.

The nominal stock returns results provide empirical evidence supportive of the

Fisher hypothesis for risky assets in dl and s7 of the wavelet domain, equivalent

to a 1-month period and greater than a 128-month period.

When we explore whether there is a difference between the relationship between

real and nominal stock returns with inflation, our results indicate that in all

regression analyses, real returns have a significant negative relationship with

inflation except for dl and s7 in wavelet analysis. More specifically, at the

shortest time scale (dl) and the longest smooth scale (s7), a positive relationship

is observed in real returns, while a negative relationship is observed in the rest of

the time scales. With regard to the findings of Bodie (1976), our results show that

stock returns do not play a role as an inflation hedge during our sample period,

except in the shortest scale (dl) and the longest smooth scale (s7) in wavelet

analysis.

The calculated wavelet variance shows that the wavelet variance of stock returns

(nominal and real returns) decreases as the wavelet scale increases, while the
i

wavelet variance of inflation is quite stable. Due to the stability of the variance of
I

I
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inflation, the movements of the wavelet variance of nominal returns are quite

similar to those of real returns.

In conclusion, our results provide some support for the importance of time scale

decomposition in explaining the inconsistent results in the relationship between

stock returns and inflation in the literature on the Fisher hypothesis. In other

words, our key empirical results shows that time-scale decomposition provides

considerable insight into testing of the Fisher hypothesis, since a number of stock

returns and inflation puzzles previously noted in the literature are resolved and

explained by the wavelet analysis.
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Chapter 5 Multihorizon Sharpe Ratio

5.1 Introduction

Strategic asset allocation is the process used to identify the optimal portfolio for a

given investor over his or her investment horizon. To evaluate the performance of

a portfolio, the Sharpe ratio is widely used in a mean-variance framework. As

indicated in Levy (1972), the Sharpe ratio is closely related to the investment

horizon. The holding period that is relevant for portfolio allocation is the length of

time investors hold any stocks or bonds, no matter how many changes are made

among the individual issues in their portfolio (Siegel, 1998, p29). In other words,

the horizon sensitivity of the Sharpe ratio is very important to evaluate the

performance of one or more portfolios. An investor might not be interested in

short-term performance of portfolios at all. Institutional investors like pension

funds have a very long investment horizon. Therefore, it is interesting to examine

the long-term performance of the investments when the investment horizon

increases.

Numerous empirical studies (Nielsen and Vassalou, 2003; Pedersen and Satchell,

2000; Miller and Gehr, 1978 among others) have been conducted on the Sharpe

ratio, but there is only one published study of the multihorizon Sharpe ratio

(Hodges et al., 1997). They examine the multiperiod Sharpe ratio using

randomized historical data from 1926 to 1993. However, contrary to general
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belief, they conclude that bonds outperform stocks in sufficiently long holding

periods.

Siegel (1999) summarizes three problems in Hodges et al. (1997). First, their

analysis omits a key feature of long-term stock data—the mean reversion of

equity returns. Second, because economic agents try to maximize their real

consumption, the examination of the multihorizon Sharpe ratio should be based on

the real returns, not nominal returns. Using nominal data to calculate risk and

return improperly favors bonds, whose returns are fixed in many terms. Finally,

an assumption about the properties of the returns of stocks and bonds can causes a

more serious problem. In their study, they assume that returns are independently

and identically distributed across time. This means that the probability distribution

of Rt is identical to that of Rs for any dates t and s and that Rt and Rs are

statistically independent for elites. While this assumption enables us to calculate

the multihorizon Sharpe ratio easily, previous literature (Poterba and Summers,

1988; Siegel, 1998) clearly indicates that real equity returns have strong mean

reversion, while real returns on fixed-income securities do not. The presence of a

mean-reversion process makes the standard deviation of multihorizon returns

much lower for equities than those found under the independence assumption

(Siegel, 1999).

Another performance measure in the multihorizon setting can be found in

Dacorogna et al. (2001). They propose two new performance measures, named as

XeS and R^ respectively, and report that these new measures are numerically
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more stable than the Sharpe ratio and exhibits fewer deficiencies1. However, the

two new risk-adjusted measures show three drawbacks. First, it requires

knowledge of the explicit value of the risk aversion coefficients, that is the proper

value of the risk aversion coefficient is controversial. In the literature on risk

aversion, the various degrees of risk aversion are estimated and reported (Kroner

and Sultan 1993, p545). Second, their approach is based on the trading model of

the exchange markets using the nominal returns, implying that this model also

suffers similar criticism to that of Hodges et al. (1997). Finally, to measure the

multihorizon performance, they use the overlapping return series to calculate long

horizon returns. Calculating the long horizon return in this way can reduce the

number of data, resulting in a biased estimator (In and Kim, 2003).

Compared with previous studies, this section employs a new approach, using

wavelet analysis to investigate the multihorizon Sharpe ratio. This section aims to

contribute to the literature on the study of the multihorizon Sharpe ratio. Three

innovations are introduced compared to previous studies. First, we examine the

1 Dacorogna et al. (2001) summarize three drawbacks of the Sharpe ratio to evaluate the market

model in foreign exchange markets. First, the definition of the Sharpe Ratio puts the variance of

the return into the denominator which makes the ratio numerically unstable at extremely large

values when the variance of the return is close to zero. This creates a lack of identification between

the return and its volatility. Second, the Sharpe Ratio is unable to consider the clustering of profits

and losses. An even mixture of profit and loss trades is usually preferred to clusters of losses and

clusters of profits, provided the total set of profit and loss trades is the same in both cases. Third,

the Sharpe Ratio treats the variability of profitable returns (which are unimportant to investors) the

same way as the variability of losses (which are an investor's major concern).
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mean-reverting property of asset returns using the wavelet-based maximum-

likelihood estimation of the long-memory parameter. Second, since consumers

maximize real consumption, we calculate the risk and returns of stocks and bonds

in real, not nominal, terms. Finally, to the best of our knowledge, no previous

study has investigated the multihorizon Sharpe ratio using wavelet analysis.

Adopting wavelet analysis does not require any assumption on the distribution of

returns, because wavelet analysis is a nonparametric estimation and decomposes

the unconditional variance into different time scales.

Our wavelet decomposition shows that the long-memory parameter, calculated

from the wavelet-based maximum-likelihood estimation, for all asset returns is

less than 1 and close to 0, indicating that asset returns are mean-reverting. For the

multihorizon Sharpe ratio, the Sharpe ratio of a large-company stock portfolio is

higher value than the other three portfolios (small company stocks, long-term and

intermediate-term government bonds) over all wavelet scales. In other words, a

large-company stock portfolio outperforms the other portfolios over the wavelet

scales.

The rest of the chapter is organized in the following manner. Section 5.2 discusses

the Sharpe ratio. The data and the basic statistics are discussed in section 5.3. In

setion 5.4, we present and discuss the empirical results. Finally, section 5.5

presents the summary and concluding remarks.
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5.2 Sharpe ratio

It is well known that the Sharpe ratio is an approach to evaluating portfolio

performance in a mean-variance framework." In a mean-variance world, this

Sharpe ratio captures the expected excess return per unit of risk associated with

the excess return. Since it gives risk estimates before decisions are actually taken,

the ex ante Sharpe ratio can be very useful for decision-making (e.g., choosing

investments), while the ex post Sharpe ratio can be used for evaluation of

investments. In other words, the Sharpe ratio captures both risk and return (actual

or expected, depending on the circumstances) in a single measure. A rising

(falling) excess return or a falling (rising) standard deviation leads to an increase

(decrease) in the Sharpe ratio. Therefore, if investors face an exclusive choice

among a number of portfolios, then they can unambiguously rank them on the

basis of their Sharpe ratios. A fund with higher Sharpe ratio will be enable all

investors to achieve a higher expected utility (Nielsen and Vassalou, 2003). If we

choose investments before the event among the various alternatives, one would

choose that investment with the highest ex ante Sharpe ratio

~ The traditional approach to decide and/or to evaluate investments is to use a Sharpe ratio.

Suppose we have a portfolio, p, with a return, Rp and a risk-free rate of interest, and a benchmark

portfolio (i.e., US Treasury bills), denoted by/, with a return Rj-. The Sharpe ratio can be defined

by: SRp = (/?„ —Rt )l<Tp, where SRp is the Sharpe ratio for a portfolio, Rp is the mean return

on the portfolio, Rf is the mean return on risk-free rate of interest and ap is the standard

deviation of the portfolio return.
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It is important to appreciate that the Sharpe ratio always refers to the differential

between two portfolios. We can think of this differential as reflecting a self-

financing investment portfolio with the two components: one component

represents the acquired asset and the other reflects the short position taken to

finance that acquisition. As Sharpe (1994) explains, the usefulness of the Sharpe

ratio is the fact that a differential return represents the result of a zero-investment

strategy. This can be defined as any strategy that involves a zero outlay of money

in the present and returns either a positive, negative, or zero amount in the future,

depending on circumstances (Dowd, 2000).

While the Sharpe ratio has gained considerable popularity, the relationship

between the Sharpe ratio and the Investment horizon has received little attention

from researchers. One of the exceptions is Hodges et al. (1997). As mentioned in

Hodges et al. (1997), a Sharpe ratio computed using short (monthly, quarterly,

annual) return intervals to evaluate portfolios or make asset allocation decisions

will be biased for long-term investors and may lead to suboptimal results.

Traditionally, to construct the multihorizon excess return and variance of a

portfolio, the /j-period expected return and variance are calculated using the

following equations under the assumption that the returns are independently and

identically distributed across time:

(5.1)

(5.2)
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where R1 and ay are the portfolio one-period expected return and variance, and

Rn and a~ are the /j-period return and variance of the portfolio. From equations

(5.1) and (5.2), the Sharpe ratio for an 7?-period investment horizon can be

calculated as follows:

K-R, (5.3)

This equation shows that the multihorizon Sharpe ratio is a complex, nonlinear

function of the one-period expected return, the one-period standard deviation, and

n, the length of the holding period (Hodges et al., 1997).

The problems with using these equations are two-fold: the first and more serious

problem concerns the assumption of the distribution. The previous studies show

that the real return on the stock has a property of mean reversion, which indicates

that the stock return is not independently and identically distributed. The second

problem concerns the construction of an ^-period return and variance. As can be

seen in equations (5.1) and (5.2), the construction of a long-period return leaves us

a handful observation. Therefore, this may result in a biased estimator.

Wavelet analysis enables us to overcome these shortcomings of the previous

method to generate the mean and variance without imposing any assumption over

the multihorizon and losing observations. In the next section, we briefly discuss

wavelet analysis.

Given the wavelet variance, equation (2.61) and the mean returns at scale lj, the
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Sharpe ratio at scale Aj can be calculated as:

(5.4)

In this specification, SRJ indicates the wavelet multihorizon Sharpe ratio, which

can be varying depending on the wavelet scales (i.e., investment horizons).

5.3 Data and basic statistics

The data employed are large and small companies' monthly stock returns, and

long-term and intermediate-term government bond returns, which are measured

by real term from Stocks, Bonds, Bills, and Inflation (SBBI), Ibbotson Associates

(2001). As indicated in the introduction and in Siegel (1999), to examine the

multihorizon Sharpe ratio, the real return is preferable to the nominal return

because the investors (consumers) are concerned with real returns rather than

nominal returns. The data periods range from April 1958 to December 2000.

Table 5.1 presents several summary statistics for the monthly data of real stock

returns (large and small companies) and real bond returns (long-term and

intermediate-term government bonds). As shown in Panel A of Table 5.1, means

are all positive and close to 0. These figures clearly show that the stock returns are

higher than the bond returns, indicating the equity premium puzzle. Another

noticeable statistic is that the mean and variance of the small company stock

returns are higher than those of the large company stock returns, implying that the
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higher the return, the higher the risk because the investors require more return to

compensate their risk exposure.

Table 5.1 Basic Statistics
Panel A Descriptive Statistics

X =

Mean

Variance

Skewness

Kurtosis

JB

P
LB(15)for

P~
LB(15)for

Treasury bill

0.0012

0.0000

-0.1395

1.6655

60.8374

(0.0000)

0.4720

-V 964.7112

(0.0000)

0.4380

x2 330.4971

(0.0000)

Large stocks

0.0069

0.0018

-0.3889

1.9861

97.0555

(0.0000)

0.0194

11.8166

(0.4605)

0.0915

29.4918

(0.0033)

Small stocks

0.0087

0.0045

-2.0230

19.5523

8504.8188

(0.0000)

0.1542

25.3824

(0.0131)

-0.0112

1.0548

(0.9999)

Long-term
government bonds

0.0023

0.0008

0.5523

2.8185

195.5051

(0.0000)

0.0971

39.4452

(0.0001)

0.2406

150.5148

(0.0000)

Intermediate-term
government bonds

0.0022

0.0002

0.4355

5.6193

689.8134

(0.0000)

0.2077

50.1044

(0.0000)

0.1330

128.5617

(0.0000)
Note: Panel A in Table 1 presents the basic statistics for the monthly returns of the Treasury bill,
large and small stocks, long-term and intermediate-term government bonds over the period from
April 1958 to December 2000. Significance levels are in parentheses. LB(n) is the Ljung-Box

statistic for up to n lags, distributed as %2 with n degrees of freedom, p and p1 indicates the

first-order autocorrelations of returns and squared returns, respectively. Skewness and kurtosis are

defined as E[(R, -JU)]' and E[(Rt -/J)]4, respectively, where n is the sample mean.

Panel B. Correlation Matrix

Treasury
bill
Large company
stocks
Small company
slocks

Long-term
government bonds

Intermediate-term
government bonds

Treasury
bill

1.000

Large company
stocks

0.190

1.000

Small company
stocks

0.113

0.690

1.000

Long-term
government
bonds

0.281

0.322

0.133

1.000

Intermediate-term
government bonds

0.353

0.259

0.102

0.853

1.000
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Among the real returns, first-order autocorrelation (p) of monthly data ranges

from 0.0832 (large company stocks) to 0.4784 (Treasury bill), and the Ljung-Box

statistics indicate the persistence of linear dependency of all data. For the squared

level data, the first-order serial correlations {(T) vary between 0.1535

(intermediate bonds) and 0.2798 (large company stocks), and the Ljung-Box

statistics show strong evidence of nonlinear dependency in all data.

The measures for skewness, kurtosis and Jarque-Berra statistics are also reported

to check whether monthly data are normally distributed. The sign of skewness

varies; however, the magnitudes depend on the particular security. In general, if

the values of kurtosis are larger than 3.0, then monthly returns are more peaked

and have fatter tails than normal distributions. The Jarque-Berra statistics also

indicate that all data are not normally distributed. The LB(15) for squared return

series is highly significant for all assets, suggesting the possibility of the presence

of autoregressive conditional heteroskedasticity.

We report the unconditional contemporaneous correlation coefficients for the

Treasury bill, large and small companies' stock returns, and long-term and

intermediate-term government bond returns in Panel B of Table 5.1. The

correlation stmcture of the five variables is probably the most important feature

from the point of view of investors and portfolio managers. Hedging and

diversification strategies invariably involve some measure of correlation. As is

shown in Panel B of Table 5.1, the correlations between stock returns and

between bonds are very high; 0.690 between large and small companies' stocks

and 0.853 between long- and intermediate-term bonds. The correlation between
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different securities is very low, indicating stock and bond returns do not move

together.

5.4 Main empirical results

The main purpose of this section is to examine the relationship between the

Sharpe ratio and the investment horizon for portfolios of small company stocks,

large company stocks, intermediate-term government bonds, and long-term

government bonds. To investigate the multihorizon Sharpe ratio using wavelet

analysis we need to consider the balance between the sample size and the length

of the wavelet filter. We settle with the MODWT based on the Daubechies least

asymmetric wavelet filter of length 8 (LA(8)), while we decompose our data up to

level 6. We also conducted the test using different wavelet filter such as

Daubechies D(4). The results are not sensitive to the choice of the wavelet family.

In our analysis, the data set has a finite length, namely, 512 observations.3 This

restriction naturally brings the issue of boundary conditions into the computation

procedure. We simply choose the periodic boundary condition.4 Since we use

monthly data, scale 1 represents 2-4 month period dynamics. Equivalently, scales

3 As indicated in section 4, MODWT does not require that the length of data be equal to a factor of

2. However, we use 512 observations ( = 2 ) due to the estimation of the mean reversion property

of asset returns.

4 We also test the reflection boundary condition, while the results are not qualitatively different.
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2, 3, 4, 5, 6, and 7 correspond to 4-8, 8-16, 16-32, 32-64, 64-128, and 128-256

month period dynamics, respectively.

Figure 5.1 Estimated Wavelet Variance

d2 d3 d4 d5 d6

•large company stocks

•long-term bonds

•small company stocks

•intermediate-term bonds

Note: Figure 5.1 represents the wavelet variance of the four portfolio returns. The y-axis indicates

the wavelet variance and the A-axis indicates the wavelet time scale. To calculate the wavelet

variance of each portfolio, we decompose each time series up to level 6, using the Daubechies

least asymmetric wavelet filter of length 8 (LA(8)).

First, we examine the variances of the four returns against various time scales. An

important characteristic of the wavelet transform is its ability to decompose

(analyze) the variance of the stochastic process. According to Siegel (1998), the

risk of holding stocks and bonds depends crucially on the holding period. He finds

that over a 20-year holding period, the risk of holding stocks is less than that of

bonds. Figure 5.1 illustrates the MODWT-based wavelet variance of four series
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I against the wavelet scales.5 There is an approximate linear relationship between
1

1 the wavelet variance and the wavelet scale, indicating the potential for long

I

memory in the volatility series. The variances of both the stock and bond markets

decrease as the wavelet scale increases. Note that the variance-versus-wavelet

scale curves show a broad peak at the lowest scale (dl) in both markets. More

specifically, a wavelet variance in a particular time scale indicates the contribution

to sample variance (Lindsay et al., 1996, p. 778). The sample variances are 0.0018

for large company stocks, 0.0045 for small company stocks, 0.0008 for long-term

bonds and 0.0002 for intermediate-term bonds, respectively, and 48.8%,6 40.6%,

43.3%, and 37.4% of the total variances of the four portfolio returns, respectively,

are accounted for by the lowest scale (dl). Overall, the returns on stocks are more

volatile than those of bonds over all wavelet scales, which is different from Siegel

(1998), except for the scale 6. More specifically, the small company stock return

possesses the highest volatility among four series. The lowest volatility belongs to

the intermediate government bond return. These findings are expected from the

preliminary tests and the property of the wavelet variance.

It is of interest to examine whether asset returns follow a random walk over

various wavelet scales. Mathematically, the random walk assumption of an asset

is determined by how fast the risk of average returns should decline as the holding

period lengthens. A random walk is a process where future returns have no

5 For the statistical inference, we also calculate the confidence interval for four series using

equation (5.10). However, we do not plot the confidence intervals for a clear presentation.

6 This figure can be calculated by the normalization of wavelet variance using the sample variance.

For more detail, see Lindsay et al. (1996).
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relation to (or are completely independent of) past returns (Siegel, 1998). Table

5.2 illustrates the wavelet standard deviation and the risk predicted under the

random walk assumption of the four series.

Table 5.2 Holding Period Risk at the Wavelet Scales
raw data

Large company stocks
Risk 0.0423
Expected value 0.0423

Small company stocks
Risk 0.0670
Expected value 0.0670

dl

0.0296
0.0299

0.0427
0.0473

Long-term government bonds
Risk 0.0278
Expected value 0.0278

0.0183
0.0197

Intermediate-term government bonds
Risk 0.0158
Expected value 0.0158

0.0096
0.0111

d2

0.0216
0.0212

0.0357
0.0335

0.0150
0.0139

0.0088
0.0079

d3

0.0150
0.0150

0.0278
0.0237

0.0103
0.0098

0.0062
0.0056

64

0.0111
0.0106

0.0177
0.0167

0.0070
0.0070

0.0042
0.0039

d5

0.0102
0.0075

0.0158
0.0118

0.0068
0.0049

0.0038
0.0028

d6

0.0021
0.0053

0.0047
0.0084

0.0066
0.0035

0.0040
0.0020

Note: Table 5.2 provides the holding period risk at the wavelet scales to compare the variances

under the random walk hypothesis. In this table, risk implies the standard deviation of raw data

and the wavelet variance in various wavelet scales. The expected value has been calculated under

the assumption that the standard deviation falls as the square root of the length of the holding

period (Siegel, 1998, p. 33).

Our wavelet decomposition shows that the risks of all returns decline faster than

predicted at the first wavelet scale, indicated as dl. In the intermediate scales (d2

and d5), the risks of all returns are greater than/similar to the expected risks.

Finally, the risk, which is calculated from the wavelet variance, is lower than

expected at the final wavelet scale, d6 (equivalent to 64 to 128 month period).

This result is different from the previous studies. Siegel (1998, 1999) reports that

the stock return shows mean reversion, while the bond return shows a mean-

aversion property. Overall, our result supports the mean-reversion property of

asset returns.
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To further examine the mean-reversion property of asset returns, we adopt the

long memory of asset returns using the maximum-likelihood estimator based on

wavelets, proposed by Jensen (2000). Although the wavelet OLS estimator for the

long-memory parameter (see Jensen, 1999b) is simple to program and compute, it

produces much larger mean-square enors when compared to maximum-likelihood

methods. In this section, we use the maximum-likelihood estimator for the long-

memory parameter.7 (see, chapter 2, section 2.6.3)

Table 5.3 Estimated Long-memory parameter
Haar D(4) D(8) LA(8) LA(16)

Large company stocks 0.034

Small company stocks 0.084

Long-term government bonds 0.001

Medium-term government bonds 0.031

0.040
0.082

0.017

0.036

0.027
0.076

0.059

0.086

0.024
0.058

0.027

0.047

0.030
0.074

0.032

0.055
Note: Table 5.3 reports the long-memory parameter, calculated by the wavelet-based maximum-

likelihood method. The asymptotic Cramer-Rao lower bound for the MSB of unbiased estimators

of d is 6 / (Mr 2 ) . In our study, A' = 512. Hence, the asymptotic root of MSE for d is 0.001188.

Mean reversion occurs so long as d<\. It follows that a test for fractional

integration can be used to determine the existence of mean reversion (Cheung and

Lai, 2001). The results are presented in Table 5.3. If our data is mean-reverting,

the iong-memory parameter has to be less than 1.

To examine the sensitivity of the wavelet filters and the robustness of our results,

we also conduct the ML test for long-memory parameter using different wavelet

filters (i.e., Haar, D(4), D(8), LA(8), and LA(16)). However, the results are

qualitatively similar regardless the wavelet filters. To construct an approximate

7 For concrete discussion and estimation procedures about the wavelet-based maximum likelihood

estimation, refer to Genc.ay et al. (2002a, p. 172).
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95% confidence interval for statistical inference, we use the Cramer-Rao lower

bound for the MSEs of unbiased estimators of the long-memory parameter, d.

According to Kashyap and Eom (1988), the Cramer-Rao lower bound can be

calculated as 6/(7vVr2) . Hence, in our case, the Cramer-Rao lower bound is

0.001188. Using this value, the 95% confidence interval can be constructed by

adding and subtracting 0.068 from our estimated long-memory parameters.

Clearly, the long-memory parameters for all asset returns are less than 1 and close

to 0, implying that the asset returns are mean-reverting.

This test can also be interpreted in terms of a long memory in asset returns. Our

results are consistent with recent empirical findings; for example, with Lo (1991)

and Cheung and Lai (1995), who conclude that the stock returns do not possess

the long-memory property.

It is of interest to compare the annualized wavelet variances (risks) over the

different time scales. In financial valuation models, it is commonly required to

calculate an annualized risk coefficient. Under the random walk model, the risk of

an asset at any time scale is estimated by the linear rescaling of the risk from other

time scales. Conventionally, the risk is scaled at the square root of time. Our

results are presented in Figure 5.2. As observed in the figure, the annualized

variances decrease as the time scale increases, with a smoother decreasing pattern.

This result implies that an investor with a short investment horizon has to respond

to every fluctuation in the realized returns, while for an investor with a much

longer horizon, the long-run risk is significantly less.
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Figure 5.2 Estimated Annualized Wavelet Variance
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Note: Figure 5.2 represents the annualised wavelet variance of the four portfolio returns. The y-

axis indicates the wavelet variance and the Jt-axis indicates the wavelet time scale. To calculate the

wavelet variance of each portfolio, we decompose each time series up to level 6, using the

Dauhechies least asymmetric wavelet filter of length 8 (LA(8)). To calculate the annualized

variance, the variance is scaled at the square root of time.

Turning to our main purpose, the multihorizon Sharpe ratios, calculated from

wavelet analysis, are plotted in Figure 5.3. Figure 5.3 shows that the Sharpe ratio

for each portfolio increases as the holding period is extended. The Sharpe ratio for

the large company stock portfolio is 0.19 for the first wavelet scale, equivalent to

a 2-4 month period, and increases to 2.64 at the longest wavelet scale, equivalent

to a 64-128 month period. A similar pattern is observed in the other asset returns.

For example, the Sharpe ratio of long-term government bonds starts at 0.06 at the

first wavelet scale, and rises to 0.17 at the longest wavelet scale. Figure 5.3 shows

the relative rankings of the stock and bond portfolios over the wavelet scales. The

Sharpe ratios for the stock portfolios are greater than those of bond portfolios at
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all time scales. Overall, our results are different from those of Hodges et al.

(1997), who find that the Sharpe ratio eventually declines in all cases and the

counterintuitive result that bonds become more attractive than stocks for long

holding periods. However, our results support the conventional wisdom of money

managers that for investors with long horizons, a greater share of portfolio assets

should be allocated to stocks (Siegel, 1998,1999).

Figure 5.3 Multihorizon Sharpe Ratio
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Note: Figure 5.3 indicates the multihorizon Sharpe ratio calculated from the wavelet variance. The

y-axis indicates the multihorizon Sharpe ratio and the x-axis indicates the wavelet time scale. To

calculate the multihorizon Sharpe ratio of each portfolio at scale Aj, we decompose each time

series up to level 6, using the Daubechies least asymmetric wavelet filter of length 8 (LA(8)).

This result is closely related to the mean-reverting property of stock returns. As

indicated in Samuelson (1991), mean reversion increases stock holdings if

investors have a risk-aversion coefficient greater than unity. Furthermore,
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Barberis (2000) finds that mean reversion in returns slows the growth of

conditional variances of long-horizon returns, as shown in Figure 5.1. This makes

the equities appear less risky at long horizons, and hence more attractive to the

investor.

In sum, our results indicate that the Sharpe ratio of a large-company stock

portfolio is a higher value than the other three portfolios (small-company stocks,

long-term and intermediate-term government bonds) over all wavelet scales. In

other words, a large-company stock portfolio outperforms the other portfolios

over the wavelet scales.

5.5 Concluding remarks

Although the Sharpe ratio has become an important part of modern financial

analysis, its applications have not been accompanied by examination of the

investment horizon, which is an important factor for investors. In this section, we

examine the multihorizon Sharpe ratio using the newly developed method of

wavelet analysis. Wavelet analysis has the advantage of being able to decompose

the time series over the various time scales. This advantage allows us to

investigate the behavior of our data over multiple horizons, not just short- and

long-run behavior.

Based on this advantage of wavelet analysis, we examine the multihorizon Sharpe

ratio. First, we examine the mean-reverting property of four asset returns using the

wavelet-based maximum-likelihood estimation of the long-memory parameter.
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Second, we adopt real returns, not nominal returns, because that is what investors

really care about. Finally, as stated in Siegel (1999), while the assumption that the

return is distributed identically and independently over time makes it easy to

calculate long-horizon return and standard deviation, it does not reflect mean

reversion on stock returns. Our wavelet analysis does not impose any assumption

on distribution of returns and therefore is robust to misspecification, which may

originate from assuming a particular distribution of returns.

Our wavelet decomposition shows that the risks of all returns is lower than or

similar to the expected value by a random walk assumption of asset returns, while

in the intermediate scales, d2 to d5 (equivalent to a 4-8 months period and 32-64

months period, respectively), the risks of all returns are greater than expected.

Overall, our result supports the mean-reversion property of asset returns. In

addition, the long-memory parameters for all asset returns, using the wavelet-

based maximum-likelihood estimation, are less than 1 and close to 0, implying

that the asset returns are mean-reverting.

The wavelet variance and the annualized wavelet variance show that the

annualized variances decrease as the time scale increases, implying that that an

investor with a short investment horizon has to respond to every fluctuation in the

realized returns, while for an investor with a much longer horizon, the long-run

risk is significantly less.

Turning to our main purpose, our results are different from those of Hodges et al.

(1997), who find that the Sharpe ratio eventually declines in all cases and the

counterintuitive result that bonds become more attractive than stocks for long
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holding periods. However, our results support the conventional wisdom of money

managers that for investors with long horizons, a greater share of portfolio assets

should be allocated to stocks (Siegel, 1998 and 1999).

In short, our results indicate that the Sharpe ratio of a large-company stock

portfolio is a higher value than the other three portfolios (small-company stocks,

long-term and intermediate-term government bonds) regardless of wavelet time

scales. In other words, a large-company stock portfolio outperforms the other

portfolios over the wavelet scales. This result is closely related to the mean-

reverting property of stock returns. As indicated in Samuelson (1991) and

Barberis (2000), a mean-reversion property in stock returns slows the growth of

conditional variances of long-horizon returns. This makes equities appear less

risky at long horizons, and hence more attractive to the investor.
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Chapter 6 The Long-run Relationship between Risk and

Return Using Industry Data

6.1 Introduction

The relationship between risk and return is fundamental to equilibrium asset

pricing. The return on market portfolio plays a central role in the capital asset

pricing model (CAPM), whose implication is that investors are only compensated

for bearing the systematic covariance risk (Chiao, et al., 2003). However, the

intertemporal properties of stock returns are not yet fully understood. For

example, there is an ongoing debate in the literature about the relationship

between stock market risk and return and the extent to which stock market

volatility moves stock prices. To find the relationship between risk and return,

much published research has used CAPM or Merton's (1973) ICAPM. In that

research estimates of the simple risk-return relationship vary from significant

positive (Harvey, 1989) to significant negative (Campbell, 1987).'

The failure to reach an agreement on the risk-return relationship can be attributed

to three factors. First, neither the conditional return nor the conditional variance is

directly observable. To overcome this problem, instrumental variable (IV) models

and the autoregressive conditional heteroskedasticity (ARCH) models are

popularly adopted popularly as identification methods. However, empirical results

' Backus and Gregory (1993) have studied the relationship between risk and return in a dynamic

asset pricing model and found that the relationship can be either positive or negative. Recently,
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are sensitive to these restrictions. For example, Campbell (1987) finds that the

results depend on the choice of instrumental variables. In particular, the nominal

risk-free rate is negatively related to the return and positively related to the

variance, and "these two results together give a perverse negative relationship

between the conditional mean and variance for common stock" (Campbell, 1987).

As for the ARCH model, if the conditional distribution of the return shock is

changed from normal to student-r, the significant positive relationship disappears

(see Baillie and DeGennaro, 1990). Second, as indicated in Whitelaw (1994), no

functional form is imposed on the relationship between the mean and volatility of

return. Finally, while the stock is considered to be a long-term investment, the

previous studies have focused on the short-run relationship.

Our study extends the previous studies in three aspects. First, to avoid the

sensitivity inherent in choosing the conditional econometric model (GMM or

ARCH type model) to get the conditional return and volatility, we adopt the

method of Campbell et al. (2001) and construct the monthly market return and

volatility directly from the data. Second, we focus on the long-run relationship

between risk and return, adopting the methods of King and Watson (1997) and

Den Haan (2000). Finally, the industry-level data has been constructed and used

to examine the long-run relationship in contrast to the previous studies, which use

Elsas et al. (2003) examine the relationship between beta and return for the German stock market

and find a significant relationship between beta and return.
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the market portfolio. In our study, we construct monthly 13-industry portfolios2

and a market portfolio from the daily individual industry data calculated ain the s

same way of Campbell et al. (2001).

We are interested in the long-run relationship for two reasons. First, in the short-

run, the relationship between risk and return could be affected by various factors,

such as market frictions and investors' sentiments. That is, evidence at these

longer horizons may provide additional information regarding explanations for a

negative or positive correlation between excess stock return and variance. Second,

from a practical point of view, many investors hold stocks over long holding

periods. Therefore, it is important to know the manner in which stock excess

returns move with variance over longer horizons.3

In our study, it is found that the long-run relationship highly depends on the

contemporaneous relationship. More precisely, the long-run response of stock

return to a permanent volatility shock relies on the value of the mean-in-volatility

effect in the sense of Brandt and Kang (2001). The other results, which include

2 The importance of industry factors is emphasized in early literatures (Lessard, 1974 and 1976).

Recently, the importance of industry factors has emerged in relation to momentum in stock returns

(Moskowitz and Grinblatt, 1999; Griffin and Stulz, 2001).

• Few studies have examined the long-run relationship between risk and return. Harrison and

Zhang (1999) find the significantly positive relation at long holding horizons, particularly one and

two years. Whitelaw (2000) examines the relationship in a general equilibrium framework and

finds that the long-run relationship between expected returns and volatility is less obvious because

of potential time variation in the conditional correlation, the conditional volatility of the marginal

rate of substitution, and the riskless rate.
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I two identifying parameters (A.sa and ym) and measure the mean-in-volatility

effect and the long run response of volatility to a permanent stock return ?hock,

I1;- also indicates that the long-run response of stock returns to a permanent volatility

shock depends on the two identifying parameters. For the VAR forecast

correlation, proposed by Den Haan (2000), most industry portfolios show a

negative relationship in the short-run as well as in the long-run. However, the

construction industry shows a positive relationship in the short-run and negative

relationship in the long-run. For the market portfolio, a negative relationship i.1;

dominant regardless of forecasting horizons.

This chapter is organized as follows. In section 6.2, we describe the derivation of

the monthly return and volatility from the industry data. The data set and basic

statistics are presented in section 6.3. In section 6.4, the King and Watson's

(1997) method is presented and the empirical results are discussed. The long run

correlation coefficients from the VAR forecast error are discussed in section 6.5.

Finally, we present our concluding remarks in section 6.6.
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$
42 Data and Basic Statistics

In our study, the monthly volatility is estimated by the square of the sum of the

difference between daily stock return and monthly average. This method is

adopted in Duffee (1995) and Campbell et al. (2001).4

st

(6.1)

where Rt j is the industry return on the 7th day of month /, st denotes the number

of trading days in the specific month, and //, indicates the average return in that

month.

The daily industry stock prices are obtained from Datastream. Three-month

Treasury bill yields for the risk-free rate are from the US Federal Reserve system

(H.15). Taking the natural logarithm of one plus the return and subtracting the

natural logarithm of one plus the monthly Treasury bill yields divided by trading

days in a month yield the daily excess return. This monthly data has the advantage

of reducing noise and the disadvantage of being slightly stable. From this

Another method to calculate the volatility, proposed by French et al. (1987), is the volatility

estimate that adjusts for first-order autocorrelation in returns: <7fj — jT?-. (/?/, i~Mj)~

J (Rjj ~Mj)(Rij+\ ~Pi)- As noted in Duffee (1995), this method can generate a negative

variance estimate if the first-order autocorrelation of daily returns in a given month is less than

- 0 . 5 .
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calculation the total data ranges from January 1973 to June 2000 with 330

observations.5

Following Li (1998), we reorganize this data from 102 industrial industries into

13 portfolios, and the stock prices of 13 industries are calculated as a weighted

average at time /. Each industry's market value has been adopted as the weight of

the industry.6

In Figure 6.1, the movements of market return and volatility are plotted during the

sample period. The figure shows the high volatility during the 1970s due to the oil

and food shock and following the stock market crash in October 1987. During

those periods, high volatility is accompanied by low returns. However, there is no

distinguishable trend in both return and volatility, consistent with the results of

Campbell et al. (2001). This allows us to use no trend in our VAR method. In

Figure 6.2, we plot the movements of returns of two industries: petroleum and

5 To check the stationary of our data, two statistics for unit root tests (ADF and KPSS proposed

by Kwiatkowski et al., 1992) are adopted. From both tests, stationary cannot be rejected for our

data.

6 Li (1998) in fact actually uses 12 categories, but we add one more industry named "diversified

industries". According to Datastream, the diversified industry category is defined as industrial

companies engaged in three, or more, classes of business that differ substantially from each other,

no one of which contributes 50%, or more, of pre-tax profit, nor less than 10%. This industry is

hard to divide following the SIC code. Furthermore, the market value of this industry is bigger

than those of transportation and construction at the end of June 2000. For these reasons, we

consider this industry as an individual industry.

134



'I

Table 6.1 Industry Groups

Industry Sub-industry
Basic Industry Gold Mining, Packaging, Paper, Chemicals, Advanced Materials, Chemicals

(Commodity), Chemicals (Speciality), Household Products, Personal Products,
Engineering Fabricators, Non-Ferrous Metals, Steel, Forestry, Other Mineral
Extractors & Mines, Other Business.

Capital Goods Computer Hardware, Engineering General, Semiconductors, Tyres & Rubbers,
Medical Equipment & Supplies, Photography
Broacasting Contractors, Electrical Equipment, Electricity, Electronic
Equipment,

Consumer Household Appliances & Housewares, Telecom Equipment, Aerospace,
Durable Automobiles, Autoparts, Commercial Vehicles & Trucks, Defence, Builders

Merchants, Distributors of Industrial Components & Equipment, Vehicle
Distribution

Construction House Building, Other Construction, Engineering-Contractors, Building &
Construction Materials

Finance/Real Banks, Consumer Finance, Mining Finance. Mortgage Finance, Other Financial,
Estate Asset manager. Investment Banks, Investment Company, Insurance Brokers,

Insurance-Non-life, Life Assurance, Re-insurance, Other Insurance, Property
Agencies, Real Estate Holding & Development, Real Estate Investment Trusts

Food/Tobacco Beverages-Brewers, Beverages-Distillers & Vintners, Food & Drug Retailers,
Soft Drinks, Tobacco, Fanning & Fishing

Diversified
Industrials

Publishing & Printing, Restaurants & Pubs, Hostel, Gaming, Home
Leisure Entertainment,

Leisure Equipment, Leisure Facilities.Photograpny
Petroleum Oil & Gas-Exploration & Production, Oil-Services, Oil-Integrated

Funerals & Cemeteries, Laundries & Cleaners, Business Support Services,
Services Computer Services, Furnishing & Floor Coverings, Internet, Security & Alarm

Services, Software, Health Maintenance Organizations, Hospital Management &
Long Term Care, Other Health Care, Education, Business Training &
Employment Agencies, Retailers e-commerce, Retailers-Hardlines, Retailers-
Multi Department,
Retailers-Soft Goods, Medical Equipment & Supplies, Pharmaceuticals,
Environmental Control

Textiles/Trade Clothing & Footwear, Other Textiles & Leather Goods, Distributors-Other,
Discount & Super Stores and Warehouses,

Transportation Shipping & Ports, Airlines & Airports, Rail, Road & Freight
Utilities Cable & Satellite, Fixed-Line Telecommunication Services, Media Agencies,

Wireless Telecommunication Services, Gas Distribution

Note: This table shows the I3-industry groups using 102 industry sub-groups using the SIC code.

This table has been constructed using Li (1998) except for Diversified industrial. According to

Datastream, the diversified industry is defined as industrial companies engaged in three, or more,

classes of business.
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Figure 6.1 Movements of Market Returns and Volatility
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Note: This figure shows the movements of monthly market risk and returns during sample period

from January 1973 to June 2000. Clearly the peak has been observed in October 1987.

Figure 6.2 Movements of the returns of Petroleum and Consumer Durables

petroleum —consumer durables

Note: This figure shows two industry returns during sample periods. From this figure, we can

observe that even though the same shock affects the stock market, each industry has a different

reaction on the shock.
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consumer durables. This figure shows the different peaks and troughs during the

sample period. It is evident that the movement of each industry is affected not

only by whole market shocks but also by individual industry shocks. As an

example of a whole market shock, the figure shows that when stock market

crashes in October 1987, both returns decrease severely. An example of a

individual industry shock occurs the Persian Gulf War in January 1991. Note that

the petroleum companies are severely affected by the oil supply from the Persian

region, and that the consumer durable industry includes defence as a sub-industry.

In January 1991, the annualized (multiplied by 12) return of the petroleum

industry is -0.120, while that of the consumer durable industry is 0.117. When the

same shock hits the stock market, it affects the industry differently. Figure 2

provides evidence as to why the analysis of individual industry is important.

Table 6.2 shows us the basic statistics for industry and market returns. The most

profitable industry during the sample period is the services industry, while the

construction industry is the worst. In terms of volatility of excess return,

transportation is observed as a most volatile industry. The measures for skewness

and kurtosis are also reported to check whether monthly returns are normally

distributed. The sign of skewness varies; however, the magnitudes depend on the

particular industry.

Among the 13 industry portfolios and the market portfolio, the first-order

autocorrelation of monthly returns ranges from -0.039 (utility) to 0.126 (leisure),

and the Ljung-Box statistics indicate the persistence of linear dependency of each

set of data. For the squared level data, the first-order serial correlations vary
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Table 6.2 Basic Statistics

Panel A Descriptive Statistics

Market
Basic
Capital
Consumer
Construc-

tion
Finance
Food
Industrial
Leisure
Petroleum
Services
Textile
Transport-
ation
Utility

Mean

0.008
0.000
0.010
0.008

-0.003

0.013
0.016
0.014
0.005
0.001
0.023
0.007
0.005

0.006

Variance

0.046
0.064
0.073
0.049
0.115

0.073
0.065
0.073
0.076
0.068
0.072
0.109
0.094

0.043

Skewness

-0.751
-0.613
-0.343
-0.452
-0.257

-0.436
-0.632
-0.607
-0.553
-0.072
-0.437
-0.439
-0.520

-0.172

Kurtosis

2.805
3.393
1.380
1.906
1.475

1.708
2.531
3.560
2.159
1.167
1.408
1.922
2.822

0.513

JB

139.165
178.923
32.641
61.179
33.538

50.547
110.109
194.443
80.915
19.029
37.756
61.358

124.418

5.241

Significan
ce level

0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.073

p

0.017
0.009
0.002
0.051
0.104

0.100
0.082

-0.020
0.126

-0.045
-0.015
0.112
0.042

-0.039

LB(15)

11.219
13.577
10.323
11.705
21.954

21.367
28.187
8.658

34.970
11.675
11.400
26.830
10.472

15.994

Significan
ce level

0.510
0.329
0.588
0.470
0.038

0.045
0.005
0.732
0.000
0.472
0.495
0.008
0.575

0.192

P2

0.197
0.047
0.215
0.063
0.100

0.096
0.268
0.143
0.194
0.314
0.245
0.105
0.114

0.124

LB(15)

27.154
15.397
30.867
25.361
33.580

14.101
62.611
38.810
47.174
89.250
39.935
14.981
14.102

32.063

Significan
ce level

0.007
0.221
0.002
0.013
0.001

0.294
0.000
0.000
0.000
0.000
0.000
0.243
0.294

0.001

Note: Significance levels are in parentheses. LB(;i) is the Ljung-Box statistic for up to n lags, distributed as %2 with n degrees of freedom, p and p indicate

the first-order autocorrelations of returns and squared returns, respectively. Skewness and kurtosis are defined as E[(R, - / / ) ] and EliR, - / / ) ] , where fl is the

sample mean. JB indicates the Jarque-Bera statistics.
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Panel B Correlation Matrix

Basic Capital Consumer Construction Finance Food Industrial Leisure Petroleum Service Textile Transportation Utility Market
Basic
Capital
Consumer
Construction
Finance
Food
Industrial
Leisure
Petroleum
Service
Textile
Transportation
Utility
Market

1.000 0.709 0.827
1.000 0.764

1.000

0.771
0.627
0.777
1.000

0.785
0.616
0.806
0.753
1.000

0.737
0.621
0.693
0.636
0.745
1.000

0.810
0.754
0.795
0.725
0.780
0.774
1.000

0.555
0.451
0.517
0.576
0.503
0.397
0.427
1.000

0.737
0.792
0.787
0.648
0.748
0.745
0.809
0.416
1.000

0.775
0.609
0.729
0.777
0.716
0.570
0.681
0.595
0.638
1.000

0.708
0.592
0.728
0.650
0.707
0.697
0.748
0.285
0.734
0.573
1.000

0.554
0.471
0.692
0.548
0.634
0.556
0.560
0.426
0.580
0.501
0.513
1.000

0.774
0.676
0.734
0.695
0.704
0.704
0.758
0.488
0.738
0.659
0.621
0.533
1.000

0.885
0.839
0.939
0.819
0.863
0.787
0.870
0.638
0.882
0.799
0.760
0.713
0.806
1.000
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between 0.047 (basic industry) and 0.314 (petroleum), and the Ljung-Box

statistics show strong evidence of non-linear dependency in all data

The correlation structure among the industries (Panel B of Table 6.2) is probably

the most important feature from the point of view of investors and portfolio

managers. Hedging and diversification strategies invariably involve some measure

of correlation. As is shown in Panel B of Table 6.2, the correlations of excess

return range from 0.285 between petroleum and textiles to 0.827 between basic

industry and consumer durables.

1
6.3 King and Watson Approach

I
I
I

In this section, we present the King and Watson (1997) methodology for

examining the long-run relationship between stock returns and volatility. The

King and Watson methodology relies on a bivariate VAR model in stationary

variables,

6.3.1 VAR Model

1
'ft
8

Let sit and cr,~, be the /th industry (market) excess return and volatility at time t,

respectively. Consider the following bivariate VAR model:

(6.2)
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(6.3)

where E* and ef are white-noise stock excess returns and volatility of excess

returns structural shocks, respectively. This form of equation (6.2) for the stock

excess return can be analogous to a generalized version of the usual volatility-in-

mean model, where this effect can be captured by the coefficient, As(r. In

addition, the model can also capture the lag-volatility-in-mean effect, depending

on the coefficients aisa.. If this term is positive (negative), the lagged volatility

has a positive (negative) effect on the stock excess returns. It is of interest because

it reflects the volatility feedback effect studied by Campbell and Hentschel

(1992), and Bekaert and Wu (2000) among others. The volatility feedback effect

states that a large realization of news (positive or negative) increases both current

and future volatility due to the persistence of volatility (Brandt and Kang, 2001).

Intuitively, the lagged volatility effect is important because it reflects the

compensation of investors for the increased risk, implying the positive

intertemporal relationship between stock returns ynd volatility. Analogous to

equation (6.2), equation (6.3) contains two effects: the mean-in-volatility effect

and the lagged-mean-in-volatility effect. Contrary to the previous studies, except

for Brandt and Kang (2001), our model can capture both the contemporaneous

effect through mean-in-volatility and the lagged effect through the lagged-mean-

in-volatility effect. The system can be written more compactly by:
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<* where

we define £(£,,£,)' - I f , the variance-covariance matrix for the structural shocks.

We are interested in the long-run (infinite-horizon) stock prices response to a

I

| volatility shock. This can be expressed in terms of the long-run multipliers,

Yscr - ^ f f O J ^ u O ) ' which give the percentage increase in stock returns for each

percentage point increase in volatility resulting from a permanent volatility shock.

To obtain a consistent estimate of ysa, it is required to identify the system of

equations (6.2) and (6.3). As the system now stands, it is underidentified. King

and Watson (1997) and Rapach (2002) use the three identifications for each

-- estimate of y%a. In other words, for the estimation of ysa, three coefficients

should be known; (1) Asa (2) X^ (3) y^. For our purposes, another assumption

is that Xe is diagonal. This is a standard assumption in structural VAR modelling
I
| and is tantamount to assuming that the structural shocks are contemporaneously

I
uncorrelated. Note that as long as Xsa or AOT does not equal zero, the restriction

that Zf is diagonal does not preclude both stock excess returns and volatility of

excess returns from responding contemporaneously to either structural shock. We

next discuss the economic interpretation of each restriction.
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In addition to the restriction that Z r is diagonal, the first identification scheme

assumes that X$a is known, which restricts the contemporaneous response of

stock excess returns to a permanent volatility shock. In this case, the natural

question is how the volatility affects stock returns. The coefficient Ascr measures

the contemporaneous relationship between stock excess return and volatility. It

nests the volatility-in-mean model to study the contemporaneous effect of

volatility on excess returns. Previous studies state that Xsa can be negative or

positive.

Assuming that /i^ is known, as in the second identification scheme, the

contemporaneous volatility response to a permanent stock excess returns shock is

restricted. This coefficient captures the effect of mean-in-volatility. While Brandt

and Kang (2001) find that the sign of this effect is negative, they argue that the

mean-in-volatility effect mirrors the volatility-in-mean effect. Based on this, we

assume that the sign of X^ can be negative or positive.

Finally, assuming that y^ =car(l)/<2'cro.(l) is known, as in the third identification

scheme, the volatility's long-run response to a permanent stock market shock is

restricted. As noted in definition of ya, it contains the contemporaneous effect

and intertempora] effect of stock excess returns on the volatility. While the

intertemporal effect (the lagged-mean-in-volatility effect) is negative, the

contemporaneous effect (the mean-in-volatility effect) is ambiguous. Therefore,

the sign of y can be negative or positive.
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™ Once the system of equations is identified using one of the three schemes, the

parameters of (2) and (3) can be consistently estimated using an instrumental

variables procedure. With consistent estimates of the system's parameters in hand,

a consistent estimate ysa can be generated. Following King and Watson (1997)

and Rapach (2002), we genera'; estimates of ysa using each of the three

identification schemes. Instead of generating ys(r estimates for a single assumed

value of Zsa, AOT and ym, as in King and Watson (1997) and Rapach (2002),

ysa estimates are generated for a range of Asa, /lOT and y^ values about zero.

This checks the robustness of long-run inferences and allows the readers to decide

which estimates are most plausible.

6.3.2 Empirical Results

In this subsection, we discuss the empirical results derived from the King and

Watson (1997) method. Because the VAR model requires the stationarity of each

variable, we do the unit root tests of our data set.

Figure 6.3 presents point estimates of ysa based on the first identification scheme

(L f is diagonal and Am is known) for each industry and the market portfolio. The

grey lines in each panel of Figure 6.3 delineate 95 % confidence bands for the

ysa estimates.

We see from Figure 6.3 that the ysa point estimate is decreasing in the assumed

value of AOT for each industry. For a number of industries, a different value of /LOT

144



Figure 6.3 ysa Estimates for Different Assumed /lOT Identifying Values

IBasic Industry

10

Construction

ceptial goods

Finance

Consumer Durables

Food and Beverages

Diversified Industry

Services

Utilities

Leisure

Textiles and Trade

Market

10

5

0

•5

• 10

-Ns
-0 50 -0.fo

Petroleum

Transportation

Note: This figure presents point estimates of ysa based on the first identification scheme (1£ is

diagonal and X^ is known) for each industry and market portfolio. The grey lines delineate 95%

confidence bands for the ysa estimates.
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produces a different value of ysa estimates, which are varying from negative to

positive. For example, consider the basic industry. If we assume that A = -0.06,

then the ys(r point estimate equals 0.11, which is significant according to the 95%

confidence bands. A /tOT value of -0.06 means that the volatility decreases

contemporaneously by 0.6 percentage points for each 10 percent increase in the

real stock returns in equation (6.3), while a ysa value of 0.11 means that long-run

stock returns increase by 0.11% for each percentage point increase in volatility,

resulting from a permanent volatility shock. As discussed above, theory suggests

that the sign of A^ is unambiguous (negative or positive) so that Asa values

between -0.05 and 0.20 do not appear quantitatively implausible.

For each industry, there is a range of AOT values for which the ySo estimate is not

significantly different from zero, in line with long-run relationship with respect to

portfolio returns. These ranges typically include Values between

approximately -0.25 and 0.25. Also observe that ystr estimates are significantly

negative for all industries except services and utility for a range of positive X&

values. However, given that the previous studies suggest that A is ambiguous,

the sign of ysa highly depends on the values of AOT. In other words, in the sense

of Brandt and Kang (2001), the long-run effect of volatility on stock returns

depends on how stock returns affect the volatility contemporaneously (mean-in-

volatility effect).
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Figure 6.4 yia Estimates for Different Assumed Asa Identifying Values

Basic Industry

Construction

Diversified industry

Services

Utilities

3 atf^t5s'*-0.76 0.36 1.49 £60 3.7!

Capital goods

Finance

Leisure

3 8ftS=fS5"-d?i'6 0.36 1.48 2.60 3.7.

Textiles and Trade

Market

Consumer Durables

Food and Beverages

Petroleum

3.6fc?J&r%.tk 0.57 1.76 2.95

Transportation

Note: This figure reports y o point estimates based on the second identification scheme (X is

diagonal and Xsa is known). The grey lines delineate 95% confidence bands for the
'so

estimates.
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I
For comparison with previous studies, we discuss the relationship between market

returns and volatility more precisely. The last figure in Figure 6.3 illustrates y
so

estimates for different assumed Xm identifying values. The general shape of plot

is the same as the other industry portfolio returns and volatilities. The y}so

estimate is not significantly different from zero in the range of Xm between -0.25

and 0.05, while the most positive values of X^ generate the significantly negative

values of ysa.

Figure 6.4 reports ysa point estimates based on the second identification scheme

CLC is diagonal and Xsa is known). The ysa estimates are increasing in X<.a for

each industry. Recall that positive Xsff values correspond to a volatility-in-mean

effect. For most industries, a Xsa value less than approximately -1 yields a

significantly negative ysa estimate except for the food and beverages, petroleum,

and transportation industries. A Xsa value of -1 means that portfolio returns

decrease contemporaneously by 1 percent for each percentage point increase in

volatility in equation (6.2). For Xsa values near zero, the ysa estimates are

typically not significantly different from zero for all industries except for

consumer durables, capital, and food and beverages industries. A Xsa value

greater than approximately 0.05 produces a significantly positive ysa estimate.

Using the basic industry again as an example, if we assume a Xsa value of 0.5,

then the ysa point estimate equals 1.518.
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Fig 6.5 Ysa E s t i m a t e s for Different Assumed j " m Identifying Values

Basic Industry

Construction

Diversified Industry

Services

Cap%«1 (foods

Finance

Leisure

150

•0 50-0.08 0.05 0.78 1.20 1.63

Textiles end Trade

Utilities Market

Consumer Durables

Food and Beverages

90 -0.36 0.28 0.92 1.STJ2T7*

Petroleum

Transportation ,

Note: This figure presents ysa estimates based on the third identification scheme ( Z f is diagonal

and ^ is known). The grey lines delineate 95% confidence bands for the ysa estimates.
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As in Figure 6.3, we again discuss market returns and volatility. The estimates of

ysa for different assumed XSG identifying values are plotted in the last row in

Figure 6.4. The shape of movements is the same as the for other industry

portfolios. The ysa estimate is not significantly different from zero in range of

Xsa between -0.83 and 0.5, while the most positive values of X%a generate the

significantly negative values of ysa. The contemporaneous relationship between

stock return and volatility can be captured by the coefficients Zsa, which is the

volatility-in-mean effect, in the sense of Brandt, and Kang (2001) and Campbell

and Kentchel (1992). From this figure, it can be concluded that the long-run

relation between stock return and volatility depends highly on the

contemporaneous relationship. Roughly speaking, the positive value of

contemporaneous relationship brings the positive value of long-run relationship

regardless of the lagged effect of mean and volatility.

Figure 6.5 presents yso estimates based on the third identification scheme ( S f is

diagonal and y^ is known). For each industry, the ysa estimates are decreasing

in y^. For most industries, y^ values near zero produce ysa estimates that are

not significantly different from zero except for finance, food and beverages and

transportation industries. As noted above, y^ = 0 corresponds to no effect of the

change of stock returns on the volatility. If one is willing to make this assumption,

then ysa is plausibly zero for most industries. For some industries, some negative
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y^ values produce ysa estimates that are significantly positive, while for other

industries some positive y^ values generate significantly negative ysa estimates.

6.4 Den Haan's VAR Forecast Correlations

In this section, we examine the relationship between risk and return at the short-

run and the long-run using the VARs. To examine the long-run relationship

between risk and return, the VAR method, proposed by Den Haan (2000), is

adopted in our study. In section 6.4.1, we show how to derive correlation

coefficients at different forecast horizon using VARs. In section 6.4.2, we discuss

the forecasting relationship between risk and return estimated using this procedure.

6.4.1 Calculation of Correlation Coefficients Using VARs.

We use the implied covariance, derived in VAR model (6.2) and (6.3) to derive

the correlation coefficients. In our chapter, the second method is used. In the

second way, the correlation coefficients are calculated as follows. Simply, the

system can be written as the following first-order VAR system with T

observations and N variables.

ZT = (6.4)
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where ZT is (T x LN) matrix equal to [XT,XT_U—,XT_L+]]1 uT is a (T X LN)

matrix equal to [eT ,0T w •• -,0r<w ] , and

B' =

A IN ON - 0N

A2 0N IN ... 0N

AL ON ON ... 1N

where 1N is an (TV x N) identity matrix and 0N is an (N x N) zero matrix. Let

COV(K) now denote the (LN x LN) variance covariance matrix of the K-period

ahead forecast errors. Then, it is easy to derive the following equation:

COV{K) =

/=o

where and Q T *

6.4.2 Empirical Results of VAR Forecast Correlation

In this subsection, we discuss the correlation coefficients derived from the VAR

model. The comovement of return and volatility using the VAR forecast errors is

presented in Figures 6.6 and 6.7. First we will discuss the results when the 13

monthly industry portfolios are used, and then we will discuss the results of the

market portfolio.
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Figure 6.6 Correlation Coefficients for Market Returns and Volatility

0.6-

0.4-

0.2-

0
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•Correlation
•Mean
• Lower Band
•Upper Band

Note: In this figure, the grey dotted lines indicate the 95% confidence interval calculated using

bootstrap methods. The average correlation coefficients, indicated as a mean is the average

correlation coefficients calculated from bootstrap method.

The results of the market portfolio are shown in Figure 6.6, in which we report the

confidence intervals as well as the average correlation coefficients across

replications. As mentioned in Den Haan (2000), the calculated correlation

coefficients are subject to sampling variation because they are based on the

estimated VARs. For this reason, we calculate the confidence level using

bootstrap methods. More specifically, the estimated VAR and its bootstrapped

errors are used to generate 3000 economies. The correlation coefficients with up

to 24 months forecasting horizons are calculated for each economy. The average

correlation coefficients are plotted in Figure 6.6 as a mean. As can be seen in the

figure, the average across replications is very similar to the original estimates,

which means that no correction for small-sample bias is needed. The correlation

coefficients between risk and returns are negative in all forecasting horizons.
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From the results of industry portfolios and the market portfolio, we can conclude

that the relationship between risk and return is mixed from significantly negative

to insignificantly positive in the short-run, while negative in the long-run.

Figure 6.7a Comovements of Returns and Volatilities of 7 Industry Portfolios
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Note: Each line indicates the VAR forecast correlation of each industry. The symbols on the line

indicate significance at 5% level.

Figure 6.7b Comovements of Returns and Volatilities of 6 Industry Portfolios

o
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Note: Each line indicates the VAR forecast correlation of each industry. The symbols on the line

indicate significance at 5% level.
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Figures 6.7a and 6.7b plot the results for the comovement between risk and

returns of individual industry for forecasting horizons up to 24 months. For all 13

industry portfolios, the correlation coefficients at long-run forecast horizons are

negative and lies within 5% confidence interval.7 The correlation coefficients of

the construction industry show the most interesting movements. In the short-run,

the correlation coefficients are positive. However, as the forecasting horizon

increases, the correlation coefficients are negative. From this result, it is

concluded that in the long-run, the negative correlation coefficients dominates.

6.5 Concluding Remarks

In our study, we adopt two newly developed methods of King and Watson (1997)

and Den Haan (2000), to examine the long-run relationship between stock returns

and volatility. Our study is different from the previous studies in three aspects.

First, to avoid sensitivity problems depending on the choice of the model, we

construct monthly market excess returns and volatility, adopting the method of

Campbell et al. (2001). Second, we focus on the long-run relationship between

risk and returns. Finally, the industry level data has been constructed and used to

examine the long run relationship. In examining the relationship between risk and

returns, previous studies use the market portfolio. However, in our study, we

7 In Figures 6.7a and 6.7b, the individual confidence levels are not reported due to the clear

presentation. However, they are available on request.
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construct the monthly 13-industry portfolios and a market portfolio from the daily

individual industry data calculated in the same manner as Campbell et al. (2001).

In the methodology of King and Watson (1997), which measures long-run stock

return responses to a permanent volatility shock in portfolios for 13 industries and

the market, the estimation results turn out to be sensitive to the assumed value of

identifying parameters in each of the 13 industry portfolios and the market

portfolio.

Focusing on the relationship between market returns and volatilities, given that

previous studies and theory suggest that the relationship can be negative or

positive, we find that the long-run relationship highly depends on the

contemporaneous relationship. More precisely, the long-run response of stock

return to a permanent volatility shock relies on the value of the mean-in-volatility

effect in the sense of Brandt and Kang (2001). The other results, which include

two identifying parameters (Xsa and y^) and measure the mean-in-volatility

effect and the long-run response of volatility to a permanent stock return shock,

also indicate that the long run response of stock returns to a permanent volatility

shock depends on the two identifying parameters.

For the long-run relationship, the VAR forecast error has been used to construct

the correlation coefficients between risk and return. From the industry portfolio

data, most industry portfolios show a negative relationship in the short-run as well

as in the long mn. However, the construction industry shows the positive

relationship in the short-run, and a negative relationship in the long-run. For the
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market portfolio, a negative relationship is dominant regardless of forecasting

horizons.

From these results, we conclude that the long run response of stock returns to a

permanent volatility shock is sensitive to the assumed value of identifying

parameters in each industry portfolios and the market portfolio, and that, as in

previous studies, the relationship between risk and returns is mixed in the short-

run. However, in the long run, a negative relationship is dominant. A negative

relationship in the long run means that if investors feel that the risk of a portfolio

is high in the future, the price of the portfolio rises to compensate for the

increased expected risk. Therefore, the future return of the portfolio decreases.
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Chapter 7 On the Relationship between Investment and Stock

Returns: the Case of Investment-specific Technology and

Adjustment Costs

7.1 Introduction

Literature that was initiated by Tobin (1969) relates investment to Q, expressed as

the ratio of the market valuation to the cost of acquiring new capital. In this

expression, the important source of variation in the numerator, market valuation

of capital, is directly related to the change of stock prices. Therefore, Q theory

asserts a positive contemporaneous relationship between stock returns and

investment. However, empirical tests (Barro, 1990; Blanchard et al., 1993 among

others) show that investment and stock returns have a significantly negative

contemporaneous covariation, and investment and future stock returns have a

covariation that is not significantly different from zero.

From the finance perspective, the relationship between stock returns and

investment is important partly because the investment decisions of a firm

influence the investors' perception of a particular firm. Therefore, the stock prices

of the firm are also affected by investment decision (McConnell and Muscarella,

1985; Chan et al., 1990; Lamont, 2000). From the macroeconomic perspective,

the relationship is also important in that the stock prices, like other asset prices,

show a leading behavior for the economic fluctuations (Fama, 1990; Choi et al.,

1999).
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Most asset pricing studies in the real business cycle (RBC) can be divided into

two categories. The studies of Rouwenhorst (1995), Boldrin et al. (1995), Jermann

(1998), and Lettau (2003) examine equity premium, while Beaudry and Guay

(1996) and Chapman (1997) investigate the relationship between asset prices and

real variables.

The main objective of this paper is to investigate the relationship between stock

returns and investment growth in the RBC framework. This investigation is

important because this observed inverse relationship could be driven by some

economic fundamentals. There are many papers, including the paper mentioned

above, that investigate this relationship, whereas there is no research based on a

stochastic growth model. The contribution of this paper is to provide an

understanding of the relationship between stock returns and investment in the

general equilibrium framework, deriving the correlation between investment

growth and stock returns in the stochastic growth model. We derive the closed-

form solutions for stock returns and calculate the correlation between investment

and stock returns using the method proposed by Campbell (1994).

To investigate our proposition, we extend the general RBC model in two ways.

Firstly, investment-specific technology is incorporated.1 Our decision is motivated

1 One of the reasons for the negative relationship between investment growth and stock returns is

existence of investment lag (delivery lag, planning lag, construction lag, etc.). According to

Greenwood et al. (2000), under the investment-specific technology, a positive shock raises the

return on the investment in the current period. This stimulates the investment and hence a higher

equipment stock in the next period. That is, the shocks to investment are modelled as current

technological changes that affect the productivity of new capital goods only, leaving the
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by the recent study of In and Yoon (2001). In their studies, adopting investment-

specific technology and capital adjustment costs in the general equilibrium model

could help to explain the equity premium puzzle. Another reason can be found in

Boldrin et al, (1995). They argue that when investment-specific technology has

been adopted in their model, stock prices are countercyclical.2 The second

extension to the RBC model is to adopt capital adjustment costs. Many empirical

studies of investment support the presence of adjustment costs in capital (see

Shapiro, 1986). Recently, Jermann (1998) has found that incorporating adjustment

costs in the RBC model has improved the ability to explain the equity premium

puzzle.

In this paper, we use a simple analytical approach to the stochastic growth model,

namely, the method of undetermined coefficients proposed by Campbell (1994).

Using this method, we derive the elasticity of the real variables including stock

returns. Given these elasticities, the correlation between investment growth and

stock return can be expressed as a function of state variables, in our case, two

state variables - capital and investment shock. This technique has been used in a

few papers; Campbell (1994), Campbell and Ludvigson (1998), Lettau (2003),

Lettau et al. (2001) and In and Yoon (2001 ).3

productivity of existing capital unchanged. Because of this time-to-build delay, only the

productivity of future capital is affected.

2 This cyclical behavior of stock prices is also reported in Campbell and Cochrane (1999).

3 In regard to the accuracy of the log-linearization technique, see Kydland and Prescott (1982),

King et al. (1988), Christiano (1990), Campbell (1994) and Den Haan and Marcet (1994) among

others.
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To explore and develop our extended model, first we construct the basic,

benchmark model, which has a labor-augmenting productivity shock. Then we

compare the results with investment-specific technology and capital adjustment

cost. For further examination of the relationship between investment growth and

stock return, we calculate the long-run correlation coefficients of the data,

benchmark model and our extended model, and then the results are compared.

The main result of the paper is that the introduction of investment-specific

technology and adjustment cost to capital considerably improves the model's

performance. Generally, the results of the benchmark model are not consistent

with the actual data, but are consistent with previous theoretical studies. With the

incorporation of investment-specific technology, the results are consistent with

actual data. However, the relative standard deviation between output and

investment is too high compared to the actual data, implying that solely changing

the production function does not provide an answer to the puzzling relationship

between stock returns and investment growth. However, the results with capital

adjustment costs show the same sign as actual data. In the calculated long-run

correlation coefficients, the actual data shows a negative long-run relationship,

while the benchmark model generates a positive long-run relationship. In contrast

to the benchmark model, our model shows negative long-run correlation

coefficients with similar movements.

This paper proceeds as follows: Section 7.2 shows some stylized facts about the

relationship between investment and stock returns. The model is presented in

161



section 7.3, and the empirical results are discussed in the section 7.4. Finally, in

section 7.5, we present our conclusion.

7.2 Stylized Facts

The data we use to examine these properties are annual US observations over the

period 1947 - 2000. The variables used correspond to the logarithms of per-capita

GDP, per-capita real consumption (non-durable and services) and real per capita

private investment taken from the NIPA and stock returns taken form Ibbotson

Associates (2001). Table 7.1 summarizes some key facts on the relationship

between investment growth and stock returns of the US economy. A successful

model should be consistent with these basic statistics. Panel A of Table 7.1

illustrates a well-known puzzling relationship between investment growth and

stock returns, which is consistent with a large volume of empirical results. The

correlation between investment growth and lagged stock returns is 0.470, while

the correlation between investment growth and current stock returns is -0.279 in

the sample period. The correlation with future stock returns is -0.106.

The correlation coefficient between future stock returns and investment growth

indicates the results consistent with the theory. Lettau and Ludvigson (2002) show

the negative relationship between future stock return and optimal rate of

investment in the framework of simple log-linearized marginal Q. This

relationship indicates that an increase in expected future stock returns is

associated with a smaller drop in today's stock price than the increase in stock
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returns in the near future. In the case of correlation with lagged stock returns, the

positive coefficient on lagged returns does not imply that investment responds to

changes in discount rates. This is because returns reflect changes in future cash

flows as well as changes in future discount rates (Campbell, 1991 explain the

reason for this). Thus, the relationship between lagged returns and investment

growth could be driven only by changes in expected future cash flows, such as

changes in the productivity of capital.

Table 7.1 Correlation with Stock Returns, 1947 - 2000

Panel A Correlation Coefficient
Lagged return Lagged return

(t-2) (M)

Investment growth 0.173 0.470

Panel B Relative Standard Deviation
x = Output (AlogK,)

ajar 1-000

Current return

-0.279

Led return
(r+D

-0.106

Led return
(r+2)

0.038

Consumption (AlogC,) investment(Alop/,)

0.603 2.144
Source: Investment is nonresidential fixed investment from NIPA and stock returns are taken from

the Stocks, Bonds, Bills and Inflation (Ibbotson Associates, 2001)

Note: Investment and stock returns are calculated as logarithm of real investment and stock

returns. Investment growth is the backward difference of log-investment. To calculate the real

term, GDP deflator has been used.

hi sum, Table 7.1 shows that the results are consistent with the theory except for

the contemporaneous relationship, hi order to facilitate comparisons with

simulated data, Panel B of Table 7.1 reports the relative standard deviation, which

will be used to check the performance of our model.
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7.3 Model

Because our puipose is to investigate how investment-specific technology affects

the relationship between investment growth and stock returns through the

investment shock and how the capital adjustment costs influence the relationship,

we use the three different models: (1) a benchmark model with an aggregate,

labor-augmenting productivity shock, (2) a model with investment-specific

technology shock, (3) a model with investment technology shock and adjustment

costs in investments. To solve our models, the method of undetermined

coefficients proposed by Campbell (1994), has been adopted.4

7.3.1 Economic Model and Solving the System

To illustrate the usefulness of our approach, this section starts with the model

specification of the utility function and production function. In this paper, we

adopt the CRRA utility, which has been widely used in the finance context. This

utility function has a property of being scale-invariant. There is a representative

4 Since the procedure of solving the model is similar to that of Campbell (1994), the procedure will

not be discussed in this paper. However, the derivation of asset pricing and correlation between

investment growth and stock returns, which is our focus in this paper, will be presented and

discussed.
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agent in the economy who maximizes the expected value of lifetime utility as

given by:5

;=o /=o \-y
,0< 6>< 1 (7.1)

where /? indicates the fixed discount rate, y is the risk aversion coefficient. Ct

and Nt represent consumption and labor, respectively. This specification has also

been used in Baxter and King (1991) to examine the demand shocks and

externalities.

Second, the production function is taken from Greenwood et al. (2000). Using the

notation Yt for output, At for technology, Kt for capital, and U, for capacity

utilization, the production function is

Y=(UK taNa

KjA,
(7.2)

where G represents the steady state growth rate. Note that this production function

is different from the standard neoclassical specification in two points. First, it

allows the capital adjustment costs in the specification itself. Second, it includes a

5 For the sake of brevity, we do not present all models but the third model, which includes

investment-specific technology and adjustment costs. However, the simulation results of three

models will be discussed.
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variable rate of capacity utilization. The parameter 1-oris referred to as the capital

share. In the context of investment-specific technology proposed by Greenwood et

al. (1988), the variable U, determines the flow of capital services and represents

how intensively the capital is used. The capital utilization times the stock of

capital can be defined as effective capital services. In equilibrium, firms will

choose to hoard capital; that is, they will set capital utilization rates to less than

capacity (Burnside and Eichenbaum, 1996). This allows firms to adjust their

ability to adapt to an economic shock.

The second term of the right-hand side of equation (7.2) represents the capital

adjustment costs. The function is equal to zero only along the steady state.

Adjustment costs will influence only the investment decision along small

fluctuations around the stationary growth path (Schmitt-Grohe, 1998). Naturally,

this utilization is related to the capital accumulation process, as will be shown

below:

where 6t=—U?
w

(7.3)

(7.4)

where /, denotes gross investment, and S, is a non-negative function of capital

utilization. This specification means that the more use the capital, i.e., the higher

capital utilization rate, the more depreciated. Another notable thing is that in this

specification, the capital accumulation and production capacity in period t+\
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depend on both investment and investment-specific technology shock ( A,)

affecting the productivity of new capital goods.

The fourth equation is market equilibrium. All produced goods are either

consumed or invested.

y,=c,+/f (7.5)

The real business cycle model is a system of nonlinear equations in the logs of

investment-specific technology, output, and consumption outside of steady state.

Because of this, we first derive an approximate analytical solution by

transforming the model into a system of approximate loglinear difference

equations. Since our focus is on the deviation from steady state, all constant terms

will be dropped in the approximate model.

Like the other method to solve the RBC model, all real variables, including stock

returns, can be expressed as a function of state variables; in our case, the current

capital stock and investment-specific technology shock. To derive the solution, we

start by assuming that the consumption and technology shock have the following

form. We use the notation rjyx for the partial elasticity of y with respect to x.

ct =

a, =pal_]+£t -\<p<\

(7.6)

(7.7)
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where AR(1) coefficient, p measures the persistence of investment-specific

technology shocks, with the extreme case of p = 1 being a random walk for

technology.

Under this assumption, our focus is to find the values of the elasticities of

consumption, r/ck and r\ca. After finding these elasticities of consumption, it is

straightforward to express the remaining real variables as a function of state

variables. The results can be expressed as follow:6

(7.8)

(7.9)

(7.10)

(7.11)

7.3.2 Stock Returns

The goal in this section is to derive explicit solutions of stock returns. The

equations are written in terms of the fundamental parameters of the RBC model,

such as risk aversion and the persistence of investment-specific technology shock,

and the elasticities of the endogenous variables from the loglinear solution of the

RBC model.

We do not present the explicit solution for the elasticities of real variables. However, it is

available on request.

168



It is a common assumption that with competitive markets, stock returns will be the

net marginal product of capital (Corsetti, 1997). Thus, stock returns can be

expressed as follows:

Benchmark

(7.12)

Investment-specific technology

R; =a- K, JA,
(7.13)

Investment-specific technology with capital adjustment cost

K, w A, A,

From these three equations, it is interesting that in the general standard growth

model stock return is not related to current investment but related to last period

investment through the capital accumulation. However, two other stock returns

show that it is related to current investment-specific shock through A,. It is

obvious that when the firm decides more investments at time /, stock returns at

time t will be affected by this decision. Another interesting point is that the capital

utilization rates also affect stock returns. Under the assumption of At> 0, the
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higher utilization of capital results in a lower return. It is related to replacement

cost. If a capital has been used intensively for producing output, this capital

experiences a large depreciation, and then it must be soon replaced. This causes

investment expenditure as new capital replaces old capital.. This could generate

the countercyclical behavior of stock returns. Intuitively, it is expected that capital

should be used more intensively during economic booms when its marginal

product is high and less intensively during recessions when its marginal product is

low.

In the case of stock returns with investment-specific technology and capital

adjustment costs, it contains next period capital and the next, period capital affects

stock returns positively. This is because if the firms invest for the next period, the

shareholder regards this news as a positive impact on their share prices. However,

at the steady state growth path, the next period capital does not affect stock

returns because of last term in right-hand side of equation (7.14), which exactly

offsets the capita] growth.

Using the loglinearization technique, stock returns can be expressed as follows:

Benchmark

where , 7]rk = (TJ k - 1 ) , r\m =77
r vo

(7.15)

From this equation, it is seen that stock returns are closely related to output. This

is because we assume that stock returns are equal to the net marginal product of

capital. However, this derivation tells that stock returns decrease if capital
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increases mainly because the elasticity of stock returns with respect to capital is

less than unity. However, the technology shock affects stock returns positively.

The net effect of technology shock is ambiguous depending on the fundamental

parameters of the model.

lnvesunent-specific technology

./ _ (7.16)

where 7]rk = -1 ) , rjra = + 0 , - 1 and Q, =

Compared with stock returns of the benchmark model, the elasticities of capital

are different even though we assume that both 77v;. s are same, but the elasticity of

investment-specific technology ( rjrk ) has a lesser value than that of the

benchmark model because the value of Qj is less than 1. This is because of the

transmission mechanism of investment-specific technology. Greenwood et al.

(2000) state that a technology shock in investment-specific technology does not

directly affect the production function in the current period. Current output is

affected only to the extent that the shock can elicit increased employment of

capital and labor in response to changed investment opportunities (see Greenwood

et al., 2000). Stock returns are also affected by changing of employment of capital

and labor in production function and also the capital utilization speed. The

existence of capital utilization rates in stock returns could be interpreted in two

different ways: positive and negative. The positive aspect is through the marginal

product of capital services, which is increased by the higher utilization of capital.
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On the other hand, the negative effect is from the capital depreciation rate. The

higher utilization rate causes the higher depreciation rate. This increased

depreciation rate affects stock returns negatively. However, if the capital

increases, stock returns decrease because the elasticity of return with respect to

capital is less than unity. Like the benchmark case, the elasticity of return with

respect to technology shock is ambiguous depending on the fundamental

parameters.

Investment-specific technology with capital adjustment cost

where 7]rk =(l-ar)Q,(B,77ct +B2)-QZ]7]nk+(Q2 - l ) ^ and

and
0 + r)

(7.17)

Note that stock returns equation of investment-specific technology with

adjustment costs contains the future value of capital, reflected by the coefficient,

7/u. and the capital adjustment parameter in equation (7.17), which can be

interpreted as a cost to capital adjustment. The higher the value of capital

adjustment costs, the higher the elasticity of return with respect to capital. If the

cost of capital adjustment is higher, the contribution of capital increases in

production. The more the contribution of capital, the higher stock returns. This is

because a time when adjustment costs are high is a good time to lower investment,
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because the firm can sell a larger quantity of the consumption good for every unit

by which it lowers the capital stock (Cochrane, 1991). However, the effect of

technology change on stock returns is ambiguous depending on the fundamental

parameters of the model.

7.3.3 Correlation between Stock Returns and Investment Growth

The goal of this subsection is to derive the correlation coefficient between stock

returns and investment growth. To derive the correlation coefficients, the

covariance between investment growth and stock returns, and the variances of

investment growth and stock returns have to be calculated first. To derive these

terms (covariance and two variances), we begin by expressing investment growth

and stock returns as an ARMA form. From equation (7.10), investment growth

can be expressed as follows:

M, =77ikAkt+7]iaAat (7.18)

where A indicates the backward difference. Using equations (7.7) and (7.11),

investment growth becomes

c

1-pL '
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Ait =
\-L
1-pL

(7.19)

where L denotes the lag operator. Technology shocks (labor-augmenting or

investment specific technology shocks) affect investment growth through two

channels. The term involving 7]ia measures the direct effect of the shock on

investment growth, holding capital constant. However, the technology shock also

increases the capital stocks in the next period, which in turn causes investment to

grow. Therefore, the indirect effect through the capital stock causes investment

growth to increase. Depending on the parameters of the model, one of these

effects could dominate. The shock persistence parameter plays an important role.

As mentioned in Lettau (2003), examining two extreme cases might give some

insights; completely transitory ( p = 0 ) and permanent (p = 1) shocks.

First, consider a completely transitory case (p = 0). Hence, equation (7.19)

becomes

M, =(\-L)T]ia£t

(7.20)

(7.21)

We can further simplify this expression by assuming 7]^ ~ 0. If shocks die out

instantaneously, the capital stock will not be affected very much. Hence the

elasticity of the capital stock with respect to the shock is very small (see
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Campbell, 1994). In this case investment growth is just a backward difference of

the white noise process of shock. In other words, investment growth is determined

by how investment responds to the shock. If investment responds to the shock

negatively, investment growth also reacts negatively.

The second special case is that the shock is permanent ( p = 1). When the shock is

permanent, equation (7.19) becomes

(7.22)

After simplifying, investment growth follows the ARMA(1,1) process because an

AR root cancels with the MA root. The reaction of investment growth after a

positive technology shock is divided into two parts, direct and indirect effects.

Like the general case, the effect of a positive technology shock is ambiguous

depending on the parameters of the models.

For the computation of variance and covariance, it will be useful to rewrite the

ARMA(2,2) process of investment growth (7.19) in its MA(oo) representation.

A/
}

(7.23)
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where ^,=(77^.77^-77^77^)/^ . This MA representation is also useful for

computing the unconditional variance of investment growth. After rearranging

equation (7.23), the variance becomes

| ,

- 2
(/?(/? + g, -1) - g,)(%. Q/a + fl, -1) - fl,)

(7.24)

The derivation of variance of stock returns follows the same procedure as that of

investment growth. In contrast to investment growth, stock returns follow an

ARMA(2,1) process.

(X-pLY
Vra +

Vr ^ , (7.25)

As can be seen in equation (7.25), the effect of a positive technology also has two

channels; direct and indirect effects. Therefore, the effect is ambiguous,

depending on the parameters of the model. The resulting the MA(°o)

representation of stock returns is as follows:
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(7.26)

where #2 = (TJ^T]^ -7Jra7lkk)^7lra • The unconditional variance of stock returns is

Var(rt
e") = tra 2) (

2

-1(7.27)

After substituting the equation (7.24) and (7.26) into the definition of

covariance, the covariance between investment growth and stock returns becomes

Cov(M re«)-e«) ,

1 " PVu

(7.28)

Apparently, the sign of covariance is determined by the elasticities of investment

and stock returns with respect to technology shock under the assumption that the

remaining terms are all positive. If both elasticities respond in the same direction

to the technology shock, the covariance has a positive sign. The covariance of led

stock returns can be calculated as follows:
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- Wra n.2 , P(P + 02)(P + <?1 ~ D
; - - — o e \ - —

(p-mky Q - P )

-Pl)u

ff,\PHP+0>h '

In the same manner, the covariance with lagged stock returns becomes

-1)

• +

Using these results, we derive the contemporaneous correlation, and the

correlation coefficients with led and lagged stock returns.

7.4 Empirical Results

To simulate our models, we calibrate the values of fundamental parameters, such

as g, the log technology growth rate; r, the log real return on investment; a, the

exponent on labor, equivalent to labor's share of output; w, the elasticity of

depreciation with respect to the capacity utilization rate. We use the various

parameters for the persistence of shock, p and the coefficient of risk aversion y.
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For the purpose of calibrating the model, benchmark values for these parameters

are set as g = 1.24%, r - 0.06, a = 0.70, S=0A,w= 1.50 or 2.32, which are

mainly taken from Greenwood et al. (2000). In this section, we analyze the results

of all tf jree models mainly focusing on the correlation between stock returns and

investment growth.

7.4.1 Benchmark Model

The results of the benchmark model can be seen in Table 7.2. In order to check

the performance of benchmark model, we report the relative standard deviations.

Compared to the same statistics from the actual data, when the risk aversion

coefficient is set to 1 and the persistence of shock is set to 0.95, the model mimics

the actual data well.

To consider the model in more depth, first, consider a case with risk aversion of

unity and fairly persistent technology shock ( p = 0.95). The sign of correlation

coefficients with lagged stock returns is negative and the others are positive while

the actual data shows a positive relationship with lagged stock returns and a

negative relationships with led and current stock returns. The current relationship

is consistent with the Q theory. This result suggests that current investment takes

time to be realized in stock returns, and that it needs some modification to fit the

actual data.

Next, consider the varying persistence parameter while keeping risk aversion at 1.

In all cases, the sign patterns are the same (negative for correlation with lagged
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stock returns and positive for the correlations with current and led stock returns),

implying that the positive labor-augmenting technology shock increases

investment and stock return.

Table 7.2 Moments Inferred from the Benchmark Model
Panel A Correlation Coefficients

Stock Return

y p -2 -1 0 1 2

0.01 0.00 0.252 -0.835 0.530 -0.013 -0.003
0.50 -0.039 -0.753 0.553 0.095 0.008
0.95 -0.131 -0.582 0.672 0.146 0.031

1.00 0.00 0.012 -0.685 0.815 -0.051 -0.036

10.0

100.0

0.50
0.95
0.00
0.50

0.95
0.00
0.50

0.95

-0.213
-0.173
0.000

-0.143
-0.005
-0.001

-0.128

0.043

-0.474
-0.241

-0.578
-0.288
-0.017

-0.558
-0.253

0.045

0.702
0.562

0.816
0.687
0.409

0.811
0.674

0.316

0.259
0.383

-0.064
0.235
0.273

-0.066
0.227
0.205

0.065
0.257

-0.047
0.038
0.174

-0.049
0.033
0.124

Note: This table reports the simulated cross correlation between investment growth and stock

returns using cor(A/,, ArM) where i = -2, - 1 , 0, 1, 2. To construct this simulated cross correlation,

the varying values of risk aversion coefficient, y and shock persistence, p, have been considered.

Panel B Relative Standard Deviations
y p Output (Alogy,) Consumption (AlogC,) Investment (Alog/,)

1,00 0.95 1.000 0.534 2.604

Note: This table reports the simulated relative standard deviation of output, consumption, and

investment. To construct this simulated cross correlation, the varying values of risk aversion

coefficient, y and shock persistence, p, have been considered. However, we report only the case

where y= 1 and p = 0.95. Overall pattern is similar regardless of risk aversion and shock

persistence: investment is more volatile than consumption. The results are available on request.

This relationship can be seen clearly in Figure 7.1, which plots the impulse

responses of investment and stock returns to a positive technology shock. In this

figure, a positive shock affects both of them positively. It is natural for stock
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returns to respond minimally to a positive shock. The real business cycle model

assumes that the supply of capital is infinitely elastic, so that its equilibrium price

is a constant. As is well known, the payoff on capital (its rental rate) in the

standard business cycle model fluctuates very little (Boldrin et al., 1995). Stock

returns of the standard RBC model are determined by the payoff on capital. As a

result (see equation (7.12)), the response of stock returns to a positive productivity

shock is very little.

Figure. 7.1 Investment and Stock Returns: Impulse Responses to a Shock in
Productivity for the Benchmark Model

0.030

0.C05

o.ooo

-0.005

r- t
'WmwmOQmQQtoQGQQQQ&WQQOQQQQQQOQQQQQWXX

N O c o c D O j c v i i n o o ^ - ^ N O P j c o o j c v j
• < - T - i - T - c \ i c \ i c M w c o c o ' ^ - ' t ' * ' < i ' i r )

• Investment X Stock returns

Notes: To construct the impulse response analysis, y = 1.0 and p = 0.95 has been used. This

figure shows that both investment and stock returns respond to shock positively, implying that the

correlation between investment growth and stock returns is positive.

Turning to changes in the risk aversion, higher risk aversion implies a lower

elasticity of substitution, in our case a = \ly, and so consumers want to smooth

their consumption paths. In this context, this relationship has a strong implication

181



for stock returns and investment. In the case of stock return, the greater desire to

smooth consumption leads stock returns to actually decline over all horizons in

response to a positive productivity shock. For investment, investors who want to

smooth their consumption path over time will attempt to smooth out fluctuations

in their investment arising from time variations in expected returns. Consider the

following example. When returns are expected to be higher in the future, forward-

looking investors will allow consumption out of total wealth to rise above its

long-term trend with wealth, and so when the returns are expected to rise,

investment may decrease due to an increase in consumption. In contrast, when

such investors expect returns to fall in the future, they will reduce their

consumption and increase their investment. This intuitive expectation can be

captured by considering the following loglinearized Q, taken from Lettau and

Ludvigson (2002). After substituting that /i + /EfAc,+1 = ETrt+l where / i s the

risk aversion.7

v2 , Pi [0 - Pq K+i+; - 7 te (7.29)

where E, is the conditional expectation operator based on information at time t and

w, is defined as log(M,) = log((l -£)3/r, ldKt) where nt is net cash flow at

7 To derive this relationship, we simply assume that investors have a power utility for consumption

and the consumption growth and stock returns are conditionally homoskedastic.
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time t. From this expression, if the risk aversion of investors is high, they want

higher return to compensate their consumption. Therefore, the higher future stock

returns leads investment to decrease. So future stock returns and investment

growth have a negative correlation.

However, as can be seen in Panel A of Table 7.2, the correlations with extremely

high risk aversion all show positive correlation, which is different to our intuitive

expectation. The failure of the benchmark model to explain the con-elation

between investment growth and stock returns could have two reasons. Firstly, the

benchmark model does not consider the capital adjustment costs in the model. The

importance of capital adjustment cost can be found in Jermann (1998) and

Cochrane (1991). Jermann (1998) finds that incorporating capital adjustment costs

in the RBC model slightly helps to resolve the equity premium puzzle. Cochrane

(1991) gives us a more intuitively explanation. In his paper, he argues that a time

when adjustment costs are high is a good time to lower investment, because the

firm can sell a larger quantity of the consumption good for every unit by which it

lowers the capital stock. This means that the high capital adjustment costs are

related to high stock returns due to increased output.

Another reason can be found in the intertemporal substitution effect. If the

intertemporal substitution is important in an economic setting, the risk aversion

coefficients also play an important role in determining the asset prices. Indirect

8 This equation is based on the derivation of Abel and Blanchard (1986) under the assumption that

the firm chooses /, in order to maximize the value of the firm at time r, and the marginal cost of

investment must be equal to the expected present value of marginal profits to capital.
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evidences for a reduction in the intertemporal substitution effect can be found in

the notion of habit formation. In the habit model, whatever the habit, the higher

previous consumption, the bigger the habit, and the higher must be the current

level of consumption to deliver the same effect (Deaton, 1992). The higher level

of current consumption due to the consumption habit reduces the intertemporal

substitution effect. Therefore, the role of the risk aversion coefficient also reduces.

For a more intuitive explanation, compare the power utility and habit utility. With

the power utility and positive consumption growth, the future marginal utility of

consumption is low compared with the marginal utility of present consumption.

Increasing ^intensifies this, so that a higher interest rate is required to discourage

households from attempting to reallocate consumption from the future to the

present. However, existing habit persistence has the effect of increasing the future

habit stock, and raises the marginal utility of future consumption, reducing the

incentive to reallocate consumption toward the present (Boldrin et al., 1995).

Investment-specific technology proposed by Greenwood et al. (1988) also

reconciles the intertemporal substitution effect.

Based on this finding, we first adopt the technology proposed by Greenwood et al.

(1988) and then we extend this model by incorporating the capital adjustment

costs.
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II

7.4.2 Investment-specific Technology

The transmission mechanism of investment-specific technology is different from

that of a production technology shock. In investment-specific technology, the

utilization of capital plays an important role in transmitting the technology shock.

Although the technology shock affects only new capital, the current utilization of

capital and the productivity of labor are also affected by the current shock through

changing the utilization cost of installed capital.

Table 7.3 Moments Inferred from Investment-specific Technology
Panel A Correlation Coefficients

Stock Return

:•;
1
-1

11
1

I
uI
j l
3'

5
|

7
0.01

1.00

10.0

100.0

Note: This

P
0.00
0.50

0.95
0.00

0.50
0.95
0.00
0.50

0.95
0.00

0.50

0.95

-2
-0.233
-0.010
0.066

-0.032

0.235
0.186

-0.028
0.242
0.196

-0.027

0.242
0.197

table reports the simulated
returns using cor(A/,, Ar,.,) where i = -2

-1
0.555
0.505
0.217
0.744

0.572
0.242
0.744

0.573
0.250
0.744

0.573
0.252

cross correlation

0
-0.016
0.026
0.011

-0.551
-0.279
-0.018
-0.562
-0.289
-0.012

-0.563

-0.289
-0.011

1
-0.152

-0.103
-0.012
-0.010

-0.153
-0.022
-0.008
-0.155
-0.016

-0.007

-0.155
-0.014

between investment
, - 1 , 0 , 1,2. To construct this simulated

2
-0.044

-0.085
-0.017
-0.008

-0.087
-0.025
-0.006
-0.086
-0.018

-0.006

-0.086
-0.017

growth and stock
cross correlation,

the varying values of risk aversion coefficient, y a nd shock persistence, p, have been considered.

Panel B Relative Standard Deviations
y p Output (Alogy,) Consumption (AlogC,) investment(Alog/,)

1.00 0.95 1.000 0.251 5.339

Note: This table reports the simulated relative standard deviation of output, consumption, and
investment. To construct this simulated cross correlation, the varying values of risk aversion

coefficient, y and shock persistence, p, have been considered. However, we report only the case

where y = 1 and p = 0.95. Overall pattern is similar regardless of risk aversion and shock

persistence: investment is more volatile than consumption. The results are available on request.
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Figure. 7.2 Impulse Responses of Investment and Stock Returns for Investment-
specific Technology

0.050

0.040-

-0.020

• Investment - X Stock returns

Notes: To construct the impulse response analysis, y = 1.0 and p = 0.95 has been used. This

figure shows that investment responds to shock positively, while stock returns responds

negatively. This result implies that the correlation between investment growth and stock returns is

negative.

The results of adopting investment-specific technology are presented in Table 7.3.

First consider a case that the risk aversion is set to unity and the shock is fairly

persistent ( p = 0.95). The result is very different from that of the benchmark

model: a positive relationship with lagged stock returns, and a negative

relationship with current and led stock return.

In contrast to the traditional technology shock, a positive shock affects stock

returns negatively, as can be seen in Figure 7.2. This is because a positive shock

increases the current flow of capital services endogenously, since it lowers the

replacement costs of existing capital. Therefore, this shock causes a higher

utilization rate from existing capital. The increased service of capital contributes
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more output, while it decreases stock returns due to the increased depreciation

rate. Christiano and Fisher (1998) also find that the stock prices respond

countercyclically to investment-specific shocks, confirmed by Figure 7.2.

However, this transmission mechanism affects investment growth positively.

Through this transmission mechanism, the current period correlation between

investment growth and stock returns has a negative value.

Next, consider varying the shock persistence while keeping the risk aversion at

unity. The correlation with current stock returns is decreasing in p because the

increasing persistence tends to increase the variances of investment growth and

stock returns. Another reason can be seen in the indirect channel through capital

accumulation (see equations (7.20) and (7.25)). As the persistence of shock

increases, the indirect channel plays a more important role. The key is in the

capital utilization. Because of capital hoarding in equilibrium (Burnside and

Eichenbaum, 1996), a firm can immediately adjust its output to a shock that

affects the marginal product of capital. A positive technology shock leads the firm

to increase its utilization rate, which in turns decreases stock return due to

increased depreciation rate. The correlation with lagged stock returns is also

increasing in p because the increasing persistence tends to increase the variances

of investment growth and stock returns.

It is of interest to consider the correlation with future stock return and investment

growth. In this case, the correlation between investment growth and stock return

shows a negative value even though the value is very small. This is related to the

question of which channel dominates: direct or indirect channels. When the
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persistence of shock is transitor}' (p = 0), the capital accumulation channel is

dying out quickly. Therefore, the direct channel plays an important role in this

relationship. When the shock is completely transitory, current investment growth

responds positively to a positive technology shock. As the persistence of shock

increases, the indirect channel through capital accumulation and the capital

utilization rate plays a more important role. A current positive shock leads the

next period capital to increase. The representative firm uses the increased capital

fully in the next period. The high capital utilization leads to high marginal

productivity of capital services while the depreciation rate increases and the

replacement costs increases. Through this mechanism, next period stock returns

decrease.

Finally, consider varying the risk aversion. Interestingly, in contrast to the

benchmark model, the risk aversion coefficients do not play a role at all. In all

cases of risk aversion, the results show the same pattern. This is because of the

difference between two models. The standard macroeconomic model, like our

benchmark model, presumes that the intertemporal substitution effect, which is

generated by a technological shift, will dominate the income effect. To see this,

consider the Euler equation of our model. The final step to solve this dynamic

model is to use the equation (7.7). If the intertemporal substitution effect

dominates, risk aversion plays an important role at this dynamic setting. However,

in the case of investment-specific technology, the intratemporal substitution plays

a greater role than the intertemporal substitution. This effect leads the

representative consumer away from leisure and towards consumption (see
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Greenwood et al., 1988). In other words, if the intratemporal substitution

dominates the intertemporal substitution, the risk aversion coefficient does not

play a significant role in this model. Therefore, the changing risk aversion does

not affect the relationship between investment growth and stock returns.

Turning to Panel B of Table 7.3, the relative standard deviation shows that the

adoption of an investment-specific technology shock in our model generates high

volatility of investment. The relative standard deviation of consumption in

investment-specific technology is lower than those of Tables 7.1 and 7.2.

However, the relative standard deviation of investment is markedly higher than

those of Tables 7.1 and 7.2. This is caused by the mechanism of the investment-

specific technology shock. As Greenwood et al. (1988) argues, if the

intratemporal substitution dominates the intertemporal substitution in investment-

specific technology, the consumer wants to smooth the consumption path.

Therefore, the variance of consumption decreases, while the variance of

investment increases.

7.4.3 Incorporating Capital Adjustment Costs

When the parameters of our model are calibrated, the size of the adjustment cost,

(f), is determined. However, the proper value of the adjustment cost is controversial

as is the size of the risk aversion coefficient. The adjustment cost is obviously an

important parameter for evaluating the cyclical properties of the model

(Greenwood at al. 2000). However, estimates of <p based on regressions, Euler

:t
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equations, or other techniques often result in higher values, implying that

implausibly large fractions of output are lost to adjustment costs (Cochrane 1997).

In our model, we adopt the values of capital adjustment costs from Greenwood et

al. (2000): 1.50 and 2.32.

Table 7.4 Moments Inferred from Investment-specific Technology with Capital
Adjustment Costs (0= 1.50)
Panel A Correlation Coefficients

1
1 y
I 0.01
B

1.00

10.0

1
I 100.0

11

p
0.00
0.50

0.95

0.00
0.50

0.95
0.00

0.50
0.95

0.00
0.50

0.95

-2
0.002

0.166

0.125
-0.002

0.186
0.164

-0.003

0.193
0.188

-0.004

0.194

0.193

-1
-0.166

0.327

0.129
-0.054

0.375
0.175

-0.007
0.394

0.204

0.000
0.397

0.209

Stock Return

0
0.349

-0.176
-0.103

0.257
-0.192
-0.079

0.217
-0.197

-0.058

0.211
-0.198
-0.053

1
-0.008
-0.095

-0.100

-0.007
-0.102
-0.077
-0.006
-0.104

-0.056

-0.006
-0.104

-0.052

2
-0.008

-0.055
-0.098

-0.007

-0.057
-0.075
-0.006
-0.057
-0.055

-0.006
-0.057
-0.050

Note: This table reports the simulated cross correlation between investment growth and stock

returns using cor(A/,, Ar,.,) where / = -2, -1, 0, 1,2. To construct this simulated cross correlation,

the varying values of risk aversion coefficient, J', and shock persistence, p. have been considered.

Panel B

r
1.00

Relative
P

0.95

Standard Deviations
Output (AlogJ7,)

1.000
Consumption (AlogC,)

0.541
investment(Alog/,)

2.787

Note: This table reports the simulated relative standard deviation of output, consumption, and

investment. To construct this simulated cross correlation, the varying values of risk aversion

coefficient, % and shock persistence, p, have been considered. However, we report only the case

where / = 1 and p - 0.95. Overall pattern is similar regardless of risk aversion and shock

persistence: investment is more volatile than consumption. The results are available on request.
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The results of the model with the capital adjustment costs are presented in Table

7.4 (0= 1.50) and 5 (<p= 2.32). Overall, the results of our model mimic the actual

data quite well. Even though the values of correlation are slightly different from

those of the actual data, the signs of the correlation coefficients are the same as

those of the actual data regardless of the value of adjustment costs, except for the

transitory shock (p = 0).

Figure. 7.3 Impulse Responses of Investment and Stock Returns for Investment-
specific Technology with Capital Adjustment Costs (<#= 1.50)

Investment -X Stock returns

Notes: to construct the impulse response analysis, 7 = 1.0 and p = 0.95 has been used. This

figure shows that investmenl responds to shock positively, while stock returns responds

negatively. This result implies that the correlation between investment growth and stock returns is

negative. Compared to Figure 7.2, the existence of capital adjustment cost reduces the volatilities

of investmenl and stock returns.

First, consider the case in which the risk aversion is set to unity and the shock is

fairly persistent (p = 0.95). The signs of the correlation coefficients are same as
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the actual data. Compared to the investment-specific shock case, the sign patterns

are the same. However, the magnitude of correlation with lagged stock returns has

been decreased. The presence of capital adjustment costs in the model changes

investment behavior in that it ceases to be volatile in response to the shock. As

can be seen in Figure 7.3, investment responds positively to a positive shock with

small fluctuations.

Next, consider changes to the risk aversion coefficients. The results are similar to

those of the model with investment-specific technology. The risk aversion

coefficients do not play a role in this model.

Finally, consider changes to the persistence of shock and keeping the risk aversion

at unity. Changing the persistence shows different movements in correlation with

led, current and lagged stock returns. As mentioned in section 7.4.2, this is mainly

caused by which effect (direct or indirect effects) dominates in this model.

When both results (Panel A of Tables 7.4 and 7.5) are compared, the current and

future correlations of Panel A of Table 7.4 (^ = 1.50) are slightly lower in

magnitude than those of Panel A of Table 7.5 {$ = 2.32). This is because when

the <p is relatively small, a given technology shock will generate more investment

and output than when <f> is relatively high (Greenwood et al. 2000). This causes

the variances of investment growth and stock returns in Panel A of Table 7.4 to be

bigger than those of Panel A of Table 7.5.

In terms of the performance of the model, the different size of capital adjustment

costs shows different volatility. The volatilities of consumption and investment

are close to those of the actual data and the benchmark model. The existence of
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capital adjustment costs in the model makes new investment more costly.

Therefore, the response of investment to a positive technology shock is smoother

in investment-specific technology with capital adjustment costs than in

investment-specific technology. Therefore, the variance of investment is smaller

than that of Panel B of Table 7.3.

Table 7.5 Moments Inferred from Investment-specific Technology with Capital
Adjustment Costs {$= 2.32)
Panel A Correlation Coefficients

Y
0.01

1.00

10.0

100.0

P
0.00

0.50

0.95
0.00

0.50
0.95
0.00

0.50
0.95
0.00

0.50

0.95

-2
0.002

0.213

0.108
0.000
0.214

0.139
0.000
0.214

0.167
0.000
0.214

0.173

-1
-0.323
0.423

0.113
-0.465

0.427
0.146

-0.500

0.430
0.176

-0.505

0.430

0.184

Stock Return

0
0.443

-0.392
-0.167

0.573
-0.347

-0.142
0.600

-0.326

-0.114
0.603

-0.323
-0.106

1
-0.003

-0.198
-0.160
-0.002

-0.175
-0.135
-0.002

-0.165
-0.108
-0.002

-0.163
-0.101

2
-0.003
-0.101

-0.153
-0.002

-0.090
-0.129
-0.002
-0.084

-0.103
-0.002

-0.083
-0.097

Note: This table reports the simulated cross correlation between investment growth and stock

returns using cor(A/,, ArMy where / = -2, -1 , 0, 1,2. To construct this simulated cross correlation,

the varying values of risk aversion coefficient, y and shock persistence, p, have been considered.

Panel B
y

1.00

Relative
P

0.95

Standard Deviations
Output (AlogK,)

1.000
Consumption (AlogC,)

0.782
investmeni(Alog/,)

1.835

Note: This table reports the simula'vd relative standard deviation of output, consumption, and

investment. To construct this simulated cross correlation, the varying values of risk aversion

coefficient, % and shock persistence, p, have been considered. However, we report only the case

where y'- 1 and p = 0.95. Overall pattern is similar regardless of risk aversion and shock

persistence: investment is more volatile than consumption. The results are available on request.
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7.4.4 Comovements between Investment Growth and Stock Returns

Traditionally, in the RBC literatures by focusing on only the unconditional

correlation, one is losing valuable information about the dynamic aspects of the

comovement of variables. Therefore, examining the long-run relationship between

variables is essential to determine whether the economic models can explain the

actual economy or not. In this section, we analyze the comovements of investment

growth and stock returns using the VAR forecast correlations developed by Den

Haan (2000).9

The forecast correlation coefficients between investment growth and stock return

are plotted up to 10 years ahead in Figure 7.4. In this figure, we plot four

correlation coefficients: estimated, mean, benchmark model and extended model

with various values of ^(investment-specific technology and capital adjustment)

with a 95% confidence interval. As mentioned in Den Haan (2000) and Bekaert et

al. (1997), the calculated correlation coefficients are subject to sampling variation

because they are based on the estimated VARs. For this reason, we calculate the

confidence interval using bootstrap methods. More specifically, the estimated

VAR and its bootstrapped errors are used to generate 3000 economies. The

correlation coefficients with up to 10 years forecast horizons are calculated for

each economy. The average correlation coefficients are plotted in Figure 7.4 as a

mean. As can be seen in Figure 7.4, the average across replications is very similar

1 For an explanation of how to derive the forecast correlations, see Den Haan (2000).
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to the original estimates, which means that no correction for small-sample bias is

needed.

Figure 7.4 Forecast Correlation Coefficients between Investment Growth and
Stock Returns

•0.2

-0.3

-0.4

•0.5

-0.6

-0.7

•estimated

•mean

- Lower Band

• Upper Band

• benchmark (gamma=1.0)

•benchmark (gamma=10.0)

benchmark (gamma=100.0)

•extended (gamma=1.0)

•extended (gamma=10.0)

-extended (gamma=100.0)

Forecast Horizons (Years)

Notes: When the correlation coefficients of the benchmark and the extended model are calculated,

the parameters used: p = 0.95, 0 = 2.32 and the values of y are indicated in the figure. This

figure shows that the standard growth model can not generate negative forecast correlations, while

the actual data shows negative forecast correlations. However, our extended model generates

negative forecast correlations over all forecast horizons.

As noted in Figure 7.4, the long-run correlation between investment and stock

returns in the actual economy is negative. To check which model economy better

mimics the actual comovements of investment growth and stock returns, we also

plot two simulated long-run correlation coefficients of the benchmark model and

extended model. The long-run correlation coefficients in the benchmark model are

positive, while our extended model shows negative correlation coefficients
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regardless of time horizons. This test shows that our extended model performs

better than the benchmark model in the long-run.

7.5 Conclusion

The purpose of this paper is to gain more insight into the determination of

correlation between investment growth and stock returns in the RBC framework

and to examine how two modifications of a benchmark model (investment-

specific technology and capital adjustment costs) work to mimic the actual data.

We present the closed-form solutions for the correlation with led, current and

lagged stock returns based on the approximate log-linear solution of Campbell

(1994). This procedure allows us to express the correlation coefficients as a

function of the fundamental parameters of the model. To achieve our purpose, we

extend the model two ways: first, adopting investment-specific technology and

second incorporating the capital adjustment costs in investment-specific

technology.

Since the current correlation between investment growth and stock returns in the

benchmark model shows a similar result of that predicted by Q theory, the

interpretation from the benchmark model is that the standard real business cycle

model fails to explain the relationship between investment growth and slock

returns. In fact, the standard RBC model (our benchmark model), when driven by

persistent technology shocks predicts a highly procyclical movement in stock

returns, while the actual data does not support this claim. This is partly because
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the intertemporal substitution effect dominates the income effect. In the case of

investment-specific technology, the risk aversion of consumer does not play a role

in mimicking the data even though it also failed to mimic our actual data in terms

of variability of variables. This is because in the transmission mechanism of

investment-specific technology, the intratemporal substitution of consumption,

and the intertemporal substitution work together.

While the model with investment-specific technology generates very volatile

investment and smooth consumption, the model with investment-specific

technology and capital adjustment costs generates a similar relative standard

deviation to output. This is because the existence of capital adjustment costs in the

model makes investment costly. Therefore, investment can be smoother than seen

in the model with investment-specific technology.

The modified model with investment-specific technology and capital adjustment

costs shows the same correlation sign as the actual data set. Investment growth

and stock returns show different movements to a shock. The positive shock

increases investment growth and decreases stock returns. The capital utilization

has played an important role in transmitting the shock. For example, the positive

shock decreases current stock returns because of increased capital utilization,

which causes more depreciation. In contrast, it increases investment. Therefore,

the correlation coefficient has a negative value.

Finally, in the long-run, the correlation coefficients are negative in the actual data.

The benchmark model, which has a standard technology shock, generates positive

correlation coefficients in the long-run and in the contemporaneous relationship,
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while the our model that includes the investment-specific technology shock and

capital adjustment costs generates negative correlation coefficients in the long-

run.

One of the important empirical findings of this chapter is that the relationship

between investment growth and stock returns appears puzzling partly because the

standard model does not consider capital adjustment costs, and partly because the

intertemporal substitution effect dominates the income effect.

198



Chapter 8 Concluding Remarks and Summary

This research examines the relationship between several variables - it mostly

focuses on stock returns using various time-series methods and the RBC model.

Studying the relationship is of interest because it is important for investment

decision making and risk management in finance. In contrast with previous

studies, which show that the relationships are sensitive to the methodologies and

models used for financial analysis. This thesis examines not only the short-run

relationship but also the long-run relationship. The long-run relationship is also

important for investors, who have various investment horizons. To investigate

both short- and long-run relationships, thesis adopts some newly developed

methods: wavelet analysis, King and Watson approach, VAR forecast correlation,

and spectral analysis, and a standard growth model, which is extended to

incorporate investment-specific technology and capital adjustment costs. The

findings can be summarized as follows:

Chapter 3 studies the relationship between various financial variables and real

activity, proxied by industrial production. Many empirical studies find that

financial variables possess a predictive power of real activity. To examine this

relationship, chapter 3 adopts two time-series techniques: spectral analysis and

wavelet analysis. The result of spectral analysis shows that US industrial

production and the financial variables have a common feature in the long-run and

a varying lead-lag relationship depending on the cycles. It implies that the
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relationship between US industrial production and financial variables is not fixed

over time. This result is confirmed by the wavelet analysis. The lead-lag

relationship, in the sense of Granger causality, varies depending on the time scale.

From the two time-series analyses (spectral analysis and wavelet analysis), it can

be concluded that the lead-lag relationship between US financial variables and US

industrial production varies depending on the time scale and frequency.

Chapter 4 tests the Fisher hypothesis, which states a positive relationship between

nominal stock returns and inflation, and also provides a new perspective on the

hypothesis. The new approach is based on a wavelet multiscaling method that

decomposes a given time series on a scale-by-scale basis. Empirical results show

that there is a positive relationship between stock returns and inflation at the

shortest scale (1-month period) and at the longest scale (128-month period), while

a negative relationship is shown at the intermediate scales. This indicates that the

nominal return results are supportive of the Fisher hypothesis for risky assets in

dl and s7 of the wavelet domain, while stock returns do not play a role as an

inflation hedge at the intermediate scales. The key empirical results show that

time-scale decomposition provides a valuable means of testing the Fisher

hypothesis, since a number of stock returns and inflation puzzles previously noted

in the literature are resolved and explained by the wavelet analysis.

Chapter 5 examines the multihorizon Sharpe ratio. This study extends Hodges et

al. (1997), following the argument of Siegel (1999). The wavelet decomposition
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shows that the risks of all returns is lower than or similar to the expected value by

random walk assumption of asset returns, while at the intermediate scales, d2 to

d5 (equivalent to 4-8 months period and 32-64 months period, respectively), the

risk of all returns are greater than the expected. Overall, the result supports the

mean reversion property of asset returns. In addition, the long memory parameters,

using the wavelet-based maximum-likelihood estimation, for all asset returns are

less than 1 and close to 0, implying that the asset returns are mean-reverting.

Turning to the main purpose of this chapter, the results are different from those of

Hodges et al. (1997), who find that the Sharpe ratio eventually declines in all

cases and the counter-intuitive result that bonds become more attractive than

stocks for long holding periods. However, the key results support the conventional

wisdom of money managers that for investors with long horizons, a greater share

of portfolio assets should be allocated to stocks (Siegel, 1998, 1999).

In short, these results indicate that the Sharpe ratio of large-company stock

portfolios is a higher value than the other three types of portfolios (small-company

stocks, long-term and intermediate-term government bonds) over all wavelet

scales. In other words, large-company stock portfolios outperform the other

portfolios over the wavelet scales. This result ts closely related to the mean-

reverting property of stock returns. As indicated in Samuelson (1991) and

Barberis (2000), the mean-reversion property in stock returns slows the growth of

conditional variances of long horizon itturns. This makes the equities appear less

risky at long horizons, and hence more attractive to the investor.

! i.
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Chapter 6 investigates the long-run relationship between stock returns and risk

(volatility) using two newly developed methods: King and Watson (1997) and

Den Haan (2000). Many previous studies do not show the consistent results and

focus on the contemporaneous relationship. Chapter 6 supports that the long-run

relationship highly depends on the contemporaneous relationship. For the VAR

forecast correlation, proposed by Den Haan (2000), most industry portfolios show

a negative relationship in the short-run as well as in the long-run. For the market

portfolio, a negative relationship is dominant regardless of forecasting horizons.

From these results, it is concluded that the long-run response of stock returns to a

permanent volatility shock is sensitive to the assumed value of identifying

parameters in each industry portfolio and the market portfolio and that, as in the

previous studies, the relationship between risk and return is mixed in the short-run.

However, in the long-run, a negative relationship is dominant. A negative

relationship in the long-run means that if investors feel that the risk of a portfolio

is high in the future, the price of the portfolio rises to compensate the increased

expected risk. Therefore, the future return of the portfolio decreases.

In chapter 7, the puzzling relationship between investment growth and stock

return;-; is examined in an extended stochastic growth model. Many empirical

studies find a negative relationship between current investment growth and

current stock: returns, while the theory predicts a positive relationship. A key to an

explanation of this negative contemporaneous relationship may lie is in the

countercyclical movement of stock returns. The standard growth model cannot
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generate the countercyclical movement of stock returns, whereas the extended

model, which incorporates investment-specific technology and capital adjustment

costs does generate the countercyclical movements of stock returns. The positive

shock increases investment growth while decreasing stock returns. Capital

utilization has played an important role in transmitting the shock. For example, a

positive shock decreases current stock returns because of increased capital

utilization, which causes more depreciation. In contrast, it increases the

investment. Therefore, the correlation coefficient has a negative value. In the

long-run, correlation coefficients are negative in the actual data. The benchmark

model, which has a standard technology shock, generates positive correlation

coefficients in the long-run and in the contemporaneous relationship, while the

model, which includes an investment-specific technology shock and capital

adjustment costs, generates negative correlation coefficients in the long-run.

203

i



Bibliography

Abel, A., and 0. Blanchard, (1986) "The present value of profits and cyclical

movements in investment." Econometrica, 54(2), 246-273.

Abry, P. A., D. Veitch, and P. Flandrin, (1998) "Long range dependence: Revisiting

aggregation with wavelets." Journal of Time Series Analysis, 19. 253-266.

Asimakopoulos, I., J. Goddard, and C. Siriopoulos, (2000) "Interdependence between

the US and major European equity markets: evidence from spectral analysis." Applied

Financial Economics, 10,41-47.

Backus, D. K., and A. W. Gregory, (1993) "Theoretical relations between risk

premiums and conditional variances", Journal of Business & Economic Statistics, 11 (2),

177-185.

Baillie, R. T., (1996) "Long memory processes and fractional integration in

econometrics." Journal of Econometrics, 73, 5-59.

Baillie, R. T., and R. P. DeGennaro, (1990) "Stock returns and volatility." Journal of

Financial and Quantitative Analysis, 25, 203-214.

Barberis, N., (2000) "Investing for the long run when returns are predictable." Journal

of Finance, 55, 225-264.

Barnes, M, J. H. Boyd, and B. D. Smith, (1999) "Inflation and asset returns." European

Economic Review, 43, 737-754.

Barro, R., (1990) "The stock market and investment." Review of Financial Studies, 3(1),

115-131.

Baxter, M. and R. G. King, (1991) "Productive externalities and the business cycle."

Discussion paper No. 53, November, Institute for Empirical Macroeconomics.

204



Baxter, M., and R. G. King, (1999) "Measuring business cycles: Approximate band-

pass filters for economic time series." The Review of Economics and Statistics, 81, 573-

593.

Beaudry, P. and A. Guay, (1996) "What do interest rates reveal about the functioning of

real ousiness cycle models?" Journal of Economic Dynamics and Control, 20, 1661-

1682.

Bekaert, G., R. J. Hodrick, and D. A. Marshall, (1997) "On biases in tests of the

expectations hypothesis of the term structure of interest rates." Journal of Financial

Economics, 44, 309-348.

Bekaert, G., and G. Wu, (2000) "Asymmetric volatility and risk in equity markets."

Review of Financial Studies, 13, 1-42.

Bernake, B. S., (1983), "Nonmonetary effects of the financial crisis in the propagation

of the Great Depression." American Economic Review, 73, 257-276.

Blanchard, O., C. Rhee, and L. Summers, (1993) "The stock market, profit, and

investment." Quarterly Journal of Economics, 108(1), 115-136.

Bodie, Z., (1976) "Common stocks as a hedge against inflation." Journal of Finance,

31,459-470.

Boidrin, M., L. J. Christiano, and J. D. Fisher, (1995) "Asset pricing lessons for

modelling business cycle." NBER working paper, No. 5262.

Boudoukh, J., and M. Richardson, (1993) "Stock returns and inflation: A long horizon

perspective." American Economic Review, 83,1346-135X

Brandt, M. W., and Q. Kang, (2001) "On the relationship between the conditional mean

and volatility of stock returns: A latent VAR approach." Working paper.

205



Burnside, C, and M. Eichenbaum, (1996) "Factor-hoarding and the propagation of

business-cycle shocks." American Economic Review, 86(5), 1154-1174.

Burrus, C. S., R. A. Gopinath, and H. Guo, (1998) Introduction to wavelets and wavelet

transforms. Prentice-Hall, New Jersey.

Campbell, J. Y., (1987) "Stock returns and the term structure." Journal of Financial

Economics, 18,373-399.

Campbell, J. Y., (1991) "A variance decomposition for stock returns." Economic

Journal, 101, 157-179.

Campbell, J. Y., (1994) "Inspecting the mechanism: an analytical approach to the

stochastic growth model." Journal of Monetary Economics, 33,463-506.

Campbell, J. Y., and J. H. Cochrane, (1999) "By force of habit: A consumption-based

explanation of aggregate stock market behavior." Journal of Political Economy, 107,

205-251.

Campbell, J. Y., and L. Hentschel, (1992) "No news is good news: an asymmetric

model of changing volatility in stock returns." Journal of Financial Economics, 31,

281-318.

Campbell, J. Y., M. Lettau, B. G. Malkiel, and Y. Xu, (2001) "Have individual stocks

become more volatile? An empirical exploration of idiosyncratic risk." Journal of

Finance, 56, 1-43.

Campbell, J. Y., and S. Ludvigson, (1998) "Elasticities of substitution in real business

cycle model with home production." NBER working paper No. 6763.

Capobianco, E., (2003) "Empirical volatility analysis: feature detection and signal

extraction with function dictionaries." PhysicaA, 319,495-518.

206

I



Chan, S. H., J. D. Martin, and J. W. Kensinger, (1990) "Corporate research and

development expenditures and share value." Journal of Financial Economics, 26, 255-

276.

Chapman, D. A., (1997) "The cyclical properties of consumption growth and the real

term structure." Journal of Monetary Economics, 39, 145-172.

Cheung, Y., and K. Lai, (1995) "A search for long memory in international stock

market returns." Journal of International Money and Finance, 14, 597-615.

Cheung, Y., and K. Lai, (2001) "Long memory and nonlinear mean reversion in

Japanese yen-based real exchange rates." Journal of International Money and Finance,

20,115-132.

Cheung, Y. W., and F. X. Diebold, (1994) "On maximum likelihood estimation of the

differencing parameter of fractionally integrated noise with unknown mean." Journal of

Econometrics, 62, 301-316.

Chew, C , (2001) "The money and income relationship of European countries by time

scale decomposition using wavelets." unpublished paper, New York University.

Chiao, C, K. Hung, and S. C. Srivastava, (2003) "Taiwan stock market and four-

moment asset pricing model." Journal of International Financial Markets, Institutions

and Money, 13, 355-381.

Choi, J. J., S. Hauser, and K. J. Kopecky, (1999) "Does the stock market predict real

activity? Time series evidence from the G-7 countries." Journal of Banking and

Finance, 23,1771-1792.

Choudhry, T., (2001) "Inflation and rates of return on stocks: evidence from high

inflation countries." Journal of International Financial Markets, Institutions and Money,

11,75-96.

207



Christiano, L. J. and J. D. M. Fisher, (1998) "Stock market and investment good prices:

Implications for macroeconomics." Chicago Fed Working paper 98-6.

Christiano, L. J., (1990) "Solving the stochastic growth model by linear-quadratic

approximation and by value-function iteration." Journal of Business and Economic

Statistics, 8(1), 23-26.

Chui, C. K., (1992) An introduction to Wavelets. San Diago: Academic Press.

Cochrane, J. H., (1991) "Production-based asset pricing and the link between stock

returns and economic fluctuations." Journal of Finance, 46, 209-237.

Cochrane, J. H., (1997) "Where is the market going? Uncertain facts and novel

theories." NBER Working paper 6207.

Corsetti, G., (1997) "A portfolio approach to endogenous growth: equilibrium and

optimal policy." Journal of Economic Dynamics and Control, 21, 1627-1644.

Dacorogna, M. M., R. Gen?ay, U. A. Miiller, and 0. V. Pictet, (2001) "Effective return,

risk aversion and drawdowns." Physica A, 289, 229-248.

Daubechies, Ingrid, (1992) Ten lectures on wavelets. SIAM, Philadelphia.

Davidson, R, W. C. Labys, and J. B. Lesourd, (1998) "Wavelet analysis of commodity

price behavior." Computational Economics, 11,103-128.

Deaton, A., (1992) Understanding consumption. Oxford University Press, N.Y.

Den Haan W. and A. Marcet, (1994) "Accuracy in simulations." Review of Economic

Studies, 61(1), 3-17.

Den Haan, W. J., (2000) "The comovement between output and prices." Journal of

Monetary Economics, 46, 3-30.

Dowd, K., (2000) "Adjusting for risk: An improved Sharpe ratio." International Review

of Economics and Finance, 9, 209-222.

208



Duffee, G. R., (1995) "Stock returns and volatility: A firm-level analysis." Journal of

Financial Economics, 37, 399-420.

Elsas, R., M. El-Shaer, and E. Theissen, (2003) "Beta and returns revisited: evidence

from the German stock market." Journal of International Financial Markets,

Institutions and Money, 13, 1-18.

Engsted, T., and C. Tanggaard, (2001) "The Danish stock and bond markets:

comovement, return predictability and variance decomposition." Journal of Empirical

Finance, 8,243-271.

Engsted, T., and C. Tanggaard, (2002) "The relation between asset returns and inflation

at short and long horizons." Journal of International Financial Markets, Institutions,

and Money, 12, 101-118.

Fama, E. F., (1981) "Stock returns, real activity, inflation and money." American

Economic Review, 71, 545-565.

Fama, E. F., (1990). "Stock returns, expected returns, and real activity." Journal of

Finance, 45,1089-1108.

Fama, E. F. and G. W. Schwert, (1977) "Stock market returns and inflation." Journal of

Financial Economics, 5, 115-146.

Fama, E. F., and K. R. French, (1989) "Business conditions and expected returns on

stocks and bonds." Journal of Financial Economics, 25, 23-49.

Fischer, K. P., and A. P. Palasvirta, (1990) "High road to a global marketplace: The

international transmission of stock market fluctuations." The Financial Review, 25, 371-

393.

209



Fleming, B. J. W., D. Yu, and R. G. Harrison, (2000) "Analysis of effect of detrending

of time-scale structure of financial data using discrete wavelet transform." International

Journal of Theoretical and Applied Finance, 3,357-379.

French, K. R., G. W. Schwert, and R. Stambaugh, (1987) "Expected stock return and

volatility." Journal of Financial Economics, 19, 3-29.

Friedman, B. M., and K. N. Kuttner, (1992) "Money, income, prices, and interest rates."

American Economic Review, 82,472-492.

Gabor, D., (1946) "Theory of communication." Journal of the IEE, 93,429-457.

Gallagher, L. A., and M. P. Taylor, (2002) "The stock return - inflation puzzle

revisited." Economics Letters, 75, 147-156.

GenQay, R., F. Selc.uk and B. Whitcher, (2001) "Scaling properties of foreign exchange

volatility." Physica A, 289, 249-266.

GenQay, R., F. Selc.uk and B. Whitcher, (2002a) An introduction to wavelets and other

filtering methods in finance and economics. Academic Press, London.

GenQay, R., F. Selguk and B. Whitcher, (2002b) " Asymmetry of information flow

between FX volatilities across time scales." Working paper.

Gene.ay, R-, F. Sel$uk and B. Whitcher, (2003a) "Systematic risk and time scales."

Quantitative Finance, 3, 108-116.

Gen?ay, R., F. Selcuk and B. Whitcher, (2003b) "Multiscale systematic risk." Journal

of International Money and Finance (forthcoming).

Goffe, W. L., (1994), "Wavelets in macroeconomics: An introduction." in

Computational techniques for econometrics and economic analysis, eds by Daivd A.

Belsley, Dordrecht, Kluwer, pp 137-149.

210



Geweke, J. and S. Porter-Hudak, (1983) "The estimation and application of long

memory time series models." Journal of Time Series Analysis, 4(4), 221-238.

Granger, C. W. J. (1966) "The typical spectral shape of an economic variable."

Econometrica, 34,150-161.

Graps, A., (1995) "An introduction to wavelets." IEEE Computational Science and

Engineering, 2, 50-61.

Greene, M. T. and B. D. Fielitz, (1977) "Long-term dependence in common stock

returns." Journal of Financial Economics, 4, 339-349.

Greenwood, J., Z. Hercowitz, and G. W. Huffman, (1988) "Investment, capital

utilization, and the real business cycle." American Economic Review, 78, no. 3, 402-417.

Greenwood, J., Z. Hercowitz, and P. Krusell, (2000) "The role of investment-specific

technological change in the business cycle." European Economic Review, 44, 91-115.

Griffin, J. M., and R. M., Stulz, (2001) "International competition and exchange rate

shocks: A cross-country industry analysis of stock returns." Review of Financial Studies,

14,215-241.

Grossman, A., and J. Morlet, (1984) "Decomposition of Hardy functions into square

integrable wavelets of constant shape." SI AM Journal of Mathematical Analysis, 15,

723-736.

Gultekin, N. B., (1983) "Stock market returns and inflation: Evidence from other

countries." Journal of Finance, 38,49-65.

Hallett, A. H., and C. R. Richter (2001) "A comparative dynamic analysis of British and

German monetary policy in the 1990s: A spectral analysis approach." working paper.

211



Hallett, A. H., and C. R. Richter (2002) "Are capital markets efficient? Evidence from

the term structure of interest rates in Europe." The Economic and Social Review, 33,

333-356.

Harrison, P., and H. H. Zhang, (1999) "An investigation of the risk and return relation at

long horizons." Review of Economics and Statistics, 81, 399-408.

Harvey, A. C. (1994) Time series models. 2nd edition, MIT Press, Cambridge.

Harvey, C. R., (1989) "Time-varying conditional covariances in tests of asset pricing

models." Journal of Financial Economics, 24, 289-317.

Hodges, C. W., W. R. Taylor, and J. A. Yoder, (1997) "Stocks, bonds, the Sharpe ratio,

and the investment horizon." Financial Analysts Journal, 53 (Nov/Dec), 74-80.

Howrey, E. P. (1968) "A spectrum analysis of the long-swing hypothesis." International

Economic Review, 9,228-252.

Hudgins, L., C. A. Friehe, and M. E. Mayer, (1993) "Wavelet transforms and

atmospheric turbulence." Physical Review Letters, 71, 3279-3282.

Ibbotson Associates, (2001) "Stocks, bonds, bills, and inflation 2001 Yearbook."

Chicago, Illinois: Ibbotson Associates.

In, F. and J. H. Yoon, (2001) "Determination of asset prices with an investment-specific

technology model: Implications for the equity premium puzzle." working paper,

Monash University.

In, F., and S. Kim (2003) "The hedge ratio and the empirical relationship between the

stock and futures markets: A new approach using wavelet analysis." Journal of Business

(forthcoming).

Jamdee, S., and C. A. Los, (2003) "Dynamic risk profile of the US term structure by

wavelet MRA." Working paper.

212



Jensen, M. J., (1999a) "An approximate wavelet MLE of short and long memory

parameters." Studies in Nonlinear Dynamics and Econometrics, 3, 239-253.

Jensen, M. J., (1999b) "Using wavelets to obtain a consistent ordinary least square

estimator of the long-memory parameter." Journal of Forecasting, 18,17-32.

Jensen, M. J., (2000) "An alternative maximum likelihood estimator of long-memory

proceses using compactly supported wavelets." Journal of Economic Dynamics and

Control, 24, 361-387.

Jensen, M. J., and B. Whitcher, (2000) "Time-varying long memory in volatility:

Detection and estimation with wavelets." Working paper.

Jermann, U., (1998) "Asset pricing in production economies." Journal of Monetary

Economics, 41, 257-275.

Jovanovic, B., and M. Ueda, (1998) "Stock-returns and inflation in a principal-agent

economy." Journal of Economic Theory, 82, 223-247.

Kashyap, R. L., and K. B. Eom, (1988) "Estimation in long-memory time series mode]."

Journal of Time Series Analysis, 9, 35-41.

King, R. G., C. I. Plosser, and S. T. Rebelo, (1988) "Production growth and business

cycle I: the basic neoclassical model." Journal of Monetary Economics, 21, 195-232.

King, R. G., and M. W. Watson, (1997) "Testing long-run neutrality." Federal Reserve

Bank of Richmond Economic Quarterly, 83, 69-101.

Kirchgassner, G., and J. Wolters (1987) "U.S. - European interest rate linkage: A time

series analysis for West German, Switzerland, and the United States." Review of

Economics and Statistics, 69, 675-684.

213



Knif, J., S. Pynnonen, and M. Luoma, (1995) "An analysis of lead-lag structures using a

frequency domain approach: Empirical evidence from the Finnish and Swedish stock

markets." European Journal of Operational Research, 81, 259-270.

Kroner, K. F. and J. Sultan, (1993) "Time-varying distribution and dynamic hedging

with foreign currency futures," Journal of Financial and Quantitative Analysis, 28,

535-551.

Kwark, N. S., (2002) "Default risk, interest rate spreads, and business cycles:

Explaining the interest rate spread as a leading indicator." Journal of Economic

Dynamics and Control, 26, 271-302.

Kwiatkowski, D., P. C. B. Phillips, P. Schmits, and Y. Shin, (1992) "Testing the null

hypothesis of stationary against the alternative of a unit root: How sure are we that

economic time series have a unit root?" Journal of Econometrics, 54, 159-178.

Kyaw, N. A., C. A. Los, and S. Zong, (2003) "Persistence characteristics of Latin

American financial markets." Working paper.

Kydland, F., and E. Prescott, (1982) "Time to build and aggregate fluctuations."

Econometrica, 50,1345-1370.

Lamont, O. A., (2000) "Investment plans and stock returns." Journal of Finance, 55(6),

2719-2745.

Lee, J., and Y. Hong, (2001), "Testing for serial correlation of unknown form using

wavelet methods." Econometric Theory, 17, 386-423.

Lessard, D. R., (1974) "World, national, and industry factors in equity returns." Journal

of Finance, 29, 379-391.

214



Lessard, D. R., (1976) "World, country, and industry relationships in equity returns:

Implications for risk reduction through international diversification." Financial Analysts

Journal, January-February, 32-38.

Lettau, M.. (2003) "Inspecting the mechanism: the determinations of asset prices in the

real business cycle model." The Economic Journal, 113 (489), 550-575.

Lettau, M., G. Gong, and W. Semmler, (2001) "Statistical estimation and moment

evaluation of a stochastic growth model with asset market restrictions." Journal of

Economic Behavior and Organization, 44, 85-103.

Lettau, M., and S. Ludvigson, (2002) "Time-varying risk premia and the cost of capital:

an alternative implication of the Q theory of investment." Journal of Monetary

Economics, 49 (1), 31-66.

Levy, H., (1972) "Portfolio performance and the investment horizon." Management

Science, 18,645-653.

Li, Y., (1998) "Expected stock returns, risk premiums and volatilities of economic

factors." Journal of Empirical Finance, 5, 69-97.

Lin, S. M, K. Craft, and V. Chow (1996) "Spectral analysis in three dimensions: the

examination of economic interdependence between New York, London, Tokyo and the

Pacific Basin equity market indices." Journal of Applied Business Research, 12, 72-84.

Lindsay, R. W., D. B. Percival, and D. A. Rothrock, (1996) "The discrete wavelet

transform and the scale analysis of the surface properties of sea ice." IEEE Transactions

on Geoscience and Remote Sensing, 34, 771-787.

Lo, A. W., (1991) "Long-term memory in stock market prices." Econometrica, 59,

1279-1313.

215



Mallat, S., (1989) "A theory for multiresolution signal decomposition: The wavelet

representation." IEEE Transactions on Pattern Analysis and Machine Intelligence, 11,

674-693.

Mallat, S., (1999) A wavelet tour of signal processing. Academic Press, San Diago.

McConnell, John J. and Chris, J. Muscarella, (1985) "Corporate capital investment

decisions and the market value of the firms." Journal of Financial Economics, 14, 399-

422.

McCoy, E. J., and A. T. Walden, (1996) "Waveiet analysis and synthesis of stationary

long-memory processes." Journal of Computational and Graphical Statistics, 5, i-31.

McLeod, A. I., and K. W. Hipel, (1978) "Preservation of the rescaled adjusted range, 1:

A reassessment of the Hurst phenomenon." Water Resources Research, 14,491-508.

Merton, R. C, (1973) "An intertemporal asset pricing model." Econometrica, 41, 867-

Miller, R., and A. Gehr, (1978) "Sample bias and Sharpe's performance measure: A

note." Journal of Financial and Quantitative Analysis, 13,943-946.

Moskowitz, T., and M. Grinblatt, (1999) "Do industries explain momentum?" Journal

of Finance, 54, 1249-1290.

Nielsen, L. T., and M. Vassalou, (2003) "Sharpe ratios and alphas in continuous time."

Journal of Financial and Quantitative Analysis (forthcoming).

Ogden, R. T., (1997), Essential wavelets for statistical applications and data analysis.

Birkhauser, Boston.

Pan, Z., and X. Wang, (1998) "A stochastic nonlinear regression estimator using

wavelets." Computational Economics, 11, 89-102.

216



Pedersen, C. S., and S. E. Satchell, (2000) "Small sample analysis of performance

measures in the asymmetric response model." Journal of Financial and Quantitative

Analysis, 35,425-450.

Pedersen, T. M., (1999) "Understanding business cycles", Manuscript, Institute of

Economics, University of Copenhagen.

Percival, D. B., (1995) "On estimation of the wavelet variance." Biometrika, 82, 619-

631.

Percival, D. B., and A. T. Walden, (2000) Wavelet methods for time series analysis.

Cambridge University Press, Cambridge, UK.

Percival, D. B., and H. O. Mofjeld, (1997) "Analysis of subtidal coastal sea level

fluctuation using wavelets," Journal of American Statistics Association, 92, 868-880.

Poterba, J. M., and L. H. Summers, (1988) "Mean reversion in stock prices: Evidence

and implications." Journal of Financial Economics, 22, 27-60.

Ramsey, J. B., (1999) "The contribution of wavelets to the analysis of economic and

financial data." unpublished paper, New York University.

Ramsey, J. B., (2002) "Wavelets in economics and finance: Past and future." Studies in

Nonlinear Dynamics and Econometrics, 6. 1 -27.

Ramsey, J. B., and C. Lampart, (1998a) "Decomposition of economic relationships by

timescale using wavelets." Macroeconomic Dynamics, 2,49-71.

Ramsey, J. B., and C. Lampart, (1998b) "The decomposition of economic relationships

by time scale using wavelets: Expenditure and income." Studies in Nonlinear Dynamics

and Econometrics, 3, 23-42.

Ramsey, J. B., and D. J. Thomson (1999) "A reanalysis of the spectral properties of

some economic and financial time series," in Nonlinear Time Series Analysis of

217



Economic and Financial Data, ed. By Philip Rothman. Kluwer Academic Publishers.

45-85.

Ramsey, J. B., D. Usikov, and D. Zaslavsky, (1995) "An analysis of U.S. stock price

behavior using wavelets." Fractals, 3, 377-389.

Ramsey, J. £., and Z. Zhang, (1997) "The analysis of foreign exchange data using

waveform dictionaries." Journal of Empirical Finance, 4, 341-372.

Rapach, D. E.» (2002) "The long-run relationship between inflation and real stock

prices." Journal of Macroeconomics, 24, 331-351

Rouwenhorst, K. G., (1995) "Asset pricing implications of equilibrium business cycle

model" in Frontiers of business cycle research, Thomas F. Cooley (ed.), Princeton,

N.J.: Princeton University Press, 298-330.

Samuelson, p., (1991) "Long-run risk tolerance when equity returns are mean

regressing: peudoparadoxes and vindication of 'Businessmen's risk." In Money,

Macroeconomics, and Public Policy, eds by W. C. Brainard, W. D. Nordhaus, and H. W.

Watts. Cambridge, Massachusetts, The MIT press.

Sargent, T. J., and C. A. Sims (1977) "Business cycle modelling without pretending to

have too much a priori economic theory." in New methods in business cycle research,

ed. by C. A. Sims. Federal Reserve Banks, Minneapolis.

Sarlan, H. (2001) "Cyclical aspects of business cycle turning points." International

Journal of Forecasting, 17, 369-382.

Schleicher, C-, (2002) "An introduction to wavelets for economists." Bank of Canada

Working paper, No. 2002-3.

218



Schmitt-Grohe, S., (1998) "The international transmission of economic fluctuations:

Effects of U.S. business cycles on the Canadian economy." Journal of International

Economics, 44, 257-287.

Schotman, P. C, and M. Schweitzer, (2000) "Horizon sensitivity of the inflation hedge

of stocks." Journal of Empirical Finance, 7, 301-305.

Schwert, G. W., (1990) "Stock returns and real economic activity: A century of

evidence." Journal of Finance, 45, 1237-1257.

Serroukh, A., and A. T. Walden, (2000) "Wavelet scale analysis of bivariate time series

I: Motivation and estimation." Journal of Nonparametric Statistics, 13 (1), 1-36.

Serroukh, A., and A. T. Walden, and D. B. Percival, (2000) "Statistical properties and

uses of the wavelet variance estimator for the scale analysis of time series." Journal of

the American Statistical Association, 95,184-196.

Sharpe, W. F., (1994) "The Sharpe ratio." Journal of Portfolio Management, 21,49-58.

Sharpiro, M. D., (1986) "The dynamic demand for capital and labor." Quarterly Journal

of Economics, 101, 513-541.

Siegel, J. J., (1998) Stocks for the long run. New York, McGraw-Hill.

Siegel, J. J., (1999) "Stocks, bonds, the Sharpe ratio, and the investment horizon: a

comment." Financial Analysts Journal, 55,7-8.

Smith, K. L., (1999) "Major world equity market integration a decade after the 1987

crash: evidence from cross spectral analysis." Journal of Business Finance and

Accounting, 26, 365-392.

Smith, K. L., (2001) "Pre- and post-1987 crash frequency domain analysis among

Pacific Rim equity markets." Journal of Multinational Financial Management, 11, 69-

87.

219



Solnik, B., and V. Solnik, (1997) "A multi-country test of the Fisher model for stock

returns." Journal of International Financial Markets, Institutions, and Money, 7, 289-

301.

Stock, J. H., and M. W. Watson, (1989) "New indexes of coincident and leading

economic indicators." NBER Macroeconomic Annual, 4, 351-394.

Strang, G., and T. Nguyen, (1996) Wavelets and filter banks. Wellesley-Cambridge

Press, Wellesley, MA.

Tkacz, G., (2001) "Estimating the fractional order of integration of interest rates using a

wavelet OLS estimator." Studies in Nonlinear Dynamics and Econometrics, 5(1), 1-14.

Tobin, J., (1969) "A general equilibrium approach to monetary theory." Journal of

Money, Credit and Banking, l,no 1, 15-29.

Unser, M., (1996) "A practical guide to the implementation of the wavelet transform."

in Wavelets in Medicine and Biology. Eds by Aldroubi, A., and M, Unser. CRC Press,

Boca Raton, Florida.

Whitcher, B., and M. J. Jensen, (2000) "Wavelet estimation of a local long memory

parameter." Exploration Geophysics, 31, 94-103.

Whitelaw, R. F., (1994) "Time variations and covariances in the expectation and

volatility of stock market returns." Journal of Finance, 49, 515-541.

Whitelaw, F.R., (2000) "Stock market risk and return: an equilibrium approach."

Review of Financial Studies, 13, 521-547.

220




