
Errata

Brian May and Dr. IT. R. Wu

26th February 2002

• Page 7, Line 13: "This thesis addresses three issues" should read "This
thesis addresses these three problems".

• Page 7, Line 6 from bottom: "not secret, but must be kept secure". To
clarify, secret means no one else has access to it, and secure means no one
else can alter it.

• Page 8, Line 4 from bottom: Just to clarify that the work mentioned was
done by me.

• Page 9, Line 3: change "a criteria" to "a criterion".

• Page 9, Line 4: change "references" to "literature1'.

• Page 9, Line 6: change "Also, the system should be secure" to read "More-
over, the system implementing the protocol should contain no loopholes".

• Page 10, Line 2: Change "The next chapter introduces the basic concepts
behind access control, and how it is made up of authentication and au-
thorisation." to read "Chapter two introduces the basic concepts of access
control, and explains how access control is formed in terms of authentica-
tion and authorization."

• Page 11, Line 11: Change "This was" to "This work was".

• Page 12, Line 7: Change "During the course of this research conducted
with relation to this thesis, much of the work has been published as aca-
demic research papers." to "Most of the research results related to this
thesis have either been published or been submitted for publication."
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Abstract

Computer security is an important issue that is often overlooked or under-

estimated in practice.

Access control is an important area in computer security. A remote

service needs to be able to decide if a given user is authorised to access a

given resource or not. Access control is an area that has not been sufficiently

addressed, leading to limitations that allow security breaches to occur.

Many applications of access control require both authentication and au-

thorisation to work properly. Authentication is required in order to reliably

determine the identity of the remote party. Authorisation is the process to

determine if the given remoie party will be given access to the resource or

not.

Although a number of different authentication protocols, such as Ker-

beros, already exist, most of them fail to produce a secure solution that is

scalable to the scope of the Internet. For instance, Kerberos is not scalable

because it requires manually distributing private keys between realms.

Similarly, while a number of different authorisation protocols exist, such

as SPKI, these also have limitations that prevent it from being used in

large wide area networks, such as the Internet. SPKI, for instance was not

designed to work with another authentication protocol such as Kerberos.

This thesis proposes a scalable and secure authentication method based

on Kerberos with PkCross extensions. It does this via two individual pro-

posals: one for securely distributing public keys to all participating comput-

vii
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»| ers, and the other being a proposal to implement non-repudiation into the

I scheme.

<,' This thesis also proposes a scalable method of authorisation, based on

SPKI, that addresses the limitations of current protocols.

$ The result of having a scalable authentication protocol and a scalable

^ authorisation protocol that can be used together is a scalable access control

protocol.

This goal was found to be reasonable, but certain tmde-offs had to be

made. For instance, the scalable key distribution for very large networks

requires bandwidth in order to transfer data between KDCs. Although tech-

niques have demonstrated how this can be minimised, it is still significant,

especially for smaller sites.

This thesis is intended for anybody interested in the area of secure and

scalable computer access control.
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Chapter 1

Introduction

1

Modern computers must be kept secure. This means making sure that unau-

thorised users do not destroy, tamper with, or have access to private infor-

mation. As almost any application of a computer could use access control,

there are many applications. However, only some applications need access

control, eg. where access to a restricted resource is required. Examples

of this include access to private data, hospital database systems[l], online

banking/shopping[2], and secure communications.

In the past, access control could be achieved by locking the computer

up and only giving authorised users the key. This is a very primitive form

of access control, as only those who are authorised (given a key) may access

the resource (files on the computer).

Using physical locks for access control is no longer a satisfactory solution

for many applications though. Not only more and more computers are being

connected to global networks, such as the Internet, in some way, but the

requirements for access control are more complicated as users see the new

benefits that global networks offer. For instance, in the past it may have

been satisfactory to allow an authorised person access to all entries in a

database, while now it is becoming more common to limit access to only a

giv " 3et of database entries.

1



1.1. ACCESS CONTROL

1.1 Access Control

"Access control is the process of limiting [...] access to certain

resources. Resources can constitute any number of things such

^ as: a particular function, data, or a location. The process of ac-

^ cess control involves the three separate processes of identification
v | (recognising or indicating your identity), authentication (reliably

I establishing your identity), and authorisation (determining what

% you are allowed to access)."[3].

'*' This definition defines access control in terms of three stages: identifi-

J cation, authentication and authorisation. Authentication is the process of

i* identifying a particular user (ie. giving the user a name), while authorisation

is to check if the user is entitled to access the resource or not.

C Normally identification is included as a step in the authentication process

(as how you identify yourself depends on the authentication protocol), so

^ these 2 steps can be merged to form one stage, hence making two stages

total.
t-

h Actually, there is a third stage of access control: accounting[4]. Users

need to be held accountable for their actions in some way. This can be done,

for instance, by recording identification, resource, and actions to a disk file.

The above definition would imply that authentication is required for

access control, although some forms of access control (eg. a key to open a

door) do not require any form of authentication. However, a tradeoff is that

., no one can be held accountable for their actions, as the server has no record

of the user's identity. While some schemes have been developed that change

this (eg. anonymous authentication^]), they are beyond the scope of this

,K thesis.

v This definition is an internal view of access control, this contrasts with

I an external definition of access control, which views the internal stages as a

i



1.1. ACCESS CONTROL

black box.

"A simple AC access control system [...] is a black box that

accepts a query: 'Can user U perform action A on resource R'

and returns a Yes (Y) or No (N) answer." [1].

However, both these definitions fail to emphasis that access control can

be split up into multiple entities, which could range from a simple door lock

to being distributed across the globe. The following definitions are used to

generalise access control, so that it can be used in any situation.

For the purposes of this thesis, the user (U) [1] has direct physical access

to the console (D) (could be keyboard, display, smart-card reader, biomet-

rics scanner, etc) on the client (C) (eg. a process running on a local com-

puter). C in turn can communicate to the server (S). The server (S) must

decide if the user (U) is allowed to perform action [A)[l] on the resource

(#)[!]• A resource could mean Central Processing Unit (CPU) cycles, net-

work bandwidth, private information, individual database records, money,

and/or anything else depending on the application[6].

For remote access control, both C and S could be implemented as sepa-

rate computers. The user has direct physical access to C but can only access

S via C.

This is in contrast to local access control, where C and S might be

separate processes on a single computer, protected by the operating system.

Or, in some cases, C and S may both refer to the same process (eg. the

initial password prompt when logging into a computer). This is a special

case because security of the communications channel between C and 5 is not

an issue (depending on operating system design), because communication is

not required between C and S. Ideally, access to R needs to be regulated,

but in such a way that breaking into the computer does not affect the security

of other computers.
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An extension of this special case can arise for computers disconnected

from a computer network, eg. laptop computers, palm top computers, and

private home computers. These systems will be called disconnected comput-

ers in this thesis. For these cases, all entities are typically stored in the one

computer. These systems require special consideration, as it is impossible

to contact a remote computer for access control.

In any case, local computer refers to the computer system which the user
%

™ has physical access to.

In the example (Figure 1.1), U needs to be able to prove its identity to

S before S can allow U access to R. S first needs to authenticate (7, then

it checks that U is authorised to access R. This is a good example of access

control. Figure 1.2 illustrates the special case of local authentication where

S is the same process as C.

Note that all of the communications links (represented by arrows be-

tween the boxes) must be secure, either by secure communications channel,

or by some other means, eg. encryption. For instance, somebody could

<** observe a user entering a password (U to D link). Similarly a rogue process
4
\ could intercept the password before C can access it (D to C l ink) . Regard-

's; less of t h e potent ia l software issues, this thesis assumes t h a t t he physical

~i ha rdware connection (eg. keyboard cable) between D and C is secure. If,

\ however, t he password is sent wi thout encrypt ion to S, t h en t h a t could

i represent a security hole, too (C to S l ink).
J Similarly, the entities represent boxes, and should either be trusted or not

given private authentication information. Even if the links between entities

are secure, it is possible that one of the entities has been compromised, and

could send private authentication data to an intruder. A good access control

protocol needs to minimize the possibility of this occuring.

I

t

i
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2. Authorization

3. Allow access to perform action A
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Figure 1.1: Access Control

U =user, D =console, C =client, S =server, R =resource, A =action.

f
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1. Authentication
A

U D
A

C/S R

u n r/s R

3. Allow access to perform action A

Figure 1.2: Local Access Control (client/server combined)

\

U =user, D =console, C =client, S =server, R =resource, A =action.
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1.2 Authentication

In order to determine if one party should have access to a resource, the

access control protocol may need to securely identify the remote party. This

is called Authentication. Authentication is the process where one party can

identify itself to another party, whether by identification (ID) card[3], or

some more sophisticated computer protocol.

Authentication and authorisation are two distinct concepts that are often

confused.

To quote one simple definition of authentication:

"The property that the identity of each element of the system

may be unambiguously established and validated, ie. that each

I element of the system is always the one claimed or required." [7].
I

|f Another, more precise definition of authentication, which is more specific

in its requirements:

"Whenever one of the parties completes an execution of the au-

thentication protocol, it marks the execution as either accepted

(in the case of successful authentication) or rejected. The in-

tention is that executions marked as accepted correspond to

rims of the protocol that definitely involved the intended other

party." [8].

It is worth noting that neither of these definitions require the iden-

tity to be established in a global name space. That means, for instance,

that the MP* ty "Bob" could refer to different users depending on who is

making the authentication (eg. the Scalable Public Key Infrastructure stan-

dard (SPKI)[3j). However, at the same time, it does not exclude a global

name space to be used either (eg. Kerberos uses a userid + REALM name

space[9]).
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The most common means of authentication in computer systems is pass-

word authentication. Password based authentication systems, where the

password is checked by the server, have the benefit in that they are easy

to implement, especially on a large scale. However, this is at the expense

of security. For instance password based systems are difficult to use with-

out taking short cuts (eg. writing the password down) that may seriously

compromise security [10].

A newer and better method of authentication is the Kerberos authenti-

cation protocol[9]. It is secure in that one password can safely be used for

many servers. Even if one server is compromised, the security of the pass-

word is not compromised. However, Kerberos was never designed to work

outside the one organisation. While attempts have been made to improve

| | the scalability, it still suffers from at least three problems.

This thesis addresses three issues that affect scalability with Kerberos.

Firstly, it investigates known extensions to Kerberos which already set out

to make it more scalable, and attempts to isolate the good ideas from the

bad. The use of public key technology with Kerberos will also be explored.

Secondly, it investigates the optimisation of the Kerberos protocol for

cross realm authentication. It does this with the Proxy Authentication

Ticket (PAT) [11], which enables one realm to issue tickets on behalf of the

remote realm without having to contact it for each request.

Thirdly, it investigates the problem of distributing public keys. While

Nj

public keys do not need to be secret, they must be kept secure at all times.

This is an important issue that has not yet been satisfactorily addressed,

even with certification authorities or certificate revocation lists[12].

1.3 Authorisation

Authorisation is "the property that all actions in the system are

always initiated, executed and terminated in accordance with
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requirements and constraints of the security policy." [7]

Or, put in another way, authorisation is the task of determining if a given

entity (ie. user or process) should have access to a given resource. This will

obviously depend on the security policy of the resource.

Another reference says "[...] the process of authorisation takes place

when a person controlling some resource determines who is allowed to access

it" [3]. However, this definition is over simplified, because in practise it is

a server that makes the decision who is allowed to access the resource, and

this decision is based on the security policy being used[l].

Authorisation is closely linked to access control, in that both are in-

tended for the same goal, however, access control includes authentication,

and authorisation requires it.

This thesis addresses authorisation issues. Authorisation is the second

step of an access control protocol. However, authorisation requires that

[\ end-users have access to non-repudiation.

*| Non-repudiation can be defined in different ways[13], but fundamentally

it allows anybody to verify that a digitally signed statement (certificate) was

written by the given author. Non-repudiation is important for authorisation,

as it makes it possible for a user to have a certificate that grants access to

a restricted resource.

Since non-repudiation is important to authorisation, suggestions are

made in how this could be achieved in Kerberos, even though Kerberos

is largely based on symmetric encryption.

General authorisation issues are investigated, and it is explained why

SPKI[14] is a state-of-the-art access control protocol. However, SPKI does

have some serious limitations (such as not being able to interoperate with

Kerberos) which are addressed in Chapter 8.
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1.4 Criteria

In order to evaluate the methods of authentication (used for authorisation)

and authorisation, a criteria is required. However, as no criterion has been

deined in existing references (eg. [3][1][15][16]) the following (idealised) cri-

teria will be used:

« Security: The protocol should be secure and not allow intruders to

forge their identification. Also, the system should be secure regardless

of who is using it, or how much they understand computer security.

• Scalability: The protocol should be scalable to the scope of the In-

ternet, without compromising security.

• Facility of use: The protocol should not be complicated to use. This

means, for instance, that it should not require the user to memorise

one password for each different computer. The protocol should be

easier to use than to abuse.

• Robustness: If a user/administrator makes a mistake (perhaps with-

out realizing it), the security of the protocol should be maintained.

Protocols will be discussed in later chapters that address these issues.

1.5 Aim and Scope of Thesis

This thesis is aimed at exploring issues involved in designing a secure and

scalable access control system. The first issue involves scalable authentica-

tion so that the server can identify who the user is using the system. The

second issue involves scalable authorisation, so that the server can tell if the

user is allowed to access a remote resource or not.

This thesis explores ways in which these issues can be addressed on a

wide scope, without compromising security in any way.
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1.6 Structure of Thesis

The next chapter introduces the basic concepts behind access control, and

how it is made up of authentication and authorisation.

Chapters 2 to 6 are on authentication and non repudiation. The first

of these chapters, Chapter 2, briefly describes known techniques for au-

thentication, including passwords, asymmetric authentication, the Needham

Schroeder Protocol, Kerberos, and Sesame. Kerberos is based on the Need-

ham Schroeder Protocol, and Sesame is now based on Kerberos.

One limitation of Kerberos is the requirement to contact a remote realm

for every cross realm ticket request. This issue is addressed in Chapter 3.

While this is a relatively simple issue, it leads on to more important issues.

One of these more important issues is how to distribute public keys in

a scalable way. A protocol is proposed in Chapter 4 that demonstrates

how public keys may be securely distributed across a large scale network.

This is done by distributing keys across the network in a random manner,

discouraging attempts to inject false keys into the system.

Non-repudiation is an important issue that is typically associated with

asymmetric encryption methods. Chapter 5 describes how non-repudiation

can be achieved using the techniques previously described. While this chap-

ter is not directly related to authentication or authorisation, non-repudiation

is important and has been incorporated in Chapters 7 and 8 on authorisa-

tion.

An evaluation of these authentication methods is given in Chapter 6.

Authorisation issues are explained in Chapter 7. This includes some

existing methods, and their limitations.

In Chapter 8, SPKI is introduced. SPK1 is a certificate scheme that does

both authentication and authorisation. A number of weak points are ad-

dressed in the SPKI protocol, and potential solutions to fix these problems.

Chapter 9 covers the conclusions of the thesis, followed by the glossary and
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references.

1.7 Contributions of this Thesis

Throughout the research for this thesis, a number of contributions have been

made. In particuku', this thesis:

• Provid s. comprehensive review of existing authentication protocols,

in Chapter 2. This includes simple protocols, such a password based

authentication, and works its way up to state-of-the-art protocols such

as asymmetric protocols and Kerberos.

• Describes fast cross realm authentication, in Chapter 3. This allows

intra-realm information to be cached in order to speed up intra-realm

ticket requests. This was published in [17].

• Highlights the problems with scalable public key exchange, and demon-

strates a possible solution. Scalable public key exchange is required

by any protocol that uses or requires public keys. An example of how

this could be achieved is given in Chapter 4. This was published in

[11]. This issue is often neglected, as protocols expect users to come

up with some external solution.

• Shows that non-repudiation is important to state-of-the-art authori-

sation protocols. Chapter 5 also demonstrates that non-repudiation

can be provided for even in authentication systems that do not use

public keys, such as Kerberos. A selection of different solutions are

described.

• Provides a comprehensive review of techniques used by authorisation

protocols, and the strengths and weaknesses of each protocol (Chapter

6).
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• Demonstrates possible enhancements to SPKI, in Chapter 8[18]. SPKI

(an access control protocol) has a number of limitations which are ad-

dressed here. The proposals here allow SPKI to be used with Kerberos,

to use multiple chains of signatures, and to be generalised so that cer-

tificates do not need to be specific to each protocol.

1.8 Publications by the Author

During the course of research conducted with relation to this thesis, much

of the work has been published, or has been submitted for publication,

as academic research papers. 95% of the work in these papers have been

contributed by the main author, Brian May. The details of these papers are

as follows.

| [11] Brian May and H. R. Wu. Making Kerberos scalable. In Sihan Qing

and Jan H. P. Eloff, editors, IFIP/SEC2000: Information Security,

f pages 144-147, Beijing, China, August 2000. IFIP, International Aca-

demic Publishers.

[17] Brian May and H. R. Wu. Scalable public key distribution. In Hakan

-Cardfelt, editor, Papers presented at MADE2000, Management and

Administration of Distributed Environments, Goteborg, Sweden, May

2000. Chalmers University of Technology.

[18] Brian May and H. R. Wu. Scalable authorisation with SPKI. Submit-

ted to Journal of Computer Security, March 2001.
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Chapter 2

Authentication Protocols

This chapter describes known authentication protocols and associated prob-

lems. Authentication is the first step in access control, and allows identifi-

cation of the end user for authorisation.

2.1 Password Based Authentication

The most widely used means of authentication as seen on most computer

systems, is password based authentication.

Authentication is often mistaken with authorisation, as some access con-

trol protocols have strong support for authentication but limited support for

support for authorisation, or vice versa. For example, a typical Unix system

I can have good authentication support, such as Kerberos, but poor authori-

sation based on file permissions. This contrasts with other systems, such as

Windows 98, which uses passwords for authorisation to network resources

but without any authentication.

Authentication occurs when the user U, sends a shared secret P (the

| password), to the server S, via the local computer C (Figure 2.1). The

| server knows the identity of U, as only the one user is meant to know the

i
value of P.

13
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u
1

D
UP
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C
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3
S

I
if

s
if
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I

Figure 2.1: Password Based Authentication

There are weak links in the authentication:

1. U to D\ There is the potential that somebody may observe the user

entering the password. Even worse, some systems automatically dis-

play the password on the screen as the user is entering it. Fortunately,

these systems are reasonable rare.

2. D to C: User U manually enters the password P , into C. Passwords

can be remembered by the person, can be readily updated, and (if

used correctly) are difficult to steal or guess.

The user may see a password prompt, think it is the login process,

and enter password, when in actual fact a 'Trojan horse' program was

running that grabs the users password and stores it for later use by

the intruder[19].

As explained previously, this is a problem when either the D to C link

or C can be compromised. This is the case with most authentication

schemes, as they usually rely on the user entering a password which

could be sent to the wrong program running on the computer. This

false program could emulates the original software in every way, except

it grabs the users password.

3. C to S: The password P, may be sent from C to 5", either decrypted

(eg. plain telnet) or encrypted (eg. SSL-telnet or SSH[20] using pass-

word based authentication). If the password is sent over the network

un-encrypted, it may be stolen by spying on the network data.

If the remote computer has been compromised (or perhaps it is the
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wrong computer), then it can grab the password when it is entered.

Or, the remote computer would have to store the password somewhere

(for verification), and this copy could be stolen. This is especially an

issue if a user has the same password on many computers. Even if

the remote copy is encrypted, it may be subject to off-line dictionary

attack, which is relatively easy, as users cannot always be trusted to

pick good passwords[21].

There are a number of different methods that 5 could use to check the

password. Some examples are explained as follows:

/etc/passwd: This involves encrypting the password via a one way func-

tion with a salt [22] (salt is a random value, its use means that the

same password will look different on different computers). The result

is checked against a global database in /etc/passwd[23]. Limitations:

Anyone can read the password file, and attack it on another com-

puter off-line via dictionary (or similar) attack. While the risk of the

attacker cracking passwords can be minimised by enforcing the use

of good passwords[10], problems still exist, as the password must be

checked by the remote computer (see above section on forwarding au-

thentication).

/etc/shadow: Similar to /etc/passwd, but only system processes can read

it, hence making it harder to attack via off-line dictionary attack

[22] [24]. It is not scalable, as it will only work on one computer.

NIS: Same as for /etc/passwd, except the password file is shared between

computers. Anyone on the network can read the shared password

file. Online access to the Network Information Services (NIS) server

is required, so it cannot be used for disconnected computer authenti-

cation^].
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NIS+: The Network Information Service Plus (NIS+) is similar to NIS

[26], but communications can be encrypted.

LDAP: Similar to NIS+, but the Lightweight Directory Access Protocol

(LDAP) is an improved protocol[27] that is more flexible. LDAP is a

hierarchy based distributed database protocol that is ideal for authen-

tication, but not restricted to authentication.

Encryption is supported so that spying on the network data is impossi-

ble. It is possible to duplicate changes on a disconnected computer for

off-line usage, either by generating a slave LDAP server, or generat-

ing /etc/passwd and /etc/shadow files from the master LDAP server.

However this opens up the system to dictionary attack, as anyone

with physical access to the disconnected computer has access to the

encrypted passwords.

Each of the three steps is a potential security risk, as it involves an extra

stage where the password may be stolen. Furthermore, passwords are easy

to abuse [19] and users may not always understand or adhere to common

security policies.

For instance, the security of the password has certain requirements. Pick-

ing good passwords is extremely important[10]. While the number of possi-

ble passwords is extremely high, the number likely to be selected in practice

is much smaller[10][21], making it relatively easy to break into accounts via

brute guessing.

Even system administrators have difficulties with passwords: eg. should

a system administrator recommend that the same password be used on all

systems, or should a user have a different password on each system[19]? If

one computer'is broken into, the advantage of using a different password for

each system is that the other computers remain secure. The disadvantage

is that users find it harder to remember multiple passwords, and are more
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likely to write them down somewhere.

2.2 Biometrics

Biometrics is another possibility for achieving security. The user's finger-

prints, hand geometry, retina, voice, face, writing and/or typing speed may

be used in order to authenticate the user to the computer system[28].

Despite research in the area, for example Solms et al[29], the use of

biometrics in large networks is limited, as a database is required of given

biometric parameters. This has similar problems to keeping a database of

non-encrypted passwords. This database must be kept secure, while at the

same time must be distributed across the entire network.

While biometrics could be used in disconnected computers, if any unau-

thorised users gain physical access to the disconnected computer, they could

gain access to the digital fingerprints of everyone authorised to access the

disconnected computer.

Biometrics is only suitable where all the links (ie. card reader to C

and C to S) are completely secure. It is not suitable for a general remote

authentication system, as there is no way that the remote system can be

sure the data is coming from the device, and is not being forged. As such, it

resembles a password based authentication system, except that it is difficult

to change the password (this may require changing features of the person).

As an example, if an intruder was able to grab a digital copy of C/'s

biometric parameters, then the intruder might be able feed it into the au-

thentication process (between the card reader and C or between C and S),

fooling S into believing that he/she is really U. Not only that, but it would

be very difficult to securely authenticate U anymore, as this would involve

changing his/her biometric parameters.

The biometrics may be used in conjunction with another mechanism,

such as passwords[30]. However, there are serious problems when check-
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ing biometric details for large scale authentication. They involve similar

problems to the password based authentication protocols.

A better system may be to combine biometrics with smart-cards[31].

This would mean that the user requires the smart card and the user's bio-

metrics need to match before access can be granted. This is further discussed

below, in the section on smart cards.

2.3 Asymmetric Authentication

Asymmetric authentication, (eg. RSA[32] and DSA[33]) uses public key tech-

nology in order to prove the identity of U to S.

Usually, the user U keeps a copy of his/her secret inverse key (also known

as the public asymmetric key) on his/her local computer C. Although this

key is too complicated to remember as a password, it may be protected by

a password.

The server 5, keeps a copy of the users public key. While this key

can be made public, the copy kept on the server must not be altered, and

must correspond to the correct secret inverse key, or the wrong user may be

granted access.

• S randomly generates a nonce, and sends it.

• C receives a nonce, encrypts (ie. signs) it with the user's private key,

and sends it back to S.

• S decrypts data with user's public key.

• If the result is the same nonce that was sent, the user is authenticated.

As a direct result of this requirement to keep a copy of the inverse key

on the local computer, asymmetric authentication, by itself, is not suitable

for local authentication, because in most cases an unauthorised user already
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has easy access to the secret inverse key. This generally rules out operation

on disconnected computers

It can be argued that asymmetric authentication is not a true form of

authentication as it must be stored on computer, where it can be used by

anyone. The password protecting the public key can also be attacked by

off-line dictionary attack.

However, with special hardware, smart cards may solve these issues, see

Section 2.5.

A number of other issues remain. For instance, the remote computer

needs some way of obtaining the user's public, key, in order to verify the

received data. While the public key does not need to be kept private, it

must still be transmitted securely, or other parties could replace the key

while it is being transferred. There are a number of ways this transfer could

be done:

• Simply copy the key un-encrypted. As explained above, this is seri-

ously flawed, as somebody else might replace the key with their key

while it is in transit, hence the wrong user will be authenticated.

• Set up a CA (certification authority), which is responsible for signing

correct keys[19], producing a certificate. This is still seriously flawed —

- how does the CA know when it is signing the correct key? Frequently

a phone call is used to verify the identity of the remote user, but how

does this prove anything? An intruder could be making the phone

call, and the CA administrator would have no way of telling.

• Setup a network of trusted users. A user designates a key as being

trusted by signing it. That way, chains of trusted keys can be created,

ie. if S trusts X and X trusts U, then S automatically trusts U.

However, this is not scalable, as the longer the chain becomes, the

more likely it is that a single link may become compromised and sign
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a fake key [19].

This is just one issue that is difficult to get right. A total of five potential

compliance defects are known[12], when asymmetric authentication systems

are used by end-users:

1 Authentication of local user to distant CA, as previously explained,

is difficult, and probably can onlv be done securely via a face to face

meeting.

2 When authenticating the CA, it is difficult for end users to know if

the CA's signature is valid, as this process requires knowledge of the

trusted CA's signature.

3 It is difficult to revoke a public key reliably, in case the associated

private key is stolen. It is possible to require servers always check a

central key revocation list before using the public key, but this cannot

work if the central server is down, or for off-line disconnected computer

use.

4 Private keys are generally protected by a pass phrase. This prevents

the key from being used by an intruder, if stolen. However, the user

either must type in this pass phrase on each use, or store it in memory

or disk.

5 There is no way to force a user to pick a good pass phrase, hence if the

key was stolen, it could be subject to an off-line dictionary attack[21].

The first two concerns involve distribution of public keys. These concerns

are addressed in Chapter 4. The other three issues are not as significant if

smart cards are used, see Section 2.5. Another alternative is to use an

authentication system such as Kerberos, which does not require public keys

for end users.
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These concerns have been relayed in an independent study[34], which

identified ten security risks in public key infrastructure:

1 A 'trusted' CA may not take responsibility for its actions.

2 Protecting the private key from unauthorised use can be difficult (see

Items 4 and 5, in the previous discussion).

3 Users may trust forged 'root certificates', for CAs (see Item 2, in the

previous discussion).

4 Two people may share the same name, making it difficult to distinguish

between the two cases.

5 Certificates cannot be used for authorisation, only authentication.

6 Certain implementations of public key protocols, eg. SSL, do not dis-

play (by default) the trusted identity of the remote host.

7 Some CAs use a less secure registration authority (RA) structure.

8 It is difficult for the CA to identify the end-user before signing their

certificate (see item 1, in the previous discussion).

9 Many vendors of public key infrastructure do not adopt or support

secure practices, eg. the use of certificate revocation lists (see item 3,

in the previous discussion).

10 Other alternatives exist. Protocols that use Single Sign On (SSO) are

suggested[34], for example, Kerberos.

Problem 4 can be solved by using user IDs and organisation names in-

stead of user names. This means the identity can be unique for each user,

as long as the organisation preserves the uniqueness of the user ID. This is

the approach taken by Kerberos (see Kerberos section, below).
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Problem 5 requires better authorisation procedures. Authorisation will

be covered in more detail in Chapter 6. Problem 6 and 7 are implementation

issues, and not discussed in detail.

Since all the problems unique to the second list have been addrt.-* <».

the rest of this thesis will concentrate on the issues in the first list. It has

been suggested that because of these limitations, public key systems are

best suited for system administrators who can realistically be expected to

meet the full demands of public key distribution[12]. In fact, this is what

the PkCrc£s[35] proposal aims for.

There are well known protocols for asymmetric authentication: Secure

Shell[20] (SSH) (replacement for telnet) and Secure Sockets Layer (SSL).

A later versions of SSL is called Transport Layer Security[36] (TLS). Both

protocols are used by secure versions of Hypertext Transfer Protocol[37]

(HTTP), Lightweight Directory Access Protocol[27] (LDAP), Post Office

Protocol[38] (POP), Internet Message Access Protocol[38] (IMAP), and other

communication protocols.

I
2.4 Symmetric Authentication

| One computer (either local or remote) encrypts data with the user's pass-

word, and the other computer decrypts it. The remote computer must

be trusted with the copy of the user's password. When the local com-

puter decrypts and/or encrypts the data with the user's password, this

proves the user's identity. Instead of the local computer doing the encryp-

tion/decryption, it could be the user's smart-card (as applicable).

Basic symmetric systems offer no additional security over password based

systems with a secure channel between C and S. This is because both sys-

tems need to know the user's password. However, better protocols, such as

Kerberos, to be discussed later, overcome this limitation by using a trusted

third party.
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Symmetric authentication methods are a trade-off:

• symmetric systems generally require a strong password to remain se-

cure. This can, and should be memorised.

• asymmetric systems require the private key to remain secure. This

cannot be memorised, but must remain or disk. If it is stolen, an

off-line dictionary attack is possible. Use of smart cards reduces the

risk of the private key being stolen without notice.

While this simple protocol has problems, the ideas lead up to better

protocols.

2.5 Smart-Cards

The user's secret inverse key (asymmetric protocols) or private key (sym-

metric protocols) may be stored on smart-card. Ideally this would be done

in such a manner to make it impossible for anyone to read or alter the pri-

vate data. This has many benefits, for instance asymmetric authentication

protocols can now be used for local authentication. It also makes the tra-

ditional trojan horse attack impossible, as C never needs to see any private

keys or private passwords.

However, it could be argued that this is not a form of authentication,

as anyone with the card can pretend to be the original user. To solve this,

methods have been developed to authenticate the user to the smart-card

first, eg. via a secret, a fingerprint scaniifcr[31], or a portable secondary

device[39]. This authentication would be carried out in a specialised smart

card reader, so the secret can not be stolen by the computer.

Some applications may require a fingerprint scanner. For instance, if the

user's smart card contains a drug prescription, then it must not be used

by any other users in case the presciiption is used illegally. Perhaps the

original user wants to sell the prescription on the black market. While thery
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is nothing you can do about this (the user could always illegally sell the

drugs after obtaining them through legal means via a doctors prescription),

using a smart card helps, as only one person can have the private key at a

time. Also if a fingerprint scanner was required it would be harder for the

user to allow illegal access to the smart card.

Computers with smart card readers are not yet common, nor are there

any standards to make different smart card readers interact with wide scale

authentication protocols. Also, current smart cards are not tamper resist-

ant[15], hence there is always the risk of security being breached. Hence,

smart card readers axe considered as a distinct and separate solution for this

thesis.

2.6 Needham Schroeder Protocol

The Needham Schroeder Protocol[40], first published in 1978, gives the

framework for newer authentication protocols[19]. There are several ver-

sions of this protocol, however all of them rely on the same principles.

For the operation of this protocol, a trusted third party is required. This

third party, now called the Key Distribution Centre (KDC), is trusted to

authenticate one user to a computer (Figure 2.2). Essentially, the user U

authenticates to the KDC first, which is trusted by S. For implementation

issues, the KDC does not communicate directly to the server, but instead

sends an encrypted ticket back to G. As this ticket is encrypted in such a

way that only S can decrypt it, the end affect is that it is passed directly

from the KDC to S.

When the client C (acting on behalf the the user U) wishes to com-

nvx dcate to the server S, it securely obtains a ticket from the KDC. This

ticket is encrypted in such a way that only S can read it. When £ decrypts

the ticket, it knows that it is from the KDC. The client, C forwards this

ticket to S, and this proves C/'s authentication to S. This ticket contains a
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u c s

KDC

Figure 2.2: Trusted Third Party

shared secret key for use between U and S which can be used for subsequent

communications.

However the different variants of the Needham Schroeder Protocol have

different variants of the replay attack[41][42][19]. In one case, an intruder

might steal a copy of the ticket that the client C used to communicate to S,

perhaps several years later. While U no longer needs or is using the ticket,

it remains valid indefinitely.

A number of solutions exist to this security flaw. One of them is the use

of time stamps, as done in Kerberos.

2.7 Kerberos

Kerberos is an authentication protocol[9], based on the Needham Schroeder

Protocol, created at the Massachusetts Institute of Technology (MIT). Ker-

beros, is similar to the Needham Schroeder Protocol in that it relies on a

trusted KDC to issue tickets to clients. The clients in turn, pass the ticket

on to the server for authentication.

The use of time stamps completely eliminates the security problems in

the Needham Schroeder Protocol, however, it could be argued this intro-

duces a new problems. For instance, some have argued that it is a security

risk if the clocks aren't properly synchronised[43]. This issue has been sat-

isfactorily addressed in a proposal[42] to synchronise the clocks on initial

contact.
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In Kerberos[9], each administrated domain is called a realm. Each user

and computer within that realm is called a principle. The principle is typ-

ically the user's login name with the realm appended at the end. Initially,

the client obtains a ticket for the ticket granting service (TGS), called the

ticket granting ticket (TGT). This ticket allows the client, to obtain tickets

for other services without the user being prompted for his/her password

each time.

In order to keep the notation ronsistent, this thesis will continue use the

current notation for user (U), local computer (C), and remote server (S).

In the following, X —> Y : M means the message M is being sent

from A* to Y, {D}K means D has been encrypted with the key k, and

X : {D}K,K —>• D indicates the process where {X}K is decrypted with

the key K to form X by X. For simplicity, only the fields listed in [44] are

listed here. I have not included the fields not listed in [44].

Kerberos authentication[4] involves several steps1:

1. Tne local user asks the local computer to obtain a ticket.

2. The local computer requests the ticket from the KDC, given the prin-

ciple of the local user.

C —> KDC : (C wants TC,TGS)

where:

Tc,TGS

KTGS

KG,TGS

— {KC,TGS}KTGS

= Ticket for C to use the TGS

= TGT

= private key only known to KDC and TGS

= private TGS session key

xthis example assumes that pre-authentication 's not used[9]
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3. The KDC returns a Ticket Granting Ticket (TGT), which contains

the TGS session key {KC,TGS) encrypted with the private key known

only to the KDC and TGS (KTGS) SO that only the KDC can read it.

It also returns the TGS session key (KC,TGS) to the user, encrypted

with Kc (the user's password). This TGT contains a time restriction,

and cannot be used after it expires.

KDC —> C : TC,TGS,

where:

= user's password

4. The local computer asks the user for their password and decrypts the

session key. This in affect is local authentication. If the session key

can be decrypted, it proves that the user is U. However, care must be

taken not to get tricked into decrypting the wrong session key.

0 : {KC,TGS}KC,KC —> KC,TGS

When the user wishes to access a new remote server (ie. remote authen-

tication):

1. The local computer sends request for the ticket to the TGS. This

request contains the principle for the remote computer, as well as

the TGT. The authenticator is the clients principle encrypted with

KC,TGS,
 a n d is used to prove that the request did come from C.

C —> TGS : (C wants TC,S),TC,TGS,AC,TGS

where:

,TGS = {0}KC,TGS

= Kerberos authenticator
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2. The TGS returns a ticket, Tc,s that can only be decrypted by the

remote computer, as well as a copy of the new session key, Kc,s that

is encrypted with KC,TGS, SO it can be decrypted by C.

TGS C : Tc,s, {KC,S}KC,TGS

where: Tc,s = {Kc,s}Ks

3. The local computer decrypts the session key, Kc,s, using the TGS ses-

sion key, KC,TGS- It forwards the ticket, Tc,s to the remote computer.

The remote computer knows the identity of the local user.

C —> S : Tc,s,Ac,s

Where: Ac,s = {C}Kc,s

4. It can encrypt something with the session key and send it. back to the

local user. The local user decrypts the data and knows it is commu-

nicating to the correct remote computer.

S-+C: {S}KCtS

Full details can be found in [45] and [9].

2.7.1 Security of Kerberos

Unlike other competing techniques (e.g. Pretty Good Privacy[46] (PGP),

SSH with asymmetric based authentication[47][20] and SSL[48]), Kerberos

is based entirely on symmetric encryption protocols. This means that there

is no need for end-users to maintain and distribute public keys and there is

no risk of an attacker stealing a copy of the private key from a computer[12].

This makes Kerberos one oi the most secure protocols for the mainstream

public.
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Kerberos has been exposed to intense international scrutiny. It has

been proven numerous times, by completely different methods, to be en-

tirely secure[41][49]. A number of limitations were found in Version 4 of

the protocol[43]. While most of these issues have been addressed in Version

5[9][42][50], at least two problems still exist.

One of these is the risk of dictionary attack on the key which has been

encrypted with the user's password. It has been demonstrated that this is

easy if the users do not pick good passwords[21]. A number of solutions

have been proposed, from improved protocols[21], using smart-cards[51], to

using asymmetric keys[52]. The other problem is scalability.

2.7.2 Scalability of Kerberos

Kerberos has always been designed around the concept of a single realm.

However, with the increasing growth of the Internet, more and more people

want to be able to access sites from other realms (eg other organisations).

MIT has tried to address these issues by introducing Kerberos Version 4

which allows cross realm autiientication[45]. With this standard, authen-

tication can now occur between realm boundaries. It is extremely limited

though, as a pair of secret keys have to be setup for each pair of realms

in advance. This requirement prevents it from being used in large scale

environments.

Kerberos Version 5 tried to improve on this limitation[9]. It allows the

configuration of tree like hierarchies, so no two realms need to directly know

each other. Instead, one realm can contact another realm via several inter-

mediate realms. However, this still has limitations in large scale networks:

only one path may be used, and if any single host along this path is subject

to a denial of service attack, the entire path becomes subject to denial of

service. Even worse, if any single host is not trustworthy, it can forge any

user's identity on the remote system.
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Kerberos has a limitation that the user cannot authenticate without an

active network connection. This is because there is no way to contact the

KDC, a requirement of Kerberos. While it would be possible to copy the

KDC onto the disconnected computer, this is dangerously insecure as anyone

with access to the disconnected computer could break into every computer

in the entire realm. Solving this limitation is not possible though without

major changes to Kerberos (eg. make it more like an asymmetric based

system).

2.8 Kerberos Extensions

As Kerberos is gaining in popularity, a number of different extensions have

already been proposed to address some of its limitations. The remainder of

this chapter investigates these extensions in detail, and discusses the pros

and cons of some of the proposals.

2.8.1 Pklnit

Pklnit adds asymmetric authentication capabilities to Kerberos for end-

users [52]. While this is an interesting idea, and is required for the PkCross

proposal, it suffers from all of the problems (see Section 2.3, page 18) that

asymmetric authentication schemes suffer, without adding any significant

benefits.

2.8.2 PkCross

PkCross is a proposed extension to Pklnit and Kerberos that allows it to use

asymmetric authentication for cross realm authentication while continuing

to use symmetric authentication for end users[35]. A 3 end users do not need

to worry about administration of the public keys, the compliance defects[12]

(see"Section 2.3, page 18) are no longer relevant.



2.8. KERBEROS EXTENSIONS 31

However, the problem of securely distributing public keys still remains.

This is one of the issues addressed in this thesis.

2.8.3 Sesame/DCE

Another technique, similar to Kerberos is Sesame (a Secure European Sys-

tem for Applications in a Multi-vendor Environment [53]). Sesame, can use

asymmetric keys for authentication, similar to the proposed Pklnit [52] and

PkCross[35] extensions for Kerberos.

Sesame also implements an authorisation, using a privilege certification.

As explained in Chapter 6, this privilege certificate allows listing the groups

which the user belongs to.

However, Sesame does not add any significant features to the Kerberos

protocol for authentication, and distribution is seriously restricted:

• Unlike some other implementations of Kerberos (eg. MIT [44] and

Heimdal[54]), Sesame is not free software[55]. Instead, it is propri-

etary software because the the license requires you ask for permission

before using it for non-experimental purposes. Commercial use re-

quires payment for a commercial license. Prom my experience, free

software encourages use and is more likely to comply with known de-

facto standards.

• Some functions (eg. Certification Authority) require the use of a pro-

prietary operating system [56] (alternatives exist but are discoura-

ged[56]).

The Distributed Computing Environment (DCE[57]) is similar to Sesame

in that it adds authorisation to Kerberos[15], using a Privilege Authentica-

tion Certification (PAC). DCE is now fully open source. As such, it can be

freely distributed and modified without restriction.
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However, neither Sesame nor DCE changes the Kerberos authentication

protocol, except to add similar capabilities for authentication to those of

Kerberos with Pklnit and PkCross extensions.

2.8.4 Smart Cards

A better approach for authentication is to use smart cards[51]. With a smart

card system, it is easy to determine if a smart card has been lost or stolen.

If the card is not lost or stolen, unauthorised use is not possible.

Authentication is very similar to standard Kerberos (Figure 2.3), except

that the 4th step (highlighted) has changed:

1. The user, U, asks the local computer to obtain a ticket.

2. The client, C requests the ticket from the KDC, given the principle

for U.

C —v KDC : {C Wants TC,TGS)

3. The KDC returns a TGT (ticket granting ticket), TC,TGS, which is

encrypted so that only the KDC can read it. It also returns a ses-

sion key to the user, encrypted with Kc- This TGT contains a time

restriction, and cannot be used after it expires.

KDC C : {KC,TGS}KC

Where: TC,TGS = {KC,TGS}KTGS

4. The local computer sends the encrypted session key to the

smart card reader (D). The smart card reader will decrypt

the session key with the stored value of Kc, but only if the

user has been authenticated to the smart card first. Kc could

be a random number, and does not have to be based on an

easy to remember text password.
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C-+D : {KC,TGS}KC

D : {KC,TGS}KC,KC —> KC,TGS

D —> C : KC,TGS

After the ticket is obtained, authentication to S occurs exactly as per

normal Kerberos.

A possible improvement to this scheme would be to store the ticket on

the smart-card, too, so it cannot be stolen after the card has been removed

from the card reader.

Figure 2.3: Trusted Third Party

While these techniques could considerably improve security, care still

needs to be taken if the smart-card is stolen, as a tampered smart card

reader could read the secrets being used to access the card. In this case, the

smart-card can be disabled by changing the value of Kc.

However, the biggest problem with wide scale use of smart cards is that

a single standard needs to be developed that can be used by everyone. This

is a very important issue that is beyond the scope of this thesis.

2.8.5 Kerberos Configuration

Another important issue is locating the KDC. Traditionally, this information

has been hard-coded into every computer in a file called krb5. conf. This is

a serious limitation, as this file would have to be modified on every computer

whenever any changes occur to any KDC on the Internet.
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A good solution exists, where this information is now stored in the do-

main name service (DNS) [58]. The DNS was designed from the beginning

to be scalable across the scope of the Internet. While a potential problem

with the DNS is that information is not secure, Kerberos does not make any

assumptions on the accuracy of this data anyway.

This extension has already been implemented in at least two implemen-

tations of Kerberos: MIT Kerberos and Heimdal.

2.9 Summary

Authentication is an important part of access control, as it identifies the

user requiring access to a resource.

This chapter has shown that while a number of different protocols exist

for authentication, they all have different tradeoffs. For instance, password

based systems are the easiest to implement on a large scale, but are the

least secure because users need to remember a different password for each

system. Biometrics (eg. fingerprint scanner), on the surface, would appear

to overcome this limitation, but biometrics require secure connections and

a secure global database. If somebody's fingerprint is stolen, it is difficult

to revoke it more than 10 times, as mosi people only have 10 ringers.

The asymmetric authentication methods remove ihe neea to transfer a

private key. Instead these require transferring a public key securely, cur-

rently there is no satisfactory way of doing this. They also require that

end users maintain their own private keys in a secure manner. While smart

cards would make the latter step easier, no single standard of smart card

authentication system has yet been widely deployed..

Symmetric authentication methods (eg. Kerberos) remove the need for

the user to maintain a private key on computer or the need to memorise

many passwords, as the single password can allow access anywhere. How-

ever, Kerberos has other limitations, such as the design makes authentication
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between organisations difficult to administrate. While there are proposals

to allow Kerberos to use asymmetric keys for cross realm authentication, no

method has been designed for securely transferring the public keys required

for cross realm authentication.

The next chapter addresses the major limitation in the Kerberos protocol

in that cross realm authentication is not scalable to large internetworks.



Chapter 3

Fast Cross-Realm

Authentication

The standard Kerberos protocol requires the local KDC to contact the re-

mote KDC for every cross realm ticket request. This is slow, and more

likely to fail (eg if the remote KDC is not contactable for some reason). The

proposal in this chapter improves Kerberos performance between multiple

realms, by allowing the local KDC to produce tickets on behalf of the remote

KDC.

3.1 Introduction

If a number of local users wish to access a remote realm, then normally the

local KDC would have to contact the remote realm once for each request.

The proposal in this chapter allows the local KDC to issue tickets on behalf

of the remote KDC with minimal contact with the remote KDC1.

*The Proxy Authentication Ticket (PAT) proposal described here is not related to

proxiable tickets as defined in the Kerberos standard. This proposal aims to allow the

local KDC to perform authentication on behalf of the remote KDC, while the proxiable

ticket standard in Kerberos allows a user to give his/her ticket to third party services, as

a primitive form of authorisation (see Chapter 6).

36
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3.2 Notation

Note the following use of terminology. All other notations are consistent

with those in [45], the original Kerberos 4 proposal.

Realm Administrative domain.

U Any user who may be a client.

C A computer that provides access a server.

S A computer that provides a service to a client.

KDC Key Distribution Centre, i.e. a trusted computer.

LKDG Local KDC is the KDC in the same realm as the client.

RKDC Remote KDC is the KDC in the same realm as the server.

PAT Proxy Authentication Ticket allows a KDC to act as a proxy

for the KDC at the remote realm and issue tickets on r••'

behalf, not to be confused with proxy tickets, which can be

given to a server to allow it to act on the user's behalf.

3.3 Current Technology

The problem is that it is not currently possible for one KDC to hand over

the responsibility to another KDC to issue tickets in a secure manner.

In order to access a server in a remote realm, the local client needs the

ticket for the remote server. The client puts the request through to the

local KDC for the ticket on the remote server. Although the ticket must be

encrypted with the private key of the server, the local KDC does not know

the private key. The local KDC could be given a copy of this private key,

but that raises other issues, such as keeping this key private. Hence, it is

not scalable.

Current versions of Kerberos get around this problem by forwarding the

request to the next KDC up the tree or the remote KDC server. This means

that if any ~KDC is compromised, then the results of the authentication can
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not be trusted.

3.4 Solution

However, the above techniques can be combined to produce a secure system.

The local KDC can get the ticket from the remote KDC, for the Proxy

Authentication Service (PAS). In order to simplify matters, the ticket is

called a PAT. This ticket would allow the local KDC to produce tickets on

behalf of the remote KDC. The full details are given below:

1. The client C asks the local KDC for its service ticket, in clear-text:

C —> LKDC : (C wants Tc,s)

2. The local KDC asks the remote KDC for a PAT2:

LKDC —> RKDC : {LKDC wants TLKDC,PAS)

Note: If the local KDC was configured for PkCross[35] operation, the

PAT would be obtained via Pklnit[52] rather than standard Kerberos.

PkCross would not be used, as the remote KDC sees the local KDC

as the end client, not as an intermediate KDC.

3. The remote KDC returns the PAT as if the local KDC were a normal

client.

RKDC —> LKDC : TLKDC,PAS,{KLKDC,PAS}KLKDC

where: TLKDC,PAS = {KLKDC,PAS}KPAS (assuming standard Ker-

beros is used).

4. The local KDC will create a ticket for the local user, as per the normal

procedure, with one difference: This ticket contains the local KDC's
2This step and the next step can be skipped if the local KDC already has a PAT that

will last for the lifetime for the client's ticket.
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PAT in the TicketExtensions field. The rest of the ticket is encrypted

with the LKDCs session key. The PAT must not expire before the

ticket issued to the user expires.

LKDC—>C:Tc,s,{Kc,s}Kc

where: Tc,s = {KC,S}KLKDC,PAS,TLKDC,PAS

5. The client forwards the ticket to the server along with its authenticator

to the server in the normal manner.

where: Ac,s = {C}Kc,s

6. The server will create a secure channel to the PAS, using any secure

protocol, such as Kerbej.os[9] (The PAS can be a machine independent

of the KDC, but must be as secure as the KDC). It will provide the PAS

a copy of the ticket. The PAS will decrypt the PAT, hence obtaining

Kikdc,PAS- This enables it to decrypt the contents of the key to obtain

The PAS checks that the ticket is valid (it must be for a user in the

same realm as the PAT was issued to), and returns it to the server.

S —• PAS : Tc,s

PAS —> S : Kc,s (encrypted)

7. The server continues authentication as normal, but instead of trying

to decrypt the packet itself, it trusts the decrypted results obtained

from the PAS. The only task left is to decrypt ACtS using KC)S to obtain

C. This verifies that the ticket did come from the client.

Previously,, the client (either directly/indirectly) had to contact the re-

mote KDC to obtain a ticket. Now, it is the server's responsibility to contact



3.5. PROOF 40

the PAS. This is better than the previous situation, as it is highly likely

that the server would be on the same network as the PAS, and the PAS only

needs to keep track of one secret, the PAS key. In addition, the PAS could

be split up, as required, so different PAS are responsible for different remote

realms.

3.5 Proof

Proof of security using Autlog[59], an improved form of BAN[41] logic. It

uses the following definitions:

X < Y X sees the data Y.

X |= Y X believes the data Y to be correct.

X |« Y X recently sent Y.

#(Y") Y has never been sent before.

p(Y) Y is recognised.

K
X Y K is a private key known only to X and Y.

i—>

The proof follows:

1. The PAS checks the PAT (contained within client's ticket):

PAS

PAS

PAS

PAS

PAS

<

h

{KLKDC,PAS}KPAS

RKDC PAS PAS
<—y

P{KLKDC,PAS)

#(KLKDC,PAS)

RKDC |« KLKDC,PAS

(3.1)

(3.2)

(3.3)

(3.4)

(3-5)

The first step indictates that the PAS, PAS, sees the key KLKDC,PAS,

encrypted by the server's private key, KPAS- The next three steps

assume that KPAS is for private use between RKDC and PAS, and
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that the encrypted key can be decrypted and is determined to be fresh

(never sent before). The last step is derived using rule Kl[59]. It is

the conclusion that PAS believes that RKDC recently sent the key

that was received.

2. The PAS decrypts the client's ticket, and transmits it to the server.

This step does not introduce any security holes as long as the transfer

is encrypted. It does not even matter if the replay attacks occur, as

the PAS does not check for replays, the server does when it receives

the decrypted ticket:

s

s

s
s
s
s

<

h
1=
h

{KC,S}KLKDC,PAS

LKDC KLKDC>PAS PAS

p{Kc,s)

#(Kc,s)

PAS |« {KC,S}KLKDC,PAS

C |« Kc,s

(3.6)

(3.7)

(3.8)

(3-9)

(3.10)

(3.11)

3. The server checks client's authenticator (as per standard Kerberos):

S < {C}Kc>s (3.12)

Kr <?
S (= C ' S (3.13)

S \= p(C) (3.14)

S \= #((7) (3.15)

S \= C\*{C}Kc<s (3.16)

Now S believes that the client, C, recently said C (ie its name).
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This can illustrated as a search tree[60], as in Figure 3.1. For an intruder

to tamper with the authentication process, he/she would ultimately have to

alter C (at the top of the tree). While C, in encrypted form is available

(right hand side), the key required is not available (hence the required state,

or req for short). The key, Kc,s is only ever sent in encrypted form (next

layer down). It can only be decrypted ifKLKDC,PAS was available. However

finding KLKDC,PAS requires knowledge of Kp^s which is only known by

PAS and RKDC.

{C}KCiS (avail)

KLKDC,PAS (aVa i l)

KpAs (req) {KLKDC,PAS}KPAS (avail)

Figure 3.1: Search Tree

3.6 Implementation

This proposal only requires minimal modifications. No changes are required

to the client software, as it just passes the ticket on without modification.

The only changes required are to the local KDC (needs to request and use

the PAT), the server (needs to contact the PAS and ask it to decrypt the

ticket), and the PAS (needs to decrypt the incoming ticket).
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3.7 Scalability

Greater scalability is achieved as any KDC can produce an indefinite number

of tickets in a limited time span (see next section on security) for any other

realm with just tho initial contact. This results in less overhead traffic

between the two realms. Also this means that the local KDC can issue

tickets for the remote realm, even if the remote KDC is off-line, as long as

it has a valid PAT (it may not be possible to use it though unless the PAS

is online).

3.8 Security

This proposal is a tradeoff between efficiency and security:

• The efficiency of not having to contact the remote realm for every

request.

o The potential security risk of someone stealing tlie PAT. This would

allow the intruder to authenticate to the remote realm as anybody in

the local realm. This risk would expire when the PAT expires.

Since the PAT must be kept as secure as the local KDC, and at the same

time loss of the PAT will only affect users of the local KDC, the expiry time

can be reasonable large. This will maximise the time allowed before the

next PAT must be issued.

If somebody steals the PAT, this would typically involve breaking into

the local KDC first. Normally, if the local KDC is broken into, the remote

KDC can be told to deny access to future ticket requests (ie. the value of

Kikdc can be changed). However, if a PAT was used instead, then access

would still be granted until the PAT expired (or authorisation information

changed, but that is beyond the scope of this thesis). Hence, some KDCs
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may want a lower expiry time in order to minimise the damage in case a

remote KDC is known to be have been breached.

The PAS could also be reconfigured to reject any incoming authentica-

tion requests from the suspect domain. This would allow the local KDC to

keep a copy of the PAT indefinitely, as requests will be denied on receipt

by the server. However, this would make the PAS more complicated, as it

would have to store information on suspected domains, and the small gain

may not be worth the effort.

3.9 Summary

The proposal in this chapter improves Kerberos performance between mul-

tiple realms, by allowing the local KDC to produce tickets on behalf of the

remote KDC. This overcomes the limitation in the standard Kerberos pro-

tocol, in that it requires the local KDC to contact the remote KDC for every

cross realm ticket request. This is slow, and more likely to fail (eg if the

remote KDC is not contactable for some reason).

This is achieved by allowing the local KDC contact the remote KDC in

advance, in order to get a proxy authentication ticket, which the local KDC

can use to create tickets on behalf of the remote KDC.
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Chapter 4

Scalable Public Key

Distribution

Scalable public key distribution is an important part of any protocol that

uses asymmetric keys for authentication. Unfortunately, existing methods

suffer from at least one serious limitation: there is no easy way to identify

the correct public key over a fraudulent public key, hence allowing the 'man

in the middle attack', where the wrong user is identified.

The proposal given in this chapter allows unlimited distribution of public

keys in a secure way on a large scale network. There are two ways this could

be used:

1. The secret inverse keys each belong to a KDC, and a proposal like

PkCross is used, so that keys do not have to be allocated to individual

end users (see Section 2.3, page 18 as to why this can be a bad idea).

2. Each user has a secret inverse key on a protected smart card (eg.

fingerprint detection[31]).

In each case, there are a large number of keys that must be securely

distributed throughout the system. For the remainder of this chapter, case

1 is used, although in practice, case 2 could be used, too.

45
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This thesis does not aim to solve all problems associated with key distri-

bution in one go, but proposes a unique method to encourage future research

into this important area.

4.1 Introduction

Today, most modern computer security protocols (eg. SSH[20] [47] with

RSA authentication, PGP E-Mail encryption, and Kerberos[52] [61] with the

proposed public key extensions: Pklnit[52] or PkCross[35]) rely on public key

encryption methods. However, there is still no scalable method of securely

transporting a public key without risk of it being tampered with along the

way. Even CA (certification authorities) do not solve the problem, as there

is no way the certification authority can be certain it is signing the correct

public key.

Another solution to this problem is to construct a path of signatures, ie

as X trusts Y and Y trusts Z, X must trust Z. However, this involves a single

point of failure. For instance, assume Y gets a job for a major competitor

and is no longer trustworthy. If you continue trusting keys that Y signs, it

would result in a breach of security.

The obvious solution is to require multiple paths in order to verify the

signature from multiple parties. However, requiring more paths requires

more manual work in order to verify each path remains valid, e.g. no chain

should ever (now or in the future) cross at the same point, or the single

point of failure will be reintroduced.

For instance, assume that X wishes to communicate with host Z, and

needs Z's signature. X may not have any prior knowledge of Z, and Z may

not have any prior knowledge of X. Without any prior knowledge it is

difficult to obtain one path of signatures, but many paths are required for

maximum security[62].
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4.2 Metric System

This chapter proposes a new protocol designed to automate the process of

maintaining and distributing paths of signatures. That is, signatures are

distributed in advance, without any manual intervention.

This is done using Reiter and Stubblebine's proposal for measuring the

assurance provided by a set of paths[62]. The metric system represents the

keys and signatures as a directed graph.

Each node assigns a trust level to the keys it signs, before the results

are distributed to other nodes. When required, a node will calculate the

metric level based on the trust level assigned by each node along the chain

of signatures. The final metric value for a given unique path will be the

| minimum trust level any key has along that path.

I
i Hence, it is impossible for any one key to increase the final metric value.

This is why this system is preferable to alternatives. If multiple unique

paths exist, then the final metric value will be the sum of the metric value

for each path. More generally, the metric value will be the maximum flow

in the directed graph from the source key to the destination key.

The minimum metric level required the trust level could be set in a

language similar to Policy Maker [63], For example, an online transaction

worth $10 would not require such a large number compared with an online

transaction worth $1,000,000.

Keys can be distributed and authenticated via multiple trusted chains

over a large scale network, making it easy to manage. This, in effect, is a

large scale key server. It is distributed over many systems, and automatically

manages signatures for individual keys as well as the keys themselves.
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4.3 Method

Each KDC in a region is initially set up with public keys for three other

KDCs. This initial distribution must be done manually, eg. face-to-face

meeting. Each key received by the KDC is automatically signed by that

KDC to prevent tampering. The signature is kept separate from the key so

each one can be distributed separately. Each key must identify how that

realm can be contacted, and can also have an expiry date.

Every hour, every KDC will place a request to a selection of trusted

KDCs. This request will contain a list of all keys that the requesting KDC

has, and associated signatures. This will inform the remote KDC what keys

and signatures not to send. It does not need to be encrypted in anyway, as

security does not depend on it remaining secure or confidential.

The reply will contain a list of all keys and signatures that the remote

KDC knows will be of value to the local KDC (ie that the local KDC does

not already have).

Upon receipt of the public keys and signatures, the local KDC will do

the following:

• Calculate the metric value for each key[62]. This is done by modelling

the list of keys and signatures into a graphical form. Each key is

represented by a node. A signature by one key to another key, is

represented as a arc, a point from the first key to the second key. Each

arc has a capacity, a number used when the signature was created. For

now, assume this to be a constant number, e.g. 10. The metric value is

the maximum "flow" through the network, from the key representing

the current KDC to the end key. This will be 0 for disconnected parts

of the graph, which cannot be verified.

• Check for duplicate keys. If duplicate keys exist, then calculate the

metric value of the signatures. Trust the key with the highest metric



4.4. EXAMPLE 49

5

is

value. If the metric values for two keys for the same KDC are the

same, then trust neither key.

• Does not sign the incoming key, as signing should normally be re-

stricted to when the local KDC is positive that the key is not a fake

(i.e. some external means is used to verify it is correct).

If, when validating a signature, it is found to be invalid, then the key

must have been tampered with during the last transmission, and is simply

discarded. Alternatively, a message may be displayed to the system ad-

ministrator warning of the problem, in case there is an indication that the

Kerberos realm is under attack.

4.4 Example

An example is illustrated in Figure 4.1. The blocks indicate different KDCs

in the network, and the arrows between the blocks represent key pairs that

have been pre-configured (and are assumed to be correct). For instance,

A has W's public key so W can send secure (unforgeable) messages to A.

Similarly, W and X both have the shared public key for each other, so secure

communication is possible in either direction. This example deliberately has

a number of problems (some of them might already be obvious) which will

be explored later.

This model was simulated, on the assumption that every KDC contacts

each neighbour (vertical as well as horizontal) in every iteration. In practise,

the algorithm which determines what pairs of KDCs contact each other can

be more sophisticated.

The arbitrary set of signatures at each node is represented by Figure

4.2. Each public key is represented by a node[62]. Each arc (eg. a = (A,B))

represents a signature made by the public key at the tail of the arc (A) on

the public key at the head of the arc (B). The result is a directed graph
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Figure 4.1: Simple network structure: The boxes represent KDCs, and the

arrows represent the direction in which keys are initially copied.

Figure 4.2: Set of all Signatures
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illustrating the signatures between the public keys. It is assumed that these

signatures have not yet been distributed, so that any given node will only

hold signatures which it created.

Figure 4.3 lists which signatures have been copied for each iteration,

starting from the initial configuration. This is from the perspective of Y

(the other KDCs will differ slightly). Figure 4.3(d) represents the ideal final

state.

For improved clarity, the number representing the capacity of each arc

has been omitted from the figure. It is 0 if the signature isn't known to the

KDC (i.e. no arc exists), or 10.

A

B

A

B

(a)

(

(c)

W

X

Iteration 0

Kjy^—*—

Iteration 2

Z

/

V

f)

w

(b) Iteration 1

(d) Ideal Case

Figure 4.3: Y's Signature graphs

The results of the metric analysis for each iteration is listed in Table 4.1.

Note that after the first iteration, W has a very high metric value of 20, and

Y has an even higher metric value of 30. This is because there are three

unique paths from Y to Y and 2 unique paths from Y to W.
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Note that the metric value for A's and B's key is 0. This is because there

is no path in the graph leading from Y to A or Y to B (it goes in the wrong

direction. This means that A and B have been cut out of the network, and

their keys, cannot be used. This problem is because no KDC has produced

a signature that can be trusted by W.

This could be solved by W signing B's key. However, this would give a

metric value of only 10 for both keys, as there would only be one valid path.

More signatures are required for a higher metric value.

iteration

0

1

2

3

A

0

0

0

0

B

0

0

0

0

W

0

20

20

20

X

10

10

20

20

Y

10

30

30

30

Z

10

10

20

20

Table 4.1: Y's Metric Values

Now assume that X has produced a false signature for W. This means

Y will have two separate paths to W: the real one (as delivered from Z) and

the false one (as delivered from X). As Y has no way of knowing which is the

correct key (both have the same metric value), there is no way of knowing

which one is valid.

Suggested solution: Each KDC should initially have three links to other

KDCs. If one KDC produces bad results, the other two should (in theory)

still match.

Also note, if the correct decision can be made as to which path is correct,

Y has all the evidence it needs (i.e. X's signature) to prove that X is guilty

of signing a false key. Y may want to lower the capacity it has given to all

of X's signatures, and possibly notify other KDCs of the problem.
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4.5 100 Keys

98

)

97 /

/

.

•'.
i

99

Figure 4.4: 100 node network structure

This example has 100 keys, each owned by one KDC. Each KDC is

placed in a ring, and knows the keys to 4 other KDCs:

• 2 adjacent KDCs.

• 2 KDCs exactly two hops away.

See Figure 4.4 for illustration.

Assuming each KDC contacts its four most immediate neighbours for

each iteration, the total update would take 100/4 = 25 iterations. If this is

too large, it can be reduced by allowing each KDC to contact more remote

KDCs.

Distribution of keys has minimal overhead as a key is approximately 0.8

kbytes (PGP RSA based public key). However, very few keys will be dis-
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tributed in each iteration (i.e. 2), as keys are only distributed to neighbours,

and only if the neighbour does not already have a copy of the key.

Transferring signatures is potentially a bigger problem. In this example,

there are 500 signatures in total. As each of the 100 nodes signs 4 other

nodes and itself directly, the maximum amount to be transferred between

| any set of KDCs will be 500 signatures. This, in practise will be lower, as

the KDCs can negotiate not to send duplicate signatures. As a signature

is approximately 150 bytes long (PGP RSA based detached signature), this

would mean 75 kbytes are transferred between any two KDCs. This is very

small, and well within reasonable limits. Also, it could be argued that one set

of signatures does not enhance security in anyway (i.e. the signature by the

same key), nor does it add anything to the metric value (for remote hosts).

By not distributing these signatures, a saving of 15 kbytes is achieved.

The length of each path is also significant, as the maximum length of

a given path may be 100 nodes (for a path back to the same KDC). Al-

ternatively, the maximum length of any path to a different KDC would be

99 nodes. This should not be a problem given an optimum algorithm for

determining maximum network flow.

4.6 Scalability

For the above example, eventually each KDC will have to store 400 signa-

tures. This should be well within reason for large networks (remember that

each KDC can cope with a single realm, and each realm can be as large as

required). It is definitely not reasonable for very large networks, e.g. with 1

million KDCs, 4 million signatures would eventually be required (assuming

same distribution rules apply). This would consume 781 megabytes for keys,

and 572 megabytes for signatures.

For very large networks (eg the Internet), it is possible to scale down

the information required. For instance, public keys can be obtained (either
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directly or indirectly) via the domain name service (DNS), using a similar

mechanisms as in[58]. They can be down-loaded on demand, as required.

Once a key is down-loaded, it can be cached for as long as it may be needed.

This already eliminates the need to transfer 781 megabytes of data.

An alternative might be to look signatures up using DNS, so everything

can be distributed on demand. However, this means hosts must also search

for trusted paths, slowing the process down.

Instead of transferring each signature, one at a time, a label can be

distributed instead. While the label (typically a short number, eg. 15 bytes)

cannot be trusted by itself, it would indicate where the trusted signature can

be down-loaded from. This would reduce the memory required for keys down

from 572 megabytes to 57 megabytes. In addition, this could be significantly

compressed, making it even lower.

However, this may have the drawback of requiring a lengthy down-load

to obtain all keys and signatures in the paths required. This only needs to

occur once though, in order to cache the required information. No search is

required to find which paths can be trusted i y a given KDC, as the KDC

already has this information immediately available.

While signature information is not protected in anyway, this is not

trusted by the KDCs until verified by down-loading the real signature.

Hence, denial of service attack is possible, where the correct KDC is pre-

vented from receiving the correct key (by altering the signature information),

but denial of service attack is already a possibility (e.g. by blocking network

channels).

4.7 Security

This proposal is a tradeoff between two risks:

The risk of the administrator making a mistake, when manually main-
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taining a large number of keys, that affects network security.

• The risk of a KDC being tricked into trusting a false key.

The first risk will increase as the number of keys required goes up. It

could be as simple as a certification authority (CA) accidently signing a

fraudulent key. When the CA signs the bad key, KDCs will automatically

trust it, affecting network security.

The second risk is less likely with some degree of automation, as admin-

istrators have more time to concentrate on verifying the identity of remote

hosts, before signing their keys. Also, administrators only need to sign keys

for a limited number of remote hosts, further reducing workload.

4.8 Summary

Existing methods of scalable public key distribution suffer from serious lim-

itations. There is no easy way to identify the correct key over a fraudulent

key. This allows the 'man in the middle attack', where the wrong user is

identified.

This is despite the fact that scalable public key distribution is an impor-

§ tant part of any protocol that uses asymmetric keys for authentication.

1
The proposal given in this chapter allows unlimited distribution of public

I
keys in a secure way on a large scale network.

While this may not be a final solution to the problem, it is a unique

solution in order to encourage future research into this important area.



Chapter 5

Non- Repudiation

1
S

The previous two chapters both described methods to make Kerberos more

scalable in large networks. This chapter describes how to incorporate an

important, and frequently required feature into Kerberos — non repudiation.

This is achieved without comprising security in anyway, and does not require

any extra work on behalf of the users (ie. it can be automated to such a

degree that no extra effort is required).

This chapter is not relevant if an asymmetric authentication scheme is

used, as in this case the user already has a secret inverse key which can be

used to sign messages.

5.1 Introduction

Non-repudiation is the property where you can prove to a third party the

creator of a message[19]. It is often considered that this cannot be achieved

without using asymmetric encryption, but this chapter describes not only

how it is possible with symmetric encryption, but why it is preferred in

certain cases.

For instance, with normal symmetric encryption, a receiver of a message

(eg. E-Mail) cannot prove to a third party that the message is genuine

57
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without exposing the secret inverse key, and once the secret inverse key is

made public, its proof is meaning!3ss (ie. anyone can forge a message).

This is possible using asymmetric encryption, however, as the sender of

a message can 'sign' it with their secret inverse key. This signature can be

verified by anyone who has a copy of the public key. This property is called
(non-repudiation'[19].

Non-repudiation is important to authorisation, as a frequent requirement

of authorisation protocols is to have one person authorise another to have

access to a resource. Non-repudiation allows the first person to give the

second person a signed certificate, which can then be independently verified

by the resource. This removes the need for the resource to be configured

| beforehand.

5.2 Combining PGP and Kerberos

A technique that has been suggested is to combine Kerberos and PGP[64].

This method allows public keys to be signed by a trusted server (CA) that

authenticates users by Kerberos, without requiring any manual intervention.

However, that could require a large number of requests to the one CA.

I This could also be combined with the scalable KDC key distribution as

follows: Each KDC authenticates U using the proposed scalable Kerberos

solution, and receives the public key for U at the same time. The KDC signs

the key with its secret inverse key (the associated public key has already been

widely distributed), which anyone can check to ensure that they have a valid

copy of I7's key. This is illustrated in Figure 5.1.

5.2.1 Ensur ing Securi ty is no t Compromised

Asymmetric authentication has a number of potential security problems

when used by end users (see Section 2.3, page 18). These must be taken
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Kerberos Ticket

Public Key. Signed Certificate

Figure 5.1: KDC Signs User's Public Key

into consideration here.

Some possible improvements:

• The KDC could set or require an expiry date/time set on public keys,

forcing users to regularly update their keys. The exact rules for en-

forcement could vary depending on the administration of the KDC,

and the desired level of security.

• Any person or program that verifies the signature must keep in mind

that the signature is only secure if the secret inverse key has not been

stolen. This should not be used as a means to protect very sensitive

information unless the owner of the secret inverse key is confident that

the key will not be stolen. The level of paranoia required here would

depend on how sensitive the information is. Also keep in mind that

access to some systems may lead to easier access to other systems, so

just because a computer does not have any sensitive information does

not mean security can be ignored.

These items would eliminate some of the known problems with asym-

metric authentication[12], (see list in Section 2.3, page 18). Authentication

of the user to a distant CA (Problem 1) is solved using K» iberos. Ensuring

that the CA's signature is valid (Problem 2) can be achieved with the se-

cure public key distribution described in this thesis. Revoking public keys

(Problem 3) is solved with the use of time and date stamps. However secret

inverse key management (Problem 4) and pass phrase quality (Problem 5)

have not been solved. For these problems, there are two possible solutions:
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The KDC could set the public key, before signing it, so it expires when

the user's ticket expires. This may be sufficient for some applications,

eg. see chapter 6 on authorisation. However, other applications require

a long expiry date (eg. signing E-Mail), and this would clearly be

insufficient.

Or, the solution in the next Section could be used, instead.

t
i

5.3 Without End-user Asymmetric Keys

The goal of non-repudiation without end user asymmetric keys, surprisingly,

is easy to achieve using a very minor modification to the above routine -

instead of the user U giving the KDC a copy of their key to sign, U gives

the KDC (or many KDCs) a copy of their message to sign (as illustrated in

Figure 5.2). If U wishes to send a private message, then the KDC could sign

a 'message digest1' instead of the full message. This would give the end user

the security of non-repudiation without the security risks associated with

keeping a secret inverse key secure. Furthermore, the KDC could include

the time and date (ie. a nonce) on the message, making replays easy to

detect.

Kerberos Ticket

Signed CertificateMessage,
(or message digest)

Figure 5.2: KDC Signs User's Message

With this in place, all security issues have been addressed, as the end

user no longer needs to keep a asymmetric secret inverse key. The only

key that the user must keep is the symmetric key (ie. password) used for
1A hashed representation of the message[19]
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initial authentication to the KDC. This password can be memorised without

needing to write it down anywhere.

5.4 Implementation

The ideas presented in this chapter can be implemented quickly with the

standard Kerberos programming library (or higher level libraries such as

GSSAPI or SASL). These tasks can be made automatic so the end-user is

not aware of how non-repudiation is achieved, only that it is there, and it

can be relied on.

If U continues using a secret inverse key and has the public key signed

by the KDC, then the only difference noticed will be in requesting the local

KDC sign the key. If on the other hand, the user requests that the KDC

sign individual messages, then this could be done in a similar manner to

signing messages with PGP, except that a high level program (eg. mail user

agent) does not need to prompt the user for a password or store a password

in memory — it can use the existing Kerberos ticket instead.

Checking the signature is done using standard techniques, and requires

no modification. The public key used may vary though. In either version,

the public key of the KDC is required. This can be used to check either the

public key of the sender, or the message itself.

5.5 Scalability

The ideas presented here are as scalable as the authentication system used,

Kerberos. While Kerberos is not scalable, this has already been addressed

in this thesis.

The first method (signing E/'s public key) combines the scalability fea-

tures of user based public keys, where everything is up to the user, and

a scalable Kerberos implementation (some of the signatures are managed
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by Kerberos). However, the second method (signing U's message) is based

only on signing the message, in order to eliminate the chances of the user

mismanaging their secret inverse key.

5.6 Security

While it is recommended that most people rely on the local KDC signing

their individual messages, there may be some people who do not like the

idea of trusting the KDC. For this reason, the first method is still available,

having the KDC sign the user's public key, instead. This means that the

user can use conventional asymmetric key type authentication, and have

other entities (eg. CAs or other people) sign their keys, as well as the KDC.

This way, the level of security that can be obtained is up to the end-user,

even though a centralised security system is used.

5.7 Summary

This chapter has described a scalable and secure method of non-repudiation.

There are two versions provided for different situations: one where the cen-

tral KDC automatically signs messages for users and another where the cen-

tral KDC automatically signs public keys for end users. This choice allows

users and/or administrators to pick the best choice that fits the requirements

of the site.



Chapter 6

Authorisation

Authorisation is an important issue that has not been addressed by Ker-

beros, nor was Kerberos designed to address this issue.

This chapter discusses issues involved in current Authorisation protocols,

and well known current implementations.

6.1 Methods

Authorisation can be implemented using one of the following techniques1:

• Determine the user's access strictly based on a password (eg. Windows

98), as shown in Figure 6.1. This is the simplest form of authorisation,

but least secure, as there is no way to hold individual users account-

able for their actions. Typically, each resource would have a different

password, which users would have to remember when accessing that

resource.

• Use the result of the authentication (eg. password based), as illustrated

in Figure 6.2. In practise, this can only be used if the authentication

system returns the identity as a number (UID or User Identifier) that
l rrhe diagrams in this section are based on [1].

63
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Password allow/deny

Resource
& Action

Figure 6.1: Password Based Authorisation

is specific to a network or computer.

Policy
v

Authentication
identity

Policy

.allow/deny

T f
Resource
& Action

Figure 6.2: Authorisation Based on Authentication system

Lookup a table based on result of the authentication (eg. Kerberos

[9]), as illustrated in Figure 6.3. Here the identity returned by the

authentication is turned in to a UID by a lookup table.

Lookup a table based on what groups the user is in. Any number

of users can be assigned to a group, which can be used to simplify
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Policy
V

Authentication

Lookup Table

identity UID

Policy
T

»allow/deny

1 f
Resource
& Action

Figure 6.3: Authorisation with a Lookup Table for Authentication

authorisation. In most implementations, the list of groups for a given

user is directly determined based on the results of the authentication.

An example is shown in Figure 6.4, where groups are identified by a

GID (group identifier).

Both MIT[44] and the Heimdal[54] implementations of Kerberos im-

plement a variation of the theme, where the user U submits the UID

with the request. The server S checks the Kerberos identity to see if

that the user U really is allowed to log in as UID, based on a lookup

table.

Windows 2000 is similar, except that SID (security identifiers) are

used[65].

Policy Lookup Table Lookun Table Policy

.allow/deny

Authentication
identity UID GIDs

UID

i r
Resource
& Action

Figure 6.4: Authorisation with Lookup tables for Groups
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All of these methods have limitations. Sometimes users require tempo-

rary access to a resource, for instance when copying a file from one user's

account to another user's account. This is not possible without allowing

everybody access to the file unless one user gives his/her password to the

other user. Sharing passwords around in this manner is bad, because it

makes changing the authorisation policy difficult (for instance, denying a

user access means a new password needs to be distributed to all authorised

users).

Flexibility of the authorisation protocol is important, as otherwise it

may not be possible to implement an organisation's security policy exactly,

leading to simplifications that reduce overall security. For example, Unix

does not allow sharing of files without the help by the system administrator.

For this reason, many people share passwords in order to work around this

limitation, hence reducing security of their accounts.

6.2 Kerberos

Kerberos was not designed to be an authorisation protocol, but the result of

the Kerberos authentication can be used as the input of the Authorisation

process. See Figure 6.4 for an illustrated example of how this is often done.

In this system, authorisation decisions are made purely by the informa-

tion given in the standard Kerberos ticket, the user's principle. See Figure

6.5 for an example. This is inflexible, as the resource must have a list of

users that are allowed to pccess it.

bam@CHOCBIT.ORG.AU Backup

Kerberos Ticket Service

Figure 6.5: Authorisation with Kerberos
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6.3 Roles

A role is a function or a position. An authorisation system can be modelled

as a set of roles. Each user is assigned to one or more roles, and each role is

mapped to a set of privileges that are required for the user to perform the

functions of that role. A role is similar to a group, except roles are usually

based on the functions that users need to perform, where as groups are

simply a number of users that have been grouped together for convenience.

Assigning roles[l] to users is a considerable improvement. Roles can be

given to individual resources. For instance, a role could be given to a shared

project. Anyone who should have access to the shared project is assigned

to the appropriate role.

Roles can be implemented in different ways, for example, using groups

in Unix. However, this is restricted, because the Unix groups are statically

assigned based on a lookup table when the user logs in.

6.4 Extensions to Kerberos

So far, most protocols (eg. Windows 2000[65], SESAME[66], and DCE [57])

that claim to add authorisation to Kerberos, do so by adding an extra field,

typically known as the Privilege Attribute Certification (PAC) to the au-

thentication ticket. This lists which lists groups that the user may belong

to.

These groups contain any special privileges (groups or roles) that the

user may have, eg. backup access, access to adding new users, access to

shared Project X, etc. See Figure 6.6 for details.

However, this method has a number of serious limitations:

• Users cannot distribute authorisation to other users, without transfer-

ring their identity, too. Instead, authorisation has to be maintained at

the server, S. This is a problem, because policy may dictate that au-
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I

bam@CHOCBIT.ORG.AU

groups: backup, project secret

Backup

Service

Kerberos Ticket

Figure 6.6: Authorisation with Kerberos Extensions

thorised users need to delegate access to other users. Proxiable tickets,

under Kerberos 5 [9], solve this problem to some degree, but requires

contacting the KDC to obtain a separate proxy ticket, for each remote

service.

• It is not possible to have a privilege assigned independently from the

authentication. This means that privileges are centrally adminstrated

from the KDC, and cannot be distributed by end users.

• Anonymous transactions are not possible. Anonymous access is of-

ten desirable, because users do not want their actions tracked. For

instance, in order to eliminate unsolicited E-Mail, users sometimes

choose to send E-Mail anonymously, via an anonymous Re-mailer.

This server, could be setup in such a way to that it only allows users

having the correct privilege to send anonymous E-Mail, but not track

the users identity. User's can feel safer that such a system is secure if

they don't have to submit their identity but only proof of the required

privileges.

Sometimes a compromise is required: users are initially anonymous,

but can be identified at a later date, eg. for identifying criminals[5].'

• Similarly, it is not possible to log on to a remote system without admit-

ting to that system what your privileges are. Some of these privileges

may have no relevance to the remote system, but could be used by the

remote system for undesirable reasons. For example, if a user has ac-
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cess to a bank account, there is no reason why this should be revealed

when that user tries to access computer time from another provider.

9 When capability[23] based operating systems become more common,

it will be possible (in theory) to assign different sets of authorisation

to different processes, without forcing the user to log in multiple times.

This means, if for instance, you do not trust program X (perhaps it

was downloaded from an untrusted website, or received via untrusted

E-Mail), then you can ensure program X does not have access to given

authorisation certificates.

A better scheme would be to use the authentication ticket for authenti-

cation, nothing more, and nothing less.

6.5 Delegation

Delegation allows an authorised person to tranfer authorisation rights to

somebody else[14], typically for a limited period of time.

Delegation can be split into two ways[67]:
1I

* Delegation of rights: Allow another user to access a resource. This

I is how Kerberos proxiable tickets [9] work. One user can "pretend" to

be another user for the duration of the ticket.

• Delegation of responsibility: Allow another user to access a re-

source, but do it in such a way that he/she is held accountable for

their actions. That is, if X delegates responsibility to Y, and Y fails

to comply, there is no way that Y can blame X for it.

Delegation is important as it means that the service does not need to

know in advance everybody who may have access.

A primitive example of delegation is proxiable tickets, as defined in Ker-

beros (as distinct from the proxy authentication ticket proposal described
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earlier in this thesis). This allows a user to obtain a Kerberos authentication

ticket with restricted priviliges that can then be given to third party services

(eg. a printer service which requires direct access to the users files). This is

restrictive though, because it is only delegation of rights, and not delegation

of responsibility, as the user using the ticket cannot be identified.

6.6 Keynote

Keynote, proposed by Blaze et al[68], is a trust management system that

supports delegating responsibility via certificates. The authors claim that

keynote is simpler and easier to implement than alternatives.

However, Keynote is simple because it does not have any authentication

system to verify public keys. Rather, it relies on public keys to be validated

via some other mechanism. As such shortcuts are likely to be taken[12] (see

Section 2.3, page 18), resulting in the incorrect users being authorised access

to privileged resources.

This problem is addressed when using a naming system like the Scalable

Public Key Infrastructure standard (SPKI). See next chapter for details.

6.7 Example

This section is describes an example that demonstrates some of the key

concepts found in this chapter.

Consider a university setting, with the following protected resources:

Printers, student's name, address, private work and marks.

With Amy, Bob, and Charles for students in Project 1; David, Eugene,

and Frank for students in Project 2; Kate, Luke, and Mike for university

lecturers; Ursula is the course coordinator; Victor is a senior member of

the administration staff. There are three subjects: Maths, English, and

DSP (digital signal processing), which are taught by Kate, Luke, and Mike
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respectively. Prank also tutors Amy and David in English. The list of

students and what subjects they take is shown in Table 6.1.

Student

Amy

Bob

Charles

David

Eugene

Prank

Subjects

' r : ths ,

Maths,

Maths,

Maths,

Maths,

Maths,

English,

DSP

English

English,

DSP

English

DSP

DSP

Table 6.1: Example: Students

This example is based around resources required for: students, and does

not attempt to deal with all issues that could arise in the given scenario.

These resources would need to be protected, according to a policy. For

instance, consider the policy given in Table 6.2.

Resource

Address

Private Work

Group Work

Marks

Printers

Who

The student.

The student's subject's lecturers.

Any administration Staff.

The student.

The Group.

The student's subject's tutor.

The student's subject's lecturer.

Other lecturer.

10 cents a page, pre-pay

Access

R—

R-

RW

RW

RW

RW

RW

R-

Table 6.2: Example: Security Policy

There a number of ways this authorisation could take place. These

methods are described in the following sections.
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6.7.1 Password Based Authentication

Each resource has two passwords (one for read-only and one for read/write),

iiid the users are expected to remember the password for each resource. This

is the approach taken by Windows 95 and Windov/s 98 when sharing files

via the network.

However, peopJe cannot be held accountable for their actions, and each

user would have to remember a Iong list of passwords. This is clearly not

scalable. This scheme is also useless for the printers, as there is no way to

know who should be charged for using the resource.

See Table 6.3 ^ r an example.

6.7.2 Conventional Access Control List

Access Control Lists (ACL) are supported by Windows NT. Windows 2000,

and currc.r;vij being developed for Linux based operating systems. There

are several ways that an ACL can be used in this example.

• Each resource has a list of users who are allowed to access it. An

example of this scheme is given in Table 6.4. However, this list of

user's would have to be maintained centrally for the owner of each

resource, and would not support delegation. This seriously limits scal-

ability, as any errors in updating the lists (eg. forgetting to update

some resources) could lead to security breaches.

• Each resource can be controlled to a separate group. However, the

number of groups required would be enormous. Each user would re-

quire at least 9 groups (read-only address, read-write address, read-

only private work, read-only marks for each subject, read-write marks

for each subject), and each group project would require a group (read-

write access). These groups must be maintained by the system admin-

istrators.
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I

I
a-

Resource

Amy's Address

Bob's Address

Frank's Address

Amy's Private Work

Bob's Private Work

Frank's Private Work

Project 1

Project 2

Amy's Marks (Maths)

Bob's Marks (Maths)

Frank's Marks (Maths)

Amy's Marks (English)

Bob's Marks (English)

Frank's Marks (English)

Amy's Marks (DSP)

Bob's Marks (DSP)

Frank's Marks (DSP)

Password

R-

S9S41qlh

EICz6zs

sRrTLy

novytw

8HGiaf

RW

S9GmrPw

BqiLg5b

MCm9gf

VC8DNGwD

wIuGFOb

scPwnjSv

PwScqxyJ

meXdeo

q5dPGel

FjN15oXf

ISpAcmPF SpGGA63

3m6yaga

NVUsscY

YK7b9oG

eqbm3IxF

d0y2mF

b9jgnCEl

YGtqyAQj 94aarTp

f2dNiox

T5z8c4T

D5LbDvz

FXdnzJPt

Table 6.3: Example: Passv/ord Based Authorisation



6.7. EXAMPLE 74

Resource

Amy's Address

Bob's Address

Frank's Address

Amy's Private Work

Bob's Private Work

Mikes's Private Work

Project 1

Project 2

Amy's Marks (Maths)

Bob's Marks (Maths)

Frank's Marks (Maths)

Amy's Marks (English)

Bob's Marks (English)

Frank's Marks (English)

Amy's Marks (DSP)

Bob's Marks (DSP)

Frank's Marks (DSP)

R-

Amy, Kate, Luke,

Bob, Kate, Mike

Frank, Kate, Luke

Luke, Mike

Luke, Mike

Luke, Mike

Kate, Mike

Kate, Mike

Kate, Mike

Kate, Luke

Kate, Luke

Kate, Luke

Users

RW

Mike

Amy

Bob

Mike

Amy, Bob, Charles

David, Eugene, Frank

Kate

Kate

Kate

Luke, Frank

Luke

Luke

Mike

Mike

Mike

Table 6.4: Example: User Based ACL

•\ • • . ' - , . M
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This example would look similar to Table 6.4, except that each cell

would be replaced with a unique group name.

• Alternatively, roles could be assigned to different users. However, this

will quickly look very similar to the previous setup. While some roles

would not be required (eg. read-write address could be replaced by a

role for all students), this is at the expense of flexibility. It would be

difficult to give an administrator temporary privilege to alter only the

address of one student.

This example would look similar to Table 6.4, except each cell would

be replaced with a role name. Unlike in the previous case though, roles

can be shared between resources which are similar (eg. all marks for

maths could belong to a distinct role).

6.8 Summary

This chapter has demonstrated that existing techniques of authorisation

schemes are clearly insufficient for large scale networks, for many different

reasons, such as no support for delegation of rights or responsibilities, no

allowances for privacy, and inflexible to the requirements of the site's security

policy.

These issues are largely due to the requirement that the resource must

contain one or more, potentially large, centrally administrated, tables for

controlling access. The next chapter, describes a potential solution, SPKI.



Chapter 7

SPKI

i

The previous chapter described existing methods of authorisation that have

been implemented in programs like Kerberos, Unix and various versions of

Windows. This chapter describes a better authorisation system: SPKI, the

state-of-the-art access control protocol. It also describes three extensions to

the standard which enhance its usability in large scale networks, such as the

Internet.

The draft SPKI certificate structure standard has been included in Ap-

pendix A.

7.1 SPKI

As shown in Figure 7.1, SPKI[3] has two main inputs to aid the authorisation

process, namely name certificates and authorisation certificates. These cer-

tificates are a standard set of S-expressions that have been digitally signed.

This allows the server to prove that the authenticity of each certificate is

valid, and that no-one has tampered with it along the way (non-repudiation).

Each name certificate binds a single user to a name or a group. This

is similar to other standards that use certificates for authentication, eg. the

ITU X.509 standard, and PGP.

76
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a

Authorisation certificates, in contrast, bind a privilege to a given user

or a given group. This is done with the tag expression, which is a set of

attributes that are understood by the server as specific privileges to give

the user. For instance, the tag expression (tag (address (* set read)))

might be interpreted as allow read access to the address field of the database.

If the authorisation certificate allows delegation, then .usy of the valid

users may delegate his/her rights to another user or group.

Authentication Certificates

Authorisation Certificates

Policy

.allow/deny

Resource
& Action

Figure 7.1: Authorisation with SPKI

Most importantly, name certificates allow users to be identified by a

trusted third party without requiring a global scale certification authority.

For instance, a university could set up a university wide naming service

that identifies students and staff inside the university. This would mean

individual staff do not need to verify students but can trust the university

wide naming service instead.

Name certificates could also be used as roles. One user can belong to a

role without needing to know what other users become part of the role. How-

ever, these certificates (unlike authorisation certificates) need to be issued
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by the owner of the group.

SPKI is very flexible in that users can create and sign certificates for

groups of people and/or allow delegation of privileges. See the next sec-

tion for an example based on a real life situation. A copy of the SPKI

standard[14] has been included as Appendix A.

SF XI, allows for delegation of responsibilities. This is done by requiring
s

[69] an authorisation certificate to contain a subject field. Only the per-

son holding the private key corresponding to the public key in the subject

field may use the authorisation certificate, hence ensuring that this user is

accountable for their actions.

While the SPKI standard is based on S-expression syntax[69], a standard

also exists that permits XML encoding of the certificates[70]. Only the basic

S-expression syntax will be used in this thesis, simply because the XML

expression syntax is more verbose. While this is normally an advantage (ie.

easier to validate), here it is a disadvantage (ie. uses more paper).

SPKI (similar to Keynote) is based on certificates. While it suffers from

the same problems as Keynote does (eg. end users likely to take shortcuts

that compromise security), SPKI supports name certificates, so that a user

can trust a certificate that is signed by another trusted user. This means

that the server does not need to manually verify each certificate that is to

be used (this requires a face to face meeting with the owner).

7.2 Asymmetric Keys

SPKI is a protocol that uses asymmetric authentication for both authenti-

cation and authorisation.

This means, SPKI has similar problems to other protocols that use asym-

metric keys. Users have to be trusted to manage private keys in a sensible

manner, and must be careful trusting (ie. signing) a key from an outside

source, unless they are sure they know who the real owner is.
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It could be argued that this is not authentication, but a form of autho-

risation. That is, the holder of the private key gets the privileges regardless

of his/her identity, meaning no-one can be held accountable for the misuse

of the privileges.

However, SPKI only requires the private asymmetric key in order to

provide non-repudiation. Alternative methods of achieving this are possible,

and have already been mentioned in Chapter 5.

Distribution of public keys is still a problem. The use of SPKI sdoes not

change that. However, SPKI is designed to be more distributed than any

other system described in this thesis.

This means, for instance, that organisations can issue certificates for

users within the organisation. Each organisation can have their own guide-

lines for how much verification is required when signing tLe certificate.

While this is possible using other systems, eg. neither PGP or SPKI use a

global name space. Instead, users are identified via a chain of signatures (eg.

'Ka Henry Brian' would refer Brian's key that has been signed by Hanry's

key. Henry's key has been signed by the Ka key). Different users can have

separate keys, without having to worry about assigning each key a unique

global name. This means that different organisations can allocate the same

person different keys and not have to worry about assigning the key a unique

name.

However, a new problem here is that only one chain of paths is allowed,

so if Henry started signing fraudulent keys, there would have no alternative

method of validating the key, even if 'Ka X Brian' was another trusted path

to the final key. This issue is addressed below.

The use of local name space also means that the technique described

earlier on scalable public key distribution cannot be used, as this technique

relied on each key having a unique and meaningful name within a global

name space.
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I

7.3 Limitations

There are at least three limitations with SPKI:

• Asymmetric authentication is the only authentication allowed. This

means that there is an extra step required (asymmetric authentication)

which is redundant if a good authentication system already exists (eg.

Kerberos), especially for users who do not need to sign their own

certificates. s

• As mentioned in Section 7.2, on Page 78, only one chain of signatures

can be used. This is a serious limitation, as there is no way to confirm

that the signature provided by the single source is correct.

• Some of the suggested authorisation certificates[2] (or rather the tag

field within the authorisation certificate) are very specific to the proto-

col being used. While this means that tags can be application specific,

it has the disadvantage that the issuer of the ticket must know in

advance what protocol the user will use to access the resource.

7.4 Authentication

It is desirable to be able to use SPKI in conjunction with another authen-

tication protocol, eg. Kerberos. This is easy to achieve, by having a name

certificate bind a name to a Kerberos principle instead of a public key. For

example, instead of having a name certificate bind to the hash of the user's

public key [14]:

(cert

(issuer (name (hash shal <...>) brian))

(subject (hash shal <brian's key>)))

The certificate would refer to the user's Kerberos realm instead:
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(cert

(issuer (name (hash shal <...>) brian))

(subject (kerberos victorQMONASH.EDU.AU)))

While this is converting the global name space into a local name space,

it is very flexible as it allows the local user to trust only given principles.

Alternatively, a trusted third party could be set up that automatically

issues certificates for a given Kerberos principle. The server, § would then

be able to get a certificate for an unknown remote user without any prior

contact. This third party service can issue the certificate using the Kerberos

principle as the name, and the server S would refer to the key using the third

parties' public key.

However, these name certificates could not be used as an intermediate

step for other name certificates, because this would require a public key in

order to sign the certificate.

7.5 Multiple Chains

It is also desirable to have multiple chains leading up to the final destination.

This would mean there is some redundancy in the chains, yielding greater

security.

This typically can be done by changing the format of the name expres-

sion. The standard format is:

(name (hash shal <key>) <userl> <user2> <user3>)

where the key is the initially trusted public key, to find userl's public keys,

which is used to find user3's public key. This format does not support

multiple chains. A better format would be

(name (chain (hash <keyl>) <userl> <user2>)

(chain (hash <key2>) <user3> <user4>))
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where two chains exist: (keyl userl user2) and (key2 user3 user4) which

must produce an identical result (eg. an identical public key or an identical

Kerberos principle) before it can be trusted. This name could exist anywhere

a name can normally appear, eg. in a name certificate or an authorisation

certificate, to allow for maximum flexibility.

This has the tradeoff that both chains must produce the same result. If

for instance, userl updated the key for user2, user3 would have to do the

same. Otherwise, the above expression would break. At least, in this case,

you would minimise your chances of using a false key.

"T?

7.6 Tag Expressions

A better system for tag expressions would be to name the resource (eg.

projectl) rather than the protocol (eg. ftp, telnet, rsync, or SSH). In this

case, some sort of mapping is required to iiiap the name in the tag expression

to the name of the physical resource (eg. /home/projects/projectl /*).

The mapping required may depend on the rest of the tag expression,

for example you could specify (* set source-only) which could limit the

previous expression to /home/projects/projectl /*.c.

Ideally, this mapping would occur after the ACL (access control list) is

processed, so that the ACL can specify restrictions in the tag expression

that get mapped to a restriction in what physical resource can be accessed.

7.7 Example

The best approach to the example given in the previous chapter is to use a

decentralised SPKI based system. Each user is registered in the Kerberos

system. The Kerberos system allows users to create SPKI certificates using

the methods in Chapter 5. User's can be assigned authorisation certificates

that allow access to resources.
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The address database could be setup to only allow access by Victor. The

following ACL for the database would achieve this:

(acl

(entry

(hash F^al <Victor's key>)

(propagate

(tag (address (* set read write))

(subject (•))

(student (*))))

Victor could delegate restricted rights to the university lecturers. Vic-

tor would create the following certificate, and give it to Luke. This would

give Luke read-only access to the addresses of any students doing English -

obviously the address database would also need to know what subjects each

student is enrolled in. While each student could also be named individu-

ally inside the certificate, this method has the advantage that students may

change subjects without invalidating the certificate.

(cert

(issuer (hash shal <Victor's key>))

(subject (hash shal <Luke's key>))

(propagate)

(tag (address (* set read))

(si.bject (* set English)))

)

If the Public Ksy Protected File System[2] (PKPFS) protocol was im-

plemented, the computer centre could also authorise Victor to allocate disk

space to students. The computer centre could have the following ACL:

(acl
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(entry

(subject (hash shal <Victor's key>))

(propagate)

(tag (pkpfs (* prefix "//ftp.uni.edu.au/students/"))

(pkpfs-quota (* range le "50000")))

Victor could delegate restricted disk space rights by creating and dis-

tributing a certificate like the following:

(cert

(issuer (hash shal <Victor's key>))

(subject (hash shal <Frank's key>))

(propagate)

(tag (pkpfs (* prefix "//ftp.uni.edu.au/students/frank/"))

(pkpfs-quota (* range le "10000")))

)

Frank, in turn can delegate restricted rights to students in his project

group, Project 2, by distributing certificates like the next one to each student

in his group:

(cert

(issuer (hash shal <Frank's key>))

(subject (hash shal <David's key>))

(propagate)

(tag (pkpfs (* prefix "//ftp.uni.edu.au/students/frank/project2/"))

(pkpfs-quota (* range le "1000")))

A similar setup could also be used for print quotas too. If, for example

Prank had never used the printer before, but paid for 100 pages in advance,
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he would get the following certificate, issued by the computer centre's ad-

ministrators:

(cert

(issuer (hash shal Administrator's key>))

(subject (hash shal <FrankJs key>))

(propagate)

(tag (printer (* set black-white))

(printer-account "frank")

(printer-quota (* range le "100")))

)

In order for this to work, the printer server would have to keep track of

the total number of pages printed by the user. The certificate specifies what

account this total number of pages is stored in. The above certificate would

allow Prank to print pages until his total page count exceeds 100.

Prank could delegate this to his friends, for instance if somebody wanted

to print something urgently but did not have the required print credit, with

a certificate like this one:

(cert

(issuer (hash shal <Frank's key>))

(subject (hash shal <Amy's key>))

(propagate)

(tag (printer-daily-quota (* range le "2")))

(not-before "2000-12-25_00:00:00")

(not-after "2000-12-26_00:00:00")

One limitation with this scheme is that if Prank has already printed

pages 1 and 2, the above certificate becomes useless. It would be better

if the certificate contained the number of pages that could be printed, but



7.7. EXAMPLE 86

implementing this correctly, in a scalable manner so that delegation is sup-

ported, may prove to be difficult.

The problem here is that a certificate might be only partially used (eg.

10 pages printed when the certificate allows printing of 20 pages), and the

print server would some how have to keep track of the credit remaining for

each certificate-

Finally, the marks database could be setup to allow only* the subject

coordinator access, using this ACL:

(acl

(entry

(subject (hash shal <Ursula's key>))

(propagate)

(tag (marks (* set read write))

(subject (*))

(student (*)))

The subject coordinator could, in turn delegate restricted per subject

rights to the lecturer of eudi subject. This could be done with the following

certificate:

(cert

(issuer (hash shai <Ursv.la}s key>))

(subject (hash shal <Luke's key>))

(propagate)

(tag (marks (*))

(subject (* set English)))

Each lecturer in turn could delegate restricted per person rights to each
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tutor, for each student (note: it is assumed that the database has no knowl-

edge of tutors and what students each tutor has, hence the need to specify

each student).

(cert

(issuer (hash shal <Luke's key>))

(subject (hash shal <FrankJs key>))

(tag (marks (*)) s

(student (* set Amy David)))

In practise, this key would have a restricted expiry date (not shown),

since students changing tutors would invalidate the current certificate. Also,

this certificate could be even more restrictive, so the tutor can only change

marks for a given project. However, in this case the marks database needs

to know what projects exist.

This solution has been deliberately simplified, and does not make use of

certain features, for instance expiry dates on certificates or named certifi-

cates. In a real situation, both of these should be used extensively.

The use of expiry dates would depend on university policy, and is a

trade-off between how often the certificate should be re-issued and the risk

involved if somebody misuses it.

Name certificates should be used extensively too. For instance, the fol-

lowing name certificates could be used:

(name (hash department 's key> . . . ) victor)

(name (hash <university 's key> . . . ) victor)

So that ACL's no longer need to refer explicitly to Victor's key. Instead,

references to:

(hash shal <Victor's key>)
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can be changed to

(name (chain (hash <department's key>) victor)

(chain (hash <university's key>) victor))

or, if Kerberos is used, this could be used instead:

(name (kerberos bamQCHOCBIT.ORG.AU))

7.8 Summary

SPKI is a sophisticated protocol for distributed authorisation. It allows

access control delegation, which allows it to be used in large scale environ-

ments. It also discards the concept of the global name space, which some

say is not achievable or even required[14].

However, limitations exist in SPKI. SPKI does not allow usage with

other authentication protocols, nor does it allow for multiple chains to refer

to the final user's key. Also, the examples in [2] suggest that authorisation

tickets should have the protocol names hard-coded. This makes the SPKI

certificates needlessly very protocol specific.

Solutions were proposed to allow other authentication protocols to be

used (m this case Kerberos) and allowing multiple chains of signatures.

These involved minor changes to the S expression grammar used by SPKI.

An example is also given where SPKI certificates do not have to hard-code

protocol specific information.



Chapter 8

Evaluation

This chapter evaluates the proposals made in the previous chapters.

8.1 Authentication

Some features of the protocols that are used for the formal criteria:

Scalable key distribution. Most protocols assume that the keys have al-

ready been distributed, without attempting to address the problem.

This task differs slightly depending on whether private/secret inverse

keys or public keys require distribution. Private/secret keys must be

kept secret at all times. Public keys can be made public, but must be

protected to to prevent alterations.

Even though public keys can be signed to form secure certificates, this

is not a statisfactory end solution, as some means is still required to

ensure that the issuer of the certificate signs the correct key.

None of the protocols described within this thesis have a scalable

method of distributing asymmetric keys, except for the proposed scal-

able key distribution protocol. Even this is limited though, because it

is not suitable for distributing SPKI asymmetric keys (as SPKI does

89
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not use a global name space) or private keys used by Kerberos.

-user cache. Most protocols support caching of authentication infor-

mation per each user, without having to request it each time. This

means slightly different things for each protocol. Asymmetric key pro-

tocols can cache the public key (as per scalable key distribution), at

the remote server. Kerberos tickets are cached locally by each client.

This cache should automatically expire after a preset time or condi-

tion, ie. caching passwords is not good enough, as a stolen password

may be used indefinitely.

All authentication protocols discussed can support this to some degree,

but only the password protocol and biometrics are unable to do it

securely (ie. the cached data can be used indefinitely if stolen).

Non-repudiation. Non-repudiation, could be added to any of the pro-

tocols, using a similar method to what was proposed in this thesis.

Non-repudiation is important for SPKI (see Chapter 7).

The different protocols, and how well they meet the formal criteria (sec-

tion 1.4, page 9), are shown in Table 8.1. For rating the facility of use and

robustness, it is assumed that all the keys have already been distributed.

This is because the lack of a good system for distributing keys already rates

poorly for scalability.

8.1.1 Password Based Authentication

Password authentication fails all the criteria for scalable authentication

methods. It is not scalable, as the more systems a user has access to, the

more passwords he/she needs to memorise.

It can be secure, but often is not, because of insecure transmission links,

or abuse from users (eg. not choosing a good password). It does not feature
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facility of use, as users must remember a separate password for each com-

puter. Abuse is easy (eg. by choosing weak, easy to remember passwords).

It is not robust, as once a password has been stolen, it may not even be

immediately obvious that the password has been stolen.

Remote users can be authenticated, but all links in between need to

be trusted, especially if encryption is not used. Support for disconnected

computers is also possible, but only if you trust people with physical access

not to try and apply dictionary attack methods to work out passwords for

other people (depending on how many people have access to th6 computer).

8.1.2 Biometrics

Using Biometrics for authentication can be secure, features facility of use,

and mistakes are hard to make (assuming database is kept accurate) making

it robust. It is not scalable (as a secret database is required).

However as previously discussed biometrics, cannot be used for general

remote authentication or for disconnected use.

8.1.3 Asymmetric Authentication

Asymmetric authentication methods (eg. SSH) are not scalable as no mech-

anism has been defined for securely transferring the public keys[17j. Assum-

ing the keys have been correctly transferred in advance, it is scalable. It is

not secure as end users need to manage their own keys.

Once initially setup, asymmetric authentication methods feature facility

of use, as serious misakes are difficult. However, making asymmetric au-

thentication protocols robust) is difficult, as there is no easy way to check

or revoke public keys should a problem arise.

Asymmetric authentication, by itself, cannot be used for local authenti-

cation, because some form of trusted storage space is required to store the

secret inverse key. Unlike passwords used for symmetric authentication, se-
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cret inverse keys cannot be memorised, because the length of a asymmetric

key is usually considerably longer than that of the symmetric key.

8.1.4 Kerberos

Kerberos is secure and features facility of use (there is no need to take

shortcuts with passwords, as only one is required). It is forgiving of most

mistakes (robustness, due to the expiry time on tickets), however, the KDC

must be kept secure. If the KDC is not kept secure then all other computers

in the realm controlled by the KDC could be compromised,. Kerberos, as

defined in the standard[9], is not scalable. Nor can it be used securely on

off-line computers.

There are a number of extensions for Kerberos. Some of them are impor-

tant, where as others are questionable. However, even with these extensions,

some issues still remain. Pklnit requires end users manage asymmetric keys,

and PkCross requires but does not provide a scalable key distribution tech-

nique.

8.1.5 Smar t -Cards

Smart cards are probably the best system for authentication, as it is im-

possible to steal a user's identity without stealing the card. With further

enhancements (eg. authentication of the user to the smart card first), then

even this risk is minimised.

Smart cards are not a final solution to access control or authentica-

tion. Rather, they must be used in conjunction with another protocol (eg.

asymmetric authentication). While the problem of storing confidential user

information for authentication is solved, other issues still remain (eg. dis-

tributing public keys). For this reason, smart cards have not been included

in Table 8.1, as it depends on what protocol they are used with.

There is no single standard that can be used for smart-cards, nor is there
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wide deployment of smart card-readers. Both of these issues must be solved

before smart-cards can become a general solution for scalable access control.

8.1.6 Proposed

The proposed method uses Kerberos for authentication and non-repudiation

and SPKI for authorisation.

Kerberos with PkCross extensions with a method for scalable key distri-

bution. Hence it meets all the desired criteria. Kerberos can be used with

SPKI, either by allowing SPKI naming certificates to support Kerberos, or

by allowing Kerberos to support features of non-repudiation, as previously

discussed.

SPKI supports delegation, eliminating the need for a large centrally ad-

ministrated ACL. It doesn't require end users manage their private keys.

These mean that SPKI has scalability, security, facility of use, and robust-

ness.

Password

Biometrics

SSH

Kerberos

Pklnit

PkCross

Proposed

Security Scalability Facility of Use

X

V
X

V
V

X

X

X

X

X

X

V

X a

V

V

v/

Robustness

V
X

V
V
V
V

Table 8.1: Comparison of Authentication Methods

"requires memory skills
^passwords must be kept secret
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8.2 Authorisation

Some authorisation protocols suffer from similar security problems as the

authentication protocols. For instance, password based authorisation sys-

tems, such as Windows 98, require the user remember a separate password

for each service. This prevents the protocol from being easy to use. Also,

there is no scalable method of transporting passwords for each service, hence

limiting scalability of the protocol.

Most authorisation protocols rely on a separate authentication system,

such as SPKI which uses name certificates for authentication. Hence the

above problems are not an issue (assuming that the separate authentication

system is secure).

However flexibility is an important issue. If the authorisation protocol

is not flexible, then a given security policy for a site can not be effectively

implemented, without making compromises that limit security of the overall

site.

The most flexible protocol described here is the SPKI protocol. It is

flexible in that the resource does not need to have any prior knowledge of who

may have acess. Instead, features such as issuing of certificates, delegation

of rights, and restrictive tags allow for decentralised access control.



Chapter 9

Conclusion

This chapter summarises the results and contributions to scalable acess con-

trol.

The main contributions of this work arc:

• Fast cross realm authentication, as presented in Chapter 3, demon-

strates how inter-realm information can be cached in order to speed

up inter-realm ticket requests. This was published in [17].

• Scalable publio key exchange is required by any protocol that uses or

requires public keys. An example of how this could be achieved is

given in Chapter 4. This was published in [11]. This issue is often

neglected, as protocols expect users to come up with some external

solution.

• Non-repudiation is important to state-of-the-art authorisation proto-

cols. Chapter 5 shows that non-repudiation can be provided for even in

authentication systems that do not use public keys, such as Kerberos.

A selection of different solutions are described.

• SPKI (an access control protocol) has a number of limitations. Chap-

ter 8 lists proposed enhancements to SPKI, which allow SPKI to be

95
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used with Kerberos, to use multiple chains of signatures, and to be

generalised so that certificates do not need to be specific to each pro-

tocol.

In performing this work, I found that major issues of security are often

overlooked or ignored. Some of these have raised potential security prob-

lems, eg. no satisfactory framework for securely distributing public keys for

asymmetric authentication and authorisation systems.

While satisfactory methods of authentication already exist, such as Ker-

beros, none of these are currently scalable to very large networks such as

the Internet, nor does Kerberos deal with issues such as Non-Repudiation.

Kerberos is a state-of-the-art authentication protocol. It authenticates

users by granting them a ticket, which acts as proof of identity when passed

to a server. However Kerberos by itself has issues that limit its scalability

in large scale networks.

A number of extensions have already been proposed in attempt to deal

with this problem. These include symmetric encrption (PkCross and Pklnit)

and the use of smart cards.

Pklnit adds asymmetric authentication capabilities to Kerberos for end-

users[52j. While this is an interesting idea, and is required for the PkCross

proposal, it suffers from all of the problems (see Section 2.3, page 18) that

asymmetric authentication schemes suffer, without adding any significant

benefits.

PkCross is a proposed extension to Kerberos that allows it to use asym-

metric authentication for cross realm authentication while continuing to use

asymmetric authentication for end users[35|. As end users do not need to

worry about administration of the public keys, the compliance defccts[12]

(see Section 2.3, page 18) are not longer relevant.

A better approach for authentication is to use smart cards[51]. With a

smart card system, it is easy to determine if a smart card has been lost or
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stolen. If the card is not lost or stolen, unauthorised use is not possible.

However, the issues of scalability still remain unresolved, as there is no

scalable method of distributing private symmetric keys used by Kerberos or

public asymmetric keys used by its extensions, such as PkCross and Pklnit.

The proxy authentication ticket solves the problem of distributing pri-

vate Kerberos keys, by allowing a KDC to grant tickets for other realms

without having to contact the remote KDC for each ticket issued.

The scalable key distribution solves the problem of distributing public

asymmetric keys, by providing a protocol which attempts to automate this

tedious task.

Finally, access control also requires an authorisation scheme. SPKI is

a flexible access control protocol (ie. it covers both authentication and au-

thorisation). In the conventional implementation, a central administrator

(sometimes known as the owner of the resource) needs to set up the ACL,

which specifies who is allowed to access what resource. This means that the

administrator must keep track of when to add new entries (eg. new staff

member), and when to delete old (eg. staff member who got fired). This

also implies that the central administrator must always be informed of any

changes of status in staff. In a big company with possibly thousands of staff,

this could get tedious. It also requires significant processing power (eg. a

smart card based door lock) just to store and process the long ACL list.

SPKI provides an alternative. The central ACL only needs to contain

one entry (eg. CEO is allowed access). This entry would in turn delegate

responsibility (eg. middle manager is allowed access), all the way until it

reaches the individual employers. Each boss would be responsible for grant-

ing authorisation certificates to his/her employees, removing the need to do

this centrally.

An improved version of SPKI is shown that allows the flexibility of SPKI

but without compromising the security. It is shown how to make SPKI use
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Kerberos, multiple chains, and a better naming system for tags.

However, SPKI is not useable without some form of non-repudiation.

In the long term, the best solution may be use of normal asymmetric keys

stored on secure smart cards. However, until smart card readers are widely

deployed, and good standards are developed, use of asymmetric keys means

users have to maintain their own asymmetric keys. As discussed, this will

cause security problems as users can take shortcuts with key management.

Kerberos can also provide the level of non-repudiation required, as dis-

cussed. It is demonstrated that non-repudiation can be achieved securely on

a large scale by combining the previous proposals together. While certain

tradeoffs were made in the design process that could potentially decrease

security, this design should increase overall security.



Appendix A

SPKI Certificate Structure

This appendix is quoted from the Internet draft standard[69].
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Simple Public Key Certificate

<draft-ietf-spki-cert-structure-06.txt>

Status of This Document

This draft is intended to become a Proposed Standard RFC. It defines
a form of public key certificate and structures related to the
communication and use of such certificates. This document supersedes
the draft filed under the name draft-ietf-spki-cert-structure-05.txt.
It has changed in minor details, to reflect decisions made at the
last meeting and by e-mail.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119.

The theory behind the SPKI certificate is to be found in draft-ietf-
spki-cert-theory-*.txt. Examples of certificate uses are to be found
in draft-ietf-spki-cert-examples-*.txt. The requirements behind this
work are listed in draft-ietf-cert-req-*.txt.

Distribution of this document is unlimited. Comments should be sent
to the SPKI (Simple Public Key Infrastructure) Working Group mailing
list <spki@c2.net> or to the authors. Membership on the mailing list
can be achieved by sending a message consisting of the line:

subscribe spki
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to majordorno@c2.net.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months. Internet-Drafts may be updated, replaced, or obsoleted by
other documents at any time. It is not appropriate to use Internet-
Drafts as reference material or to cite them other than as a
''working draff' or ''work in progress.''

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

This document defines the structure of SPKI certificates, CRLs, other
fine-grain validity instruments and sequences of those objects to be
delivered from a prover to a verifier. The purpose of such objects
is to establish the prover's authorization to have a request
satisfied by the verifier. Establishing identity, sometimes thought
to be the only purpose of a certificate, is considered to be an
optional step in this process but not the goal of the effort and
often unnecessary.

The authorization computation also involves an ACL [Access Control
List], by necessity. Since the ACL is never communicated from one
party to another, there is no reason to standardize its format. That
is left to the implementer, although this document does give an
example format for an ACL.

The authorization field carried by SPKI certificates and ACLs is left
to be defined, to suit each particular application or protocol. SPKI
defines rules for combination of authorization fields, constraining
the construction of these, but leaves specific details up to the
implementer. Examples of authorization fields are to be found in
draft-ietf-spki-cert-examples-*.txt.

The process of reducing SPKI sequences and an ACL to determine an
authorization result is spelled out here, but an individual
implementer is free to design new reduction algorithms as long as
they are computationally equivalent to the one defined here.
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SPKI certificates bind either names or explicit authorizations to
keys or other objects. The binding to a key can be directly to an
explicit key, or indirectly through the hash of the key or a name for
it. The binding to an object is via the hash of the object or a name
that resolves to that hash. The name and authorization structures
can be used separately or together. We use S-expressions as the
standard format for these certificates and define a canonical form
for those S-expressions. As part of this development, a mechanism
for deriving authorization decisions from a mixture of certificate
types was developed and is described in the companion theory
document.

These structures are also known under the name SDSI 2.0.
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Overview of Contents

This document contains the following sections:

Section 1.- this overview.

Section 2: a glossary of terms.

Section 3: the definition of structure primitives used throughout the
rest of the document.

Section 4: the definition of an authorization certificate and its
component parts.

Section 5: the definition of a name certificate and the few parts
that differ from an authorization certificate.

Section 6: the definition of an ACL and a (sequence...) structure.

Section 7: the definition of online test reply formats. An online
test is a mechanism for asking for a CRL or a revalidation. The
replies are CRLs or revalidations.

Section 8: the rules of 5-tuple reduction

Section 9: the full BNF.

The References section lists all documents referred to in the text as
well as readings which might be of interest to anyone reading on this
topic.

The Acknowledgements section.

The Authors' Addresses section gives the addresses, telephone numbers
and e-mail addresses of the authors.
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We use some terms in the body of this document in ways that could be
specific to SPKI:

ACL: an Access Control List: a list of entries that anchors a
certificate chain. Sometimes called a "list of root keys", the ACL
is the source of empowerment for certificates. That is, a
certificate communicates power from its issuer to its subject, but
the ACL is the source that power (since it theoretically has the
owner of the resource being controlled as its implicit issuer). An
ACL entry has potentially the same content as a certificate body, but
has no Issuer (and is not signed). There is most likely one ACL for
each resource owner, if not for each controlled resource.

CERTIFICATE: a signed instrument that empowers the Subject. It
contains at least an Issuer and a Subject. It can contain validity
conditions, authorization and delegation information. Certificates
come in three categories: ID (mapping <name,key>), Attribute (mapping
authorization,name>), and Authorization (mapping
authorization,key>). An SPKI authorization or attribute certificate
can pass along all the empowerment it has received from the Issuer or
it can pass along only a portion of that empowerment.

CANONICAL S-EXPRESSION: an encoding of an S-expression that does not
permit equivalent representations and is designed for easy parsing.

FULLY QUALIFIED NAME: a local name together with a global identifier
defining the name space in which that local name is defined.

GLOBAL IDENTIFIER: a globally unique byte string, associated with the
keyholder. In SPKI this is the public key itself, a collision-free
hash of the public key or a Fully Qualified Name.

HASH: a cryptographically strong hash function, assumed to be
collision resistant. In general, the hash of an object can be used
wherever the object can appear. The hash serves as a name for the
object from which it was computed.

ISSUER: the signer of a certificate and the source of empowerment
that the certificate is communicating to the Subject.

KEYHOLDER: the person or other entity that owns and controls a given
private key. This entity is said to be the keyholder of the keypair
or just the public key, but control of the private key is assumed in
all cases.

NAME: a SDSI name always relative to the definer of some name space.
This is sometimes also referred to as a local name. A global (fully
qualified) name includes the global identifier of the definer of the
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For example, ifname space.
(name jim)

is a local name,
(name (hash md5 |+gbUgUltGysNgewRwu/3hQ==|) jim)

could be the corresponding fully qualified name.

ONLINE TEST: one of three forms of validity test: (1) CRL; (2)
revalidation; or (3) one-time revalidation. Each refines the date
range during which a given certificate or ACL entry is considered
valid, although the last defines a validity interval of effectively
zero length.

PRINCIPAL: a cryptographic key, capable of generating a digital
signature. We deal with public-key signatures in this document but
any digital signature method should apply.

PROVER: the entity that wishes access or that digitally signs a
document. The Prover typically sends a message or opens a channel to
the Verifier that then checks signatures and credentials sent by the
Prover.

SPEAKING: A Principal is said to "speak" by means of a digital
signature. The statement made is the signed object (often a
certificate). The Principal is said to "speak for" the Keyholder.

SUBJECT: the thing empowered by a certificate or ACL entry. This can
be in the form of a key, a name (with the understanding that the name
is mapped by certificate to some key or other object), a hash of some
object, or a set of keys arranged in a threshold function.

S-EXPRESSION: the data format chosen for SPKI/SDSI. This is a LISP-
like parenthesized expression with the limitations that empty lists
are not allowed and the first element in any S-expression must be a
string, called the "type" of the expression.

THRESHOLD SUBJECT: a Subject for an ACL entry or certificate that
specifies K of N other Subjects. Conceptually, the power being
transmitted to the Subject by the ACL entry or certificate is
transmitted in (1/K) amount to each listed subordinate Subject. K of
those subordinate Subjects must agree (by delegating their shares
along to the same object or key) for that power to be passed along.
This mechanism introduces fault tolerance and is especially useful in
an ACL entry, providing fault tolerance for "root keys".

TUPLE: The security-relevant fields from a certificate or ACL entry.
We speak of 4-tuples for name certificates and 5-tuples for
authorizations. The 4-tuple has fields:
<Issuer, Name, Subject, Validity>
while the 5-tuple has fields:
<Issuer, Subject, Delegation, Authorization, Validity>.
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VALIDITY CONDITIONS: a date range that must include the current date
and time and/or a set of online tests that must succeed before a
certificate is to be considered valid.

VERIFIER: the entity that processes requests from a prover, including
certificates. The verifier uses its own ACL entries plus
certificates provided by the prover to perform "5-tuple reduction",
to arrive at a 5-tuple it believes about the prover:
<self, prover, D, A, V>.
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We have chosen a simplified form of S-expression (the canonical form)
as the format for SPKI objects. An S-expression is a list enclosed
in matching "(" and " ) " . We assume the S-expression technology of
[SEXP] with the restrictions that no empty lists are allowed and that
each list must have a byte string as its first element. That first
element is the "type" or "name" of the object represented by the list
and must be a byte-string.

SPKI objects are defined below in a familiar extension of BNF — with
"|" meaning logical OR, "*" meaning closure (0 or more occurrences),
"?" meaning optional (0 or 1 occurrence) and "+" meaning non-empty
closure (1 or more occurrences). A quoted string represents those
characters. First we define the canonical S-expression form in that
BNF.

For the sake of readability, all examples and the BNF in this
document deal with advanced rather than canonical S-expressions.
That is, single word strings that start with alphabetic characters
are used without quotes and strings can be in hex, base64 or double-
quoted ASCII. The mapping to canonical form is specified below.

3.1 Canonical S-expression

All SPKI structures communicated from one machine to another must be
in canonical form. If canonical S-expressions need to be transmitted
over a 7-bit channel, there is a form defined for base64 encoding
them.

A canonical S-expression is formed from binary byte strings, each
prefixed by its length, plus the punctuation characters "()[]". The
length of a byte string is a non-negative ASCII decimal number, with
no unnecessary leading "0" digits, terminated by ":". The canonical
form is a unique representation of an S-expression and is used as the
input to all hash and signature functions.

3.2 <byte-string>

A byte-string is a sequence of binary bytes (octets), optionally
modified by a display type.

All byte strings carry explicit lengths and are therefore not
0-terminated as in the C language. They are treated as binary even
when they are ASCII, and can use any character set encoding desired.
Typically, such a choice of character set would be indicated by a
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A display type is assumed to be a MIME type giving optional
instructions to any program wishing to display or use the byte
string. For example, it might indicate that the string is in
UNICODE, is a GIF or JPEG image, is an audio segment, is a biometric
template from some particular manufacturer, etc. Although the
display type of a byte string is optional, it is considered part of
the string for any equality comparisons or hashing. That is, two
strings with the same bytes will not be considered equal (or
otherwise comparable) if they have unequal display types.

A byte-string is defined by:

<byte-string>:: <bytes> | <display-type> <bytes> ;
<bytes>:: <decimal> ":" {binary byte string of that length} ;
<decimal>:: <nzddigit> <ddigit>* | "0" ;
<nzddigit>:: "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
<ddigit>:: "0" | <nzddigit> ;
<display-type>:: "[" <bytes> " ] " ;

3.2.1 <integer>

An integer is a kind of byte-string,

<integer>:: <byte-string> ;

that we distinguish only because it is encoded in the way expected by
multi-precision libraries. We assume those libraries deal only with
signed multi-precision integers, even if they are known to be
positive (e.g., a modulus for RSA or DSA).

The bytes of a binary integer are twos-complement, in network
standard order (most significant byte first). On the assumption that
they are signed, a leading 0x00 or OxFF byte may need to be present,
but redundant bytes of sign need not be.

The integer value 0 is expressed as a 1-byte string holding the 0
byte, not as the empty string "".

3.3 S-expression

An S-expression is of the form:

<s-expr>:: "(" <byte-string> <s-part>*
<s-part>:: <byte-string> | <s-expr> ;
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where the first byte string in the S-expression is referred to here
as its "type".

3.4 Encoding examples

(4:test26:abcdefghijklmnopqrstuvwxyz5:123455

is a canonical S-expression consisting of four byte strings: "test",
"abcdefghijklmnopqrstuvwxyz", "12345" and ":: ::".

The advanced text form is:

(test abcdefghijklmnopqrstuvwxyz "12345" ":: ::")

showing that the advanced form follows familiar token recognition
rules, not permitting tokens to start with digits, terminating them
with white space or punctuation marks.

For transmission of true 8-bit forms, we permit base64 encodings
according to [RFC2045], with the base64 characters enclosed in braces
"{}". The example above encodes to:

{KDQ6dGVzdDI2OmFiY2RlZmdoaWprbGlub3BxcnN0dXZ3eHl6NToxMjM0NTU
60jogOjop}

3.5 Use of canonical S-expressions

Canonical S-expressions were designed to be as simple to pack and
parse as possible. Some concessions were made to those developers
who might want to examine a canonical S-expression in an ASCII editor
like emacs (specifically the readable decimal length fields and
readable "()[]" characters) but in general the form is as close to
minimum size as possible. Parsing of a canonical form S-expression
requires minimal look-ahead and no re-scanning of incoming bytes. As
a result, the parsing code remains very small. Assuming each byte
string is stored internally with a length field, packing a data
structure into a canonical S-expression requires an extremely small
amount of code.

The canonical S-expression is the form which is hashed for both
generating and verifying signatures. These two processes can be
thought of as the start and end of an SPKI object's useful life and
both require canonical form. The implementer may wish to keep the
canonical form around, alongside any parsed version, for convenience
in the event memory is not overly limited.
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[This document includes some advanced forms for readability. Since
this document is required to be straight ASCII, no 8-bit binary
canonical forms will be presented except under base64 encoding.]

3.6 Advanced S-expressions

[SEXP] includes a general purpose utility program for converting
between canonical and advanced S-expression form. In the advanced
form, individual byte strings may be expressed without length fields
(if they are what most languages consider text tokens), may be
written as quoted strings (under normal C string rules), or may be
individually hex or base64 encoded. Also in the advanced form, white
space between list elements is allowed for readability and ignored on
conversion to canonical form.

For examples, this document will normally use the advanced form
because of its readability, but for at least one concrete example the
canonical form and its hash are presented (base64 encoded where
necessary, given that this document is 7-bit ASCII).

In these examples, we will use keywords without pr jeding length
fields, quoted strings, hex values (delimited by "#") and base64
values (delimited by " | " ) . Those are features of the advanced
transport form of an S-expression, and are not part of the canonical
form. Each example here that has a binary canonical form is
presented along with the base-64 encoded form which the reader can
decode to get the binary canonical form.

3.7 Unique IDs

Top level object names are defined in this document along with
certain algorithm names. <tag> objects are user-defined, using a
language for describing sets of permissions given here, and in the
process, the defining user can choose any object names he or she
wishes.

For the definition of new algorithm names, it is our preference that
this be taken on by IANA [RFC1780] for single-word standard names.
In the interest of maximum flexibility we also permit users to define
their own algorithm names via a normal URIs (which presumably point
to descriptions of the algorithms or even to code).
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The objects defined in SPKI/SDSI 2.0 are S-expressions. That is they
are lists of either byte strings or other lists. In our case, all S-
expressions start with a <byte-string>, called the object name. The
remaining elements of the list are called "parts" of the object.

In a communication from prover to verifier, one might encounter only
a small number of different objects: usually a <sequence> of <cert>,
<pub-key>, <signature> and <op>. The verifier will also need to
refer to its own <acl>. These are considered top level objects and
are defined in the sections immediately following

It is standard SPKI/SDSI practice to use names starting with a lower
case letter, followed by lower case letters, digits and hyphens for
object types. SPKI/SDSI is case-sensitive, so the byte-string "RSA"
is not the same as "rsa". Non-standard object types (i.e. <tag>s
defined by an application developer) are unconstrained, may have
display types and may even be URIs pointing to documentation of the
object type.

The structure and interpretation of the parts is up to the designer
of the top-level object type. However, for the sake of
simplification, we have decided that all objects are "positional".
That is, their parts are listed in some fixed order with meaning of
the part depending on its position. Parts can be omitted only by
omitting a contiguous set of trailing parts. Exceptions to this are
found in the top level <cert> and <acl> constructs.

The following are the definitions of the top level objects which a
verifying program may encounter. Note that the main object, <cert>,
is sub-type based so the parameter fields may be in any order, but
the BNF suggests a fixed order. We use the BNF definition to
indicate that there may not be more than one of each of the listed
fields, and also to suggest (for readability) that the certificate
parts be presented in the order given. This document will use that
order.

3.8.1 <pub-key>

<pub-key>:: "(" "public-key" "(" <pub-sig-alg-id> <s-expr>* " ) "
<uris>? " ) " ;

A public key definition gives everything the user needs to employ the
key for checking signatures. The <uri>s, if present, give locations
where one might find certificates empowering that public key.

The only pub-sig-alg-id's we have defined at this point are for
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signature verification. That is because we need only signature keys
for certificate formation and access control. Other key types are
open to being defined by application developers. Should some become
popular enough, their S-expression forms can be standardized later.

3.8.1.1 RSA key format

The following is an RSA signature key, shown in advanced transport
format:

(public-key
(rsa-pkcsl-md5
(e #03#)
(n
|ANHCG85jXFGmicr3MGPj53FYYSYlaWAue6PKnpFErHhKMJa4HrK4WSKTO
YTTlapRznnELD2D7lWd3Q8PD01yilNJpNzMkxQVHrrAnIQoczeOZuiz/yY
VDzJlDdiImixyb/Jyme3D0UiUXhd6VGAz0x0cgrKefKnmjy410Kro3uWl| )))

For actual use, the key is held and presented in canonical form the
base64 encoding of which is:

{KDEwOnBlYmxpYy1rZXkoMTM6cnNhLXBrY3MxLWlkNSgxOmUxOgMpKDE6bjE
y0ToA0cIbzmNcUaaJyvcwY+PncVhhJjVpYC57o8qekUSseEowlrgesrhZIpM
5hNOVqlHOecQsPYPuVZ3dDw8PSXKLU0mk3MyTFBUeusCchChzN45m6LP/JhU
PMnUN2liaLHJv8nKZ7cPRSJReF3pUYDPTHRyCsp58qeaPLjXQquje5bUpKSk=}

Although not strictly needed by this draft, the private key for the
public key above is:

(private-key
(rsa-pkcsl-md5
(e #03#)
(n
|ANHCG85jXFGmicr3MGPj53FYYSYlaWAue6PKnpFErHhKMJa4HrK4WSKT
OYTTlapRznnELD2D7lWd3Q8PD01yilNJpNzMkxQVHrrAnIQoczeOZuir/
yYVDzJlDdiImixyb/Jyme3D0UiUXhd6VGAz0x0cgrKefKnmjy410Kro3u
Wl|)
(d
|AIvWvTRCPYvEW9ykyulCmkuQQMQjm5V0Um0xvwuDHaWGyw81acx65hcM
OQM3uRw2iaaCyCkCnuO+kl9fX4ZMXOD7cLN/Qrql8Efx5mczcoGN+Eo6F
F+cvgXfupelVM6PmJdFIauJerTHUOlPrI12N+NnAL7CvU6XlnhOnf/Z77
iz|)
(P
|APesjZ8gK4RGV5QsleCRAVp7mVblgfl3R5fwApw6bTVWzunIwk/2sShy
ytpc90edr+0DPwldnvEXTUYldf0DwPc=|)
(q
|ANjPQe6O0Jfv90GWE3q2c9724AX7FKx64g2F81xgiWW0QKEeqiWiiEDx
7qh0lLrhmBT+VXEDFRG2LHmuNSTzj7M=I)
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|AKUds79qx62EOmLIjpW2AOb9EOSZAVOk2mVKrGgm83jkifEwgYqkdhr3
MebopNppH/NXfluTv0tk3i7OTqitK00=|)
(b
|AJCKK/RfNbqf+iu5Yl.HO9+n56q6nYx2nQV5ZTD2VsO54KxYUcW5sWtX2
nxr4YydBEA3+46CsuLZ5cwJeMNNCnc= | )
(c
|CIPwAAQ8Vmj0/BfCtsg+35+r94jwxGYHZ63RsqyNxbvkAO6xPqSht8/v
zdR93eX5B9ZKBQglHHWCsHbqQtmNLQ==|)))

or

{KDExOnByaXZhdGUta2V5KDEzOnJzYSlwa2NzMSltZDUoMTplMToDKSgxOm4
xMjk6ANHCG85jXFGmicr3MGPj53FYYSYlaWAue6PKnpFErHhKMJa4HrK4WSK
TOYTTlapRznnELD2D71Wd3Q8PD01yilNJpNzMkxQVHrrAnIQoczeOZuiz/yY
VDzJlDdiImixyb/Jyme3D0UiUXhd6VGAz0x0cgrKefKnmjy410Kro3uWlKSg
xOmQxMj k6AIvWvTRCPYvEW9ykyulCmkuQQMQjm5V0Um0xvwoDHaWGyw8lacx
65hcMOQM3uRw2iaaCyCkCnuO+kl9fX4ZMXOD7cLN/Qrql8Efx5mczcoGN+Eo
6FF+cvgXfupelVM6PmJdFIauJerTHUOlPrI12N+NnAIi7CvU6XlnhOnf/Z77i
zKSgxOnA2NToA96yNnyArhEZXlCzV4JEBWnuZVuWB/XdHl/ACnDptNVb06cj
CT/axKHLK21z3R52v7QM/CV2e8RdNRjV.l/QPA9ykoMTpxNjU6ANjPQe600Jf
v90GWE3q2c9724AX7FKx64g2F81xgiWW0QKEeqiWiiEDx7qh0lLrhmBT+VXE
DFRG2LHmuNSTzj7MpKDE6YTY10gClHb0/asethDpiyl6VtgDm/RDkmQFTpNp
lSqxoJvN45InxMIGKpHYa9zHm6KTaaR/zV39bk79LZN4uzk6orStPKSgxOmI
2NToAkIor9F81up/6K71iUc73 6fnqrqdjHadBXllMPZWw7ngrFhRxbmxalfa
fGvhjJ0EQDf7joKy4tnly+814w00KdykoMTpjNjQ6CIPwAAO8Vmj0/BfCtsg
+3 5+r94jwxGYHZ63RsqyNxbvkAO6xPqSht8/vzdR93eX5B9ZKBQglHHWCsHb
qQtinNLSkpKQ==}

where a, b and c are CRT parameters.

3.8.1.2 DSA key format

The following is a DSA signature key, shown in advanced transport
format:

(public-key
(dsa-shal
(P
|AMxZt4PXzxBFGaF5r+cGpXQzNXCHjjklavvgnr4LCzXYbC97QVXi/Xesl
k28t0YcDlon56Yut0lTz39fziBpHbGBfclLvOgWlP5MIalW8eM3UXi4dz
WjWtjCn/QM2s33qyELDsCmgAeKg3sVygjKavNgZiSxf44R7RcIEnZBxkc
N/ |)
(g
|fbT/lMbMgBWb8lX2kRyklLLO/TamsDbLCyp2esdrf/3771RKgsIlRZTW
MxIpR51D6maNNpEywxhy4L8isXFXplysrAMCfDjpaUCowhQNSDRT8Yzyg
xZHJpZIU8it+QtLc4fIxA/qSqFL4N3fTIe7xApQlmmG9bl21gBlZbil/OU
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(q |AP9n7Cy++blLMxOaB0ML3Z3Cc+qh|)
(y
|ALpgrX32c8zRlqBSBMtvJzYwrXXpCj3oqeevPna/9zND2LX7wVZdlc9K
6ZxmQCqxDqGl/anDVToNAnlzr2btlS32cymsxpEm8bIlAJ6Jk4clT3Nrx
uTDRft/W+rgvndiK8fEmtNZ2iaYgAKoM2M3zbij6TslH0FfjODHZrtULy

For actual use, the key is held and presented in canonical form the
base64 encoding of which is:

{KDEwOnBlYmxpYylrZXkoODpkc2Etc2hhMSgxOnAxMjk6AMxZt4PXzxBFGaF
5r+cGpXQzNXCHjjklawgnr4LCzXYbC97QVXi/Xeslk28t0YcDlon56Yut0lT
z39fziBpHbGBfclLvOgWlP5MIalW8eM3UXi4dzWjWtjCn/QM2s33qyELDsCm
gAeKg3sVygjKavNgZiSxf44R7RcIEnZBxkcN/KSgx0mcxMjg6fbT/lMbMgBW
b8lX2kRyklLLO/TamsDbLCyp2esdrf/377lRKgsIlRZTWMxIpR51D6maNNpE
ywxhy4L8isXFXplysrAMCfDjpaUCowhQNSDRT8YzygxZHJpZIU8it+QtLc4f
IxA/qSqFL4N3fTIe7xApQlmmG9bI21gBlZbil/OUpKDE6cTIxOgD/Z+wswm
5SzMTmgdDC92dwnPqoSkoMTp5MTI5OgC6YK199nPM0ZagUgTLbyc2MK116Qo
96Knnrz52v/czQ9il+8FWXdXPSumcZkAqsQ6hpf2pwlU6DQJ5c69m7ZUt9nM
prMaRJvGyJQCei ZOHJU9 za8bkwOX7 flvq4L5 3 YivHxJrTWdommlACqDNj N8 2
4o+k7NR9BX4zgx2a7VC8jQSkpKQ==}

The private DSA key differs from the public by the inclusion of the
secret x value:

(private-key
(dsa-shal
(P
|AMxZt4PXzxBFGaF5r+cGpXQzNXCHjjklawgnr4LCzXYbC97QVXi/Xesl
k28t0YcDlon56Yut0lTz39fziBpHbGBfclLvOgWlP5MIalW8eM3UXi4dz
WjWtjCn/QM2s33qyELDsCmgAeKg3sVygjKavNgZiSxf 44R7RcIEnZBxkc
N/|)
(g
|fbT/lMbMgBWb8lX2kRyklLLO/TamsDbLCyp2esdrf/3771RKgsIlRZTW
MxIpR5lD6maNNpEywxhy4L8 i sXFXplysrAMC fDj paUCowhQNSDRT8Yzyg
xZHJpZIU8it+QtLc4fIxA/qSqFL4N3fTIe7xApQlmmG9bl21gBlZbil/OU
D

(q
(Y
(x

AP9n7Cy++blLMxOaB0ML3Z3Cc+qh|)
)

3.8.1.3 Elliptic Curve DSA key format

The elliptic curve versions of DSA introduce complexities not present
in the normal DSA because: (1) it is popular to implement elliptic
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curve algorithms over finite fields of the form GF(2Am), not just
GF(p), and (2) it is also popular to compress curve point
representations, so that the point needs decompression before it can
be used. There is a further complication introduced in the case of
binary finite fields in that one can choose difference bases over
which to express the bit string that represents a value in that
field.

All of these choices need to be captured and expressed in the public
key definition. The options available are to encode them in the
public key algorithm ID and/or to have extra parameters for each of
the subfields representing a field element.

****** ********************************

Invent a scheme here and pass it by Certicom and Burt — to define S-
expressions for field element, compressed EC point, basis choice, EC
curve, .... Show S-expressions for curve over both fields.

****************************************

3.8.2 <hash>

<hash>:: "(" "hash" <hash-alg-name> <hash-value> <uris>? " ) " ;

A <hash> object gives the hash of some other object. For example,
the public key given above has the following hashes:

(hash md5 #S?710fl55723bc5f4e0422ea53ff7c495#)
{KDQ6aGFzaDM6bWQlMTY61xDxVXI7xfTgQi6lP/fFlSk=}

(hash shal #la6f6d62 Iabd4476 fl6d0800 fe4c32dO 6ff62e93#)
{KDQ6aGFzaDQ6c2hhMTIwOhpvbWIavUR28W0IAP5MMtBv9i6TKQ==}

3.8.3 <signature>

<signature>:: "(" "signature" <hash> <principal> <sig-val> " ) " ;

A signature object is typically used for a certificate body and
typically follows that <cert> object in a <sequence>. One can also
sign objects other than certificate bodies, of course. For example,
one can form the signature of a file.
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<sig-val>:: "(" <pub-sig-alg-id> <sig-params> " ) " ;
<sig-params>:: <byte-string> | <s-expr>+ ;

<sig-params> depends on the <pub-sig-alg-id>, the verification
algorithm of the public key being used to verify this signature.

For the RSA algorithm, <sig-params> is a single <integer>.

For DSA, <sig-params> is two S-expressions:

(r <integer>) (s <integer>)

For other algorithms, the signature parameter structure will have to
be defined when the algorithm is defined.

3.8.3.2 Sample signatures

(signature
(hash shal |UNGhcpNFWg5UhtoV2yxV6wPMJPA=|)
(public-key
( rsa -pkcs l - sha l

(e #11#)
(n

|AMC7wEqs+AjILPsUmS+RlPV90ihhqSTfmdLo9Y2hdj7+2f31qxXsMpx
ZedTxmcW9RKsf7dRjnRTxY51/MOIn0isY3DV3fMiaT8NUrjf+jEjF91V
lHtCPn7+MHTv/quWToc9/n4BhVDxHHspFteoWORHtZqOUfQcSQNswt7
yrXFN|)))

( r sa-pkcs l - sha l
|UN0g7krgm6Xq6wws+oDZes9hy0pwDV9gVjuUV+uRC8Y7TDhlJPfv2dhX
BXqgERa3q99GHxgyjoDgfFgl/fAOplwz3vySmnATInrtCMxGdXgZlQ/SQ5
xFXz3VlKQHgak0rK4xpZEbsR6YMggcGK7NjZWTfNK0q8v4FSSD9UDkxk=|

(signature
(hash shal |UNGhcpNFWg5UhtoV2yxV6wPMJPA=|)
(public-key
(dsa-shal
(P
|AMxZt4PXzxBFGaF5r+cGpXQzNXCHjjklawgnr4LCzXYbC97QVXi/Xes
lk28t0YcDlon56Yut0lTz39fziBpHbGBfclLvOgWlP5MIalW8eM3UXi4
dzWjWtjCn/QM2s33qyELDsCmgAeKg3sVygjKavNgZiSxf44R7RcIEnZB
xkcN/|)
(g
|fbT/lMbMgBWb8lX2kRyklLLO/TamsDbLCyp2esdrf/3771RKgsIlRZT
WMxIpR5lD6maNNpEywxhy4L8isXFXplysrAMCfDjpaUCowhQNSDRT8Yz
ygxZHJpZIU8it+QtLc4fIxA/qSqFL4N3fTIe7xApQlmmG9bI21gBlZbi
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1/OU=|)
(q |AP9n7Cy++blLMxOaB0ML3Z3Cc+qh|)
(y
|ALpgrX32c8 ZRlqBSBMtvJzYwrXXpCj 3 oqeevPna/9 zND2LX7wVZdlc9
K5ZxmQCqxDqGl/anDVToNAnlzr2btlS32cymsxpEm8bIlAJ6Jk4clT3N
rxuTDRft/W+rgvndiK8fEmtNZ2iaYgAKoM2M3zbij6TslH0FfjODHZrt
ULyNB j)))

(dsa-shai
(r APyNegTrlzLMCCcMRWoMlnKAOHIu
(s AIPV/423 068nuoNmoQQupyW3x+Sl
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4. Authorization Certificate

<cert>:: "(" "cert" <version>? <cert-display>? <issuer> <issuer-loc>?
<subject> <subject-loc>? <deleg>? <tag> <valid>? <comment>? " ) " ;

The basic certificate form is an authorization certificate. It
transfers some specific authorization or permission from one
principal to another. The fields defined here assume one wants SPKI
certificates without SDSI name definition. Some of those field
definitions are modified in Section 5, to provide name definition.

Because a certificate merely transfers authorizations, rather than
creating them, the form we call ACL-entry is also defined below to
inject authorizations into a chain of certificates. An ACL entry
lives on the machine of the verifier, leading to the observation that
all authorization flow is in a circuit — from the verifying
machine's ACL, possibly through certificates and then back to the
verifying machine. Alternatively, one might say that the only root
of an authorization certificate chain is the verifier.

4.1 <version>

<version>:: "(" "version" <integer> " ) " ;

Version numbers are alphanumeric strings. If the <version> field is
missing from an object, it is assumed to be (version "0"), which is
the version of all objects in this draft. Elaboration of version
numbers, possibly with multiple fields, are left for later to define,

A certificate containing an unrecognized version number must be
ignored.

4.2 <cert-display>

<cert-display>:: "(" "display" <byte-string> " ) " ;

This optional field gives a display hint for the entire certificate.
This display parameter does not affect certificate chain reduction,
but is provided to aid user-interface software in certificate
display.

At this time, we have no such hints defined. This field is up to
developers to define as they sae fit. For verifiers of certificates,
this field is treated as a comment.
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4.3 <issuer>

<issuer>:: "(" "issuer" <principal> " ) " ;

<principal>:: <pub-key> j <hash-of-key> ;

<hash-of-key> might be the preferred <principal>, not merely for size
but also in case one is using small RSA keys and protecting them from
cryptanalysis by keeping them secret.

4.4 <issuer-loc>

<issuer-loc>:: "(" "issuer-info" <uris> " ) " ;

The (issuer-info ) object provides the location of the certificate(s)
by which the issuer derives the authority to pass along the
authorization in the present <cert>. We expect the prover (the
calling client) to track down such other certificates and provide
them to the verifier (the called server), but we allow this
information in the certificate to simplify that process for the
prover.

4.5 <subject>

<subject>::

<subj-obj>:
thresh> ;

"(" "subject" <subj-obj> " ) " ;

: <principal> | <name> | <obj-hash> <keyholder> | <subj-

In the most basic form,

<subj-obj>:: <principal> ;

and one may make an SPKI implementation with only that definition, in
case names are considered unnecessary for the intended application.

However in full-blown implementations, the subject may also be a
name, representing a group of principals or a delayed binding to some
one principal, the hash of an object, or a K-of-N threshold of
principals (in which case, the authorization being granted to the
subject is being spread out among multiple parties that must
cooperate to exercise that authorization). The <keyholder> case is
special and of little interest to verifier code, since it is used in
a certificate that is a message to a human.

See section 5 for the definition of <name>.
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4.5.1 <obj-hash>

<obj-hash>:: "(" "object-hash" <hash> " ) " ;

This option for a (subject ) refers to an object other than a
<principal>. One might use this form to assign attributes to an
object (a file, a web page, an executable program, . . . ) .

4.5.2 <keyholder>

<keyholder>:: "(" "keyholder" <keyholder-obj> " ) " ;
<keyholder-obj>:: <principal> | <name> ;

This form of subject refers to the flesh and blood (or iron and
silicon) holder of the referenced key. A <cert> with such a subject
is saying something about that person or machine — such as its
location, its address, its age, its weight, its height, its picture,
.... Such a certificate is most probably a message to a human rather
than for use in a verification process, but we anticipate
applications that will appreciate the machine-readable format of such
information.

4.5.3 <subj-thresh>

<subj-thresh>:: "(" "k-of-n" <k-val> <n-val> <subj-obj>* " ) " ;

where K < N, and the^e are N <subj-obj> subjects listed.

A threshold subject, introduced by Tatu Ylonen for SPKI and by Rivest
and Lampson in SDSI 1.0, specifies N subjects for a certificate or
ACL entry, of which K must agree before the permission is passed
along.

The actual intent is to insure that there are K distinct paths
passing permission between the verifier's ACL and the prover's
request. These multiple paths fork and join, so the k-of-n construct
could theoretically be part of either the Subject or the Issuer.
Since an ACL might want to specify these multiple paths (and an ACL
has no Issuer) and since a certificate is signed by a single Issuer,
we have chosen to specify the branching at the Subject.

A certificate or ACL with a k-of-n Subject does not delegate
permission to any of those subjects, alone. Rather, each of these
subjects receives a share of the delegated permission. Only if at
least K of the N subjects show certificate paths which converge on a
single target Subject during reduction, is that permission
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transmitted to the target. If fewer than K such paths can be shown,
then the permission is not delegated.

This construct is far from simple. However, it is extremely useful.
It has been demanded by a number of initial customers of SPKI
certificates. It also solves a number of sticky political problems.
This section lays out the specification of K-of-N subjects. The
rules for reducing 5-tuples containing such entries are given later.

Examples of the use of K-of-N permission propagation include:

1. co-signing of electronic corporate checks or purchase orders
above a certain amount

2. establishing the root DNSSEC key, bypassing the political battles
which would inevitably ensue if one country were to hold *the*
root key for the entire world. The same goes for any root key.

3. establishing a root key for a trusted service, via multiple
algorithms. That is, one could have three root keys, using RSA,
DSA and Elliptic Curve signature algorithms (for example), and
require that two of them yield a valid chain. This way, if
someone were to break an entire algorithm (find a way to invert
the algorithm), much less if someone were to break one key in the
set of three, the root remains securely established. At the same
time, there is fault tolerance. In case one of the keys is
revoked, the following certificates remain empowered.

4. using online and off-line issuers. One could have a permission
established by an off-line key issuing a long-lived certificate
and echoed by an online automated server, issuing short-lived
certificates. The delegation of this permission could require
both before the eventual subject gets the permission. This can
be achieved through the use of (online ) tests in a long-lived
certificate, but the K-of-N subject mechanism may be cleaner.

5. ultra-secure applications. There are many applications which
follow the nuclear weapons launch scenario. That is, multiple
agreement is required before the permission is granted.

4.6 <subject-loc>

<subject-loc>:: "(" "subject-info" <uris> " ) " ;

This optional field provides the location of information about the
subject. For example, if the subject is a hash of a key, this might
provide the location of the key being hashed. If the subject is a
SDSI name, it might give the location of a SDSI name certificate
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4.7 <deleg>

<deleg>:: "(" "propagate" " ) " ;

This optional field, if present, notes that the <subject> has not
only the permission given in the <cert>'s <tag> field but also the
permission to delegate that (or some portion of it) to others.

4.8 <tag>

<tag>:: "(" "tag" "(*)" " ) " | "(" "tag" <tag-expr> " ) " ;

The form "(tag (*))" means "all permissions".

The simplest tag is an S-expression with no *-forms. This is a
specific permission which must be passed along and used intact.

A tag with *-forms represents a set of specific permissions. Any
subset of such a set of permissions may be delegated by a principal
empowered to delegate. When one is. reducing the 5-tuples from such
certificates, one intersects the adjacent tag sets to find a
resulting tag set.

All tags are assumed to be positional. That is, parameters in a tag
have a meaning defined by their position.

All tags are assumed to be extendable. That is, if one adds a field
to the end of a tag definition, one is restricting the permission
granted. [If the field added makes the tag invalid, then one has
restricted the original permission to zero.]

See the full BNF section for the full tag body BNF, including
specification of *-forms.

4.9 <valid>

The <valid> field gives validity dates and/or online test information
for the certificate.

<valid>:: "(" "valid" <not-before>? <not-after>? <online-test>* " ) " ;

<not-after>:: "(" "not-after" <date> " ) " ;
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<not-before>:: "(" "not-before" <date> " ) "

The not-after and not-before options are self-explanatory. If either
is missing, then the certificate is assumed valid for all time in
that direction. For example, one might omit the <not-before> field,
if that date would be before or at the time of creation of the
certificate, unless one wanted to note the creation time for
documentation purposes.

4.9.1 <date>

<date>:: <byte-string> ;

A date field is an ASCII byte string of the form:

YYYY-MM-DD_HH: MM: SS

always UTC. For internal use, it is treated as a normal byte string,
For example, "1997-07-26_23:15:10" is a valid date. So is
"2001-01-01_00:00:00". <date> fields are compared as normal ASCII
byte strings since one never needs to compute the size of a time
interval to test validity — only determine greater-than, less-than
or equal.

4.9.2 <online-test>

<online-test>:: "(" "online" <online-type> <uris> <principal>
<online-id> <s-part>*•")" | "(" "online" "new-cert" <uris> " ) " ;
<online-type>:: "crl" | "reval" j "one-time" ;
<online-id>:: "(" "id" <byte-string> " ) " ;

The online test option allows a certificate to be backed up by finer
grain validity testing. The online test specification, above, is
present in a certificate and shows that the certificate has a finer-
grain validity mechanism.

The reply from an online test is a digitally signed object, validated
by the <principal> given in the test specification. That object
includes validity dates, so that once one has the online test
response, its validity dates can be intersected with the parent
certificate's validity dates to yield the current working validity
dates for the certificate.

The crl form tells the verifier (or prover, who fetches this
information for the verifier, in our standard model), the current
list of invalid certificates. If the present certificate is not on
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that list, then the certificate is presumed valid.

The re-validate form is the logical opposite of the crl. It tells
the verifier a list of valid certificates or, more likely, just that
the current certificate is valid.

The one-time form is a re-validate form without validity dates. It
must be fetched by the verifier, rather than the prover, since it is
valid only for the current verification step. [In effect, it has a
validity period of just "now".] The process of getting this one-time
revalidation involves sending a unique (and partly random) challenge
which is returned as part of the signed response.

The new-cert form requests a new copy of the certificate in question.
The assumption is that these certificates are short-lived and that
the one triggering the new-cert fetch had expired.

If there are multiple URIs specified, any one of them can be used.

If the URI specifies an HTTP connection to the online test, then that
URI can provide all parameters needed (e.g., a hash of the
certificate in question), but in other cases, one might need to list
such parameters in the optional <s-part>s.

See section 7 for a full description of online test reply formats.

4.9.3 Online test protocols

The protocol used for i.hese online tests is not fully specified here.
One can use passive web pages and have the URI fetch the online test
result directly. This works for everything but one-time
revalidations.

One can use CGI-driven HTTP fetches, and allow the CGI code to
generate or fetch the online test result specifically for the
certificate in question. The URI given in <uris> would include the
parameters to that CGI code, so that again the user of the
certificate would see just a web page to fetch by HTTP.

If there are other servers and protocols defined, then those
definitions will determine how online test results are requested and
retrieved. One-time tests fall into this category. The fetch of a
one-time test result must be done by the verifying code, while all
other tests fetches can be done by the prover, prior to submitting a
(sequence...) to the verifier. That one-time test must include a
nonce provided by the verifier, to prevent replay attacks, but it
will probably also include transaction data (such as an amount of
money being debited from a bank account) and therefore be
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application-specific.

4.10 <comment>

<comment>:: "(" "comment" <byte-string> " ) " ;

This optional field allows the issuer to attach comments meant to be
ignored by any processing code but presumably to be read by a human.
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Names are defined for human convenience. For actual trust engine
computations, names must be reduced to keys. This section gives the
form of a name, a name certificate and the rules for reducing name
certificates to simple mappings from name to key.

Note that we do not include an <issuer-loc> option for a name
certificate. The issuer needs no authorization in order to create
names. Every issuer has that right.

Similarly, there is no "certification practice statement" for these
name certificates. Nothing is implied by a name certificate about
the principal(s) being named. A name can be an arbitrary byte string
assigned jy the issuer and is intended to be meaningful only to that
issuer, although other parties may end up using it. A name is not
required or expected necessarily to conform to any name string in the
physical world or in any other issuer's name space.

That said, it is possible to map name certificates genei^ated by a
commercial Certification Authority into SDSI names and thus refer to
keys defined under that process from within SPKI/SDSI certificates.

5.1 Name certificate syntax

A name certificate has the form:

(cert
(issuer (name <principal> <name>))
<subject>
<valid>

<name-cert>:: "(" "cert" <version>? <cert-display>? <issuer-name>
<subject> <valid>? <comment>? " ) " ;

<issuer-name>:: "(" "issuer" "(" "name" <principal> <byt^-string> "}"
/ ,

That form maps directly into the intermediate form needed for name
string reduction. The name must be under the <principal> of the
certificate issuer, and under this syntax the certificate issuer
<principal> is taken from the (name..) structure.

In a name certificate, the (tag) field is omitted and (tag (*)) is
assumed. There is also no <deleg> field. A name definition is like
an extension cord, passing everything the name is granted through to
the subject.

I
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The subject is unrestricted. It is what you are trying to name.

If there is more than one name certificate for a given name, with
different subjects, then that name is a group. More specifically,
all name certificates define groups, many of which will have only one
member. A multi-member group is like a multi-plug extension cord,
passing everything the name is granted through to any and all of its
subjects.

5.2 <name>

The <name> form is a option for <subject>, when one wants to generate
a certificate granting authorization to either a named group of
principals or to a principal that has not been defined yet. This can
be either a relative name or a fully-qualified name.

<name>:: <relative-name> | <fq-name> ;

<relative-name>:: "(" "name" <names> " ) " ;

<fq-name>:: "(" <principal> <names> " ) "

<names>:: <byte-string>+ ;

A relative name is defined only with respect to an issuer and should
show up only in a certificate, borrowing the <principal> from the
issuer of that certificate. For evaluation purposes, the relative
name is translated into a fully-qualified name before reduction.

Unlike the <issuer-name>, which is forced to be a name in the
issuer's name space, the subject name can be in any name space.

5.3 Name reduction

Given the name definition

(cert
(issuer
(name (hash md5 |TxozlGxK/uBvJbx3prIhEw==|) fred))
(subject (hash rnd5 |Z5pxCD64YwgSlIY4Rh61oA==|))
(not-after "2001-01-01_00:00:00"))

{KDQ6Y2VydCg20mlzc3VlcigOOm5hbWUoNDpoYXNoMzptZDUxNjpPGjPUbEr
+4G81vHemsiETKTQ6ZnJlZCkpKDc6c3ViamVjdCg0Omhhc2gzOmlkNTE2Ome
acQg+uGMIEtSGOEYetaApKSg5Om5vdClhZnRlcjE50jIwMDEtMDEtMDFfMDA
6MDA6MDApKQ==}
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^subject (name (hash md5 |TxozlGxK/uBvJbx3prIhEw=

reduces to

^subject (name (hash md5 |Z5pxCD64YwgSlIY4Rh61oA=

=|) fred sam george

=|) sam george

In

name

(cert
(issuer

(name (hash md5 |TxozlGxK/uBvJbx3prIhEw==I) fred))
(subject (name fred sam)) ' "
(not-after n2001-01-01_00:00:00"))
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ACL and Sequence formats

ACL and sequence structures are in the grey area. ACLs are private to
one developer or application. Sequences can be thought of as part of
the protocol using certificates.

6.1 <acl>

<acl>:: "(" "acl" <version>? <acl-entry>* " ) " ;

<acl-entry>:: "(" "entry" <subj-obj> <deleg>? <tag> <valid>?
<comment>? " ) " ;

An ACL is a list of assertions: certificate bodies which don't need
issuer fields or signatures because they are being held in secure
memory. Since the fields of the ACL are fields of a <cert>, we will
not repeat those common field definitions here. Since an ACL is
not communicated to others, developers are free to choose their
own formats.

If all the optional fields are left out, the subject is given the
permission specified in <tag>, without permission to delegate it, with
no expiration date or condition (until the ACL is edited to remove the
permission).

For example:

sysadmin/operators]

(acl
(entry
(name (hash md5 |plisZirSN3CBscfNQSbiDA==|
(tag (ftp db.acme.com root)))
(entry
(hash md5 |M7cDVmX3r4xmab2rxYqyNg==|)
(tag (ftp db.acme.com root)))
(entry
(hash md5 |kuXyqx8jYWdZ/j7Vffr+yg==|)
(propagate)
(tag (http http://www.internal.acme.com/accounting/)))

{KDM6YWNsKDU6ZW50cnkoNDpuYWllKDQ6aGFzaDM6bWQlMTY6plisZirSN3C
BscfNQSbiDCkxODpzeXNhZGlpbi9vcGVyYXRvcnMpKDM6dGFnKDM6ZnRwMTE
6ZGIuYWNtZS5jb2000nJvb3QpKSkoNTplbnRyeSgOOmhhc2gzOmlkNTE20jO
3AlZ196+MZmm9q8WKsjYpKDM6dGFnKDM6ZnRwMTE6ZGIuYWNtZS5jb200OnJ
vb3QpKSkoNTplbnRyeSgOOmhhc2gzOmlkNTE20pLl8qsfI2FnWf4+1X36/so
pKDk6cHJvcGFnYXRlKSgzOnRhZyg0Omh0dHA0MDpodHRwOi8vd3d3LmludGV
ybmFsLmFj bWUuY2 9 tL2 Fj Y2 9lbnRpbmcvKSkpKQ==}
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<crl> I <delta-crl>
<seguence>:: "(" "sequence" <seq-ent>* " ) " ;
<seq-ent>:: <cert> | <pub-key> | <signature>
<reval> | <op> ;
<op>:: <hash-op> | <general-op> ;
<hash-op>:: "{" "do" "hash" <hash-alg-name> " ) " ;
<general-op>:: "(" "do" <byte-string> <s-part>* " ) " ;

At present, only the hash operation is defined- It computes the
indicated hash of the last key or cert in the sequence.

A <sequence> is an ordered sequence of objects that the verifier is
to consider when deciding to grant access. By reducing certificates
in the sequence, the verifier will establish that the final subject
(key or object) has been granted authority through the sequence.

The sequence can also contain instructions to the verifier, in the
form of opcodes. At present the only opcode defined is "hash" —
meaning, that the previous item in the sequence (the last one read
in) is to be hashed by the given algorithm and saved, indexed by that
hash value. Presumably, that item (certificate body or public key,
for example) is referred to by hash in some subsequent object.

At this time, we assume that <signature> does double duty, calling
for the hash of the preceding item. However, it would not hurt to
use an explicit <hash-op> prior to a <signature>.

If an object will be referenced by different hashes, it can be
followed by multiple <hash-op>s.
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7. online test reply formats

********** should I have an ID for a CRL or reval thread or let the
public key signing the instrument be the ID for it? ******

An online test results in a digitally signed object carrying its own
date range, explicitly or implicitly. That object specifies either a
list of invalid cex"tificates or that a given certificate (or list of
certificates) is still valid.

This section does not give details of protocols for connecting to
u .line servers or transmitting messages between them.

It is assumed that, except for the one-time test, the prover and not
the verifier will fetch any online-test results and then provide
those results in the <sequence> being handed to the verifier. A one-
time test result must contain a nonce generated by the verifier.
Whether the verifier contacts the revalidation center directly or via
the prover depends on the details of the application and protocol
between the prover and verifier.

Each of these instruments contains a <valid-basic> time interval.
The instrument is valid only during that interval and a sequence of
instruments must be issued for non-overlapping intervals, so that the
user of the instrument knows when it has the current one.

7.1 CRL and delta-CRL

If one wants to provide CRLs, and that CRL grows, then one may prefer
to send only a delta CRL.

: "(" "crl" <version>? <cancel-list> <valid-basic> " ) " ;
<cancel-list>:: "(" "canceled" <hash>* " ) " ;
<delta-crl>:: "(" "delta-crl" <version>? <hash-of-pred> <cancel-list>
<valid-basic> " ) " ;
<hash-of-pred>:: <hash> ;

The <hash-of-pred> is the hash of the predecessor CRL or delta-CRL,
that this one is modifying. For convenience, that <hash> should
probably also have a URI pointing the user to that predecessor.

The <crl> or <delta-crl> must be signed by the principal indicated in
the <online-test> field that directed the CRL to be fetched.

The CRL request can be a straight HTTP transaction, using the URI
provided in the certificate, but we do not specify online protocols
in this draft.
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The algorithm for choosing between computation and delivery of delta
versus full CRL is left open. This will depend heavily on
performance analysis of actual experience for a given validity
center.

7.2 Revalidation

<reval>:: "(" "reval" <version>? <reval-list> <valid-basic> " ) " ;
<reval-list>:: "(" "valid" <hash>+ " ) " ;

This construct is the logical opposite of a CRL. With a reval
instrument, a certificate is valid if it is listed.

There is no delta-reval. One does not need to search an entire list
and demonstrate that a given certificate is missing. Therefore, if
the certificate in question shows .4) on a currently valid reval list,
then it is valid.

The <reval> must be signed by the principal indicated in the <online-
test> field that directed it to be fetched.

7.3 One-time revalidation

For one-time revalidation, the verifier itself must fetch the (reval)
record, which will have the form:

<reval>:: "(" "reval" <version>? <subj-hash> <one-valid> " ) " ;

<one-valid>:: "(" "one-time" <byte-string> " ) " ;

where the byte string inside <one-valid> is one provided by the
caller, expected to be unique over time and unguessable — e.g., a
large random number or random number plus sequence number. This
reply should be signed by the <principal> indicated in the (online..)
field which directed it to be fetched.

This result corresponds to a 0-length validity interval of "now",
however the developer wishes to express that.
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This section describes the operation of the trust evaluation
machinery assumed to be part of every verifier which accepts SPKI
certificates. The inputs to that trust engine are 5-tuples and any
kind of certificate, not just SPKI, as well as Access Control List
(ACL) entries can be translated to 5-tuples so that they can all
participate in the trust computation.

A 5-tuple is an internal construct and therefore best described by a
programming language data structure. A separate document will give
the 5-tuple reduction code and those data structures.

Name reduction is specified in section 5.3. Therefore, in what
follows we assume all issuers and subjects are principals. We also
assume that all principals are public keys. It is an implementation
decision whether to store these as explicit keys, hashes of keys
(used as pointers) or addresses pointing to keys.

1.1 <5-tuple> BNF

How a 5-tuple is represented and stored is up to the developer. For
the sake of discussion, we assume a 5-tuple is a construct of the
form:

<5-tuple>:: <issuer5> <subject5> <deleg5> <tag-body5> <valid5> ;

<issuer5>:: <key5> | "self" ;

<subject5>:: <key5> j <obj-hash> | <keyholder> | <threshold-subj> ;

<deleg5>:: "t" | "f" ;

<key5>:: <pub-key> ;

<valid5>:: <valid-basic> | "null" | "now" ;

<tag-body5>:: <tag-body> | "null" ;

The extra option for issuer, "self", is provided for ACL entries.
The self referred to is the verifier, holding that ACL and doing the
verification of offered proofs.

The only 5-tuples that can mean anything to the verifier, after
reduction is done, are those with "self" as issuer.
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8.2 Top level reduction rule

<il,sl,dl,al,vl> + <i2,s2,d2,a2,v2> yields <il,s2,d2,a,v> if:
si = i2
dl = "t"
a = the intersection of al and a2
v = the intersection of vl and v2

Validity intersection involves normal intersection of date ranges, if
there are not-before or not-after fields in vl or v2, and union of
online tests, if those are present in vl or v2. Each online test
includes a validity period, so there is a resulting validity interval
in terms of dates. This can include the string "now", as the product
of a one-time online test result. "now" intersects with any date
range to yield either-"now" or "null".

The intersection of al and a2 is given below. In the most basic
case,

If al is (tag (*)) , a = a2.

If a2 is (tag (*)), a = al.

If al == a2, a = a2 .

Otherwise, a = "null" and the 5-tuple doesn't reduce.

S.3 Intersection of tag sets

Two <tag> S-expressions intersect by the following rules. Note that
in most cases, one of the two tag S-expressions will be free of
*-forms. A developer is free to implement general purpose code that
does set-to-set reductions, for example, but that is not likely to be
necessary.

1. basic: if al == a2, then the result is al.

2. basic: if al != a2 and neither has a *-form, then the result is
"null".

3. (tag (*)): if al == (tag (*)), then the result is a2.
If a2 == (tag (*)), then the result is al.

4. (* set . . . ) : if some <tag> S-expression contains a (* set )
construct, then one expands the set and does the intersection of
the resulting simpler S-expressions.

5. (* range . . . ) : if some <tag> field compares a (* range ) to a
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6.

<byte-string>, one does the specified range comparison and the
resulting field is the explicit one tested. If the strings
being compared have unequal display types, then the result is
the empty set.

(* prefix . . . ) : if some <tag> field compares a (* prefix ) to a
<byte-string>, then the result is the explicit string if the
test string is a prefix of it and otherwise "null".

8.4 Reduction of (subject (threshold ..))

A separate document will give full algorithms for reduction of K-of-N
threshold subjects. One general procedure is to make K copies of of
the 5-tuple containing the K-of-N subject and indicate which of those
subjects is being handled by that copy. One then reduces that copy
as if it had a single subject. One can stop the separate reductions
when all K of the reduced values have the same subject. At that
point, the K reduced 5-tuples become a single 5-tuple.

The actual algorithm choices for doing this reduction depend on
whether one wants to reduce left--to-right or right-to-left and how
much storage a verifier has.

8.7 Certificate Result Certificates

In cases where the verifier, Self, has access to a private key, once
it has reduced a chain of certificate bodies down to the form:

(Self,X,D,A,V)

it can sign that generated body, using its private key, producing an
SPKI certificate. That certificate will have a validity period no
larger that of any certificate in the loop which formed it, but
during that validity period it can be used by the prover instead of
the full chain, when speaking to that particular verifier. It is
good only at that verifier (or at another which trusts that verifier,
Self, to delegate the authorization A). Therefore, one option by the
verifier is to sign and return the result 5-tuple to the caller for
this later use.

If it isn't important for any other verifier to accept this "result
certificate", it can even be signed by a symmetric key (an HMAC with
secret key private to the verifier), although such keys are not
defined in this standard.
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The certificates which made up the loop forming this result 5-tuple
could have been of any variety, including X.509vl, X.509v3, SET or
DNSSEC. They could also be PGP signed keys processed by an enriched
trust engine (one capable of dealing with the PGP web of trust
rules). If the verifier, Self, were to be trusted to delegate the
resulting authorization, its certificate result cerl"'ficate then
becomes a mapping of these other forms. This m?" vro/e especially
useful if a given certificate chain includes muL'. vo'" forms or if the
result certificate is to be used by a computationally limited device
(such as a Smart-Card) which can not afford the code space to process
some of ciie more complex certificate formats.
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The following is the BNF of canonical forms and includes lengths for
each explicit byte string. So, for example, "cert" is expressed as
114:cert" .

9.1 Top Level Objects

The list of BNF rules that follows is sorted alphabetically, not
grouped by kind of definition. The top level objects defined are:

<5-tuple>: an object defined for documentation purposes only. The
actual contents of a 5-tuple are implementation dependent.

<acl>: an object for local use which might be implementation
dependent. An ACL is not expected to be communicated from machine to
machine.

<crl>, <delta-crl> and <reval>: objects returned from online tests.

<sequence>: the object carrying keys, certificates and online test
results from prover to verifier.

9.2 Alphabetical List of BNF Rules

<5-tuple>:: <issuer5> <subject5> <deleg5> <tag-body5> <valid5> ;
<acl-entry>:: "(" "entry" <subj-obj> <deleg>? <tag> <valid>?
<comment>? ") " ;
<acl>:: "(" "acl" <version>? <acl-entry>* " ) " ;
<byte-string>:: <bytes> | <display-type> <bytes> ;
<bytes>:: <decimal> ":" {binary byte string of that length} ;
<cert-display>:: "(" "display" <byte-string> " ) " ;
<cert>:: "(" "cert" <version>? <cert-display>? <issuer> <issuer-loc>?
<subject> <subject-loc>? <deleg>? <tag> <valid>? <comment>? " ) " ;
<comment>:: "(" "comment" <byte-string> " ) " ;
<crl>:: "(" "crl" <version>? <crl-hash-list> <valid-basic> " ) " ;
<crl-hash-list>:: "(" "canceled" <hash>* " ) " ;
<date>:: <byte-string> ;
<ddigit>:: "0" | <nzddigit> ;
<decimal>:: <nzddigit> <ddigit>* | "0" ;
<deleg5>:: "t" | "f" ;
<deleg>:: "(" "propagate" " ) " ;
<delta-crl>:: "(" "delta-crl" <version>? <hash-of-crl> <crl-hash-
list> <valid-basic> " ) " ;
<display-type>:: "[" <bytes> " ] " ;
<dsa-sig-val>:: "(" "dsa-shal-sig" "(" "r" <byte-string> " ) " "(" "s"
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< b y t e - s t r i n g > " ) " " ) " ;
< fq -name>: : " ( " "name" < p r i n c i p a l > <names> " ) " ;
< g e n e r a l - o p > : : " ( " "do" < b y t e - s t r i n g > < s - p a r t > * " ) " ;

| "ge" ;< g t e > : : "g" g e|
<hash-alg-name>:: "md5" j "shal" | <uri> ;
<hash-list>:: "(" "canceled" <hash>* " ) " ;
<hash-of-crl>:: <hash> ;
<hash-of-key>:: <hash> ;
<hash-op>:: "(" "do" "hash" <hash-alg-name> " ) " ;
<hash-value>:: <byte-string> ;
<hash>:: "(" "hash" <hash-alg-name> <hash-value> <uris>? " ) " ;
<integer>:: <byte-string> ;
<issuer-loc>:: "(" "issuer-info" <uris> " ) " ;
<issuer-name>:: "(" "issuer" "(" "name" <principal> <byte-string> " ) "
" ) " ;
<iss\ier5>: : <key5> | "self" ;
<issuer>:: "(" "issuer" <principal> " ) " ;
<k-val>:: <integer> ;
<key5>:: <pub-key> ;
<keyholder-obj>:: <principal> | <name> ;
<keyholder>: : " (" "keyholder" <keyholder-obj> l!) " ;

:: <gte> <byte-string> ;
" | "le" ;

<n-val>:: <integer> ;
<name-cert>:: "(" "cert" <version>? <cert-display>? <issuer-name>
<subject> <valid>? <comment>? " ) " ;
<name>:: <relative-name> | <fq-name> ;
<names>:: <byte-string>+ ;
<not~after>:: "(" "not-after" <date> " ) " ;
<not-before>:: "(" "not-before" <dace> " ) " ;
<nzddigit>:: "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
<obj-hash>:: "(" "object-hash" <hash> " ) " ;
<one-valid>:: "(" "one-time" <byte-string> " ) " ;
<online-test>:: "(" "online" <online-type> <uris> <principal> <s-
part>* " ) " ;
<online-type>:: "crl" | "reval" | "one-time" ;
<op>:: <hash-op> j <general-op> ;
<principal>:: <pub-key> | <hash-of-key> ;
<pub-key>: : "(" "public-key" "(" <pub-sig-alg-id> <s-expr>* ")."
<uris>? ") " ;
<pub-sig-alg-id>:: "rsa-pkcsl-md5" | "rsa-pkcsl-shal" | "rsa-pkcsl" |
"dsa-shal" | <uri> ;
<range-ordering>:: !1alpha" | "numeric" | "time" | "binary" | "date" ;
<relative-name>:: "(" "name" <names> " ) " ;
<reval-body>:: <one-valid> | <valid-basic> ;
<reval-hash-list>:: "(" "valid" <hash>+ " ) " ;
<reval>:: "(" "reval" <version>? <reval-hash-list> <reval-body> " ) " ;
<s-expr>:: "(" <byte-string> <s-part>* " ) " ;
<s-part>:: <byte-string> | <s-expr> ;
<seq-ent>:: <cert> I <name-cert> I <pub-key> | <signature> | <op> |
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<reval> | <cr l> | < d e l t a - c r l > ;
<sequence>:: " ( " "sequence" <seq-ent>* " ) " ;
<sig-params>: : < b y t e - s t r i n g > | <s-expr>+ ;
< s i g - v a l > : : " ( " <pub~s ig-a lg - id> <sig-params> " ) " ;
<s igna tu re> : : " ( " " s i g n a t u r e " <hash> <pr inc ipa l> <s ig -va l> " ) " ;
<s imple - tag>: : " ( " < b y t e - s t r i n g > <tag-expr>* " ) " ;
<subj -hash>: : " ( " " c e r t " <hash> " ) " ;
<subj -ob j> : : < p r i n c i p a l > | <name> | <obj-hash> | <keyholder> | < s u b j -
thresh> ;
<subj-thresh>: : " (:l "k-of-n" <k-val> <n-val> <subj-obj>* " ) " ;
<subject-loc>:: "(" "subject-info" <uris> " ) " ;
<subject5>:: <key5> | <fq-name5> j <obj-hash> | <keyholder> | <subj-
thresh> ;
< s u b j e c t > : : " ( " " s u b j e c t " <sub j -ob j> " ) " ;
< tag-body5>: : < t a g - e x p r > | " n u l l " ;
< t a g - e x p r > : : < s i m p l e - t a g > | < t a g - s e t > | < t a g - s t r i n g > ;
< t a g - p r e f i x > : : " ( " "*" " p r e f i x " < b y t e - s t r i n g > " ) " ;
< t a g - r a n g e > : : " ( " "*" " range" < r a n g e - o r d e r i n g > <low-l im>? <up-lim>?

< t a g - s e t > : : " ( " "*" " s e t " < t ag -exp r>* " ) " ;
< t a g - s t a r > : : " ( " " t a g " " {*) " " ) " ;
<tag-string>:: <byte-string> | <tag--range> | <tag-prefix> ;
<tag>:: <tag-star> | "(" "tag" <tag-expr> " ) " ;

: <lte> <byte-string> ;
<byte-string> ;

<uris>:: "(" "uri" <uri>+ " ) " ;
<valid-basic>:: <not-before>? <not-after>? ;
<valid5>:: <valid-basic> | "null" | "now" ;
<valid>:: "(" "valid" <valid-basic> <online-test>* " ) " ;
<version>:: "(" "version" <integer> " ) " ;
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Appendix B

Glossary

API Application Programming Interface — a standard library of routines

that can be called by an application.

authentication "The process of reliably determining the identity of a com-

municating party."[19]. See section 1.2, page 6.

authorisation Grant access to authenticated user to restricted resources

and services. See section 1.2, page 6.

CA Certification Authority — sign public keys to allow unlimited and safe

distribution.

GnuPG GNU Privacy Guard — Open source asymmetric encryption pro-

gram. See also PGP.

GSSAPI Generic Security Service Application Program Interface — Ab-

stract API for implementing authentication.

KDC Key distribution centre — distributes secret keys.

non-repudiation The property where you can prove to a third party who

sent a message[19], perhaps for legal reasons[13].
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nonce "A number used in a cryptographic protocol that must (with ex-

tremely high probability) be different each time the protocol is run

with a given set of participants in order to ensure that an attacker

can't usefully inject messages recorded from a previous running of the

protocol. There are many ways of generating nonces, including suit-

ably large random numbers, sequence numbers, and time-stamps," [19].

PAS Proxy Authentication Servicefll] — allows a KDC to act as a proxy

for the KDC at the remote realm and issue tickets on its behalf. Not

to be confused with proxy tickets, which can be given to a server to

allow it to act on the user's behalf. See also PAT.

PAT Proxy Authentication Ticket[ll] — allows a KDC to act as a proxy

for the KDC at the remote realm and issue tickets on its behalf. Not

to be confused with proxy tickets, which can be given to a server to

allow it to act on the user's behalf. See also PAS.

PGP Pretty Good Privacy[46] — Asymmetric encryption program. See

also GnuPG.

PkCross Extension to Kerberos for cross realm asymmetric key authenti-

cation [35].

Pklnit Extension to Kerberos for asymmetric key authentication of end

users[52].

SASL Simple Authentication and Security Layer — Abstract API for im-

plementing authentication.

SPKI Scalable Public Key Infrastructure[14]

SSH Secure Shell[20]. A program similar to telnet, but supports asymmet-

ric authentication. See also telnet.
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SSL Secure sockets layer. An encryption standard commonly used for

HTTP transfers. HTTP is beyond the scope of this document. The

latest version of SSL is called the Transport Layer Security (TLS)[36].

SSL-telnet A version of telnet that encrypts data using SSL. See also telnet

and SSL.

telnet A program[33] to run text based programs on a remote computer as

if it were done on the local computer.

TGS Ticket Granting Service — Kerberos service to allow a client to obtain

a ticket for any other service without requiring the user to re-enter a

password.

TGT Ticket Granting Ticket — Kerberos ticket to use the TGS service.

See also TGS.

Thesis The document you are reading.

UID User Identifier

XML Extensible Markup Language
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