
ON

MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE

REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

TiO.N

r Sec. Research Graduate School Committee
Under the copyright Act 1968, this thesis must be used only under the
normal conditions of scholarly fair dealing for the purposes of
research, criticism or review. In particular no results or conclusions
should be extracted from it, nor should
it be copied or closely paraphrased in whole or in part without
the written consent of the author. Proper written acknowledgement

should be made for any assistance obtained from this thesis.

cro,

on

tears

tween
dd be

ibrary
search



AMENDMENTS TO THESIS

Table of Contents: 11th line from the bottom: "estimayion" should be corrected as

"estimation".

Page 60: 1st paragraph, last sentence should be modified as follows: "This is because the

second threshold intensity is intentionally set so high (by using an unrealistically high

value of 100 for F2) to ensure that no additional storms can be selected."

Page 120: lsl paragraph, 1st line: Add at the end of "threshold value of O.Olmm'/h was

exceeded": "Although this threshold seems low, Hill et al (1996a) found this value to

produce the best results from the 3 values tested. They also noted that the design peak

flow is relatively insensitive to the choice of surface runoff threshold."

Page 155: 9lh line from the top: "Therefore, it is difficult assess how..." should be

corrected as "Therefore, it is difficult to assess how..."
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SUMMARY

The objective of this research was to develop a Joint Probability Model for estimating

design floods (with average recurrence intervals of 1 to 100 years) from design rainfalls.

The proposed model treats the key design inputs (rainfall intensity, duration, temporal

pattern, and initial loss) and the flood output as random variables, and takes account of

the correlations between these variables in the flood generation process. In the current

study, the model was applied to determine the frequency curve of the design flood peak

for unregulated rural catchments of medium size. However, scope of its application can

be broadened to estimate more extreme floods or the frequency curve of other

hydrograph characteristics (flood volume or time to flood peak).

In developing the proposed model, the initial loss — continuing loss model was adopted

for computing rainfall excess, and a single, concentrated non-linear runoff routing

model for computing design flood hydrographs. The adopted runoff routing model

assumes that both rainfall and routing effects are spatially lumped. To compute the

probability distribution of design floods, Monte Carlo simulation was adopted. The

interaction of random variables involved in the design was taken into account by using

conditional probability distributions.

The proposed model was tested on two Victorian catchments. A storm definition was

first developed to extract significant stochastic storm events from rainfall records. The

correlations between the stochastic inputs were then examined, with an emphasis on the

dependence of the temporal pattern on season, storm duration, and depth. The

conditional probability distributions of the stochastic inputs were next derived, and

other fixed design inputs determined. Monte Carlo simulation was then used to

generate synthetic flood events. The derived flood frequency curves were finally

determined using a frequency analysis method.

To evaluate the proposed model, design floods estimated by the model were compared

with those obtained by direct flood frequency analysis and the Design Event Approach.



It was shown that the proposed Joint Probability Model provided more reliable flood

estimates than those obtained from the Design Event Approach for one test catchment,

but, like the Design Event Approach, slightly underestimated the peak flood magnitude

for the other catchment. As these results are limited by the small number of test

catchments and the short flow records available at these sites, further testing of the

model on a larger number of catchments is required before firm conclusions about its

performance can be drawn.

Sensitivity analyses indicated that the design flood estimates were very sensitive to

variations in the design rainfall intensity, initial loss, anU routing model parameter.

Errors in the design continuing loss rate or baseflow had more influence on frequent

floods than rare floods. The modelling of the dependence of the temporal pattern on

season, duration, and depth was found to be of limited practical importance in the

present application.

Overall, the proposed model was found to be fundamentally sound and practically

workable. The results are promising, however, further work is still required to turn it

into a practical design tool.
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Initial loss of a storm burst
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Storage delay parameter

Shape parameter of a frequency distribution
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RORB runoff routing parameter for a catchment
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Coefficient representing relative storage delay time

Frequency factor (for use with the LPHI distribution)

r1*1 L-moment of a data sample

rth L-moment of a frequency distribution

Parameter representing catchment's non-linearity
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px,Y Population correlation coefficient between X and Y

rx,Y Sample correlation coefficient between X and Y

a Standard deviation of a frequency distribution

s Standard deviation of a sample

S Catchment storage

S* Maximum retention after runoff begins

S d Standard deviation of logarithms of annual flood peaks

S o Sorptivity

CJX,Y Population covariance of X and Y

SX,Y Sample covariance of X and Y

t L-CV of a data sample

x L-CV of a frequency distribution

T Mann-Kendall rank correlation statistic
T Superscript denoting transposition of a vector or matrix
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t; Mid point of a t ime interval

t r rm L-moment ratio of a data sample

x r rth L-moment ratio of a frequency distribution

Var(X) Variance of random variable X

(O\ Average number of events per year

(O2 Parameter of the exponential distribution

Wj Disaggregation parameters

£ Location parameter of a frequency distribution

Xo Starting value (the seed) of a sequence of r a n d o m numbers

Z Goodness-of-fit measure for regional data
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Chapter 1

INTRODUCTION

This research investigates the overall feasibility of a Joint Probability Model for

rainfall-based design flood estimation. The model aims to estimate the frequency

distribution of design floods from the joint distributions of rainfall and loss

characteristics, taking account of their interactions. The key issue is how to represent

adequately the flood production process and the variability and interaction of design

inputs so that the model can still be easily applied in practice.

This research addresses this issue by using practical loss and runoff routing models to

characterise catchment flood response, representing key flood producing factors by

probability distributions (rather than fixed design values), and adopting a simple method

to compute the design flood distribution. In particular, it introduces a storm definition

that can reflect the great variability of real rainfall characteristics, and examines the

dependence of rainfall temporal pattern on season, rainfall duration, and depth. The

objective is to realistically represent the characteristics of real rainfall events and real

catchment conditions in the flood production process.

1.1 RESEARCH BACKGROUND

Design floods are statistical estimates of flood characteristics. These characteristics

may include peak discharge, flood volume or time to flood peak. Design flood

estimates always correspond to an annual probability of exceedance, which is a measure

of the likelihood of a flood characteristic reaching or exceeding a particular magnitude

in any given year.

In hydrology, flood estimation can be either estimation of design floods or estimation of
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floods resulting from actual rains. To estimate design floods directly from design

rainfalls, a hypothetical storm of a specified annual exceedance probability is required.

This hypothetical storm is used as input to the design, along with a typical value

assumed to represent the catchment condition at the time of the rain. By contrast, to

estimate floods at the time of actual rains, real (not hypothetical) rainfalls are used, and

actual (not assumed) conditions of the catchment when the rain occurs must be

considered in the estimate. Thus, design flood estimation and real-time flood estimation

are different in nature, which may result in differences in the choice of flood estimation

methods, or in the manner in which para neter values are derived. This research focuses

on the estimation of design floods.

Design flood estimation can be undertaken using streamflow-based or rainfall-based

methods. The streamflow-based methods are preferred at sites where long observed

flow data are available. However, due to the relatively longer period of records, the

greater number of locations at which rainfall amounts are observed, and the capability to

estimate design flood hydrographs, rainfall-based methods are adopted in the majority

of designs. Among these rainfall-based design flood estimation methods, the Design

Event Approach is widely used in Australia, as well as in many other countries in the

world.

The Design Event Approach aims to estimate a design flood of a specified annual

exceedance probability from a design storm event of the same probability. To achieve

this objective, several steps are undertaken, as described by Beran (1973), the Institution

of Engineers, Australia (1987) and Viessman et al. (1989). In general, the design

rainfall intensity of the specified annual exceedance probability for a selected storm

duration is firstly determined. This probabilistic rainfall intensity is then combined with

representative values of other design inputs and parameters to produce a design flood

hydrograph, and the peak flood discharge is extracted. These steps are then repeated for

a range of storm durations. The estimated flood peaks are next plotted against the

corresponding storm durations, and a smooth curve is drawn through the plotted points.

The maximum peak discharge on this curve, corresponding to the critical storm

duration, is finally taken as the design flood for the given probability.

The Design Event Approach has long been criticised for its three basic limitations.
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Firstly, it underestimates the variability of design rainfall inputs (namely design rainfall

duration and temporal pattern) and actual catchment moisture conditions. Secondly, it

adopts the critical storm duration concept that has no scientific basis and introduces bias

in the probability of the design flood. Finally, in practical applications, it is difficult to

select representative values of design inputs in order to correct this probability bias.

These limitations result in errors in the magnitude and probability of design floods

(Wood, 1976; Bloeschl and Sivapalan, 1997), which bring about significant economic

consequences in design and planning.

To overcome the limitations of the Design Event Approach, a number of rainfall-based

design flood estimation methods have been proposed. Among these, the Joint

Probability Approach is considered to have great potential (Beran, 1973; Ahern and

Weinmann, 1982; Institution of Engineers, Australia, 1987; Consuegra et al., 1993).

This approach uses the same rainfall-runoff modelling elements as the Design Event

Approach, but treats several design inputs and the flood output as random variables, and

considers the joint probability of these inputs. Therefore, it can model the variability of

design inputs, eliminate the need of determining the critical storm duration, and allow

the probability of the design flood to be rigorously determined. Furthermore, the

approach can provide significant improvements in rainfall-based design flood

estimation in the near future because it can make use of existing data and expertise

available in the Design Event Approach.

A review of previous studies of the Joint Probability Approach shows that a great deal

of development is still needed before the approach can be applied in practice. This is

attributed to many factors, such as their mathematical complexity and limited flexibility,

along with the inappropriate selection of the models representing the flood generation

process. More importantly, the variability of important flood causing factors and their

interactions have still been inadequately considered.

The present research1 aims to develop and test a Joint Probability Model, based on the

This study is a part of project FL1 'Holistic Approach to Rainfall-Based Design Flood Estimation'
undertaken by the Cooperative Research Centre for Catchment Hydrology. The overall objective of the
project is to explore the potential of some holistic procedures as alternatives to the currently applied
Design Event Approach. The project also investigates possible links between the proposed procedures
and existing design data by using different definitions of storm events causing floods.
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general Joint Probability Approach, for estimating design floods (with average

recurrence intervals of 1 to 100 years) from design rainfalls. The proposed model is

intended for small to medium sized rural catchments with no significant artificial

storage. At this early stage of development, the model aims to determine the flood

frequency curve of flood peak magnitude, even though it could also be applied to other

flood hydrograph characteristics and to more extreme flood events.

Unlike past studies of the Joint Probability Approach, the proposed Joint Probability

Model introduces a storm definition2 that can account for the great variability of rainfall

duration, average intensity, and temporal pattern. The model also considers the

stochastic nature of losses from rainfall, as well as the correlations of stochastic design

variables. In addition, it adopts a loss model that can not only realistically characterise

the runoff production process, but also be easily applied in practice. Even though the

ultimate goal is to adopt a distributed runoff routing model to represent the hydrograph

formation process, in the current application, the proposed model uses a lumped

conceptual model in which the spatial variation of rainfall, loss, and routing effects is

neglected.

1.2 RESEARCH RATIONALE

Design flood estimates are necessary for two main areas of hydrologic applications:

design of hydraulic structures and floodplain management.

For design purposes, estimates of design floods of some specified annual exceedance

probability are vital for determining the size of hydraulic structures such as crossroad

culverts, drainage ditches, urban storm drainage systems, or spillways of dams. All

these hydraulic works are designed on a risk basis with the expectation that the intended

structure will only fail due to a flood larger than the one used for the design (Institution

of Engineers, Australia, 1987). Consequently, there are two main considerations in the

design process.

* A variant of this storm definition, referred to as storm cores, is also investigated in another sub-project
of FL1 (Rahman et al., 2001).
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The first consideration is the selection of an appropriate probability of the design flood

for the intended structure. This essentially involves finding the optimum level of risk

for the given design. The optimum risk level can be found by selecting the optimum

structure size as that which minimises the total expected cost. This is the sum of

structural costs and risk costs. The risk costs include the direct costs of flood and

structural damages, and other indirect costs such as traffic interruptions due to floods

exceeding the design value. If there were a complete knowledge of floods, it would

then be possible to find the optimum design correctly.

The second consideration is the effect of errors in design flood estimates for the selected

probability. Uncertainties in the probability of design floods result in errors in the

optimum design, either in the form of under-design or over-design of the intended

structure. In either case, there are significant economic consequences. For example, in

Australia, every year, about $800-1,000 million is spent on small hydraulic structures

sized by design flood estimates, and $30-40 million is spent on spillway upgrades

(Mein, 1995). Thus, if the above structures were over-designed, it would clearly cost

the nation millions of dollars. As a result, an improved approach to design flood

estimation would certainly lead to significant savings on a national scale. The sa* .r^s

could be in the form of reducing flood damages or costs of structures.

In terms of floodplain management, planners require flood estimates in probabilistic

form in order to define the areas that will be flooded at different levels of probability.

As a result, the development of industrial or housing projects in high-risk areas can be

avoided. However, due to errors in design flood estimates, there are always

developments on some flood-prone land. Therefore, flooding continues to cause severe

damage to life, property, and the environment, despite considerable efforts and

expenditure in the identification of floodplain and flood-prone areas. It is estimated

that, in Australia, there is.an average annual cost of $300-400 million due to flood

damage (Mein, 1995). Again, better estimates of floods would help to reduce this cost,

and thus have remarkable economic benefits.



Chapter 1 °

1.3 RESEARCH OBJECTIVES

As briefly discussed in Section 1.1, the main objective of this research is to develop and

test a Joint Probability Model for estimating design floods from design rainfalls. To

achieve this goal, the present research has the following specific objectives:

i) To justify the potential of the Joint Probability Approach by critically reviewing

the currently used Design Event Approach and other rainfall-based methods for

design flood estimation.

ii) To review and critically assess various derived distribution methods for estimating

the design flood probability distribution using the Joint Probability Approach, and

select an appropriate method for this present study,

iii) To develop the elements of a practical, conceptual Joint Probability Model for

estimating design floods from design rainfalls.

iv) To develop a storm definition that can reflect the variability of actual storm events,

and examine the correlations of random variables involved in the design, with

special emphasis on the dependence of temporal patterns on season of storm

occurrence, storm duration and depth.

v) To apply the proposed Joint Probability Model to estimate the design flood

frequency curve for a Victorian catchment, and test it on another catchment,

vi) To evaluate the performance of the proposed model by comparing its flood

estimates with those obtained from other flood estimation methods,

vii) To investigate the sensitivity of design flood estimates to changes in some design

inputs.

viii) To assess the advantages and limitations of the proposed model and outline future

research.

1.4 THESIS OUTLINE

The research undertaken to achieve the above objectives is presented in this thesis. An

outline of each chapter of the thesis is presented below.
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Chapter 2 provides a review of methods for estimating design floods from design

rainfalls. In this chapter, the commonly used Design Event Approach is examined and

its limitations are discussed. Alternative methods to the Design Event Approach are

then investigated. From these alternatives, methods that have the potential to overcome

the limitations of the Design Event Approach are identified. The Joint Probability

Approach is then examined in detail and various joint probability studies using derived

distribution techniques for determining the design flood probability distribution are

critically reviewed.

In Chapter 3, a Joint Probability Model for rainfall-based design flood estimation is

developed. In this chapter, the deterministic model component (the loss and runoff

routing models) is first examined. The development of the stochastic model component

is then described. This includes the selection of key design inputs to be considered as

random variables, an assessment of the correlations of random design inputs, and the

selection of a derived distribution technique for design flood estimation. A research

procedure is also presented.

After developing the conceptual Joint Probability Model for rainfall-based design flood

estimation, elements of this model are determined in Chapter 4. This chapter firstly

describes the collection and verification of data for applying the proposed model. The

storm definition used to identify storm events from continuous rainfall records is then

introduced. The investigation of the correlations of variables involved in the design,

and the development of the frequency distribution of rainfall intensity, the probability

distributions of rainfall duration and initial loss, and a stochastic model of temporal

pattern are next presented. The determination of parameters of the runoff routing model

is then detailed. This chapter concludes with the determination of other fixed design

inputs used in the Joint Probability Model. Observed rainfall-runoff data for the La

Trobe River catchment at Noojee are used for the above initial analyses.

In Chapter 5, the proposed Joint Probability Model is applied to estimating design

floods for one catchment in South Eastern Australia, the La Trobe River catchment.

This chapter describes the generation of random numbers from the probability

distributions of flood-causing factors determined in Chapter 4. The generation of flood
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events using Monte Carlo simulation is then presented. Finally, the determination of the

derived flood frequency curve for the specified catchment is documented.

The proposed Joint Probability Model is evaluated in Chapter 6. In this chapter, design

flood peaks for the La Trobe River catchment are also estimated by two other methods,

namely direct flood frequency analysis and the Design Event Approach. A comparison

of these estimates with those obtained from the proposed Joint Probability Model is then

presented. Details of the sensitivity analyses carried out to determine the effects on the

design flood of changes in some stochastic and fixed design inputs are next described.

The chapter concludes with an additional method testing in which the proposed Joint

Probability Model is applied to another Victorian catchment, the Tarwin River

catchment at Dumbalk North, and the results are discussed.

A summary of the research conducted and the main conclusions that can be drawn from

it are finally presented in Chapter 7. This chapter also provides some recommendations

for further studies.
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Chapter 2

REVIEW OF RAINFALL-BASED DESIGN FLOOD

ESTIMATION METHODS

2.1 INTRODUCTION

A design flood of a specified annual exceedance probability can be estimated by

different methods. The type of method selected will depend on the availability of data

and the purpose of flood estimates (that is, whether it is for urban or rural catchments, or

for the design of major hydraulic structures). Broadly speaking, these methods can be

classified as streamflow-based or rainfall-based methods (Figure 2-1). Streamflow-

based methods give estimates of floods by analysing observed streamflow data. By

contrast, rainfall-based methods estimate design floods from analyses of rainfall inputs,

often in conjunction with a rainfall-runoff model that represents a catchment's response

to rainfall. Flow data, if available, are also used for estimating or testing parameters of

the catchment response model. This project focuses on developing an improved

approach for estimating design floods from design rainfalls.

Single-event methods

Design Event
Approach

Empirical
Methods

Design flood estimation methods

\1
±Rainfall-based methods

1
Streamflow-based methods

Multi-event methods

Continuous
Simulation

Runoff Files
Approach

Joint Probability
Approach

Figure 2-1: General classification of design flood estimation methods
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Rainfall-based flood estimation methods can be subdivided into single-event and multi-

event methods (Figure 2-1). The former uses a single design rainfall event as input,

whereas the latter uses a series of historical or synthetic storms in the calculation.

Single-event methods include the Design Event Approach and Empirical Methods,

while multi-event methods can be divided into the Runoff Files Approach, Continuous

Simulation, and the Joint Probability Approach.

The objective of this chapter is to review the various rainfall-based design flood

estimation methods in order to identify their strengths and weaknesses. In this chapter,

the widely used Design Event Approach is firstly reviewed. Alternative methods to the

Design Event Approach are then examined and the Joint Probability Approach is

identified as the most promising option for an improvement in design flood estimation

in the near future. The statistical basis of the Joint Probability Approach is next

introduced, together with a review of previous studies of the Joint Probability Approach

to design flood estimation. This chapter concludes with a discussion of the necessary

features of an improved method, based on the Joint Probability Approach, for the

estimation of design floods from design rainfalls.

2.2 THE DESIGN EVENT APPROACH

The Design Event Approach is a method currently used to estimate a design flood

hydrograph from a design storm. To assess the need for improvements in rainfall-based

design flood estimation methods, it is necessary to critically review the Design Event

Approach. The procedure, features, and limitations of this approach are examined

below.

2.2.1 Procedure

The procedure adopted by the Design Event Approach for estimating a design flood

event from a design rainfall event basically involves, firstly, the estimation of the design

rainfall input and the rainfall loss due to interception, infiirration, or depression storage,
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and subsequently, the routing of rainfall excess through the catchment to produce the

flood hydrograph. This procedure, summarised in Figure 2-2, includes the following

steps:

(a) Select the annual exceedance probability (AEP) of the design rainfall. This AEP is

assumed to be also that of the design flood.

(b) Select an arbitrary rainfall duration Dj.

(c) For the specified AEP and Dj, determine ihe average point rainfall intensity for the

location of interest.

(d) Compute the point rainfall depth for the design event.

(e) Obtain an areal reduction factor to convert the point rainfall depth into the average

rainfall depth over the catchment.

(f) For the given Dj and AEP, specify a temporal pattern and a spatial pattern for the

design rainfall.

(g) Select a loss model and its parameters, and compute the rainfall excess hyetograph.

(h) Select a runoff routing model, determine its parameters and compute the surface

runoff hydrograph.

(i) Select a design baseflow.

(j) Compute the total flood hydrograph and record the peak discharge.

To determine the critical storm duration and the critical design flood, peak discharges

are computed for different storm durations. For the specified AEP, these dischi, ^es are

then plotted against the corresponding storm durations. A smooth curve is next drawn

through the plotted points. The storm duration that gives the maximum discharge of

this smooth curve is finally taken as the critical storm duration, and the corresponding

peak discharge taken as the design flood for the specified AEP.

2.2.2 Features

In the procedure described above, various methods are available for determining the

inputs and parameters of a design flood estimation problem (Institution of Engineers,

Australia, 1987, Chapters 2, 6-9; Linsley et al., 1988; Viessman et al., 1989). However,

there are no definite guidelines on how to select an appropriate value or method for a

particular problem. It is common for a designer to have to select an input or parameter
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value from a wide range. For example, in the case of Eastern Queensland (Australia),

the recommended range of initial loss is 0 to 140mm (Institution of Engineers,

Australia, 1987, Chapter 6). This can result in a large variation in flood estimates from

the recommended design values of losses. Similarly, other inputs to the design such as

the critical rainfall duration, the spatial and temporal distributions of the design storm,

or the baseflow can also be determined by many methods or formulas, the choice of

which is totally dependent on the various assumptions and preferences of the individual

designer.

Rainfall temporal and
spatial patterns

Runoff routing
parameters

Design
(AEP

esign rainfall depth I
= 1 in Y, duration = D:) I

V

Loss model

Runoff routing
model

v
Surface runoff

hydrograph

Rainfall excess depth

1

Total design flood hydrograph I
(AEP = 1 in Y) I

Figure 2-2: Procedure of the Design Event Approach
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Design rainfall (AEP = 1 in Y) |

D1 D2

Total rainfall depth

IT1 T3

S2 S3

Total rainfall hyetograph I

LI L3

Rainfall excess hyetograph I

PI P3

Surface runoff hydrograph I

Bl B2

1
Design flood (AEP = 1 in Y)

Rainfall duration
and rainfall depth

Temporal pattern

Spatial pattern

Loss parameters

Runoff routing parameters

Baseflow

Design flood

Figure 2-3: Attributes of the Design Event Approach (modified from Beran, 1973)

The uncertainty in input values to design can be illustrated by a tree diagram, as shown

in Figure 2-3. This figure represents a practical design situation where the unknown

inputs are shown by ranges of values. For example, the storm duration may be Dl, D2

or D3, or the storm losses may take on a range of values such as LI, L2 or L3. Thus,

there are various ways in which a design rainfall and other inputs can be combined to

produce a design flood. However, due to the uncertainty about the correct value of each

input in a design situation, designers tend to adopt the median as the representative

value for each input, except for the rainfall depth, which is described by a probability
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distribution. They assume that" adopting these median values will lead to a flood

estimate of the same probability as that of the design rainfall. Therefore, the highlighted

path in Figure 2-3 illustrates designers' single choice of input values in which the storm

temporal pattern is represented by a pattern of average variability, the storm loss is

characterised by a median value, and so on.

The discussion above highlights the following two features of the Design Event

Approach. Firstly, of the various design inputs, only the design rainfall depth is

assumed to have a probability distribution. Other inputs such as the rainfall temporal

pattern, duration, losses, or catchment response parameters are represented by constant

values. Secondly, the probability of the design flood is assumed to equal the probability

of the design rainfall.

2.2.3 Limitations

The procedure and features of the Design Event Approach, as discussed above, lead to

three basic limitations. The first limitation is the underestimation of the variability of

design inputs. It is clear that rainfall event characteristics such as rainfall duration,

depth, temporal and spatial distributions are highly variable. The antecedent soil

moisture of the catchment at the time of the rain also varies from event to event, not to

mention its spatial variation. Therefore, the use of fixed design values for all inputs of

the design except the design rainfall depth does not adequately reflect the high degree of

variability of actual rainfall events and real catchment conditions, and may lead to

serious errors. For example, Wood (1976) proved that a single loss rate used in design

does not accurately represent a distribution of catchment antecedent conditions for

design flood estimates. He showed that the use of a point estimate for the water loss

underestimated the peak discharge for a given annual exceedance probability.

The second limitation is the non-scientific basis of the critical storm duration concept

and the probability bias associated with its application in design flood estimation. As

explained in Section 2.2.1, the critical duration is the storm duration that gives the

maximum peak flood magnitude of a specified annual exceedance probability. It varies

from catchment to catchment and is influenced by the design inputs that represent
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rainfall, loss, and catchment characteristics. The application of the critical storm

duration concept in design flood estimation has no sound basis and obviously does not

result in an AEP-neutral transformation of design rainfalls into design floods. Instead of

preserving the probability of the design rainfall input, the adopted 'worst case scenario'

leads to systematic probability bias of design flood estimates. For a given flood

magnitude, Bloeschl and Sivapalan (1997) proved that the design flood probability,

determined by the Design Event Approach, is overestimated by a factor of at least 2, but

this factor may be as large as 10.

The third limitation is the difficulties involved in selecting representative values of

design inputs in order to correct this probability bias in practical design problems. As

mentioned in Section 2.2.2, in order to satisfy the assumption that the probabilities of

the design rainfall input and the design flood output are equal, median values of inputs

and parameters (except for the design rainfall depth) are used in design. However, this

would be correct only if the rainfall-runoff transformation and the frequency curves of

the various transformed inputs were linear. In reality, the linear rainfall-runoff

transformation is not observed due to the complex interaction of rainfall, losses, and

other catchment attributes such as catchment size, shape, or drainage characteristics.

Similarly, the probability distributions of various design inputs are generally

represented by complex functions (curves) rather than linear relationships (straight

lines). Therefore, the choice of a fixed value for each design input (or parameter) is

unlikely to be representative of the particular input in a statistical sense. As a result, the

probability bias in the design flood is generally not corrected for, and the true

probability of the flood output becomes questionable (Hughes, 1977; Ahern and

Weinmann, 1982; Huber et al., 1986).

2.3 ALTERNATIVES TO THE DESIGN EVENT APPROACH

To overcome the limitations of the Design Event Approach, several rainfall-based

methods for flood estimation can be employed. These methods include Empirical

Methods, Continuous Simulation, the Runoff Files Approach, the 'Improved' Design

Event Approach, and the Joint Probability Approach. In the following sections, a
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general description of each of these methods is given, followed by a discussion of how a

particular method can overcome the limitations of the Design Event Approach. General

characteristics of each method are also examined, and the best option in lieu of the

Design Event Approach is selected.

2.3.1 Empirical Methods

Broadly speaking, Empirical Methods are of a 'black-box' type because they transform

rainfall into runoff using techniques that have little or no physical basis. These methods

usually use an equation to represent the rainfall-runoff transformation. The coefficients

of this equation are determined from rainfall and flood events of the same probability.

These events are obtained from frequency analyses of observed rainfall and runoff data.

One example of these methods is the Probabilistic Rational Method (Institution of

Engineers, Australia, 1987, Chapter 5).

With the Empirical Methods, the uncertainty in the true probability of design floods can

be avoided. This is attributable to the fact that design coefficients are determined such

that a flood of a selected probability is directly linked with a rainfall of the same

probability (James and Robinson, 1986; Institution of Engineers, Australia, 1987). In

doing so, effects of other variables affecting floods are said to be automatically

considered.

Nevertheless, for practical design problems, Empirical Methods have very limited scope

because they give only peakflow estimates and can not eliminate model errors.

Furthermore, they can only be applied to catchments which are representative of those

used in the original research to derive the original equations (James and Robinson,

1986), making extrapolation of the results very limited.

2.3.2 Continuous Simulation

Continuous Simulation uses deterministic catchment models or rainfall-runoff process

models for estimating runoff sequences from rainfalls. More detailed descriptions of
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this approach are given by James and Robinson (1986), the Institution of Engineers,

Australia (1987), and more recently by Boughton et al. (1999). Generally speaking,

Continuous Simulation generates streamflow hydrographs over lengthy periods of time

from continuous rainfall and evaporation inputs and continuous modelling of losses. It

usually has two essential components: a continuous simulation water balance model (for

simulating losses and rainfall excesses during both dry and wet periods) and a runoff

routing model (for computing flood hydrographs). A data generation model may also

be needed for generating long sequences of rainfall and evaporation data. Time steps

used in the simulation usually vary from one hour to one day, sometimes maybe as short

as 5 or 15 minutes, and the simulation period is often many years.

Continuous Simulation is regarded as having the potential to solve the limitations of the

current Design Event Approach for many reasons. It eliminates the subjectivity in

selecting antecedent conditions for the land surface by using a water balance model to

compute the soil moisture antecedent to each rainfall event, as described above. It also

overcomes the trial and error method for determining the critical storm duration because

it simulates the resultant flows for all storms during the year and selects the largest

flows as the critical events (Lumb and James, 1976). In addition, it avoids the

assumption of equal probability of the causative rainfalls and the resulting floods by

undertaking a frequency analysis of the time series of model output to determine the

frequency of the parameter of interest (such as peak flowrate or flow volume) (Huber et

al., 1986). Finally, it can eliminate the underestimation of the variability of rainfall

characteristics by using actual storm events.

Despite these advantages, there are still problems of Continuous Simulation to be dealt

with. For example, simulation outcomes are sensitive to many factors, such as the

choice of the water balance model, the appropriateness of calibration methods, and the

reliability of observed rainfall-runoff data for model calibration (Lumb and James,

1976; Ahem and Weinmann, 1982; Institution of Engineers, Australia, 1987; Boughton

et al., 1999). Furthermore, it may be difficult to preserve the serial-correlations of

rainfalls and streamflows at short time steps. Finally, continuous simulation models

have not yet been developed for applications to ungauged catchments.
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2.3.3 The Runoff Files Approach

The Runoff Files Approach,- described in detail by Lumb and James (1976), is a

modified version of Continuous Simulation. It aims to convert a time series of

precipitation into a time series of unrouted runoff stored in runoff files for repeated

subsequent use. To apply this approach, the study area is first divided into smaller units

according to surface characteristics such as land use, vegetal cover, soil types, or

landslopes. A continuous water balance model is then calibrated for these units.

Precipitation and other climatological data are next input to the calibrated model to

simulate runoff. The resulting flood volumes for major storms are then stored on a

computer file. A set of runoff files is thus obtained for the study area. These runoff

files are then combined according to the distribution of the characteristics of the study

area. The combined runoff is finally routed through a runoff routing model to produce

the required flood estimates. This approach has been applied in some previous studies,

for example, Lumb and James (1976) or Russell et al. (1979).

Compared with Continuous Simulation, the major advantage of the Runoff Files

Approach is the exclusion of the cost of repeated model calibration for individual

watersheds. Nevertheless, this approach is mainly useful for urban catchments where

recurring hydrologic evaluation of land-use control, development of detention storage,

or channel modifications, is required.

2.3.4 The 'Improved' Design Event Approach

Recognising the fact that one limitation of the current Design Event Approach stems

from the uncertainties involved in selecting input values in design, the objective of the

'Improved' Design Event Approach is to compute design floods with better estimates of

some of these design inputs or parameters. The approach also converts a design rainfall

of a specified annual exceedance probability to a design flood of the same probability,

but takes into account the probability distributions of some key design factors (for

example the loss parameter) in determining the design flood. In other words, it derives
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a distribution of the design flood peak of a specified annual exceedance probability,

from which a 'best estimate' and confidence limits can be determined.

A number of research projects were carried out along this line. For example, Haan and

Schulze (1987) used a probability distribution to characterise the uncertain behaviour of

maximum water abstraction (S). S is the parameter involved in the simple SCS Curve

Number equation (Soil Conservation Service, 1972) for peak flow estimates (Q). For a

given rainfall event of a specified return period, different values of S were used for

estimating Q and for placing confidence intervals on that estimate. In a much more

complicated fashion, the Bayesian theorem was used to analyse the uncertainty of the

parameters S and Tp (time to peak of the unit hydrograph) (Edwards and Haan, 1989).

A few thousand values of peak flows were then computed using the SCS Unit

Hydrograph (Soil Conservation Service, 1972) with stochastic inputs of S and Tp

generated from their corresponding probability density functions.

Although the above methods do offer different ways of improving estimates of

individual parameters in the design process, they all still have the fundamental

limitation of the current Design Event Approach. That is a design rainfall input of a

specified annual exceedance probability is directly converted into a corresponding

design flood event of equal probability.

2.3.5 The Joint Probability Approach

The Joint Probability Approach can be broadly defined as the approach to computing

the probability distribution of an output from the joint occurrence of random design

inputs. It employs a derived distribution method to transfer the joint probability

distribution of the inputs to the probability distribution of the output via a

transformation function. For design flood estimation, this approach aims to estimate

design floods from design rainfalls by considering the stochastic nature of design

rainfall characteristics and possible other design inputs, the flood output, their joint

probabilities and interactions. It also requires design rainfalls, runoff production and

runoff routing models as the Design Event Approach, but allows for the variability of

design inputs, avoids the artificial concept of the critical storm duration, and treats
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probability effects rigorously. Its rationale is based on the realistic fact that any flood

hydrograph characteristics could result from many combinations of circumstances,

rather than from a single representative combination as in the Design Event Approach.

For example, the same peak flood could result from a moderate storm on a saturated

basin or a large storm on a dry basin. Applications of the Joint Probability Approach to

hydrology have been described by many authors, for example Laurenson (1974), Ahem

and Weinmann (1982), Heideman et al. (1989), or Durrans (1995).

The Joint Probability Approach is considered to be theoretically superior to the Design

Event Approach (Institution of Engineers, Australia, 1987; Consuegra et al., 1993) for

three main reasons. Firstly, it uses the full range of likely values of key inputs of design

and therefore solves the problem of underestimating the variability of design inputs in

the Design Event Approach. Secondly, it considers explicitly all possible combinations

of storm durations and other inputs to design, and thus does not need to determine the

critical storm duration. Finally, it describes the design flood characteristic by a

probability distribution, thereby allowing the flood probability to be rigorously

estimated.

Regardless of its conceptual superiority, previous studies of the Joint Probability

Approach to design flood estimation have not yet been successful in getting the

approach adopted for routine applications. This is generally attributable to the

mathematical complexity of the proposed approach, the lack of flexibility, the use of

inappropriate models to represent the flood formation process, and the inadequate

consideration of the variability of important flood causing factors and their interactions.

2.3.6 Best alternatives to the Design Event Approach

It is clear that, of the methods discussed above, only Continuous Simulation and the

Joint Probability Approach can fully overcome all the limitations of the current design

procedure. That is, both methods can eliminate the subjective selection of antecedent

moisture, the estimation of the critical storm duration, and the assignment of equal

probability to rainfall and runoff. However, for significant improvements in rainfall-

based flood estimation in the near future, the Joint Probability Approach is considered
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to be a better alternative because it is more closely related to the current Design Event

Appvoach, therefore, in using this approach, it is possible to make use of a large body of

existing experience and data. This research is focused on the Joint Probability

Approach.

2.4 THE JOINT PROBABILITY APPROACH

The theoretical basis of the Joint Probability Approach is the derived distribution

theory. Applying this theory to design flood estimation, the flood probability

distribution can be computed from the joint probability distributions of flood causing

factors. In order to provide the necessary theoretical background of the Joint

Probability Approach, the derived distribution theory is introduced below. A review of

previous studies of the Joint Probability Approach to design flood estimations is also

presented. Some other basic statistical concepts relevant to the Joint Probability

Approach and the joint probability distribution of random variables are summarised in

Appendix A.

2.4.1 Derived distribution theory

The aim of derived distribution theory is to determine the probability distribution of an

output random variable D which is functionally dependent upon one or more input

random variables A, B, C according to the functional relationship: D = f(A, B, C). This

functional relationship may be in an analytical form or in the form of a conceptual

model. The probability distributions of the input random variables A, B, C and the

functional relationship must be specified. For the special case in which at least two

input random variables are involved in the estimation of the output distribution, it is also

necessary to define the joint probability distributions of the inputs.

In applying the derived distribution theory to design flood estimation, the input random

variables A, B, C may be the design rainfall parameters, loss rates, or baseflow; the

output random variable D being a characteristic of the resulting flood (for example,
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peakflow or flood volume); and the functional relationship being a rainfall-runoff-flood

hydrograph transformation.

There are three groups of methods for determining the derived distribution of the

functionally dependent random variable D. They are analytical methods, approximate

numerical methods, and simulation techniques. In these groups, the model formulation

is the same, but the methods used to obtain results are different. Descriptions of these

methods can be found in some statistical textbooks such as Benjamin and Cornell

(1970) or Haan (1977), A summary of these methods is also given by Weinmann

(1994). An outline of each of these groups of methods is presented below.

2.4.1.1 Analytical methods

Using analytical methods, the probability distribution of the output random variable D is

found by directly applying the principles of probability. In general, its cumulative

density function should be determined. This can be done by enumeration if the

probability distributions of the input random variables are discrete, or by analytical or

numerical integration if the probability distributions of the input random variables are

continuous. The density function of the output random variable can then be determined

by differentiating the cumulative density function.

2.4.1.2 Approximate numerical methods

Numerical methods are applied when an analytical approach to determining the

statistical distribution of the random variable D as a function of some random variables

A, B, C becomes difficult or impossible. To simplify the calculation procedure, these

methods approximate continuous distributions by discrete ones by dividing the possible

range of values of each random variable into class intervals. The discrete distribution

characterising each variable is thus represented by discrete points, each of which is the

probability that the variable is within a certain class interval. The approximate derived

distribution of the output D is finally found by numerical computation or complete
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enumeration of possible input values. The degree of approximation depends on the

degree of discretisation adopted, which is the size of the class intervals.

2.4.1.3 Simulation techniques

Simulation, often viewed as a "method of last resort" to be employed when everything

else has failed (Rubinstein, 1981), may be broadly defined as a technique that involves

setting up a model of a real situation and then performing experiments on the model. It

is commonly used to describe the operation of a complex system or to identify

important variables and how variables interact.

A special variant of simulation is stochastic simulation, also called Monte Carlo

analysis (Hammersley and Handscomb, 1964). This is the branch of experimental

mathematics concerned with experiments on random numbers. Monte Carlo analysis

involves the performance of a sufficient number of repeated experiments to generate a

large number of output values. A histogram of results can then be plotted, which

approximates the desired probability distribution of the dependent variable. Even

though the shape of the plotted histogram remains similar, its details will vary as the

number of experiments varies.

The successful application of simulation depends on the appropriateness of the model,

the interpretation of the results, as well as on the sophistication of the simulation

techniques used (Benjamin and Cornell, 1970).

2.4.2 Review of previous studies of the Joint Probability Approach

In hydrology, the Joint Probability Approach has been extensively explored in order to

apply it to different problems. For example, this approach was examined to enable the

computation of drag loads on offshore structures from the joint occurrence of current

profiles and waves (Heideman et al., 1989). It was also applied to compute the joint

probability of flows in two tributaries of a stream (Laurenson, 1974), of flood water

levels and variations in ocean water levels (Lambert et al., 1994). In addition, it was
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used to derive the flood frequency curves for regulated catchments from the statistical

distributions of initial reservoir-depths and peak inflows (Laurenson, 1973; Ahem and

Weinmann, 1982; Durrans, 1995). For the purpose of this research, however, only

previous studies of the Joint Probability Approach which aimed to compute the flood

probability distributions from probabilistic characteristics of the causative rainfalls and

other flood-causing factors in unregulated catchments are investigated. The derived

distribution method adopted in these studies must also involve the transformation of at

least two input distributions into the flood output distribution so that the joint

probability of the inputs is taken into account.

Depending on the specific derived distribution method used, previous studies on the

Joint Probability Approach can be assigned to three groups. These consist of studies

based on analytical methods, approximate numerical methods, and Monte Carlo

simulation. Recent summaries of these studies have been presented by Sivapalan et al.

(1996), Loukas et al. (1996), and Rahman et al. (1998). A review of these studies is

given below.

2.4.2.1 Studies based on analytical methods

The analytical methods have been studied quite extensively to enable the probability

distribution of design floods to be computed from the joint probability distributions of

rainfall, loss, or catchment response model parameters. Detailed descriptions of these

studies, their main characteristics and results are tabulated in Appendix B. In

examining these studies, the following conclusions can be made.

In terms of the design rainfall, Eagleson's rainfall model (Eagleson, 1972) has

commonly been used to statistically represent point rainfall. This is a simple model that

describes rainfall intensity and duration as independent exponential distributions. It

ignores both the strong correlation known to be present between rainfall intensity and

storm duration, and the temporal variation of rainfall intensity during the storm

duration. This model was applied by Eagleson (1972), Wood (1976), Hebson and

Wood (1982), Diaz-Granados et al. (1984), Shen et al. (1990), Cadavid et al. (1991),

and Raines and Valdes (1993).
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With respect to the generation of rainfall excess, a number of loss models have been

proposed. These models vary from the ve*7 simple constant loss rate (Eagleson, 1972;

Hebson and Wood, 1982), and the commonly used SCS Curve Number method (Haan

and Edwards, 1988; Raines and Valdes, 1993), to the complicated Philip's infiltration

equation (Diaz-Granados et al., 1984; Shen et al., 1990; Cadavid et al., 1991). The

runoff coefficient has also been employed (Sivapalan et al., 1996).

To convert the rainfall excess into the flood hydrograph, the kinematic wave model has

generally been adopted in some early studies (Eagleson, 1972; Wood, 1976; Cadavid et

al., 1991). The unit hydrograph theory seems to have been more commonly used in

more recent studies (for example, Wood and Hebson, 1986; Sivapalan et al., 1990;

Raines and Valdes, 1993; Sivapalan et al., 1996).

In terms of random variables used in design and the relationship between them, in most

of the above mentioned studies, only rainfall intensity and duration have been treated as

random variables. The random nature of the infiltration rate or the maximum

abstraction from rainfall has only been considered by Wood (1976) and Haan and

Edwards (1988). The assumption of statistical independence of rainfall intensity and

duration, or of rainfall and loss model parameters has very commonly been adopted (for

example, Eagleson, 1972; Wood, 1976; Hebson and Wood, 1982; Diaz-Granados et al.,

1984; Wood and Hebson, 1986). The dependence of rainfall intensity on duration has

only been considered by Sivapalan et al. (1996). 1

With regard to the derivation of the flood frequency distribution, it is clear that, in

previous joint probability studies based on analytical methods, mathematical

expressions for computing design floods have been derived for very specific situations.

For example, Eagleson (1972) developed rainfall-runoff equations for V-shape

catchments, or Cadavid et al. (1991) used basins conceptualised as two symmetrical

planes discharging into first order streams. In addition, the set of equations

characterising the flood frequency distribution has been defined, in some cases, by very

complicated functions (Hebson and Wood, 1982; Diaz-Granados et al., 1984; Wood and

Hebson, 1986). Furthermore, attempts have been made to include in flood frequency

behaviour physical properties of catchment and drainage networks (Hebson and Wood,

1982; Diaz-Granados et al., 1984; Raines and Valdes, 1993) or different runoff
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generation processes (for example, Eagleson, 1972; Wood and Hebson, 1986; Sivapalan

et al., 1990). Despite these efforts, when the derived flood frequency curves were

compared with observed flood records, in general, the proposed methods did not

perform well. This is mainly attributed to the simplicity of the rainfall model used, and

the inaccuracies in estimating parameters of the adopted rainfall and loss models

(Eagleson, 1972; Moughamian et al., 1987; Cadavid et al., 1991; Raines and Valdes,

1993). It has been suggested that removal of the assumption of independence of some

stochastic inputs (rainfall intensity and duration) may lead to significant improvements

in design flood estimates (Eagleson, 1972).

summary, previous studies of the Joint Probability Approach based on the analytical

methods for design flood estimation have not led to successful applications in design

practice. While it is clear that the results of these studies enhance understanding of the

flood frequency behaviour, and that the flood probability functions for some specific

situations can be mathematically formulated, there are many drawbacks in these studies.

For example, the solution of the integration of the joint distribution of inputs may be

computationally demanding if the input distributions are defined by different functions

over different regions. Moreover, in order to allow analytical derivation of the

equations representing the design flood distribution, the design rainfall and antecedent

catchment conditions are generally modelled in a very simple fashion. The interactions

of inputs involved in the design are also ignored. These factors, together with the

complicated mathematical equations derived for the resulting floods, make the

analytical methods intractable in design situations.

2.4.2.2 Studies based on approximate numerical methods

Besides analytical methods, there have been many joint probability studies that adopt

the approximate numerical derived distribution methods for estimating design floods.

General features and results of these studies are summarised in Appendix B. In

examining these studies, the following conclusions can be made.

With respect to rainfall models, design DFD curves have been adopted in the majority of

these studies. Using the IFD curves, the dependence of rainfall intensity on duration is
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taken into account. In some research, the temporal variation of rainfall intensity during

storm duration has been considered (Beran, 1973; Goyen, 1983) and its stochastic

nature accounted for (Beran, 1973).

In terms of loss models, the SCS Curve Number model has been commonly adopted

(Hughes, 1977; Fontaine and Potter, 1993; Consuegra et al., 1993). The infiltration rate

has also been employed to compute the rainfall excess (Goyen, 1983).

With regard to runoff routing models, the unit hydrograph is the model most popularly

adopted (Beran, 1973; Consuegra et al., 1993). More general rainfall-runoff models

such as HEC-1 (Fontaine and Potter, 1993), RAFTS (Goyen, 1983) have also been

considered. One advantage of these two models is that they take into consideration

spatial variations of rainfall and catchment characteristics.

In relation to random variables involved in design and the relationships between them,

rainfall intensity and parameters of the adopted loss models have always been

considered as random variables (for example, Goyen, 1983; Fontaine and Potter, 1993;

Consuegra et al., 1993). The random nature of rainfall duration or temporal patterns has

only been modelled by Beran (1973). The assumption of statistical independence of

these random variables has been adopted in the majority of these studies (Beran, 1973;

Hughes, 1977; Goyen, 1983; Consuegra et al., 1993).

With regard to the determination of the flood frequency distribution, the Theorem of

Total Probability (see Appendix A) has been a popular means for determining the flood

frequency curves (Beran, 1973; Laurenson, 1974; Hughes, 1977; Fontaine and Potter,

1993). Application of this theorem to design flood estimation is very easy for cases

where random variables involved in the flood generation process are assumed to be

independent of one another. A practical implementation of the theorem has been

proposed by Laurenson (1974). With this method, any design problem can be solved by

dividing the problem into a sequence of consecutive steps. Each step transforms an

input probability distribution into an output probability distribution, which becomes the

input to the next step. The probability of the output at each step can be calculated using

the input probability distribution and a transition probability, which reflects the

deterministic components of the system. This method has been applied by Laurenson
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and Pearse (1991). In general, application of the approximate derived distribution

methods to one or two catchments produced satisfactory results, but a complete

verification of these methods-by applying them to a variety of catchments is still

required. The design rainfall depth and parameters of the loss model have been

identified as the most important factors affecting the design flood (Beran, 1973).

In summary, despite the advantages of the joint probability studies based on the

approximate numerical methods, these studies need to be further developed and tested

before they can be applied to practice. In these studies, many design inputs involved in

the flood generation process are realistically represented by probability distributions

instead of fixed design values. Design floods and the corresponding probabilities are

generally computed using the Theorem of Total Probability or Laurenson's method

(Laurenson, 1974). Nevertheless, in applying the approximate numerical methods, it is

necessary to discretize continuous random variables, and to conveniently assume that

these design random variables are independent of each other. In addition, the variability

of design inputs is still inadequately modelled because, in most studies, the stochastic

nature of only two random variables (namely the design rainfall depth and loss model

parameters) is accounted for. Moreover, the loss and runoff routing models adopted in

most of these studies are not commonly used in Australia. Therefore, for an

improvement in Australian design flood estimation, the random nature of design inputs

other than the rainfall intensity and loss, the correlations of these stochastic inputs, and

the application of loss and runoff routing models more appropriate to the Australian

environment should be addressed.

2.4.2.3 Studies based on Monte Carlo simulation

Together with the analytical and approximate numerical methods, Monte Carlo

simulation has also been applied to some studies that are based on the Joint Probability

Approach for rainfall-based design flood estimation. Detailed descriptions of these

studies, their main characteristics and results are tabulated in Appendix B. In

examining these studies, the following conclusions can be made.
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In terms of the design rainfall, Eagleson's model (Eagleson, 1972) has been adopted by

Beven (1987), whereas IFD curves have been employed by Bloeschl and Sivapalan

(1997). Alternatively, the Gumbel distribution (also called the Extreme Value type I

distribution) has been used to characterise the design rainfall intensity (Muzik, 1993;

Loukas et al., 1996). The variation of design rainfall intensity during storm duration has

been considered by Beven (1987), and Loukas et al. (1996).

To compute the rainfall excess, the SCS Curve Number method or the infiltration rate

has been adopted in a few studies such as Muzik (1993) or Loukas et al. (1996).

Complicated models such as the TOPMODEL or the ARNO model have also been

recommended (Beven, 1987; Franchini et al., 1996).

To compute flood hydrographs, the unit hydrograph or linear routing method has still

been adopted by some authors, for example, Muzik (1993) and Loukas et al. (1996).

Nevertheless, more complicated flood routing models such as those included in the

TOPMODEL (Beven, 1987) or ARNO model (Franchini et al., 1996) have also been

employed.

With regard to random variables involved in design and their correlations, the design

rainfall intensity and soil moisture antecedent to rainfall events have always been

considered as random variables. The stochastic nature of other rainfall characteristics

(either rainfall duration or temporal pattern) has only been taken into account in some

studies, for example, Beven (1987), Bloeschl and Sivapalan (1997), or Loukas et al.

(1996). Runoff routing model parameters have been treated in a probabilistic fashion

only by Loukas et al. (1996). The correlations of some of these random variables have

also been taken into consideration. For example, Beven (1987) considered the

relationship between discharge and initial soil moisture deficit, Muzik (1993) accounted

for the dependence of potential maximum soil moisture storage and antecedent rainfall,

and Bloeschl and Sivapalan (1997) adopted EFD curves in which rainfall intensity is a

function of storm duration and return period.

In terms of the derivation of the flood frequency distribution, Monte Carlo simulation

has been used to compute design floods from various combinations of fixed and

variable inputs randomly generated from the corresponding continuous distributions.
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For the limited number of test catchments used in these studies, in genera!, the proposed

procedures gave satisfactory results. Nevertheless, there are some cases in which the

estimated flood volumes were significantly different from the observed floods, as

reported by Loukas et al. (1996), and Muzik (1993).

In summary, like joint probability studies based on the analytical and approximate

numerical methods, pre= >us flood studies adopted Monte Carlo simulation still need

further developments so that they can be applied in design practice. In these studies,

design rainfall characteristics (including intensity, duration, and temporal patterns) and

parameters of the loss and catchment response models are characterised by continuous

probability distributions, and their correlations are accounted for. Nevertheless, in each

individual study, the variability of design inputs is still inadequately modelled, because

generally only two or three inputs are considered as random variables. In addition, a

linear response of catchments to rainfall is generally assumed. These factors, together

with further testing required to verify results in a broader range of situations, are the

main reasons that make these studies not readily applicable to flood design practice.

2.4.2.4 Concluding remarks

From the review above, it is clear that for an improved method for rainfall-based design

flood estimation based on the Joint Probability Approach, the following factors should

be taken into account:

(a) the incorporation in a single study of all those random inputs that have significant

influence on design floods. These inputs may include design rainfall characteristics

(intensity, duration, temporal and spatial patterns), loss model parameters and

possibly runoff routing model parameters;

(b) the consideration of the correlations of these design inputs and parameters;

(c) the selection of a loss model and a runoff routing model that are not only able to

realistically characterise the flood generation process but also are simple enough for

practical applications;

(d) the selection of an appropriate derived distribution method (either the approximate

numerical methods or Monte Carlo simulation) for design flood estimation; and

(e) the verification of the proposed procedure in a variety of test catchments.
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It would also be desirable to examine the sensitivity of the derived flood frequency

curve to the model representation of the above factors, and to estimate the uncertainty in

design flood estimates.

2.5 SUMMARY

The Design Event Approach is a procedure commonly used to estimate design floods

from design rainfalls. The design floods are estimated by assuming equal probability of

the flood output and the rainfall input, using representative values for all inputs and

parameters to the design (except for the rainfall depth), and adopting a critical storm

duration. This design procedure leads to three limitations of the Design Event

Approach. The first is the underestimation of the variability of design inputs, in

particular design rainfall characteristics and antecedent soil moisture conditions. The

second is the non-scientific basis of the critical storm duration concept and the

probability bias associated with its application in design flood estimation. The third is

the difficulties in selecting suitably representative values of design inputs in order to

correct the probability bias in practical applications.

To overcome the limitations of the Design Event Approach, Empirical Methods,

Continuous Simulation, the Runoff Files Approach, the 'Improved' Design Event

Approach and the Joint Probability Approach can be employed. Of these alternatives,

only Continuous Simulation and the Joint Probability Approach have the potential to

fully overcome the limitations of the current design procedure. Continuous Simulation

generates flood runoff sequences from time series of rainfall and other climatic inputs

using a continuous simulation water balance model and a flood routing model. The

Joint Probability Approach estimates design floods by adopting the same rainfall-runoff

modelling elements as the Design Event Approach but treating key inputs of the design

and the flood output as random variables and accounting for their correlations. It is

concluded that the Joint Probability Approach has the potential to provide significant

improvements in rainfall-based design flood estimation in the near future because, being

more closely related to the Design Event Approach, it can make the best use of existing

data and experience.
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The theoretical basis of the Joint Probability Approach is the derived distribution

theory. In design flood estimation, this theory can be applied to compute the flood

probability distribution from the joint probability distributions of the flood causing

factors using a rainfall-runoff transformation. Three groups of methods can be used to

carry out this computation. They are analytical methods, approximate numerical

methods, and simulation techniques.

A review of previous studies of the Joint Probability Approach to rainfall-based design

flood estimation indicates that the analytical methods are unlikely to be successful in
i
I design practice. This is attributable to the fact that the flood probability distributions

are developed from simple assumptions about the design rainfall, catchment model, and

their interactions, and despite of this, the derived flood distributions are usually very

| mathematically complicated. The approximate numerical methods and Monte Carlo
i

I simulation are more effective means of estimating the probability distribution of design

floods. Using these methods, the stochastic nature of rainfall characteristics (duration,

intensity, temporal patterns), of catchment wetness antecedent to a rainfall event, or of

I rainfall losses can be considered and converted into a flood frequency distribution with
I
j relatively little difficulty. The correlations of random variables involved in the flood

producing process can also be considered. In this way, variables representing both the

design rainfall and the catchment response are modelled in a much more realistic way.

For an improvement of rainfall-based design flood estimation using the Joint Probability

Approach, it is desirable to consider all the following factors in one single study. These

are the incorporation of all the random inputs that have significant influence on the

design floods, the consideration of their correlations, the selection of models of rainfall

loss and runoff routing that can both realistically characterise the flood generation

process and can be readily applied in practice, the selection of an appropriate derived

distribution method for practical design flood estimation, and the verification of the

proposed procedure in a variety of test catchments. The examination of the sensitivity

of design floods to the model representation of the above factors, and the investigation

j of the uncertainty in design flood estimates would also be desirable.
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Chapter 3

DEVELOPMENT OF A JOINT PROBABILITY MODEL

FOR DESIGN FLOOD ESTIMATION

3.1 INTRODUCTION

The estimation of design floods from design rainfalls generally consists of two stages,

namely runoff production and hydrograph formation. The objective of the runoff

production stage is to compute the depth of rainfall excess (or runoff) from the design

rainfall. This is undertaken by subtracting all losses due to interception, infiltration, and

depression storage from the total rainfall depth. The objective of the hydrograph

formation stage is to convert the rainfall excess hyetograph over the catchment into the

flood hydrograph at the catchment outlet. This is carried out by selecting a runoff

routing model, routing the rainfall excess hyetograph through the selected routing

model, then adding the design base flow.

In the Joint Probability Approach to rainfall-based design flood estimation, each of the

above two stages may have both deterministic and stochastic components. For example,

the loss model applied in determining the rainfall excess from a specific rainfall input

and the runoff routing model to determine the resulting flood hydrograph are the

deterministic components. They represent the processes that can be modelled

mathematically or graphically without probabilistic statements. By contrast, the

characterisation of design inputs such as rainfall intensity, duration, or routing model

parameters by probability distributions instead of representative design values, and the

determination of the design flood distribution from the joint probability distributions of

design inputs, are the stochastic components. It is noted that in the conventional Design

Event Approach, the only stochastic component in design flood estimation is the

probability distribution determining the design rainfall intensity.
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To develop a Joint Probability Model that can improve estimates of design floods, both

the deterministic and stochastic components need to be realistically represented. To do

this, two stages can be carried out. The first stage is the selection of the deterministic

components that can realistically represent the runoff production and hydrograph

formation processes. The second stage is the selection of the stochastic components that

can reflect the high degree of variability of design inputs, outputs, and their interactions.

This stage also includes the selection of an appropriate method for computing the flood

probability distribution. The success of this model will depend on its performance and

practicability, that is whether or not it can give reliable flood estimates, and can be

applied to routine problems.

The stages undertaken to develop a Joint Probability Model for rainfall-based design

flood estimation are reported in this chapter. A research procedure for applying and

evaluating the proposed model is also described.

3.2 DETERMINISTIC ELEMENTS

Like the currently used Design Event Approach, the deterministic elements of the

proposed Joint Probability Model consist of a loss model and a runoff routing model.

The selection of these elements is discussed below.

3.2.1 Loss model

In the runoff production process, a loss model is used to compute rainfall losses. The

rainfall loss is the part of rainfall that does not appear as direct runoff after a storm. It is

caused by interception by vegetation, infiltration into the soil, retention on the surface of

the soil (called depression storage), or losses through stream beds and banks (called

transmission loss) (Hill et al., 1996a).

Loss models can be broadly classified as infiltration models and practical loss models.

A brief review of these models is given in Appendix C. The objective of the infiltration
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models is to compute the time varying rate of storm losses at a point through

infiltration. Some of the well-known infiltration models include the Horton model

(Horton, 1935), the Philip model for computing vertical infiltration into non-layered

homogeneous soils with a constant initial moisture content (Philip, 1969), and the

modified Green-Ampt model for computing infiltration capacity for different rainfall

and surface conditions (Mein ~nd Larson, 1971). In previous joint probability studies,

the infiltration rate was used by Wood (1976), Hebson and Wood (1982), and Loukas et

al. (1996), whereas the Philip infiltration model was used by Diaz-Granados et al.

(1984), Shen et al. (1990), and Sivapalan et al. (1990). Even though infiltration models

provide an insight into the infiltration process, they may not be directly applicable to

determining the loss of rainfall in flood estimation applications for two reasons. Firstly,

they ignore the transmission loss and the rainfall losses caused by interception and

depression storage. These forms of storm losses follow different laws from infiltration

theory and may be significant under certain circumstances. For example, the

interception loss may be a considerable portion of storm losses in regions with dense

vegetation, or the depression loss may be significant for deep storage (Linsley et al.,

1988). Secondly, it is difficult to accurately estimate a representative value of the

infiltration loss on the catchment scale due to the spatial variability of catchment

characteristics (such as soil types or vegetation) and limited information.

In routine applications, practical loss models are preferred to infiltration models due to

their conceptual simplicity and their ability to approximate catchment runoff behaviour.

These are lumped models because they ignore the spatial variation of storm losses

during storm duration. The practical loss models include the loss rate model, the

proportional loss model, the initial loss - continuing loss (BL-CL) model, and the SCS

Curve Number model. Some of these models have been applied in previous joint

probability studies for design flood estimation. For example, the constant loss rate was

used by Eagleson (1972), and the SCS Curve Number method adopted by Haan and

Edward (1988), or Raines and Valdes (1993).
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In Australia, the IL-CL model is most commonly used (Institution of Engineers,

Australia, 1987; Hill et al., 1996a), and is adopted in this project. The model has two

parameters, namely the initial loss and the continuing loss. The initial loss is the rainfall

loss that occurs before the commencement of surface runoff, and the continuing loss is
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the average rate of rainfall loss during the remaining storm duration (see Figure 3-1).

The model can be applied to compute the average loss of rainfall at the catchment or

sub-catchment scale.

Initial Loss , . Continuing Loss

55
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Hydrograph

Time

Figure 3-1: Initial loss-continuing loss model (from Hill et al., 1996a)

3.2.2 Runoff routing model

In the hydrograph formation process, a runoff routing model is required through which

the rainfall excess hyetograph is routed to become the flood hydrograph at any location

of interest or at the catchment outlet. Also, baseflow contributions need to be accounted

for.

As mentioned in Chapter 2, commonly used runoff routing models in previous derived

flood frequency studies are the kinematic wave, unit hydrograph, and geomorphologic

unit hydrograph models. Whereas the kinematic wave models ignore attenuation of

flood peaks, the unit hydrograph models assume that the rainfall-runoff relationship is

linear and (for lumped models) that the rainfall excess is uniform over the entire

catchment (Institution of Engineers, Australia, 1987, Chapters 8 and 9). For these

reasons, the kinematic wave models and the lumped unit hydrograph models are

unlikely to be successful in design practice where simplicity in application is required

but the spatial and temporal variations of hydrologic variables and the non-linearity of

catchment response should be accounted for to some extent.
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In Australia, many runoff routing models are available for computing the flood

hydrograph from the hyetograph of rainfall excess. These include RAFTS, RORB,

URBS, and WBNM (Institution of Engineers, Australia, 1987, Chapter 9). All of these

are distributed and non-linear models because they take into consideration the non-

linear response of the catchment, the areal variability of rainfalls and losses, and the

distributed nature of the catchment storage. Even though all these models are capable

of reproducing realistically the flood transformation process, RORB and URBS are

most widely used in design practice. However, neither of these two models could be

readily incorporated in the Joint Probability Model for use in this research where Monte

Carlo simulation is selected for estimating design floods (see Section 3.3.2). This is

attributable to the fact that the current versions of these models are not designed to

provide thousands of simulations of design floods in one computer run. Therefore a

simple runoff routing model that can be readily incorporated in the present Monte Carlo

simulation model is adopted in this study.

The adopted runoff routing model consists of a single, concentrated, non-linear storage

at the catchment outlet. The rainfall excess over the catchment is routed through this

storage using a non-linear storage routing procedure. The relationship between the

storage S (unit: m3) and the discharge Q (unit: m3/s) is assumed to be as follows:

S = kQm (3-1)

where k is a coefficient that determines the storage delay time of the model, but which

also depends on the value of m, and m is a dimensionless constant, being a measure of

the catchment's non-linearity. In this study, m is assumed to be 0.8, which is the value

generally recommended as a first trial value (Laurenson and Mein, 1995).

For simplicity, the adopted model neglects the spatial variations of rainfall and losses

over the catchment.

3.3 STOCHASTIC ELEMENTS

As explained in Chapter 2, the major difference between the Joint Probability Approach

and the current Design Event Approach is the probabilistic treatment of inputs to and



Chapter 3 38

outputs from a model. In this section, key inputs to be treated in a probabilistic fashion

are first determined. A method for computing the derived distribution of floods from

the distributions of input variables is then selected. Finally, issues related to the

correlations of design random variables are highlighted.

3.3.1 Determination of key inputs to be treated as random variables

In order to improve estimates of design floods, as discussed in Section 2.4.2.4, it is

important to take into account the stochastic nature of design inputs and outputs, and

their interactions. Ideally, all design inputs should be treated as random variables.

However, it is preferable to consider a smaller number of key stochastic inputs as this

reduces the data requirements and makes practical applications easier, without

sacrificing much accuracy. The selection of stochastic input variables for this study is

described below.

Rainfall variables

Real rainfall events vary considerably with respect to rainfall intensity, rainfall duration,

the temporal distribution within the event duration, and the spatial distribution of

rainfall at the catchment scale. Of these factors, average rainfall intensity, the direct

input to the rainfall-runoff process, is clearly the most important rainfall characteristic.

Its stochastic behaviour has already been characterised by a probability distribution in

the current Design Event Approach. Since rainfall events that have the potential to

produce floods vary considerably in their duration, the inclusion of rainfall duration as

a random variable in this study is considered essential.

Besides rainfall intensity and duration, the temporal pattern of rainfall is another input

that is worth considering as a stochastic input. For a given rainfall depth over a

specified duration, the time distribution of rainfall intensity may vary considerably for

different storms. In almost all cases, rainfall intensity is distributed non-uniformly

during storm duration. Moreover, the pattern adopted can have a major effect on the

computed flood (Institution of Engineers, Australia, 1987). There is evidence that flood

peaks may differ by up to 50% due to the use of different design temporal patterns

(Askew, 1975; Brown, 1982; Wood and Alvarez, 1982; Cordery et al., 1984; Hoang,
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1997). In addition, adopted extreme patterns may cause computed flood peaks to vary

by up to 2.5 times for heavy rainfalls (Institution of Engineers, Australia, 1987).

Viessman et al. (1989) also stated that the shape and peak magnitude of flood

hydrographs are affected by temporal patterns of storms. Hence, the rainfall temporal

pattern is another important input to be treated as a random variable, especially for

small catchments. However, due to the multi-dimensional nature of the temporal

pattern, several parameters may be required for its description.

Compared with rainfall intensity, duration and temporal patterns, the modelling of the

areal pattern of rainfall as a random variable is considered less important in most rural

catchments. Moreover, it would generally be difficult to determine the probability

distribution of areal rainfall pattern due to limited observed rainfall data at a catchment

scale. For these reasons, the rainfall spatial pattern is not modelled in a probabilistic

fashion in this project. It might be noted that the deterministic application of temporal

and areal rainfall patterns each increases the dimensionality of rainfall intensity by one.

For example, in applying a temporal pattern to a constant average rainfall intensity for a

given location, average recurrence interval and duration, the rainfall intensity becomes a

function of time. The patterns are what Laurenson (1974) called "distributive"

parameters as distinct from "concentrative" parameters like initial loss, which would

convert the above constant into a different constant. The increased dimensionality adds

an order of magnitude to the complexity of the computat ns.

The areal reduction factor applied to rainfall, as mentioned in Chapter 2, converts

average point rainfall intensity into average catchment rainfall intensity. It takes

account of the random variability of rainfall depth over the catchment. For this study,

the use of a single value of the areal reduction factor for a particular rainfall duration,

catchment size and average recurrence interval is considered adequate.

,4

Runoff production process

The runoff production process has been recognised as a crucial process in design flood

estimation (Cordova and Rodriguez-Iturbe, 1983; Beven, 1987). It is represented by a

loss model with one or more parameters. As early as the seventies, the strong impact of

the loss parameters on design floods has been highlighted. For example, Beran (1973),

in examining the sensitivity of the design flood to alterations to the assumed values of
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design input variables, concluded that correct choice of loss rate is the most important.

Wood (1976) provided evidence that the use of a constant loss rate instead of a

probability distribution underestimates the exceedance probability for a given peak

discharge, which may lead to serious design problems. Hoang (1997) also conducted an

investigation into the effect of changes in design loss values on design floods for a small

catchment in Australia. Results showed that for the test catchment, the peak discharge

might increase by up to 120% when an initial loss lower than the median value but

within the range of recommended design values was assumed. The strong influence of

loss values on design flood estimates is based on the fact that catchment conditions (and

therefore rainfall losses) can vary widely, and that a given rainfall occurring on a dry

watershed produces considerably less runoff than the same rainfall occurring on a wet

watershed. It is thus concluded that the rainfall loss is an important input and should be

treated as a random variable in estimating design floods.

As discussed in Section 3.2.1, the initial loss - continuing loss model is adopted in this

study for computing the rainfall excess. Of these two parameters, the initial loss reflects

the catchment condition at the time of rainfall, and is therefore more variable than the

continuing loss rate. Thus, it is considered sufficient to treat only the initial loss as a

stochastic variable, whereas the continuing loss rate is represented by a fixed design

value.

Hydrograph formation process

As discussed previously, the hydrograph formation process deals with routing the

rainfall excess hyetograph to produce the design flood hydrograph. Factors affecting

the hydrograph formation process are runoff routing characteristics (represented by

model type, mode! structure, and model parameters) and baseflow contributions.

It is well known that, in design flood estimation, the problem is more what to route than

how to route (Cordova and Rodriguez-Iturbe, 1983). This implies that the variability of

runoff routing model parameters and baseflow on flood estimates is of secondary

importance compared with that of the runoff production process. There are a number of

reasons for this. Firstly, the event to event variability of model parameters may be the

result of data errors, or model inadequacy in characterising the non-linearity of the

rainfall-runoff process or the true variability in catchment response to rainfall.
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Secondly, the selection of an appropriate runoff routing model and procedure can allow

a single set of model parameters to be determined for a given catchment with reasonable

confidence. Thirdly, except for very small floods, design baseflow generally accounts

for only a very small portion of total flood flow. Even though any streamflow

hydrograph has a random baseflow component, in reality, the variability in baseflow

magnitude is mainly seasonal, and regarded as having a small effect on design flood

estimates. Therefore, the stochastic modelling of the parameters representing the

hydrograph formation process and base flow is considered as a refinement to the current

method that may be examined at a later stage.

3.3.2 Selection of a Joint Probability Method

As discussed in Section 3.2, application of the analytical methods to derive the flood

frequency distribution is unlikely to be successful in practice. This is attributed to the

simplifying assumptions about rainfall, loss, and runoff routing models, the complexity

in mathematical equations of the derived flood distribution, and the simplified treatment

of the correlations of random variables involved in the design.

The approximate numerical methods and Monte Carlo simulation are considered as

much more effective means than the analytical methods to compute the derived flood

frequency distribution. With these methods, the design rainfall can be more realistically

modelled (that is, the dependence of rainfall depth on duration, or the time variation of

rainfall intensity during storm duration can be readily accounted for). In ad'';tion,

catchment characteristics or catchment conditions at the time of the storm en be

examined in a more realistic way. For example, by using distributed runoff routing

models, the spatial variation of rainfall and losses over the catchment, or catchment

physical characteristics can be modelled; the effects of varying catchment wetness on

the computed flood can be accounted for by using an appropriate model to describe it.

Moreover, using these methods, if input variables are dependent on one another, their

correlations can then be taken into account without much difficulty.

Of the approximate numerical methods and Monte Carlo simulation, the Theorem of

Total Probability for computing the flood distribution is the simplest for routine

. *



Chapter 3 4 2

applications if the assumption of statistical independence of random variables can be

justified. If flood causing factors are correlated, Laurenson's general modelling scheme

(Laurenson, 1974), or Monte Carlo simulation are the most promising methods. Using

Laurenson's method in which a modelling problem can be divided into several

modelling steps, each with only two stochastic variables, the complexity in determining

the joint probability of three or more correlated random variables can be avoided. With

Monte Carlo simulation, probability distributions of input variables are determined first.

For each model run, a design flood is then simulated from input values generated

randomly from their corresponding distributions. Any significant correlation between

inputs can be allowed for through the use of conditional distributions. By running the

model several thousand times, a large sample of design floods, and therefore the flood

frequency distribution, can be obtained, and the reliability of the results assessed.

For this project, Monte Carlo simulation is selected because it is a general approach that

can be applied to both independent and correlated random variables. In addition, a

computer program for computing the probability distribution of floods from statistical

distributions of flood causing factors is readily available from a parallel study (Rahman,

1999).

3.3.3 Correlations of random variables

As discussed in Section 2.4.2, one of the critical elements of the proposed Joint

Probability Model is the representation of the variability of key flood causing factors

and their correlations. In doing so, characteristics of real observed rainfall events and

catchment conditions are preserved in the flood simulation process. By contrast, in the

majority of previous studies of the Joint Probability Approach, only two or three design

inputs are considered as random variables and their correlations are generally neglected.

With regard to the relationship between rainfall intensity and duration, it was commonly

assumed in early joint probability studies that rainfall intensity is statistically

independent of storm duration. However, Bloeschl and Sivapalan (1997) argued that

this assumption may lead to steep flood frequency curves as a result of unrealistic

combinations of high rainfall intensities and long durations. As it is generally accepted
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that average rainfall intensity decreases with increasing storm duration, the

consideration of this relationship in this present study seems to be indispensable.

Eagleson (1972) has also recommended the removal of the assumption of statistical

independence between rainfall intensity and duration in order to obtain better design

flood estimates. Jf * •** ^

In the published research of temporal patterns of rainfall, there are conflicting

conclusions about the relationship between temporal patterns and season of storm

occurrence, storm duration, and storm depth. For example, in the currently used model

of design storms in Australia, temporal patterns are developed for different climatic

zones, rainfall durations, and average recurrence intervals. This implies that the

temporal pattern is dependent not only on location, but also on storm duration, and

storm severity. In overseas studies, Huff (1967) showed that dimensionless mass curves

of observed temporal patterns in Illinois can be divided into four distinct groups,

depending on whether the heaviest rainfall occurs in the first, second, third or fourth

quarter of the storm duration. However, in each group, the storm duration and areal

mean rainfall account for only a small portion of the variance in the time distribution of

rainfall. Moreover, Yen and Chow (1980) and Bonta and Rao (1989) stated that

dimensionless hyetographs of storms in summer, dominated by short duration, high

intensity convective storms, are markedly different from those of other seasons,

particularly long duration, low intensity cyclonic winter storms. By contrast, Garcia-

Guzman and Aranda-Oliver (1993) found that the time distribution of rainfall at three

stations in Southern Spain is independent of season and amount of rain. Similarly,

Robinson and Sivapalan (1997), from an analysis of hourly rainfalls at a catchment in

Western Australia, suggested that the rainfall temporal pattern is not correlated with

storm duration.

To date, it is thus unclear whether or not the rainfall temporal pattern is dependent on

factors such as season of storm occurrence, storm duration or depth. While some

authors suggest that the time distribution of rainfall is independent of any of those three

factors, most evidence in the literature supports the hypothesis that there is a

dependence on at least some of them. Therefore, as a part of the examination of the

correlations of random variables involved in design, one of the objectives of the present

m

'-mi

•Stf

Wf«

'.mft



Chapter 3 44

research is to investigate the dependence of the rainfall temporal pattern on season of

storm occurrence, storm duration or depth.

With regard to the relationship between design storm losses and other input variables, it

has been found that the rainfall initial loss increases with rainfall burst duration (Hill et

al., 1996a,b). This relationship is examined for the data used in this study, along with

the investigation of the correlation between the initial loss and average rainfall intensity.

At this development stage, the seasonal variation of the initial loss is not considered.

3.4 RESEARCH PROCEDURE

In order to apply and evaluate the proposed Joint Probability Model for design flood

estimation, the procedure adopted in this research consists of three major steps, namely

determination of model elements, model application, and model evaluation. Each of

these steps is outlined below.

The determination of model elements (see Figure 3-2), documented in detail in Chapter

4, starts with the collection and verification of rainfall and streamflow data used in this

study. The definition of storm events is next introduced and then applied to derive a

database of storm events. A storm definition is required in this research to ensure that

storm duration becomes a random variable. The correlations between the random

variables involved in design are next investigated. The outcome of this investigation is

necessary to assess to what extent it is necessary to develop the conditional probability

distributions of design inputs. The probability distributions of rainfall duration and

initial loss, the rainfall intensity-frequency-duration (IFD) curves, and a model to

generate storm temporal patterns are then determined. Lastly, other fixed inputs of the

design (runoff routing model parameters, design continuing loss rate and baseflow) are

estimated.

After determining the deterministic and stochastic elements of the proposed Joint

Probability Model, Monte Carlo simulation is applied to generate flood events for an

example catchment. At this stage, a random value of storm duration is generated from
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the probability distribution of storm duration. A random average recurrence interval

(AR1) is then selected and assigned to the. design storm with the specified duration.

Given the storm duration and ARI; the average design rainfall intensity for the design

storm is then determined from the IFD curves developed for the design location. Next,

a random temporal pattern is generated for the design storm of the specified duration

and depth. This design rainfall event is then combined with a random value of initial

loss generated from the probability distribution of the storm initial loss to produce a

rainfall excess hyetograph. The design rainfall excess hyetograph is then passed

through a runoff routing model, from which a flood hydrograph is determined, and the

peak flood recorded. By repeating the above procedure thousands of times, thousands

of values of floodpeaks are generated. A frequency analysis of the generated

floodpeaks is finally carried out to determine the derived flood frequency curve. The

procedure described above is illustrated in Figure 3-3 and documented in Chapter 5. 41

Data collection and verification

Determination of fixed
design inputs

Storm event definition

Extraction of storm events

Determination of correlations of
random inputs

Determination of probability distributions
of random inputs

Figure 3-2: Determination of model elements

To evaluate the proposed model for design flood estimation, the generated flood

frequency curve obtained by Monte Carlo Simulation is then compared with that

obtained from flood frequency analysis and the Design Event Approach (see Chapter 6).

The sensitivity of design flood estimates to variations in some stochastic and

deterministic design inputs is next examined and some conclusions are drawn on the
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reliability of the deiived flood estimates. The model is finally tested on another

catchment and the results are discussed.

Probability Intensit

Probability

Discharge Peakflow

Time ARI

Figure 3-3: Model application
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3.5 SUMMARY
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In this chapter, a Joint Probability Model for rainfall-based design flood estimation is

proposed. This model consists of a deterministic component and a stochastic

component. The deterministic component uses the initial loss - continuing loss (IL-CL)

model for computing a rainfall excess hyetograph from given design rainfall inputs, and

a lumped non-linear runoff routing model to convert this rainfall excess hyetograph into

a corresponding flood hydrograph. The stochastic component defines the design rainfall

intensity, duration, temporal pattern, and initial loss as random inputs, and employs

Monte Carlo simulation method to estimate design floods.

A research procedure is recommended for applying and evaluating the proposed Joint

Probability Model. This includes the determination of the deterministic and stochastic

elements of the proposed model, the application of Monte Carlo simulation for

generating design floods for two example catchments, and the evaluation of the

proposed model by comparing results with those obtained from flood frequency analysis

and the Design Event Approach. In the next chapter, the first step of the procedure, the

determination of model elements, is presented.
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Chapter 4

DETERMINATION OF MODELLING ELEMENTS

4.1 INTRODUCTION

The proposed Joint Probability Model for rainfall-based design flood estimation has two

components: a deterministic and a stochastic component. The deterministic component

includes a loss model for computing rainfall excess, and a lumped runoff routing model

for estimating design flood hydrographs. The stochastic component models the

statistical behaviour of four important design inputs to the flood generation process

(namely the average rainfall intensity, duration, temporal pattern, and initial loss), the

flood output, and the interactions of the stochastic inputs.

The objective of this chapter is to document the development of the above stochastic

and deterministic components of the proposed Joint Probability Model. In particular,

this chapter first describes the selection of test catchments, and the collection and

verification of rainfall and streamflow data used in this study. It then introduces the

storm definition developed to extract storm events from the rainfall database. The

determination of the stochastic elements of the proposed model is presented next. This

includes the development of the probability distribution of rainfall duration, the

frequency curves of rainfall intensity, the stochastic representation of design temporal

patterns and the statistical distribution of storm initial loss. Finally, the derivation of the

deterministic modelling elements, including the estimation of the parameters of the

lumped runoff routing model and other fixed design inputs, is discussed. For

illustration, observed rainfall-runoff data at one Victorian catchment, the La Trobe

River catchment at Noojee, were used in this development. Testing of the Joint

Probability Model on another catchment is dealt with in Chapter 6.

iPi9im
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4.2 DATA COLLECTION AND VERIFICATION
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For this project, two types of data were needed: rainfall and streamflow data. Observed

rainfall data were used to extract'storm events from records, from which the probability

distributions of rainfall characteristics (duration, intensity, and temporal patterns) were

developed. Streamflow data (annual maximum series) were used in the development of

the flood frequency curve for evaluating the proposed Joint Probability Model. The

derivation of the statistical distribution of the initial loss and the calibration of runoff

routing mode) parameters required concurrent rainfall and streamflow events.

X

The collection and verification of data necessary for this study include the selection of

test catchments, along with the extraction and checking of rainfall and streamflow data.

These steps are described below.

4.2.1 Selection of test catchments

In order to select test catchments for applying the proposed Joint Probability Model,

catchment type, size, and data availability were important considerations. The selected

catchments should be rural and have no significant artificial storage. Furthermore, they

should be small to medium-sized (up to 500km2 in mountainous regions, or 1000km in

flat areas). In addition, they should have readily obtainable rainfall and streamflow data

of good quality and quantity. It is also desirable that the selected catchments cover a

wide range of locations, rainfall regimes, or catchment characteristics.

It would have been preferable to select several catchments to apply the proposed model.

However, due to the limited project time, only two catchments, the La Trobe River

catchment at Noojee (station number 226205C), and the Tarwin River catchment at

Dumbalk North (station number 227226) were finally used in this study. These

catchments were selected from a database compiled by Hill (1994) because they

satisfied the above considerations. In particular, they have relatively long records of

streamflow (at least 27 years of data) necessary for flood frequency analysis.

Furthermore, observed rainfalls from some recording rain gauges in or near the
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catchments were also available for periods concurrent with recorded streamflow. This

is an important condition that enables the comparison of rainfall-based flood estimates

with those from flood frequency analysis. Due to the small number of catchments

selected, the test catchments cover only a limited range of catchment conditions.

The La Trobe River catchment at Noojee (see Figure 4-1), with centroid located at

37.83 ° latitude and 145.96 ° longitude in south-eastern Victoria, is a rural and

unregulated basin. It covers an area of 290km2, and the length of the mainstream

channel, the La Trobe River, is 27.8km. There are a few pluviometers inside this

catchment, among which pluviometer 85237 has the longest length of rainfall record (22

years). This catchment is characterised by dense forest (93% of catchment area),

relatively high mean annual rainfall (1360mm), and high baseflow (Smith, 1998).

Figure 4-1: Location map of two test catchments and all pluviometers used in this study

The Tarwin River catchment at Dumbalk North (see Figure 4-1) is also a rural and

unregulated basin in south-eastern Victoria. Its centroid is located at 38.51° latitude and

146.20° longitude. The catchment area is 127km2, and the mean annual rainfall is

1020mm. There are a few pluviometers in and around the catchment, of which

pluviometer 85106 just outside the catchment boundary has the longest record length

(22 years).
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4.2.2 Rainfall data
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Observed rainfall data used in this study were extracted not only at pluviometer 85237

(for the La Trobe River catchment) and at pluviometer 85106 (for the Tarwin River

catchment), but also at surrounding pluviometers. While the recorded rainfalls at the

specified pluviometers may have been sufficient for the derivation of the probability

distributions of rainfall intensity and duration, the development of a stochastic model

for the rainfall temporal pattern clearly requires a larger database of rainfalls.

Therefore, rainfall records at 19 pluviometers in and around the selected catchments

were used, not only to facilitate the derivation of temporal pattern distribution, but also

to gain an understanding of the variability of other rainfall characteristics. A location

map of the 19 pluviometers used in this study is also presented in Figure 4-1.

1

X

Recorded rainfalls at six-minute intervals at the 19 pluviometers are stored on a

HYDSYS database maintained by the Cooperative Research Centre for Catchment

Hydrology (CRCCH). These data can be extracted from the database and cumulated

over any time step using the HYDSYS program (HYDSYS, 1994). In this study, a one-

hour time step was considered to be a reasonable compromise for rainfall extraction, as

longer accumulation periods lead to the loss of information on the temporal variation of

rainfall and flood events. On the other hand, the use of finer time steps requires more

time for rainfall event extraction and produces very large data files, as rainfall data were

recorded over many years at the stations used in this study.

The availability of data stored on the HYDSYS database for the selected 19 recording

rainfall stations is summarised in Table 4-1. Station identification numbers (station ID),

station names, start and end dates of each record, record lengths and periods of missing

data or gaps are summarised in this table. These periods were determined by extracting

annual totals of rainfall at a site together with the corresponding data quality codes.

Data quality codes are those used by the HYDSYS program to indicate the quality of

data stored (for example, codes 1, 80, 151, and 255 denote good continuous data,

accumulated data, missing data, and gaps in records, respectively). At some rainfall

stations, it is also noted that, there are some years in the record during which annual

rainfall totals were zero but flagged with code 1, possibly due to errors in data

transcription. For example, at station 85034, the whole year of 1992 was recorded as
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having good continuous records, but the annual rainfall total for the year was given as

zero. In Table 4-1 this situation is described as "zero rainfall in 1992".
Tki

Table 4-1: List of flow gauging sites and 19 recording rainfall stations used and data

availability

No.

1
2
1
2
3
4
5
6
7
8
9
10
11
12
13

14

15
16
17
18
19

Station ID

226205C
227226
85000
85026
85034
85072
85103
85106
85170
85176
85236
85237
85240
85256
86038

86071

86142
86219
86224
86234
86314

Station name

La Trobe River at Noojee
Tarwin River at Dumbalk
Aberfeldy
Erica State Forest
Glenmaggie Weir
East Sale AMO
Yalloum SEC
Olsens Bridge
Traralgon LV.W
Tanjil Bren PO
Callignee North
Noojee Eng. HMSD
EUinbank
Barkley River
Essendon Airport

Melb. Regional Office

Mt. St Leonard
Coranderrk
Dandenong Composite
Croydon South
Koo-Wee-Rup

Start of
record
1961
1971

10/1969
04/1959
12/1957
05/1953
11/1949
01/1957
08/1961
06/1957
08/1961
03/1959
08/1961
04/1974
02/1951

04/1873

01/1954
12/1955
01/1965
04/1965
01/1957

End of
record
1995
1997

08/1984
09/1975
11/1993
12/1991
01/1972
12/1978
12/1975
12/1979
12/1975
12/1980
12/1993
11/1993
11/1986

07/1997

01/1983
12/19,7
10/1991
10/1991
12/1991

Min
Max

Average

Record length
(years)

35
27
14
16
36
39
24
22
15
22
14
22
32
19
36

109

30
23
27
24
35
14
109
29.4

Remarks

This is a flow gauging station
This is a flow gauging station
Gaps in 1981-1982 (inclusive)
Zero rainfall in 1966
Zero rainfall in 1992

Gap in 1960
Zero rainfall in 1973

Gap in 1969
Gap in 1992

Gaps in 1996-97; zero rainfall in
1874-1876, 1995. and 1915-1924.

Gap in 1976-1978

In the present study, in order to ensure the quality of outputs, only periods with good

continuous records were included in the analysis, whereas periods with missing or

accumulated data, gaps, or errors in data transcription were not taken into consideration.

The accumulated data were discarded because they were considered of very little use,

especially in the analysis of rainfall temporal patterns. For the 19 recording rain gauges,

it is evident from Table 4-1 that the record lengths of these good data vary from a

minimum of 14 years to a maximum of 109 years, with an average of 29 years. It can

also be seen in Table 4-1 that most of the pluviometers used only have concurrent data

of 15 years from 1961 to 1975. However, possible effects on the regional analysis of

part of the pooled data coming from non-concurrent rainfall periods are considered

small and therefore neglected in this study.

< i
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Before deriving the statistical distributions of rainfall characteristics, it was considered

essential to check the homogeneity1 and consistency2 of these observed rainfall data.

The importance of data verification has long been emphasised in the literature. For

instance, the WMO (1966) stated that "homogeneity can not be taken for granted;

indeed, it can be safely assumed that any series longer than 10 or 20 years has some

kind of inhomogeneity in it, and possibly several kinds". Linsley et al. (1988) and

Hosking and Wallis (1997) confirmed that before beginning any statistical hydrologic

analysis, it is important to be sure that the data are homogeneous. Further support is

given by Stedinger et al. (1993) who warned users of precipitation data about possible

errors in data collection caused by wind effects, changes in station environments and

observers, and stated that precipitation data should be checked for outliers and

consistency. Searcy and Hardison (1960) also confirmed that a consistency check is one

of the first steps in the analysis of a long record.

i H

In order to check the homogeneity of rainfall at each individual station, a combined

procedure using both graphical and statistical methods was employed in this research.

The graphical technique, in the form of time-series plots, enabled a quick visual

detection of any apparent trend or change in the mean value in the plotted series. The

CUSUM test for discontinuity (McGilchrist and Woodyer, 1975) and the Mann-Kendall

rank correlation test for trend (WHO, 1966) were then used to verify the conclusions

obtained from the time-series plots, as well as to compute the statistical significance of

any departure from homogeneity. These tests were applied to annual series of

maximum daily rainfalls at each of the 19 rainfall stations. Details of the tests, the

procedure used to check the homogeneity of rainfalls, together with test results are

presented and discussed in Appendix D. Results of the homogeneity tests showed that

the observed rainfall data at station 85103 from 1956 onwards, and at other 18

pluviometers during their periods of record satisfy the requirement of homogeneity. It

was then assumed that the conclusions from the homogeneity tests on daily rainfall data

also apply to the hourly data observed at the same sites.

.""ft

'The requirement of homogeneity is that data should be drawn from the same statistical distribution,
^ h e requirement of consistency is that types and techniques of measurement or the manner of data
processing should be consistent.
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Checking of the consistency of rainfall data was carried out for rainfall events extracted

from the rainfall database. As the event definition used in this study is introduced in

Section 4.3, the consistency check of the extracted events is also described in the same

section.

4.2.3 Streamflow data

Streamflow data used in this study are those recorded at station 226205C (at the outlet

of the La Trobe River catchment at Noojee) and station 227226 (at the outlet of the

Tarwin River catchment at Dumbalk North). Like observed rainfall, observed

streamflow data are stored on the HYDSYS database.

The availability of streamflow data stored on the HYDSYS database for the specified

flow gauging sites is also summarised in Table 4-1. It can be seen from this table that

recorded flow data are available for 35 years (from 1961 to 1995) for the La Trobe

River catchment, and 27 years (from 1971 to 1997) for the Tarwin River catchment.

Like rainfall data, observed streamfow data at the two catchments under study were also

checked for homogeneity. The CUSUM and Mann-Kendall tests were applied to annual

maximum instantaneous flows at each of the two sites. Test results, tabulated in

Appendix D, indicated that there is no evidence to reject the assumption of homogeneity

of the recorded flow data at these two sites.

4.2.4 Summary

To apply and evaluate the proposed Joint Probability Model for design flood estimation,

two catchments and 19 recording rain gauges were selected. The selected test

catchments were the La Trobe River catchment at Noojee (station number 226205C)

and the Tarwin River catchment at Dumbalk North (station number 227226). The 19

selected pluviometers were in and around these test catchments. The La Trobe and

Tarwin catchments have 35 years of flow data (from 1961 to 1995), and 27 years (from

1971 to 1997), respectively, whereas record lengths at the 19 pluviometers range from
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14 years to 109 years, with an average of 29 years of data. These observed rainfall and

streamflow data are stored on the HYDSYS database.

In this study, the verification of observed rainfall and flow data for homogeneity and

consistency was considered essential to make sure that the data were drawn from the

same probability distribution at any given site. To achieve this, annual series of

maximum daily rainfalls at each of the 19 rainfall stations and annual maximum

instantaneous flows obtained at the flow gauging stations were checked for

homogeneity over time. Test results indicated that the observed rainfall and flow data at

the selected stations satisfy the requirement of homogeneity. Checking of the

consistency of rainfall data was carried out for storm events extracted from the rainfall

database and is described in Section 4.3.

T1

V

s

4.3 STORM EVENT DEFINITION

4.3.1 Overview

Application of the proposed Joint Probability Model involves the generation of rainfall

and flood events that will simulate observed events. Before the statistical distributions

of these event characteristics can be determined, it is necessary to develop a clear

concept of what is meant by an 'event', that is, to come up with an event definition. For

the case of rainfall, once a storm event is clearly defined, these events can be extracted

from the rainfall database and their characteristics (intensity, duration, and temporal

patterns) analysed. Additional checking of the extracted events is then necessary to

ensure the requirement of consistency for statistical analyses is satisfied.

There are various ways to define a storm event. For example, Huff (1967) described a

storm as a rain period separated from preceding and succeeding rainfall by 6 hours or

more. He used all storms in which the network average rainfall exceeded 0.5 inch,

and/or one or more gauges recorded over one inch. In another study, Beran (1973)

defined the beginning of a storm as the onset of rain, and the end to be when there was

less than X mm of rain in the preceding Y hours. X and Y were chosen to represent the
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conditions under which a flood hydrograph would return to near baseflow and to allow

short spells of zero rainfall to occur within a storm event. Other researchers such as

Yen and Chow (1980), Istok and Boersma (1986), and Sivapalan et al. (1996) simply

defined storms as periods of rain separated from each other by at least one, six, and two

hours of zero rainfall, respectively. Thus, it can be seen that, in order to define a storm

event, the start and end of the event must be specified. Additionally, a threshold

average rainfall intensity (or depth) may also be required to exclude small events that

are insignificant in producing flood runoff.

This section first details the development of a storm definition used in this research. It

then describes an application of the adopted storm definition to extract storm events

from the time series of observed hourly rainfalls at the 19 selected rainfall stations.

Finally, it outlines the verification of the extracted storm events for consistency.

4.3.2 Development of storm definition

For the purpose of this study, three criteria were used to define storm events. Firstly,

they are mutually exclusive stochastic events so that storm duration becomes a random

variable. That is, any wet spell contributes only a single data point to the frequency

distribution of each rainfall characteristic. Secondly, the events must have the potential

to produce significant runoff. In other words, the average rainfall intensity during the

duration of an event should exceed some threshold value. Lastly, the events should

exclude periods of insignificant rain at the start or end of the rainfall period. A storm

definition to satisfy these three criteria was developed in the four steps outlined below.

4.3.2.1 Start and end of storm events

In the literature, the start of a storm event is usually the onset of rain after a minimum

separation time from the previous event. This separation time represents a rainless or

'dry' period when no significant rainfall occurs. The end of the event is also defined by

the separation time.
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There are different methods for determining the separation time between storms. Some

examples are the combined rainfall-streamflow analysis (Beran, 1973), the 'critical

$ duration' method (Bonta and Rao, 1988), and the subjective method (Huff, 1967; Yen

and Chow, 1980; Nguyen and itousselle, 1981; Sivapalan et al., 1996). With the

j | subjective method, the break between individual events can be subjectively chosen, say
1 at least one hour (Yen and Chow, 1980; Nguyen and Rousselle, 1981), two hours

(Sivapalan et al., 1996), or six hours (Huff, 1967; Istok and Boersma, 1986). This

^ method is the simplest for practical applications, and therefore was adopted for

determining the separation time between storms used in this study.

Using the subjective method for determining the event separation time (H), first of all, a

storm was preliminarily defined as beginning with a non-zero hourly rainfall and being

U separated from the previous and the next events by at least H hours of no rain. In order

to determine an appropriate value of H, an exploratory analysis was then carried out for

, observed hourly rainfalls at pluviometer 85237. Three values of H (1, 3, and 6 hours,

minimum) were tried. Results of the exploratory analysis indicated that, as H increases,

the size of the resulting storm sample decreases but the mean and the maximum storm

I! durations increase. In examining the extracted events, it can be seen that some periods

of no rain can occur within storm events separated by 3 hours or 6 hours. However, the

use of the separation time H of one hour tends to produce many very short events (with

duration of 1 or 2 hours) that are very likely to belong to the same weather mechanism.

' From the results of the exploratory analysis, the minimum separation time of six hours

of no rain between successive storms was preliminarily selected as the most suitable for

the catchment sizes used in this study (290km2 and 127km2). This separation time tends

r to produce long duration storms (with average duration of at least 15 hours) which are

generally more responsible for producing runoff for the given catchment sizes. In
1 addition, it avoids breaking up storms of the same weather system into separate, very

^ • short and small events.

4.3.2.2 Storm threshold intensities

To eliminate small storms that are not able to produce floods, a threshold average
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rainfall intensity was required. This threshold intensity could be selected as a constant,

or as a function of storm duration. However, it is reasonable to vary the average

threshold rainfall intensity with storm duration, as high average intensities are often

associated with short duration storms and vice versa. In this research, for convenience,

the 2-year ARI average rainfall intensities of various durations at the design location, as

provided by the Institution of Engineers, Australia (1987, Chapter 2), were used as the

basis for computing two threshold intensities for storms obtained from the record at that

location.

The first threshold intensity was defined to be the product of the overall intensity

reduction factor (Fl) and the 2-year ARI average intensity (2ID) for a storm of duration

D at the design location. Using this threshold value, a storm event, separated from the

previous and the subsequent events by at least six hours of no rain, was included in the

storm sample if its average intensity (RFID) during the whole storm duration (D)

satisfied the following condition:

RFI D >Flx( 2 I D )

where 0 < F l <l .

However, in the storms that were discarded from the above selection process on the

basis of average rainfall intensity over the whole storm duration, there could have been

storms that had some internal periods of intense rain. Such storms may have caused a

rise of flood hydrographs if the catchment surface was already wet, and therefore were

worth included in the rainfall analysis. To include such storms, the concept of sub-

storms was required.

A sub-storm of duration d was defined as d successive hourly periods during a given

storm of duration D, on the condition that d < D. For example, in a storm of four-hour

duration (D = 4 hours), there are four sub-storms of one hour, three sub-storms of two

hours, and two sub-storms of three hours. In other words, a complete sample of sub-

storms having a duration d within a storm of duration D is an overlapping series of all

sub-storms lasting d hours. Figure 4-2 illustrates how sub-storms of two hours can be

formed within a rain period of four hours.
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Figure 4-2: Formation of sub-storms of 2 hours within a storm of 4 hours

To select extra storms that have relatively low average intensity but include periods of

intense rain, a second threshold average rainfall intensity was used. This threshold

intensity was defined to be the product of the internal sub-storm intensity reduction

factor (F2) and the 2-year ARI average intensity for a sub-storm of duration d at the

design location (2Id). Thus, a storm was aJso selected if the maximum average

intensity from all sub-storms of duration d (RFl™*) satisfied the following requirement:

RFI™ x >F2x( 2 I d )

where F2 > 0.

This requirement was checked for all values of sub-storm duration d (d < D).

In order to determine numerical values for Fl and F2, an exploratory analysis was again

carried out using hourly rainfall records at pluviometer 85237 inside the La Trobe River

catchment. In this analysis, to extract storm events from the record, the minimum event

separation time of six hours of no rain was used with various combinations of Fl and

F2. The values of Fl used ranged from 0.3 to 0.7 at 0.1 increments, and the values of

F2 were 0.3 to 0.6 at 0.1 increments. For some cases, F2 of 100 was also used (for

reasons explained below).

From the results of the exploratory analysis, two important conclusions were drawn.

Firstly, the values of the intensity reduction factors Fl and F2 directly affect the number

of storms in the storm sample, and therefore the 'quality' of the extracted storms. The
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lower the intensity reduction factors are, the bigger the stonn sample becomes, but this

sample may also include storms that have relatively low average intensities. In other

words, the use of low threshold rainfall intensities produces more storms that may be

insignificant in producing runoff, and vice versa. Secondly, in order to include

additional storms that may hc"c some potential in producing runoff, it is necessary to

set F2 not too high. For example, the number of storms obtained using Fl of 0.5 and F2

of 100 is equal to the number of storms obtained using only Fl of 0.5. This is because

the second threshold intensity is so high that no additional storms can be selected.

Results of the exploratory analysis for station 85237 indicated that any of the following

four combinations of Fl and F2 would be appropriate. They are Fl=0.4 and F2=0.5,

Fl=0.4 and F2=0.6, Fl=F2=0.5, and Fl=0.5 and F2=0.6. On average, each of these

combinations gives about 4 to 7 storms per year.

In order to determine the best combination of Fl and F2 for the 19 rainfall stations in

the test region, a sensitivity analysis was also carried out. In this analysis, the above

four combinations of Fl and F2 determined for station 85237 were applied to extract

storm events for the other 18 sites. Results of this analysis showed that these

combinations gave an average of about 5 to 7 events per year per station. For this study,

the combination of Fl=0.4 and F2=0.5, giving an average of 7 events per year per

station, was adopted.

4.3.2.3 Visual check of the extracted events

After determining the separation time and the intensity reduction factors for defining

storm events, the next step was to visually check the extracted events. This was carried

out by plotting all storms in tNs sample obtained at pluviometer 85237 and visually

examining them. Results indicated that, whereas there were mostly 'normal' storms in

the sample (see an example in Figure 4-3), a number of storms could be considered as

'abnormal' (see examples in Figure 4-4). These are the storms that have lengthy

periods of insignificant rain at the start or at the end of the storm, or even during the

storm duration. For flood analysis, these periods could be considered as unimportant in

producing runoff. Therefore, the storm definition had to be refined.
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Figure 4-3: Example of a 'normal' storm (station 85237, H=6 hours, Fl=0.4, F2=0.5)
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Figure 4-4: Examples of 'abnormal' storms (station 85237, H=6 hours, Fl=0.4, F2=0.5)
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4.3.2.4 Refinement of storm definition

In order to reduce possible biases in storm duration due to periods of very little rain at

the start or end of storm events, and to produce storm events that are more appropriate

for flood analysis and simple to analyse, periods of very little rain at the beginning or

end of the events were eliminated. Storms with internal periods of very little rain were

also separated into two or more events. To do this, the following two additional criteria

were introduced.

• Tlie 'dry hour' criterion: An hour was considered as dry if its rainfall amount was

less than or equal to Cl mm of rain.

• The 'insignificant period' criterion: A rainfall period was considered to be

insignificant if all hourly rainfalls in the period were less than or equal to C2 mm of

rain, and the average rainfall intensity during the period was less than or equal Cl

(mm/h).

Incorporating these two criteria in the previous itorm definition that made use of the

separation time between storms and the two 'threshold intensities, a storm (see Figure

4-5) was defined in three steps:

• Step 1: A 'gross' storm was a period of rain starting and ending with a 'non-dry

hour', preceded and followed b> at least H 'dry hours'.

• Step 2: Any 'insignificant' period of rainfall at the beginning or end of a gross storm

was then cut off from the gross storm to produce the 'net' storni of duration D.

• Step 3: The net storm was then assessed with regard to its severity and only kept as a

'significant' storm if it had the potential to produce a flood. This assessment was

performed by firstly comparing the average rainfall intensity of the net storm (RFID)

with a threshold average intensity for that storm duration: RFIO > F IX( 2 / 0 ) . A second

criterion was then applied to allow for the possibility of a storm-internal period of

heavy rainfall (duration d and average intensity RFId) producing a flood:

RFI™ >F2x(2id), where 2/;) and v^were respectively the estimated 2-year ARI

intensities for the durations D and d.

In this analysis, the following values were adopted: H=6 (hours), Fl=0.4, F2=0.5,

Cl=0.25 (mm/h), and C2=1.2 (mm/h).
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Figure 4-5: Proposed storm definition
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Figure 4-6: Examples of storms obtained using the adopted storm definition
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Using the extracted storm data at station 85237 for illustration, it was concluded that the

inclusion of two additional parameters Cl and C2 in the storm definition results in

events that better satisfy the criteria described in Section 4.3.2. Figure 4-6 shows how

'abnormal' storms in Figure 4-4 change using the refined storm definition with the

adopted parameter values.

4.3.3 Extraction of storm events

The stonn definition with the specified five parameters was applied to extract storm

events from hourly rainfall records at each of the 19 rainfall stations used in this

research. The resulting number of events obtained at each site is summarised in column

3 of Table 4-2. This table shows that the number of events per station ranges from 51 to

797 with an average of 210 events.

Table 4-2: Sample size of extracted storms using the proposed storm definition

[H=6 hours, Fl=0.4, F2=0.5, C 1=0.25 (mm/h), C2=1.2 (mm/h)]

Station ID

35000
85026
85034
85072
85103
85106
85170
85176
85236
85237
85240
85256
86038
86071
86142
86219
86224
86234
86314

Average

Record
length
(years)

14
16
36
39
24
22
15
22
14
22
32
19
36
109
30
23
27
24
35
29

Number of storms
bf;or^ discarding events

' :?i repeated values
51
129
178
231
143
208
113
185
74
168
335
94
210
797
230
196
176
209
269
210

after discarding events
with repeated values

50
129
178
231
143
206
113
179
74
167
331
92
209
797
229
195
176
207
269
209

Average
number of events

per year
3.6
8.1
4.9
5.9
6.0
9.4
7.5
8.1
5.3
7.6
10.3
4.8
5.8
7.3
7.6
8.5
6.5
8.6
7.7
7
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4.3.4 Checking of extracted events for consistency of hourly rainfalls

65

As discussed in Section 4.2.2, only recorded hourly rainfalls of good quality were used

to extract individual events, but this criterion was insufficient to guarantee the resulting

events are free of errors. These errors may occur in the form of repeated or outlying

hourly values, which may arise from errors in recording or transcribing the data. A

consistency analysis was therefore needed as a final check of the event data before

further analyses were undertaken.

A preliminary investigation of the storm events at station 85237 indicated that there

were a few observed storms that contained periods of repeated hourly data during the

storm duration. An example of such a storm is given in Figure 4-7.

For this analysis, a storm was excluded from the storm sample if it has a period with

repeated data whose length is greater than a quarter of the storm duration, Using this

criterion, the extracted storms at the 19 pluviometers were inspected, and 21 events at

10 stations were discarded from the original storm samples. The number of the

remaining storms at each of the 19 stations is given in column 4 of Table 4-2. The

average number of storms per year at each rain gauge is shown in Table 4-2 (column 5).

On average, over the 19 selected rainfall stations used in this study, the proposed storm

definition gives 7 storms per year per station.

0

Storm time (h)

Figure 4-7: An example of a storm with repeated rainfall values (station 85237)
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4.3.5 Summary

In this research, a storm definition was developed in order to extract storm events from

continuous rainfall records for developing the probability distributions of event

characteristics. These probability distributions are to be used as inputs to the proposed

Joint Probability Model for design flood estimation.

Storm events were defined such that they are stochastic events* have no periods of

insignificant rain at the start and end of the events, and have the potential to produce

floods. Five parameters were used to extract those events, namely the minimum houriy

rainfall when a gross storm starts (Cl), the minimum hourly rainfall to define the start

and end of the corresponding net storm (C2), the minimum separation time between

successive events (H), and the intensity reduction factors (Fl and F2) to compute the

threshold average rainfall intensities during the entire storm duration or during internal

periods of intense rain. Values of these parameters were determined by exploratory and

sensitivity analyses.

Using the proposed storm definition, samples of rainfall events were extracted from

continuous rainfall records at the 19 pluviometers used in this study. The extracted

events were then visually examined for possible errors in recording or transcribing

hourly rainfall in each individual event. In some samples, there were a number of

events that had long periods of repeated hourly rainfalls, so these storms were discarded

from the corresponding samples. With the remaining storms, the adopted storm

definition gave an average of 7 storms per year per station.

With respect to rainfall analysis, it can now be concluded that the samples of significant

storm events were extracted from homogeneous observed data (with respect to time),

and that they were free of detectable errors in data transcription or recording. Such

storm samples can now be statistically analysed for characteristics such as storm

duration, average intensity, and temporal patterns. In the next section, the development

of the frequency distribution of storm duration is presented.
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4.4 FREQUENCY DISTRIBUTION OF STORM DURATION

4.4.1 Background

Frequency analysis refers to methods for determining how frequently possible values of

a random variable occur. The analysis is carried out on a sample in order to make

inferences about the probability distribution of the population from which the sample is

drawn. In hydrology, the selected random variable may be the flowrate of a stream, the

average rainfall intensity of a storm, or the duration of a storm event. Frequency

analyses can be conducted using at-site or regional methods. Broadly speaking, at-site

frequency analysis uses observed data at a particular site to produce probability

estimates of the particular variable. In contrast, regional frequency analysis uses

multiple samples of the same variable at different measuring sites and is often employed

for frequency estimates at ungauged sites where there is no or insufficient observed

data.

In order to develop the frequency distribution for storm duration at pluviometer 85237

in the La Trobe River catchment at Noojee, either at-site or regional frequency analysis

could be used. There is a sufficient number of the extracted storm events at the

specified site (167 events) for at-site frequency analysis, but samples of storm duration

data are also available at other gauges around this site that can be used for regional

frequency analysis. However, regional frequency analysis was adopted because, when

used at gauged sites, it can yield more accurate estimates of the frequency of storm

duration (due to the availability of more data). In addition, extrapolation can be made to

ungauged sites in the region of interest, if necessary.

Many regional frequency analysis methods are available. A description of these is

given by Cunnane (1988). Among the available methods, the procedure developed by

Hosking and Wallis (1997) has been widely applied in regional flood frequency

analyses, low flow analyses, as well as in rainfall regionalization (Fill and Stedinger,

1995). The popularity of this procedure stems from its many advantages. For example,

it can yield reasonably accurate quantile estimates even when there are plausible

departures from the assumptions used in the procedure. In addition, it employs L-

moments that can provide simple and reasonably efficient estimates of distributional
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parameters. Furthermore, a complete computer program for applying the procedure is

readily available (Hosking, 1997). For these reasons, this procedure was adopted in this

study for determining the frequency distribution of storm duration.

This section first describes the Hosking an'd Wallis method of regional frequency

analysis. The application of this method to derive the frequency distribution of storm

duration at pluviometer 85237 is then presented in detail, and the results are discussed.

4.4.2 The Hosking and Wallis method of regional frequency analysis

The Hosking and Wallis regional frequency analysis method (Hosking and Wallis,

1997) is developed from the assumption that the frequency distributions of a random

variable at N sites in a homogeneous region are identical apart from a site-specific

scaling factor. The objective of this method is to compute the regional growth curve

q(F) for a group of sites, from which the frequency curve at each individual site Qi(F)

can be computed from the following relationship:

Qi(F) = Hiq(F) i = l ,2 , . . . , N (4-1)

in which Q;(F) is the quantile of non-exceedance probability F (O<F<1) at site i; ^ is the

scale factor at site i, usually taken as the mean of the observed data; q(F) is the

dimensionless regional frequency distribution common to all sites (called the regional

growth curve); and N is the number of sites.

To estimate the regional growth curve, four stages are required, namely the screening of

data, the identification of homogeneous regions, the choice of a regional frequency

distribution, and the estimation of the parameters of the regional frequency distribution.

These stages are discussed below.

The aim of data screening is to ensure that the data at each site are homogeneous and

consistent over time. At this stage, sites that seem to have erroneous data are flagged as

discordant sites. Data at these discordant sites then need to be closely examined to

eliminate gross errors and inconsistencies. In practice, to screen the data, the

discordancy measure D, (see Appendix E) is computed for each individual site. A site
$
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is discordant with others in the group if its discordancy measure exceeds a critical value

suggested by Hosking and Wallis (1997).

After inspecting the data, the next step is to define the homogeneous region3 for the

group of sites. This region can be tentatively defined by geographical contiguity, site

characteristics, or statistics computed from at-site measurements of the variable of

interest. The homogeneity of the proposed region can then be tested by comparing the

between-site variability of site statistics with what would be expected of a homogeneous

region. In practice, this is undertaken by computing the heterogeneity measures Hi, H2

or H3 (see Appendix E). The region is declared to be heterogeneous if any of the

heterogeneity measures is sufficiently large (that is, Hi, H2 or H3 > 2).

In the choice of an appropriate regional frequency distribution for the homogeneous

region, a goodness-of-fit test is applied, which involves computing summary statistics

of the data and testing whether their values are consistent with what would be expected

if the data were a random sample from some hypothesised distribution. In the

estimation of the parameters of the regional frequency distribution, the distributional

parameters are first estimated separately at each site. These at-site estimates are then

combined to give a regional average. In practice, the above two steps are carried out by

computing the goodness-of-fit measure ZDIST (see Appendix E) for each of five general

distributions. These distributions are the Generalised Logistic (GLO), Generalised

Extreme Value (GEV), Generalised Pareto (GP), Lognormal (LN), and Pearson type III

(PHI). A given distribution is considered to give an acceptable fit to the observed data

if Z is sufficiently close to zero (that is, JZDIST < 1.64).

A FORTRAN subroutine to compute the above three statistics for regional frequency

analysis has been written and provided by Hosking (1997). The theoretical background

of L-moments, on which the Hosking and Wallis regional frequency analysis method is

based, is also summarised in Appendix E.

3 A homogeneous region is a group of sites whose frequency distributions of a random variable are
considered to be the same, after appropriate scaling.
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4.4.3 Application and results

In order to derive the frequency curve of the storm duration at pluviometer 85237 using

the Hosking and Wallis method of regional frequency analysis, the following procedure

was adopted. First of all, unbiased estimates of sample L-moments of storm durations

at all 19 pluviometers were calculated using the formulas documented in Appendix E.

The computed L-moments include the sample mean (h), sample L-CV (t), sample L-

skewness to), and sample L-kurtosis fo). The discordancy measures were next

estimated for each of the 19 rainfall sites. The computed value of each site was then

compared with the critical value of 3 suggested by Hosking and Wallis (1997). If there

were any discordant sites, data at these sites would then be examined to eliminate

possible errors. Next, the homogeneous region of the storm duration was tentatively

defined. The heteorogeneity statistics were then computed to decide whether or not the

defined region was acceptably homogeneous. Finally, for the accepted homogeneous

region, the goodness-of-fit measures were determined for each of the five candidate

distributions and the distribution that best fitted the observed duration data at the

specified sites was selected.

The L-moment statistics computed for the observed storm durations at the 19 selected

pluviometers, and the corresponding discordancy statistics (DO are presented in Table

4-3. Plots of these L-moment statistics are shown in Figure 4-8 and Figure 4-9. From

Table 4-3, it is clear that none of the D; values exceeds the critical value of 3. This

implies that there is no - vidence of gross errors or inconsistencies in the storm duration

data at any of the 19 rainfall stations used. This result is not surprising because the

rainfall data at all these pluviometers had already been checked for consistency and

homogeneity in time, as described in Sections 4.2 and 4.3. Of all the computed Di, the

largest value is 2.71 at pluviometer 86314. This indicates that the variability of sample

L-moments at this site is quite large compared with other sites in the group. This large

variability is associated with the largest L-skewness (t3=0.362) and L-kurtosis (t4=0.21)

of this site. However, as shown in Figure 4-8 and Figure 4-9, the large deviation of the

L-moment ratios at this site from the group average is in a direction concordant with the

corresponding deviations of other sites in the group. As there is no evidence of errors in

data at this site, there are no physical grounds to move this site to another region, cr to

eliminate it from the group.
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Table 4-3: L-moments and the discordancy statistics of storm duration for 19

pluviometers used

Site ID Number of storms (h) .

85000
85026
85034
85072
85103
85106
85170
85176
85236
85237
85240
85256
86038
86071
86142
86219
86224
86234
86314

50
129
178
231
143
206
113
179
74
167
331
92
209
797
229
195
176
207
269

18.66
20.38
16.51
14.16
18.99
24.58
15.58
29.07
16.14
23.49
15.58
18.50
13.18
12.62
20.23
22.31
10.95
15.17
15.10

0472
0.457
0.441
0.421
0.394
0.422
0.382
0.410
0.424
0.420
0.445
0.423
0.401
0.415
0.411
0.435
0.445
0.432
0.421

0.270
0.280
0.290
0.238
0.195
0.245
0.184
0.187
0.230
0.209
0.311
0.276
0.224
0.287
0.291
0.244
0.312
0.255
0.362

0.079
0.132
0.139
0.097
0.118
0.125
0.089
0.094
0.086
0.089
0.156
0.159
0.087
0.140
0.177
0.092
0.143
0.118
0.210

2.440
1.400
0.260
0.340
1.630
0.210
1.650
1.280
0.510
0.420
0.560
0.740
1.820
0.830
1.080
0.430
0.600
0.090
2.710

Regional weighted mean 16.96 0.423 0.268 0.131

0.5

0.45 --

0.4 -

0.3.'

0.15

• • • K •
86314

•

• Observed data
X Regional weighted mean

0.2 0.25 0.3
L-skewness

0.35 0.4

Figure 4-8: Plot of L-CV versus L-skewness for storm duration at 19 pluviometers
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Figure 4-9: Plot of L-kurtosis versus L-skewness for storm duration at 19 pluviometers

#

To define the homogeneous region for storm duration, three attempts were made. In the

first attempt (Trial 1), all 19 sites were included a single group. However, the

heterogeneity measures H2 and H3 computed for this group were greater than 3 (see

Table 4-4), indicating that the intended region was definitely heterogeneous as far as the

L-skewness and L-kurtosis were concerned. Therefore, the region of 19 pluviometers

could not be regarded as homogeneous in terms of storm duration and had to be

redefined.

Table 4-4: Heterogeneity statistics computed for various regions of storm duration

Trial

1
2

3

Numb;.
of sites

19
11
8
6

Region name

All 19 sites
Group 1
Group 2
Group 3

H,
0.20
0.03
0.46
0.06

Heterogeneity measures
H2

3.08
1.66
2.39
1.42

H3

3.29
2.06
2.42
1.30

In the second attempt (Trial 2), site elevation was used as a criterion to define the

region, because when plotting gauge elevation against the average storm duration at

each site (see Figure 4-10), there seemed to be a trend for the average duration of storms

to increase as gauge elevation increases. In this trial, the 19 sites were divided into two

groups (Group 1 and Group 2) using an arbitrary threshold elevation of 150m.

Nevertheless, the heterogeneity measures H2 and H3 computed for the sites in these two
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groups still exceeded 2 (see Table 4-4), suggesting that the groups so formed were

heterogeneous. As a result, another criterion was needed to define vhe homogeneous

region of storm duration.
t-i

©
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Figure 4-10: Plot of average storm duration against gauge elevation at 19 pluviometers

In the last attempt (Trial 3), sites contiguous to the pluviometer under consideration

(station 85237) were grouped together. This group (called Group 3) consisted of 6 sites

as follows: 85000, 85026, 85034, 85176, 85237, and 85256. The heterogeneity

measures computed for the group of 6 sites in Trial 3, tabulated in Table 4-4, are:

Hi=0.06, H2=1.42, and H3=1.30. As Hi is very close to zero, it can be concluded that

the proposed region of six sites is acceptably homogeneous with respect to L-CV.

Nevertheless, the values between 1 and 2 of H2 and H3 suggest that the population

distributions of storm duration for the six pluviometers in Group 3 are possibly

different. The possible heterogeneity of the storm duration is in the form of sites having

equal L-CV but slightly different L-skewness and L-kurtosis. As discussed by Hosking

and Wallis (1997), this form of heterogeneity has little effect on the accuracy of quantile

estimates except very far into the extreme tails of the distribution. For the current

application in which frequency estimates of very long storm duration are of little

interest, this form of heterogeneity is not important. Therefore, at this stage, it is

reasonable to consider Group 3 as acceptably homogeneous.

The goodness-of-fit measures computed for the five distributions fitted to the storm

duration data of six pluviometers in Group 3 are presented in Table 4-5. Plots of the L-

5

t
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CV and L-kurtosis of these sites against the corresponding L-skewness, along with

those of some theoretical distributions are given in Figure 4-11 and Figure 4-12. These

plots, called L-moment ratio diagrams, are graphical tools used to select a theoretical

distribution that gives the best fit to an observed set of data. Mathematical expressions

used to plot the theoretical distributions shown in these plots are documented by

Hosking (1991), and Vogel and Wilson (1996).

Table 4-5: The goodness-of-fit measures computed for storm duration data of Group 3

Number
of sites

6

Region

Group 3
GLO
7.86

Goodness-of-fit measure
GEV LN
5.33 4.02

(ZDlsr)
PHI
2.17

GP
-0.90

From Table 4-5, it can be seen that, of the five candidate distributions, only the zDIST

statistic computed for the Generalised Pareto distribution (GP) is less than 1.64.

Therefore, this distribution was selected as the parent distribution of storm duration

because it gave an adequate fit to the storm duration data for all six sites in the proposed

group. This selection is supported by evidence shown in the L-moment diagrams

(Figure 4-11 and Figure 4-12). For example, in Figure 4-11, the GP and Weibull

distributions give the best fit to the observed storm duration data, as observed sample L-

moments cluster more closely around these distributions. Similarly, in Figure 4-12, the

GP distribution gives the best fit to the observed storm durations for the six selected

sites.

LN (2 parameters)

Gamma

Weibull

GP
n Observed data

X Regional weighted mean

0.1 A
0.1 0.2 0.3 0.4

L-skewness

0.5 0.6

Figure 4-11: Plot of L-CV against L-skewness for storm duration data for stations in

Group 3 and some theoretical probability distributions

1 w*
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Figure 4-12: Plot of L-kurtosis against L-skewness for storm duration data for stations

in Group 3 and some theoretical probability distributions

The GP distribution is a three-parameter distribution with the following parameters: £

(location), a (scale), K (shape). More details of this distribution are given in Appendix

F. For the region of the six selected pluviometers, the parameters of the fitted regional

GP distribution are: £=0.045, a=1.158, K=0.212. Quantile estimates [D(F)] of the

regional growth curve fitted to the observed storm duration data for six stations in

Group 3 are given in the second row of Table 4-6.

Table 4-6: Quantile estimates of the regional growth curve (for Group 3) and of the

probability distribution of storm duration for pluviometer 85237

F
D(F)

1,*D(F) (hours)

0.01
0.06

1.3

0.05
0.10

2.4

0.1
0.17

3.9

0.2
0.30

7.0

0.5
0.79

18.6

0.8
1.62

38.1

0.9
2.15

50.6

0.95
2.61

61.4

0.98
3.12

73.4

0.99
3.45

81.1

To determine the frequency distribution of the storm duration for pluviometer 85237,

quantile estimates of the regional growth curve were multiplied by the at-site average

storm duration (li=23.49 hours, in this case). Results of this calculation are given in the

•tu
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third row of Table 4-6. This table shows that 10%, 50% and 95% of storms at station

85237 have estimated duration less than or equal to 3.9 hours, 18.6 hours, and 61.4

hours, respectively.
r-
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Figure 4-13: Observed and fitted frequency curves of storm duration for station 85237

A plot of the observed and fitted cumulative distributions of the storm duration for

station 85237 is given in Figure 4-13. As these two frequency curves are almost

identical, it can be concluded that the adopted GP distribution is a suitable

representative of the duration of the observed storm events.

4.4.4 Summary

In this section, the probability distribution of storm duration for station 85237 was

determined using the regional frequency analysis procedure developed by Hosking and

Wallis (1997). Analysis results indicated that there was no evidence of gross errors or

inconsistencies in the storm duration data, and that the duration of the observed rainfall

events for the rainfall sites used in this study had very similar L-CV but quite variable

L-skewness and L-kurtosis. In order to determine the homogeneous region of storm

duration, sites contiguous to the site of interest were grouped together. The group of

sites so-formed was homogeneous in terms of L-CV, but possibly heterogeneous in
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terms of L-skewness and L-kurtosis. However, this form of heterogeneity was assumed

not to have an effect on the quantiles of duration of interest.

The three-parameter Generalised Pareto distribution was used to characterise storm

duration. The fitted and observed probability distributions at the specified site were

almost identical, confirming the suitability of the adopted GP distribution.

4.5 CONDITIONAL FREQUENCY DISTRIBUTION OF RAINFALL

INTENSITY

4.5.1 Background

In rainfall-based design flood estimation, rainfall intensity is considered to be one of the

inputs that have significant influence on flood estimates. Therefore, in the proposed

Joint Probability Model as well as in the current Design Event Approach, rainfall

intensity is used as a stochastic input to the flood estimation process.

With the current Design Event Approach, at any location in Australia, estimates of the

average intensity of a rainfall event of a specified average recurrence interval (ARI) for

a given duration can be determined from a set of intensity-frequency-duration (IFD)

curves readily available for any design location (Institution of Engineers, Australia,

1987, Chapter 2). These design EFD curves, developed for intense rainfall bursts within

storms, represent the frequency distributions of point rainfall intensity as functions of

rainfall duration. The current design IFD curves are accurate and consistent because

these curves have been obtained from a regional analysis of observed data collected at a

large number of sites.

In this research, a rainfall event is defined very differently from the definition of bursts

used by the Institution of Engineers, Australia (1987) for deriving the current design

IFD curves. As a result of the discrepancy in these event definitions, the current IFD

curves cannot be used directly in the present research, so new IFD curves based on the
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present rainfall event definition must be derived. This section presents the work

undertaken to achieve this objective for pluviometer 85237.

This section starts with the investigation of the correlation between rainfall intensity and

duration for observed rainfall events at the specified pluviometer. A description of an

at-site frequency analysis procedure is then given, along with the application of the

procedure to the observed data at the given site. The evaluation of the derived IFD

curves is then documented and the results are discussed.

4.5.2 Correlation between rainfall intensity and duration

To determine the degree of correlation between rainfall intensity and rainfall duration,

average intensities of the observed events at station 85237 were plotted against the

corresponding storm durations (see Figure 4-14). A regression line was then fitted to

the plotted data points, and the coefficient of determination (R2) of this line was

computed.

100

2 1--

0.1

logI=-0.571ogD+1.0056

R2=0.7994

10

Duration, D (hours)

100

Figure 4-14: Relationship between average rainfall intensity and duration (station

85237).

The plot of rainfall intensity versus rainfall duration for station 85237 shows a strong

relationship between them. There are three points to note about this. Firstly, the form

of the relationship between rainfall intensity and duration is a power function,
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represented by a straight line on a log-log plot. Secondly, R2 is approximately 0.80,

indicating that 80% of the variation in rainfall intensity is attributable to the variation in

rainfall duration. Thirdly, the slope of the regression line between intensity and

duration is negative (-0.57), implying that average rainfall intensity is inversely related

to storm duration. In other words, as the storm duration increases, the average rainfall

intensity decreases, and vice versa. As a result of the strong correlation between rainfall

intensity and duration, the frequency distribution of rainfall intensity needs to be

conditioned on duration.

4.5.3 Development of the IFD curves

To develop the frequency curves of rainfall intensity, either an at-site or a regional

frequency analysis method can be used. In this study, initially, the rainfall intensity

frequency curves for station 85237 were determined using the regional frequency

analysis method developed by Hosking and Wallis (1997). However, further

investigation into the IFD curves was undertaken using an at-site frequency analysis

procedure readily available from a parallel project (Rahman et al., 2001). For the

present study, this procedure was modified slightly to include a goodness-of-fit test for

the fitted distribution.

With the modified procedure, the rainfall intensities for storm events in predefined

duration intervals are pooled for frequency analysis. This analysis involves the

compilation of series of rainfall intensities for some representative duration, the fitting

of a distribution to each intensity series, the checking of the goodness-of-fit of the fitted

distributions, and the interpolation and extrapolation of the intensity-frequency curves

to other durations. The modified procedure comprises four steps, as described in more

detail below.

Stepl: Compilation of rainfall intensity series

The objective of this step is to convert the average rainfall intensity for storms of

various durations into the corresponding average intensity at some selected duration.

This is achieved in the following steps:



Chapter 4 80

• The range of storm durations is divided into a number of intervals. The number of

intervals is selected such that there is a sufficient number of storms in each interval

for distributional fitting, and that the lengths of the class intervals are similar on a

logarithmic scale. Each interval is then represented by a single duration

approximately at the middle of the interval (on the logarithmic scale). This duration

is termed the representative duration. For pluviometer 85237, five representative

durations were used to characterise five class intervals of storm durations, as shown

in Table 4-7.

Table 4-7: Representative durations used to develop the IFD curves

Duration intervals (h) Representative durations (h)
1-5

6-11
12-24
25-36
>36

2
8
16
32
48

• Average intensities of all observed storms whose durations are within a duration

interval are extracted together with the corresponding durations.

• For each duration interval, a linear regression line is fitted between the logarithm of

the extracted intensities (log I) and the logarithm of the extracted durations (log D).

An example is given in Figure 4-15.

k)gI=-0.53621ogD4O.9551

10

Duration, D (hours)

100

Figure 4-15: Plot. :,f rainfall intensity versus duration for the interval of (6h, 1 lh)
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• For each duration interval, the extracted intensities for various durations are adjusted

to the corresponding representative duration using the slope of the fitted regression

line and the following formula:

1 ^ ^ = 10w , in which W = logID + a*(logD - logDr) (4-2)

where D is the duration of the storm under consideration, ID is the corresponding

average rainfall intensity of the storm, Dr is the representative duration under

consideration, Iadjusted is the average rainfall intensity of the storm event adjusted to

the representative duration, and a* is the slope of the regression line.

For station 85237, the observed rainfall intensities for various durations were

transformed into five intensity series having representative durations of 2h, 8h, 16h,

32h, and 48h. A summary of the statistical properties of these series is given in Table

4-8.

Table 4-8: Statistical properties of the adjusted rainfall intensity series and parameters

of the fitted exponential distributions (station 85237)

Maximum intensity (mm/h)
Minimum intensity (mm/h)
Average intensity (mm/h)
Standard deviation (mm/h)
Coeffcient of skewness
Parameter (m,)

Parameter (ify)

2h
15.86
5.39
7.58
2.46
2.08
1.18

2.19

Representative
8h

4.50
2.42
3.01
0.58
1.02
1.09

0.59

16h
4.07
1.59
2.13
0.54
2.23
1.86

0.54

durations
32h
3.30
0.92
1.42
0.54
2.30
1.73

0.50

48h
3.03
0.76
1.27
0.54
1.81
1.45

0.51

Step2: Determination of the intensity-frequency curves for representative

durations

At this stage, it is noted that the storm sample obtained from the observed record at

station 85237 forms a partial duration series of rainfall intensity. This sample consists

of storm events with the average intensity at least equal to some threshold value, as

mentioned in Section 4.3.2.

To develop the intensity-frequency curve for each partial duration series of rainfall

intensities, the procedure is as follows:
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• An exponential distribution4 is fitted to each series of rainfall intensities.

Parameters (Oi and a>2 of this distribution can be computed by:

(O,=M*/N*
(4-3)

where (Oi is the average number of events per year in each series, M is the number

of data points in the series, N* is the record length (years), and Io is the minimum

value of rainfall intensity in the series.

The design average rainfall intensity (of the representative duration under

consideration) for any average recurrence interval (T) is then calculated as follows:

(4-4)

where I(T) is the T-year design rainfall intensity for the given duration, and T is the

average recurrence interval (ARI) of the design rainfall. In this analysis, the ARIs

used were: T = ARI = 1,2, 5,10,20,50,100 years.

For station 85237, parameters of the beta distributions fitted to the five series of rainfall

intensities are also summarised in Table 4-8.

Step3: Checking of the intenuity-frequency curves

In order to check whether each of the fitted exponential distributions can reproduce well

the observed rainfall intensity data, the following steps can be undertaken:

• The rainfall intensity series of each representative duration is plotted on a graph

using the following plotting position:

PP(j) = (N*+0.2)/(j-0.4) (4-5)

where PP(j) is the plotting position of a data point ranked j in the series (in

decreasing order of magnitude) and N* is the record length in years.

• The exponential distribution fitted to the intensity series is plotted on the same

graph.

• The goodness-of-fit of the fitted distribution is visually checked, outliers are

eliminated, and the distribution is refitted, if necessary.

Initially, both the Log Pearson III and the exponential distributions were fitted to the observed data,
however the exponential distribution was adopted because it gave a better fit.
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An example of the plot of the exponential distribution fitted to the rainfall intensities

series for the representative duration of Sh (for station 85237) is given in Figure 4-16.
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Figure 4-16: Piot of rainfall intensity series of the 8-hour representative duration and the

fitted exponential distribution

Step 4: Interpolation and extrapolation of the intensity-frequency curves to all

durations

To determine the complete IFD curves, the intensity-frequency curves developed for the

representative durations are interpolated and extrapolated to all durations. For each of

the ARIs used, the steps below are adopted:

• The design rainfall intensity for each of the five representative durations is estimated

from the fitted exponential distributions. An example of these estimates for storms

of 20-year ARI is given in Table 4-9.

Table 4-9: Estimates of design rainfall intensities for ARI = 20 years

D(h)
2

8
16
32
48

I(mnVh)
12.30

4.23
3.55
2.69
2.47

log(P)
C.30

0.90
1.20
1.51
1.68

log(I)
1.09

0.63
0.55
0.43
0.39
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A second-degree polynomial is fitted to the logarithm of the estimated intensities

and the logarithm of the corresponding representative durations (see an illustration

in Figure 4-17).

logI=0.2776(logD)~-1.0451 logD+1.3739

10

Duration, D (hours)

100

Figure 4-17: Plot of the polynomial curve fitted to the estimated intensities of

representative durations (ARI = 20 years)

• The design rainfall intensity for a storm of any duration D and the specified ARI is

finally computed using the coefficients b*, c \ and e* of this polynomial curve as

follows:

logI = b*(logD)2+c*(logD)+e* (4-6)

It is noted that, even though the polynomial intensity-frequency-duration curves were

determined from storms with representative durations of 2, 8, 16, 32, and 48 hours, the

curves were used to estimate the average rainfall intensity for durations of 1 hour to 120

hours for the study site.

4.5.4 Preliminary results

Using the procedure described above, the design DFD estimates for station 85237 were

obtained and are presented in Table 4-10. A plot of these estimates, called the derived

DFD curves, is presented in Figure 4-18. It can be seen from the table and figure that the

average design rainfall intensity of frequent storms (with ARIs less than 20 years)

decreases for increasing event duration. This relationship still holds true for rarer events
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(ARIs greater than 20 years) with duration up to 48 hours. However, for rare, long

duration storms (ARIs of 20 years or greater, and duration exceeding 48 hours), the

average intensity increases although the storm duration increases (see bold values in

Table 4-10).

Table 4-10: Derived DFD estimates for station 85237 (rainfall intensity in mm/h)

Duration (D]
(hours) 1 year 2 years

Average recurrence interval (ARI)
5 years 10 years 20 years 50 years 100 years
16.40 20.00 23.65 28.52 32.231

2
6
12
24
36
48
72
120

8.29
5.67
3.09
2.10
1.42
1.13
0.96
0.76
0.57

11.74
7.19
3.61
2.47
1.76
1.48
1.32
1.13
0.96

16.40
9.16
4.30
2.96
2.21
1.94
1.79
1.65
1.54

20.00
10.65
4.83
3.34
2.55
2.28
2.16
2.05
2.02

23.65
12.15
5.35
3.71
2.89
2.63
2.52
2.46
2.52

28.52
14.12
6.06
4.20
3.33
3.09
3.00
3.01
3.21

32.23
15.61
6.59
4.58
3.66
3.43
3.37
3.42
3.74

1 10
Duration (h)

Figure 4-18: Derived IFD curves for station 85237

100

There are two main factors that may cause the unusual increase in the design rainfall

intensity for long duration storms at station 85237. The first factor relates to errors in

the data points to which each of the polynomial curves were fitted. As shown in Table

4-9, these data points are the rainfall intensity estimates for storm events of a specified

return period corresponding to five representative durations. These intensities were
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estimated from the five exponential distributions fitted to the five adjusted rainfall

intensity series, which were initially formed by converting the average rainfall

intensities of various durations into the intensities of five representative durations. As

each of these steps introduces uncertainties to the outcome at the end of the step, the

final rainfall intensity estimates are ^consequently uncertain. The second factor is the

common error of extrapolating a regression curve. The second-degree polynomial curve

fitted to the rainfall intensity-duration data, as illustrated in Figure 4-17, has a parabolic

shape, and therefore, must start going up if it is extrapolated far enough.

4.5.5 Adjustment of the derived IFD curves

To provide better estimates of the design rainfall intensity for rare, long duration storms

at station 85237, one possible method is to adjust the tails of the derived IFD curves.

This can be done by comparing the derived storm EFD curves with the existing design

rainfall IFD curves for storm bursts. For any design site, there are two sets of burst IFD

curves available for comparison. The first set of IFD curves is based on rainfall

intensity data collected at several sites and analysed using a regional technique, as

applied by the Institution of Engineers, Australia (1987). The design data to derive

these IFD curves for a specific site are provided by the Institution of Engineers,

Australia (1987, Volume 2). The second set is the at-site IFD curves, herein referred to

as the IFD-HYDSYS curves, developed by HYDSYS (1994) from data available at the

site, using an at-site frequency analysis method consistent with that of the Institution of

Engineers, Australia (1987). As the IFD curves derived in the present study were

developed using the at-site rainfall data at station 85237, it is relevant to compare them

with the IFD-HYDSYS curves.

The IFD-HYDSYS curves are derived for storm bursts, which are periods of intense

rain during storm events. Storm bursts of a given duration are obtained from an

observed record by progressively passing a 'window' of the specified duration

throughout the record, and selecting events that have average intensities greater than

some threshold values. The bursts so identified therefore have two characteristics.

Firstly, for a specified duration, the bursts selected may overlap, so they are not
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independent of each other. Secondly, a burst of a short duration may be a part of a

longer duration burst.

In order to compare the derived IFD curves with the IFD-HYDSYS curves, it is

important to note that storms defined in this study have sampling properties different

from bursts for which the IFD-HYDSYS curves were developed. In this study, any

rainfall period is included only once in the storm sample (so all the extracted events are

essentially independent), but may have been included several times in the burst sample,

because a shorter duration burst may be a part of a longer duration burst, as explained

above. Thus the series of storms defined here generally consists of events with average

intensities lower than those in the burst series. However, the difference between burst

intensities and storm intensities will reduce with increasing duration, because both

samples will share common events. As a result, the IFD curves derived for storms

defined in this project should always lie below the IFD-HYDSYS curves, but the two

curves tend to converge at long storm durations.

r

I $

1 J

An illustration of the comparison of the derived IFD curves and the IFD-HYDSYS

curves for station 85237 is illustrated in Figure 4-19. In this figure, the IFD-HYDSYS

curve for the ARI of 20 years is plotted together with the derived IFD curve for the

same ARI. This figure shows that the derived 20-year IFD curve is only below the

corresponding IFD-HYDSYS curve for duration up to 48 hours (approximately). For

longer storms, the design average rainfall intensities estimated by the current procedure

exceed those of the EFD-HYDSYS curve estimated by HYDSYS. A similar conclusion

is drawn for the derived IFD curves of other return periods.

The comparison of the derived IFD curves and the IFD-HYDSYS curves indicates that

the IFD-HYDSYS intensity for long duration storms can be used to adjust the tails of

the derived IFD curves, as for these storms, the difference between the two sets of

curves becomes insignificant. Therefore, for each ARI, two storm events with the

duration of 72 hours and 144 hours were used as additional events for fitting the

polynomial curves of intensities of varying durations. The average intensities of these

storms were assumed to equal the IFD-HYDSYS rainfall intensity estimates for storm

bursts of the same duration and ARI.

3

•y
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100

1
1

5

10

10
Duration (h)

100

Figure 4-19: Derived IFD curve and the IFD-HYDSYS curve for ARI=20 years (station

85237)

Table 4-11 gives an example of the intensity values (original and additional) for fitting

the polynomial curve, and Figure 4-20 illustrates the resulting polynomial curve for

design rainfall intensity estimates for storms of 20-year ARI. It is noted from this figure

that a linear relationship rather than a polynomial curve may have been sufficient

because of the small coefficient of the square term.

Table 4-11: Data used to determine the intensity-duration curve (ARI = 20 years)

D(h) I(mm/h) log(D) logd)
12.30 0.30 1.09

8
16
32
48
72
144

4.23
3.55
2.69
2.47
1.84
1.01

0.90
1.20
1.51
1.68
1.86
2.16

0.63
0.55
0.43
0.39
0.27

0.004

(Bold values are those obtained from IFD-HYDSYS)
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logI=0.0098(logDr-0.55121ogD+1.2150

10 100
Duration, D (hours)

1000

Figure 4-20: Plot of the polynomial rainfall intensity-duration curve (ARI = 20 years)

The derived IFD curves (after adjustment) were then compared with the DFD-HYDSYS

curves and the originally derived IFD curves (before adjustment). As an illustration, the

three IFD curves for the ARI of 20 years are plotted in Figure 4-21. From this figure, it

is clear that, for all durations, after adjustment, the design rainfall intensity at station

85237 decreases as the storm duration increases. In addition, the adjusted IFD curve is

always below the IFD-HYDSYS curve for the given ARI, as expected from the

difference between the average intensity of storms defined in this study and storm

bursts. The same conclusion is reached for the intensity-duration curves of other ARIs

used. In general, the adjustments of rainfall intensities of long duration storms are fairly

substantial, but justified.
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Figure 4-21: Plot of the IFD curves at station 85237 (ARI=20 years)
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The final set of the derived IFD estimates for station 85237 is presented in Figure 4-22.
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Figure 4-22: The estimated IFD curves at Noojee (pluviometer 85237)

4.5.6 Discussion

ti

1
hi

The comparison of the derived IFD curves and the IFD-HYDSYS curves indicates that

the adopted at-site frequency analysis procedure can give consistent estimates of the

design rainfall intensity for events with duration up to 48 hours and ARI up to 100 years

for station 85237. However, there are uncertainties in estimates of the average rainfall

intensity for long duration, low frequency storms (duration and ARI exceeding 48 hours

and 20 years, respectively). This is essentially the result of errors in extrapolating a

regression curve, the lack of observed long duration storms, and the use of only five

class intervals to represent storm duration, as discussed in Section 4.5.4.

It is obvious that more reliable intensity estimates for long duration and very infrequent

storms could be obtained by increasing the corresponding storm sample. This can be

achieved by two methods. The first method is to increase the separation time used to

define storm events. However, this method also leads to a reduction in the number of

short duration events (see Section 4.3.2.1), which in turn affects the reliability of rainfall

intensity estimates for these events. In other words, by increasing the separation time

used in the storm definition, better estimates of design rainfall intensity for long

A

«4
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duration events may be achieved at the cost of more uncertainties in estimates of short

duration events. The second method is to use regional rainfall data for developing the

IFD curves. This is considered to be a very effective method, as it not only increases

the sample size of long duration storms, but also of short duration events. In addition,

the discretisation of storm duration will become more accurate due to the possibility of

an increased number of class intervals used. As a result, better rainfall intensity

estimates can be obtained for events of any duration and frequency. Whereas the

implementation of this method is desirable, it is considered outside the scope of this

project.

4.5.7 Summary

In this section, a modified at-site frequency analysis procedure for partial duration series

was used to derive the IFD curves at station 85237 for storm events defined in this

research. With this procedure, observed rainfall intensities of various durations at the

design site were represented by fives series having representative durations of 2, 8, 16,

32, and 48 hours. An exponential distribution was then fitted to each series,

distributional parameters were estimated, and the goodness-of-fit of the distribution was

visually checked. For each representative duration, design rainfall intensities of various

ARIs were then estimated from the fitted exponential distributions. For a given ARI, a

polynomial curve was next fitted to the design intensities of the five representative

durations. The design average rainfall intensities of any duration were finally

determined by interpolating and extrapolating the fitted polynomial curve for a given

ARI.

It was found that, for storms with duration up to 48 hours and ARIs up to 100 years, the

IFD curves derived by the adopted procedure were consistent with the existing IFD

curves (for the same site). The latter IFD curves were developed for storm bursts using

the method proposed by the Institution of Engineers, Australia (1987). However, there

was an unusual relationship between the design rainfall intensity and rainfall duration

for longer duration and less frequent events. In particular, for storm events whose ARI

exceeding 20 years and duration greater than 48 hours, the design rainfall intensity

increased even though the rainfall duration increased. This was attributed to the lack of
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observed rainfall data in this range, the extrapolation of the polynomial curves for

intensity estimates, and errors in the representation of the observed intensities at the

design site by only five series.

In order to provide better estimates of the rainfall intensity for the design site, the upper

tails (for long duration storms) of the derived IFD curves were adjusted based on the

IFD analysis of storm bursts. It was assumed that the design intensities for storms

defined in this study and for storm bursts were equal for durations of 72 hours and 144

hours. These rainfall intensities were used to provide additional data points for the

fitting of polynomial equations to the IFD data. The adjusted IFD curves were

satisfactory because the relationship between design rainfall intensity and duration was

consistent fcT all durations and ARIs. Nevertheless, it was concluded that more reliable

rainfall intensity estimates for storm events of any duration and frequency could be

obtained by using regional rainfall data.

4.6 STOCHASTIC REPRESENTATION OF TEMPORAL PATTERNS

4.6.1 Background

Knowledge of the temporal pattern of rainfall (that is, the time distribution of rainfall

intensity during storm duration) is important in determining the timing and magnitude

of peak flow, especially for urban or small rural catchments where the time of

concentration is relatively short and catchment response is less influenced by storage or

channel characteristics. In addition, the spatial variability of rainfall influences the

generation of runoff, especially for large catchments. However, it seems to be difficult

to assign a numerical value to differentiate a small catchment from a large one, as

catchment size is not the only index that characterises catchment behaviour. With the

lack of artificial storage within the 'medium-sized' catchments under study (less than

500km2), the consideration of the temporal pattern as a stochastic factor may be

unnecessary but is prudent.

The time distribution of real rainfall events may be influenced by many factors that need

* • * &
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to be reflected in design temporal patterns. These factors may include location, storm

duration, storm depth, or season of storm occurrence. As discussed in Section 3.3.3,

there are conflicting conclusions about the relationships between rainfall temporal

patterns and these factors. For example, whereas design temporal patterns of storm

bursts used in Australian design practice are dependent on location, storm duration and

frequency (Institution of Engineers, Australia, 1987, Chapter 3), rainfall temporal data

at three Spanish stations have shown no correlation with any of the above factors

(Garcia-Guzmr'.i and Aranda-Oliver, 1993). Thus, before developing a stochastic

model of temporal patterns of storm events defined in this study, it is necessary to

investigate if the temporal pattern is dependent on season of storm occurrence, storm

duration and depth. At this stage, for the relatively small region considered, it is

assumed that the 19 selected rainfall sites form a homogeneous region as far as the

storm temporal pattern is concerned. It is also noted that the analysis of the dependence

of temporal patterns on season is not directly applied in this study, but was conducted

for the sake of a broader understanding of the factors that affect the variability of

temporal patterns.

To represent the temporal pattern by a statistical model, conditional probability analysis

is required if the temporal pattern is dependent on any of the factors above. For

example, if temporal patterns vary with storm duration, they then need to be separated

into different duration groups. For each duration group, a probability distribution can

then be used to characterise the observed temporal patterns in the group. From the

adopted model, design temporal patterns can be generated.

This section presents the research undertaken to investigate the dependence of the

temporal pattern on season, storm duration and depth, as well as the characterisation of

the temporal pattern by a statistical model. The data used for this investigation and the

representation of the temporal pattern are also described.

V

4.6.2 Data

In order to examine whether the temporal pattern is dependent on any of the above three

factors, a large database of observed temporal patterns was required. Initially, this
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database consisted of all storm events extracted at the 19 selected pluviometers.

However, as these events were recorded at fixed time intervals of one hour, the amount

of rain recorded in the first or last hour of a storm usually represents the rainfall that fell

in a fraction of an hour. For example, a. real rainfall event lasting 5 hours and 25

minutes from 04:50 AM to 10:15 AM would have been recorded as a 7-hour storm from

4:00AM to 11:00AM. Thus, the average hourly rainfall intensity of the first and last

hour of any storm is consistently underestimated. As the temporal variation of rainfall

events used in this study was represented by the average rainfall intensity in each hourly

time step of the storm duration, the underestimation of some of these data values may

have affected the analysis outcome. This effect became even more pronounced for short

duration events. Thus, to avoid introducing possible errors caused by short duration

storms into the results, only the extracted events with duration of at least 4 hours were

included in this analysis.

i

For the 19 sites under investigation, the storm sample selected for this analysis

consisted of 3587 storms (with the minimum duration of 4 hours). The average duration

of these events was 20 hours, and the average rainfall depth was 35.4mm. As these

storms constituted more than 90% of the total number of the observed storms in the test

region (N=3975 storms), the selected storm sample was considered to be representative

of all rainfall events in this region as far as the time distribution of rainfall is concerned.

4.6.3 Representation of temporal patterns

Before explaining how the temporal pattern is defined, it is worth noting that there is a

basic difference between the temporal pattern and other rainfall characteristics such as

storm duration or depth. Whereas storm duration and depth are 'concentrative'

variables, and consequently can be described by one number each, the temporal pattern

is a 'distributive' random variable, and therefore needs more than one number in its

representation.

In order to describe the temporal pattern by numbers, two alternatives were adopted in

this study. The first alternative, suggested by Laurenson (Personal communication,

1998), used 3 statistical characteristics of the dimensionless storm hyetograph. The
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second alternative used internal ordinates of the dimensionless storm mass curve. In the

literature, the first alternative was used by Yen and Chow (1980), whereas the second

by Huff (1967), Garcia-Guzman and Aranda-Oliver (1993), and Robinson and

Sivapalan (1997). In this study, the number of mass curve ordinates varies according to

the purpose of analysis. For example, the dimensionless storm mass curve was

represented by 9, 4, 3 or 2 ordinates in sensitivity analyses for investigating the

dependence of temporal patterns on season, storm duration and depth (see Section

4.6.4.2), and by 7 ordinates for representing design temporal patterns (see Section

4.6.5).

To determine the 3 statistical characteristics or mass curve ordinates describing the

temporal pattern, the dimensionless storm hyetograph was first computed in order to

homogenise observed storm events of heterogeneous durations and total rainfall depths.

The dimensionless rainfall hyetograph represents dimensionless rainfall depths

computed for equal increments of dimensionless storm time (Figure 4-23). In the

present analysis, 10 increments were used to c'ascribe the observed dimensionless

hyetograph as it was assumed that the overall shape of the pattern is more important

than small-scale variations.

Representation by 3 statistical characteristics of the dimensionless hyetograph

To represent the temporal pattern by 3 statistical characteristics, the mean (mO, standard

deviation (s), and coefficient of skewness (Cs) of the dimensionless hyetograph were

used (see Figure 4-23). These characteristics were calculated with reference to the

starting time of a rainfall event. The mean is the centre of gravity of the observed

dimensionless hyetograph, which represents the dimensionless time from the start of the

event to the centroid of the rainfall hyetograph. A large mean value thus indicates that

the rain is heavier in the later part of the storm duration, and vice versa. The standard

deviation gives an indication of the degree of dispersion of the dimensionless rainfall

depth about the mean. The coefficient of skewness specifies the degree of asymmetry

of the temporal pattern distribution.

For each observed dimensionless storm hyetograph, these statistical characteristics were

computed using the following form Jas :
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m,=

,1/2

(4-7)

n

where h(tj) is the relative rainfall in a time interval ( ^ h(tj) = 1); tj is the mid point of a
i=l

time interval; and n is the number of time intervals used to define the rainfall

hyetograph (n=10 in the present analysis).

mean

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Mid-points of class intervals of dimensionless storm time (tj)

f

Figure 4-23: Dimensionless rainfall hyetograph and its statistical characteristics

Representation by ordinates of the dimensionless mass curve

To describe the temporal pattern by 9 ordinates of the dimensionless storm mass curve,

the dimensionless mass curve of the dimensionless storm hyetograph was first

determined. The dimensionless mass curve of a storm is a plot of the dimensionless

cumulative rainfall depth versus the dimensionless cumulative storm time. At any

specified time during the storm duration, the former is the ratio of the accumulated

rainfall depth to the total depth, and the latter is the ratio of the time from the start of the

storm to the storm duration. The temporal pattern ordinates were then taken as the



Chapter 4 97

internal ordinates of the dimensionless mass curve, as the ordinates of the two ends of

any mass curve are always 0 (for the low end) and 1 (for the top end). The number of

temporal pattern ordinates is thus the number of time increments used to define the

corresponding dimensionless rainfall hyetograph minus 1. An example of a temporal

pattern defined by 9 ordinates (corresponding to a dimensionless hyetograph defined at

10 equal time intervals) is given in Figure 4-24. Similarly, if a storm hyetograph is

defined by 5, 4 or 3 time increments, then 4, 3 or 2 ordinates, respectively, define the

storm temporal pattern.

en

is
Q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Dimensionless storm time

Figure 4-24: 9-ordinate representation of temporal patterns

4.6.4 Dependence of temporal patterns on season, storm duration and

depth

Three methods for determining whether the rainfall temporal pattern is dependent on

season (or month) of storm occurrence, storm duration or depth have been used in the

literature. They are correlation analysis, the chi-square test of independence, and the

comparison of Huff curves. Clearly, any one of these methods could be used for the

present objective. However, due to the controversial conclusions reached by previous

researchers about the relationship between the temporal pattern and the above factors

(see Section 3.3.3), it is desirable to use at least two methods to investigate this issue.

Therefore, for this present study, correlation analysis and the chi-square test of

independence were adopted.
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4.6.4.1 Correlation analysis

98

Correlation analysis measures the degree of linear relationship between two or more

random variables. This relationship is characterised by the correlation coefficients

computed for each pair of variables. Correlation analysis was applied by Huff (1967) to

determine whether "the variance in the time distribution of rainfall" was attributable to

the variation in duration and mean rainfall.

The population correlation coefficient (PX.Y) between two random variables X and Y is

defined in terms of the covariance of X and Y (CJX,Y) and the standard deviations of X

and Y (ax, Oy) as follows:

" - (4-8)PX.Y =

Given two samples of size n with observations xi, X2, ..., xn, and yi, y2, ..., yn, the

sample estimate rx,Y for PX.Y is similarly given by:

rX.Y ~
JX.Y

sxsY

(4-9)

in which

- H x X y i - u Y ) (4-10)

is the sample covariance, sx and sy are the sample estimates of the standard deviation,

and |xx and u,Y are the sample means.

The value of px.Y can range from -1 to +1. If p x Y = ± 1, there is a perfect linear

relationship between X and Y. If p x Y = 0 or close to it, there is no linear relationship,

but other types of dependence may exist between X and Y. If X and Y are independent

random variables, then p x Y = 0.

Correlation analysis was applied to investigate the relationship between the 3 statistical

characteristics describing the temporal pattern and storm duration or depth in the

following manner.
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Dimensionless hyetographs of the observed rainfall events were first determined.

The 3 statistical characteristics of the observed dimensionless hyetographs (mi, s,

and Cs) were next computed using Equation (4-7).

The correlation coefficients between each of these 3 characteristics and storm

duration or storm depth were then computed using an EXCEL spreadsheet. Results

are tabulated in Table 4-12.

A visual inspection of the relationship between the temporal pattern characteristics

and storm duration or depth was also carried out by plotting each of the computed

characteristics against the corresponding storm duration or depth. Two examples of

such plots are given in Figure 4-25 and Figure 4-26.

*
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Table 4-12: Correlation coefficients between 3 statistical characteristics of observed

dimensionless hyetographs and storm duration or depth

Mean Standard deviation Coefficient of skewness
Duration
Depth

0.04
0.07

0.23
0.02

-0.06
-0.07

In examining the correlation coefficients between the 3 statistical characteristics of

temporal patterns and rainfall duration or depth (see Table 4-12), it is clear that for all

cases, the maximum absolute value of the correlation coefficient is 0.23, and the

minimum absolute value is 0.02. That is, the estimated correlation coefficients are

generally well below 1 and very close to 0. The corresponding graphs between each of

the 3 temporal pattern characteristics and storm duration or depth indicate no systematic

relationship between each pair of variables (see an illustration in Figure 4-25), with the

exception of the standard deviation. For this special case, the standard deviation of the

temporal pattern seems to increase as storm duration increases (see Figure 4-26). This

relationship corresponds to the correlation coefficient of 0.23 between the standard

deviation and storm duration. Nevertheless, the coefficient of determination (R2)

computed for this case is only 0.05, indicating that only 5% of the variation in the

standard deviation of the temporal pattern is explained by the variation in the storm

duration. Therefore, using correlation analysis, it can be concluded that the temporal

pattern of rainfall, described by 3 statistical characteristics of the dimensionless rainfall

hyetograph, is independent of both storm duration and storm depth.
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Figure 4-25: Plot of the mean (centre of gravity) of observed dimensionless hyetographs

versus rainfall depth
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Figure 4-26: Plot of standard deviation (degree of dispersion) of observed dimensionless

hyetographs versus rainfall duration

4.6.4.2 The chi-square test of independence

The chi-square test of independence aims to determine whether two variables are

associated. For example, it can be used to decide if product price is associated with

product quality, or if level of education is associated with income. In hydrology, this

test was applied by Garcia-Guzman and Aranda-Oliver (1993) to claim that the
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hyetographs of rainfall events observed at three rainfall stations in Spain were

independent of storm season, duration and "depth. The test, summarised from Daniel

(1978), is described in detail in Appendix G.

To apply the chi-square test of independence, it is assumed that a random set of data

may be cross-classified according to two criteria, which are the variables of interest in a

given situation. The data are then displayed in a contingency table with r rows and c

columns (see an illustration in Appendix G). To test the null hypothesis that the two

criteria are independent, the expected cell frequencies (expected when the assumption of

independence of the two variables is true) are computed and compared with the

corresponding observed cell frequencies. The null hypothesis may be rejected at the a

level of significance if the computed value of the test statistic X exceeds the tabulated

chi-square critical value for (r - lXc -1) degrees of freedom.

- J o

The following section describes the application of the chi-square test of independence to

determine if the rainfall temporal pattern is dependent on any of the three factors,

namely season of storm occurrence, storm duration and depth. In this particular case,

the temporal pattern is represented by 9 ordinates of the dimensionless mass curve (see

Figure 4-24). The investigation of the effects on the test results of using different

numbers of mass curve ordinates (namely 4,3 and 2) is also documented.

Dependence on season

The dependence of the storm temporal pattern on season was examined using the

following procedure:

(a) First of all, the chi-square test was applied to test the null hypothesis (ij that storm

temporal patterns are independent of the month of storm occurrence (Test 1).

• (b) To test this hypothesis, observed values of temporal pattern ordinates were arranged

in 10 classes. These classes were: (0, 0.1), (0.1, 0.2), (0.2, 0.3), ... , (0.8, 0.9), and

(0.9,1.0). The month of storm occurrence was assigned to 12 levels (months).

(c) For any observed temporal pattern, the frequency of obtaining a given ordinate

within any of the 10 classes above, jointly with the known month of the storm, was

counted and placed in the corresponding cell of the observed contingency table.
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(d) The total observed frequency in each cell was then computed by adding the

frequencies in the cell for all observed storms.

(e) The corresponding expected frequency for each cell was computed next.

(f) Lastly, the chi-square test statistic was computed and compared with the critical

value determined for the known degree of freedom of the contingency table. A test

statistic smaller than the critical value at a specified level of significance (LOS)

indicates that the null hypothesis can not be rejected, that is, temporal pattern

ordinates, and therefore temporal patterns, are independent of month. In this case,

the variation of temporal patterns with months of the storms can be neglected in the

analysis. Otherwise, temporal patterns are dependent on the month in which they

occur.

:>
f

Results of the initial investigation of the dependence of rainfall temporal patterns on

months of storm occurrence (Test 1) are summarised in the first row of Table 4-13. It is

clear that the chi-square test statistic (203.7) is much greater than the critical value at the

5% LOS (123.2), and therefore, the null hypothesis is rejected. That is, storm temporal

patterns are not independent of the month of storm occurrence. Therefore, the variation

of rainfall temporal patterns with season of storm occurrence should be accounted for in

a stochastic representation of temporal patterns.

/M#t

Table 4-13: Results of the chi-square test of independence to examine the dependence

of storm temporal patterns on season

Test
No
1
2
3
4
5
6

Classification into months
or seasons (groups of months)

12 months
4 rainfall seasons

Summer (Dec. - Mar.)
Autumn (April - May)
Winter (June - Sep.)
Spring (Oct. - Nov.)

Hypothesis

(i)
(ii)
(iii)
(iii)
(iii)
(iii)

Degrees of
freedom

99.0
27
27
9

27
9

Critical value
at 5% LOS

123.2
40.1
40.1
16.9
40.1
16.9

Test statistic

203.7
93.2
39.4
7.0
28.9
13.9

The issue now is the degree of dependence of temporal patterns on season (that is, a

group of months), and how to form independent sub-samples of temporal patterns

within each of which the variation of the temporal pattern with season can be neglected.

To do this, a calendar year was tentatively divided into four rainfall seasons as used by
-5 <
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the Bureau of Meteorology for extreme rainfall analysis (Minty et al., 1996). These

rainfall seasons are Summer (December to March), Autumn (April to May), Winter

(June to September), and Spring (October to November). The procedure described

above was next applied to test the two null hypotheses as follows: (ii) between four

defined rainfall seasons, temporal patterns are independent of season, and (iii) within

each rainfall season, temporal patterns are independent of the month of storm

occurrence.

Results of these tests are also tabulated in Table 4-13. It can be seen from this table that

the chi-square test statistic computed for the four seasonal groups of temporal patterns

(93.2, see Test 2) exceeds the critical value at 5% LOS (40.1). Thus, the null hypothesis

(ii) is rejected. By contrast, the test statistic computed for each of the four seasonal

groups is less than the corresponding critical value at the 5% LOS (see Tests 3-6 in

Table 4-13). As a result, the null hypothesis (iii) can not be rejected. In other words,

there is insufficient evidence to conclude that storm temporal patterns in different

months within a seasonal group are dependent on the corresponding months of the

storms.

In summary, results of the chi-square test of independence showed that observed rainfall

temporal patterns, characterised by 9 ordinates of dimensionless mass curves, are not

independent of the month in which they occur. Further analyses of the degree of

dependence of temporal patterns on season indicated that four distinct seasonal groups

of months (rainfall seasons) could be identified. Within these seasons, temporal

patterns are independent of the month of storm occurrence.

Dependence on storm duration

As mentioned in Section 3.3.3, there has been evidence in previous studies that the

temporal pattern of short duration storms is different from that of long duration storms

(Yen and Chow, 1980; Bonta and Rao, 1989). In Australia, temporal patterns of design

storms are also different for different durations (Institution of Engineers, Australia,

1987). For the data set used in the present study, it has also been found that the

temporal pattern is dependent on season. Therefore, for each seasonal group, the

following two hypotheses were established: (iv) temporal patterns are independent of

duration groups, and (v) within each duration group, temporal patterns of storms are
7
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independent of the storm duration. The hypotheses were also tested using the chi-

square test of independence.

To apply the chi-square test, the temporal pattern ordinates were still classified in 10

classes as described in step (b) under seasonal dependence. However, for the summer

season, the storm duration was divided into three duration groups as follows: (4h -

12h), (13h - 24h), and greater than 24 hours. Similar to step (c), the cell frequency of

obtaining a given temporal pattern ordinate within a duration group was determined.

Steps (d) through (f) were then undertaken. Subsequently, the tests were applied with

only two duration groups of (4h - 12h) and greater than 12 hours for the other seasons.

Table 4-14: Results of the chi-square test of independence to examine the dependence

of temporal patterns on storm duration

Rainfall seasons

Summer

Autumn

Winter

Spring

Classification into
duration groups

3 groups
4h- 12h
13h-24h

>24h
2 groups
4h - 12h

>12h
2 groups

4h-12h
>12h

2 groups
4h - 12h

>12h

Hypothesis

(iv)
(v)
(v)
(v)
(iv)
(v)
(v)
(iv)

(v)
(v)
(iv)
(v)
(v)

Degrees of
freedom

18
72
99
27
9

72
36
9

72
36
9

72
36

Critical value
at 5% LOS

28.9
92.8 (*)

123.2 (**)
40.1
16.9
92.8
51.0
16.9

92.8
51.0
16.9
92.8
51.0

Test statistic

124.1
98.0
138.1
34.6
20.8
55.8
27.7
32.8

77.3
44.2
45.2
66.8
43.2

Note: (*) CV at 1% LOS =102.8
(**) CV at 0.5% LOS = 139.0

Results of the examination of the association between the temporal pattern of the

observed storms in each of the four seasonal groups and storm duration are summarised

in Table 4-14. It is evident from this table that temporal patterns are not independent of

the duration groups as hypothesis (iv) is always rejected. As an example, for autumn

storms, the test statistic (20.8) is greater than the critical value (16.9). This means that

the temporal pattern of autumn storms is dependent on whether the storm duration is in

the group of (4h - 12h) or greater than 12h. However, within each of the identified

if

I, »}

I'f

I



Chapter 4 105

duration groups, temporal patterns can be considered to be independent of duration

because hypothesis (v) is not rejected, as the chi-square statistic is less than the

corresponding critical value. An exception is the summer storms in which the storm

temporal pattern is dependent on duration in the following three duration groups: (4h -

12h), (13h - 24h), and greater than 24 hours. It is noted that in this case, the storm

temporal patterns of the two duration groups, namely (4h - 12h) and (13h - 24h) can be

marginally considered to be independent on storm duration at fairly low levels of

significance (1% and 0.5%) (see Table 4-14).

if

Dependence on storm depth

In examining whether the temporal pattern of storm events is dependent on storm

magnitude, the null hypothesis (vi) was that the temporal pattern of the observed storms

in each seasonal and duration group is independent of storm depth. To test this

hypothesis, the chi-square test of independence was again used. In applying the test, the

observed storm patterns in each specified season and duration group were assigned to

the following levels of total depths: (0 - 15mm), (15mm - 20mm), (20mm - 25mm),

..., (55mm - 60mm) and greater than 60mm.

Table 4-15: Results of the chi-square test of independence to investigate the dependence

of temporal patterns on season, storm duration, and storm depth

Rainfall
seasons
Summer

Autumn

Winter

Spring

Duration
groups

4h-12h
13h - 24h

>24h
4h - 12h

>12h
4h-12h

>12h
4h - 12h

>12h

Classification into
groups of rainfall depths

all groups
all groups
2 groups

(0 - 50) mm
>50mm
all groups
all groups
all groups
all groups

all groups
all groups
all groups

Hypothesis

(vi)
(vi)
(vii)
(viii)
(viii)
(vi)
(vi)
(vi)
(vi)

(vi)
(vi)
(vi)

Number of
storms

686
362
362
314
48
216
232
444
263

659
384
341

Degrees of
freedom

45
81
9

54
9
36
45
45
45

45
54
45

Critical value
at 5% LOS

61.7
103.02
16.9
72.1
16.9
51.0
61.7
61.7
61.7

61.7 n

72.1
61.7

Test statistic

49.6
145.4
46.5
71.9
10.1
42.5
39.0
61.6
25.4

67.1
66.0
50.2

Note: (*) CV at 1 % LOS = 70.0

Results of the chi-square test are summarised in Table 4-15. From this table, it can be

concluded that the temporal pattern is independent of total storm rainfall depth, as the

test statistic computed for each rainfall season and duration group is smaller than the
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critical value at 5% LOS (but at 1% LOS for winter storms with duration greater than 12

hours). Again, there is an exception for summer storms, in which the chi-square test

results show that the temporal patterns of storms in the duration range of (13h - 24h) are

dependent on storm depth (see Table 4-15) because the test statistic (145.4) exceeds the

corresponding critical value (103.0) at 5% LOS, This means that the variation of

temporal patterns with storm depth needs to be considered.

The issue now is how to form sub-groups of temporal patterns so that within each group

the dependence of temporal patterns on storm depth can be neglected. To do this, the

observed patterns of summer storms in the duration group of 13 to 24 hours were

divided into the following two groups of depth: (0 - 50mm) and greater than 50mm.

The chi-square test of independence was then applied to test the two null hypotheses as

follows: (vii) between the two defined groups of rainfall depth, temporal patterns are

independent of rainfall depth groups, and (viii) within each specified group of rainfall

depth, temporal patterns are independent of storm depth. Test results are also tabulated

in Table 4-15.

h,

It is clear from Table 4-15 that the hypothesis (vii) is rejected because the test statistic

of 46.5 exceeds the corresponding critical value of 16.9 at 5% LOS. As a result, the

dependence of temporal patterns of summer storms from 13 to 24 hours on storm depth

should be taken into consideration. However, there is insufficient evidence to reject the

hypothesis (viii) because for each specified group of storm depth, the computed test

statistic is less than the corresponding critical value.

Summary of chi-square test results

From the investigation of the dependence of the temporal pattern on season, storm

duration, and depth, the following conclusions can be made:

• The rainfall temporal pattern, represented by 9 ordinates of the dimensionless mass

curve, is dependent on the four seasons of storm events. These rainfall seasons,

initially formed using the results of an extreme rainfall analysis undertaken by Minty

et al. (1996), are Winter (June to September), Spring (October to November),

Summer (December to March) and Autumn (April to May).

• Within each seasonal group, the temporal pattern is also associated with storm

duration. In particular, in Spring, Autumn and Winter, the temporal pattern is

v t *i



Chapter 4 107

dependent on whether the storm duration is less than or equal to 12 hours, or greater

than 12 hours. In Summer, storm temporal patterns are associated with three

different duration groups, namely, up to 12 hours, from 12 to 24 hours and greater

than 24 hours.

• After being so grouped by season and duration, the temporal pattern is independent

of rainfall depth, except for summer storms in the mid-range of duration. In this

case, the temporal pattern is dependent on whether the rainfall total is greater or less

than 50mm.

• In total, there are thus 10 independent groups of temporal pattern, as shown in Figure

4-27. It is worth noting that even though this investigation was undertaken using

storm events of 4 hours or greater (see Section 4.6.2), it was assumed that the test

results can be applied to storms of any duration from 1 to 120 hours.

Rainfall temporal pattern

_L

Seasons

Rainfall duration

Rainfall depth

June • Sep. Oct.-Nov. Dec.& Jan. - Mar. April-May

_L
!-12h

(7)
>!2h

(8)
111- I2h

(9)

_L
>12h
(10)

lh- 12h
(I)

13h-24h >24h
(4)

lh - 12h

(5)
>12h

(6)

(0, 50/ mm
(2)

> 50 mm
(3)

Note: The number in brackets represents the temporal pattern group

Figure 4-27: Independent groups of temporal patterns (by the results of the chi-square

test of independence)

,u

Sensitivity analysis

The results of the chi-square test of independence indicated that the storm temporal

pattern, represented by 9 ordinates of the dimensionless storm mass curve, was

dependent on season, storm duration and depth. By contrast, the correlation analysis

showed that the temporal pattern was not correlated with storm duration or depth. The

latter conclusion was drawn from an analysis in which the temporal pattern was

characterised by 3 statistical characteristics of the dimensionless rainfall hyetograph.

As in these two separate analyses the temporal pattern was represented by different

numbers of parameters, the contradictory conclusions above could have been the result
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of the discrepancy in the number of parameters used to describe the temporal pattern. In

order to test this hypothesis, the chi-square test of independence was repeated for the

temporal pattern defined by 3 ordinates (that is, the same number of parameters as used

in the correlation analysis). Moreover, to gain an insight into the effects of using

different numbers of parameters on results of the chi-square test, the test was also

undertaken for the temporal pattern defined by 4 and 2 ordinates. An example of a 4-

ordinate temporal pattern, already defined in Section 4.6.3, is illustrated in Figure 4-28.

0 0.2 0.4 0.6 0.8 1

Dimensionless storm time

Figure 4-28: 4-ordinate representation of temporal patterns

To investigate the effect on the chi-square test results of the number of ordinates used to

characterise mass curves, the procedure described at the beginning of this section was

repeated. That is, the test was applied first to test the null hypothesis that temporal

patterns, defined by 4, 3 or 2 mass curve ordinates are independent of the month in

which they occur. Test results are summarised in Table 4-16. It can be seen from this

table that, depending on the number of ordinates used to represent the temporal pattern,

different conclusions can be drawn about the association of the pattern with season.

When the temporal pattern is defined by 4 ordinates or more, the null hypothesis is

rejected at 5% LOS because the computed test statistics exceed the corresponding

critical values. Consequently, the variation of the temporal pattern with month of storm

occurrence should be taken into account. By contrast, when only 3 ordinates or less are

used to characterise the storm temporal pattern, the results of the chi-square test indicate

If?
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that there is insufficient evidence to reject the null hypothesis. The entire storm sample

of the observed patterns can therefore be regarded as a single group as far as the rainfall

temporal pattern is concerned.

it

Table 4-16: Effects of number of ordinates used to define temporal patterns on results of

the chi-square test of independence

Factor under Number of mass Degrees of Critical value Test statistic
consideration curve ordinates freedom at 5% LOS

Season 9
4
3
2

99
44
33
22

123.2
60.5
47.4
33.9

203.7
93.4
44.8
22.5

Duration 2
3

4
6

9.5
12.6

17.7
51.8

For the simplest cases in which the observed temporal patterns were independent of

season (that is, when they were represented by mass curves with 2 or 3 ordinates), the

chi-square test was again applied to check if the temporal pattern is associated with

storm duration. For this purpose, the storm sample was divided into three duration

groups (<12h, 13h - 24h, and >24 h). Results are also summarised in Table 4-16. It is

evident from this table that, regardless of whether 2 or 3 ordinates are used to represent

the temporal pattern, the test statistics computed are always greater than the critical

values. This indicates that, in these particular cases, the temporal pattern of storms in

all seasons is dependent on storm duration.

By using the same number of parameters to define the storm temporal pattern in two

different statistical tests, it is possible to assess the power of the tests to detect any

association between the temporal pattern and any of the factors such as season, storm

duration and depth. In this particular analysis, the chi-square test seems to be more

powerful than the correlation analysis in detecting the dependence of the temporal

pattern on duration and depth. However, the power of the chi-square test also reduces

with a reducing number of ordinates used in the representation of temporal patterns.

vl
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4.6.4.3 Discussion

From the investigation of the dependence of the temporal pattern on season, storm

duration or depth using storm events observed at 19 pluviometers used in this study, it

was found that different results were obtained depending on the method adopted to

represent the temporal pattern and the statistical test used. On the one hand, the use of 3

statistical characteristics to define the rainfall temporal pattern and the correlation

analysis to examine this association seem to be blunt measures which led to the

conclusion that the time distribution of rainfall intensity was invariant with any of the

factors being considered. On the other hand, when the temporal pattern was

characterised by the storm mass curve defined at a sufficient number of time steps, the

results of the chi-square test of independence indicated that the temporal pattern is

dependent not only on season, but also on storm duration and, in one case, on storm

depth. In addition, the power of the test used is possibly another factor affecting the

analysis outcome, as discussed above.

Of the two contradictory results obtained from the investigation described in this

section, the results of the chi-square test of independence for the temporal pattern

defined by 9 parameters are judged to be most reliable, and they conform to most

findings in previous studies (Huff, 1967; Pilgrim and Cordery, 1975; Yen and Chow,

1980; Institution of Engineers, Australia; 1987; Bonta and Rao, 1989). Results of the

chi-square test indicated that the time distribution of rainfall intensity is dependent on

the storm season, when four independent seasonal groups were formed based on the

seasonal groupings of extreme rainfall (Minty et al., 1996). In each of these seasonal

groups, the temporal pattern is generally dependent on two duration groups, the upper

limit for the short duration storms being 12 hours. The 12-hour limit may characterise

the maximum duration of convective-type storms in this particular study. In the

literature, Yen and Chow (1980), and Bonta and Rao (1989) obtained similar results.

Their studies showed that storm temporal pattern is significantly affected by the season

of the storms, and that the general characteristics of short-duration convective storms

differ from those of long-duration cyclonic storms. In Australia, Pilgrim and Cordery

(1975) found that the variability of the temporal pattern increases with increasing storm

burst duration and decreasing rainfall depth. Similarly, the dependence of the temporal

pattern on location and storm duration has been recognised by the use of different

. s
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design storm patterns for different climatic zones, storm durations, and levels of severity

of the design storm (Institution of Engineers, Australia, 1987).

Results of the analysis carried out in this section so far have indicated significant

variation of the temporal pattern with the factors of seasonality, rainfall duration and

depth, and with the number of parameters used to describe the temporal pattern. The

question now is to what extent this variation is important in flood estimation. This

raises two research issues in terms of sensitivity of design flood estimates, namely (i)

how many groups of temporal patterns should be used, and (ii) how many parameters

are required to adequately characterise the temporal pattern. With regard to (i),

temporal patterns could be assigned to up to 10 groups (using the results of the chi-

square test of independence) or only one single group (using the results of the

correlation analysis). For the present study, however, it was decided to use 10 temporal

pattern groups and examine the effect of this on design flood estimates using a

sensitivity analysis. With regard to (ii), it is clear that the use of the storm mass curve

defined by at least 4 ordinates is preferable to 3 statistical characteristics of the rainfall

hyetograph (as 3 parameters are clearly not sufficient to describe the temporal pattern).

The minimum number of ordinates required to adequately represent the variability of

rainfall intensity during the storm duration and its effects on flood hydrographs are

investigated in Chapter 6.

In the section below, the development of a stochastic model to reproduce the observed

temporal patterns in the 10 temporal pattern groups is described.

4.6.5 Development of a stochastic model to reproduce observed storm

mass curves
- 1 , }

The representation of the observed temporal patterns by a statistical model and the

generation of design storm patterns from this model are interrelated as they use the same

source formulas in their formulation. Therefore in this section the model selected for

generating design storm patterns and the determination of the parameters of this model

from the observed temporal patterns are described. The application of the selected

model to temporal pattern generation is presented in detail in Chapter 5.
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There exist several methods for developing a design temporal pattern for a selected

design rainfall depth and duration (Pilgrim and Cordery, 1975; Chow et al., 1988). A

review of these is presented in Appendix H. Among these, the multiplicative cascade

model presented by Robinson and Sivapalan (1997) has the simplest structure and is the

easiest to apply in practice. For these reasons, the model was adopted in this study.

Generally speaking, the multiplicative cascade model can be applied to generate

dimensionless rainfall hyetographs with 2m rectangles (corresponding to dimensionless

mass curves defined by (2m-l) ordinates), where m represents the chosen level of

disaggregation. For example, when m equals 5, the design storm depth is disaggregated

into a hyetograph with 32 blocks of rainfall, computed at 32 equal time increments of

the storm duration. The corresponding storm mass curve is thus represented by 31

ordinates.

The multiplicative cascade model operates on the principle that the disaggregated

rainfalls at a disaggregation level should equal the rainfall at the previous level. This

principle, illustrated in Figure 4-29, is explained in great detail in the section below.

Let Wj be some disaggregation parameters (0 < w( < l) and h(tj,t2) be the dimensionless

rainfall from the dimensionless time ti to t2 of the storm duration (0 < t, < t, < 1). For

example, h(0,l) is the relative rainfall from the start to the end of a storm. By

definition, h(0,l)=l, which represents the unit dimensionless rainfall hyetograph [see

Figure 4-29 (a)].

At the first level of disaggregation (m=l), a parameter wi is used to break the unit

rainfall hyetograph into a hyetograph defined for 2 (=2*) equal intervals of storm

duration [see Figure 4-29 (b)]. The disaggregated hyetograph thus has two rectangular

blocks whose ordinates are:

h(0,0.5) = w,

h(0.5,l) = l - w ,

Note that the sum of the disaggregated relative rainfalls [h(0,0.5) and h(0.5,l)] is 1.

(4-11)
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(a) Dimensionless rainfall hyetograph
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(b) First level of disaggregation
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(d) Third level of disaggregation

0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Dimensionless storm time (t)
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Figure 4-29: Principles of the multiplicative cascade model
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At the second level of disaggregation (m=2), two additional parameters (w2, w3) are

required, each divides a block of the hyetograph generated in the previous step into two

smaller blocks. The dimensionless hyetograph obtained at this step is thus defined for 4

(=22) equal time increments of the storm duration [see Figure 4-29 (c)]. The ordinates

of this hyetograph are determined as follows:

(4-12)

h(0,0.25) = w2h(0,0.5) = w2w,

h(0.25,0.5) = (l-w2)h(0,0.5) = ( l -w 2 )w ,

h(0.5,0.75) = w3h(0.5,l) = w 3 ( l - w,)

h(0.75,l) = (l-w3)h(0.5,l) = (1 -w 3 ) ( l -w , )

In the above four formulas, it is noted that the sum of the first and second pairs are

respectively wi and (1-wO, which are the ordinates of the hyetograph obtained at the

first disaggregation level.

fi
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At the third level of disaggregation (m=3), another four parameters (W4, W5, W6, W7) are

used to break the hyetograph generated in the previous step into a hyetograph defined

for 8 (=23) equal time increments of the storm duration [see Figure 4-29 (d)]. In

particular, W4 separates the first rectangular block of the hyetograph at the second

disaggregauon level [that is h(0,0.25) in Figure 4-29 (c)] into two rectangles [see Figure

4-29 (d)] whose ordinates are:

(4-13)
h(0,0.125) = w4h(0,0.25) = w4w2w,

h(0.125,0.25) = (1 - w4)h(0,0.25) = (1 - w4)w2w,

As the dimensionless rainfall of the previous level is preserved, the sum of the two

disaggregated rectangles is equal to h(0,0.25), that is, W]W2.

Similarly, w5 is used to break the second rectangle of the second level hyetograph [that

is h(0.25,0.5) in Figure 4-29 (c)] into two rectangular segments as follows:

(4-14)
h(0.25,0.375) = w5h(0.25,0.5) = w5w,(l - w2)

h(0.375,0.5) = (1 - ws)h(0.25,0.5) = (1 - w5)(l - w2)w,

The sum of the ordinates of these two rectangles are equal to wi(l-w2), which is the

ordinateofh(0.25,0.5).

. ! $
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In a similar manner, the parameters w6 and w7 respectively divide the third and fourth

rectangular blocks in Figure 4-29 (c) into two smaller rectangles.
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The disaggregation procedure above can be continued to higher levels of disaggregation

until the desired time scale is reached. In this analysis, the disaggregation process was

stopped at the third level-of disaggregation (m=3). That is, the multiplicative cascade

model was applied to generate rainfall hyetographs with 8 (=23) rectangular blocks,

corresponding to mass curves defined by 7 internal ordinates. While it was considered

sufficient for the purpose of this study to represent the storm temporal pattern by 7-

ordinate mass curves, it is emphasised that the model can be used to generate rainfall

hyetographs at any chosen level of disaggregation. The effect on design flood estimates

of representing storm mass curves (and therefore temporal patterns) by a greater number

of ordinates is later examined in a sensitivity analysis (see Section 6.5.4).

In order to generate dimensionless rainfall hyetographs that are similar to the observed

ones, the disaggregation parameters should be estimated from the observed hyetographs.

To do this, the dimensionless mass curves of the observed storms are required. Let H(t)

be the dimensionless cumulative rainfall depths from the beginning of the storm to the

dimensionless storm time t (0 < t < l) (see Figure 4-30). For example, H(0) and H(l)

are the relative cumulative storm depths at the start and end of a storm, respectively. By

definition:

H(0) = 0

V l

It is clear that the disaggregation parameters w; can be related to H(t) according to the

following relationships established for various disaggregation levels. For example, at

the first level of disaggregation:

H(O.5) = H(O) + h(O,O.5) = (4-15)

At the second level of disaggregation:

H(0.25) = H(0) + h (0,0.25) = w, w 2 = w 2H(0.5)

H(0.75) = H(0.5) + h(0.5,0.75) = w, + (1 - w,) w 3 = H(0.5) + (l - H(0.5))w,
(4-16)

At the third level of disaggregation:
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H(0.125=H(0)+h(0,0.12^=w4w1w2=w4H(0.25)

H(0375)=H(0.25)+h(0.25,0375)=H(0.25)+(w, - w,w2)ws = H(0.25)+(H(0.5) - H(0.25))w3

H(0.625)=H(0.5)+h(0.5,0.625)=H(0.5)+(H(0.75) - H(0.5))w6

H(0.875)=H(0.75)+h(0.75,0.875)=H(0.75)+(l - H(0.75)w7

(4-17)
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Figure 4-30: Dimensionless mass curve at the third level of disaggregation
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In applying the multiplicative cascade model for storm hyetograph generation, the

disaggregation parameters can be represented by a probability distribution. The beta

distribution, described in Appendix F, was selected for representing these parameters

because the parameter estimation of this distribution is very simple. In addition, when

being used in the adopted multiplicative cascade model, it can reasonably preserve the

characteristics of the observed temporal patterns, as will be shown in Section 5.2.5.2.

§

The procedure adopted for determining the parameters a and (3 of the beta distribution

from the observed storm mass curves of each of the 10 temporal pattern groups includes

the following steps:

• 7 ordinates of the dimensionless mass curve were computed for each storm.

• For each observed storm j , the disaggregation parameters Wj (where i varies from 1

to 7) were computed from their relationships with the mass curve ordinates using

Equations (4-15), (4-16) and (4-17).

• The mean and variance of these W; values were then computed, from which the two

parameters 0Cj, Pj of the beta distribution representing the disaggregation parameters

i r
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of the storm j were determined using the method of moments (see Appendix F).

• The medians5 of the computed ot, and Pj values of all the observed storms in a group

were then determined. These median a and P values, tabulated in Table 4-17, were

adopted as the parameters of the beta distribution representing the disaggregation

parameters of all the observed storm mass curves in a temporal group.

It is noted that in each temporal pattern group, each of the parameters a and P varies

quite considerably. The typical range of a is from 0.11 to 24.82, and of P is from 0.27

to 52.4. By representing this great variability of each of the parameters by just the

median value, it is clear that the variability of the disaggregation parameters, and

therefore of the generated temporal patterns, is significantly reduced.

Table 4-17: Parameters of the beta distribution representing the disaggregation

parameters of storm mass curves

Temporal pattern
group

1
2
3
4
5
6
7
8
9
10

Beta distributional

a
2.22
1.52
1.59
2.49
2.86
2.44
3.43
2.77
2.38
2.00

parameters

P
2.06
1.35
1.61
2.44
2.51
2.15
3.12
2.58
2.29
1.93

In examining the parameters of the beta distributions representing the disaggregation

parameters of the 10 specified temporal pattern groups, it can be seen that the

parameters of the beta distributions of Groups 2 and 3 are relatively similar. This

suggests that the same distribution can be used to characterise the disaggregation

parameters of these two groups. In other words, the two specified temporal pattern

groups might be combined into one single group. As the observed storms in these two

A preliminary analysis indicated that, using the median values of cXj and Pj, the frequency curves of the
observed mass curves and the cumulative frequency curves of the maximum dimensionless intensity were
reproduced better than when the mean values were used.
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crroups have the same duration range (from 13 to 24 hours) but their storm depths are

either less than 50mm or greater than 50mm (see Figure 4-27), the combination of these

two groups implies that the time variation of rainfall intensity might not be strongly

dependent on storm depth. Nevertheless, as there are only 48 observed storm events in

the duration group whose storm depths exceed 50mm (see Table 4-15), a larger storm

datar ase would be needed to justify the above postulation.

The adequacy of the beta distributions representing the disaggregation parameters of the

observed temporal patterns was tested by comparing the statistical characteristics of the

observed patterns and the design temporal patterns generated using these fitted beta

distributions. As the generation of design temporal patterns is presented in Chapter 5

(along with the generation of data from other stochastic inputs), the analysis undertaken

to check the adequacy of the fitted beta distributions is also presented and discussed in

Chapter 5.

» r
3

^ •? - *

4.6.6 Summary

In this section, the investigation of the dependence on season, storm duration and depth

of the temporal pattern of the storms recorded at 19 pluviometers used in this study was

covered. In this investigation, the rainfall temporal pattern was either represented by 3

statistical characteristics of the dimensionless rainfall hyetograph, or by internal

ordinates of the dimensionless storm mass curve. The correlation analysis and the chi-

square test of independence were used to examine the dependence of the temporal

pattern on the factors of season, storm duration and depth.

Depending on the test used as well as the level of detail of the representation of the

rainfall temporal pattern, the dependence of temporal pattern on season, storm duration

or depth was or was not detected. On the one hand, the chi-square test of independence

appeared to be more powerful than the correlation analysis in detecting this relationship.

On the other hand, the chi-square test itself could not detect the dependence of temporal

patterns on duration (or depth) when the temporal pattern was described by a small

number of ordinates, that is, when not much information of the variation of rainfall

intensity during storm duration was given.

1 , ^3 '
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Results of the chi-square test indicated that the temporal pattern represented by 9

ordinates was dependent on reason, storm duration and depth. For the storm sample

used in this study, 4 independent seasonal groups of temporal patterns were formed

using seasonal groupings of extreme rainfall in Australia. In each seasonal group, the

observed storm psftems were divided into two duration groups, with 12 hours being the

upper limit for short duration storms An exception was the summer storms in which

the temporal pattern was dependent on three duration groups, and for one case, on storm

depth. As these results conformed to most findings in previous studies, these temporal

groupings (10 groups in total) were adopted for further analysis.

The multiplicative cascade model presented by Robinson and Sivapalan (1997) was

adopted for generating design temporal patterns. For each of the 10 temporal pattern

groups, a beta distribution was also used to represent the disaggregation parameters of

the model. The two parameters of the beta distributions were estimated from the

analysis of the observed storm patterns.
\

4.7 PROBABILITY DISTRIBUTION OF INITIAL LOSS

4.7.1 Background

The initial loss - continuing loss model is a runoff production model with two

parameters, namely the initial loss and the continuing loss rate. This model is widely

used in Australia due to its conceptual simplicity, ease of application, and the ability to

reasonably estimate representative values of rainfall losses over a catchment. For these

reasons, it was adopted in this research for estimating rainfall excess. As discussed in

Section 3.3.1, in the present application, the initial loss is considered to be a random

variable and the continuing loss a fixed design value.

'P,

1 ' f

Data used for deriving the probability distribution of the initial loss for the La Trobe

River catchment at Noojee were the initial losses estimated for various rainfall-runoff

events observed at the study catchment. These data were obtained from a parallel study

(Rahman et al., 2001). In that study, it was assumed that surface runoff started when a
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threshold value of O.Olmm/h was exceeded. The initial loss of a storm event was

computed to be the rainfall that occurred before the commencement of surface runoff.

The estimated initial losses for different events were also assumed to form a

homogeneous sample for frequency analysis.

An at-site frequency analysis procedure was used to analyse the available initial loss

data for the study catchment. With this procedure, there are three steps involved,

namely the selection of a distributional type, the estimation of distributional parameters,

and the checking of the goodness-of-fit of the adopted distribution. Each of these steps

involves the choice of a single method among many alternatives, the bases of which are

dependent on many factors, such as the feasibility of a particular method, the required

accuracy, or ease of application. A brief review of the available methods in each step is

presented in Appendix I.

In this section, the correlations of initial loss with rainfall duration and average rainfall

intensity are first investigated for the particular catchment. The procedure for

developing the probability distribution of the storm initial loss is then described, along

with its application to the observed data for the La Trobe catchment. A discussion of

results is also presented.

4.7.2 Correlations of initial loss with rainfall duration and average rainfall

intensity

To examine the relationship between the storm initial loss and storm duration or average

rainfall intensity, the corresponding correlation coefficients were first computed. The

initial loss estimated for each rainfall-runoff event was then plotted against the

corresponding storm duration (see Figure 4-31) and average rainfall intensity (see

Figure 4-32). It can be seen from Figure 4-31 that storm losses seem to increase as

storm durations increase. However, this relationship is very weak, as shown by the low

value of the corresponding correlation coefficient (0.29). In addition, the coefficient of

determination (R2=0.0854) of the regression line fitted to these sets of initial loss and

duration data is close to zero. Similarly, the storm initial losses scatter widely about

their corresponding average rainfall intensities, and the estimated correlation coefficient

r,
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and R2 are very close to zero (-0.02 and 0.0007, respectively), as seen in Figure 4-32.

Consequently, it is reasonable to assume that the initial loss is independent of storm

duration and intensity. The same conclusion has been obtained in a parallel study

(Rahman et al., 2001).
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Figure 4-31: Relationship between initial loss and storm duration
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Figure 4-32: Relationship between initial loss and average rainfall intensity

4.7.3 Development of the probability distribution of initial loss

4.7.3.1 Selection of a distributional type

' • i t t I-

In order to determine the parent distribution of a data sample, histograms, moment ratio

diagrams, or L-moment ratio diagrams, described briefly in Appendix I, can be used.

For this study, the method of histograms was adopted because it is the simplest method
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for a preliminary choice. The adequacy of the assumed distribution was later assessed

using a goodness-of-fit test.

To determine the histogram of the initial loss for the La Trobe River catchment, the

observed frequencies of the initial losses were plotted against the corresponding class

intervals. The result is presented in Figure 4-33 where it can be seen that the histogram

of the initial loss has a long right tail. The corresponding coefficient of skewness

computed for this data sample was 2.7. As theoretical distributions such as gamma,

beta, or lognormal are all positively skewed and have the shape similar to this

histogram, they could be tentatively selected as the parent distribution for the initial loss

for the particular catchment. Nevertheless, the beta distribution was adopted because

the parameter estimation and data generation of this distribution are very simple.

10 30 50 70 90 110

Initial loss (mid-points of intervals, mm)

Figure 4-33: Histogram of initial losses for the La Trobe River catchment
"A
f

4.7.3.2 Estimation of distributional parameters

To estimate the parameters of a distribution, the method of moments, method of L-

moments, method of maximum likelihood, or Bayesian methods can be used. An

outline of these methods, is presented in Appendix I. Of these, the method of L-

moments has been popularly used in recent applications because it is less subject to bias

in parameter estimates, is able to characterise a wide range of distributions, and is more

robust to outliers of data (Hosking, 1990). Nevertheless, for the present study, the

method of L-moments is not feasible, because mathematical formulation to compute L-

moments of the assumed beta distribution is not readily available. The method of
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moments was used instead because it is simple, and more importantly, the product

moments of the beta distribution can be readily obtained from statistical texts.

In order to estimate distributional parameters by the method of moments, sample

moments are equated to their corresponding distributional moments. For the case of the

beta distribution, its two parameters a and P can be computed from the lower limit (a),

upper limit (b), mean [E(Y)] and variance [Var(Y)] of a data set using Equation (F-7)

(see Appendix F).

The two parameters of the beta distribution were computed for the sample of initial

losses for the La Trobe River catchment with the following statistics: a=1.85mm,

b=143.9mm, E(Y)=27.3mm, and Var(Y)=302.7mm2. The estimated parameters were:

o=1.6 and (5=7.2. The cumulative probability distributions of the fitted beta distribution

and of the observed initial losses are plotted in Figure 4-34.

- - • Observed data
—•— Fitted beta distribution

0 30 60 90
Initial loss (mm)

120 150

Figure 4-34: Plot of the cumulative distribution function of observed initial losses and

the fitted beta distribution
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The visual comparison of the cumulative frequency curves of the observed loss data and

the fitted beta distribution shown in Figure 4-34 indicates that the two curves match

very well for the initial loss of about 60mm or greater. However, for the initial loss

below this range, there is quite a difference between the two cumulative frequency

curves. Therefore, the adequacy of the fitted beta distribution needs to be further

assessed, as described below.
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4.7.3.3 Checking of the adequacy of the fitted distribution
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Common methods for evaluating the goodness-of-fit of a theoretical distribution to a set

of data are the Kolmogorov-Smirnov one-sample test, the chi-square goodness-of-fit

test, and the probability plot correlation coefficient test (Haan, 1977; Cunnane, 1989;

Stedinger et al., 1993). Of these methods, the chi-square goodness-of-fit test is very

widely used due to its simplicity and ease of application. For these reasons, this test

was selected for assessing how well the adopted beta distribution fits the observed loss

data.

In order to apply the chi-square goodness-of-fit test, in general, observed data are first

assigned to class intervals. The expected number of observations that falls in each class

interval (expected according to the theoretical distribution under test) is then computed

by multiplying the expected relative frequency by the number of observations. The test

statistic is finally calculated as follows (Haan, 1977):

(4-18)
i=l

where k* is the number of class intervals, and Oj and Ei are the observed and expected

number of observations in the i* class i. ;. rvals.

The hypothesis that the data are from the specified distribution is rejected at a given

level of significance if the computed test statistic exceeds the corresponding critical

value of a chi-square distribution with k*-p-l degrees of freedom, where p is the number

of parameters estimated from the data. These critical values can be obtained from Haan

(1977, Table E6).

An application of the chi-square goodness-of-fit test for assessing the adequacy of the

fitted beta distribution to the observed initial losses for the given catchment is illustrated

in Table 4-18. In this application, the observed values of the storm initial loss were

divided into five class intervals, as shown in Table 4-18. The number of degrees of

freedom of the chi-square distribution used was: k*-p-l = 5-2-1 = 2. The critical value

at 5% LOS was 5.99. It can be seen in Table 4-18 that the computed test statistic (3.5)

is less than the specified critical value. Therefore, for the selected class intervals, the
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null hypothesis that the observed initial losses for the La Trobe River catchment are

from the specified beta distribution (a=1.6, P=7.2) can not be rejected at 5% LOS.

Table 4-18: Results of the chi-square goodness-of-fit test on initial loss data

Class intervals of

storm losses (mm)

0-20
20-40
40-60
60-80

80-143.9

Expected relative

frequency

0.401
0.379
0.163
0.048
0.009

Frequency

Expected (Ej)

63.0
59.5
25.6
7.5
1.4

Observed (Oj)

62
68
20
5
2

lest statistic (x2) =

(Os - Ei)2/Ei

0.01
1.21
1.22
0.85
0.24

3.55

At this point, it is worth noted that results of the chi-square goodness-of-fit test are quite

sensitive to the number of class intervals used to summarise the observed data. For

example, a subsequent analysis showed that when 6 or 8 intervals were used, the null

hypothesis is rejected at 5% LOS (but can not be rejected at lower levels, say 2.5% or

1% LOS). This suggests that the adopted beta distribution is not necessarily the best

distribution characterising the storm initial loss for the specified catchment. However,

this was discovered late in the study, and no other distribution was investigated.

1

4.7.4 Summary

The loss model adopted in this research was the initial loss - continuing loss model in

which the initial loss was treated as a random variable, and the continuing loss rate as a

fixed design value. It was found that the storm initial losses derived for observed

rainfall-runoff events for the La Trobe River catchment were independent of storm

duration and average rainfall intensity. A two-parameter beta distribution was fitted to

these initial losses. Results of the chi-square goodness-of-fit test indicated that the

adopted beta distribution provides an acceptable fit to the observed losses for the study

catchment.
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4.8 PARAMETERS OF THE LUMPED RUNOFF ROUTING MODEL
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4.8.1 Background

Runoff routing models give estimates of a surface runoff hydrograph by routing rainfall

excess through a model representing the catchment storage. To obtain the total flood

hydrograph, baseflow must be determined separately, and then added to the estimated

surface runoff hydrograph.

The runoff routing model adopted in this research, as discussed in Chapter 3, assumes a

non-linear relationship between storage and discharge. It has two parameters k and m,

in which k is a dimensional coefficient representing storage delay time, and m is a

dimensionless constant representing the non-linearity of catchment response. The

adopted model is relatively simple in that it does not take into account the spatial

variation of rainfalls and losses over the entire catchment, and assumes only one model

storage at the catchment outlet. Due to this simplicity, it was considered necessary to

evaluate the performance of this model in design flood estimation by comparing flood

estimates obtained from this model with those from a distributed model developed for

the catchment. Results of this comparison would give indications of how design floods

would have been estimated had a distributed model been used for the catchment.

This section presents the research undertaken to estimate the parameters of the adopted

model and evaluate the model performance.

4.8.2 Determination of the lumped model parameters

The determination of the parameters of the adopted lumped runoff routing model for the

La Trobe River catchment at Noojee, with the catchment area of 290km2, consisted of

four steps: event selection, baseflow separation, model calibration, and model testing.

These steps are described below.
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4.8.2.1 Event selection
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To select observed rainfall-runoff events for model calibration and testing, two criteria

were used. Firstly, there had to be a minimum of five large observed flood events, of

which about half were required for model calibration and the remainder for model

testing. Secondly, there had to be concurrent rainfall data for the selected floods.

Nine largest flood events were extracted from the flow record of the La Trobe River

catchment. The threshold discharge of 22m3/s (corresponding to floods of

approximately 5-year ARI) was used for this extraction. Among the extracted floods,

only 5 events had concurrent rainfall data. Therefore, these 5 events were selected for

calibrating and testing the adopted lumped runoff routing model. Even though it was

desirable to obtain more events for model calibration and testing (by reducing the

threshold discharge), it was decided to use only the 5 selected rainfall-runoff events, as

the use of a smaller threshold discharge would result in even smaller events for analysis.

The peak discharge of the selected floods ranged from a minimum of 24.3m3/s to a

maximum of 60m3/s (see Table 4-19).

Table 4-19: List of observed floods used for model calibration and testing

Event start date

27/01/1963
28/05/1969
5/11/1971
7/04/1977
30/06/1980

Peak discharge

(m3/s)
24.3
27.5
60.0
25.6
33.0

Surface runoff

(m3/s)
18.6
15.0
48.6
22.2
31.3

Baseflow

(m3/s)
5.7
12.5
11.4
3.5
1.7

% of baseflow

to peak discharge
23.6
45.5
19.0
13.5
5.1

4.8.2.2 Baseflow separation

The separation of baseflow from observed (total) streamflow was necessary in

determining runoff routing model parameters because only surface runoff is modelled,

and thus the calibration and testing procedures relate to surface runoff only.
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Many methods are available for baseflow separation (Institution of Engineers, Australia,

1987, Chapter 8). In general, it is necessary to define the start and end of the surface

runoff hydrograph and the shape of the baseflow hydrograph. Whereas the start of

surface runoff can be easily determined, the determination of the end of surface runoff

and the shape of the baseflow hydrograph involves more subjective judgement. In this

study, the HYBASE baseflow extraction program (HYDSYS, 1994), based on a

recursive digital filter technique, was adopted. In this program, the surface runoff at

time step (k) is a function of a filter factor, the number of passes, and the total

streamflow at time steps (k) and (k-1). As the filter factor is increased, the baseflow

hydrograph becomes flatter, and as the number of passes is increased, the baseflow

hydrograph becomes smoother. The choice of the correct combination of these two

parameters is also a highly subjective process.

For the La Trobe River catchment, it was necessary to separate baseflow for only one of

the five selected flood events (the 1963 flood, see Table 4-19), as the surface runoff

hydrographs of the other four events were available from a previous study (Smith,

1998). To do this, the specified flood event was first extracted at hourly time steps from

the HYDSYS database. The HYBASE program was then used to estimate baseflow.

The surface runoff hydrograph was finally extracted using program HYCSV (HYDSYS,

1994).

Results of the baseflow separation are also presented in Table 4-19 and illustrated in

Figure 4-35. In Table 4-19, the estimated surface runoff and the corresponding

baseflow under the peak discharge of the five selected floods are listed. In Figure 4-35,

the total streamflow hydrograph of the 1963 flood is shown along with the

corresponding baseflow hydrograph. It is noted from Table 4-19 that the ratio of

baseflow to the peak discharge is relatively high, ranging from 5% to 45% with an

average of 21%, for all the events used. Baseflow has been noted to be high for the

study catchment by other authors, for example, Smith (1998).
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Figure 4-35: Plot of total streamflow and the extracted baseflow (the 1963 flood)

4.8.2.3 Model calibration

The aim of model calibration is to determine the parameters k and m of the adopted

runoff routing model. For the Lb Trobe River catchment, the parameter m was assumed

to be 0.8. This value has been recommended in many previous investigations, as

documented by the Institution of Engineers, Australia (1987, Chapter 9).

To estimate the routing model parameter k, a trial and error process was adopted. In

this process, the initial loss was varied first so that the rising limb of the estimated

surface runoff hydrograph fitted that of the observed hydrograph. The continuing loss

rate was then determined to give the correct surface runoff volume. Finally, the

parameter k was varied to match the peak flows of the two hydrographs. For each

event, this process was repeated until the observed and estimated hydrographs fitted as

closely as possible in terms of flood peak, as this was the flood characteristic of ii.terest.

Nevertheless, the time to peak and hydrograph shape were also considered. Three

observed rainfall-flood events were used in this calibration (the 1969, 1971, 1980

events). The calibration program was written by Rahman (1999).

Results of the calibration of the runoff routing model for the La Trobe River catchment

are presented in Table 4-20. This table shows the values of the storm initial loss,

continuing loss rate, and the routing model parameter k for each of the three events

f t'
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used, along with the observed and calculated flood peaks and time to peaks. A plot of

the observed and estimated surface runoff hydrographs for one calibrated event is

presented in Figure 4-36. It is noted here that for all the events used for model

calibration, it was very difficult to match the rising limb and the shape of the observed

and calculated hydrographs, regardless of changes in the initial loss, continuing loss and

the routing inodel parameter k used. This situation is clearly illustrated in Figure 4-36.

Table 4-20: Results of model calibration (lumped runoff routing model, La Trobe River

catchment) (m=0.8)

Event IL CL Peak discharge (m3/s) Time to peak (h)
(mm) (mm/h) k observed calculated % difference observed calculated % difference

1969 25
1971 34
1980 25

3.2
4.3
7.9

56
47
55

15
48.6
31.3

15.15
48.1
33.7

1
-1.0
7.7

89
73
60

48
42
46

-46.1
-42.5
-23.3
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Figure 4-36: Observed and estimated hydrographs (the 1969 flood, model calibration)

Results of model calibration, as shown in Table 4-20 and Figure 4-36, indicate that the

adopted lumped runoff routing model satisfactorily reproduces the observed flood peak,

but significantly underestimates the time to peak of all the three events used, and does

not preserve very well the hydrograph shape. For these events, the difference between

the peak discharge of the observed and computed hydrographs is only within the range

of 1% and 8%. Nevertheless, there is a discrepancy from 23% up to 46% between the

observed and computed time to peak of the hydrographs. It is also noted from Table

4-20 that the continuing loss rate used for the 1980 flood seems to be high (7.9mm/h).

However, according to an independent study of data used for loss modelling, the
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adopted value of the continuing loss rate for the La Trobe River catchment is reasonable

(Hill et al., 1996a).

In order to select a common value of the routing parameter k for the study catchment, it

is noted from Table 4-20 that k values for the three calibrated events (56, 47, 55) are

approximately equal. Therefore, the global parameter k for the catchment was initially

adopted as the average k value (k=53).

4.8.2.4 Model testing

The aim of model testing is to check whether the calibrated runoff routing model with

the specified parameters k and m (k=53, m=0.8) can reproduce other observed floods.

This was carried out by varying the initial loss and continuing loss rate until the

estimated flood hydrographs matched the shape and volume of the observed ones as

closely as possible. Two observed rainfall-runoff events that were not used in model

calibration (the 1963 and 1977 events) were used in the testing.

Results of the model testing are summarised in Table 4-21. A plot of the observed and

estimated flood hydrographs of one test event is also illustrated in Figure 4-37.
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Figure 4-37: Observed and estimated hydrographs (the 1963 flood, nno>-;l testing)
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Table 4-21: Results of model testing (k=53, m=0.8) - Lumped runoff routing model

Event EL CL Peak discharge (m3/s) Time to peak (h)
(mm) (mm/h) observed calculated % difference observed calculated % difference

1963
1977

35
0

9.2
11

18.6
22.2

18
22.4

-3.2
0.9

34
31

29
23

-14.7
-25.8

It can be seen in Table 4-21 that the adopted runoff routing model preserves very well

the peak discharge. In particular, errors in peak flood estimates are less than 3% for

both test events used. On the other hand, the time to peak of the predicted hydrographs

is underestimated by at least 15%. In addition, the shape of the observed hydrograph

for both test events is not satisfactorily reproduced, as illustrated in Figure 4-37.

As the calibrated model only reproduced well the peak discharge in the test runs, efforts

were made to improve its performance by using the two test events for further model

calibration. However, results of this analysis indicated that the estimated flood

hydrographs were not better predicted both in timing and in shape. Therefore, it was

decided to keep the specified values of k and m (k=53, m=0.8) as the parameters of the

lumped routing model for the study catchment. Possible reasons for poor model

performance and avenues for improvements are discussed below.

4.8.2.5 Discussion

The discrepancy between the observed and calculated surface runoff hydrographs,

especially in the time to flood peak and hydrograph shape, in both model calibration and

testing could have been caused by many factors. Firstly, the estimation of losses from

rainfall and the separation of baseflow in some selected events might have been

incorrect. As baseflow was known to be high for the study catchment, the choice of a

.baseflow separation technique would certainly affect the estimated amount of baseflow,

and consequently, the resulting surface runoff and the calibrated routing model

parameters, as confirmed in previous studies (Bates and Davies, 1987). In addition, the

selection of a combination of the filter factor and number of passes in the adopted

baseflow extraction program was highly subjective.



Chapter 4 133

Secondly, the rainfall-runoff data recorded for these events may have been erroneous.

As the time to flood peak was underestimated in both model calibration and testing, the

data errors might be in the form of a shift in the recorded event time. Nevertheless,

after examining all rainfall-runoff events used in this study (see an illustration of a

typical event in Figure 4-38), it was evident that the recorded timing of flood of these

events was reasonable because the peak flood discharge always occurred after the

occurrence of peak rainfall for each individual event.
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Figure 4-38: Plot of observed flood and the corresponding rainfall event (the 1963

flood)

Thirdly, the estimated rainfall over the catchment may have gross errors. It is obvious

that rainfall is highly variable in spatial extent, therefore the use of rainfall data

recorded at only one rain gauge might have not been representative of the catchment

rainfall and the spatial variation of rainfall over the catchment.

Lastly, the runoff routing model itself may have been inadequate. That is, the non-

linearity of the catchment, the hydrologic processes involved in the generation of runoff,

or characteristics of the catchment and its drainage network may not have been

modelled adequately. In the latter case, for example, the lower reaches of the study

catchment might be very flat, resulting in very long delay in the time to flood peak, but

the adopted model might have failed to consider this flat slope in the catchment

representation. The adopted model could have been improved by using a much larger
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value of m and including some translation, as suggested by the results shown in Figure

4-36 and Figure 4-37. Otherwise, distributed runoff routing models such as RORB

(Laurenson and Mein, 1995) could be used to provide more reliable design flood

estimates.

To summarise, the calibrated lumped runoff routing model for the La Trobe River

catchment satisfactorily reproduced the peak discharge of the observed hydrographs.

As this study focussed on the determination of the flood frequency curves of flood peak,

the adopted model is considered to be adequate for this purpose. In applying the

calibrated model for design flood estimation, it is emphasised that the model is directly

applicable only for flood estimates within the range of the flood magnitudes used for

model calibration and testing (from about 20m3/s to 60m3/s). Extrapolation of results

beyond this range will involve additional uncertainties.

4.8.3 Comparison of lumped and distributed runoff routing models

As mentioned in Section 4.8.1, the comparison of design floods estimated by the

adopted lumped runoff routing model with those by a distributed model would give

indications of the likely improvements of flood estimates had the more refined model

been adopted.

The selection of a distributed model for the La Trobe River catchment was undertaken

with the aim to minimise the effort of model calibration. To achieve this objective, it

was desirable to use a distributed model readily available for the catchment of interest.

In this regard, there are some calibrated catchment RORB and URBS models available

from previous studies (Dyer et al., 1994; Baker, 1997; Smith, 1998), but all these

models have not yet been independently tested. A preliminary analysis was therefore

carried out to select the best model by testing the available models with an observed

rainfall-runoff event that was not used in model calibration. Details of this analysis are

documented in Appendix J. Analysis results indicated that the equivalent RORB

catchment model developed by Baker (1997) reproduced the observed floods relatively

well, and therefore was selected for this comparison.
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In Baker's model, the study catchment and its drainage system were represented by 11

sub-areas and 15 river reaches (see Figure 4-39). The model parameters were: kc=30,

m=0.8. The theoretical background of the URBS and RORB programs from which

Baker's model was developed and modified is also summarised in Appendix J.

Legend.
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Figure 4-39: Equivalent RORB model for the La Trobe River catchment at Noojee

(Baker, 1997)

In order to compare the lumped and distributed models developed for the La Trobe

catchment, these models were applied to the five selected rainfall-runoff events (sec

Table 4-19). In these test runs, the model parameters were fixed and the loss parameters

were varied within reasonable limits until the calculated surface runoff hydrographs

matched the observed ones in terms of flood volume, hydrograph shape, time to peak
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and most importantly, flood peak. Results of this comparison are tabulated in Table

4-22. The percentage differences between hydrograph characteristics determined by the

lumped and equivalent RORB models and the observed hydrograph characteristics were

also computed and are presented in Table 4-23. A plot of the observed and calculated

flood hydrographs for one test event used is also illustrated in Figure 4-40.

Table 4-22: Performance of runoff routing models

Event

1963
1969
1971
1977

1980

Observed hydrograph
Peak discharge

(m3/s)
18.6
15.0
48.6
22.2

31.3

Time to peak

(h)
34
89
73
31
60

Volumt-

(10° m3)
2.0
2.6
5.0
2.0
4.1

Lumped model (k = 53, m = 0.8)
Peak discharge

(m'/s)
18.0
15.9
43.3
22.4
42.0

Time to peak

(h)
29
48
42
23
46

Volume

(lO'm3)
2.2
2.4
5.0
2.5
3.7

RORB model (kc = 30, m = 0.8)
Peak discharge

(m3/s)
18.3
16.0
49.9
20.9
48.1

Time to peak

(h)
40
59
49
29
53

Volume

(106m3)
1.9
2.6
5.0
2.0
4.1

Table 4-23: % difference between estimated and observed hydrographs

Event Lumped model (k = 53, m = 0.8) RORB model (kc = 30, m = 0.8)
Peak discharge Time to peak Volume Peak discharge Time to peak Volume

1963
1969
1971
1977
1980
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Figure 4-40: Observed and estimated flood hydrographs (the 1969 flood)
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In comparing the lumped model with the distributed RORB model calibrated for the La

Trobe River catchment at Noojee, it can be seen in Table 4-22 and Table 4-23 that peak

discharges of the surface runoff hydrographs calculated by these models are quite

similar. For example, compared with the observed peak discharge, errors in the

estimated flood peak are generally below 10% for both lumped and distributed models.

An exception is the 1980 event for which both models overestimate the observed flood

peak by more than 30%.

With regard to other hydrograph characteristics, the lumped model does not preserve the

hydrograph shape of the observed events as well as the distributed model, as illustrated

in Figure 4-40. Similarly, compared with the observed floods, errors in the time to

flood peak estimated by the lumped model are slightly greater than the distributed

model. For example, the absolute difference between the estimated and observed timing

of flood varies from 14.7% to 46.1% for the lumped model and from 6.5% to 33.7% for

the distributed model (see Table 4-23). Thus, both models considerably underestimate

the time to flood peak. In addition, as seen in Table 4-22 and Table 4-23, errors in the

flood volumes reproduced by the lumped model are greater than those from the

distributed model. This is possibly due to errors in estimates of losses from rainfall,

especially in the continuing loss rate.

The comparison of the lumped and distributed routing models shows that even though a

simple lumped runoff routing model was adopted for this present study, peak flood

discharges estimated by this model compared well with those obtained from a

distributed model. Therefore, it can be inferred that design floods obtained from the

adopted lumped model would be indicative of those estimated by distributed models had

the latter been used in Monte Carlo simulation. Both modelled hydrographs do not

match well the observed ones in terms of hydrograph shape and time to flood peak,

possibly indicating that the available rainfall data is not representative of catchment

rainfall, as well as inadequacies of the catchment representation in both models.

4.8.4 Summary

In this study, the runoff routing model adopted for the La Trobe River catchment at
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Noojee was a lumped model with a concentrated storage at the catchment outlet. The

model does not consider the spatial variation of rainfalls and losses over the catchment.

It has two parameters k and m, the former represents the storage delay time and the

latter characterises the non-linearity of the catchment response to rainfall.

In estimating the parameters of the adopted model, m was assumed to be 0.8. To

evaluate the model parameter k, five rainfall events observed at one recording rain

gauge inside the catchment and the corresponding flood events were used. The

calibrated model (k=53, m=0.8) was found to reproduce the peak discharge of the

observed surface runoff hydrographs quite well. On the other hand, the timing of

peakflow was significantly underestimated.

Due to the simplicity of the adopted lumped model, design floods estimated by the

model were compared with those of a distributed RORB model developed for the same

catchment. The objective of this comparison was to assess how flood estimates would

have differed had the spatial variability of rainfall and catchment characteristics been

considered. Results of the comparison confirmed that the peak flow estimates by both

models were quite similar. Therefore, it was concluded that, even though the distributed

runoff routing model is clearly superior (both in theory and practice), the adopted

lumped model was able to provide adequate estimates of the peak discharge in the range

of flood magnitude used for model calibration and testing.

4.9 OTHER FIXED DESIGN INPUTS

In this study, design inputs considered as having fixed design values were the storm

continuing loss rate and the design baseflow.

The design continuing loss for the La Trobe River catchment at Noojee was taken to be

4.7mm/h. This value was obtained from a previous study of loss modelling (Hill et al.,

1996a).
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For the study catchment, the adopted design baseflow was 0.75m3/s (Siriwardena et al.,

1997). This is the median pre-storm baseflow derived from monthly median values,

which in turn were computed from observed baseflow hydrographs at the catchment

outlet. Even though it is desirable to describe baseflow by a hydrograph, for simplicity,

the adopted baseflow hydrograph was assumed to be time invariant.

It is noted at this point that baseflows (at the time of the peak discharge) for the five

events used for calibrating the adopted runoff routing model for the study catchment

ranged from 1.7 to 12.5m3/s (see Table 4-19). These values are generally much higher

than the adopted design baseflow (0.75m3/s), and might be biased towards wet

catchment conditions. Therefore, they are considered as not representative of the

typical antecedent wetness of the catchment.

4.10 SUMMARY

Results of the analyses documented in this chapter and findings are summarised below.

• Two rural catchments (the La Trobe River catchment at Noojee and the Tarwin

River catchment at Dumbalk North) and 19 pluviometers in and around the selected

catchments were selected to apply and evaluate the proposed Joint Probability

Model for design flood estimation. Observed rainfall and flow data at these sites

were checked for homogeneity. Results of the Mann-Kendall test for trend and the

CUSUM test for a change in the mean value indicated that the observed rainfall and

flow data at the selected sites were homogeneous in time. The La Trobe River

catchment was selected for the initial analyses described in this chapter.

• In order to extract storm events from continuous rainfall records, a suitable storm

definition was developed in this study. Using the adopted definition, the extracted

events had the following characteristics: they are stochastic events, have no

significant rain before the start and after the end of the events, and have the potential

to produce significant runoff. The extracted events were then checked for

consistency, and those that had evidence of errors in data recording or transcription

were discarded. In total, there was 3975 observed storms extracted from the 19

selected pluviometers, with an average of seven events per year per station.
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In order to develop the probability distribution of storm duration for the La Trobe

River catchment, the Hosking and Wallis method of regional frequency analysis was

adopted. Analysis results indicated that homogeneous regions with respect to storm

duration could be formed by grouping sites contiguous to the site of interest. A

three-parameter Generalised Pareto distribution was used to characterise the storm

duration.

As there was a strong relationship between average rainfall intensity and duration, a

conditional probability distribution was used to represent the rainfall intensity. In

order to develop the conditional frequency curves of the average rainfall intensity

(the IFD curves) for station 85237 within the La Trobe River catchment, a modified

version of the at-site frequency analysis procedure developed by Rahman et al.

(2001) was adopted. An exponential distribution was fitted to the observed average

intensities for each of the five class intervals of storm duration and a polynomial

equation was used to generalise the results for all durations. This procedure

provided consistent rainfall intensity estimates for short duration and frequent

storms, but resulted in some inconsistencies in the intensity estimates for longer

duration and rarer events (duration greater than 48 hours and ARI exceeding 20

years). The tails of the derived IFD curves were therefore adjusted using the at-site

IFD curves for storm bursts. The adjustments to the initial IFD curves were quite

substantial but justified, and preserved the inverse relationship between storm

duration and average intensity.

In order to examine the dependence of rainfall temporal patterns on season, storm

duration or depth, correlation analysis and the chi-square test of independence were

used. Test results indicated that, depending on the test used and the level of detail of

the representation of the temporal pattern, this dependence was or was not detected.

According to the results of the chi-square test, the rainfall temporal pattern was

dependent not only on season but also on storm duration and depth. Ten

independent groups of temporal patterns were defined.

A multiplicative cascade model was adopted to generate synthetic temporal patterns.

For each temporal pattern group, disaggregation parameters of this model were

represented by a beta distribution. Parameters of the beta distribution were

determined from the observed storm temporal patterns in each group.
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Values of the initial loss of observed rainfall-runoff events for the catchment being

studied were obtained from a parallel study. The initial loss was found to be

independent of storm duration and average intensity. A beta distribution was then

used to characterise the initial loss.

A lumped runoff routing model was adopted and calibrated for the catchment. The

adopted model reproduced well the peak discharge of the observed hydrographs. In

comparing the adopted lumped model with a distributed RORB model developed for

the same catchment, it was found that design flood peaks estimated by the former

compared well with those estimated by the latter and the observed events.

Therefore, it was concluded that, even though the lumped model was conceptually

simple, it was able to provide adequate approximation of peak flows for the

purposes of this study.

Other inputs to the design flood estimation process that have fixed design values

were the continuing loss rate and baseflow. These design values were extracted

from results of previous studies.
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Chapter 5

MODEL APPLICATION

5.1 INTRODUCTION

After determining the probability distributions of the important flood producing factors

and the representative values of other design inputs, the subsequent step is to estimate

design floods using the proposed Joint Probability Model. For this research, Monte

Carlo simulation was selected for design flood estimation for three reasons. Firstly, it

cai. take account of the dependence of the random variables involved in the design.

Secondly, it has the potential to be easily applied in practice. Finally, a computer

program that can be modified to be applied to the data used in this research is readily

available.

Broadly speaking, Monte Carlo simulation is a computer experiment used to simulate a

physical or mathematical system that is too complicated to be understood properly,

and/or appears to be based on random processes. The experiment is performed on a

probabilistic model that represents the system and all random variables and other fixed

design inputs involved. In the experiment, the probability distributions of the input

variables first need to be specified. Different sets of random values of these input

variables are then generated from their corresponding probability distributions. Values

of the output variable resulting from the joint occurrence of the fixed and variable

design inputs are next computed using the adopted simulation model. By repeating the

experiment a large enough number of times, a sample of the output can be obtained.

Methods of statistical estimation finally can be applied to the output sample in order to

provide frequency estimates of the system output. These estimates are also subject to

sampling variability due to the statistical nature of Monte Carlo simulation. Thus, one

of the fundamental issues of Monte Carlo simulation is how to design the experiment to

obtain reliable results.
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To increase the accuracy of the system output, two methods can be applied. The first is

to repeat the experiment a large enough number of times so that the mean of the output

estimates approaches the population mean, according to the law of large numbers

(Perlado, 1990). The second is to apply variance reduction techniques (Perlado, 1990;

Kottegoda and Rosso, 1997). Broadly speaking, these techniques aim to reduce the

standard error or the variance of the simulation outcomes by biasing the probabilistic

scheme to the domain of design interest without increasing the sample size. Of these

two methods, the generation of a large number of trials is adopted because it is

considered to be adequate for the purpose of this study, that is, to estimate design floods

with ARIs in the range of 1 to 100 years. In addition, it is simpler and easier for

practical applications than using variance reduction techniques.

4 The application of Monte Carlo simulation to the proposed Joint Probability Model for

estimating design floods from design rainfalls involves two stages. The first stage is to

generate flood events. This includes the determination of number of random number to

be generated, the generation of random values from the probability distributions of the

flood causing factors, and the estimation of design floods by passing through the

proposed model various combinations of these random numbers and other fixed design

inputs. After generating a large sample of synthetic floods, the second stage is to carry

out a frequency analysis of these flood events in order to determine the derived flood

frequency curve. The objective of this chapter is to report the application of the above

two stages to the development of the generated flood frequency curve for the La Trobe

River catchment at Noojee.

«•» >

5.2 GENERATION OF RANDOM NUMBERS FROM THE INPUT

DISTRIBUTIONS

5.2.1 Background

A random number is a number selected at random from a population of numbers such

that each number in the population has a chance of being selected in accordance with

the probability distribution from which the numbers are drawn. Random numbers can
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be classified as uniform random numbers and random numbers generated from other

distributions. Uniform random numbers, also called uniform random deviates or

uniform deviates, are random numbers generated from a uniform distribution, usually

on the interval from 0 to 1. Random numbers generated from other distributions are

obtained by performing appropriate operations on uniform random numbers.

Many methods are available for generating random numbers. For example, the linear

congruential method is most popularly used to generate uniform deviates, and the

inverse cumulative distribution function method or the rejection method can be

employed to generate random numbers from other continuous distributions (Press et al.,

1989). In practice, utility subroutines (also called system-supplied random number

generators) are widely used. For example, for FORTRAN language, utility subroutines

for selecting the type of generators or for setting and retrieving the seed (the starting

value of a sequence of random numbers) are available in the Microsoft International

Mathematical Statistical Library (MSIMSL) (Microsoft Corporation, 1995). A

collection of subroutines for generating random numbers from common distributions

such as uniform, beta, exponential, and normal distributions can also be found in this

library. In addition, some subroutines for generating random numbers from a general

continuous distribution are also provided.

This section documents the research undertaken to generate random numbers from the

statistical distributions of storm duration, rainfall intensity, temporal pattern, and initial

loss. It first specifies the number of random numbers to be generated, then describes the

application of computer subroutines for generating random data from the above

distributions.
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5.2.2 Number of generated data

For the present application, the number of random data to be generated depends on

many factors such as the degree of accuracy required, the range of flood return periods

of interest, the number of random variables involved in simulation, and the degree of

correlations among them. When using four random variables (intensity, duration,

temporal pattern, and initial loss) in the proposed Joint Probability Model with some
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degree of correlations, it was considered adequate to generate 2000 years of data to

estimate design floods with return periods of 1 to 100 years. It was also assumed that

the generated floods form a partial duration series, therefore the number of random data

to be generated (NR) can be determined from the following relationship:

NR=(0,xNY (5-!)

where (Oi is the average number of events per year, and NY is the number of years of

data to be generated.

For the La Trobe River catchment, the average number of significant rainfall events per

year was 7.6, recorded at pluviometer 85237. Therefore, the data generation scheme

was applied to generate 15000 events over the period of 2000 years.

5.2.3 Storm duration

In order to generate 15000 random storm durations from the Generalised Pareto

distribution representing the storm duration at station 85237, subroutines DRNGCS and

DRNGCT of the MSIMSL (Microsoft Corporation, 1995) were used. These

subroutines have been developed for generating random numbers from a general

continuous distribution using the inverse cumulative distribution function method

(Haan, 1977; Press et al., 1989). With this method, a random number can be generated

from a probability distribution by equating a randomly generated uniform random

number with the cumulative distribution function of the specified probability

distribution. More details of this method are documented in appendix K. The

cumulative distribution function of the Generalised Pareto distribut: m is documented by

Hosking (1997).

Before using the generated storm durations for design flood estimation, it was necessary

to check if the generated data could reproduce the important statistical properties of the

observed storm durations. In order to do this, the mean, standard deviation, skewness,

and percentiles of the simulated storm durations were computed and then compared

with those of the observed storm events. A summary of these statistical properties of

the observed and generated storm durations is presented in Table 5-1. It can be seen
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from this table that the average duration of the observed storms is reproduced very well

in the simulated storms. Other statistical characteristics of the observed storms such as

skewness and percentiles of the storm duration are also presen-ed well in the generated

events. However, the standard deviation of the simulated storm duration is slightly

greater than that of the historical data. This means that, the duration of the simulated

storms is slightly more variable than that of the observed storms. In general, it can be

concluded that the generated storm durations for station 85237 preserve very well the

statistical properties of the observed storm durations.

Table 5-1: Statistical properties of observed and simulated storm durations

Number of events
Mean (h)
Standard deviation (h)
Skewness
25th percentile (h)
50th percentile (h)
75th percentile (h)

observed storms
167
23.5
18.1
1.1
9
19
35

simulated storms
15000
23.6
18.9
1.1
9
19
34

5.2.4 Rainfall intensity

In order to determine the average rainfall intensity corresponding to a specified random

storm duration and an ARI, the procedure below, developed by Rahman et al. (2001)

was adopted.

• An IFD table, showing average rainfall intensities for some selected storm durations

and ARIs, was developed for the site of interest (see Table 5-2). The average

rainfall intensities shown in this table were computed using the method described in

Section 4.5. There are two points to be noted in this table. Firstly, even though the

ARI of design floods of interest in this study is from 1 to 100 years, the simulated

range of ARIs is much wider (from 0.1 to 106 years) to allow for various input

combinations that might arise during simulation. Secondly, the derived IFD curves

for the design site are considered to be reliable in the ARI range from 1 to 100 years

(see Section 4.5). Therefore, extrapolation of these curves outside this range is

subject to considerable uncertainties.
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Table 5-2: EFD table for observed storms at pluviometer 85237 (unit mm/h)

147

D
(h)
1
2
6

24
48
72
120

0.1
2.21
1.82
1.49
1.22
0.38
0.21
0.16

1
8.33
5.69
3.09
1.42
0.96
0.76
0.57

1.11
8.84
5.92
3.17
1.47
1.01
0.82
0.62

1.25
9.42
6.17
3.26
1.53
1.07
0.88
0.69

2
10.42
6.98
3.78
1.80
1.26
1.03
0.80

ARI (years)
5

12.82
8.67
4.74
2.27
1.59
1.29
1.00

10
14.60
9.95
5.47
2.62
1.83
1.48
1.14

20
16.41
11.22
6.19
2.97
2.07
1.68
1.29

50
18.77
12.89
7.15
3.44
2.39
1.94
1.49

100
20.66
14.17
7.86
3.79
2.65
2.15
1.66

500
26.63
17.34
9.27
4.61
3.38
2.86
2.34

1000
28.40
18.59
9.99
4.98
3.64
3.07
2.50

1000000
52.26
31.93
16.33
8.49
6.64
5.89
5.20

• A random duration was then generated using the method described in Section 5.2.3.

• A random annual exceedance probability (AEP) to be assigned to the generated

storm duration was next generated from a uniform distribution on the interval from

0 to 1. To avoid values of AEP that are too low or too high and are not of direct

interest in this study, the following constraint was applied to the generated AEP:

10"* < AEP < 1 - e ' M | , where (Oi is the average number of storms per year.

• The AEP was then converted into the corresponding ARI for partial duration series

by the following relationship (Stedinger et al., 1993): ARI = -1 /(ln(l - AEP)).

• The average rainfall intensity for the specified storm duration and ARI was finally

computed by linearly interpolating values of the IFD table on a logarithmic scale.

The linear interpolation was considered to be adequate here for two reasons. Firstly,

for a given storm duration, a straight line represents the relationship between average

rainfall intensity and storm ARI (see Section 4.5.3). Secondly, for a given ARI, a

near straight line characterises the relationship of average rainfall intensity and

duration. As illustrated in Figure 4-20, this latter relationship is described by a

second-degree polynomial function, but due to the very small coefficient of the

square term, the polynomial function is closely approximated by straight-line

segments on a log-log scale.

5.2.5 Temporal patterns

5.2.5.1 Generation of design temporal patterns

As mentioned in Section 4.6.5, in this study, the design rainfall temporal pattern is

i*
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represented by 7 internal ordinates of the dimensionless storm mass curve. This design

pattern represents a dimensionless rainfall hyetograph defined at eight equal time

increments of storm duration, each being 1/8 of the storm duration. To generate such a

design temporal pattern using the multiplicative cascade model (Robinson and

Sivapalan, 1997), 7 random numbers are needed.

In order to generate design temporal patterns for each of the 10 temporal pattern groups,

the following procedure was adopted. The subroutine RNBET from the MSIMSL was

first used to generate 15000 sequences of 7 random numbers from the beta distribution

representing the disaggregation parameters for each temporal pattern group. Each

sequence of random numbers was then used to construct a dimensionless rainfall

hyetograph using the multiplicative cascade model described in Section 4.6.5. An

example of a generated dimensionless hyetograph is illustrated in Figure 5-1.

0.35

1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

Relative storm time

Figure 5-1: An example of a generated temporal pattern

5.2.5.2 Model verification

I
eft

US

$i

The generated temporal patterns of rainfall have to be able to reproduce the peak

intensity of the observed storm hyetographs. In addition, the correlation between

rainfall intensity at one time step and the next, if any, needs to be preserved, as v.'ell as

the hyetograph statistical characteristics. For these reasons, the adequacy of the model

used to generate storm patterns and of the beta distribution characterising the

disaggregation parameters of each temporal pattern group was verified by comparing

in»
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the observed and generated hyetographs witn respect to the distribution of the maximum

dimensionless intensity, the lag one auto-correlation1, and the frequency characteristics

of mass curves.

V *

Comparison of the maximum dimensionless rainfall intensity

To compare the distribution of the maximum dimensionless intensity, dimensionless

rainfall depths at time intervals equal to 1/8 of storm duration, henceforth referred to as

dimensionless rainfall intensities, were calculated for each (observed or simulated)

storm. For each storm, the maximum dimensionless rainfall intensity (im) was then

determined. This intensity was then assigned to one of the 10 class intervals as follows:

(0, 0.1), (0.1, 0.2), ..., (0.9, 1), where (0, 0.1) indicates 0 < i m < 0 . 1 . The above two

steps were next repeated for all storms in each temporal pattern group. For each group,

the frequency of obtaining the maximum dimensionless storm intensity within each of

the 10 specified class intervals was computed. The cumulative relative frequency of the

maximum dimensionless intensity was finally determined. Results are tabulated in

Table 5-3 and illustrated in Figure 5-2 and Figure 5-3.

i

Pi

Table 5-3: Cumulative relative frequencies of the maximum dimensionless intensity of

observed and generated temporal patterns

Temporal pattern
group

1

2

3

4

5

6

7

8

9

10

Observed
Simulated
Observed
Simulated
Observed
Simulated
Observed
Simulated
Observed
Simulated
Observed
Simulated
Observed
Simulated
Observed
Simulated
Observed
Simulated
Observed
Simulated

(0.0.1)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

(0.1,0.2)
0.067
0.025
0.022
0.022
0.083
0.021
0.074
0.06
0.125
0.056
0.056
0.043
0.183
0.068
0.064
0.062
0.102
0.047
0.044
0.029

Class intervals or dimensionless maximum intensity
(0.2. 0.3)

0.523
0.455
0.427
0.315
0.354
0.396
0.56
0.579
0.578
0.556
0.565
0.514
0.726
0.643
0.624
0.564
0.581
0.526
0.463
0.443

(0.3,0.4)
0.778
0.806
0.72

0.675
0.771
0.646
0.866
0.866
0.849
0.871
0.876
0.858
0.894
0.947
0.921
0.879
0.826
0.872
0.801
0.774

(0.4.0.5)
0.898
0.949
0.911
0.869
0.917
0.833
0.972
0.963
0.953
0.97
0.975
0.968
0.951
0.996
0.982
0.968
0.924
0.961
0.921
0.956

(0.5, 0.6)
0.952
0.993
0.965
0.965
0.958
0.938
0.986
0.995
0.983
0.996
0.993
0.998
0.985

1
0.997
0.997
0.969
0.99
0.971
0.991

(0.6.0.7)
0.983
0.999
0.99
0.987
0.979
0.979
0.995

1
1
1

0.998
1

0.996
1
1
1

0.987
1

0.985
1

(0.7,0.8) (0.8.0.9) (0.9, 1.0)
0.994

1
1

0.994
1

1
0.997

1
0.997

1

The lag one auto-correlation, also called lag one serial correlation, is a statistical measure computed for
a time series of data to determine if an observation at one time period is correlated with the observation at
one time period earlier (or later).
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observed

— simulated

0 0.2 0.4 0.6 0.8 1

Dimensionless maximum intensity

Figure 5-2: Distributions of the maximum dimensionless intensity for observed and

generated temporal patterns of Group 4

1 observed

simulated

0 0.2 0.4 0.6 0.8 1
Dimensionless maximum intensity

Figure 5-3: Distributions of the maximum dimensionless intensity for observed and

generated temporal patterns of Group 2

ppisi* i

It can be seen from Table 5-3 that, for temporal patterns of Groups 4, 5, 6, 8 and 10, the

cumulative frequency distributions of the maximum rainfall intensity of the observed

storm temporal patterns are very similar to those of the generated patterns. This means

that the relative frequency of the observed storms having the dimensionless maximum

rainfall intensity within a given intensity interval is almost the same as that of the

generated data for these temporal pattern groups. For storm patterns of Groups 1 and 9,

the observed and simulated intensity distributions are reasonably similar. However, the

Hie
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observed peak intensity is not very well preserved in the generated storm patterns of

Groups 2,3 and 7, as illustrated in Figure 5-3 for Group 2. In these cases, the frequency

of the maximum intensity of the observed storms is either underestimated or

overestimated in the generated storms. For example, for Group 7, the relative number

of the simulated storms that have the maximum relative intensity in the range of (0.1,

0.2) is much less than that of the observed data. Overall, it can be concluded that the

distributions of the maximum rainfall intensity of the observed storms are reasonably

well preserved in the simulated storms.

Comparison of lag one auto-correlation coefficient

To compare the lag one auto-correlation (j\) of the observed and generated temporal

patterns, ri was first computed for each storm using the following formula (Haan, 1977,

Chapter 11):

n-l

ri ~
n —

n-1

2
~\ * [n - l

S
n-1

1/2
(5-2)

where hi is the dimensionless rainfall intensity during the time step i, and n is the

number of time increments used to define storm hyetographs (n=8 in this case). For

each temporal pattern group, the mean and standard deviation of the rj values of the

observed and generated storms were then calculated and are summarised in Table 5-4.

To aid in the comparison process, the limits of the 95% confidence intervals of the

estimated mean of ri were also computed based on the assumption that the ri values for

each group were from a normal distribution (see Table 5-5). Due to the large number of

storms in each temporal pattern group (see Table 5-5), this assumption was justified.

In assessing values of ri for the observed and generated storms, it is clear from Table

5-4 that the mean and standard deviation of ri computed for each temporal pattern group

are much less than 1, but generally not close to zero. For the observed storms, the

highest mean value is 0.392 for temporal patterns of Group 7, and the lowest mean

value is 0.12 for Group 4. The standard deviation of the ri values is also low, varying

from 0.035 to 0.116. However, because of the very large number of the observed

storms, the upper and lower limits of the 95% confidence intervals of ri (see Table 5-5)

<*!
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are very close to the computed mean value. Thus for the observed storms, the computed

values of the correlation of the dimensionless rainfall intensity at one time step with the

intensity at one time step earlier or later are significant. By contrast, the mean and

confidence limits of the rj values of the generated storms, are much closer to zero (see

Table 5-4 and Table 5-5). It can therefore be inferred that the lag one auto-correlation

between the dimensionless rainfall at successive time steps is significantly

underestimated in the generated storms.

Table 5-4: Mean and standard deviation of lag one auto-correlation coefficients of

observed and simulated storm temporal patterns

Temporal pattern mean of ^ standard deviation of rt

group observed simulated observed simulated
1
2
3
4
5
6
7
8
9
10

Table 5-5: 95% confidence intervals of the lag one auto-correlation coefficient

0.385
0.180
0.295
0.120
0.373
0.19U
0.392
0.17i
0.355
0.168

0.098
0.066
0.116
0.065
0.097
0.070
0.065
0.056
0.062
0.035

0.099
0.116
0.113
0.128
0.102
0.127
0.099
0.113
0.109
0.120

0.123
0.122
0.142
0.112
0.130
0.136
0.151
0.118
0.126
0.128

Group

1
2
3
4
5
6
7
8
9
10

No. of storms

686
314
48
216
232
444
263
659
384
341

Observed storms
Lower limit

0.378
0.167
0.263
0.103
0.360
0.178
0.380
0.162
0.344
0.155

Upper limit
0.392
0.193
0.327
0.137
0.386
0.202
0.404
0.180
0.366
0.181

Generated
Lower limit

0.089
0.053
0.076
0.050
0.080
0.057
0.047
0.047
0.049
0.021

storms
Upper limit

0.107
0.079
0.156
0.080
0.114
0.083
0.083
0.065
0.075
0.049

f '
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The reduced lag one auto-correlation of rainfall intensity at successive time steps of the

generated temporal patterns is not surprising because the adopted multiplicative cascade

model, as described in Section 4.6.5, does not try to preserve this correlation for the

observed storm temporal patterns. However, in reality, there is a tendency of high

rainfall values to be followed by high values (rather than randomly distributed), and this

would tend to produce larger peaks. Therefore, for design flood estimation, the reduced

serial correlation in the generated temporal patterns likely leads to underestimation of

design floods.
1

Comparison of frequency characteristics of mass curves

To compare the frequency characteristics of mass curves, Huff curves (Huff, 1967) were

used. Huff frequency curves, developed from observed storm mass curves, are smooth

curves with various levels of severity. For example, the 10% probability curve can be

defined as the average mass curve that is equalled or exceeded by 10% of the observed

patterns. Being smooth curves, Huff curves reflect the average rainfall distribution with

time, and do not exhibit burst characteristics of the observed storms. They provide a

quantitative measure of both inter-storm variability and the storm-to-storm variability in

a storm sample.

To determine Huff curves of the observed and generated storms for each of the ten

temporal pattern groups, the dimensionless cumulative rainfall depths at 8 equal

increments of storm duration were first computed for each storm. For all storms in a

group, for each time increment, the accumulated dimensionless depths at 9 probability

levels from 10% to 90% at equal increments of 10% were then estimated. For each

probability level, the computed dimensionless depths at each of the 8 equal time

increments were finally plotted on a graph, and a smooth curve was drawn through the

plotted points. These smooth curves are termed Huff frequency curves.

The comparison of Huff frequency curves of the observed and generated storms was

carried out by plotting the frequency curves at the same probability level on a graph and

visually comparing them. Only three probability levels of 10%, 50%, and 90% were

used in this comparison because these levels summarise the set of frequency curves and

they are generally of interest in practical situations.

Ji
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Results of the comparison showed that, for any temporal group, Huff frequency curves

developed for the generated storms very resembled those of the observed storms. This

implies that the variability in the temporal distribution of the observed and generated

storms in any group is very similar. A typical example of the observed and simulated

Huff frequency curves determined for one temporal pattern group is illustrated in Figure

5-4.

.'If

10%, observed

50%, observed

90%, observed

— 1 0 % , simulated

50%, simulated

90%, simulated

.000 .125 .250 ,375 .500 .625 .750

Relative storm time
.875 1.000

Figure 5-4: Huff frequency curves of the observed and generated temporal patterns of

Group 2

In summary, the generated storm temporal patterns reproduced fairly well the

distribution of the maximum dimensionless intensity and the frequency characteristics

of 'he observed temporal patterns. However, the lag one auto-correlation between

successive storm depths in the observed storms is significantly underestimated in the

generated storms.

5.2.6 Initial loss

.If

II'

To generate 15000 random values of the initial loss for the La Trobe River catchment at

Noojee from the beta distribution characterising the observed storm losses, subroutine

RNBET from the MSIMSL was again used. This subroutine is based on the rejection

method (Press et al., 1989), the principles of which are described in Appendix K.

*
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To assess the generated initial losses, their statistical properties were computed and

compared with those of the observed losses. Results are summarised in Table 5-6. It is

evident from this table that the mean and standard deviation of the observed initial

losses are relatively well reproduced in the generated loss values. However, the

coefficient of skewness of the observed data is significantly underestimated in the

generated loss. In addition, there are more low and high loss values in the generated

data than in the observed data, as indicated by the estimated 25th and 75th percentiles.

This implies that there is some overestimation and underestimation of the generated

storm initial loss values. Therefore, it is difficult assess how the errors in the estimates

of losses translate to errors in design flood estimates. The question of sensitivity of

design floods to the representation of the initial loss is further examined in Section 6.5.

Table 5-6: Characteristics of observed and generated initial loss data

Number of events
Mean (mm)
Standard deviation (mm)
Coefficient of skewness
25th percentile (mm)
50th percentile (mm)
75th percentile (mm)

observed storms
167
27.3
17.4
2.7
15.8
22.2
34.4

simulated storms
15000
26.9
17.3
0.9
13.5
23.6
37.0

1

• 1
5.3 ESTIMATION OF FLOOD EVENTS BY MONTE CARLO SIMULATION

After generating the random input values of the storm duration, temporal pattern, initial

loss, and determining the corresponding average rainfall intensities, Monte Carlo

simulation was applied to generate flood events. As discussed in Section 3.3.3, one

important aspect of this simulation process was the consideration of the correlations of

the input random variables. How this was allowed for in simulation and the procedure

used to simulate flood events are described in the section below.

{I r
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5.3.1 Correlations of flood causing factors

In order to model realistically the flood generation process, the correlations between the

flood causing components must be considered. In this research, no relationship was

found between the initial loss and storm duration or average rainfall intensity (see

Section 4.7.2). However, there was significant statistical evidence of the correlation

between rainfall intensity and duration (see Section 4.5.2), and of the variation of the

temporal pattern with season of storm occurrence, storm duration, or storm depth (see

Section 4.6.4). The above relationships were accounted for in the simulation in the

following ways.

With respect to average rainfall intensity, the dependence of rainfall intensity on

duration was taken into consideration by the use of EFD curves. That is, average rainfall

intensity was conditionally computed for a given storm duration and annual exceedance

probability.

To account for the seasonal variation of temporal patterns, it would have been necessary

to have other inputs (for example, rainfall intensity, duration, or storm loss) defined on a

seasonal basis. However, in the absence of these other seasonal inputs, the following

procedure for considering the variation of temporal patterns with season was adopted. It

was first assumed that the occurrence of storm events over 12 months follows a uniform

distribution. In other words, there is an equal probability of a storm to fall in any

month. From this assumption, the occurrence probabilities of the four rainfall seasons

defined in this research (as far as the variation of temporal patterns is concerned) were

computed and are presented in Table 5-7. In order to assign a storm to a rainfall season,

it was further assumed that the first 33% of all the generated storms were summer

storms, the next 17% of storms were autumn storms, the next 33% were winter storms,

and the last 17% were spring storms (see Table 5-7).

The consideration of the dependence of the storm temporal pattern on duration or depth

was straightforward. First, a storm duration was generated. The season of this storm

event was next determined using the assumptions described above. The total depth of

the storm was then computed. The temporal pattern group of the generated storm was

3T
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finally determined from the known information of season of storm occurrence, storm

duration, and depth (see Figure 4-27).

Table 5-7: Seasonal probabilities of storm occurrence

Number of months
Probability

5.3.2 Simulation

Summer
4

0.33

procedure

Autumn
2

0.17

Seasons
Winter

4
0.33

Spring
2

0.17

Total
12
1

i"

if"

In order to compute design floods for the La Trobe River catchment from various

combinations of flood causing factors, the procedure below was adopted.

(a) A storm duration D; was randomly generated from the Generalised Pareto

distribution (see Section 5.2.3).

(b) For the generated storm duration Dj, an AEPj was randomly generated from a

uniform distribution on the interval from 0 to 1. This AEPj was then converted into

the ARIi for the given storm (see Section 5.2.4).

(c) The average point rainfall intensity corresponding to the randomly selected duration

Dj and ARI; was then computed by interpolating values of the IFD table established

for the design site (see Section 5.2.4). To obtain the areal average intensity, the

computed point rainfall depth for the specified duration was estimated and then

multiplied by the interim areal reduction factor (Siriwardena and Weinmann, 1996)

determined for the given catchment area, average recurrence interval, and storm

duration.

(d) The temporal pattern group of the specified storm was next determined by the

method described in Section 5.3.1. The design temporal pattern of the storm was

then taken randomly from the generated samples of patterns for the particular

temporal pattern group (see Section 5.2.5.1).

(e) A random initial loss value IU was generated from the beta distribution fitted to the

observed loss data for the catchment under study (see Section 5.2.6).

(f) The rainfall excess hyetograph of the specified storm was then estimated by passing

the above stochastic design rainfall event characteristics through an initial loss -

••%'
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continuing loss model with an initial loss of EU and a fixed continuing loss rate

(CL=4.7mm/h). This hyetograph was next routed through the calibrated lumped

runoff routing model with fixed design parameters (m=0.8, k=53) to produce a

surface runoff hydrograph. A fixed value of the design baseflow (0.75m3/s) was

then added to the surface runoff hydrograph to obtain the design flood hydrograph.

The maximum peak flow of this flood hydrograph was recorded.

The FORTRAN programs to undertake steps (b), (c), (e), and (f) of the above procedure

were provided by Rahman (1999).

5.4 DETERMINATION OF DESIGN FLOOD FREQUENCY CURVES

To determine the frequency distribution of the partial duration series of the generated

floods, the non-parametric method, outlined in Appendix I, was adopted. In this

method, the flood series was first ranked into decreasing order of magnitude. That is,

the highest flood was ranked 1, the second highest ranked 2, and so on. The plotting

position of the flood ranked j in the series was then computed using Equation (4-5),

where N* is the data length in years (in this case, N*=2000 years). The generated floods

in the series were finally plotted on a semi-logarithmic graph paper against their

corresponding plotting positions.

The flood frequency curve derived for the La Trobe River catchment is illustrated in

Figure 5-5. Due to the very large number of the generated flood events (in the order of

thousands), it is evident from Figure 5-5 that design flood peaks for the ARI range of

interest (from 1 to 100 years) can be determined directly from this graph without the

need for fitting a theoretical probability distribution to the flood series. The estimated

design floods for the study catchment, read from Figure 5-5, are tabulated in Table 5-8.

qj

After repeating the above procedure for 15000 times, a partial duration series with '{$?

15000 generated design peak discharges was obtained. A flood frequency analysis was ^

then carried out to determine the frequency distribution of the generated flood series. [}M

This analysis is described below. i %,
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For example, the design peak discharges of 5-year and 100-year ARI for the specified

catchment are 45m3/s and 127m3/s, respectively (see Table 5-8). It is noted that, during

the simulation process, about 20 flood events with ARIs exceeding 100 years were

generated. Nevertheless, as the design floods of interest in this study have ARIs of up

to 100 years, those design flood peaks with ARIs exceeding 100 years are not shown in

Figure 5-5.
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Figure 5-5: The generated flood frequency curve for the La Trobe River catchment
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Table 5-8: Design flood estimates for the La Trobe River catchment by Monte Carlo

simulation (unit: m3/s)

1
Average recurrence interval (ARI, years)

2 5 10 20 50 100
Peak discharge 17 29 45 62 76 101 127

As mentioned in the Introduction, design flood estimates by the proposed Joint

Probability Model are subject to uncertainty due to sampling variability inherent in

Monte Carlo simulation. However, the uncertainty in these estimates may also be

induced by the uncertainties in the adopted form and estimated parameters of the

probability distributions used to represent design random variables, and by the

inadequacy of the runoff routing model adopted to represent the hydrograph formation

process, along with errors in its parameter estimation. Whereas the uncertainty of flood
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estimates due to sampling variability can be easily assessed by changing the sample size

of the generated data, the assessment of the uncertainty due to model or parameter

uncertainties obviously is not a trivial task and may require additional sources of data.

For these reasons, the former is examined in a sensitivity analysis detailed in the next

chapter, and the latter is left for future improvements of the proposed model.

5.5 SUMMARY

-4:

JTTJ

The application of the proposed Joint Probability Model to the determination of the

generated flood frequency curve for the La Trobe River catchment at Noojee was Jg

carried out in two stages. The first stage involved the generation of stochastic input data .j^

from the relevant distributions, and the generation of flood events using Monte Carlo f>'\

simulation. The second stage was the frequency analysis of the generated floods.

The stochastic design inputs were the storm duration, average intensity, temporal «

pattern, and initial loss. Random data for these variables were generated from the ^

corresponding probability distributions using computer subroutines from the Microsoft ; ^

International Mathematical Statistical Library. The generated data were then checked to ^

ensure that they were able to reproduce statistical properties of the observed data: "\i$

15000 random events spanning 2000 years of data were obtained from this step. Af^

The comparison of important statistical characteristics of the observed and generated ' |r>

data for each random input showed different results. Whereas the statistical properties n- >

of the observed storm durations were very well preserved in the generated storm >l '

durations, there were uncertainties in the estimates of the rainfall intensity outside the >

ARI range of 1 year to 100 years. In addition, the coefficient of skewness of the *

observed storm losses was significantly underestimated. With respect to the rainfall <"

temporal pattern, whereas the maximum dimensionless rainfall intensity and the /

variability of the observed temporal patterns were reasonably well preserved in the

generated pattern, the lag one auto-correlation coefficient was underestimated. Errors in

these stochastic design inputs have the potential to be transferred to errors in the

resulting design flood estimates. This will be further investigated in Section 6.5.
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In generating flood events using Monte Carlo simulation, the correlations of design

inputs were taken into account. The dependence of rainfall intensity on duration and

return period was accounted for by using the conditional probability expressed in the

IFD curves. The relationships between a generated storm and season, storm duration,

and depth were considered by using temporal patterns from appropriate temporal pattern

groups. A partial duration series of 15000 design flood peaks was obtained. The

empirical distribution of these generated floods was finally derived using a flood

frequency analysis.
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Chapter 6

MODEL EVALUATION

6.1 INTRODUCTION | |

The evaluation of the proposed Joint Probability Model is a crucial task in determining 'fjj$*

whether or not it can reduce the bias and uncertainty in design flood estimates. The ; ^

assessment of bias can be carried out by comparing design floods obtained from the | ^

proposed model with the best estimates available for a particular catchment. Likewise, 1g?'

the evaluation of uncertainty can be determined by comparing the estimated floods with ^

those from other methods routinely applied in Australia, using readily available data. *̂ v

For the catchment under study, the La Trobe River catchment at Noojee, there exist long

and concurrent rainfall and streamflow records. Therefore, the two flood estimation r (,

methods that would normally be applied are direct flood frequency analysis and the

Design Event Approach. Direct flood frequency analysis is the most direct method for *£!/

design flood estimation for the study catchment because it is based on observed t'^fs,

streamflow data. The rainfall-based Design Event Approach is also a suitable design *0>1

flood estimation method for this site because parameters of its hydrograph model can be

calibrated directly from the observed rainfall-runoff events. Therefore, flood estimates

obtained from these two methods are used as the basis for the evaluation of the >pt:

proposed model. ' >:"
i •*•

The objective of this chapter is to document the research undertaken to evaluate the i ^'

design floods estimated by the proposed Joint Probability Model. The chapter starts

with the determination of the flood frequency curve for the La Trobe River catchment

using direct flood frequency analysis. The estimation of design floods for this site by

the Design Event Approach is presented next. The comparison of flood estimates

obtained by these techniques with those from the proposed model is then detailed and

the validity of the proposed model is discussed. Details of the sensitivity analyses

> fr:
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conducted to determine the effects on design flood estimates of changes in the

probabilistic inputs, in other fixed design values and in the sample size of the generated

data are next documented. Finally, an additional testing of the method is described in

which the proposed Joint Probability Model is applied to another Victorian catchment,

the Tarwin River catchment at Dumbalk North, and the results are discussed.

,f

6.2 ESTIMATION OF DESIGN FLOODS BY DIRECT FLOOD FREQUENCY

ANALYSIS

t

As already outlined in Chapter 2, direct flood frequency analysis is a technique that

gives estimates of peak flood magnitudes of specified exceedance probabilities by

statistical analysis of observed floods at or near the design site. The analysis can be

applied to an annual flood series or a partial flood series. The former series consists of

the maximum instantaneous peak discharge in each year of record, whereas the latter

comprises all independent floods with peak discharges above a selected threshold value.

Even though partial flood series is more relevant to practical problems, probability

methods have commonly been applied to annual series due to the simplicity of

technique and easy interpretation of results (Laurenson, 1987).

In the present study, direct flood frequency analysis was applied to the annual flood

series for two reasons. Firstly, the observed annual flood series for the La Trobe River

catchment only differs significantly from the partial series for ARIs less than 5 years.

Secondly, the procedure for fitting a theoretical probability distribution to an annual

series is readily obtainable in the form of a computer spreadsheet (Hill et al., 1996c).

The theoretical basis of the adopted spreadsheet, called the CRCCH Flood Frequency

Analysis Spreadsheet (or shortly, the CRCCHFFA Spreadsheet), is briefly described

below. The application of this spreadsheet to the observed flow data at the study

catchment is then presented in detail, and the design floods obtained are discussed.

H

I-
1 1
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The CRCCHFFA Spreadsheet employs the procedure currently recommended by the

Institution of Engineers, Australia (1987) for estimating design floods from observed

streamflow data. In this procedure, a log Pearson HI (LPIII) distribution is fitted to an

annual series of recorded flood peaks by the method of moments, and the confidence

limits for the estimated floods are calculated. The procedure includes the following

steps:

• Plotting positions of the observed floods are first calculated using Equation (4-5).

The observed floods are then plotted against the corresponding plotting positions,

preferably on a logarithmic normal probability graph paper.

• Statistics of the annual series, including the mean (M), standard deviation (Sd), and

coefficient of skewness (g) of logarithms (to the base 10) of the flood peaks, are

next computed.

• Data are then checked for low or high outliers. These are the values at the low or

high end of the observed range of floods that depart significantly from the trend of

the remaining data. If there are outliers, they should be deleted and the flood

statistics M, Sd and g recomputed using the remaining data.

• Design floods for a range of ARIs are next estimated by the equation:

logQY = M + KYSd, where Qy is the design flood peak having an ARI of Y, and Ky

is the frequency factor for use with the LPIII distribution. Values of Ky are

tabulated as a function of g (Institution of Engineers, Australia, 1987, Table 10.2).

• The confidence limits for the estimated floods are then estimated by the following

relationship: log(CL595(QY))= logQY ±1 .645-=^ , where CL595 are the 5% and

95% confidence limits, N* is the record length (in years), and 5 is a parameter for

determining the standard error of the Pearson III distribution (Institution of

Engineers, Australia, 1987, Table 10.4). The positive sign applies to the 5%

confidence limit, and the negative sign to the 95% limit.

• The fitted distribution is finally plotted on the same graph with the observed data.

i

V
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6.2.2 Application to the La Trobe River catchment at Noojee
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The determination of the flood frequency curve for the La Trobe River catchment by

direct flood frequency analysis involved three steps. These are the extraction of the

annual flood series, the checking of the extracted series for homogeneity and

independence, and the application of the CRCCHFFA Spreadsheet to the extracted

series.

The annual flood series was extracted from the HYDSYS database using the HYPEAKS

program (HYDSYS, 1994). A summary of the extracted peak annual floods from 1961

to 1995 and the corresponding dates of flooding are presented in Table 6-1.
n

Table 6-1: Annual flood series - La Trobe River catchment at Noojee

Date

03/02/61
29/09/62
29/01/63
17/07/64
25/11/65
29/07/66
01/09/67
27/12/68
01/06/69
28/04/70
08/11/71
30/08/72

Peak annual flow

(m3/s)

13.06
16.56
24.34
15.27
12.71
10.68
7.29
15.01
27.50
16.96
59.95
9.94

Date

06/02/73
01/05/74
12/08/75
08/08/76
08/04/77
14/06/78
15/10/79
30/06/80
26/05/81
25/01/82
16/10/83
29/07/84

Peak annual flow

(m3/s)

18.09
20.43
16.88
21.44
25.63
20.91
8.22

32.99
16.55
10.98
19.27
20.96

Date

08/08/85
17/12/86
29/07/87
18/09/88
01/11/89
12/10/90
17/12/91
23/12/92
16/09/93
11/02/94
23/10/95

Peak annual flow
(m3/s)

13.69
12.61
17.22
18.00
22.93
29.59
19.43
26.37
63.27
14.65
19.67

(1

As previously discussed, the verification of data used in a statistical analysis is

indispensable for a valid frequency analysis to ensure that the data used is a random

sample of independent values from a homogeneous population. The verification of the

extracted annual flood series for the study catchment for homogeneity was discussed in

Section 4.2.3. In order to test if the extracted floods were independent of one another,

the dates of the extracted floods in successive years (see Table 6-1) were checked to

make sure that they were separated by considerable intervals of time. Results of the
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data verification indicated that the extracted floods satisfied the two requirements of

homogeneity and independence.

In order to provide an understanding of the flood regime in the study catchment and

flow characteristics that were used to estimate future flows for the design site, the

statistical properties of the extracted flood series were computed. These were the mean,

standard deviation, coefficient of variation, coefficient of skewness, maximum and

minimum of the observed floods. Results are presented in Table 6-2. A seasonal

distribution of the annual floods is provided in Figure 6-1.

Table 6-2: Statistical properties of the annual flood series - La Trobe River catchment

How characteristics absolute value log domain (log!0)

Record length (years)
Mean (m3/s)

Standard deviation (m3/s)
Coefficient of variation
Skewness

Maximum (m3/s)

Minimum (m3/s)

35
20.5

11.9
0.58
2.49

63.3

7.3

1.26

0.10
0.08
0.66

1.80

0.86
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Figure 6-1: Seasonal distribution of annual floods - La Trobe River catchment

To determine the flood frequency curve, the annual flood series was then input to the

CRCCHFFA Spreadsheet. Results of this analysis are presented in Table 6-3 and

Figure 6-2. In this figure, for comparison, the partial flood series is also plotted using
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the procedure described in Section 5.4. The partial flood series, which consists of all

flood peaks above a base value of 14m3/s, was provided by Thiess Environmental

Services (Dworakovski, Personal communication, 1999).

Table 6-3: Flood estimates by direct flood frequency analysis (LPIII distribution)

ARI Peakflow Confidence limits

(years) (m3/s) 95%

1

2
5
10

20

50
100

140

120

100

) 80

S 60
•a
•a 40

20

5%

11

17
26
34

42

55

66

9

15
22
27

31
36
39

12
20
31
43

57

84

113

O Observed floods (partial series)
• Observed floods (annual series)

Fitted LPm distribution
95% confidence limit
5% confidence limit

r T ——
*-—**—-

>

— — •

- — * . . .

. -

10
ARI (years)

100

K

\

Figure 6-2: Observed peak discharges and the fitted LPIII distribution - La Trobe River

catchment at Noojee

i A"
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6.2.3 Discussion

In order to understand the flood regime of the La Trobe River catchment, the timing of

floods and the duration of storm events causing major floods are important
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considerations. It is evident from Table 6-1 and Figure 6-1 that the recorded annual

maximum floods at the given site occur more often from winter to early summer

(December) than in the other months of the year. These are the months when the

rainfall loss on the catchment is generally low due to the relatively high moisture in the

catchment soil. In investigating the concurrent rainfall record at this site, it was found

that the duration of the storms (defined in Section 4.3) responsible for these peak floods

ranged from a minimum of 26 hours to a maximum of 53 hours with an average of 41

hours. That is, the major floods observed at this catchment were the result of storms

with duration of at least one day.

The statistical properties of the observed floods are also useful to provide an overall

understanding of the flood flow at the design site. It can be seen from Table 6-2 that the

length of flood record at this site is fairly short (35 years). In this record, the observed

annual peak discharges vary from a minimum of 7m3/s to a maximum of 63m3/s. The

mean and standard deviation of the observed annual peak flows are approximately

21m3/s and 12m3/s, respectively. These statistics indicate that the observed floods are

moderately variable. In addition, the coefficient of skewness of the peak flows is

positive and quite high (2.5), implying that there are fewer flood peaks above the mean

than below the mean, but these high peaks cover a wider range. All these factors would

certainly result in difficulties in estimating design floods for the specified site, and in

inevitable uncertainty, both in the determination of the true population from which the

observed flood data were drawn, and in the resulting flood estimates.

In examining the LPIII distribution fitted to the observed floods, it can be seen from

Figure 6-2 that there are no low values of the annual flood series that would have an

undue effect on the fitting of the theoretical distribution to the observed flood data. It is

also clear that the adopted distribution gives a better fit to the intermediate floods (with

return periods up to 15 years) than to the big floods. The flood frequency curve for

ARIs greater than 20 years is not very well defined due to the shortness of record and

the fact that there were only two big floods on record with return periods exceeding this

value. Nevertheless, the computed confidence limits, which represent the probable

range of a random sample drawn from the flood population, enclose all the observed

flow data except for the second largest flood.

1 2
\
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In examining the design floods estimated by the LPIII distribution shown in Table 6-3,

it can be seen that the confidence intervals for rare floods are much wider than those of

the more frequent floods. For example, the design peak discharge of 100-year ARI is

66m3/s, and the corresponding 90% confidence interval is from 39m3/s to 113m3/s. The

ratios of the 95% and 5% flood confidence limits to the 100-year ARI flood estimate are

therefore 0.59 and 1.71. By contrast, the 2-year ARI design flood peak is 17m3/s and

the corresponding 90% confidence interval is from 15m3/s to 20m3/s. Thus, the ratios of

the lower and upper confidence limits to the 2-year ARI design flood are 0.88 and 1.18,

respectively. The wide confidence intervals of the rarer floods are the result of both the

shortness of record and the variability of the observed floods. Therefore, it may be

concluded that there is considerable uncertainty associated with design flood estimates

by direct flood frequency analysis for ARIs of 20 years or more, which are of major

interest in design.

6.3 ESTIMATION OF DESIGN FLOODS BY THE DESIGN EVENT

APPROACH

In the Design Event Approach currently applied in Australia, design floods are

estimated from stonn bursts, which are periods of heavy rains during storm events (see

Section 4.5.5). In order to estimate design floods by this approach, it is necessary to

specify the design rainfall, loss and runoff routing models. However, to provide a fair

comparison of the performance of the Joint Probability Model and the Design Event

Approach, differences in these design components need to be kept to a minimum.

Hence the Design Event Approach employs the same loss model, runoff routing model

and the same deterministic inputs as those used in the proposed Joint Probability Model.

The parameters of the loss and runoff routing models and other fixed design inputs have

been determined and reported in Chapter 4. Nevertheless, the Design Event Approach

adopts a different design rainfall model because it uses representative values of rainfall

duration and temporal patterns (instead of probability distributions). In addition, the

initial loss used also needs to be represented by a fixed design value rather than a

probability distribution.
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This section describes the estimation of the design rainfall, initial loss, and the resulting

flood estimates for the La Trobe River catchment using the Design Event Approach. A

discussion of the flood estimates is also provided.

6.3.1 Estimation of the design rainfall

The estimation of the design rainfall included the specification of sets of design events

for specified ARIs and durations. For each design event, the average rainfall intensity

and the corresponding temporal pattern were determined. For design flood estimation

by the Design Event Approach, the ARI of the flood output is assumed to equal that of

the rainfall input. As the design floods of interest in this study were in the ARI range of

1 to 100 years, the ARIs of the design rainfall input were adopted to be of 1, 2, 5, 10,

20,50, and 100 years.

To determine the appropriate range of durations of storm bursts to be used in the design,

it was necessary to obtain a preliminary estimate of the critical storm duration of the

study catchment. This duration can be roughly determined as the time of concentration

(tc) of the catchment, which is defined as the travel time from the most remote point on

the catchment to the catchment outlet, tc can be estimated from the catchment area A

(km2) by the formula below (Institution of Engineers, Australia, 1987):

tc = 0.76 A0.38 (6-1)

For the La Trobe River catchment, tc=6.6 hours. Hence, the burst durations used were

2,3,6,9,12, 18, and 24 hours.

j

f •

The average design rainfall intensities for the specified ARIs and rainfall burst durations

at the design location were determined using the procedure presented in Chapter 2

(Institution of Engineers, Australia, 1987). In this procedure, a log Pearson III

distribution is used to characterise design rainfalls at any location in Australia. For a

particular location, this distribution is estimated from the six basic rainfall intensities for

a lognormal distribution and one skewness value (to adjust the lognormal to the log

Pearson III distribution) determined from the latitude and longitude of the design

location. For the La Trobe River catchment, the representative location for estimating
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catchment rainfalls was taken as the location of the recording rain gauge at station

85237 (37.88° latitude, 146° longitude). The basic rainfall intensities and skewness

value for this location were read from the maps published by the Institution of

Engineers, Australia (1987, Volume 2). The skewness of rainfall determined for the

design site was 0.35. The estimated average point design rainfall intensities determined

for the specified return periods and rainfall durations are presented in Table 6-4. It is

important to emphasise at this point that the design rainfall intensities presented in this

table represent the average intensities of intense bursts of rain, rather than representing

rainfall intensities of the storm events defined in Section 4.3. To obtain the areal

average rainfall intensities over the study catchment, the design rainfall intensities

shown in Table 6-4 were then multiplied by the interim areal reduction factors

(Siriwardena and Weinmann, 1996, Equation 7-17 and Figure C-5) determined for the

specified durations, return periods and catchment area (290km2).

Table 6-4: IFD estimates at station 85237 (37.88° latitude, 146° longitude) (unit: mm/h)

Duration
(hours)

2
3
6
9
12
18
24

1
10.2
8.1
5.5
4.4
3.7
2.9
2.4

2
13.3
10.6
7.1
5.7
4.8
3.7
3.0

Average recurrence
5

17.3
13.6
9.1
7.2
6.1
4.7
3.8

10
19.8
15.6
10.4
8.2
6.9
5.3
4.3

intervals (years)
20

23.3
18.3
12.1
9.5
8.0
6.1
5.0

50
28.1
22.1
14.5
11.4
9.6
7.3
6.0

100
32.1
25.1
16.5
12.9
10.9
8.3
6.8

In order to determine the temporal patterns of the design events, it is noted that in

Australia, design rainfall patterns are developed for eight zones based on climatology

and the expected differences in temporal patterns. These design patterns are published

by the Institution of Engineers, Australia (1987, Volume 2). For the La Trobe River

catchment at Noojee, the temporal patterns of the design rainfall events were selected

from the published temporal patterns of Zone 1 for the specified storm durations and

ARIs.
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Values of the design initial loss for use with the Design Event Approach are published

by the Institution of Engineers, Australia (1987, Chapter 6). However, there are three

limitations in these design loss values. Firstly, there is a lack of design loss data for a

large portion of Australia, especially for Tasmania and areas in the north and west of the

Great Dividing Range. Secondly, they were derived from the analysis of large observed

flood events that are biased towards wet catchment conditions. Therefore the design

initial losses tend to be underestimated and design floods overestimated. Finally, the

design initial loss values were derived for complete storms rather than for storm bursts

used to determine design temporal patterns and thus tend to be overestimated. For these

reasons, these design losses were not used in this analysis.

In the present application, fixed design values of the initial loss of the selected design

burst events were determined using a formula developed by Hill et al. (1996a). In this

formula, the initial loss (DLb) of a design storm burst is related to the mean catchment

storm initial loss (EL), the mean annual rainfall (MAR), and the event duration (D) by

the following relationship:

ELK=IL 1 — •

1 + 142-
MAR

(6-2)

where EU,, DL, and MAR are in millimetres (mm) and D in hours.

The design loss estimates for the La Trobe catchment [IL=18mm (from Hill et al.,

1996a), and MAR=1360mm] are tabulated in Table 6-5. It is clear from this table that

the design initial loss of design storm bursts increases with burst duration.

ib'

Table 6-5: Design initial loss - La Trobe River catchment

Rainfall duration (h)
2 3 6 9 12

Initial loss (mm) 2.3 2.8 3.7 4.3 4.8
18 24
5.5 6.1
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6.3.3 Estimation of design floods
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In order to estimate design floods for the La Trobe River catchment using the Design

Event Approach, the procedure described in Section 2.2.1 was adopted. In this

procedure, design floods resulting from storm events of varying durations and retum

periods were first estimated. For each return period, the critical rainfall duration was

next determined using the method described in Section 2.2.1. The design flood for the

specified retum period was finally taken as the design flood caused by the critical storm

duration.

Results of the design flood estimation for the study catchment are summarised in Table

6-6 and illustrated in Figure 6-3. In Table 6-6, flood estimates for various storm

durations and ARIs are shown, whereas the design peak discharges and the

corresponding critical storm durations for the study catchment are denoted as bold

values. In Figure 6-3, the determination of the critical storm duration for an ARI of 20

years is illustrated. It can be seen from this figure that the highest design flood of about

150m3/s is produced by a storm burst event of 12-hour duration. Therefore this duration

is adopted as the critical duration for events of 20-year ARI for this catchment.

Table 6-6: Design flood estimates by the Design Event Approach (unit: m3/s)

£-"

Storm duration

(hours)
2
3
6
9
12
18
24

1
0.8
2.3
2.8
22.9
24.7
19.6
11.5

2
2.6
7.6
14.7
46.7
52.5
41.4
37.9

5
15.4
27.1
46.2
66.9
85.3
82.2
69.6

ARI (years)

10
27.8
41.3
70.5
95.8
112.9
101.1
94.0

20
47.7
67.9
106.9
138.5
152.7
149.2
121.9

50
81.3
107.9
149.2
188.0
211.7
193.4
160.5

100
110.8
143.2
195.1
231.4
270.9
250.5
204.7

1 ;,*•
i "•.'

• , ' '

/ ?

* 1



Chapter 6

180

0 9 12 15 18
Storm duration (h)

174

21 24 27

Figure 6-3: Plot of design flood peak against storm burst duration (ARI=20 years)

6.3.4 Discussion

Results of the estimation of design floods for the La Trobe River catchment using the

Design Event Approach indicates that for all return periods, the critical rainfall burst

duration for this catchment is 12 hours. This critical duration is only a third of the

average duration of 41 hours of the observed storm events (determined using the storm

definition described in Section 4.3) causing major floods in the study catchment (see

Section 6.2.3). One of the reasons that causes the discrepancy in the critical duration is

the difference in the definitions of rainfall bursts used in the Design Event Approach

and storms defined in this study. That is, a rainfall burst (a period of heavy rainfall) is

embedded in a storm, with periods of some rain prior to and after the burst.

In estimating the design flood, it is clear that there are uncertainties in selecting fixed

design values of rainfall and loss characteristics, as well as in determining the

parameters of the adopted runoff routing model. As a result, the magnitude of the

design flood is also uncertain.

6.4 COMPARISON WITH THE JOINT PROBABILITY MODEL

The determination of the best design flood estimates for a catchment provides a basis
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against which various flood estimation methods can be compared. For the La Trobe

River catchment, these best estimates can be obtained from empirical frequency analysis

of the partial flood series for relatively frequent floods, and from direct flood frequency

analysis of the annual series for extrapolation to higher ARIs. An ARI of 5 years was

adopted as the limit for design flood estimates by these two series, as this is the value

below which the observed annual flood series for the La Trobe River catchment differs

significantly from the partial series (see Figure 6-2).

It is also noted that design flood estimates by direct flood frequency analysis are only

considered to be the best available estimates for a given catchment for a particular range

of ARI. The lower limit of this ARI range can be taken as that of the smallest design

flood of interest (estimated by frequency analysis of partial flood series). The upper

limit of this range (ARIu) can be computed using the following empirical formula

(Institution of Engineers, Australia, 1987):

ARIu = FN05 exp(0.02N*) (6-3)

where N* is the record length in years, and F is a factor depending on the standard

deviation and the coefficient of skewness of the logarithms of the flood values (see

Table 12.1, Institution of Engineers, Australia, 1987).

For the La Trobe catchment, the computed value of ARIu was estimated to be 15.4

years. This estimate is similar to the conclusion that design floods of up to 20-year ARI

obtained by direct flood frequency analysis were the best estimates of floods for the

study catchment (see Section 6.2.3). However, with the lack of data for better estimates

of more severe design floods, the design flood estimates of 50-year and 100-year ARI

by direct flood frequency analysis are still shown for comparison, but given less weight

in the performance assessment.

A summary of design floods for the La Trobe River catchment, estimated by flood

frequency analysis, the Design Event Approach and the proposed Joint Probability

Model is tabulated in Table 6-7. It is noted from this table that design floods of 1-year

and 2-year ARI (estimated by flood frequency analysis) are obtained from an empirical

analysis of the observed partial flood series using the procedure described in Section

5.4. However, design floods of 5-year ARI or greater obtained from the LPIII
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distribution fitted to the annual flood series (see Table 6-3 and Figure 6-2). The bold

values indicate the best available design flood estimates for the catchment. In Table

6-7, the ratios of flood estimates obtained from a particular method to the best estimates

obtained from flood frequency analysis are also presented. The flood estimates for

various ARIs listed for the Joint Probability Model were obtained from Chapter 5. A

plot of these estimates against their corresponding return periods is illustrated in Figure

6-4.

Table 6-7: Summary of design flood estimates obtained from different methods

ARI (years) Rood frequency analysis Joint Probability Model Design Event Approach

Peak discharges

(m3/s)

Peak discharges

(m3/s)

Ratios Peak discharges Ratios

(m3/s)

1
2
5

10

20
50
100

17
20
26

34

42
55
66

17
29
45

62

76
101
127

1.0
1.5
1.7

1.8

1.8
1.8
1.9

25
53
85

113

153
212
271

1.5
2.7
3.3

3.3

3.6
3.8
4.1

300

250 - -

^s 200 - 1 -

&
J3 150-
u

« 100-1

50 -

o Observed floods (partial series)
Fitted LPm distribution

— - —95% confidence limit
- - - - 5% confidence limit

O Best design flood estimates
—A—Design Event Approach
— • — J o i n t Probability Model

10

ARI (years)
100

Figure 6-4: Plot of design flood estimates for the La Trobe River catchment
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In examining the magnitude of design floods estimated by the three methods, it can be

seen from Table 6-7 that, on average, the flood magnitudes estimated by the Design

Event Approach are about three times those obtained from flood frequency analysis,

except for very frequent floods of 1-year or 2-year ARI. In addition, the ratio of design

flood magnitudes predicted by these two methods increases for rarer flood events. By

contrast, the flood magnitudes estimated by the proposed Joint Probability Model are at

most double those obtained from flood frequency analysis, except for very common

floods. The ratios of design floods estimated by the proposed Joint Probability Model

to those of flood frequency analysis seem to be stable for all return periods, except for

ARIs of 1 or 2 years. It is also evident from Figure 6-4 that design flood estimates by

the Joint Probability Model are closer to the upper confidence limits established by

direct flood frequency analysis, even though the design floods predicted by these two

methods are all outside the 90% confidence intervals. Therefore, it can be concluded

that, whereas both the Joint Probability Model and the Design Event Approach

overestimate the design flood of a given return period, the proposed new model can give

better estimates in terms of flood magnitude for the study catchment.

The reduction in the magnitude of the design floods obtained by the Joint Probability

Mode! compared with the Design Event Approach is the result of the differences in

inputs and assumptions used by these two approaches in design. These differences can

be found in the definitions of storm events, or in the representation of design inputs and

their correlations.

• With respect to the storm definitions used by these methods, as already discussed in

Section 4.3 and Section 4.5, storm events used in the proposed Joint Probability

Model generally have longer durations than the bursts of rain typically used in the

Design Event Approach. In addition, the average rainfall intensity of a storm event

is lower than that for a storm burst of the same duration. For example, at station

85237, the average intensity estimate of a storm of 24-hour duration and 10-year

ARI is 2.62mm/h (see Table 5-2), whereas the average intensity of a burst of the

same duration and ARI is 4.3mm/h (see Table 6-4). The discrepancy in duration

and intensity between storm events and storm bursts is clearly due to different

sampling. As a storm burst used in the Design Event Approach is defined as the

most intense part of a storm event, design floods estimated by the approach are very

likely to be higher than those obtained from the Joint Probability Model.

I
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• With regard to the representation of design inputs, whereas the design rainfall depth,

duration, temporal pattern, and initial loss are considered as random variables in the

proposed Joint Probability Model, only the rainfall depth is regarded as a random

variable in the Design Event Approach. All these differences therefore lead to the

discrepancy in design flood estimates obtained by the two methods.

Even though the proposed Joint Probability Model can give more accurate estimates of

design flood peaks for the La Trobe River catchment, when compared with the best

flood estimates obtained by flood frequency analysis, these estimates are still

overestimated. This overestimation might be the result of many factors such as the

inappropriate assumptions used in the modelling process or errors in the design inputs.

• With regard to the assumptions involved in modelling, it was assumed that the

rainfall-runoff response of the study catchment was non-linear and that this non-

linearity was represented by a factor of 0.8. Nevertheless, this factor seems to be

low for the study catchment, as discussed in Section 4.8. If a larger value of m with

a corresponding lower value of k had been adopted, for discharges greater than those

of the observed floods used in model calibration, the storage would have been

greater, and the design discharge would have been less. Furthermore, the study

catchment was represented by a lumped model with only one storage. Neglect of

distributed storage effects on the catchment could have introduced errors,

particularly for floods much smaller or larger than those used in calibrating the

lumped model.

• Another implicit assumption involved in application of the proposed Joint

Probability Model is the neglect of the seasonal effect of the rainfall and loss. This

implies that a summer storm can be randomly combined with a winter loss and vice

versa. For such unlikely extreme combinations of design rainfall and loss, design

flood peaks can either be overestimated or underestimated.

• Finally, the adopted runoff routing model was calibrated and tested using only five

observed rainfall-runoff events. The relatively small number of events used in

calibration and testing indicated that they may not be representative of the

hydrometeorological conditions at the site. As a result, application of the model for

estimating design floods outside the flood range for calibration and testing

inevitably is subject to errors and uncertainties.
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In terms of errors in design inputs, it is clear that these errors may occur in both the

stochastic inputs (namely, the generated rainfall intensity, duration, temporal

pattern, and initial loss), and the deterministic inputs (namely, the continuing loss

rate, baseflow, and the runoff routing model parameters). Among these inputs, the

generated storm duration is less likely to be a contributing factor to the

overestimation of design floods because the statistical properties of the storm

duration were repioduced well in the generated storms (see Section 5.2.3). By

contrast, there were uncertainties in the design rainfall intensity estimates

(especially for events with duration greater than 48 hours and return periods

exceeding 20 years) due to the extrapolation and adjustment of the IFD curves, as

discussed in Section 4.5. The estimated rainfall for the catchment might also have

gross errors, as the use of rainfall data at only one gauge may not adequately

represent the catchment average rainfall and the spatial variation of rainfall on the

catchment scale. In addition, the adopted multiplicative cascade model clearly

underestimates the lag one auto-correlation of the observed temporal patterns (see

Section 5.2.5). Likewise, the probability distribution used to characterise the

rainfall initial loss for the study catchment does not reproduce very well the

coefficient of skewness of the observed losses (see Section 5.2.6). The adopted

design baseflow (0.75m3/s) also seems to be low compared with the estimated

baseflow of the five observed storms used (see Table 4-19). Due to the fact that the

generated floods were overestimated, it is also likely that the design rainfall

continuing loss and/or the runoff routing parameter k for the catchment were

underestimated. The effects of the uncertainties in these inputs on design flood

estimates were therefore investigated, and are presented in the next section.

6.5 SENSITIVITY ANALYSES

In order to gain an insight into the performance of the proposed Joint Probability Model,

six sensitivity analyses were carried out in this study:

• The first and second analyses aimed to determine how design flood estimates would

change if there were changes in estimates of the design rainfall intensity or in the
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probability distribution characterising the rainfall initial loss for the La Trobe River

catchment.

The third analysis aimed to determine the effects on design flood estimates of

neglecting the dependence of rainfall temporal patterns on season, storm duration

and storm depth. Results of this analysis would determine if the subdivision of

temporal patterns into ten different groups was practically important.

The fourth analysis investigated the influence of the resolution used to define

rainfall temporal patterns on the resulting floods. Results of this investigation

would be necessary in determining the minimum number of parameters to represent

adequately the variability of rainfall intensity during storm duration, and its impact

on the design floods.

The fifth analysis aimed to identify the effects on the design flood estimates of the

variation in the fixed design inputs, namely the continuing loss rate (CL), the

routing model parameter (k), and the design baseflow. Results of these analyses

would determine whether these design inputs could have caused the overestimation

of the generated flood frequency curve for the study catchment.

The sixth analysis aimed to examine the effect on flood estimates of changes in the

sample size of the design floods generated in the Monte Carlo experiment. Results

of this analysis would shed light on the reliability and stability of simulation results.

•m::

i.
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In the sensitivity analyses outlined above, the base case floods were those determined

using the procedure, input distributions and parameter values described in Section 5.3.2,

unless otherwise specified. These analyses are described in detail below.

6.5.1 Effects of design rainfall intensity

In order to investigate the effects of uncertainties in estimates of the design rainfall

intensity at pluviometer 85237 on the resulting floods, the values of the EFD table

established for this site were decreased by 20% and 50%' whereas other design inputs

were kept the same as for the base case. Design floods for these two cases were

It would probably have been better to adopt values of 10% and 20% reduction or increase in the design
rainfall intensity, as a 50% error in catchment average rainfall is probably too extreme.

m
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computed using the procedure detailed in Section 5.3.2. The frequency curves of the

resulting floods were then determined using the method described in Section 5.4. The

design flood peaks estimated for various ARIs were finally compared with those of the

base case simulation, as tabulated in Table 6-8.

Table 6-8: Design flood estimates (m3/s) from variation of design rainfall intensities

ARI
1
2
5
10
20
50
100

Base case

Peak discharge
17
29
45
62
76
101
127

20% decrease

Peak discharge %

7
12
21
28
36
47
59

difference
-60
-58
-54
-55
-53
-54
-53

50% decrease

Peak discharge %
3
5
10
14
18
24
32

difference
-85
-82
-78
-78
-76
-76
-75

It is evident from Table 6-8 that changes in estimates of the design rainfall intensity

have a very large impact on the resulting flood estimates. For example, a 20% decrease

in the average rainfall intensity results in at least a 50% decrease in the corresponding

flood peak for any return period when other design inputs were unchanged. For an

extreme example in which the average rainfall intensity is reduced by 50%, the resulting

peak discharge for the study catchment can be decreased by up to 85%. This result is

not surprising as it has been found that the design rainfall depth is one of the most

important factors affecting the design flood magnitude (Beran, 1973; Cadavid et al.,

1991; Loukas et al., 1996). In general, the percentage of change in flood magnitude is

almost stable for all return periods, with a slightly greater reduction of frequent floods.

6.5.2 Effects of initial loss

"*1

The sensitivity of design flood estimates to variability in the initial loss for the La Trobe

River catchment was investigated by using of a constant initial loss of 27.3mm, which is

the average of the observed initial losses for the study catchment. Flood events were

generated by Monte Carlo simulation using the constant initial loss, whereas other

design inputs were kept unchanged. The generated flood frequency curve was then

established. The flood peak estimates for various ARIs, summarised in Table 6-9, were
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finally compared with the corresponding base case floods (where the initial loss was

represented by a beta distribution with the parameters a of 1.6 and (3 of 7.2).

Table 6-9: Design flood estimates (m3/s) from different representations of initial loss

ARI Base case distribution Constant initial loss % difference
(years) a =1.6, ft = 7.2 (27.3mm)

1
2

5
10
20
50
100

17
29
45
62
76
101
127

11
19
31
41
51
70
82

-33
-34
-32
-34
-32
-31
-36

When using a constant design initial loss for the La Trobe River catchment, it is evident

from Table 6-9 that, for all ARIs, the design flood estimates are approximately 30%

smaller than those obtained when a statistical distribution was used to characterise the

initial loss. In previous studies, it has also been found that small variations in parameter

estimates of the loss model could cause significant errors in the derived flood frequency

curves (Beran, 1973; Moughamian et al., 1987; 'xaines and Valdes, 1993). Therefore, it

can be concluded that design flood peaks are very sensitive to variations in the

probability distribution representing the storm initial loss.

6.5.3 Effects of temporal pattern groups

As already discussed in Section 4.6.4.3, the temporal patterns of observed storms used

in this study can be classified into 10 groups, depending on three factors: season of

storm occurrence, storm duration, and storm depth. In estimating design floods using

the proposed Joint Probability Model, the dependence of rainfall temporal patterns on

season, storm duration, and storm depth was taken into consideration, as described in

"Section 5.3. This was taken as the base case (see Section 5.3.2). In the following

sensitivity analysis, the effect on design flood peaks of neglecting the dependence of

temporal patterns on season, storm duration and depth was examined.

3
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To generate design temporal patterns for this analysis, temporal patterns of the observed

storms of the 19 pluviometers were first pooled together, regardless of season, storm

duration, and storm depth. A beta distribution common to 19 sites was next used to

represent the disaggregation parameters of the multiplicative cascade model adopted to

generate storm mass curves (see Section 4.6.5). The two parameters (a, (3) of this

distribution were computed from the observed patterns using the procedure described in

Section 4.6.5. Design temporal patterns were finally generated from this common beta

distribution using the method detailed in Section 5.2.5.1.

In order to estimate design floods resulting from generated storm events, the procedure

detailed in Section 5.3.2 was again adopted. However, in step (d), the design temporal

pattern of a synthetic event was taken at random from the sample of the patterns

generated from the common beta distribution determined above. Other input

components were kept the same as for the base case. The flood frequency curve of the

computed flood peaks was finally estimated and compared with the base case curve.

#

'5
f

>£i%

Table 6-10: Design flood estimates (m3/s) from different numbers of temporal pattern

groups

ARI
1
2
5
10
20
50
100

Base case (10 groups)
Peak discharge

17
29
45
62
76
101
127

Dependence neglected (1 group)
Peak discharge

18
29
46
62
78
100
119

% difference
3
0
3
0
2
-1
-6

Design floods computed when the dependence of temporal patterns on season, storm

duration, and depth was considered (base case) and neglected are presented in Table

6-10, along with percentage differences between the estimates for these two cases. It is

clear that, when the dependence of temporal patterns on season, storm duration and

depth is neglected, design floods may increase or decrease, depending on the ARI of the

design flood. Nevertheless, for all ARIs, estimates of the peak discharge differ from the

base case floods by at most 6% in absolute values, but more typically by 0 to 3%. In

>

w
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other words, for the La Trobe River catchment, the consideration of the dependence of

the temporal pattern on season, storm duration or depth seems to have only minor

effects on design flood estimates. This conclusion is clearly limited to the specific

study catchment and needs to be verified by applying the proposed model to a wider

range of catchment areas. It should also be borne in mind that, in the present study,

design inputs other than the temporal pattern do not vary seasonally.

6.5.4 Effects of number of time increments used to describe temporal | r

patterns £
Vr

In this study, a statistical model has been developed for temporal patterns represented fir

by dimensionless hyetographs defined at 8 equal time increments of storm duration. A

Whereas 8 increments may be adequate to characterise the variability of rainfall "*

intensity during storm duration for short duration storms, they may be inadequate for /

longer events causing floods in large catchments. Therefore, a sensitivity analysis was >,

attempted to examine the effects ^ lesign floods of changes in the number of time

increments used to describe the t c poral pattern.

The objective above was achieved by doubling the number of intervals used to describe <

rainfall temporal patterns (observed and generated) from 8 to 16. For simplicity, the $%.

base case simulation (for 8 intervals) was chosen as the case in which the dependence of \ (

temporal patterns on season, storm duration, and storm depth was not taken into account - ^

(see Section 6.5.3). The procedure below was then adopted:

• A beta distribution was first used to represent the disaggregation parameters of the

adopted model for generating temporal patterns. Parameters of this beta distribution

were computed from the mass curves of the temporal patterns observed at 19 ».

pluviometers using the method outlined in Section 4.6.5.

• Synthetic temporal patterns were next generated from the beta distribution using the

procedure described in Section 5.2.5.1.

• Design floods were then computed using these generated temporal patterns whereas

other design inputs were kept unchanged.
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• The peak flood estimates were finally compared with those of the base case in which

the temporal pattern was defined at 8 equal increments of storm duration.

Preliminary results of this sensitivity analysis indicated moderate sensitivity of design

floods to the number of time intervals adopted, and that small floods are more sensitive

to variations in the number of time increments used to describe temporal patterns than

big floods. However, quite substantial work would be required to obtain conclusive

results. Whereas these results are desirable, the extra work is considered to be outside

the scope of this thesis due to the limited research time.

H

6.5.5 Effects of fixed design inputs

As mentioned at the beginning of Section 6.5, the fixed design inputs to be used in the

current sensitivity analysis are the continuing loss rate, the runoff routing parameter k,

and the design baseflow.

Continuing loss rate

In order to investigate the effects on flood estimates of changes in values of the

continuing loss rate (CL), design floods were computed for loss rate values increased by

20% (corresponding to 5.6mm/h) and 50% (corresponding to 7mm/h) from the base

case value (4.7mm/h) used in simulation. Other design inputs were kept the same as for

the base case. The resulting flood frequency curves were then estimated and compared

with those obtained from the base case. It is noted that the continuing loss rate used in

the base case was increased for the sensitivity analysis, because the simulated flood

frequency curve was overestimated, suggesting that the base case continuing loss might

be low. In addition, a 50% error is quite common due to the high uncertainty in

continuing loss values.

Results of this sensitivity analysis are presented in Table 6-11. In this table, design

floods estimated for the three values of continuing loss rates are shown, along with the

differences relative to the base case floods. It is clear from Table 6-11 that for a 20%

increase in the design continuing loss rate, the resulting peak discharges estimated for

the La Trobe River catchment decrease from 1% to 8%. Nevertheless, when there is a

\

4
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50% increase in the continuing loss, the resulting floods reduce only by 6% to 12% in

the peak magnitude. As the design loss rate increases, small floods tend to be more

affected than large floods, other inputs being kept unchanged. In general, it can be

concluded that changes in the design continuing loss rate have moderate effects on the

resulting flood estimates, especially at high return periods.

Table 6-11: Design flood estimates (m3/s) from different values of continuing loss rate

AR1
1
2
5
10
20
50
100

Base case
(CL = 4.7mm/h)
Peak discharge

17
29
45
62
76
101
127

20% increase
(CL = 5.6mm/h)

Peak discharge % difference
16
27
42
57
73
100
124

-5
-7
-6
-8
-4
-1
-3

50% increase
(CL = 7mm/h)

Peak discharge % difference
15
26
41
55
71
95
118

-9
-12
-10
-11
-7
-6
-7

Routing parameter k

Similarly, in order to investigate the effects on design flood estimates of changes in the

runoff routing model parameter k, the value of k was varied while other fixed design

inputs were kept unchanged. In choosing the values of k for the sensitivity analysis, as

the design floods were overestimated (see Table 6-7), it was decided to increase k in

order to reduce the flood estimates. Hence, two values of k, increased by 20%

(corresponding to k=64) and 50% (k=80) respectively, were used. The estimated floods

were then compared with the base case simulation (with k=53). At this point, it is worth

noting that the adopted variation of k is typical of errors in estimated k-values for

gauged and ungauged catchments.

n.

H
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The design flood estimates resulting from three different values of the routing model

parameter k are shown in Table 6-12, along with the percentage differences between

these flood estimates and the base case floods. It can be seen from this table that, for all

ARIs, as k increases, the peak flood magnitude decreases. For example, a 20% increase

in the runoff routing model parameter k brings about a decrease from 15% to 20% in the

design peak discharge. When k is increased by 50%, the resulting flood peak is reduced

by at least 32%. These results indicate that design flood peaks estimated for the La
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Trobe River catchment are sensitive to uncertainty in the parameter k of the runoff

routing model.

Table 6-12: Design flood estimates (m3/s) from varying values of the runoff routing

model parameter k

ARI
1
2
5
10
20
50
100

Base case (k = 53)
Peak discharge

17
29
45
62
76
101
127

20% increase (k
Peak discharge

14
23
38
51
65
86
104

= 64)
% difference

-19
-20
-16
-18
-15
-15
-18

50% increase
Peak discharge

11
18
30
41
52
69
83

(k = 80)
% difference

-36
-37
-33
-35
-32
-32
-34

Design baseflow

It has been shown in Section 5.3.2 that in estimating design floods for the La Trobe

River catchment, the adopted design baseflow was 0.75m3/s (base case). However, this

value seems to be low compared with the median baseflow of 5.7m3/s of the observed

flood events for the catchment (see Table 4-19). Therefore, the effects on design flood

estimates for the study catchment of using the specified median baseflow were

examined.

To estimate design floods, it is clear that in this study, a constant value of base flow has

been added to all the generated flood peaks. Therefore, design flood estimates

corresponding to the new median baseflow were determined by subtracting the old

design baseflow of 0.75m3/s from the base case floods (of all ARIs) and adding the new

design baseflow of 5.7m3/s. The resulting design floods are listed in Table 6-13, along

with the base case floods and the percentages of difference between these flood

estimates.

I -

It is clear from Table 6-13 that, as the design baseflow increases from 0.75m3/s to

5.7m3/s, the corresponding peak discharge increases from 17m3/s to 22m3/s for floods of

1-year ARI and from 127m3/s to 132m3/s for floods of 100-year ARI. The percentage

of change decreases from 29% for the 1-year ARI flood to 4% for the 100-year ARI
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flood. Therefore, it can be concluded that uncertainty in the value of the design

baseflow mainly affects small floods.

Table 6-13: Design flood estimates (m3/s) from varying values of the design baseflow

ARI

(years)
1
2
5
10
20
50
100

Design baseflow

(O.75m3/s, base case) (5
17
29
45
62
76
101
127

.7m3/s)
22
34
50
67
81
106
132

% difference

29
17
11
8
7
5
4

6.5.6 Effects of sample size

• { * •

As discussed is Section 5.2.2, the sample size of the generated outcomes in a Monte

Carlo experiment plays an important role in determining the reliability of these

outcomes. In order to examine the effect on design flood peaks of changes in the

number of generated data, in this sensitivity analysis a sample of 30000 flood events

was generated for the La Trobe River catchment. All other design inputs were kept

unchanged (including the seed for random number generation). The estimated peak

floods of various return periods were then compared with those of the base case

simulation where 15000 data were generated.
it.1"

A summary of the estimated flood peaks for the sample sizes of 30000 and 15000, along

with the percentage difference in these estimates, is given in Table 6-14. It is clear from

Table 6-14 that, as the size of the flood sample changes from 15000 to 30000, the

estimated peak discharge of very frequent floods of 1 or 2-year ARI remains unchanged.

The design flood estimates for return periods of 5 up to 50 years only change at most by

3%. By contrast, the magnitude of floods of 100-year ARI varies quite considerably, by

an amount of 12%. It can therefore be concluded that, up to the ARI of 50 years, a

stable estimate of the flood frequency curve for the La Trobe River catchment can be

derived using a random sample of 15000 data (spanning 2000 years).
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Table 6-14: Design flood estimates from varying sample sizes

189

Sample size of 15000 Sample size of 30000

ARI Peak discharge (m /s) Peak discharge (m7s) % difference

1
2

10
20
50
100

17
29
45
62
76
101
127

17
29
46
63
78
99
112

0
0
2
2
3
-2
-12

The variation in the estimated peak flood magnitude of 100-year ARI in response to

changes in sample size is not surprising. This is attributable to the relatively small

number of rare events generated by the Monte Carlo experiment. As design floods of

this low probability are the result of extreme combinations of flood causing components

(such as very high rainfall of long duration and low losses), to obtain better estimates of

these rare floods, a number of methods can be used. The first is to further increase the

number of the generated flood events. However, this method may only be adequate for

estimating design floods of up to 100-year ARI. The second is to apply more efficient

generation methods such as variance reduction techniques. As discussed in Section

5.2.2, these techniques aim to reduce the variance of the simulation results by biasing

the sampling scheme in the domain of interest (without changing the sample size).

Details of these techniques can be found in Thompson et al. (1997), Perlado (1990), and

Kottegoda and Rosso (1997). These techniques are more complicated for routine

applications and most relevant to the estimation of floods with ARls greater than 100

years. They were therefore considered to be beyond the objective of this research.

6.5.7 Discussion

Results of the sensitivity analyses described in Section 6.5 indicate that changes in

different stochastic and deterministic inputs have different impacts on the derived flood

frequency curve for the La Trobe River catchment at Noojee. Whereas the design flood

estimates are very sensitive to errors in the estimated design rainfall intensity and initial

loss, they are moderately influenced by uncertainties in the selected routing parameter k,

and only slightly affected by the modelling of the dependence of temporal patterns on
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season, storm duration, or depth. Uncertainties in the adopted continuing loss rate and

design baseflow were found to have more impacts on frequent floods than rare floods.

By generating 2000 years of data, it was concluded that the resulting design flood

estimates were stable, except for the ARI range beyond 50 years.

From the results of the sensitivity analyses, it can be concluded that the er.timation and

representation of the design rainfall intensity and loss model parameters are crucial in

order to obtain reliable design flood estimates. The same conclusion can be inferred

from previous studies (for example, Beran, 1973; Moughamian et al., 1987; Cadavid et

al., 1991; Raines and Valdes, 1993; Loukas et al., 1996), as it has been found that small

variations in parameter estimates of the rainfall and loss models can cause significant

errors in the derived flood frequency curve. By contrast, the modelling of the stochastic

nature of the rainfall temporal pattern and the dependence of the temporal pattern on

season, storm duration, and depth seem to have minor effects on the design flood peak.

In the past literature, Sivapalan et al. (1996) also suggested that peak runoff is not

affected by the temporal pattern of rainfall for catchments with response time large

compared to storm duration.

The availability of data is another factor that may have considerable impact on the

reliability of flood estimates. As discussed in Section 4.5.6, in the current application,

the design IFD curves for the La Trobe River catchment were determined from

observed rainfall data at only one pluviometer inside the catchment, and therefore were

of limited accuracy, particularly for rare storms of long duration. Had additional data

from daily rain gauges and supplementary rainfall information in a larger region been

used in the derivation of i\ • design IFD curves for the specified site, flood estimates by

the proposed Joint Probability Model would have been more reliably determined.

Similarly, the statistical distribution representing the initial loss and the routing model

parameter k were also estimated using at-site data. Again, pooling of supplementary

information from catchments with similar flood response could have led to better

estimates of the loss and runoff routing model parameters, and therefore, of the design

floods.

It is clear that the flood frequency curve derived by the proposed Joint Probability

Model reflects the variability of key design inputs to the flood generation process
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(rainfall intensity, duration, temporal pattern, and initial loss) and their correlations, but

not the uncertainty in the selected model representations and parameter estimation.

Even though it would be desirable to quantify the effects of this uncertainty on flood

estimates by determining the confidence limits of the derived flood frequency curve, as

mentioned in Section 5.4, this has been left for future work, due to both the lack of data

and the time limits placed on this research.

• k-'i^/V'

6.6 ADDITIONAL METHOD TESTING

In the analyses described in previous chapters and sections, the proposed Joint

Probability Model was applied to estimate design floods for just one catchment, the La

Trobe River at Noojee. In order to understand more about the performance of the

proposed model, the model was tested on another catchment, the Tarwin River

catchment at Dumbalk North (flow gauging station number 227226). As mentioned in

Section 4.2.1, this catchment has an area of 127km2, and 27 years of flow record (from

1971 to 1997). The pluviometer with the longest record that can be used for rainfall

analyses is just outside the catchment boundary and has 22 years of data (station 85106,

from 1957 to 1978). The estimation of the derived flood frequency curve for the Tarwin

River catchment and the evaluation of the proposed model using observed flow data for

this catchment are described below.

f

6.6.1 Estimation of model elements

Before estimating the derived flood frequency curve for the Tarwin River catchment

using the proposed Joint Probability Model, as for the case of the La Trobe River

catchment, the stochastic and deterministic elements of the model had to be determined.

The stochastic elements were the frequency curves of design rainfall intensity, the

probability distributions of rainfall duration, temporal pattern, and initial loss. The

deterministic elements were the parameters of the lumped runoff renting model, the

continuing loss rate, and the design baseflow.
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Data used to derive the stochastic elements of the proposed model for the Tarwin River

catchment were observed rainfall events extracted from the rainfall record at

pluviometer 85106, streamflow data recorded at station 227226, and observed initial

losses obtained from a parallel study (Rahman et al., 2001). Similarly, parameters of

the lumped runoff routing model for this catchment had already been calibrated and

were readily obtainable from the same study. The observed rainfall and streamflow data

at those sites have been checked for time homogeneity and the extracted storm events

for consistency f see Section 4.2.2).

To determine the probability distribution of storm duration, the IFD curves, and the

probability distribution of storm initial loss for the Tarwin River catchment, the

methods described in Sections 4.4, 4.5 snd 4.7 were adopted. To represent temporal

patterns by a statistical model, it is important to note that the temporal pattern was

assumed to be independent of location within the relatively small region used in this

study. Therefore, the statistical model used to characterise the temporal pattern for the

Tarwin River catchment was taken as that developed for the La Trobe River catchment.

In this case, the dependence of temporal patterns on season, storm duration, and storm

depth was neglected, as it has been shown that this simplification has minor effects on

design flood estimates (see Section 6.5.3). A summary of the probability distributions

characterising the stochastic inputs, their distributional parameters, and the values of

other fixed design inputs is given in Table 6-15.

Table 6-15: Tarwin River catchment at Dumbalk North - Summary of design elements

used in the proposed Joint Probability Model

Elements

Rainfall duration
Rainfall intensity
Temporal pattern

Initial loss

Baseflow
Continuing loss rate

Runoff routing model

Type of fitted distribution

Generalised Pareto distribution
Exponential distribution

Beta distribution
Beta distribution

fixed value
fixed value
fixed value

Distributional parameters
or design values

location = 0.077, scale = 1.102, shape = 0.193
vary, depending on class intervals of duration

a = 2.363, p = 2.212
a = 1.5, (3=1.7

0.18 m3/s
2.5mm/h

k = 33, m = 0.S
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6.6.2 Estimation of the derived flood frequency curve

193

As discussed in Section 5.2.2, for the purpose of this study, it is considered adequate to

generate 2000 years of data. As there was an average of 9.4 significant storm events per

year of record for the Tarwin River catchment, the minimum number of data to be

generated over 2000 years of simulation was [see Equation (5-1)]:

NR = 9.4x2000 = 18800

Therefore, the number of generated data for the specified catchment was taken as

20000.

To estimate the design flood frequency curve for the Tarwin River catchment, the

procedures detailed in Chapter 5 was adopted. In this procedure, 20000 random sets of

data from the input distributions were first generated. Flood events were then generated

using Monte Carlo simulation. A frequency analysis was finally carried out to

determine the generated flood frequency curve for the catchment.

The derived flood frequency curve for the Tarwin River catchment is illustrated in

Figure 6-5. In this figure, it can be seen that the shape of the derived flood frequency

curve does not follow closely that of the observed floods. This suggests that some of

the non-linearity of the rainfall-runoff process may not be correctly modelled. In

addition, design floods of very small ARIs (less than 1 year) are much smaller than the

observed floods. One possible explanation for this is that the adopted design baseflow

(O.18nr7s, see Table 6-15) might have been too low. Had a bigger value of the design

baseflow been adopted (say, 5m3/s), design flood estimates would have been increased

for all ARIs. However, for big floods of design interest (ARIs of 50 or 100 years), the

magnitude of change in the design peak discharge may be insignificant.

Design flood peaks of various return periods for the Tarwin River catchment are

summarised in Table 6-16. From this table, it can be seen that, using the proposed

model, the design flood peak for the study catchment varies from 27m3/s to 114m3/s for

ARIs from 1 year to 100 years.
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Figure 6-5: Observed floods and the generated flood frequency curve - Tarwin River

cctchment at Dumbalk North

Table 6-16: Design flood estimates for the Tarwin River catchment by different

methods

ARI (years) Rood frequency analysis Joint Probability Model Design Event Approach

Peak discharges Peak discharges Ratios

(m3/s) (m3/s)

Peak discharges

(m3/s)

Ratios

1
2
5

10

20
50
100

32
47
73

97

120
149
170

27
39
56

69

84
103
114

0.9
0.8
0.8

0.7

0.7
0.7
0.7

22
39
58

72

89
114
137

0.7
0.8
0.8

0.7

0.7
0.8
0.8

6.6.3 Evaluation of the proposed mode!

To assess the performance of the proposed Joint Probability Model on the Tarwin River

catchment, the design floods estimated by this model were compared with the best flood

estimates determined by flood frequency analysis and the flood estimates by the Design

Event Approach.
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To determine the best design flood estimates for the Tarwin catchment, the procedure

described in Section 6.2 was first applied to the annual flood series for the site. The

outcome of this step was a fitted LPIH distribution and the corresponding 90%

confidence intervals (see Figure 6-6). The empirical frequency analysis described in

Section 5.4 was next applied to a partial flood series (selected from a threshold

discharge of 30m /s) in order to provide estimates of more frequent floods. The best

design flood estimates for the Tarwin catchment were finally selected as the estimates

from partial series analysis for events with return periods less than 5 years, and from the

fitted LPIQ distribution for return periods of 5 years or greater (see Table 6-16). The

return period of 5 years was adopted as the transition between the two flood series as at

or above this value the partial flood series does not significantly differs from the annual

flood series for the design site.
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Figure 6-6: Observed floods and the fitted LPIH distribution - Tarwin River catchment

To estimate design floods by the Design Event Approach, the procedure detailed in

Section 6.3 was adopted. Results are summarised in Table 6-16 and illustrated in Figure

6-7.

In comparing design floods estimated by the proposed Joint Probability Model with the

best estimates determined by flood frequency analysis, it is evident from Table 6-16 that

the flood estimates by the proposed model are smaller than those of the flood frequency
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analysis for all ARIs. The difference between the flood estimates by these tteo methods

increases from 10% for very frequent floods to 30% for rarer floods. Nevertheless, the

flood estimates by the proposed model are all within the 90% confidence intervals

determined by direct flood frequency analysis, and very close to the lower 95% liinits

(see Figure 6-7).
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° Obsei-ved floods (partial series)
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O Best design flood estimates
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Figure 6-7: Flood frequency curves, Tarwin River catchment

Similarly, estimates of design floods by the Design Event Approach are all less than

their corresponding counterparts obtained from flood frequency analysis (see Table

6-16). The difference in flood estimates between these two methods varies from 20% to

30%. However, as clearly indicated in Table 6-16 and Figure 6-7, the flood estimates

by the Design Event Approach are always bigger than those obtained by the Joint
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Probability Model (except for events of 1-year ARI), and tend to be closer to the

estimates by flood frequency analysis.

In general, it can be concluded that, compared with the best flood estimates by flood

frequency analysis, both the proposed Joint Probability Model and the Design Event

Approach underestimate the design flood peak for the Tarwin River catchment.

Nevertheless, the flood peaks estimated by these latter two methods are of similar

magnitude, all within the 90% confidence intervals determined by direct flood

frequency analysis, and very close to the lower confidence limits.

6.7 OVERALL ASSESSMENT OF THE JOINT PROBABILITY MODEL

The applications of the proposed Joint Probability Model to design flood estimation for

two Victorian catchments have shown different results. For the La Trobe River

catchment, the model overestimates design floods, but the estimated flood peak

discharges are not too far from the upper confidence limits established by direct flood

frequency analysis. By contrast, for the Tarwin River catchment, the model

underestimates the design flood peak, however, these design floods are very close to the

lower confidence limits determined by direct flood frequency analysis. Compared with

the currently used Design Event Approach, the proposed model performs better for the

former catchment, and performs similarly for the latter.

For the two test catchments, the discrepancy of design floods estimated by the proposed

model and the best available estimates obtained from flood frequency analysis may have

been the result of many factors. As discussed in Section 6.4, these factors include the

use of a lumped model for runoff routing, and errors in the assumed degree of non-

linearity of catchment response. Uncertainties in determining the design rainfall

frequency curves, in estimating the parameters of the stochastic and deterministic

models representing the catchment flood response, or in the adopted values of other

fixed design inputs, certainly have an impact on the flood estimates. In addition, the

average rainfall over the catchment estimated from observed data at only one location
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may not be representative of the catchment rainfall and its variability over the study

catchment.

An original element of the proposed model was the development of a new storm

definition. This has been successfully applied and has shown a number of advantages.

Firstly, in the new storm definition, storm events are defined such that the storm

duration, rainfall intensity, and temporal pattern can be analysed as random variables.

Secondly, the parameters of the storm definition could be changed to suit the particular

type of catchment under study. For example, the separation time between successive

storms could be increased in order to extract longer storms that are likely to produce

runoff for large catchments. Thirdly, the adopted definition produces nearly complete

storm events in contrast to storm bursts. Therefore, the modelling of storm losses

becomes easier. Finally, in this study, using the proposed storm definition, the storm

duration has been characterised by a three-parameter Generalised Pareto distribution. In

previous studies (for example, Eagleson, i972; Wood and Hebson, 1986; Bloeschl and

Sivapalan, 1997), the storm duration has been modelled by the exponential distribution,

which is a special case of the Generalised Pareto distribution. It is thus clear that this

study has described the storm duration in a more general fashion.

However, there are also a few disadvantages in the developed storm definition. As a

storm represents a greater portion of the actual rain (rather than just a burst of the rain

currently used in design flood estimation in Australia), the temporal pattern becomes

more complex, is highly variable, and thus more difficult to model. Consequently, a

great deal of effort was spent on correctly modelling this variability. In addition, the

difference between the developed storm definition and the currently used storm bursts

means that some of the existing design data can not be used directly.

Overall, it can be concluded that the proposed Joint Probability Model is fundamentally

sound, theoretically superior to the currently used Design Event Approach, and

practically workable. It offers a rigorous method to compute the probability of design

floods without the need for the critical storm duration concept. It can model the great

variability of real storm event characteristics (storm duration, average intensity, and

temporal pattern) and their interactions. Applications of the model to two Victorian

catchments showed satisfactory results, even though the performance of the proposed
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model could be improved by using a better model for runoff routing and/or better

estimates of design inputs and model parameters. Testing of the proposed model on a

larger number of catchments is required before a firmer quantitative assessment of the

model performance can be made.

6.8 SUMMARY

The evaluation of the proposed Joint Probability Model was carried out by comparing

design flood estimates for the La Trobe and the Tarwin River catchments obtained from

this model with those estimated by flood frequency analysis and the Design Event

Approach.

In examining the observed flow data at the La Trobe catchment, it was evident that the

floods in the annual series for this site were the results of prolonged storms with the

average duration of 41 hours. These peak floods occurred throughout the year but more

often in winter and spring when the catchment was relatively wet.

In estimating design floods using direct flood frequency analysis, it was shown that the

flood frequency curve for this catchment was not well defined for return periods greater

than 20 years, and the corresponding confidence intervals of these flood estimates were

also wide. The uncertainty in these design floods was attributed to the shortness of big

floods on records. Similar1./, there was also uncertainty in design flood estimates

obtained by the Design Event Approach, due to many factors such as uncertainties in

the choice of fixed design inputs or in estimates of the routing model parameters.

In comparing design flood estimates obtained from the three methods, it was evident

that the currently used Design Event Approach significantly overestimated design

floods for the La Trobe River catchment. For any given return period, design flood

magnitudes were at least three times those estimated by flood frequency analysis. Even

though the proposed Joint Probability Model also overestimated design floods for this

catchment, the degree of overestimation was reduced to about half. The flood estimates

r
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by the proposed model were not too far from the upper confidence limits determined by

direct flood frequency analysis.

In examining the effects of variations or uncertainties in the stochastic and fixed design

inputs on the resulting flood estimates, the results of the sensitivity analyses confirmed

that the design rainfall intensity plays a key role in design flood estimation.

Uncertainties in the adopted design initial loss were found to have considerable impact

on estimates of the flood peak discharge. Errors in the routing model parameter k

resulted in moderate changes in the design flood peak. Uncertainties in the design

baseflow or the adopted storm continuing loss had more influence on small floods than

big floods. These results suggest that in applying the proposed Joint Probability Model

to practical situations, in order to obtain better flood estimates, it is crucial to

concentrate on the estimation of the design rainfall TJFD curves and the parameters of the

adopted loss model. More detailed representation of the catchment model for runoff

routing is also desirable.

The examination of the sensitivity of the resulting floods to the modelling of the

dependence of temporal patterns on season, storm duration, and storm depth showed

that, the design flood magnitude estimated for the La Trobe River catchment changed

only slightly if this dependence was neglected. Nevertheless, application of the

proposed model to a wider range of catchment areas is required to verify this

conclusion.

The investigation of the effects of the size of the generated sample of floods on design

flood estimates confirmed that for the specified sample size of 15000 (over 2000 years),

the generated flood frequency curve in the range of 1-year to 50-year ARI was

satisfactorily stable. More reliable flood estimates for ARIs greater than 50 years can

be obtained by increasing the generated flood sample or by applying variance reduction

techniques.

Results of an additional testing of the proposed model on the Tanvin River catchment

indicated that, when compared with the best available flood estimates by flood

frequency analysis, the proposed model generally underestimated the design peak

discharge. However, the flood estimates by the proposed model were very close to the
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lower confidence limits established by .direct flood frequency analysis, and of similar

magnitude with those determined by the Design Event Approach.

On the basis of the different results for the two test catchments, it was concluded that

testing of the proposed model on a larger number of catchments with long flow records

is required before a firm conclusion on the quantitative performance of the proposed

model can be drawn.

In assessing the proposed model, it has been shown that the storm definition developed

for this study has many advantages. These include the ability of modelling the real

variations of storm event characteristics, the flexibility of its parameters to be changed

to suit a particular catchment, the ease of modelling the catchment wetness conditions,

and the ability to describe the storm duration by a general statistical distribution. By

contrast, the proposed storm definition also has a few disadvantages. These include the

greater complexity of the storm temporal patterns, making it more difficult to model,

and the less direct relationship with current design rainfall data.

In summary, the proposed Joint Probability Model is considered to be fundamentally

sound and theoretically superior to the currently used Design Event Approach, because

it explicitly models the variability of key design inputs and their correlations in the

flood generation process. The method is also practically workable. However, design

floods estimated by this model are still subject to errors due to uncertainties in model

selection or parameter estimation. While it is desirable to quantify the uncertainty in the

flood estimates, this has been left for future research due to the lack of data and the

limited time frame of this studv.
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Chapter 7

CONCLUSION

This chapter presents a summary of the research reported in this thesis, conclusions

drawn from the work, and recommendations for further study.

7.1 SUMMARY OF WORK DONE

Throughout this study, the main objective has been the development of a Joint

Probability Model for rainfall-based design flood estimation. This objective was

achieved by reviewing design flood estimation methods, selecting the most promising

approach among various alternatives, developing a conceptual flood estimation model

based on the selected approach, and testing the performance of the proposed model on

two Victorian catchments.

Review of design flood estimation methods

The review of rainfall-based design flood estimation methods revealed major

weaknesses in the currently used Design Event Approach and the need for an improved

method of estimating design floods from design rainfalls. These weaknesses are the

underestimation of the variability of real storm events causing floods and associated

catchment moisture conditions, the non-scientific basis of the critical storm duration

concept and the resulting probability bias in design flood estimates, together with the

difficulties in selecting representative values of design inputs to correct the probability

bias. These are likely to result in significant uncertainties in flood estimates, which

could have considerable economic consequences in the design of hydraulic structures

and floodplain management.



Chapter 7 203

Among the rainfall-based design flood estimation methods, Continuous Simulation and

the Joint Probability Approach have the potential to overcome the above limitations of

the current design procedure. Both methods can account for the great degree of

variability of rainfall and loss characteristics, eliminate the need for estimating the

critical storm duration, and more rigorously estimate the probabilities of design floods.

However, of these two methods, the Joint Probability Approach has greater potential to

provide significant improvements in rainfall-based flood estimation in the near future;

because, being more closely related to the current Design Event Approach, it is possible

to make use of a large body of existing experience and data. This research has focused

on the Joint Probability Approach.

The Joint Probability Approach to rainfall-based design flood estimation has two

essential elements: deterministic and stochastic elements. The deterministic elements

convert a design rainfall event input into a rainfall excess and then into an output of a

flood event hydrograph. The stochastic elements include the probability distributions

representing the key model inputs, and a derived distribution method for determining

the probability distribution of the flood event output.

The review of previous studies of the Joint Probability Approach indicated that even

though this approach has been applied to design flood estimation since the 1970s, it has

not yet been developed to be a practical design tool, due to many restrictions in the

elements used. These are:

• the use of inadequate models of the design rainfall, loss, and catchment response,

• the inadequate consideration of the variability of key flood producing factors,

• simple assumptions about the relationships between stochastic design inputs,

• the use of complicated derived distribution methods, and

• the lack of flexibility to apply the approach to actual catchment conditions.

Development of Joint Probability Model

Unlike previous models of the Joint Probability Approach, the Joint Probability Model

proposed in this study uses an initial loss - continuing loss model and a simple lumped,

non-linear runoff routing model that, can be easily applied in practice. In addition, it

represents key design inputs to the flood generation process (namely, the design rainfall
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intensity, duration, temporal pattern and initial loss) by probability distributions, and

models the correlations between these design inputs. In order to simulate design floods,

it employs Monte Carlo simulation. The distinctive features of the proposed model are

the use of a storm definition that can reflect the great variability of real rainfall event

characteristics, the consideration of the correlations of design random variables,

especially the dependence of rainfall temporal patterns on season, rainfall duration, and

depth, and the simplicity for routine applications. At this development stage, the

proposed model aims to determine the frequency curve of the peak flood magnitude up

to the 100-year ARI by means of a lumped runoff routing model. However, the

proposed model is intended for use with a distributed runoff routing model and, in

principle, it could be applied to derive the frequency curves of other flood hydrograph

characteristics and to more extreme events.

To apply and evaluate the proposed model, two Victorian catchments (the La Trobe

River catchment at Noojee and the Tarwin River catchment at Dumbalk North) were

selected. The analyses of rainfall inputs used data at 19 pluviometers in and around

these catchments. Observed rainfall and flow data at these sites were checked for

homogeneity in time. Results of the Mann-Kendall test for trend and the CUSUM test

for discontinuity indicated that the data at any particular site were all drawn from the

same statistical distribution.

Before developing the probability distributions of rainfall characteristics, a storm

definition was developed to extract significant rainfall events from continuous rainfall

records. Five parameters were used to define these events, such that they are stochastic

events, have the potential to produce significant runoff, and exclude periods of

insignificant rain at the start and end of the events. The values of these parameters were

determined by exploratory and sensitivity analyses. The extracted events were finally

checked for consistency and those with recording errors were eliminated. The adopted

storm definition1 gave an average of seven storms per year per station.

In developing the probability distribution of the storm duration at Noojee, the regional

frequency analysis procedure developed by Hosking and Wallis (1997) was adopted.

A variant of this storm definition, called 'storm core', has also been investigated in a parallel study
(Rahman et al., 2001).
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Analysis results showed that homogeneous regions of storm duration could be formed

by grouping sites contiguous to the site of interest. A three-parameter Generalised

Pareto distribution was used to characterise storm duration. The fitted distribution

preserved very well the statistical properties of the observed storm durations.

To determine the frequency curves of the rainfall intensity for the design site, the

correlation between average rainfall intensity and storm duration was first investigated.

A conditional probability distribution, expressed by the IFD curves, was then used to

characterise this relationship. The IFD curves for the design site were determined using

at-site frequency analysis of rainfall intensities for selected duration intervals, and a

smoothing procedure for other durations. Results indicated that there were uncertainties

in average intensity estimates of long duration and low frequency storm events due to

the lack of observed data. As a future improvement, it would be desirable to use

regional rainfall data to obtain more reliable rainfall intensity estimates.

Before developing a stochastic model for storm temporal patterns, the dependence of

the temporal patvern on season, storm duration and depth was examined using

correlation analysis and the chi-square test of independence. It was found that,

depending on the test used and the level of detail of the characterisation of the rainfall

temporal pattern, such dependence might be or might not be detected. When the

temporal pattern was represented by a dimensionless mass curve defined by nine

ordinates, results of the chi-square test showed that the temporal pattern was dependent

on season of storm occurrence, storm duration and even on storm depth (in one case).

Based on these results, the observed temporal patterns of the storm events used in this

study were divided into ten independent groups.

The multiplicative cascade model presented by Robinson and Sivapalan (1997) was

adopted for generating design temporal patterns. For each of the ten temporal pattern

groups, disaggregation parameters of this model were generated from a beta distribution

whose parameters were determined from the observed dimensionless mass curves in the

group. The adopted model satisfactorily reproduced the distribution of the maximum

dimensionless rainfall intensity and the frequency characteristics of the observed

temporal patterns. However, it underestimated the lag one auto-correlation between

successive storm depths of the observed patterns.
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Before deriving the probability distribution of storm initial loss, the relationships

between the storm initial loss and storm duration and average rainfall intensity were

investigated. Analysis results indicated that the initial loss derived for observed events

for the La Trobe River catchment was independent of storm duration and average

intensity. The probability distribution of the storm initial loss was then derived using an

at-site frequency analysis method. A two-parameter beta distribution w-s again used to

represent the initial loss for the catchment.

A trial and error approach was applied to determine the parameters of the lumped runoff

routing model for the study catchment. It was shown that the calibrated model

reproduced relatively well the peak discharge, but significantly underestimated the time

to peak of the observed flood hydrographs. A similar conclusion was drawn when

design floods were estimated using a distributed RORB model calibrated for the same

catchment. On this basis, it was concluded that, for the purpose of this study, the

adopted model was able to give reasonable estimates of the design flood peak.

Model application and evaluation

In applying the proposed Joint Probability Model for estimating design floods for the

test catchments, random rainfall events and loss data were first generated from the

frequency distribution of rainfall intensity, the probability distributions of rainfall

duration and initial loss, and the stochastic model of temporal patterns. Monte Carlo

simulation was then used to simulate flood event hydrographs resulting from various

combinations of these design inputs, taking into account the relationships between them.

The derived flood frequency curve of peak flows was finally determined using a

frequency analysis for partial duration series.

To evaluate the proposed Joint Probability Model, design floods estimated by the model

were compared with the estimates obtained from direct flood frequency analysis and the

Design Event Approach. For the La Trobe River catchment, it was evident that the

proposed model was able to reduce the bias in the results of the Design Event Approach

by about 50%. It was also found that the generated flood frequency curve was close to

the upp*.. confidence limits for the curve derived from direct flood frequency analysis,

while the flood frequency curve determined by the Design Event Approach was far

above it. By contrast, for the Tarwin River catchment, the proposed model as well as
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the Design Event Approach underestimated the peak flood discharge. However, in this

case, the design flood estimates by these two methods were of similar magnitude and

very close to the lower confidence limits determined by direct flood frequency analysis.

To examine the effects on design flood estimates of likely errors in the stochastic and

fixed design inputs, sensitivity analyses were carried out. It was found that the design

rainfall intensity plays a critical role in the estimation of design floods. Uncertainties in

estimates of the initial loss and the runoff routing model parameter k were found to have

important effects on the resulting floods. Errors in estimates of the fixed design

continuing loss rate or the adopted baseflow had more influence on frequent floods than

rare floods. For the present application where the seasonal variations of other design

inputs were not considered, the neglect of the variation of the rainfall temporal pattern

with season, storm duration and depth was fcand to have little effect on design flood

peaks for the La Trobe River catchment.

In examining the stability of the design floods, results of a sensitivity analysis showed

that, for the specified sample size of 15000 events spanning 2000 simulated years, the

peak discharge estimates were stable for floods of ARIs less than 100 years. Better

estimates of floods with ARIs of 100 years or more could be obtained by increasing the

generated flood sample or applying variance reduction techniques.

7.2 CONCLUSIONS

From the research conducted in this study, the following main conclusions can be

drawn:

• It is desirable to improve the currently used Design Event Approach for estimating

design floods from design rainfalls, as the limitations of this approach have lead to

considerable uncertainty and bias in design flood estimates, which have significant

economic impacts on the design of hydraulic structures and floodplain management.

• The proposed Joint Probability Model is theoretically superior to the Design Event

Approach and easy to apply in practice. The model adopts the same rainfall-runoff

modelling elements as the Design Event Approach, but explicitly takes into account
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the variability of the design rainfall depth, duration, temporal pattern, and initial

loss, and the relationships between them. Using the proposed model, the probability

of design floods can be rigorously determined (within the bounds of uncertainty of

design inputs). Furthermore, the non-scientific basis of the critical storm duration

concept applied in the Design Event Approach can be avoided. In addition, being

closely related to the Design Event Approach, the proposed model can be applied

using some of the existing design data and expertise.

• Applications of the proposed model to two gauged Victorian catchments showed

different results. Design flood estimates by the model are within the 90%

confidence intervals determined by direct flood frequency analysis for one

catchment, but outside the intervals for the other. Compared with the Design Event

Approach, the model performs better for one catchment but similarly for the other.

Further testing of the proposed model on a larger number of catchments is therefore

required to obtain firmer conclusions about its performance.

• The flood peak discharge is strongly influenced by estimates of the design rainfall

intensity, as expected, and to a lesser extent, by estimates of the storm initial loss

and the runoff routing model parameter k. Therefore, in order to obtain reliable

design floods, it is crucial to obtain good estimates of the design rainfall intensity

for a catchment. Efforts should also be devoted to the modelling of the design

rainfall loss and the parameter estimation of the runoff routing model.

• From the results of the model application and sensitivity analyses, it can be

concluded that the proposed Joint Probability Model is practically workable. It can

be readily applied to gauged catchments with good pluviograph data and limited

streamflow record. For these catchments, it is feasible to derive the statistical

distributions of the random design inputs (rainfall intensity, duration, temporal

pattern, and initial loss) using observed rainfall and flow data.

• The storm definition developed in this research has proved successful in modelling

the great degree of variability of real storm event characteristics. It represents a

greater portion of the actual rain than the currently used storm bursts, and therefore

makes the modelling of storm loss easier. In addition, its parameters could also be

changed in order to represent the typical storms causing floods for a particular

catchment.
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• Of the issues involved in the modelling of variable desigr inputs, the model

representation of the rainfall temporal ^pattern required the greatest analysis and

development effort. Although temporal patterns were found to depend on season,

storm duration, and depth, with limited testing, it was concluded that design flood

estimates were relatively insensitive to the modelling of this dependence.

• Even though the proposed Joint Probability Model has only been tested for the

design flood peak, the model could be applied to determine the frequency curves of

other hydrograph characteristics such as flood volume or time to flood peak. It

could also be applied to determine the flood frequency curves for catchments with

artificial storage, in which initial reservoir storage content can be considered to be

an additional random variable.

7.3 RECOMMENDATIONS FOR FUTURE STUDIES

The proposed Joint Probability Model can be further improved in order to become a

practical design tool. In this development, the following aspects should be considered.

• Application of the model to a wider range of catchments: As the proposed modei

has been applied to only two catchments, further testing of the model on a larger

number of catchments is considered essential. The catchments should be selected

such that they represent a wider range of flood hydrology characteristics (size, shape

and geographic location). In addition, they should have relatively long and

concurrent observed streamflow and pluviograph data, and large floods on record

(preferably with ARIs approaching 100 years). Application of the proposed model

to such catchments would allow better quantification of the model performance.

• Incorporation of a distributed runoff routing model: Clearly, the use of a simple,

lumped runoff routing model as adopted in this study is inadequate for design flood

estimation, especially for large catchments. This is because the lumped model

ignores the spatial variation of rainfall and loss characteristics, and the distributed

nature of catchment storage. The use of a distributed runoff routing model would

allow the above characteristics to be more realistically modelled and therefore

would lead to improved design flood estimates.
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• Derivation of the IFD curves using a regional Frequency analysis method: The

at-site frequency analysis procedure used to develop the IFD curves of storm events

defined in this study is inadequate, due to the shortness of rainfall record, especially

for the estimation of the average intensity for rare events. The use of a regional

frequency analysis method clearly could produce better IFD estimates, as the

shortness of record at the site of interest can be compensated by pooling data from

several sites. In this regard, the procedure developed by Hosking and Wallis (1997)

seems to be a promising method.

• Investigation of an improved model to represent the rainfall initial loss: The

modelling of the storm initial loss could be improved by the investigations of (i) an

alternative distribution to represent the initial loss, and (ii) methods for taking into

account the dependence of the rainfall loss on season. With respect to (i), in this

study, it has been shown that the beta distribution adopted to represent the initial

loss for the study catchment is not necessarily the best distribution, and that

variations in the model representation of the initial loss have significant effects on

design floods. Therefore, it is clear that the examination and adoption of a better

statistical distribution for the initial loss would improve the performance of the

proposed Joint Probability Model for design flood estimation. With respect to (ii),

the variation of the rainfall loss with season is not considered in this research.

However, it is obvious that there is a strong correlation between the rainfall loss and

season, because infiltration and evaporation losses are higher in summer than in

winter. The incorporation of this relationship into the flood generation process

would better reflect the real interaction between rainfall and catchment conditions,

which should lead to improved design flood estimates. An example of an

investigation of the seasonal variation of the initial loss can be found in Hill et al.

(1996a).

• Investigation of a more detailed representation of the temporal pattern: The

stochastic model of the rainfall temporal pattern in this study could be improved in

the following two aspects. The first is the incorporation of the auto-correlation into

the adopted model. It has been shown in the present study that the multiplicative

cascade model adopted to represent the temporal pattern does not reproduce the

auto-correlation of rainfall intensity in successive time steps. This may lead to

underestimation of design flood estimates, as in reality, high rainfall tends to be

followed by high rainfall, and this would tend to produce large peak discharge.
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Thus, it is desirable to incorporate the auto-correlation of rainfall intensity into the

adopted stochastic model of the rainfall temporal pattern. To achieve this objective,

the method recently developed by Seed et al. (1999) or the model proposed by

Garcia-Guzman and Aranda-Oliver (1993) could be used. The second is the

determination of the minimum number of ordinates necessary to adequately define

the temporal pattern of rainfall. In this study, the adopted stochastic model of the

temporal pattern has been applied to generate random dimensionless rainfall

hyetographs defined at 8 equal increments of storm duration. The adopted number

of time increments may be adequate for short duration storms, but possibly

inadequate to represent the time distribution of rainfall intensity during the storm

duration of longer events, say, greater than 24 hours. In design flood estimation,

coarsely defined temporal patterns tend to smooth out the flood peak discharge.

Thus it is important to determine the minimum resolution of the temporal pattern in

order to correctly model the design flood peak.

• Stochastic treatment of the spatial variation of rainfall on a catchment scale:

As real rainfall events causing floods vary considerably in time and space,

modelling of the spatial variation of rainfall on the catchment scale is considered to

be necessary in flood estimation procedures, especially for medium to large

catchments. At the time of this study, this was difficult to achieve due to limited

number of rain gauges over catchments. Nevertheless, current development in

radar-based rainfall estimation is expected to make this objective feasible in the

future.

• Application of the model to ungauged catchments: In this study, it has been

shown that the probability distributions of rainfall duration and temporal pattern can

be derived using regional data. Therefore, to apply the model to ungauged

catchments, future work is required in order to develop the probability distributions

of average rainfall intensity and initial loss using regional data. In this regard,

regional design data for storm bursts provided by the Institution of Engineers,

Australia (1987) may be used to derive the IFD curves for complete storms. The

development of the statistical distribution of the storm initial loss could be carried

out using some results of a previous study (Hill et al., 1996a).

• Uncertainty analysis: The derived flood frequency curve estimated by the

proposed Joint Probability Model reflects the variability of key design inputs

(rainfall intensity, duration, temporal pattern, and initial loss), but not the
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uncertainties in model selection or parameter estimation. It is therefore desirable to

examine the uncertainty of design floods as the result of the uncertainties in design

inputs. For example, a Bayesian framework could be used to quantify the

uncertainty involved in parameter estimation (Kuczera, 1983a,b), or Monte Carlo

simulation could be applied to derive the confidence limits of the flood outputs

(Bates and Townley, 1988). It is also worth noting that, so far, the sensitivity

analyses conducted in this study have been limited to examining the individual

impacts on design flood estimates of input or parameter uncertainty. Further work

on combined effects of the uncertainties in these factors is thus needed to get a

better understanding of their interactions and compensating effects in design flood

estimation.
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Appendix A

JOINT PROBABILITY APPROACH:

STATISTICAL BASIS

This appendix introduces some basic statistical concepts relevant to the Joint Probability

Approach, along with the theoretical background of the joint probability distribution of

random variables. The material presented below is summarised from Benjamin and

Cornell (1970), and Walpole and Meyers (1993).

A.1 SOME IMPORTANT STATISTICAL CONCEPTS

The concepts of probability of intersection, probability of union, and the Theorem of

Total Probability are discussed below.

A.1.1 Probability of intersection

The intersection of two events A and Bj, denoted as A n B;, is the event that contains

all elements common to A and Bj. Its joint probability is determined by:

prob(A n Bi) = prob( A|B; )prob(Bj) (A-l)

where prob(A|Bj), called the conditional probability of event A given Bj, is the

probability of occurrence of the event A on the condition that the event Bj has occurred.

Conditional probability is a concept of great practical importance. It provides the

capability to re-evaluate the probability of an event using additional information

(Walpole and Meyers, 1993).

If the occurrence of event Bj has no impact on the occurrence of event A, that is if:
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prob(A|Bi) = prob(A) (A-2)

then A and Bj are independent events. The concept of statistical independence plays a

vital role in all areas of statistical applications. From a practical viewpoint, the analysis

of many statistical models may become v,ery complicated if the assumption of

independence of certain random variables is not accepted in certain key situations

(Benjamin and Cornell, 1970).

For the case of independent events, Equation (A-l) becomes:

r»rob(A n Bj) = prob(A)prob(Bj) (A-3)

A. 1.2 Probability of union

The union of two events A and B, denoted as A VJ B, is the event that occurs if either A

or B or both occur. Its probability is computed by:

prob(A u B ) = prob( A) + prob(B) - prob( A n B) (A-4)

A.1.3 Theorem of Total Probability

If Bj (i varies from 1 to n, where n is a positive integer) represents a set of events which

satisfies the following two conditions:

• the events are mutually exclusive, that is, prob(B, u B , u . . u B n ) = prob(Bi) +

prob(B2) +...+ prob(Bn), and

• the events are collectively exhaustive, that is, prob (B, u B2u...uBn) = 1,

then the probability of another event A can be determined using the Theorem of Total

Probability (Figure A-l ) :

prob(A)= 2prob(A|Bi)prob(Bi) (A-5)

This equation indicates that the probability of event A is the sum of the joint

probabilities of A and Bj for all possible Bj values. Thus, the Theorem of Total

Hi

t ~.
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i

Probability allows the calculation of the unconditional probability of an event from a set

of its conditional probabilities. It is considered as one of the workhorses in probability

applications (Kuczera, 1994).

Figure A-l: Venn diagram for the Theorem of Total Probability

The Theorem of Total Probability, expressed in one dimension (B) by Equation (A-5)

can also be expanded to two or more dimensions. For example, in three dimensions B,

C, D, the theorem can be written for discrete distributions as follows (McCloud,

Personal communication, 1996):

prob(A) = i nCk nD s) (A-6)
x=l

If Bj, Ck, Dx are independent events, Equation (A-6) becomes:

n m i

prob(A) = XEEProb(AlBi'Ck'Dx)Prob(B i)prob(Ck)prob(Dx) (A-7)
i = l k = l x = l

In applying the theorem to the calculation of the probability of design floods,

explanations for the terms involved in the above formula are as follows:

• prob(A) is the unconditional probability of a flood (to be exceeded in any given

year),

• prob(A|Bj) is the conditional probability of a flood given an input Bj that occurs at

the same time as A, not just in the same year,

• prob(Bj) is the probability of obtaining a value of Bj for the input B, and

• B, C, D are design random variables, for example, the storm duration, temporal

pattern, or loss.

W

IK
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A.2 JOINT PROBABILITY DISTRIBUTION OF RANDOM VARIABLES
0
S

A random variable is a function defined on a sample space. There are two types of

random variables: discrete or continuous. A discrete random variable is a random

variable that can assume a finite set of values. By contrast, a continuous random

variable is a random variable that can assume an infinite set of values.

When two or more random variables are considered simultaneously, their joint

behaviour is determined by a joint probability distribution. For discrete random

variables, this joint probability distribution is called the joint probability mass function,

and for continuous random variables, the joint probability density function. For

generality, the section below presents the theoretical background of the joint probability

distribution of continuous random variables. The joint probability behaviour of discrete

random variables can be studied in standard statistical textbooks.

A.2.1 Joint probability density function

Consider two random variables X and Y. The joint probability that X lies between x

and X2, and Y between yi and y2 is given by:

prob[(x, < x < x2)and(y, < y < y2)]= J Jpx Y(x,y)dydx (A-8)
"i y,

$*

\%

•X

.r

where px,y(x,y) is the joint probability density function.

The joint cumulative distribution function Fx.v(x,y), which represents the joint

probability that X is less than or equal x and Y is less than or equal y, is defined as:

x y

Fx Y(x,y) = prob[(X < x) and(Y < y)]= J j p x Y(x,y)dydx (A-9)

The relationship between px.y(x,y) and Fx,Y(x,y) is as follows:

d2

oxdy
(A-10)
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A.2.2 Marginal distributions

The marginal distributions may be used to describe the behaviour of one of a pair of

random variables, regardless of the value of the second random variable. For example,

the marginal density function of X, px(x), is obtained by integrating px.v(x,y) over all

possible values of Y.

pxoo= (A-ll)

A.2.3 Conditional distributions

The distribution of one variable with restrictions or conditions placed on the second

variable is called a conditional distribution. For example, the conditional density

function of X when Y is given is defined by:

(A-12)
pY(y)

A.2.4 Independence of random variables

Two random variables X and Y are independent if the conditional density function

equals the marginal density function, that is:

In this case, the joint probability density function of X and Y is the product of their

marginal density distributions.

(A-14)
i ',
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Appendix B

PREVIOUS STUDIES OF THE JOINT PROBABILITY

APPROACH TO DESIGN FLOOD ESTIMATION

This appendix presents a summary of previous studies of the Joint Probability Approach

to the estimation of design floods from design rainfalls.

The appendix consists of three tables. Tables B-l, B-2 and B-3 document previous

studies that use analytical methods, approximate numerical methods, and Monte Carlo

simulation for determining the flood probability distribution, respectively. For each

study, the models used to represent the design rainfall, runoff production and runoff

routing processes are described. Characteristics of each study, together with the results

obtained are also summarised.

4
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Table B-l: Studies based on analytical methods

Authors

Eagleson
(1972)

Wood (1976)

Hebson and
Wood (1982)

Diaz-Granados
etal. (1984)

Rainfall models

- rainfall
intensity and
duration:
exponential
distributions
- uniform
temporal patterns

Eagleson's
(1972) rainfall
model

Eagleson's
(1972) rainfall
model

Eagleson's
(1972) rainfall
model

Runoff production
models
- constant loss rate
- partial area
concept

infiltration rate
(represented by
different
distributions)

- constant
infiltration capacity
- partial area
concept

Philip's infiltration
equation

Runoff routing
models
kinematic wave
theory

kinematic wave
theory

geomorphologic unit
hydrograph (GUH)

geomorphoclimatic
unit hydrograph
(GcUH)

Characteristics of the studies and results

- The method was developed for a catchment of V-shape.
- Rainfall intensity and duration were assumed to be independent random variables.
- The form of the flood frequency curve was influenced by catchment and rainfall
parameters.
- Flood peaks were overestimated because the kinematic wave equation omitted the
attenuation of flows.
- A significant improvement of the method could be made by removing the assumption
of independence of stochastic inputs.

- Rainfall intensity, duration, and loss rate were assumed to be independent random
variables.
- Infiltration rate was characterised by uniform, exponential, or Gamma 1 distribution.
- Serious design problems may arise due to parameter uncertainty. For example, the
use of a point estimate for the rainfall loss rate underestimated the exceedance
probability of a given peak discharge.

- The GUH is a linear rainfall-runoff model developed from considerations of physical
properties of catchment and drainage networks.
- In studying flood frequency behaviour, the GUH appeared to be theoretically more
suitable than the kinematic wave method.
- Catchment shape plays an important role in flood frequency behaviour.

- The GcUH, developed by Rodriguez-Iturbe et al. (1982), is a modified version of the
GUH in that it incorporates climate and catchment geomorphology in rainfall-runoff
behaviour.
- The flood frequency distribution derived was a function of initial soil moisture.
- The model did not perform well in humid regions, possibly because soil moisture may
play an important role in estimating rare events.
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Wood and
Hebson(1986)

Moughamian et
al. (1987)

Haan and
Edwards (1988)

Sivapalan et al.
(1990)

- storm intensity:
gamma
distribution
- storm duration:
exponential
distribution

storm intensity:
Extreme Value
typel
distribution

- scaled rainfall
intensity: gamma
distribution
- scaled duration:
exponential
distribution

- Hortonian runoff
' generation process

SCS Curve Number
method (Soil
Conservation
Service, 1972)

- infiltration model
- partial runoff
generation process

dimensionless
geomorphologic unit
hydrograph

generalised GUH

- Random variables (rainfall intensity and duration) were assumed to be independent.
- The dimensionless flood frequency curve was derived from dimensionless areal
rainfall to improve understanding of hydrologic similarity among basin responses and
their influence on flood frequency characteristics.

- Examined performance of the methods recommended by Hebson and Wood (1982)
and Diaz-Granados et al. (1984).
- Both methods performed poorly on 3 test basins.
- Significant errors in derived flood frequency curves could have resulted from small
variations in parameters of the rainfall and loss models.
- Eagleson's rainfall model (Eagleson, 1972) did not include any information about the
nature of large storms which were responsible for large floods.
- The catchment response models used were probably not sufficiently general to
describe runoff generation over a wide range of events.
- It was recommended that further research should investigate rainfall models that put
more emphasis on large storms, and identify qualitative differences in runoff
mechanisms influencing floods of different sizes.

- Rainfall volume and maximum abstraction from rainfall were assumed to be
independent random variables.
- For the 7 test catchments and for a given return period, the proposed approach always
gave flood volume estimates higher than the current event method. However, the
estimates tended to converge for low return periods.

- The generalised GUH is a modified version of the GUH that includes partial area
runoff generation by both Hortonian and Dunne mechanisms.
- The flood frequency model was theoretically developed but Monte Carlo simulation
was used to numerically evaluate the derived dimensionless cumulative distribution
function of flood peaks.
- Sensitivity analysis showed that the flood frequency curve was strongly influenced by
the runoff generation process, the scale of catchments and storms. The flood frequency
curve seemed to be the result of mixed runoff production mechanisms, each governing
the shape of the curve at a particular range of return periods.
- Tests of the method on actual catchments were needed.

: * - * • * • • » TfT'W^SW
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Shen et al.
(1990)

Cadavid et al.
(1991)

Raines and
Valdes(1993)

Sivapalan et al.
(1996)

Eagleson's
(1972) rainfall
model

Eagleson's
(1972) rainfall
model

Eagleson's
(1972) rainfall
model

- IFD curves
(Gumbel
distribution)
- storm duration
(WeibuII
distribution)

Philip's infiltration
equation

Philip's infiltration
equation

SCS Curve Number
method (Soil
Conservation
Service, 1972)

runoff coefficient

kinematic wave
theory

kinematic wave
theory

geomorphoclimatic
unit hydrograph
(GcUH)

instantaneous unit
hydrograph (IUH)
based on 3 parallel
linear storages

- The flood frequency distribution was analytically derived, but numerical integration
was used to practically solve the derived distribution.
- For the 4 contrived basins used in the study, it was shown that floods of a given
frequency were strongly influenced by soil types and initial soil moisture used in the
infiltration model. An accurate estimation of soil properties seemed to be extremely
important.
- The rainfall-runoff model used in deriving the flood frequency curve was developed
for small basins having some specified physical characteristics.

- The method was derived for catchments conceptualised as two symmetric planes
discharging into first order streams.
- The derived and observed peak flow distributions deviated appreciably for high
events, possibly due to differences in the precipitation process controlling flood
formation, and sampling errors in high flood values.
- Inaccuracy in the estimation of rainfall parameters, especially the mean intensity,
appeared to have a major impact on results.

- There was a wide variation in the flood frequency curves derived for 4 test
catchments when compared the results obtained from the proposed approach with those
obtained from the methods developed by Hebson and Wood (1982), and Diaz-
Granados et al. (1984).
- The magnitude and slope of the derived flood frequency curve seemed to be strongly
influenced by the estimation of rainfall parameters, and the loss model used.

- Periods of zero rainfall exceeding two hours were used to separate individual rainfall
events.
- The joint probability distribution of rainfall intensity and duration was approximated
by multiplying the burst IFD curves with the marginal distribution of storm duration.
- The study aimed at identifying the processes that control the shape of the flood
frequency curve. Results indicated that this shape was influenced by the rainfall
temporal pattern and multiple storms, and the non-linear dependence of runoff
coefficient on rainfall depth.
- It was demonstrated that peak runoff was not affected by rainfall temporal patterns for
catchments with response time large compared to storm duration.

L_
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Table B-2: Studies based on approximate numerical methods

Authors

Laurenson
(1974)

Beran(1973)

Rainfall models

Not applicable

IFD curves

Runoff production
models
Not applicable

infiltration loss

Runoff routing
models
Not applicable

unit hydrograph

Characteristics of the studies and results

- Laurenson (1974) proposed a method of modelling systems that contain both
stochastic and deterministic components. This is achieved by dividing the system into
a sequence of steps, each step transforms an input distribution into an output
distribution, which becomes the input to the next step. The probability of the output at
each step can be calculated from the Theorem of Total Probability using the input
distribution and a transition probability that reflects the deterministic components of
the system.
- In general, the method offers a wide range of application in hydrology when the
stochastic-deterministic nature of the problem needs to be accounted for (Laurenson,
1973; Laurenson, 1974; Ahern and Weinmann, 1982). For example, in extreme flood
estimation, the method was applied to compute the frequency of extreme precipitation
from the joint distribution of the convergence component of rainfall and dew point
(Laurenson and Pearse, 1991).

- Rainfall depth, duration, temporal pattern, and catchment wetness index were
assumed to be independent random variables.
- A storm definition was used to allow any wet spell to contribute a single value to the
distributions of depth and duration. However, due to insufficient rainfall record for the
development of the statistical distribution of storm depth, existing IFD curves, which
were derived from a different storm definition, were used to represent storm depth.
- The distribution of storm temporal patterns was described by Huff curves (Huff,
1967).
- Given a specific combination of inputs, the probability of the resulting flood was the
product of the probabilities of input variables. The flood distribution was then
established by summing probabilities in each discharge interval.
- The storm losses and rainfall depth are identified as the most important factors
affecting the flood magnitude.
- The derived flood frequency curve was flatter than the observed one, possibly
because of the discrepancy between the storm definitions used.

i
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Hughes (1977)

Goyen(1983)

Fontaine and
Potter (1993)

Consuegra et
al. (1993)

IFD curve's

IFD curves

stochastic rainfall
model developed
by storm
transposition
method

IFD curves

SCS Curve Number
method (Soil
Conservation
Service, 1972)

Stochastic
Deterministic Loss
Model (SDLM)
based on the
ARBM model

SCS Curve Number
method (Soil
Conservation
Service, 1972)

improved SCS
Curve Number
method (Rowney,
1985

RAFTS model

HEC-1, based on :he
unit hydrograph
theory

unit hydrograph

- The frequency turves of peak discharge and runoff volume were developed using the
Theorem of Total Probability.
- Loss rates, characterised by curve numbers, were represented by statistical
distributions.
- The proposed method produced acceptable results in a test catchment. Nevertheless a
complete verification of the procedure was recommended.

- Rainfall and antecedent soil moisture were assumed to be independent random
variables.
- The SDLM is a loss model which combines the stochastic nature of rainfall and
antecedent moisture index through the deterministic infiltration component of the
Australian Representative Basins Model (ARBM) (Chapman, 1968).
- The distribution of antecedent moisture index was determined from the water balance
described by the ARBM and the Philip infiltration equation.
- Laurenson's stochastic-deterministic modelling approach (Laurenson, 1974), which
makes use of the Theorem of Total Probability, was employed to determine the
probability distribution of flood peaks.
- The recommended method gave satisfactory results for an urban catchment.

- The discrete probability distribution of antecedent soil moisture was represented by
three curve numbers.
- The Theorem of Total Probability was used to calculate the exceedance probability of
floods from all significant combinations of rainfall and soil moisture conditions.
- The method can only be applied to certain types of sites where data about soil
moisture, land use, and soil types are sufficient to develop the distribution of
antecedent moisture.

- Rainfall depth and antecedent precipitation index (API) were considered as
independent random variables.
- The method computed flood return periods from the joint probability of occurrence of
rainfall and API.
- In applying the method to a watershed, the results obtained compared fairly well with
those computed using continuous simulation.

L.
'V :
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Table B-3: Studies based on Monte Carlo simulation

Authors

Beven(1987)

Muzik(1993)

Bloeschl and
Sivapalan
(1997)

Rainfall models

- Eagleson's
(1972) rainfall
model
- simulated storm
temporal patterns

rainfall depth
described by the
Gumbel
distribution

- IFD curves
- storm duration
(exponential
distribution)
- uniform storm
temporal patterns

Runoff production
models
TOPMODEL

modified SCS
Curve Number
method

Runoff routing
models
TOPMODEL

unit hydrograph

linear reservoir
routing method

Characteristics of the studies and results

- Rainfall intensity and duration were assumed to be independent variables, but the
correlation of initial soil moisture deficit and discharge was considered.
- The temporal pattern of rainfall was considered as a random variable by adding a
random component to the mean rainfall profile for each hour of rain. The random
component was assumed to be a first order Markov process with mean, standard
deviation, and lag one auto-correlation determined from observed data.
- Soil moisture deficit was described by an exponential distribution.
- The TOPMODEL is a runoff production and routing model that considers catchment
geomorphology and the contributions of surface and sub-surface runoff to flood flows.
Model parameters should be determined from soil profile conductivity, soil water storage,
or time varying infiltration rate, etc.
- The procedure satisfactorily simulated hourly mean flow for a catchment, however,
further improvements of the model were suggested.

- The modified SCS Curve Number method considers the stochastic nature of initial
abstraction (Ia), 5-day antecedent rainfall (P5), and maximum potential soil moisture
storage (S).
- The dependence of S and P5 was considered.
- Monte Carlo simulation was used to generate peak discharge from randomly chosen
values of rainfall depth and parameters of the SCS Curve Number model.
- Compared with the LPIII plotted for recorded floods at the test catchment, there was a
significant difference in the tail of the derived flood frequency curve.

- Rainfall probability was drawn from a uniform distribution.
- Monte Carlo simulation was used to calculate peak flows from rainfall depths and
randomly selected storm durations.
- It was shown that the assumption of equality of rainfall and flood return periods caused
significant errors in the estimated flood. For the test catchment, the current event-based
method underestimated flood return periods by a factor of at least 2, but this factor may
be as large as 10.
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Franchini et al.
(1996)

Loukas et al.
(1996)

extreme rainfall
developed by the
stochastic storm
transposition
method

- rainfall depth:
EVI distribution
- rainfall
duration: 24-hour
- rainfall
temporal
patterns:
triangular
distribution

ARNO model

infiltration rate

ARNO model

linear routing model

- Temporal patterns and initial soil moisture were assumed to be independent random
variables.
- ARNO is a 14-parameter rainfall-runoff model representing 2 components: a soil-level
water balance and a transfer (routing) component.
- Huff curves (I luff, 1967) were used to statistically describe the temporal distribution of
storms.
- To account for the stochastic nature of moisture conditions, the analysis was repeated
for a range of fixed antecedent moisture conditions.
- It was demonstrated that, for a given storm depth: (i) the variability of flood peaks was
produced from the variability of the temporal distribution of storm depths and initial soil
moisture conditions, and (ii) the frequencies of the design storm depth and flood peak
were unequal, especially for very wet antecedent moisture conditions.

- A triangular distribution was used to statistically model the dimensionless cumulative
rainfall depth.
- Infiltration loss is a constant for each event and normally distributed from event to
event.
- Storage factor of fast runoff is normally distributed, and can be computed from,
catchment geomorphology.
- Monte Carlo simulation was used to generate 5000 estimates of runoff hydrograph
characteristics (peak hourly, daily discharge, peak flood volume).
- Compared with observed data from eight coastal British Columbia basins, the simulated
peak hourly and peak daily flows were not significantly different from the observed ones
at 5% level, but the simulated flood volume was.
-Sensitivity analysis showed that: (i) of the three hydrograph characteristics investigated,
hourly peakflow was most sensitive to the variation of rainfall depths and parameter
values, and distributional types of storage factor, and (ii) overall, the procedure was not
very sensitive to uncertainties in the values and form of model parameters.

L
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Appendix C

LOSS MODELS

C.2 ELEMENTARY LOSS CONCEPTS

Before being able to evaluate different models for computing rainfall losses, some

important loss concepts need to be clarified. These include (i) loss definitions, and (ii)

runoff generation processes. Item (i) plays an important role in loss modelling because

the way the rainfall loss is defined determines its estimated value and therefore affects

P3s.

C.1 INTRODUCTSON

In rainfall-based design flood estimation, specifying losses from a design rainfall is a

recurring issue faced by many hydrologists. With the commonly used Design Event

Approach, the design loss is often adopted as a representative value of a recommended

range. As the resulting design flood estimate is very sensitive to the adopted value of

the rainfall loss, the uncertainty in the correct rainfall loss for use in a design situation
w

constitutes one of the major drawbacks of the Design Event Approach. |gg
v \
u« >

To account for the fact that the rainfall loss can take on a range of values depending on t V

the actual condition of the catchment at the time of a rainfall event, the rainfall loss °t *"

should be represented by a probability distribution. This is one of the aims of the ,', r

proposed Joint Probability Model for rainfall-based design flood estimation, in which

the probabilistic nature of flood causing components is considered. To provide the j^f-

theoretical background of the development of the probability distribution of the rainfall fcf"

loss, this appendix introduces elementary loss concepts and models for computing N
if**

losses from rainfall. - ^
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the resulting design flood. Item (ii) provides a-basis for the evaluation and selection of

an appropriate loss model for this research.

C.2.1 Loss definitions

lit hydrology, the term "loss" can be roughly defined as the difference between rainfall

and runoff. This leads to two possible loss definitions, depending on the type of runoff

being referred to. Figure C-l shows two runoff types together with the components of

rainfall and runoff.

Figure C-l: Components of rainfall and runoff

The first definition relates the loss to the portion of rainfall that does not come out as

total runoff. The rainfall loss thus comprises the interception loss, depression storage,

and only the part of infiltration that replenishes soil moisture deficiencies (see Figure

C-l). Baseflow is not considered as loss, but added to the surface runoff to produce the

total runoff. Depending on the size of the drainage area, the release of baseflow into

streamflow may occur within days after the storm event, or more often in months or

years (Viessman et al., 1989). This definition of loss is used when long time steps are

considered in flood estimation, therefore baseflow has enough time to reach the stream

channel. This is relevant to yield hydrology where the movement and transfer of water

from the atmosphere to the land and back to the atmosphere are usually accounted for

on a monthly or annual basis. It is noted that, over a long period of time, the above loss

components are eventually the evapo-transpiration transferred from the catchment into

the atmosphere (and possibly ground water outflows other than to streams).

r
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Hortonian overland flow is likely to occur on impervious surfaces in urban catchments,

or in rural catchments with soil layers of low iv.ultration capacity, as in arid or semi-arid

regions (Chow et al., 1988). It is also assumed to be the result of heavy storms because

in these cases runoff tends to occur over the entire catchment.

%
pi-
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r
The second definition relates the loss to the difference between the rainfall and surface y

runoff (also called direct runoff). From Figure C-l, it can be seen that baseflow is also \;

a loss component. This is true for short time intervals such as the duration of a storm, in f

which case the baseflow has insufficient time to reach the stream channel as it usually b

has a long response time. This definition of the rainfall loss is applied to flood f-i

hydrology and adopted in this research. In this case, due to the use of short time

periods, evapo-transpiration is neglected during storms.

I
C.2.2 Runoff generation processes If

There are three recognised runoff mechanisms, namely, Hortonian overland flow,

saturated overland flow, and interflow. An outline of these mechanisms, summarised

from the Institution of Engineers, Australia (1987, Chapter 6) and Viessman et al.

(1989), is given below.

C.2.2.1 Hortonian overland flow

The Hortonian runoff mechanism is the classical concept of storm runoff generation.

This mechanism assumes that surface runoff occurs on the ground surface when rainfall

intensity exceeds infiltration capacity. As infiltration capacity varies from point to point

(depending on antecedent rainfall, soil characteristics, or vegetal cover), in theory,

Hortonian runoff is not uniform over the catchment. However, in practice, it is often

assumed that infiltration capacity, rainfall and, consequently, runoff are spatially

uniform.

C
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C.2.2.2 Saturated overland flow

The saturated overland flow concept postulates that surface runoff occurs when

precipitation falls onto a soil saturated from below, due to the rise of a shallow water

table, or the build up of a saturated zone above a soil layer of low hydraulic

conductivity. Due to the spatial variability in the soil structure and in the depth to the

water table, it is likely that the saturated surface may nol cover the entire catchment.

This leads to the 'source area' (also called 'partial arej.') concept in runoff generation,

which assumes that the overland flow occurs only on saturated parts of the catchment.

These source areas vary during the storm and in different seasons, depending on

antecedent conditions and storm rainfall (Linsley et al., 1988).

Saturated overland flow is dominant in a number of cases, for example, in regions with

high water tables, at the bottom of slopes or near stream banks where the soil surface is

likely to be saturated by underlying water, or in areas with thin soil layers overlying

relatively impervious strata.

B
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C.2.2.3 Interflow

Interflow (or through flow) is the part of infiltrated water that moves horizontally in a

temporarily saturated zone, often above a nearly impervious soil stratum, to reach a

stream channel relatively quickly. It is commonly considered as a component of surface

runoff because it rapidly contributes to streamflow during the duration of a storm.

Interflow most often occurs in areas having a shallow and highly permeable surface soil

layer lying above an impermeable base.

# > ' • • ; • , ; • • f ' -

C.3 LOSS MODELS

Many models are available for estimating the rainfall loss. A description of these

models is presented by the Natural Environment Research Council (1975), the
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Institution of Engineers, Australia (1987, Chapter 6), and Nandakumar et al. (1994). In |f

genera], these loss models can be classified as infiltration models and practical loss H|

models. A brief review of both types of models is presented in the following section. j j |

I?
C.3.1 Infiltration models

& ' - • ' •

Infiltration is generally the most important component of the rainfall loss. It is the fp

process by which water passes through the soil surface into the soil. This process is fff

dependent on many factors such as soil type, soil characteristics, land cover, or rainfall plv

intensity. mf.;

There are innumerable models for computing the infiltration loss from rainfall, resulting If!

in various infiltration equations (Viessman et al., 1989; Rawls et al., 1993; Nandakumar f|̂

et al., 1994). These equations can be classified as theoretical equations and empirical Hfc

equations. An introduction to these equations is given below. I ^|

C.3.1.1 Theoretical equations

The theoretical infiltration equations are analytically derived to describe the movement

of water in porous media. The basis of these equations is Darcy's Law (Rawls et al.,

1993) which calculates flow velocity through a saturated porous medium. This equation

was then modified in order to reflect the real situation in which water flows in

unsaturated soils, and combined with the law of conservation of mass to become the

Richard equation. This is a general infiltration equation describing three-dimensional

flow in unsaturated soils as a function of time. Finding an analytical solution to this

equation is computationally demanding and so far the equation is still considered

impractical for routine applications (Nandakumar et al., 1994).

Other well-known physically based infiltration equations include the Philip model

(Philip, 1969) and the Green-Ampt model (Green and Ampt, 1911), the latter being

modified by Mein and Larson (1971) to calculate the infiltration capacity for different

rainfall and surface conditions. The Phillip equation is introduced in more detail here
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because it was applied to derive the probability distribution of antecedent soil moisture

for estimating design floods (Goyen, 1983). This equation, developed for vertical

infiltration into nonlayered homogeneous soils with a constant initial moisture content,

takes the following form:

q( t )=-S o t~ K + A* (C-l)

where q(t) is the infiltration rate at time t; So is sorptivity, dependent on initial moisture

content and water depth in soil; and A* is a constant, assumed to equal the saturated

hydraulic conductivity. Both So and A* can be estimated using observed data.

C.3.1.2 Empirical equations

Empirical equations are developed from observations of field experiments to describe

and formulate the infiltration process. In these equations, the infiltration rate is

generally a function of time, antecedent soil moisture and some soil properties. The

earliest empirical infiltration model was proposed by Horton (1935). In this model,

infiltration capacity starts with an initial value, decays with time according to an

exponential function, and reaches a final constant rate when the soil is saturated. Some

other popular infiltration models are the Huggins-Monke model or the Holtan model, an

introduction of which is presented by Viessman et al. (1989).

One common feature of these models is that they enable the infiltration loss to be

estimated at a point, and that their model parameters should be estimated from observed

data. However, as mentioned before, infiltration rates vary from point to point due to

many factors such as rainfall intensity, soil characteristics, vegetation cover, and

topography. As a result, a number of methods have been proposed to account for the

spatial variability of infiltration rates. A review of these methods and their applications

in runoff estimation is given by Nandakumar et al. (1994).

In general, the use of infiltration models for computing the rainfall loss from a storm

event can be considered as inappropriate for three reasons. Firstly, they neglect the

storm losses due to interception and detention storage. These forms of losses follow

different laws from infiltration, and may be significant under certain circumstances. For

h

» t

5 !
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instance, the interception may be a considerable portion of rainfall in regions with dense

vegetation, or the depression loss may be significant for deep storage (Linsley et al.,

1988). Secondly, infiltration in itself may not be entirely a loss in that a part of it, the

interflow, actually contributes to streamflow. This is true for areas where the interflow

runoff mechanism applies. Finally, it may be difficult to determine the coefficients or

parameters of some infiltration equations due to the lack of observed data.

C.3.2 Practical loss models

Practical loss models are commonly used in place of infiltration equations because they

are conceptually simpler. In essence, these are lumped models because they ignore the

spatial variation of the loss during the duration of a rainfall event. Practical loss models

can be classified as loss rate models, proportional loss models, initial loss - continuing

(or proportional) loss models, and the SCS Curve Number method. A summary of these

models is given below.

C.3.2.1 Loss rate models

The loss rate models can be subdivided into the constant loss rate model and the

variable loss rate model.

The constant loss rate model

The constant loss rate model (also called the § index) is the simplest loss model in

which the total loss from rainfall is averag»ed throughout the rainfall event. The constant

loss rate is the rate which equates the volume of rainfall excess (from the rainfall

hyetograph) to the surface runoff volume (from the flood hydrograph over the

catchment), both of which are measured in the same units. A variation of this model is

theW index, which is the (j> index minus the average rate of retention by interception

and depression storage (Linsley et al., 1988).
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The constant loss rate model is suitable for large storms on initially wet catchments, in

cases where the Hortonian runoff is dominant, or where the infiltration rate may be

assumed constant (Viessman et al., 19S9). It is also applicable to storms of long

duration, in which cases the time distribution of infiltration may not be very important

(Bras, 1990).

The constant loss rate model has many characteristics. It is a simple model with only

one parameter. It considers all forms of rainfall losses (including interception, detention

storage, and all components of infiltration) regardless of whether it contributes to

groundwater flow or interflow, then averages them over the catchment area and

throughout the supply period. In addition, it is event dependent, that is, the loss rate

derived for one storm is not applicable to another storm.

Traditionally, the event-dependent characteristic of the constant loss rate model is often

considered as the main disadvantage of this model. Viessman et al. (1989) argued that

unless the constant loss rate is correlated with basin parameters other than runoff, it is of

little value. Nevertheless, for cases where the rainfall loss is considered as a random

variable, the constant loss rate model may offer the simplest means to derive the

probability distribution of the rainfall loss.

The variable loss rate model

The variable loss rate model, originally introduced by the Natural Environment

Research Council (1975), describes the rainfall loss as a curve that decreases as the rain

progresses and increases during periods of no rain. The loss rate is thus a random

variable inversely related to soil moisture conditions antecedent to and during a storm

event. The soil moisture is represented by a catchment wetness index (Natural

Environment Research Council, 1975) determined from soil moisture deficit (that is, the

amount of water needed to bring the soil to field capacity) and a five day antecedent

precipitation index of the accounting period. The latter is the most widely used

moisture index that relates the moisture status of the basin directly to rainfall.

The variable loss rate model has many characteristics. For example, it is a complex,

multivariate model. It is also a realistic model because it distributes the loss according

to the changing moisture condition of the catchment. In addition, the loss rate
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computed is dependent on rainfall intensity.

Broadly speaking, the variable loss rate model is more appropriate for flood forecasting

than for design flood estimation. This is due to the fact that the variable rate of rainfall

loss is estimated from updated catchment wetness at the start of each calculation period.

This type of information is often available in flood forecasting.

C.3.2.2 Proportional loss models

Like the case of loss rate models, proportional loss models can be subdivided into

constant and variable proportional loss models.

Constant proportional loss model

The constant proportional loss model is equivalent to the runoff coefficient concept

because the loss (and therefore runoff) is a fixed proportion of the rainfall rate. In other

words, rainfall excess always occurs regardless of the rainfall intensity.

The proportional loss model is best applied to cases where runoff is generated from

source areas. An example is urban catchments where the impervious area is often a

constant fraction of the total catchment area. In this case, it is assumed that one hundred

percent runoff is produced from the impervious areas and none from the pervious areas.

Therefore, even when a very light rain occurs, rainfall excess is always generated from

the impervious parts of the catchment. This loss model can also be applied to forested

rural catchments (Flavell and Belstead, 1986).

The variable proportional loss model

Adopting the variable source area concept, the variable proportional loss model assumes

that as the rain progresses, a greater portion of rainfall contributes to runoff because a

greater portion of the catchment becomes saturated.

Many methods have been suggested for computing the variable proportional loss, a

summary of which is presented by Siriwardena and Mein (1995). For example, a

regional model that relates the variable proportional loss to the antecedent wetness

s.
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index, storm rainfall, and catchment characteristics is proposed by the Natural

Environment Research Council (1975). In another method, the size and location of

catchment source areas, expanded during the storm, are predicted as a function of pre-

storm baseflow and rainfall depth (Mein and O'Loughlin, 1991). This approach is then

further developed by Siriwardena and Mein (1995), the results of which indicate that the

variable proportional loss can be described by a family of curves called the saturation

curves. The accuracy in the estimation of these saturation curves is dependent on the

estimation of the volumetric runoff coefficient.

Even though the above proportional loss models provide relatively satisfactory results,

the main restriction of these models is that they have solely been investigated for flood

forecasting purposes.

C.3.2.3 The initial loss - continuing loss model

The initial loss - continuing loss model (IL-CL) assumes that there is no surface runoff

until an initial loss is satisfied. A continuing loss then occurs during the remaining

storm duration. The ini-ial loss consists of interception, depression storage and initial

infiltration, and the continuing loss can be expressed as a rate or as a proportion of

rainfall. The continuing loss rate may be a constant or a variable rate, and so is the

proportional continuing loss. In Australia, the initial loss - constant continuing loss rate

model is most commonly used due to its simplicity and its ability to approximate the

actual loss process (Hill et al., 1996a).

The IL-CL model is appropriate where runoff is generated by the Hortonian process. In

this case, it is noted that the continuing loss rate determined for large floods is fairly

independent of catchment conditions (Cordery and Pilgrim, 1983; Institution of

Engineers, Australia, 1987, Chapter 6).

C.3.2.4 The SCS Curve Number method

Another popular method for directly computing runoff (and thus relevant for the

J
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estimation of storm losses) is the SCS Curve Number method (Soil Conservation

Service, 1972; US Department of Agriculture, 1986). This empirical procedure was

originally developed for the estimation of peakflows and runoff volumes for small

agricultural catchments, then extended for the estimation of complete hydrographs.

The SCS runoff equation is as follows:

(C-2)

where: Q is runoff; P is rainfall; S* is the maximum retention after runoff begins; and Ia

is initial abstraction, all expressed in units of depth (inches).

For the case Ia = 0.2S , Equation (C-2) becomes:

(P-0.2S ' ) 2

Q =
P + 0.8S

(C-3)

The SCS Curve Number method essentially adopts an initial loss - variable continuing

loss model for the computation of rainfall excess. This is attributed to the fact that it

uses the initial water abstraction that is equivalent to the initial loss concept, and the

maximum potential water retention which decreases during the rain duration.

As Ia can be empirically estimated through S , and S is related to soil and conditions of

the watershed through a Curve Number, this method allows direct runoff to be directly

determined from a specified storm and a series of curves, each curve is represented by a

number. The Curve Number is a function of antecedent moisture contents, agricultural

land use and treatment, catchment hydrologic conditions and hydrologic soil groups.

The last item classifies soils according to their potential to produce runoff (high,

medium, or low). The precision of this method is affected by both the choice of the

Curve Number and the estimation of antecedent moisture conditions of the catchment.

The SCS Curve Number method is widely used in the United States for agricultural

watersheds of up to 2000 acres or 8km2 (Viessman et al., 1989). In Australia,

application of this method to some catchments reveals large errors and substantial bias

(Institution of Engineers, Australia, 1987, Chapter 5).
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The SCS Curve Number method is recommended for use only when locally derived

Curve Number values are available (Institution of Engineers, Australia, 1987, Chapter

5). The method does not consider the storm, duration or the rainfall intensity. In

addition, the equation used to calculate runoff has no theoretical or empirical

justification.

C.4 SUMMARY

This appendix introduces two different definitions of storm losses and describes the

three processes for runoff generation, namely Hortonian overland flow, saturated

overland flow, and interflow. It also gives a brief review of infiltration and practical

loss models for computing the rainfall loss. Practical loss models appear to be more

appropriate for design flood estimation due to their conceptual simplicity and their

ability to approximate catchment runoff behaviour.
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Appendix D

DATA VERIFICATION

D.1 INTRODUCTION

The reliability of data used in a statistical analysis plays a crucial role in the analysis

outcomes. For environmental data such as temperature, rainfall, or flowrate, in order to

estimate future values at a given site, it is important that data collected at the site must

be a true representation of the quantity being measured and must all be drawn from the

same frequency distribution. As this study aims to derive the flood frequency curve

from the statistical distributions of rainfall and loss characteristics, it is clear that

rainfall and flow data should be inspected before analyses of these data are undertaken.

Broadly speaking, the four requirements of environmental data used in a statistical

analysis are homogeneity, stationarity, consistency, and representativeness (McMahon

and Mein, 1986). The requirement of homogeneity is that data should be drawn from

the same statistical distribution so that they are comparable throughout the period of

record. Similarly, a data sample is stationary if its statistical properties do not change

with time. Thus, stationarity is essentially homogeneity, expressed in the time domain

(Laurenson, Personal communication, 1998). Heterogeneity or non-stationarity is

generally caused by shifts in location of gauges, changes in land use or exposure

conditions. These may bring about an abrupt change (in the form of a discontinuity, or

a jump), or a gradual change (in the form of a trend) which takes place over a period of

time in the absolute measurements of a data series. The requirement of consistency is

that types and techniques of measurement or the manner of data processing should be

consistent. Representativeness of data ensures that samples used in an analysis are

representative of the long-term variability of data at a specified location.

For the present study, observed rainfall and flow data were assumed to represent the

long-term variability of rainfall or streamflow at any given site, but the verification of
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these data for homogeneity and consistency was considered essential. This appendix

describes the homogeneity tests used in this study, and applications of these tests to the

extracted rainfall and flow data.

D.2 HOMOGENEITY TESTS

In order to check the homogeneity of rainfall or streamflow at each individual station, a

combined procedure using both graphical and statistical methods was employed in this

research. The graphical technique, in the form of time-series plots, enabled a quick

visual detection of any apparent trend or change in the mean value in the plotted series.

Statistical methods with objective measures were then used to verify the conclusions

obtained from the time-series plots, as well as to compute the statistical significance of

any departure from homogeneity.

The distribution-free CUSUM test (McGilchrist and Woodyer, 1973) and the Mann-

Kendall rank correlation test (WMO, 1966) were selected to perform the statistical

check because they are simple and can be applied to general cases in which the change

point is unknown (for example, when a change in a gauge location is not recorded). In

addition, they are not based on any assumption regarding the distribution of the input

data set (that is, they are non-parametric or distribution-free tests).

The CUSUM test checks the hypothesis of no change in a distribution against the

alternative hypothesis of one single change. Given i. number of observations Xi, X2,

X3,. . . , Xj, ... , Xn having the median km, the CUSUM test statistic, called max |Vj|, can

be computed from:

where q(x) = 1, x > 0,

q(x) = - l , x<0 .

The position of the maximum gives an estimate of the position of the change point

where a jump in the mean occurs.

J
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At the 5% level of significance, the upper confidence limit of the test statistic is given

by 1.92 Vn7 (for n'> 40), where n '= n / 2 . ' For other values of n!, the confidence limit

is given by the product of n! and the corresponding value given by Conover (1971,

Table 16).

The Mann-Kendall rank correlation test checks a time series for a trend without

specifying whether the trend is linear or non-linear (Salas, 1993). The null hypothesis

that the time series of n observations Xi, X2, ..., Xn is randomly ordered is tested

against the alternative hypothesis that there is a monotone trend in observations.

The Mann-Kendall rank correlation statistic, T, is computed as follows:

T = [42rniJ/ln(n-l)J-l (D-2)

where m is the number of observations larger than the ith observation in the series

subsequent to its position.

For n > 10, T is almost normally distributed with the mean of zero and the variance of

Var(T), where:

Var(T) = (4n +10) / [9n(n -1))] (D-3)

The 95% confidence limits of T are ± 1.96VVar(T).

D.3 APPLICATION OF HOMOGENEITY TESTS

D.3.1 Rainfall data

As the basic data used in rainfall analyses were rainfall events extracted from observed

hourly rainfall accumulations, in principle, it would be necessary to check the recorded

event rainfall at hourly intervals for homogeneity. Nevertheless, the homogeneity tests

were applied to annual series of maximum daily rainfall for two reasons. Firstly, it was

considered sufficient to detect heterogeneity on an annual maximum basis, even though

partial series of rainfall events was extracted. Secondly, it was assumed that the results
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of the homogeneity tests on daily data also apply to hourly data.

The procedure below was adopted to check the homogeneity of rainfall data at each

individual recording rain gauge:

• Series of daily rainfalls and the corresponding quality codes were extracted from the

rainfall database. The extracted daily series generally had missing data points

because rainfall records had gaps and missing data. However, to avoid introducing

further uncertainties into the data series, no infilling of gaps or missing data was

undertaken.

• The annual series of maximum daily rainfall was then extracted from the daily

rainfalls flagged as good continuous records.

• The data series obtained from the above step was plotted against time to visually

detect any change in the mean value or trend.

• The Mann-Kendall test for trend and the CUSUM test for discontinuity were then

applied to the extracted series to statistically determine if the data series were

homogeneous or not. Results are summarised in Table D-l.

• For stations that failed either of the tests, station documents were examined to find

out if there was any record of a change in gauge location or in the environment

surrounding the gauge.

• If there was evidence of sources of heterogeneity, a decision was made on whether to

exclude the whole record or only a part of it from subsequent analyses. In the latter

case, the two selected tests were applied to the remaining record to finally verify its

homogeneity.

The examination of the time-series plots of the annual series of daily rainfall for each of

the 19 rainfall sites used in this study indicated that, there was no identifiable trend or

change in the mean of rainfall series for 18 out of 19 sites. An example of these plots is

given in Figure D-l, which shows the annual maxima of daily rainfall at station 85237

plotted against time. It can be seen from this plot that the observed annual maxima

fluctuate quite randomly. Results of the CUSUM and the Mann-Kendall tests (see

Table D-l) also confirm that the assumption of no change in the mean or of no trend in

data series can not be rejected at the 5% level of significance (LOS). This is

demonstrated by the fact that, at each of the 18 stations (with the exception of station
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85103), the test statistic computed for the CUSUM or Mann-Kendall test is less than the

corresponding critical value (CV) at 5% LOS (see Table D-l).

Table D-l: Results of homogeneity tests for 19 recording rainfall stations

No. Station ID CUSUM test Mann-Kendall test

1
2
3
4
5
6
7
8
9
1G
11
12
13
14
15
16
17
18
19

*CV

85000
85026
85034
85072
85103
85106
85170
85176
85236
85237
85240
85256
86038
86071
86142
86219
86224
86234
86314

at 1%LOS

CV at 5% LOS
7
7
8
11
8
8
7
8
7
8
10
8
11
14
10
9
9
9
11

= 0.406

Test statistic
2
2
5
4
7
2
3
2
2
5
2
5
8
12
5
2
4
5
3

CV at 5% LOS
0.393
0.363
0.301
0.219

0.309*
0.301
0.377
0.301
0.393
0.301
0.244
0.328
0.228
0.127
0.253
0.293
0.268
0.286
0.232

Test statistic
0.143
0.000
0.247
0.082
0.438
0.004
0.086
0.117
0.209
0.004
0.120
0.111
0.190
0.034
0.113
0.099
0.140
0.116
0.022

E

1
• MM
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1955 1960 1965 1970

Year

1975 1980 1985

Figure D-l: Time-series plot of annual series of maximum daily rainfall (station 85237)
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However, there seems to be problems with the homogeneity of the recorded rainfall data

at station 85103. In the time-series plot for this site (see Figure D-2), there seems to be

a trend in the daily maxima before 1956. This suggests that there might have been a

change in the environment surrounding the gauge at this station. Results of the Mann-

Kendall test for rainfall data at this site (see Table D-l) also confirm that the assumption

of no trend in the annual series of daily rainfall can not be accepted at 5% LOS because

the test statistic (0.438) exceeds the critical value (0.309) at the specified LOS.

Nevertheless, an investigation of the station history indicated that there was no record at

all of any changes in the type of instrument used for measuring rainfalls, methods of

observation, or site conditions at the station before 1964. However, to be conservative,

the station data before 1956 were discarded, according to the results of the Mann-

Kendall test.

To ensure that the remaining data (that is, annual maxima from 1956 onwards) at site

85103 are homogeneous, the CUSUM and Mann-Kendall tests were again applied to

these data. Table D-2 presents the results of these tests. From this table, it is clear that

the assumption of no trend or change in the mean of the annual series of maximum daily

rainfall from 1956 onwards at station 85103 is not rejected at 5% LOS, because the test

statistics are less than the computed critical values. Therefore, this part of the station

data was included for subsequent analyses.

1945 1950 1955 1960

Year

1965 1970 1975

Figure D-2: Time-series plot of annual series of maximum daily rainfall (station 85103)
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Table D-2: Results of homogeneity tests (station

Station ID

85103

CUSUM test
CV at 5% LOS Test

7
statistic
4

85103, data from

256

1956 onwards)

Mann-Kendall test
CV at 5% LOS

0.377
Test statistic

0.105

D.3.2 Streamflow data

To verify the homogeneity of streamflow data for the La Trobe River catchment at

Noojee (226205C) and the Tarwin River catchment at Dumbalk North (227226), the

CUSUM and Mann-Kendall tests were applied to annual series of instantaneous flows.

The annual series of instantaneous flows can be extracted from the HYDSYS database

using the HYPEAKS program in HYDSYS. However, as this program ignores periods

of missing data or gaps in the record when outputting peaks (HYDSYS, 1994), it is

possible that the extracted flood series may not consist of the true maximum floods that

may occur when data are missing. This in turn would cause errors in any subsequent

analysis that directly makes use of annual maximum flows. To avoid this, the

maximum annual floods for this catchment were obtained from a data-collecting agency

(Dworakovski, Personal communication, 1999). In this case, the maximum

instantaneous annual flows were extracted from record, together with the number of

missing days for each year of record. As there were no missing data in the flow records

of the two study catchments, it was concluded that the extracted flood series at each site

represented the true maximum annual floods.

The CUSUM and the Mann-Kendall tests were again applied to the extracted annual

maximum floods. Test results are summarised in Table D-3r and for iliustration, the

plot of maximum instantaneous annual flows against time for station 226205C is shown

in Figure D-3. From this figure, it can be seen that neither a change in the mean nor a

trend in the annual peak discharge at station 226205C is apparent. This is confirmed by

the results of the statistical tests in which the test statistics are less than the

corresponding critical values at 5% LOS (see Table D-3). Therefore, the assumption

that the distribution of annual peak flows for the La Trobe River catchment is

homogeneous can not be rejected at the specified level of significance. The same



Appendix D 257

conclusion is drawn from the examination of flow data for the Tarwin River catchment.

Table D-3: Results of homogeneity tests on observed annual peak flows

Station ID

226205C
227226

CVat
CUSUM

5% LOS
11
6

test
Test statistic

6
3

Mann-Kendall
CV at 5% LOS

0.232
0.268

test
Test statistic

0.217
0.014

1960 1965 1970 1975 1980

Year

1985 1990 1995

Figure D-3: Time-series plot of annual series of peak discharge (station 226205C)

D.4 CONCLUSIONS

In this study, observed rainfall and flow data at the gauging sites used in this study were

assumed to be representative of the long-term variability of rainfall or streamflow at the

selected sites. Nevertheless, the verification of these data for (time) homogeneity and

consistency was considered essential to ensure that these data come from the same

probability distribution at any given site. The CUSUM test for discontinuity and the

Mann-Kendall test for trend were selected to undertake the homogeneity checks. The

tests were applied to annual series of maximum daily rainfall at each of the 19

pluviometers used in this study, and to maximum instantaneous annual flow at the two

flow gauging stations. Test results indicated that the observed rainfall and flow data at

the selected stations satisfied the requirement of homogeneity.

a

\
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Appendix E %

I
THE HOSKING AND WALLIS

REGIONAL FREQUENCY ANALYSIS STATISTICS
9
k

I
This appendix summarises the theoretical background of L-moments, and the

development of the Hosking and Wallis statistics for regional frequency analysis. These f|

statistics are the discordancy measure, the heterogeneity measure, and the goodness-of-

fit measure. The material described below is mainly summarised from Hosking and

Wallis (1997).

I
I

E.1 L-MOMENTS ^
F,

L-moments, like ths conventional product moments, are a way to describe statistical

properties of a probability distribution characterising a random variable. L-moments of

a statistical distribution are linear functions of probability weighted moments and

defined as (Hosking, 1990): ^

I
vkk k )

in which:

P. = E{X[F(X)}} f
F(X) = prob(X < x) f-fc

where |3r are the probability weighted moments, which are expectations of X times H

powers of F(X), and F(X) is the cumulative distribution function of X. fy

$•>}

< »

The L-CV (short for coefficient of L-variation, denoted as x) and the L-moment ratios ^

(rr) are defined as follows:
i
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(forr>3) (E-3)
T — *"

The above L-moment quantities are useful in summarising statistical distributions. For

example, X\ is the mean or the location parameter of the distribution, X2 is a measure of

scale, whereas T3 and T4 are measures of skewness and kurtosis, respectively. The L-CV

is analogous to the coefficient of variation used in product moments.

Estimators of distributional L-moments are generally computed from estimators of

probability weighted moments of a given data set. Formulas used for these estimates

are available in both biased and unbiased forms (Stedinger et al., 1993). (Bias is a

statistical term used to denote a tendency of estimates that are consistently higher or

lower than the true value). However, for regionalization procedures, unbiased estimates

are recommended.

I:
I-'-

p:

II

H

Unbiased estimators (br) of probability weighted moments of a sample can be computed

by:

n
x(j)

(E-4)

in which ;c(n) <...<;c(1) represents a sample of n observations ranked in descending

order.
I

The unbiased sample L-moment estimators (lr) can then be calculated by substituting

the unbiased probability weighted moment estimators into the following equation:

r-k/
T i l l " -+- K I

(E-5)
k=0

Similarly, sample estimates of x, T3, and T4 are denoted as t, t3 and t4, and calculated as

follows:
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=-=- = sample L-CV

= — = sample L-skewness (E-6)

. . - ^ - sample L-kurtosis

Thus, sample L-moments (h, I2, t, t3 and t4) are summary statistics of a data sample.

Like the conventional product moments, sample L-moments can be used to identify the

probability distribution from which a sample of data is drawn, or to estimate

distributional parameters. They can also be used to construct statistics useful for

regional frequency analysis, as described in the next section.

h

E.2 THE HOSKING AND WALLIS STATISTICS FOR REGIONAL

FREQUENCY ANALYSIS

In order to estimate the dimensionless regional frequency distribution common to all

sites in a homogeneous group of sites, the three statistics developed by Hosking and

Wallis (1997) can be used. A description of these statistics is given below.

The discordancy measure (DO

Given a group of sites, the discordancy measure is used to identify discordant sites that

seem to have erroneous data. These are the sites whose sample L-moments are

markedly different from those of other sites in the group. The discordancy measure at

site i, denoted as D;, is defined by:

D,=-JN(U I-U)TA- I(U,-U) (E-7)

in which:

t« t ; ] T

(E-8)
i-l
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where u* is the vector containing the L-CV, L-skewness, and L-kurtosis, respectively, r

for site i; uis the unweighted group average; A is the matrix of sum of squares and

cross-products; N is the total number of sites in the group; and T is the superscript I

denoting transposition of a vector or matrix.

Site i is declared to be discordant with the whole group if D; exceeds a critical value \

which depends on the number of sites (N) in the group. For example, for N > 15, a site '*

can be suggested as discordant if Dj > 3 . Critical values for other values of N are L

recommended by Hosking and Wallis (1997, Table 3-1). •

The heterogeneity measure (Hi) ',

The heterogeneity measure is used to assess whether a group of sites may reasonably be */

treated as a homogeneous region1. In order to do this, the between-site variations in \

sample L-moments are compared with the dispersion expected for a homogeneous '

region that has the same number of sites with the same record lengths as those of the

observed data. By repeated simulation of this homogeneous region, the mean and

standard deviation of the chosen dispersion measure can be obtained. The comparison

between the observed and simulated dispersion is performed using the following

statistic: i
i

_ (observeddispersion)-(mean of simulations)

(s tan dard deviation of simulations) j.

x

A large positive value of this statistic indicates that the observed L-moments are more

dispersed than is consistent with the hypothesis of homogeneity. On the other hand,

negative values of Hi can be obtained. In this case, the dispersion among values of the

at-site sample L-CV is less than would be expected. The most likely cause is the cross-

correlation between data at different sites. If large negative values of H; are obtained

(say H; < - 2 ) , further examination of the data is then warranted.

1 A homogeneous region is a group of sites whose frequency distributions are considered to be the same,
after appropriate scaling.
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Three dispersion measures can be used to assess the homogeneity of a group of sites in

different dimensions. The first measure (Hi) is based on the sample L-CV, the second

(H2) on the weighted average distance from the site to the group weighted mean on the

graph of L-CV and L-skewness, and the third (H3) on the weighted average distance

from the site to the group weighted mean on the graph of L-kurtosis and L-sl< ewness.

To calculate the heterogeneity measures, assume that the proposed homogenous region

has N sites, with nj being the record length of site i, and sample L-moment ratios

t1, t'3, t^. Let t R , t 3 , t J be the regional average L-CV, L-skewness, and L-kurtosis,

weighted proportionally to the sites' record length. For example:

(E-10)

The hetorogeneity measures (Hj) defined in Equation (E-9) are thus expressed by:

H : = - ^ - (E-ll)
'Vi

where

,1/2

- £4' -fJvf-,

i=l l
(H-12)

and (Xvi, O"vi are respectively the mean and standard deviation of the dispersion measure

V;, determined by simulation.

L

r

s
$

I
f

The region is declared to be heterogeneous if the heterogeneity measures are sufficiently

large. By simulation, the following values are suggested:

• Hj < 1 acceptably homogeneous

• 1 < Hj < 2 possibly heterogeneous

• H > 2 definitely heterogeneous



Appendix E 263

The goodness-of-fit measure (ZDIST)

Given a homogeneous region of sites, the goodness-of-fit measure can be used to test

whether a given distribution gives an acceptable fit to observed data. This measure is

developed by comparing how well the fitted distribution matches the regional average

L-kurtosis. There are two reasons for choosing the L-kurtosis. Firstly, in an acceptably

homogeneous region, L-moment ratios of the sites are well summarised by the regional

average. Therefore, the distribution being tested will have the location and scale

parameters that can be chosen to match the regional average mean and L-CV.

Secondly, the distribution fitted by the method of L-moments has L-skewness equal to

the regional average L-skewness. Therefore, the quality of fit is judged by the next

higher moment not used in fitting, that is, by the difference between the L-kurtosis of

the fitted distribution and the regional average L-kurtosis. To account for possible

biases in estimating the L-kurtosis for short record lengths (ns <20), a bias correction

for the regional average L-kurtosis is used.

Five general 3-parameter distributions are used in the Hosking and Wallis (1997)

procedure to perform the goodness-of-fit test. These are the Generalised Logistic

(GLO), the Generalised Extreme Value (GEV), the Generalised Pareto (GP), the

Lognormal (LN), and the Pearson type III (PHI). For a particular candidate distribution,

the goodness-of-fit measure is defined as:

D1ST t R , T

ZDIST = g* k±£ii (E-13)

in which T ^ i s the L-kurtosis of the fitted distribution, where DIST can be any of the

above five candidates; B4 is the bias of t 4 ; and a4 is the standard deviation of t*,

obtained by repeated simulation of a homogeneous region whose sites have the same

record lengths as those of observed data.

A distribution gives an adequate fit to the observed data if ZDIST is sufficiently close to

zero. Under the assumptions that the at-site L-kurtosis estimators have independent

identical normal distributions, and that there is no cross or serial correlation in the data,

the candidate distribution gives an adequate fit if \zDIST\ < 1.64.
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Appendix F

STATISTICAL DISTRIBUTIONS

This appendix presents details of two statistical distributions, the Generalised Pareto

distribution and the beta distribution, used in this study. The former was used to

represent the duration of storm events, whereas the latter characterised the rainfall

temporal pattern and initial loss. The material documented below is summarised from

Hosking and Wallis (1997), and Benjamin and Cornell (1970).

F.1 THE GENERALISED PARETO DISTRIBUTION

The Generalised Pareto distribution is a distribution with three parameters: E, (location),

a (scale), K (shape).

The probability density function p(x) of this distribution is given as follows (Hosking

and Wallis, 1997):

v =z
(F-l)

The cumulative distribution function F(x) is defined by:

= l -e" y (F-2)

and the range of x is given by:

ifK>0

if K < 0

(F-3)
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There are some cases, depending on the shape parameter K, in which the Generalised

Pareto distribution becomes a special distribution. These cases include:

• K = 0: exponential distribution

• K = 1: uniform distribution on the interval £, < x < £ + a

F.2 THE BETA DISTRIBUTION

The beta probability distribution is a very flexible distribution as it can assume a wide

variety of shapes by varying its parameters. It is generally defined over the interval

from 0 to 1, but can also be transformed to any interval from a to b. The probability

density functions of the beta distribution are described below, along with the method for

estimating distributional parameters. The special shapes that the distribution can

represent are also documented.

F.2.1 Beta distribution on the interval (0,1)

On the interval from 0 to 1, the beta distribution is a two-parameter distribution with the

probability density function defined as follows:

(1 - x ) M (F-4)
rxconp)

where 0 < x < 1; a > 0, P > 0; F(.) is the gamma function; and a and P are the two

parameters of the distribution.

The mean and variance of the beta distribution, denoted as E(X) and Var(X),

respectively, are computed by:

E(X)=-
(F-5)

Var(X) -
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Parameters of the beta distribution can -be estimated by the method of moments by

equating the mean and variance of a data sample to those of the population.

F.2.2 Beta distribution on tha interval (a,b)

On the interval from a to b, the beta distribution function takes the following form:

pY(y) =
r«x)r(P)(b-

(F-6)

where a < y < b .

The mean and variance of this distribution are:

(F-7)

Var(Y) = ( b - a ) 2

Like the case of the beta distribution on the interval from 0 to 1, parameters of the beta

distribution on the interval from a to b can be easily computed by the method of

moments.

There is a linear relationship between the beta density function and the beta cumulative

distribution function defined on the interval from 0 to 1 [px(,x) and Fx(x),

respectively] and their counterparts defined on the interval from a to b [pY(y)and

Fy(y) ]• These relationships are defined below:

Py(y) =

b-a

b-a Ib-a

(F-8)



Appendix F 267

F.2.3 Distributional shapes

The beta distribution can assume a wide variety of shapes (see Figure F-1), depending

on its parameter values. It has some special cases, some of which are listed below:

• Rectangular distribution: r=l, t=2

• Triangular distribution: t=3, and r=l or 2

• Symmetrical distribution about x=0.5 if r=O.5t

In the above cases, r=a and t=oc+B, where a and B are the two parameters of the beta

distribution.

0.8 1.0

Figure F-1: Shapes of the beta distribution (Benjamin and Cornell, 1970)
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Appendix G

THE CHI-SQUARE TEST OF INDEPENDENCE

This appendix presents the theoretical background of the chi-square test of

independence. The test is used to determine whether two variables are associated. The

material described below is summarised from Daniel (1978).

It is assumed that an observed set of data forms a random sample of size n, and that

these data may be cross classified according to two criteria, so that each observation

belongs to one and only one level of each criterion. The criteria are the variables of

interest in a given situation. The data may be displayed in a contingency table as shown

in Table G-l.

Table G-l: Contingency table for the chi-square test of independence

First criterion of
classification

Level

1

2

i

r

Total

1

nii

n21

«»

nri

n.i

Second criterion of classification
Level

2 ... j ... c

n]2 n | j njc

n22 n2j n2 c

ni2 nij nic

n r 2 n^ n r c

n.2 n j n c

Total

ni.

n2.

n,

nr.
n

where riy is the observed frequency of cell ij; r is the number of rows; c is the number of

columns; and n is the total number of observations.
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To test the null hypothesis that the two criteria of -classification are independent, the cell

frequencies expected when the assumption of independence of the two variables is true

are computed and compared with the corresponding observed cell frequencies.

The test statistic (called the Pearson chi-squared statistic) is computed in the following

manner. If the two criteria of classification are independent, then the probability of the

joint occurrence of two levels of each observation is equal to the product of their

individual probabilities. In other words, the probability of counting an observation in

cell ij is equal to the probability of counting it in the ith row times the probability of

counting it in the j t h column. To obtain Ny, the expected frequency of cell ij, the

probability of counting the observation in cell ij is multiplied by the total sample size.

Thus:

(G-l)

which gives:

N i j = ^ - (G-2)

Thus, the expected frequency of cell ij is the product of row total (nO and column total

(n.j) divided by the total sample size (n).

The test statistic is then computed as follows:

(G-3)

This test statistic is approximately distributed as a chi-squared distribution when the

null hypothesis is true.

The null hypothesis that the two criteria of classification are independent may be

rejected at the a level of significance if the computed value of the test statistic y?

exceeds the tabulated chi-square critical value for (r-l)(c-l) degrees of freedom. These

critical values at various levels of significance are available for contingency tables with

up to 100 degrees of freedom.

tffc



Appendix G 270

It is noted that }f is approximately distributed as a chi-squared distribution if the

expected cell frequencies (Njj) are large. In general, the minimum cell frequency of 5 is

recommended. However, the minimum Ny of 1 is acceptable for contingency tables

with more than one degree of freedom, and only 20% or fewer of the cells with

expected cell frequency less than 5. It is also noted that rows and columns of

contingency tables may be interchanged without affecting the results.
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Appendix H

METHODS FOR DEVELOPING

DESIGN TEMPORAL PATTERNS

H.1 INTRODUCTION

Methods for developing a design temporal pattern for a design rainfall depth and

duration can be divided into four groups. They are methods based on EFD curves,

methods based on analyses of observed hyetographs, rainfall disaggregation models,

and sampling from historical patterns. In this appendix, all these methods are critically

assessed in order to select a method suitable for this study.

H.2 METHODS BASED ON EFD CURVES

In order to develop a design rainfall temporal pattern for a design rainfall depth and

duration, some methods based on design IFD curves of rainfall have been proposed.

The commonly used methods in this category include the alternating block method and

the instantaneous intensity method (Chow et al., 1988).

With the alternating block method, the storm duration D is divided into n equal time

increments of T (that is D=nT). The average rainfall intensity for each of the durations

T, 2T, 3T, ... , nT is then determined from the IFD curves at the site location, and the

corresponding rainfall depth computed. The incremental rainfall depth to be added for

each unit of time T is then taken as the difference between successive rainfall depths.

Next, these incremental rainfall depths are reordered such that the maximum depth

occurs at the centre of the storm duration. The design storm hyetograph is finally

determined by rearranging the remaining depths in descending order alternately to the

left and right of the central maximum depth. In Australia, this method has been slightly

modified by Boughton (2000) in order to disaggregate daily totals into hourly rainfalls.
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With the instantaneous intensity method, the principle is similar to that employed in the

alternating block method. That is, the rainfall depth for a time interval around the storm

peak is equal to the depth given by the IFD curves. The only difference is that the

rainfall intensity is considered to vary continuously throughout the storm.

Even though methods for developing design temporal patterns from the IFD curves are

simple, they can not be adopted in this research for two reasons. Firstly, the patterns

derived are unrealistic because they represent a series of unrelated values of rainfall

intensities from a variety of storms, rather than a sequence of intensities in a particular

storm. Secondly, they fail to characterise the variability of temporal patterns of real

rainfall events. That is, for a given storm duration and depth, each of these methods can

produce a single design temporal pattern, as opposed to multiple patterns that happen in

the real life.

H.3 METHODS BASED ON ANALYSES OF OBSERVED HYETOGRAPHS

Temporal patterns of design rainfall can also be derived from analyses of observed

rainfall hyetographs. Some of the well-known methods in this category include the

average variability method (Pilgrim and Cordery, 1975), the triangular hyetograph

method (Yen and Chow, 1980), and Huffs method (Huff, 1967).

The average variability method is the basis on which design temporal patterns currently

used in Australia are derived. With this method, the design pattern for a given storm

duration is determined from the observed heaviest bursts of the same duration in the

following manner. First of all, each of the bursts is divided into the same number of

periods. The periods in each burst are then ranked according to the amount of rain in

each period; rank 1 denoting the period of most intense rain. For all bursts, an average

rank is determined for each period. The period with lowest average rank is then taken

as the heaviest rainfall period of the design pattern, whereas the period with largest

average rank denotes the period of slightest rain of the design pattern. In order to

determine the percentage of rain in each period of the design pattern, for each storm

burst, the percentages of rainfall per period are arranged in descending order of
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magnitude. For all observed storm bursts, the average percentage of the heaviest

periods is computed and then assigned to the heaviest period of the design pattern. The

average rainfall percentage of other less intense rainfall periods of the design pattern is

similarly determined. Thus, the design temporal patterns derived in the above manner

represent the average variability of intense bursts of rain.

The triangular hyetograph method aims to derive design rainfall hyetographs of a

triangular shape. T^is method is very simple because once the design rainfall depth and

duration are known, the base length and the height of the triangular hyetograph can be

determined. In order to determine the location of the peak intensity, a storm

advancement coefficient ra, defined as the ratio of the time before the peak to the total

storm duration, is used. For example, a value of ra of 0.5 corresponds to a storm with

the peak intensity occurring in the middle of the storm, whereas ra less than 0.5 is used

for early-peaked storms, and ra greater than 0.5 for late-peaked storms. A suitable value

of ra is determined as the mean of the observed values of ra computed for a series of

storms of various durations, weighted according to the duration of each storm event.

In Huffs method, the time distribution patterns of heavy storms were developed for

four quartile groups, depending on whether the heaviest rainfall occurred in the first,

second, third or fourth quarter of the storm duration. Other factors such as storm

duration, storm types, or mean rainfall were found to have small effects on the time

distribution patterns. In each quartile group, dimensionless mass curves of nine

probability levels, ranging from 10% to 90% with 10% increments, were developed (see

Figure H-l). For example, the 90% curve can be defined as the distribution that is

equalled or exceeded by 10% or less of the storms. These empirical probabilistic mass

curves, called Huff curves, are smooth because they reflect average rainfall distribution

with time and do not exhibit the burst characteristics of observed storms. The first

quartile 50% mass curve has been used in a storm drainage simulation model by

Terstriep and Stall (1974).

Regardless of their conceptual simplicity, both the average variability method and the

triangular hyetograph method can not be used directly in the present research due to at

least one or more of the following reasons:

• They do not represent the variability of observed temporal patterns;
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Simple hyetograph shapes (for example, triangles) are inadequate to represent the

actual variation of rainfall intensity in typical rainfall events; and

They were developed such that when being used with average values of other design

inputs, the resulting design flood is assumed to have the same probability as that of

the design rainfall.

80

; 60

20 40 EO 6 0
CUMULATIVE PERCENT OF STORM TIME

Figure H-l: Time distributions of first quartile storms (Huff, 1967)

For the comparison of observed and modelled patterns, Huffs method seems to be

partially relevant to this study because it can describe characteristics of rainfall temporal

patterns in probabilistic terms. In applying this method, it may be necessary to examine

the effects of storm types, storm duration, or seasonal variation on the time distribution

of rainfall. Results of this investigation would be useful in dividing observed storms

into groups before constructing Huff curves for each individual group.

H.4 RAINFALL DISAGGREGATION MODELS

There exist many disaggregation schemes for simulating the temporal distribution of

rainfall within storm events. These include methods proposed by Nguyen and Rousselle

(1981), Hashino (1986), Hershenhorn and Woolhiser (1987), Garcia-Guzman and

Aranda-Oliver (1993), Robinson and Sivapalan (1997), and Heneker et al. (1999).



Appendix H 275

Among these, the model proposed by Garcia-Guzman and Aranda-Oliver (1993), and

the multiplicative cascade model by Robinson and Sivapalan (1997) are conceptually

simple and appear to be simple enough for practical applications. The models are

therefore described in detail below.

The objective of the model proposed by Garcia-Guzman and Aranda-Oliver (1993) was

to disaggregate the total depth of a rainfall event of a specified duration into hourly

rainfall depths. In this model, the temporal pattern was characterised by the

dimensionless storm mass curve defined at hourly time steps. The ordinates of the

dimensionless mass curve were assumed to be ordered samples from a beta distribution.

Parameters of the beta distribution were estimated from observed storm data. Given a

rainfall event of a specified duration, the hyetograph of the design event was determined

by generating random numbers from the fitted beta distribution. These ordered random

numbers (in ascending order of magnitude) represented the ordinates of the mass curve

of the design storm pattern.

When applying this model to the observed rainfall data at three stations in Southern

Spain, it was shown that the model reasonably preserved the lag one auto-correlation

between rainfall depths at successive time steps, the maximum dimensionless hourly

precipitation, and Huff frequency curves of the historical rainfall temporal patterns.

This model was applied by Loukas et al. (1996) to determine stochastic design temporal

patterns for design rainfall.

In the multiplicative cascade model (Robinson and Sivapalan, 1997), the dimensionless

storm mass curve was used to describe the temporal pattern of rainfall, and Huff

frequency curves (Huff, 1967) were used to summarise the characteristics of observed

temporal patterns. The model parameters were represented by a beta distribution whose

distributional parameters were determined by trial and error such that the Huff

frequency curves of the generated storm patterns matched the observed Huff frequency

curves. The model employed a multiplicative cascade structure to determine mass

curve ordinates as a function of random numbers drawn from the fitted beta distribution.

In essence, the multiplicative cascade structure aims to generate rainfall hyetographs

with 2m rectang-^s, where m is the level of disaggregation, chosen to obtain the desired

time step of temporal patterns at the end of the disaggregation process.



T
Appendix H 276

H.5 SAMPLING FROM HISTORICAL PATTERNS

To generate a design temporal pattern for a given design storm depth and storm

duration, a very simple method is to sample from historical temporal patterns. This

requires pluviograph data of good record lengths so that a large sample of all observed

temporal patterns for the specified duration could be determined. The design temporal

pattern for the defined event can then be randomly taken from the sample of

dimensionless temporal patterns for the corresponding duration. This method has been

applied by Rahman et al. (2001) in a parallel project to determine the flood frequency

curve resulting from events defined as storm cores.

H.6 METHOD SELECTION

For the purpose of this study, the method selected for generating design temporal

patterns should be able to produce multiple patterns to reflect the great variability of

temporal patterns of real storm events. The modelled patterns should also preserve the

characteristics of observed patterns. In addition, the adopted method should be simple

enough to apply in practice.

Of the four groups of methods for developing design temporal patterns discussed above,

it is clear that none of methods based on IFD relationships or on analyses of observed

hyetographs can be used in this research. This is mainly because they are incapable of

representing the variability of temporal patterns of real rainfall events.

Of the remaining groups of methods, Huff's method has the advantage of being able to

characterise the temporal pattern in probabilistic terms. However, this method was not

selected for this project because Huff curves are only a statistical summary of data, not

actual patterns of individual storms. Furthermore, the ordinates of these curves are

developed without taking into account the correlation of rainfall intensity in successive

time periods.

The sampling of historical patterns is also a promising method because it is simple and
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it can model the variation of temporal patterns from event to event. However, one

possible problem of this method is that it can only characterise patterns that are actually

observed, but not the patterns that could have equally likely occurred.

As far as rainfall disaggregation models are concerned, the models introduced by

Garcia-Guzman and Aranda-Oliver (1993) and Robinson and Sivapalan (1997) are the

simplest in terms of model structure. Nevertheless, the multiplicative cascade model

proposed by Robinson and Sivapalan (1997) was adopted in this research because it is

mathematically much simpler than the other. Moreover, it is the easiest for

implementing in design applications and when tested with observed data, it produced

good results.

~l

H.7 CONCLUSIONS

In this appendix, four groups of methods for developing design temporal patterns of

rainfall were briefly reviewed. The multiplicative model proposed by Robinson and

Sivapalan (1997) was adopted in this research.
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Appendix i

AT-SITE FREQUENCY ANALYSIS METHODS

1.1 INTRODUCTION

The primary objective of methods for at-site frequency analysis is to determine the

probability (or recurrence interval) of an event of a given magnitude using data at a

specified site. There are several at-site frequency analysis methods, as described by

Haan (1977, Chapter 7) and Stedinger et al. (1993). In general, these methods can be

divided into two groups, namely non-parametric and parametric methods. In the former,

the probability distribution representing a set of data is determined without a priori

assumption regarding the underlying distribution of the data values. By contrast, in ihe

latter, it is necessary to assume the parent distribution of the data set at the outset of the

analysis. The objective of this appendix is to present a brief review of the most

commonly used techniques available in these two groups.

1.2 NON-PARAMETRIC METHODS

In order to determine the frequency distribution of an observed data set using non-

parametric methods, three steps are undertaken. Firstly, a plotting position for each

observed data is computed. The plotting position can be defined as a distribution-free

estimator of a cumulative distribution function (Hosking, 1990). Secondly, the observed

data and their corresponding plotting positions are plotted on a graph. Finally, a curve

that best fits the plotted points is drawn subjectively or by means of mathematical or

statistical smoothing functions. This curve represents an empirical distribution of the

data. From the fitted curve, quantiles at specified probability levels can be estimated.
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The non-parametric methods are easy to apply, and probably most appropriate for very

long series of data (in the order of hundreds to thousands) in which quantile estimates of

the parameter of interest can be read directly from the graph without the need for fitting

a curve through the plotted data points. However, for more general cases, they are not

widely used for frequency analysis due to their arbitrary and subjective nature (Haan,

1977). In addition, the extrapolation of probabilities outside the range of observations

can not be reliably determined. Finally, regionalisation of the frequency curve is

difficult to achieve.

1.3 PARAMETRIC METHODS

To develop the probability distribution of a random variable using parametric methods,

the following three steps can be undertaken: selection of a distributional type, estimation

of distributional parameters, and checking of the adequacy of the fitted distribution.

Each of these steps involves the choice of one single method among a variety of

alternatives. A brief introduction to the most commonly used methods in each step is

presented below and their characteristics are discussed.

1.3.1 Selection of a distributional type

To tentatively determine the parent distribution of an observed set of data, histograms,

moment ratio diagrams, or L-moment ratio diagrams of the observed data can be used.

Histograms are plots that show the frequencies of occurrence versus class intervals of

the observed data. The histogram shape gives an indication of the probability

distribution that underlies the data.

Moment ratio diagrams and L-moment ratio diagrams are constructed on the basis that

any probability distribution has specific values (or ranges of values) for its coefficient of

variation (Cv), coefficient of skewness (Cs), and coefficient of kurtosis (Ck). Therefore,

sample estimates of these quantities can be used to preliminarily specify the distribution
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underlying the sample (McCuen, 1985). Moment ratio diagrams include plots of Cv

versus Cs (for identifying two-parameter distributions), and Ck versus Cs (for identifying

three-parameter distributions). On these graphs, the moment ratios of different

theoretical statistical distributions are plotted, along with those of the observed data.

The distribution most suitable to describe the data is taken as the theoretical distribution

closest to the plotted points on the graphs. The same principle is applied to construct

the L-moment ratio diagrams, but L-moment ratios (L-CV, L-skewness, and L-kurtosis)

are used instead of the conventional product moments ratios (Cv, Cs, C0.

L-moment ratio diagrams are considered as a diagnostic tool superior to histograms and

moment ratio diagrams in identifying a parent distribution from which a sample is

drawn (Cunnane, 1989; Vogel and Fennessey, 1993). There are two main reasons for

this. Firstly, they are based on unbiased sample estimates of L-moment ratios. By

contrast, estimates of conventional product moment ratios (in particular, Cs) are highly

biased, especially for small samples. And secondly, they are more reliable than

histograms because the shape of a histogram generally depends on sample size and the

class intervals used, especially for small samples (McCuen, 1985).

1.3.2 Estimation of distributional parameters

Parameters of a distribution can be estimated using non-Bayesian or Bayesian methods

(Stedinger et al., 1993). In the former, distributional parameters are considered as fixed

design values, whereas in the latter, as random variables. Characteristics of these

methods are summarised in Table 1-1.
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Table 1-1: Parameter estimation methods

Groups

Non-Bayesian

methods

Non-Bayesian

methods

Methods

Method of

moments

Methods of

L-moments

and

probability

weighted

moments

(PWM)

Principles

Distributional parameters

are estimated by equating

sample product moments

to theoretical moments.

Distributional parameters

are estimrt"r> v>y equating

sample L- ..ioments (or

PWM) to theoretical

moments.

Characteristics

- This method is conceptually simple and easy to apply.

- Parameter estimates are generally biased, therefore bias correction factors often need to be

used (Cunnane, 1989).

- Estimates of parameters of three-parameter distributions may not be feasible for small

samples because the coefficient of skewness may not be reliably estimated (Cunnane, 1989).

- For highly skewed distributions, the accuracy of parameter estimates is severely affected if

there are data errors (Haan, 1977).

- Estimates of the coefficients of skewness and kurtosis are not always easily interpreted in

terms of distributional shape (Hosking, 1990; Guttman, 1992).

- These methods enable more secure inferences about the parent distributions of small

samples, and are able to characterise a wide range of distributions (Hosking, 1990).

- They are more robust to outliers of data, and less subject to bias in estimation.

- Sometimes they can be more accurate than the method of maximum likelihood (Hosking,

1990).

- L-moments have been developed for only standard distributions such as the uniform,

exponential, Gumbel, normal, Generalized Pareto, Generalized Extreme Value, Generalized

Logistic, Lognormal, Pearson type HI, and Kappa distributions (Hosking and Wallis, 1997).
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Table 1-1: Parameter estimation methods (continued)

Group

Non-Bayesian

methods

Bayesian

methods

(Stedinger et

al., 1993)

Methods

Method of

maximum

likelihood

Principles

Distributional parameters

are the values that

maximise the probability

of obtaining a sample.

Posterior distributions of

parameters are

determined by combining

prior (regional)

information with a sample

likelihood function via

Bayes' Theorem

Characteristics

- This method is generally preferred to the method of moments (Haan, 1977) because

parameter estimates are most efficient (Cunnane, 1989), and asymptotically unbiased for

very large samples (Haan, 1977).

- It is mathematically complex and therefore difficult to obtain parameter estimates for some

distributions (Lin and Vogel, 1993).

- It sometimes performs poorly when there is a significant deviation of observations from the

fitted distribution (Stedinger et al., 1993).

- These methods allow parameter uncertainties to be ltiodelled explicitly.

- They provide a theoretically consistent framework for the integration of at-site observations

with regional and other hydrologic information.

- They are generally used in regional analysis.

1
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1.3.3 Checking of the adequacy of the fitted distribution

After estimating parameters and quantiles of a distribution, the suitability of the adopted

distribution should be checked to ensure that the distribution could reproduce the

features of the data that are important to a particular application. In order to do this,

graphical or analytical methods can be employed.

1.3.3.1 Graphical methods

Graphical methods allow a visual inspection of the adequacy of a distribution fitted to a

data set. To do this, a plotting position for each observation is first computed. The

observed data are then plotted on a graph along with their corresponding plotting

positions. The adopted theoretical distribution is finally plotted on the same graph. The

adopted distribution is considered to be acceptable if, over the probability range of

interest, it fits closely to the observed data.

Even though simple and easy to apply, the obvious disadvantage of using graphical

methods for checking the adequacy of a fitted distribution is that it is difficult to decide

if deviations of the observations from the fitted distribution are statistically significant

or purely due to sampling variability.

1.3.3.2 Analytical methods

The analytical methods aim to test the null hypothesis that a given data set comes from

an assumed distribution. A vast number of techniques are available to achieve this goal,

as presented by D'Agostino and Stephens (1986) and Cunnane (1989). Among these,

the Kolmogorov-Smirnov one-sample test, the chi-square goodness-of-fit test, and the

probability plot correlation coefficient test are popularly applied in hydrology. These

tests are briefly reviewed below.
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In the Kolmogorov-Smirnov one-sample test, the theoretical cumulative distribution

function underlying a data set is assumed to be completely lecified. That is, no

parameter of the distribution is estimated from the observed data. Under this

assumption, for each observed data point, the deviation from the data to the theoretical

cumulative curve is determined. The test statistic is then taken as the maximum of the

computed deviations. The Kolmogorov-Smirnov test thus provides bounds within

which every observed data point should lie if the sample is actually from the assumed

distribution. To test the hypothesis that the given data comes from the assumed

distribution, the test statistic is compared with the critical value for a given level of

significance. The Kolmogorov-Sinirnov one-sample test can also be applied to cases in

which distributional parameters ;'je estimated from observed data. Nevertheless, for

these cases, critical values of the test are smaller than those given in the case that the

distributional parameters are completely specified (Haan, 1977).

The chi-square goodness-of-fit test is one of the most commonly used tests for checking

the fit of a data sample to a hypothesised population distribution. This test is applicable

to discrete data, or to continuous data expressed in a discrete form by using class

intervals on a continuous scale. The test statistic is constructed from the actual and

expected number of observations in the class intervals. Critical values for the test

statistic are dependent on the number of parameters of the adopted theoretical

distribution.

The Kolmogorov-Smirnov one-sample test and the chi-square goodness-of-fit test are

simple and easy to apply. However, it is argued that neither of these tests is very

powerful because of the high probability of accepting the null hypothesis when it is

actually false (Haan, 1977). In addition, these two tests also lack power in determining

the best-fit distribution among a group of alternatives (Cunnane, 1989).

The probability plot correlation coefficient test was originally introduced by Filliben

(1975) for testing if a probability distribution with unspecified location and scale

parameters is a normal distribution. However, it can be readily extended to test non-

normal distributional hypotheses. The test statistic uses the correlation between ordered

observations and the corresponding fitted quantiles determined by the plotting position
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of each observation. A near unity value of the test statistic indicates that the observed

data could have come from the fitted distribution.

The probability plot correlation coefficient test is considered as a powerful goodness-of-

fit test (Stedinger et al., 1993). It can also be used to select the best-fit distribution from

a set of candidate distributions (Cunnane, 1989). Nevertheless, critical values for the

test statistic are only available for certain distributions such as the normal, Lognormal,

uniform, Generalised Extreme Values and Pearson type IH distributions. This prevents

application of the test to other distributions such as the beta or Generalised Pareto

distribution that are used in this study.

1.4 SUMMARY

In this appendix, methods for determining the parent statistical distribution of a data set

using at-site frequency analysis procedures are described and discussed. In general,

parametric methods are preferable to non-parametric methods. With parametric

methods, there are three steps involved, namely selection of a distributional type,

estimation of distributional parameters, and checking of the adequacy of the fitted

distribution. Many methods are available to carry out each of these steps. Among these,

L-moment diagrams, method of moments, method of L-moments, and the chi-square

goodness-of-fit test are popularly used in routine applications due to their simplicity and

ease of application without sacrificing much accuracy.

J
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Appendix J

SELECTION OF A DISTRIBUTED RUNOFF ROUTING

MODEL FOR THE LA TROBE CATCHMENT

J.1 INTRODUCTION

This appendix documents the research undertaken to select a distributed runoff routing

model for the La Trobe River catchment at Noojee (catchment area of 290km2). The

selection is restricted to those RORB and URBS runoff routing models that had already

been developed and calibrated for the catchment by others.

In this appendix, an introduction to the catchment's distributed runoff routing models

available from previous studies is first presented. The theoretical background of two

runoff routing programs for developing these models is then summarised, together with

a detailed description of the two corresponding catchment models. Finally, the

selection of the best available model is reported.

J.2 AVAILABLE DISTRIBUTED RUNOFF ROUTING MODELS

Available distributed runoff routing models for the La Trobe River catchment can be

divided into two groups: RORB and URBS models. RORB catchment models had been

developed by Dyer et al. (1994) and Smith (1998), whereas an URBS catchment model

had been developed by Baker (1997). Of these models, as reported by Baker (1997), the

model parameters estimated by Baker compared favourably with those developed by

Dyer et al. (1994). Therefore, in order to select the best distributed model, only the

catchment models and the corresponding parameters determined by Baker (1997) and

Smith (1998) were tested and are reported in the following section.



Appendix J 287

J.2.1 RORB mode!

J.2.1.1 Theoretical background

i RORB (Laurenson and Mein, 1995) is a spatially distributed, non-linear runoff and

. streamflow routing program for calculating flood hydrographs from rainfall and other

j channel inputs. The program can also be used for retarding basin design and flood

routing in channels.

] To simulate a given catchment and its stream system, the catchment is divided into sub-

; areas bounded by catchment divides and ridge lines. The stream network is also sub-

1 divided into reaches, each of which is associated with a model storage.

{

To model streamflow on the catchment, RORB performs a sequence of operations

described by numeric control codes specified in the catchment data file. The routing

process starts with the deduction of losses from rainfall for each sub-area. The rainfall

excess at the catchment upstream end is then routed to the first stream confluence where

the rainfall excess hydrograph is stored. The rainfall excess hydrograph from another

sub-area contributing to another branch of the confluence, if any, is then added to the

stored hydrograph. This step is repeated until the modelling of all areas contributing to

other branches of the confluence is completed. The combined hydrograph is then routed

downstream in a similar fashion until it reaches the catchment outlet.

To compute stream discharge, the following non-linear storage-discharge relation is

assumed:

"S = 3600kQm (J-l)

where S is the storage (m3); Q is the outflow discharge (m3/s); m is a dimensionless

exponent which reflects the catchment's non-linearity; and k=kckr is a dimensional

coefficient, which is a function of the relative delay time computed for the reach storage

under consideration (kr) and an empirical coefficient applicable to the entire catchment

and its stream network (kc).

The two main parameters of RORB are kc and m. They are evaluated by a trial and

error procedure (by means of fit and test runs) using concurrent observed rainfall and
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flood data for a particular catchment. Once determined, these parameters are fixed for

the given catchment and can be used to estimate floods resulting from hypothetical

design conditions (design runs).

J.2.1.2 Smith's RORB model for the La Trobe River catchment

In Smith's RORB model, the La Trobe River catchment at Noojee was represented by

19 sub-areas and 28 channel reaches (see Figure J-l and Table J-l). Four observed

rainfall-runoff events were used to calibrate the model parameters kc and m. Data files

of the rainfall events and the corresponding surface runoff, together with the RORB

catchment file, are available in electronic form (Smith, 1998).

Figure J-l: Smith's RORB model for the La Trobe River catchment at Noojee (Smith,

1998)
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A summary of some statistical characteristics of the observed surface runoff used for

model calibration and the calibrated parameters of the catchment model (m=0.8,

kc=43.3) is also presented in Table J-l. Generally speaking, the calculated hydrographs

preserved well the flood peak and flood volume of the observed hydrographs, but the

time to peak was not satisfactorily reproduced.

Table J-l: Summary of distributed models of the La Trobe River catchment at Noojee

(m=0.8)

Study Catchment formulation No. of
No. of sub-areas No. of reaches fitted events

Range of calibrated flows (m3/s) Average
Minimum M?jumum Average kc

Baker (1997)
Smith (1998)

11
19

15
28

7.3
25.6

59.9
59.9

26.8
36.45

26.05
43.3

J.2.2 URBS model

J.2.2.1 Theoretical background

URBS (Carroll, 1994) is a modified and extended version of RORB in which key words

are used in place of the numeric codes used in RORB for describing the model sequence

of operations. The representation of catchment and channel network in URBS is

identical to that used in RORB. The two main parameters of URBS are a and m. There

is a relationship between the parameter a of URBS and the parameter kc of RORB as

follows:

rv=i- (J-2)

where dav is the average flow distance (in km) in the channel network of sub-area

inflows.

The above relationship indicates that URBS and RORB are interchangeable in

operation. That is, a given RORB catchment model with the parameters kc and m can

be converted into an equivalent URBS model with the parameters a and m. In other

words, a RORB model developed for a given catchment can be easily modified to be

run using URBS and vice versa.
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J.2.2.2 Baker's URBS model for the La Trobe River catchment

In Baker's URBS model, the La Trobe River catchment was characterised by 11 sub-

areas and 15 river reaches. Seven observed rainfall-runoff events were used for model

calibration. The average value of a obtained from calibration was 1.8, and dav was

14.47. Therefore using Equation (J-2), the average kc for the equivalent RORB model

for the same catchment was computed to be 26.05. The catchment model was available

in hard copy, whereas none of the rainfall-runoff events used in model fitting was

available.

Details of the URBS model for the La Trobe River catchment and the average kc value

for its equivalent RORB model are summarised in Table J-l. Overall, for the events

used in fitting runs, this model predicted flood hydrographs with sufficient accuracy in

terms of the flood peak magnitude and the time to flood peak.

J.3 SELECTION OF A DISTRIBUTED RUNOFF ROUTING MODEL

In order to select the best distributed runoff routing model for the study catchment, the

two available models were tested using an independent event which was not used in the

fitting runs. The event selected for testing was the flood event from 2100 hours on

27/1/1963 to 0000 hours on 30/01/1963, with a peak flow of 24.3m3/s, produced by

120.9mm of rain in 52 hours.

The following procedure was adopted:

• The URBS model for the La Trobe catchment was modified to be able to run with

RORB.

• Rainfall depths at the daily and recording gauges within and near the study

catchment for the period concurrent with the selected flood event were then extracted

from the HYDSYS database (HYDSYS, 1994). The rainfall depths obtained were

next recorded on the catchment map at their corresponding gauge location. Lines of

equal rainfall depths (isohyets) were then drawn. Rainfalls on sub-catchment areas

were approximately computed by interpolating between these isohyetal lines.
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• For each of the two catchment models, the RORB program was run with the selected

rainfall-runoff event and the fixed model parameters (kc and m) shown in Table J-l.

In each run, the initial loss and continuing loss rate were varied until the observed

and estimated flood hydrographs matched.

A summary of the values of the initial loss, continuing loss and the fixed kc used to

compute the flood hydrograph is presented in Table J-2. In this table, the flood peak

discharge and the corresponding time to peak of the observed and calculated

hydrographs are also given. An example of the flood hydrographs estimated by Smith's

and Baker's models and the corresponding observed flood is illustrated in Figure J-2.

Table J-2: Comparison of URBS and RORB models (test run, the 1963 flood, m=0.8)

Catchment IL CL k,. Peak discharge (m/s) Time to peak (h)
model (nun) (mm/h) Observed Calculated % difference Observed Calculated % difference

Smith (1998) 30 11.19 43.30
Baker (1997) 30 11.17 26.05

18.6
18.6

15.3
21.3

-17.6
14.5

34
34

51
38

50.0
11.8

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time (hours)

• Observed hydrograph
• Calculated hydrograph, Smith's model, kc = 43.3
- Calculated hydrograph, Baker's model, kc = 26.05

Figure J-2: Flood hydrographs estimated by Smith's and Baker's models (testing run,

m=0.8, the 1963 flood)
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In comparing the performance of the available distributed models for the La Trobe

catchment, it can be seen from Table J-2 and Figure J-2 that Baker's model (with

kc=26.05, m=0.8) gives better estimates of both the flood peak and time to peak than

Smith's model. Therefore this model was adopted as the best distributed runoff routing

model for the specified catchment.

To improve the estimate of kc for the selected model, the test event was also used for

fitting. As the estimated flood peak is greater than the observed one (see Table J-2), kc

needs to increase so that the computed flood peak decreases. As a final test, Baker's

model with kc=30, m=0.8 was used to test all the five flood events, of which four data

files were documented by Smith (1998), and the other one was compiled in this study.

Results of this final test are shown in Table J-3 and illustrated in Figure J-3.

Table J-3: Baker's model - Summary of model testing (kc=30, m=0.8)

Event

1963
1969
1971
1977
1980

IL
(mm)

30
0
8
23
0

CL
(mnVh)

11.2
4.8
4.6
10.2
6.1

Peak discharge (m3/s)
observed

18.6
15.0
48.6
22.2
31.3

calculated
18.3
16.0
49.9
20.9
48.1

% difference
-1.6
6.7
2.7
-5.8
53.7

observed
34
89
73
31
60

Time to peak (h)
calculated % difference

40
59
49
29
53

17.6
-33.7
-32.9
-6.5
-11.7

Volume (106m3)
: observed

1.96
2.58
5.02
2.01
4.11

calculated
1.93
2.59
5.03
1.98
4.07

ON

60

50 -

*& 40 --
§0

a 30 +
u
•- on 4-

w 10 +

Observed

Calculated

0 50 100
Time (hours)

150 200

Figure J-3: Observed and calculated hydrographs (Baker's model, kc=30, m=0.8, the

1971 flood)
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In examining the performance of Baker's model of the La Trobe catchment, it is evident

in Table J-3 that this model preserves well the observed flood peak and the flood

volume for four of the five flood events used. Differences between the peak discharge

or flood volume of the computed and observed flood hydrographs are less than 7%,

except for the 1980 flood. Nevertheless, the time to peak of the observed hydrographs

is not reproduced well in the estimated hydrographs. The difference in the lag time

between the observed and computed hydrographs is also different from event to event.

J.4 SUMMARY

There are three distributed runoff routing models available for the La Trobe River

catchment at Noojee. Parameters of these models had been calibrated but not yet tested.

In order to select the best distributed model available, two of these models were tested

with an observed rainfall-runoff event not used in model calibration. Results indicated

that Baker's model (Baker, 1997) produced better estimates of the peak flood discharge

and the time to flood peak than Smith's model (Smith, 1998). Therefore, Baker's model

with kc of 30 and m of 0.8 was adopted as the best available distributed runoff routing

model for the study catchment.
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Appendix K

DATA GENERATION

This appendix provides the theoretical bases of the computer subroutines used in this

research for random number generation. It first describes the linear congruential

method for the generation of random numbers from a uniform distribution, which forms

the basis of the data generation from any other distributions. The inverse cumulative

distribution method and the rejection method for generating random numbers from other

continuous distributions are then documented. More details of these methods can be

found in Haan (1977), Press et al. (1989), and Knuth (1998).

K.1 THE LINEAR CONGRUENTIAL METHOD

In the linear congruential method, a sequence of NR uniformly distributed random

numbers Xi, X2 ) . . . , XNR (NR ^ 0) can be obtained by setting:

XNR = (aoXNR-i + c0) mod nio (K-l)

where mod m0 is the modulus of m0 (0 < m0), a<, is the multiplier (0 < % < m0), c0 is the

increment (0 < c0 < m0), Xo is the starting value (also called the seed, where 0 < Xo <

mo), and NR is the length of the sequence.

The integer parameter values of m0, ao, co, and Xo are usually selected such that the

length of the generated sequence is long and the speed of generation is fast. For the

special cases in which co=0 and co*0, the linear congruential method is termed the

multiplicative congruential method and the mixed congruential method, respectively.
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K.2 THE INVERSE CUMULATIVE DISTRIBUTION METHOD

In the inverse cumulative distribution function method, it is assumed that pY(y) is the

probability density function of the probability distribution of interest. It is also assumed

that FY(y), the cumulative distribution function of pY(y), exists and that it is a

monotonically increasing function on the (0, 1) interval. Under these assumptions, in

order to generate a random value y from pY(y), a uniform random number x is chosen

between 0 and 1. The selected random number is then related to the cumulative

distribution function by the relationship: FY(y) = x (see Figure K-l). Finally, the

required random value y is obtained by solving the above equation for y.

uniform
deviate in

transformed
deviate out

Figure K-l: The inverse cumulative distribution function method (Press et al., 1989)

K.3 THE REJECTION METHOD

The rejection method is used when the cumulative distribution function of the variable

of interest X does not exist, thus the inverse cumulative distribution function method

can not be applied.

In the rejection method, the distribution function p(x) from which random numbers are

to be generated is plotted on a graph so that the area under this curve is one unit.
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Another function f(x), called the comparison function, is then chosen such that its

cumulative distribution function exists, and when plotted on the same graph it is

everywhere above p(x). In order to generate a random value from p(x), the inverse

cumulative distribution function method is first used to generate a random deviate xo

from the distribution f(x). To decide whether to accept or reject x0, a second uniform

deviate is then generated. If this second value is less than the ratio p(xo)/f(xo), that is the

random point [xo, f(xo)] lies within the area under the original probability distribution

p(x), xo is accepted (see Figure K-2) Otherwise, x0 is rejected, a new random deviate of

f(x) is then generated and the procedure above is repeated.

first random,
deviate in

„ second random
deviate in

Figure K-2: The rejection method (Press et al., 1989)
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Appendix L

CONFERENCE PAPERS

This appendix contains the conference papers that were written based on the research

conducted in this study.

• Paper 1: Weinmann, P.E., Rahman, A., Hoang, T.M.T., Laurenson, E.M., Nathan,

R.J. (2000). Monte Carlo Simulation of Flood Frequency Curves from Rainfall -

The Way Ahead. Proceedings of the 3rd International Hydrology and Water

Resources Symposium. Perth, Australia. I. E. Aust. National Conference

Publication, 564-569.

• Paper 2: Hoang, T.M.T., Rahman, A., Weinmann, P.E., Laurenson, E.M., Nathan,

R.J. (1999). Joint Probability Description of Design Rainfalls. Handbook and

Proceedings of Water 99 Joint Congress. Brisbane, Australia. I. E. Aust. National

Conference Publication, 379-384.

• Paper 3: Weinmann, P.E., Laurenson, E.M., Rahman, A., Hoang, T.M.T. (1999).

Improved Design Flood Estimation through Joint Probability. Proceedings of the 2nd

Inter-Regional Conference on Environment-Water, Lausanne, Switzerland. Presses

Polytechniques et Universitaires Romandes. Paper 2.2 on CD-ROM.

• Paper 4: Weinmann, P.E., Rahman, A., Hoang, T.M.T., Laurenson, E.M., Nathan,

R.J. (1998). A New Modelling Framework for Design Flood Estimation.

International Symposium on Storm Water Management and International

Conference on Hydraulics in Civil Engineering, Adelaide, Australia. I. E. Aust.

National Conference Publication, 393-398.



Monte Carlo Simulation of Flood Frequency Curves
from Rainfall - The Way Ahead
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A b s t r a c t : This paper summarises the results of a 3-year research project by the CRC for Catchment
Hydrology (CRCCH). It identifies significant shortcomings in the current Design Event Approach to rainfall-
based design flood estimation, and argues that substantial improvements in the accuracy and reliability of flood
estimates can be obtained from a more rigorous treatment of probability aspects in the generation of design
floods. Application of the proposed Monte Carlo Simulation approach to three test catchments in Victoria has
produced promising results, and has demonstrated the feasibility and in-principle advantages of the approach.
The paper discusses how far the CRCCH work has advanced towards resolving the main research issues, and
outlines desirable future development work to allow the new method to be routinely applied as a design tool.

1 INTRODUCTION

Where reliable flood data are available for the site and conditions of interest, flood frequency analysis is
generally the most direct and most accurate method for estimating design floods for average recurrence intervals
(ARIs) less than 100 years. However, for most Australian catchments, reliable streamflow records are cither
unavailable, of insufficient length or quality to allow reliable flood frequency analysis, or do not relate to the
current or future catchment conditions of interest. In all these situations, a significant degree of extrapolation
beyond the range of available flood observations is involved, and flood data thus has to be substituted or
supplemented by rainfall and catchment data, and by knowledge of flood generation processes. The knowledge
gained from well-gauged catchments is embodied into hydrological models (eg. loss models, runoff routing
models), and can then be applied to other catchments.

Because of the widespread use of rainfall-based design flood estimation methods as a basis for designing
structures and other development exposed to flood risks, any shortcomings in the currently applied methods may
have significant economic implications; continued improvements in methodology and design data are thus
desirable.

This paper identifies inherent shortcomings of the Design Event Approach to rainfall-based design flood
estimation, discusses results of research into a proposed method that promises significant improvements, and
indicates the direction of desirable future development of the method to allow its application in design practice.

2 THE CURRENT APPROACH AND ITS LIMITATIONS

2.1 Conceptual basis of the Design Event Approach

The current Design Event Approach represents a combination of conceptual hydrologic modelling and 'black-
box' modelling approaches. The input to the modelling process consists of probabilistic design rainfall events of
pre-selected duraiion, formed by combining design values of rainfall intensity with corresponding temporal and
area] patterns of rainfall. Conceptual hydrologic models are then used to transform a selected design rainfall
input event firstly into a runoff event (by use of a loss model), and then into a design flood hydrograph output
(by use of a runoff routing model). This design flood may include a baseflow component (i.e. delayed
contributions from previous rainfall events). The 'black-box' aspect is introduced when models calibrated to
actual observed events are applied for modelling of probabilistic events, with design inputs or parameters
adjusted arbitrarily to produce the desired output probability characteristics.

Figure 1 shows a schematic representation of the Design Event Approach. The approach embodies the important
assumption that, for each rainfall duration, there is a unique (typical) combination of all the model inputs and
model parameters that transforms the design rainfall of given average recurrence interval (ARI) into a flood
hydrograph output of the same ARI.
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Figure 1 Schematic representation of the Design Event Approach

The approach also assumes that, for a given catchment and selected ARI, there is critical rainfall duration that
produces the design flood. However, the critical rainfall duration for a catchment is not known a priori, but
depends on the interplay of catchment characteristics, as reflected in the loss and runoff routing models, (eg.
catchment size and shape, runoff production and drainage network characteristics), and rainfall characteristics
(average rainfal? intensity, temporal and areal variability). A number of trial rainfall durations thus need to be
applied; the one producing the highest flood peak (or volume) for the specific case is then adopted as the critical
duration. Figure 2 illustrates the process of deriving design floods based on the critical rainfall duration concept.

Design Rainfall Depths (mm) Flood Peaks (m'/s) Design Floods (rnVs)

10 20 50 100
10 2° 50 1 O 0

A f " (years)A*> Wears)

Figure 2 The critical rainfall duration approach to design flood estimation

10
50 100

AR'(years)

2.2 Theoretical limitations and practical problems of the Design Event Approach

It is well known that actual floods of a given peak magnitude could be the result of quite different rainfall events,
combined with a range of other flood producing factors. Relatively moderate storms occurring on saturated
catchments have produced major historic floods, while very heavy storms falling on dry catchments may have
only resulted in moderate flooding. The task of defining a typical combination of flood producing factors for
application in the Design Event Approach is made particularly difficult by the fact that flood response to rainfall
is generally non-linear and can be highly non-linear. This means that average conditions of rainfall or loss are
unlikely to produce average flood conditions. While the stated intent of the Design Event Approach of
"probability-heutral" transformation of design rainfalls into design floods is quite clear and plausible, its
practical implementation is fraught with difficulties and pitfalls for the unsuspecting designer.

The problems inherent in the 'critical rainfall duration' concept are best illustrated by reference to observed
flood series. The events forming an observed series of annual floods correspond to different rainfall durations



and thus define a marginal distribution of flood magnitude (regardless of rainfall duration). The arbitrary
selection of the 'critical rainfall duration' as the basis for estimating the design flood is equivalent to an
assumption that "the marginal distribution of flood magnitude is equal to the conditional distribution of flooding
for the critical rainfall duration". There is no reason why this assumption should be true in the general case.

The effect of the critical duration assumption is a systematic bias in flood frequency estimates, resulting in a
tendency to over-estimate the magnitude of design floods (Bloschl et al, 1997). In practice, this systematic error
has to be compensated by arbitrary corrections, such as increased losses or greater storage delays in runoff
routing models. These corrections tend to obscure any relationships that may exist between design parameters
and information derived directly from flood observations, thus making the task of deriving reliable design
parameters for ungauged catchments more difficult.

Recent developments in design flood estimation have generally concentrated on specific components of the
overall design flood estimation process, e.g. rainfall area! reduction factors, losses or runoff routing parameters.
Improvements in the estimation of these individual factors have been achieved by using a broader database,
sounder methods of analysis and/or better explanatory variables. However, due to the complex interactions of the
different factors and the clouding effects of corrections applied in the calibration to flood frequency results, it
has net been possible to realise the full benefits of these developments (Hill et al. 1996,).

As an example. Hill et al. (1996) found that, while there is theoretical justification for the use of the more
consistent set of 'filtered' temporal patterns of design rainfall, their use in conjunction with other improved
design inputs tends to underestimate design floods. The 'correction factor' built into the 'unfihered' patterns
generally leads to better design flood estimates, but the internal inconsistencies contained in these patterns can
produce inconsistent flood estimates for different rainfall durations. This requires the designer to make difficult
and highly subjective decisions in the selection of a critical rainfall duration.

3 THE WAY AHEAD: HOLISTIC SIMULATION OF DESIGN FLOODS FROM RAINFALL

The main problem with the Design Event Approach is that it docs not adequately allow for the large variability
of the flood producing factors, and the interactions between them. The simplistic treatment of important
probability aspects in the flood formation process severely limits the scope for further improvements in design
flood estimates. Such improvements require a more realistic representation of how the key factors work together
to produce floods. CRCCH Project FL1 (Holistic approach Jo rainfall-based design flood estimation) has
investigated two different approaches for deriving design floods the Continuous Simulation Approach and the
Joint Probability Approach. Both attempt to simulate more realistically how floods are formed from rainfall
inputs, but they do so in quite a different fashion.

In the Continuous Simulation Approach, a long continuous time series of streamflow (and floods) is derived
from observed or synthetically generated time series of rainfall and evaporation, using appropriate runoff
generation and hydrograph formation models (Boughton et al., 1999). From this simulated streamflow time
series, the flood events of interest can be extracted and analysed by conventional frequency analysis. The
Continuous Simulation Approach is conceptually the most desirable one, as it can simulate most closely the way
an actual flood series is produced. However, at the moment its application is limited to gauged catchments.

In the Joint Probability Approach, the frequency distribution of a selected flood characteristic is derived by
combining the probability distributions of key input variables (Rahman et al., 2000). Rather than producing a
time series of floods, the flood events are only generated in the probability domain; the simulated flood series
contains no information on the timing or sequencing of events. The joint probability approach can be regarded as
a further development of the currently used design event approach, but treats probability aspects more
rigorously.

Since the pioneering work of Eagleson (1972), many derived flood distribution methods based on joint
probability principles have been developed and tested in research projects. Some of these methods are reviewed
in Rahman et al. (1998). Their limited application in practice can be attributed to the fact that many of the
methods are constrained in their generality by employing simplistic runoff production and transfer functions.
There is also a lack of specific design data to allow the application of these methods to ungauged catchments.
The Monte Carlo simulation method de: Tibcd below is intended to overcome many of these limitations.



4 THE ELEMENTS OF THE PROPOSED MONTE CARLO SIMULATION APPROACH

4.1 General

The proposed approach employs a Monte Carlo simulation technique to generate say 10,000 flood events at the
point(s) of interest, from which a very long series of peak flows or flood volumes can be extracted. Conventional
flood frequency analysis is then applied to this partial flood series to produce a frequency curve of design floods.
In developing the new method, emphasis was placed on improved representation of those elements in the flood
generation process that have a dominant influence on the derived flood frequency distribution. The loss and
runoff routing models used in the Design Event Approach are generally adequate and can thus be applied in their
present form, but important probabilistic elements in the flood estimation process need to be represented more
realistically. This involves the simulation of stochastic runoff events from the probability distributions of their
main characteristics.

4.2 Simulation of stochastic runoff events

Precipitation, in the form of rainfall, is the main flood-producing factor in most situations in Australia. The
process of simulating flood events thus starts with generating stochastic rainfall events. Two types of rainfall
events have been defined as part of this project:

(i) a complete storm comprises those parts of the rainfall time series that can be regarded as forming a single
event as far as the flood response of the catchment is concerned, and

(ii) a storm core represents that part of a complete storm with the highest relative rainfall intensity.

Historic rainfall records from pluviograph stations in and around a catchment are analysed to identify the partial
series of significant rainfall events and their stochastic properties. Rainfall events are only selected for the
analysis if they have the potential to produce a flood, with the average rainfall intensity over the duration of the
event being used as an indicator of event magnitude. Typically, an average of 3 to 7 events per year are selected.

The rainfall characteristics of interest for simulation are (i) the rainfall event duration ID], (ii) the average
rainfall intensity / / / , (iii) the temporal pattern (TPJ and (iv) the areal pattern [APJ during the event. The
variation of the first three of these variables is represented by their probability distributions, while the areal
rainfall pattern is assumed to be constant (generally uniform). Information on the correlations between the
minfall variables is also required, to ensure that the generated stochastic rainfall events preserve the
characteristics of real observed rainfall events. Rainfall intensity is so strongly dependent on duration that it
needs to be represented by a conditional distribution of intensity for a given duration. A more detailed discussion
of the stochastic representation of rainfall events is given in Hoang et al. (1999).

The next step in the simulation is the transformation of the rainfall events into stochastic runoff events, by
application of a loss model. In accordance with current practice for the Design Event Approach, a conceptual
loss model, the initial loss-continuing loss model, is applied. The initial loss parameter [ILJ, which can vary
widely between different flood events, is represented by a probability distribution, while the continuing loss
parameter [CL] is generally less variable for a given catchment and thus represented by a fixed value.

The statistical models used to represent the stochastic variation of the selected three rainfall characteristics and
one loss parameter are summarised in Table 1, together with the data used to estimate their parameters. Further
details are given in Rahman et al. (2000) for storm cores, and Hoang (2000) for complete storms, respectively.

Table 1 Derivation of probability distributions of key variables in Monte Carlo simulation model

CHARACTERISTIC TYPE OF STATISTICAL MODEL PARAMETERS FROM

Rainfall Duration (D)

Rainfall Intensity (I)

Rainfall Temporal Pattern (TP)

Initial Loss (IL)

Exponential Distribution (Storm Cores) Regional Rainfall Data
Gen. Pareto Distrib. (Complete Storms)

Exponential Distribution (Conditional on Catchment Rainfall Data
Rainfall Duration)

Sampling from Observed Storms, or Regional Rainfall Data
Multiplicative Cascade Model

Beta Distribution Catchment Rainfall and
Streamflow Data



4.3 Modelling of hydrograph formation - runoff routing

The Monte Carlo simulation framework developed in the CRCCH project is intended for application with any of
the non-linear, semi-distributed runoff routing models (e.g. RORB, Laurenson and Mein, 1997) currently used
with the Design Event Approach. A simpler conceptual runoff routing model (with a single non-linear storage
concentrated at the catchment outlet) was used in the initial applications of the proposed Monte Carlo simulation
approach described below. For these medium size catchments (less than 500 km2), the simpler model provides an
adequate indication of the catchment's runoff routing response, but a semi-distributed runoff routing model
could be expected to produce more accurate results. It would also be more flexible in reproducing special
catchment features, such as natural or artificial storage basins, or the effects of changes to the drainage system.

5 INITIAL RESEARCH OUTCOMES

The proposed Monte Carlo simulation methodology has so far been applied to four catchments in Victoria,
Australia, ranging in size from 78 to 290 km2. Here the storm core simulation results for the Boggy Creek
catchment (catchment area 108 km2, mean annual rainfall 1020mm) are presented. The simulation procedure was
applied to a partial series of 10,000 storm/runoff events, with an average of 5 events per year, equivalent to an
annual series of 2000 years. Figure 3 shows the comparison of the simulated flood frequency curve with the
observed one. Some design flood estimates obtained from the Design Event Approach are also shown.
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Figure 3 Comparison of derived and observed flood frequency curves for Boggy Creek catchment

The evaluation of the results is made difficult by the fact that the true flood frequency curves are not known. The
magnitude of the 1993 flood in the Boggy Creek catchment (180 rr»3/s) had only been estimated, and the
available flood record is relatively short (32 years). This introduces considerable uncertainty into the 'observed'
flood frequency curve. Two sets of results arc shown for the Design Event Approach, both obtained with the
same RORB model of Boggy Creek catchment. The first set used the initial and continuing loss parameters from
model calibrations, the second is based on an adjusted continuing loss rate, so as to match the 'observed' flood
frequency curve for an ARI of 20 years. The flood frequency curve from Monte Carlo simulation with
independently derived design inputs, shown by the heavier line, underestimates the observed flood frequency
curve. However, the second line shows that a much better overall match between simulated and observed flood
frequency curves can be obtained by a small adjustment of the continuing loss rate from 3.5 to 3 mm/h.

Results for the other catchments indicated similar performance of the Monte Carlo simulation approach, with
deviations from the 'observed' flood frequency curves being generally less than 25% in the range of flood: that
could be confidently -stimated from flood frequency analysis. Sensitivity analyses indicated that the simulated
flood frequency curves are very sensitive to correct representation of the conditional distribution of rainfall
intensity, and moderately sensitive to the representation of temporal patterns and initial loss.

Overall, the results of the initial applications show that the principles employed in the Monte Carlo simulation
approach are sound, and that the approach is workable in practice. The application in gauged catchments is
straightforward and, by eliminating the concept of 'critical duration', avoids arbitrary smoothing of inconsistent
results. The simulation of 10,000 stochastic runoff and flood events takes less than half an hour on a standard
personal computer.



6 TURNING THE RESEARCH RESULTS INTO PRACTICAL TOOLS

While the results of the initial applications of the proposed method for deriving flood frequency curves by Monte
Carlo simulation are promising, there is a need for more extensive testing of the method on a broader range of
catchments. A significant amount of development work is still needed to turn the method into a user-friendly tool
that can be widely applied in design practice. The method offers the prospect of using much of the currently
available regionalised design rainfall and loss data, and should thus also be applicable to ungauged catchments.
Further research and development should address the following high priority objectives:

• to incorporate into the method one of the currently used semi-distributed runoff routing models, to allow
more detailed representation of catchment features and modelling of spatially varying catchment rainfall;

• to combine the at-site rainfall frequency estimates for storm cores with regional design rainfall estimates;
• to better represent significant seasonal effects by replacing annual rainfall and loss characteristics by

values derived from a seasonal analysis;
• to improve the regional estimation methods for continuing loss and runoff routing parameters.

Some of these research and development initiatives would also benefit the Design Event Approach but, for the
reasons stated earlier, the benefits of any future flood estimation research can only be fully realised, if some of
the fundamental deficiencies in the current approaches arc addressed first. The proposed Monte Carlo simulation
approach promises to overcome these limitations.

7 CONCLUSIONS

This paper has highlighted some of the theoretical and practical limitations of the currently used Design Event
Approach to rainfall-based design flood estimation. It has argued that substantial improvements in design flood
estimates are only possible if the variability and interaction of flood producing factors are better allowed for.
Both the Continuous Simulation Approach and the proposed Monte Carlo Simulation Approach described in this
paper can overcome these limitations, and have the potential to be routinely applied in the future. The Monte
Carlo simulation approach has the advantage that it can utilise some of the models and design data used with the
Design Event approach; this will allow it to be more readily applied to flood estimation in ungauged catchments.
The results of the initial applications of the proposed Monte Carlo Simulation approach are very promising.
Further testing, and development ot ihe approach into a practical design tool, are therefore highly desirable.
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SUMMARY
In the currently applied rainfall-based flood estimation methods, design storms for pre-defined durations are
represented by probabilistic design rainfall intensities and fixed temporal patterns. This docs not adequately
reflect the great degree of variability of real storm events and, in catchments with strongly non-linear runoff
response, may lead to significantly biased flood estimates. The paper proposes a new definition for storm events
of random duration. It demonstrates that a joint probability description of design rainfall using these new storm
events is quite feasible, and explores their potential for practical design flood estimation applications.

1. INTRODUCTION
All rainfall-based design flood estimation methods start from the premise that a probabilistic design rainfall input
can be transformed into a flood frequency output. Available methods range from the simple Rational Method to
complex rainfall-runoff simulation models. The degree of simplification adopted by a specific method determines
the error and bias introduced into the derived flood frequency distribution compared to the 'true' distribution.
The operational aim of any practical design flood estimation method is to minimise errors and bias by adequately
representing all aspects of the catchment hydrologic system that significantly influence its flood outputs.

One factor thought to have a significant influence on derived flood frequency distributions is the large variability
of hydrologic variables from event to event. The non-linear nature of the catchment response to rainfall inputs
means that a simple representation of highly variable inputs or parameter values by their mean or median values,
as in the commonly applied design event approach, is likely to introduce bias into the derived flood distribution
[1], [2]. The Joint Probability Approach to design flood estimation, being investigated as part of the CRC for
Catchment Hydrology's Project FL1, aims to overcome this problem by an appropriate probabilistic
representation of the key flood-producing or flood-modifying variables.

In this paper we concentrate on the st'> rainfall characteristics that arc influential in defining the flood
frequency distribution. The principal c1 .ir;v,..< .istics of ;i rainfall event considered here are its duration, average
intensity and the within-event temporal sttern. Random variability of rainfall over a catchment is allowed for
through an areal reduction factor, while spatial trends in rainfall, although important in some catchments, have
not been allowed for at this stage. Prc-storm rainfall is important in determining initial loss associated with a
storm event. However, as our analysis of Victorian data has shown little correlation between storm event rainfall
and pre-storm rainfall; the distribution of initial loss will be derived independently of the storm rainfall analysis.

The research described in this paper builds on previous research applications of the Joint Probability Approach,
in particular by Bloschl and Sivapalan [3] using data from catchments in Austria; our work is specifically
oriented towards exploring the potential of the approach for practical application in Australia. At this stage the
analysis has been restricted to rainfall data from a limited region in Victoria [2].

2. DATA COLLATION AND CHECKING
The derivation of the joint probability distribution of rainfall duration, intensity, and temporal pattern requires
continuously recorded rainfall data from a representative set of pluviograph stations. For this study, hourly
rainfall records from 19 pluviometers in South-eastern Victoria, have been used. The stations are spread over a
region of approximately 30,000 km2, extending from Melbourne in the west to Sale in the east. Record lengths
range from a minimum of 14 years to a maximum of 123 years (Melbourne pluviograph), with an average of 23
years.

The hourly rainfalls obtained from the above gauges were checked for homogeneity with respect to time. As
stated by many authors, e.g. [4], [5], and [6], this is an important check before any hydrologic frequency analysis
is undertaken, to avoid biased results due to possible errors in data collection, changes in station environments,
and observers. The CUSUM tes* [7] (for a change in the mean) and the Mann-Kendal! rank correlation test [4]
(for trend in data series) were applied to test for homogeneity of the annual maxima of daily rainfall totals. Of the
19 pluviometers used, only one station failed the Mann-Kendall trend test. After checking the station
documentation and a plot of the data series at the station against time, only 5 years of record had to be discarded.



3 . STORM EVENT DEFINITION
In the joint probability description of design rainfalls, the key rainfall characterises (duration, intensity, and
temporal pattern) are treated as random variables. Before determining the joint distribution of these three
characteristics, a storm definition is required to separate the time series of hourly rainfall observations into
individual rainfall events. A storm of interest for flood estimation is one that has the potential to produce a flood.
In this study, two-types of storm events were defined: complete storms and storm cores.

A complete storm for the purposes of this approach is defined in three steps (Figure 1):
• Step 1: A 'gross' storm is a period of rain starting and ending with a 'non-dry hour' (ie hourly rainfall greater

than Cl mm), preceded aj.d followed by at least h 'dry hours'.
• Step 2: Any period of insignificant rainfall at the beginning or end of a gross storm (referred to as 'dry

period') is then cut off from the gross storm to produce the 'net' storm of duration D. (A period is 'dry* if all
hourly rainfalls in the period are s C2 mm, and the average rainfall intensity during the period is s Cl mm/h).

• Step 3: The net storm is then assessed in regard to its severity and only kept as a 'significant' storm if it has
the potential to produce a flood. This assessment is performed by firstly comparing the average rainfall
intensity of the net storm (RFID) with a threshold intensity for that storm duration: RFID > F lx ( 2 / 0 ) • A
second criterion is then applied to allow for the possibility of a str"-"i-internal period of heavy rainfall
(duration d and average intensity RHd ) producing a flood: RFI™* > F2x(2ld), where J/D and 1 / r f

a r e

respectively the estimated 2-year ARI intensities for the durations D and d.

In this analysis, we have adopted h = 6 hours, Fl=0.4, F2=0.5, Cl=0.255 mm/h and C2=1.2 mm. This produced
an average of 7 storms per year of rainfall record.

end of 'gross'storm

'dry'
period j separation time Y =

y " "i minimum6'dry'hours
^ =A

Time(h)

Figure 1: Storm definition

For each complete storm, a storm core can be identified, which is defined as "the most intense rainfall burst
within a complete storm". It is found by calculating the average intensities of all possible storm bursts, and the
ratio with the threshold intensity J/^ for the relevant duration d, then selecting the burst of that duration which

produces the highest ratio. In the example storm shown in Figure 1, the storm core has a duration of 3 hours.

It is clear that the flood production potential of a rainfall event depends not only on the storm characteristics but
also on catchment factors that determine the flood regime, such as the time of concentration [8]. A particular set
of storm definition parameters is thus only relevant to catchments within a limited regime range.

4. DISTRIBUTION OF RAINFALL DURATION
With storms selected using the above event definition, storm duration is a random variable with an unknown
probability distribution. Regional frequency analysis by the method of Hosking and Wallis [6] was applied to
identify the distribution of duration of the complete storm and storm core events in the selected rainfall data set.
The procedure is as follows:
• Define a homogeneous region of sites with similar rainfall characteristics. Criteria used for forming regions

may include gauge elevation, site physiography, or geographical contiguity with the site of interest, etc.
• Compute the discordancy measure D for each site in the region. Discordant sites have markedly different at-

site sample L-moments from those in the group; therefore their data merit a close examination.



• Compute the heterogeneity measures H, H(2), and H(3) to assess if the proposed region is acceptably
homogeneous. If these measures exceed a critical value for homogeneity, the region should be redefined.

• For an acceptably homogeneous region, compute the goodncss-of-fit measure Z to select a distribution that
yields an acceptable fit to the data points for each site. The selected distribution should have \z\< 1.64.

Preliminary results for complete storms indicate that the whole study area is not homogeneous with respect to
storm duration, but smaller regions can be formed by grouping sites contiguous to the site of interest. The 3-
parameter generalised Pareto (GP) distribution has been found to be the most appropriate to describe the duration
of complete storms in the test region.

For storm cores, the whole study area forms a homogeneous region, and the 1-parameter exponential distribution
was found to be the appropriate distribution. Figure 2 shows the distribution of storm duration (for storm cores
and complete storms) for Station 86071 (Melbourne).
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Figure 2: Distribution of storm duration at Melbourne

5. CONDITIONAL DISTRIBUTION OF RAINFALL INTENSITY
The strong relationship between rainfall duration and average rainfall intensity means that the distribution of
intensity (I) for both complete storms and storm cores needs to be conditioned on duration. The procedure
adopted to develop intensity-frcquency-duration (IFD) curves for complete storms or storm cores is as follows:
• The range of storm event durations D is divided into a number of class intervals (with a mid point for each

class): e.g. lh, 2-3h , 4-12h, 13-36h, 37h and greater.
• For the data in each class interval (except the lh class), a linear regression line is fitted between Iog(D) and

log(I)- The slope of the fitted regression line is used to adjust the intensities for all durations to the mid point.
• For each class, an exponential distribution is fitted to the adjusted data series 1| (i = 1,.. . . M), where M is the

number of data points in a class. Quantiles are obtained from I(T) = Io+ pin(AT) where Io is the smallest value
in the series; P = Z I/M - Io; A, = M/N; N is the number of years of data; and T is the ARI. Adopting this
procedure, design rainfall intensity values I(T) are computed for ARI = 2,5, 10,20,50 and 100 years.

• The computed I(T) values for each duration range are used to fit a second degree polynomial between log(D)
and Iog(I) for a selected ARI. This is the basis of the storm core or complete storm IFD curves in Figure 3.

A key issue is whether the IFD curves for the random duration storm events used in our study, IFDcom.5ttJtm and
DFDuonncore. are similar to the currently used design rainfall IFD curves. The derived IFD curves for a station can
be compared with two other IFD curves: (a) regional design values for fixed duration storm bursts from ARR87
([9], Chapter 2 and Vol 2), referred to as IFDARR; and (b) values from at-site analysis of storm bursts using
procedures consistent with ARR87 (IFD^,). The type (b) curves are more directly comparable with the at-site
IFD curves developed here.

The ARR87 bursts and the storm cores used here have different sampling properties: an observed intense rainfall
spell is included only once in the storm core database, but it may have been included several times in the burst
rainfall database, as a shorter duration burst may form part of a longer duration burst. Thus the burst series will
consist of higher values relative to storm cores, and hence IFD,,,™ core will be located below IFDARR. Similarly

With IFDcompslom- However, the difference will reduce with increasing duration; at higher durations both the



samples will share many common events. The empirical results for the 19 stations analysed are generally
consistent with the above sampling properties of bursts, complete storms and storm cores (see Figure 3).

Examination of the results of our IFD analysis for different stations shows a fairly regular relationship between
IFDjtoOTcon and IFD^,,,. The ratio of these two IFD curves, the IFD adjustment factor, depends on D and ARI, as
shown in Figure 4. The IFD adjustment factor could be used to estimate storm core IFD values from ARR87 EFD
values for a given duration and ARI, but further work is required to generalise the relationship of the adjustment
factor with duration and ARI. For complete storms, the relationship between IFDcomp.uonB and IFD,^, appears to
be less consistent, offering little scope for derivation of design IFD adjustment factors.
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Figure 3: Comparison of IFD curves for Melbourne Figure 4: Typical IFD adjustment factors

6. PROBABILISTIC RAINFALL TEMPORAL PATTERNS
The probabilistic description of rainfall temporal patterns is made complex by their multi-variate nature: current
design temporal patterns (Vol 2, ARR87 [9]) are defined by up to 24 parameters. We characterise the time
distribution of rainfall during a storm using storm mass curves, graphs of dimensionless cumulative rainfall depth
versus dimensionless storm time, with 8 to 10 equal time increments.

Temporal patterns may vary not only with location, but also with season, storm duration and storm severity. The
analysis of rainfall data for the probabilistic description of temporal patterns thus has to start by checking of
observed temporal patterns for differences with respect to season of storm occurrence, storm duration, and storm
depth. This was performed by using contingency tables and the chi-square test for homogeneity, described in
[10]. Garcia-Guzman and Aranda-Oliver [11] also applied the test for the same purpose. It was assumed that, for
the relatively small region considered, the storm patterns did not depend on location within the region.

To apply the test, a contingency table was established for a hypothesised grouping (e.g. into seasons), the chi-
square statistic computed and then compared with the value of the statistic that would be obtained from a
homogeneous population (e.g. no distinct seasonally). The tests were performed for different groupings of storm
events in relation to season, storm duration and severity. For each factor, the events were first grouped into small
units (e.g. single months) and, if the data was shown to be homogeneous within those groups, larger groups ( e.g.
several months) were formed and tested. The results of this analysis for complete storms in Figure 5 indicate that,
when temporal patterns are characterised by mass curves using 10 equal time intervals, the time distributions of
rainfall are heterogeneous with regard to season of storm occurrence, storm duration, and (in one case) total
storm depth. The practical significance of these results for flood estimation is yet to be confirmed by simulation
studies.

For storm cores, the time distributions of rainfall are not dependent on season and total storm depth but on storm
durations, yielding two groups: (a) up to 12 hours duration, and (b) greater than 12 hours duration.

For design flood applications, the observed mass curves in each group now need to be represented by a model, to
allow generation of synthetic mass curves. In its simplest form, the model would consist of randomly drawing a
dimensionless pattern from the sample of observed mass curves in the relevant group. The adopted model
employs a multiplicative structure [8] to disaggregate rainfall from a given depth and duration. It first finds the
relative rainfall depth at the mid-point of rainfall duration, then at the mid-points of the two intervals created, and
so on. The model was used to generate temporal patterns of 8 blocks.



I Rainfall temporal paltrm

I

Seasons I I Oct.-Nov. j j Dec& Jar.. - Mar. ) I April-May j

Duration lh-12h > ]2h lh-I2h >12h lh-12h 13h-24h >24h lh-12h

Depth

Figure 5: Factors affecting temporal pattcrrs (complete storms)

For each temporal pattern group, the step;, in the generation process are as follows:
• Fit a beta distribution to all observed mass curves in the group. The parameters of this distribution are

selected as the medians of the parameters of the individual beta curves in the group.
• Generate synthetic storm hyetographs from the beta distribution.

The performance of the generation model has been assessed by comparing the following characteristics of the
observed and generated sets of patterns:
• the cumulative frequency curve of maximum dimensionless intensity, a measure of peakiness (Figure 6),
• the lag one auto-correlation coefficients, a measure of persistence in temporal patterns, and
• the Huff frequency curves [12], a measure of temporal pattern variability (Figure 7).
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Rdstive mwinum intensity
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10%,
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simulated
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Figure 6: Comparison of cumulative
relative frequency of maximum intensity
(June-September, >12h, complete storms)

Figure 7: Comparison of Huff frequency curves (December-March,
13h-24h, up to 50mm)

The results from the application to the data set from 19 stations indicate that the model preserves the
characteristics of observed complete storms relatively well. The accurate representation of the less complex
storm core temporal patterns poses less of a challenge.

7. JOINT DISTRIBUTION OF DESIGN RAINFALL
Together, the marginal distribution of storm duration, the conditional distriiiution of rainfall intensity and the
generation model for temporal patterns define the joint distribution of rainfall events to be used for design. In
practical application, a set of complete storm or storm core design events would be generated by first generating
a random duration, then a rainfall intensity for this duration and finally a temporal pattern for the corresponding
duration and intensity group (at this stage neglecting the seasonality of temporal patterns) [2].

8. DISCUSSION
The preliminary project results presented in this paper demonstrate that it is feasible to describe design rainfall
characteristics for a site (or a small region) in a joint probability framework that better accounts for the variability
between rainfall events and the interaction between different rainfall characteristics. Work is currently under way



to combine these new design rainfall characteristics for complete storms and storm cores with probability
distributed initial loss values, and to apply them to selected test catchments to determine their derived flood
frequency distributions. The method employs a Monte Carlo simulation framework, initially with a lumped, non-
linear runoff routing model for sensitivity studies, but eventually with a semi-distributed runoff routing model to
allow a comparison with results from the current design event approach and from flood frequency analysis.

If these test applications confirm the potential of the Joint Probability Approach to produce less biased estimates
of design floods, further work will be necessary to allow the wider application of the approach to practical design
flood estimation problems. In particular, regional methods to estimate rainfall event duralion, average intensity
and temporal pattern will be required. For storm duration, this will involve further research on the regional
variation of the distribution parameters and the climate characteristics responsible for it. For the design rainfall
intensities associated with storm cores, it is proposed to make use of the established link with the rainfall IFD
data for storm bursts provided in ARR87. The sensitivity studies will determine to what extent the variability of
temporal patterns with season, duration and depth influences the derived flood frequency distribution.

Intuitively, it appears preferable to define complete storms rather than storm cores for use in design flood
estimation, particularly as initial losses are more readily determined for complete storm events. However, our
analyses have shown that complete storms are characterised by more complex and more variable distributions of
rainfall duration and temporal pattern compared to storm cores. It is also more difficult to relate the rainfall
intensities of complete storms to the design IFD data available in ARR87. Further work is required to fully assess
the relative merits of these two approaches for practical application.

9. CONCLUSION
The research work on joint probability representation of design rainfall characteristics described in this paper has
led to the following conclusions:
• It is quite feasible to derive a joint probability distribution of storm rainfall duration, average intensity and

temporal pattern, either for complete storms or for storm cores (the most intense portion of a complete
storm), but storm cores appear to offer greater potential for practical application with current design data.

• The treatment of rainfall event duration as a random variable leads to lower design rainfall intensities for a
given dura'ion than indicated by the IFD information in ARR87; for storm cores there appears to be a more
usetul systematic relationship beivveen the rainfall intensities derived by the two approaches.

• Further work is required to test the performance of the overall Joint Probability Approach to design flood
estimation and to develop regional methods for estimating the required distribution parameters.
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IMPROVED DESIGN FLOOD ESTIMATION THROUGH
JOINT PROBABILITY

P. E. Weinmann, E. M. Laurenson, A. Rahman, T. M. T. Hoang
CRC (or Catchment Hydrology, Dept. of Civil Engineering, Monash University, Australia

77J/S paper places rainfall-based flood hydrograph estimation into the broader context of the de-
sign flood estimation process. It shows up weaknesses in the current methods of dealing with sto-
chastic elements in design flood estimation and proposes a joint probability approach to overcome
these weaknesses. The initial application of the approach to a small number of rural catchments in
Victoria, Australia showed promise for further development into a practical flood design tool.

1 INTRODUCTION

Flood design generally requires the estimation of a flood frequency curve; i.e. a
relationship between the magnitude of a selected flood characteristic (e.g. peak flow
rate or maximum flood level at a site) and its probability of exceedance. This flood
frequency curve can be based either directly on the analysis of observed flood data,
or on simulating floods from more basic hydrologic catchment inputs, like rainfall.
Ideally, the simulation methods would try to represent in a realistic fashion all the
factors involved in producing a flood and modifying it on its passage through the
catchment. However, practical simulation methods involve a substantial degree of
simplification, relating to the nature of the basic inputs, the physical reaiism of the
detarministic models involved, and the treatment of the probabilistic aspects of the
flood simulation process.

This paper first discusses important distinctions between different flood estima-
tion approaches,, !n particular the role of deterministic models and stochastic ele-
ments in the flooo estimation process. It then explores the potential of a more holistic
flood estimation approach, based on concepts of joint probability analysis.

2 OVERVIEW OF DESIGN FLOOD ESTIMATION PROCESS

In an ideal situation, flood design would be based directly on statistical analysis
of a very long, homogeneous time series of reliable flood observations at the site of
interest. Such analysis would require only limited knowledge and understanding of
the causative factors of floods, as all the important factors would be adequately rep-
resented in the flood data.
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However, in most practical design situations, the adopted flood estimation
methods have to deal with the following limitations in the available flood observa-
tions:

• they are only available for a limited time period;
• they do not relate directly to the specific site, flood characteristic or flood

magnitude of interest;
• they are only of limited accuracy and reliability;
• they do not form a homogeneous time series, as they reflect changes in cli-

mate, catchment or site characteristics.
These practical constraints on available flood information limit the scope of di-

rect frequency analysis of flood observations. A degree of extrapolation in time,
space, flood magnitude and generality of results is typically required. This means that
the design flood estimation process has to start at an earlier stage, using different
design inputs, and transforming them into the required flood design outputs by
means of models, as indicated in Figure 1. Th3 Tiydrologist or flood designer then
requires a range of supplementary data for the hydrometeorological, hydrological and
hydraulic stages of the estimation process, plus the empirical or process-baseo
knowledge incorporated into the models of the transformation processes. Compared
to direct frequency analysis of flood characteristics, the design flood simulation proc-
ess represents a more mature form of the science of flood estimation: the knowledge
of what has happened must be supplemented by knowledge of how\l happened [1].

DESIGN INPUTS.
PARAMETERS

Hydromeleorologlual Data
or

Basic Rainfall Oata

TRANSFORMATIONS
with Inputs/ Outputs

Deterministic or
Stochastic Storm

Design Rainfall DaU Design Rainfall Events

Runoff Characteristics
(Loss parameters) i-c Runoff Generation

Model

Design Runoff Events

Basin Characteristics
(Runoff Routing Parameters) r-C Flood Hydrograph

Formation Model

Primary (Inflow)
Design Flood Hydrographs

Storage Characteristics,
• River Routing Characteristics, <
J_ _ _ Tributary Flows \

; - - - • ; Ri lervolr Routing or
River Routing Model

| Secondary (Outflow)
< Design Flood^Hydrographs

Design Flood Levels

Fig. 1 Diag-ammatic ;epi asentation of different stages in design flood estimation process
(shaded boxes represent models)
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The schematic diagram in Figure 1 shows the main stages of the overall proc-
ess; some of them consist of several processes and sub-models with sets of in-
puts/parameters. Together, these sub-models form a complex modelling framework
that should reflect the physical and stochastic nature of the flood formation and flood
modification process.

While the basic hydrometeorological data consists of continuous time series,
the flood designer's direct interest is on probability distributions of defined events,
e.g. annual, maximum peak flows. In the most complete modelling framework, the
continuous modelling approach (the continuous time series of hydrometeorological
and secondary inputs) are used to simulate a complete time series of streamflow (or
flood levels) at the point of interest [2]. From this simulated output time series, the
required event characteristics can be extracted and subjected to frequency analysis.
The advantage of this approach is that, when using historic time series data, mosi of
the important dependencies between inputs are implicitly allowed for. However, when
extended input data series are to be derived by data generation techniques, these
dependencies need to be explicitly built into the data generation models.

In the more commonly applied design event approach, the primary input time
series (rainfall) is subjected to frequency analysis to derive a probability-based de-
sign input. This is combined with representative values of other inputs/parameters to
construct design events of given average recurrence interval (ARI) which are then
transformed by the estimation models into output events of the same ARI. The as-
sumption of 'probability-neutral' transformations involved in this approach and its po-
tential effect on derived flood frequency distributions is further discussed below.

In the remainder of this paper, an improved stochastic framework for event-
based flood estimation is outlined. The specific focus is on the transformation of de-
sign rainfall inputs to the primary design flood hydrograph output (highlighted parts of
Figure 1) using joint probability principles. The authors' application of joint probability
concepts to other parts of the flood estimation process is described in [3], [4], [5] and
[6].

3 DETERMINISTIC AND STOCHASTIC MODELLING ELEMENTS

The (!^jign flood estimation approaches outlined above contain both stochastic
and deterministic elements. The stochastic elements are the unexplained (random)
factors that give rise to the probability distributions of variables, and the unexplained
relationships between variables that are measured by statistical correlation. On the
other hand, the deterministic modelling elements express those relationships be-
tween variables that are direct enough and sufficiently understood to be represented
by simple parametric models. This stochastic-deterministic modelling framework has
been formJated and explored by Laurenson [3] and Klemes [1].

It is worth noting that the term 'deterministic' is used here not to indicate a
unique causal relationship between inputs and outputs, but rather a pragmatic con-
ceptual link that approximates the true (but generally unknown) dependence of out-
puts on inputs with sufficient accuracy for the practical purposes of flood estimation.
The deterministic links are closely related to the concept of statistical correlation be-
tween variables (or statistical dependence). In the conventional sense, a determinis-
tic relationship between two variables implies a correlation coefficient that has an
absolute value of one. However, the random factors involved in the transformation of
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inputs to outputs (expressed as probability distributions of model parameter values)
mean that the relationship between individual inputs and outputs is not fully determi-
nistic, but there exists a one-to-one relationship between their probability distribu-
tions.

In past floud estimation practice, the degree of sophistication of a flood estima-
tion method has been judged principally on the basis of its deterministic modelling
elements, depending mainly on whether their basis was purely empirical or physi-
cal/conceptual. Over-simplistic assumptions in the deterministic modelling compo-
nents place clear limitations on the degree of allowable extrapolation of modelling
results in the time, space and probability domains. Similarly, the representation of
stochastic modelling elements can range from complex to simpiistic, with important
effects on the flood estimation results. The stochastic elements thus deserve equal
attention in the development of reliable and efficient flood estimation methods.

Probability distributions of flood estimation inputs are generally multi-variate and
multi-parametric in nature (e.g. rainfall should be characterised by distributions of its
average intensity and its variability in time and space). However, for the sake of con-
venience, their dimensionality is often reduced (by making simplistic assumptions
regarding some of the dimensions), and one- or two-parameter distributions are as-
sumed for the remaining dimension(s). Similarly, despite their well-known random
variability, model parameters are frequently assumed to be invariant, i.e. their prob-
ability distribution is represented only by a measure of central tendency, the mean or
the median of observed values.

The adequate representation of dependencies (correlations) between different
inputs and model parameters is another important stochastic modelling element. In
many practical design flood estimation methods such dependencies are neglected,
and the computationally simpler case of independence is assumed (e.g. initial loss
had been assumed to be independent of rainfall burst duration [7]). Significant de-
pendencies between variables used in the flood estimation process can be allowed
for either through deterministic relationships between the variables (e.g. rainfall in-
tensity-frequency-duration relationships) or by approximate methods to preserve the
statistical correlations between variables.

4 THE DESIGN EVENT APPROACH AND ITS LIMITATIONS

The design event approach applied in Australia for rainfall-based flood hydrog-
raph estimation [7] is similar to the approach applied in other parts of the world. It
involves the definition of the design inputs and parameters indicated in the first col-
umn of Tablei, and their application with appropriate deterministic models of the run-
off generation and hydrograph formation phases. The basic premise of the approach
is that, by using appropriate representative values of the secondary inputs and model
parameters, the primary input of design rainfall for a given average recurrence inter-
val (ARI) will be transformed into a flood output of corresponding ARI.

Although conceptual in nature, the deterministic models applied with this ap-
proach, and their parameter estimation methods, have a direct physical or empirical
basis. Unfortunately, the solid basis of the deterministic models is not matched by
appropriate treatment of the probability aspects of flood estimation [8]. The only sto-
chastic input considered is the average rainfall intensity for a given rainfall burst du-
ration; all model parameters are represented by single representative values, usually
selected as the mean of the values obtained from model calibration runs or, in un-
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gauged catchments, from regional estimation equations. Apart from the dependence
of average rainfall intensity on burst duration, the dependence of rainfall temporal
patterns on rainfall duration and intensity is also allowed for, as is the dependence of
the rainfall areal reduction factor on rainfall duration and catchment area (see Table
1).

This simplistic treatment of the stochastic aspects of flood estimation, assuming
an ARl-neutral transformation of rainfall input to flood output, has been shown to lead
to potentially significant bias in derived flood frequency curves [9]. Furthermore, the
concept of deriving a critical rainfall duration for a given ARI (as the one that results
in the largest flood outputs) has no sound statistical basis.

DESIGN ELEMENT

Time Basis

Rainfall Event Input

Loss Parameters

Runoff Routing Parameters

Baseflow input

MODELLING CHAR-
ACTERISTIC
Season

Event Type (ET)

Duration (D)
Average Intensity (I)
Areal Reduction Factor
Temporal Pattern
Spatial Pattern
Initial Loss (IL)
Continuing Loss (CL)
Non-linearity Param. (m)
Attenuation Param. (K)
Baseflow at Peak

ADOPTED REPRE-
SENTATION
Non-seasonal (Annual)
Stochastic Events
(Complete Storms
or Storm 'Cores')

Stochastic
Stochastic
Deterministic
Stochastic

Uniform
Stochastic
Mean (from calibration)
Fixed Value
Mean (from calibration)
Mean (of observations)

DEPENDENCIES
MODELLED

ET
ET.D

D. Area
ET, D, 1

ET.D

m

Table 1 Summary of stochastic elements in adopted joint probability modelling approach
(Bold text indicates modifications to current Design Event Approach)

5 MODELLING COMPONENTS OF IMPROVED APPROACH

A reliable and efficient design flood estimation approach should concentrate on
those elements in the estimation process that have a dominant influence on the out-
put fiood frequency distribution(s). These include critical deterministic and stochastic
modelling elements, as well as their interactions. One important aspect that needs to
be considered in this context is the strongly non-linear response of most hydrologic-
hydraulic systems to system inputs - it can have a significant influence on the derived
flood frequency distributions.

The proposed improved approach to design flood estimation can be termed sto-
chastic design event simulation. It employs Monte Carlo simulation techniques to de-
rive the empirical distributions of selected flood output characteristics from distribu-
tions of key inputs and parameters [10]. The simulation uses the same deterministic
modelling elements as the design event approach, but joint probability concepts are
introduced to represent more correctly the most important stochastic elements in the
flood estimation process. These include:
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• definition and use of stochastic design events,
• 'representation of most important design rainfall input characteristics and loss

parameters by probability distributions,
• modelling of all important dependencies between inputs and parameters.
Table 1 summaiises the adopted representation and highlights the differences

with the currently applied design event approach. Two different definitions of sto-
chastic rainfall-runoff events have been developed and trialed in the research by the
Cooperative Research Centre for Catchment Hydrology (CRCCH). A complete storm
event includes all the significant rainfall within a rainfall event that has the potential to
produce flood runoff, while a storm core represents only the most intense part of a
complete storm, i.e. the part whose average intensity has the highest ARI [11]. With
both types of events, rainfall duration is treated as a random variable.

The input/parameter probability distributions are based on the analysis of ob-
served storms and resulting hydrographs. For gauged catchments, this can be based
directly on rainfall/streamflow data, but for ungauged catchments the distributions
have to be determined from regional estimation methods. In the example applications
used to test the approach, the rainfall inputs were described by probability distribu-
tions of rainfall duration, average intensity and temporal pattern, with an additional
distribution for a loss parameter. Table 2 summarises the types of data and the sta-
tistical distributions/models used in the stochastic description of these in-
puts/parameters. Due to the multi-parametric nature of temporal patterns, their vari-
ability was represented either empirically, by re-sampling of observed patterns, or by
data generation techniques, using a multiplicative cascade model [12].

CHARACTERISTIC BASIC DATA TYPE OF STATISTICAL MODEL

Rainfall Duration (D) Regional Rainfall

Rainfall Intensity (I) Catchment Rainfall

Rainfall Temporal Pattern (TP) Regional Rainfall

Exponential Dist. (Storm cores)
Gen. Pareto Dist. (Comp. storms)
Exponential Distribution
(with adjusted upper tail)
Sampling from observed storms
Or Multiplicative Cascade Model

Initial Loss (IL) Catchment Rainfall/Streamflow Beta Distribution

Table 2 Derivation of probability distributions of key inputs/parameters

In the example applications of the joint probability approach described below, a
single non-linear storage was used to transform the runoff input into a flood hydrog-
raph output at the catchment outlet (K and m are respectively the coefficient and the
exponent in the power function relating storage to discharge). Compared to the
commonly used, semi-distributed runoff routing models such as RORB [13], this in-
volves some loss of modelling accuracy and flexibility [12].

6 RESULTS AND DISCUSSION

The prototype version of the joint probability methodoiogy has so far boen ap-
plied to four catchments in Victoria, Australia, ranging ir. size from 78 to 290 km2. The
application in the Avoca River, Boggy Creek and Tarwin River catchments was
based on storm core events [10], while complete storms were used in the La Trobe
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River catchment [12]. The Monte Carlo simulation procedure was applied to a partial
series of 10 000 storm/runoff events, with an average of 5 events per year.

Figure 2 shows the empirical distribution of flood peaks for the Boggy Creek
catchment produced by the joint probability simulation procedure summarised in Ta-
bles 1 and 2, and compares it with the observed flood series. It should be noted that
the individual design inputs/parameters have been derived independently, with only a
small adjustment to the fixed continuing loss parameter to produce a better overall
match between simulated and observed distributions. It is particularly noteworthy that
the simulation method was able to correctly reproduce the non-linearities in the flood
production process over a large range of flood magnitudes.

There is considerable scope for improvement of the procedure by more detailed
representation of the following modelling elements:

o use of semi-distributed or distributed runoff routing model,
• seasonal rather than annual analysis of rainfall and loss characteristics,
• stochastic treatment of spatial variations of catchment rainfall,
• stochastic treatrront of continuing loss parameter.
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Fig. 2 Comparison ol simulated flood frequency curve with observed partial flood series
(Boggy Creek catchment, storm core events)

The practical scope for the last three of these improvements will depend on the
availability of appropriate data bases for an adequate definition of the seasonal dis-
tributions of rainfall and loss characteristics. In particular, the relatively sparse distri-
bution of rain gauges over catchments makes it difficult to define spatial patterns of
rainfall, but current developments in radar-based rainfall estimation are expected to
improve this situation.

For application to ungauged catchments, the distributions of rainfall and loss
characteristics will have to be derived from regional estimation techniques. As indi-
cated in Table 2, our work has shown that the distributions of rainfall duration and
temporal pattern can be derived from regional data. It has also been shown [10,12]
that a strong link exists between the locally derived conditional distributions of rainfall
intensity for storm cores and complete storms, and the regional design information
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for rainfall intensity-frequency-duration provided in Australian Rainfall and Runoff [7].
With regard to the regional estimation of loss parameter distributions, previous work
at the CRC for Catchment Hydrology [14] has shown some promise, provided the
dependencies of losses on season, rainfall event.type and duration are allowed for.

In a further improvement, the stochastic description of inputs and parameters
could be refined to reflect not only the natural variability but also the uncertainty due
to various error sources.

7 CONCLUSION

This paper has placed rainfall-based flood hydrograph estimation into the
broader context of the design flood estimation process. It has shown up weaknesses
in the current methods of dealing with stochastic elements in design flood estimation
and proposed a joint probability approach to overcome these weaknesses. In the ini-
tial application of the approach, the rainfall duration, rainfall intensity and temporal
pattern, as well as a loss model parameter, were represented by probability distribu-
tions and then transformed into an empirical flood distribution, by means of Monts
Carlo simulation.

Testing on a limited number of catchments has proved the feasibility of the ap-
proach and showed promise for further development into a practical flood design tool.
One strength of the approach is that it can use proven deterministic modelling com-
ponents (loss and runoff routing models) and combine them with improved repre-
sentations of stochastic elements. Compared to the continuous modelling approach,
it has the advantage of being able to draw on available regional design information
for application to ungauged catchments. Further testing on a broader range of
catchments and identification of critical modelling components is desirable.
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Summary: The widely used Design Event Approach to rainfall-based design flood estimation is based on the assumption that the
Average Recurrence Interval of the main design rainfall input (average intensity for given rainfall duration) is preserved in the
transformation to the design flood output Recent research has drawn attention to the limitations of this approach. The proposed
new modelling framework uses existing loss models and runoff routing models as the deterministic elements in the simulation of a
derived flood frequency curve. However, it makes explicit allowance for the probability-distributed nature of the key variables and
for the dependencies between them. The key variables described in the paper are the duration, average intensity and temporal
pattern of complete storms or intense rainfall bursts, and the initial loss parameter.

1 INTRODUCTION

Flood design and floodpl&in management decisions require
estimates of flood peaks and corresponding flood levels. If
adequate streamflow data is available at or near the site of
interest, the flood estimates can be derived directly from flood
frequency analysis, but in catchments with limited streamflow
data or in catchments subject to major land use changes,
design floods are generally estimated based on design
rainfalls. Depending on the purpose of the flood estimate,
simple design rainfall-based methods are applied, such as the
Rational Method for urban drainage design, or more detailed
modelling approaches are adopted, as in the case of flood
design of major structures.

With all methods of rainfall-based design flood estimation, a
key issue to be resolved is how the design rainfall input for a
given Average Recurrence Interval (ARI) can be transformed
into a design flood output of corresponding ARI. For the
simple case of the 'Probabilistic Rational Method' [Australian
Rainfall and Runoff (ARR)87, Chapter 5, (1)] this problem
has been directly addressed by using calibration data from
gauged catchments to ensure that the derived design runoff
coefficient for the gauged site correctly transforms the design
rainfall frequency curve into the 'observed' flood frequency
curve at the catchment outlet. However, the simplifying
assumptions made when transferring the design runoff
coefficients from gauged to ungauged catchments place severe
constraints on the applicability, and accuracy of the method.

For the unitgraph or runoff routing modelling approaches,
such calibration is much more difficult to achieve, as several
interacting inputs and parameters are involved. The current
practice aims to define hypothetical 'design events' of model
inputs and model parameters that can be considered
representative in a probability sense, that is they should
transform the design rainfall input of given ARI into a flood
output of the same ARI. The problem of finding the critical
rainfall duration for a specific design situation is addressed by
a trial-and-error approach, adopting the rainfall duration that

produces the largest flood outputs for a given input ARI. With
this design practice, the equivalence of input and output ARI
is not intrinsically assured but, unless checked against
regional or at-site flood information, remains an assumption
that is satisfied only for a limited set of conditions (2). The
question to what extent the current approach introduces bias
into flood estimates has only been partly resolved (3).

The purpose of this paper is to outline research directed at
finding an alternative, more holistic, modelling framework for
rainfall-based design flood information.

2 DESIGN EVENT APPROACH • LIMITATIONS

The rainfall-based flood estimation techniques used currently
are based on the Design Event Approach in that design
rainfall intensity for specified duration and ARI is used in
combination with "typical values" of other relevant model
inputs and parameters to obtain design flood estimates, as
indicated in Figure 1.

The key assumption involved in the Design Event Approach is
that the representative design values of the inputs/parameters
at the above steps can be defined in such a way that they are
"ARI neutral" i.e. they result in a flood output that has the
same ARI as the rainfall input. However, there are no definite
guidelines on how to select the appropriate values of the
inputs/parameters in the above steps except for the rainfall
depth, which is described by a probability distribution. A
designer is commonly in the situation to select a
representative input/parameter value (e.g. median value from
a sample of inputs or fitted parameter values) from a wide
range. For example, in the case of eastern Queensland, the
recommended range of initial loss is 0 to 140 mm [ARR87,
Chapter 6, (1)]. Due to the non-linearity of the transformation
process involved, it is generally not possible to know a priori
how a representative value for an input should be selected to
preserve the AEP. The arbitrary treatment of various
inputs/parameters in the Design Event Approach can lead to
inconsistencies and significant bias in flood estimates for a



given AR1. This is likely to result in systematic under- or
over-design of engineering structures, both with important
economic consequences.

Doslgn Rainfall Input
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Runoff Production (Loss) Model
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Rainfall Excess

Runoff Routing Model
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±
Surface Runoff Hydrograph > Basnflow,'

Design Flood Hydrograph
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Fig 1 Design Event Approach to rainfall-based design flood
estimation

3 OPTIONS FOR IMPR OVEMENTS

To overcome the limitations associated with the Design Event
Approach, a number of methods have been proposed: (a) an
'Improved* Design Event Approach; (b) a Joint Probability
Approach; and (c) Continuous Simulation.

In (he 'Improved' Design Event Approach, the same flood
estimation procedure (Figure 1) is used but with better (more
representative) estimates of design parameters and inputs.
This approach could provide improvement to some extent, but
will still be subject to the basic limitation of the current
Design Event Approach: the probability of the resulting flood
is assumed to be equal to that of the causative rainfall event

The Joint Probability Approach recognises that any design
flood characteristics (e.g. peakflow) could result from a
variety of combinations of flood producing factors, rather than
from a single combination, as in the Design Event Approach.
For example, the same peak flood could result from a
moderate storm on a saturated basin or a large storm on a dry
basin. Thus, a Joint Probability Approach, where the output
probability distribution reflects the influence of all the
probability distributed inputs and parameters and accounts for
their correlation structure, will provide a more realistic
representation of the flood generation process.

Another promising alternative to the Design Event Approach
is Continuous Simulation using deterministic catchment
models or rainfall-runoff process models. This approach is
being evaluated in a parallel research project by the CRC for
Catchment Hydrology (4). Although the approach appears to
hold considerable potential in the long term, as it tries to
model the processes involved in flood generation more
directly, it will have to overcome some major difficulties (e.g.

adequate modelling of soil moisture redistribution during
normal and flood periods) before it can provide a practical
design tool for routine flood estimation.

The greater immediate promise of the Joint Probability
Approach stems from the fact that it can readily utilise the
(deterministic) models and much of the design data used with
the current Design Event Approach. The approach therefore
has the potential to lead to significant improvements in flood
estimation with relatively modest efforts in the near future. It
is the approach that forms the basis of the modelling
framework outlined in this paper.

4 JOINT PROBABILITY APPROACH - OVERVIEW

The aim of the Joint Probability Approach is the
determination of a derived distribution of a selected flood
characteristic. This design flood estimation procedure can be
thought of as a combination of deterministic and stochastic
hydrologic modelling elements (5). The stochastic elements
are reflected in the adopted distributions of the input variables
and parameters, es well as in the assumed correlation
structure. These are generally determined not only from the
data at the site but from a broader information base for the
region. The transformation of catchment inputs into outputs is
deterministic in nature, and is achieved by means of a rainfall-
runoff model.

The Derived Distribution Approach was pioneered by
Eagleson (6) who used an analytical method to derive the
probability distribution of peak streamflow from an idealised
V-shaped flow plane. His approach assumed that storm
duration and intensity are independent random variables with
a joint exponential probability density function, He adopted a
partial area runoff generation model and a runoff routing
model based on Kinematic Wave Equations. A similar
analytical approach has been adopted in some later
applications (e.g. 7) for idealised conditions, but it has limited
applicability to real catchment situations.

A number of researchers (e.g. 5, 8, 9) have used an
approximate method in that the continuous distributions of
hydrologic variables have been discretized by dividing the
possible range of a random variable into class intervals. The
Theorem of Total Probability is then applied to derive the
joint probability distribution of the output in a discrete form.
An example of this approach is the 'Transposition Probability
Matrix Method' developed by Laurenson (5). The method
partitioai a design problem into a sequence of basic
probability transformation steps, each step transforming an
input distribution into an output distribution by means of a
deterministic relation between the input and output of a step.
The output distribution from the previous step then becomes
the input to 'he next step. The approach has been adopted in
several practical cases (e.g. 2,10).

Some investigators (e.g. 3, 11, 12) adopted a Monte Carlo
Simulation Approach to determine a derived flood
distribution. This involves random sampling from continuous
distributions of input variables and parameters, and use of a
rainfall-runoff model to obtain the flood hydrograph. The



procedure is repeated N times (N in the order of thousands),
and the N different values of the output varinblc are then used
to determine the derived distribution.

We found that most of the previous applications employing
the Joint Probability Approach were confined to theoretical
studies; mathematical complexity, difficulties in parameter
estimation and limited flexibility constrain the application of
these techniques in practical situations (13). From the
consideration of practical applicability and ability to account
for dependence between the input variables, Monte Carlo
simulation and the application of the Total Probability
Theorem to discretized distributions appear to be the most
promising methods to determine derived flood frequency
distributions. Among these, Monte Carlo simulation offers
greater flexibility.

5 KEY ELEMENTS OF PROPOSED MODELLING
FRAMEWORK

The proposed modelling framework is based on three
principal elements:
(i) a (deterministic) hydrologic modelling framework to

simulate the flood formation process;
(ii) the key model variables (inputs and parameters) with

their probability distributions; and
(iii) a stochastic modelling framework to synthesise the

derived flood distribution from the model
input/parameter distributions.

These elements are discussed below:

5.1 Hydrologic Modelling Framework

The proposed hydrologic model of the flood formation
process involves the same components as the models most
commonly used with the current Design Event Approach (see
Figure 1): a runoff production function (or loss model), and a
runoff transfer function (or runoff routing model).

Runoff Production Function • Loss Model
A runoff production model (or loss model) is needed to
partition the gross rainfall input into effective runoff (or
rainfall excess) and loss. Most of the previous derived
distribution studies (e.g. 6, 9) have used an empirical
equation (such as Horton's equation) or a more physicaliy
based equation (such as Phillip and Green Ampt equations) to
estimate the rainfall excess.

In design practice, use of simplified lumped conceptual loss
models is preferred over the mathematical equations because
of their simplicity and ability to approximate catchment runoff
behaviour (14). This is particularly true for design loss which
is probabilistic in nature and for which complicated
theoretical models may not be required. On this basis, the
initial loss-continuing loss model appears to offer the greatest
potential for the present joint probability study.

Transfer Function - Runoff Routing Model
A catchment response model is needed to convert the rainfall
excess hyetograph produced by the loss model into a surface
runoff hydrograph. The models commonly used in previous
joint probability studies include: Kinematic Wave Model (e.g.

6), Geomorphologic Unit Hydrograph Model (e.g. 7), Ur.it
Hydrograph Method (e.g. 8,11), and Clark's Model (9).

In Australian flood design practice, it is common to use a
semi-distributed and non-linear type of catchment response
model, referred to as runoff routing model This type of model
appears preferable to the mode's mentioned above because,
being distributed in nature, it can account for the areal
variation of rainfall and losses, and consider catchment non-
linearity. Examples of models in this group include RORB
(IS) and URBS (16), a further development of the concepts
embodied in RORB. There is a considerable body of
experience available on appropriate parameter values for
RORB and similar models for different types of catchments in
Australia. Based on its ready adaptability for the purposes of
this project, the URBS model has been adopted.

5.2 Variables to be Treated ia Probabilistic Fashion

The major factors affecting runoff production arc: rainfall
duration, rainfall intensity, temporal pattern of rainfall, areal
pattern of rainfall and storm losses. Factors affecting
hydrograph formation are the catchment response
characteristics embodied in the runoff routing model (model
type, structure, and parameters) and design baseflow. Ideally,
all the variables should be treated as random variables, but
consideration of a smaller cumber of variables without
sacrificing much accuracy is preferable, to reduce the data
requirements and allow easier application in practice, l ite
selection of variables to bs considered is random variables is
described below.

Rainfall variables:
Rainfall depth, as the direct input to rainfall-runoff process, is
undoubtedly the most important variable, and its probability
distribution is already being considered in the Design Event
Approach. Rainfall events that have the potential to produce
floods vary considerably in their duration, and the inclusion of
rainfall duration as a random variable in this study is thus
considered essential. In order to analyse the probability
distribution of rainfall duration, a rainfall event needs to be
defined in such a way that both the rainfall duration and the
average rainfall intensity for that duration become random
variables [unlike the burst definition in ARR87 (1) where
rainfall bursts have predetermined durations].

Rainfall temporal pattern varies significantly between storms
and has been found to have a significant effect on the shape
and peak magnitude of a flood hydrograph (3). Differences of
up to 50% in flood peaks may result from different assumed
temporal patterns (17). From the findings of these studies, it is
clear that temporal pattern is an important variable, and needs
to be considered as a random variable.

For design flood estimates, the effects of random variability of
rainfall over a catchment are considered through the use of
areal reduction factors (ARFs). These modify the design
point rainfall intensities to average catchment rainfall
intensities. The single-valued ARFs in the current edition of
ARR87 (1) or the more recent values produced for Victoria by



the CRC for Catchment Hydrology (18) are considered
adequate for this study.

An areal rainfall pattern needs to be considered where there
are systematic trends in catchment rainfall, such as strong
orographic effects or "rain shadow" areas. For the present
study, the modelling of the rainfall areal pattern as a random
variable is considered less important because: (i) for most
catchments, consideration of rainfall areal pattern as a random
variable will have a lesser effect on the results tron is the case
for rainfall duration, intensity and temporal pattern; and (ii)
due to limited rainfall data availability on a catchment scale, it
would be difficult to derive its probability distribution.

Loss Variables:
In the previous joint probability studies, loss has been found
to bs the most influential variable (e.g. 8, 19). The strong
influence of !oss values on design flood estimates is based on
the fact that loss conditions can vary widely, and a given
rainfall occurring on a dry watershed produces a significantly
smaller flood than the same rainfall occurring on a wet
watershed. In many cases, loss is the most important factor
and henc*. will be treated as a random variable here.

Catchment Response Parameters and Baseflovr:
It is expected that the incorporation of the probabilistic nature
of the rainfall and less characteristics will result in significant
reduction of bias and uncertainties in design flood estimates
associated with the current Design Event Approach.
Consideration of runoff routing and baseflow variables as
random variables would then be of secondary importance
(13); thus the effects on design flood estimates of randomness
of these variables may be examined as a refinement to the
present method at a laler stage

To summarise, we will consider rainfall duration, rainfall
intensity, rainfall temporal pattern and losses as primary
random variables in the new modelling framework.

5.3 Stochastic Modelling Framework

The basic idea underlying the proposed new modelling
framework is that the distribution of the flood outputs can be
directly determined by simulating the possible combinations
of hydroiogic model inputs and parameter values. For each
run of the combined loss and runoff routing model, a specific
value for each input and model parameter will be drawn from
its respective distribution. Any significant correlation between
the variables can be allowed for by using conditional
probability distributions. For example, the strong correlation
between rainfall duration and intensity can be allowed for by
first drawing a value of duration and then a value of intensity
from the conditional distribution for that duration interval.

The two stochastic modelling frameworks to be investigated
in the project are the deterministic simulation approach and
the stochastic or Monte Carlo simulation approach. In tf« first
approach, employed with Laurenson's Transposition
Probability Matrix Method (5), thr; probability distributions of
model inputs and parameters are used in a discrete form, and
the probability distribution of the output from a modelling

step is determined by enumerating all possible combinations
and calculating their cumulative probabilities. The procedure
is then repeated for the next modelling step, using the output
distribution from the previous step as the input distribution for
the next step.

In the Monte Carlo Simulation approach, all inputs and
parameters required for a model nii are selected randomly
from their probability distribuu'ins (but allowing for
significant correlations through the use of conditional
distributions). The results of the run (i.e. the flood
characteristics of interest) are then stored and the Monte Carlo
simulation process is repeated a sufficiently large number of
times to fully reflect th?. range of variation of input and
parameter values in the generated output. The computational
efficiency of the simulation process can be enhanced by
judicious sampling from the probability distributions (12).
The output values of a selected flood characteristic (e.g. peak
inflow to a dam) can then be subjected to a frequency analysis
to determine the flood quantiles of interest.

The proposed modelling framework provides the ability to
concurrently determine flood characteristics at many points of
interest in a system. As an example, it will be possible to
determine frequency curves for both inflows and outflows
from a reservoir or a retarding basin. In the case of outflows
from a storage with significant variation at initial storage
content, the probability distribution of initial storage content
will be required as an additional model input. Again,
important correlations would need to be considered through
conditional probability distributions.

In principle, it would he possible to extend the modelling
framework by coupling a hydroiogic model with other
components that have probabilistic inputs or parameters, e.g. a
hydraulic model or a flood damage model (12).

6 DISTRIBUTIONS OF KEY VARIABLES

6.1 Rainfall Duration and Average Rainfall Intensity

The initial research has concentrated on the identification of
the probability distributions of rainfall intensity and duration.
In the proposed modelling framework, a rainfall event needs
to be defined in such a way that both rainfall duration (D) and
average intensity (I) become random variables. Several
previous applications (e.g. 6, 8) treated storm duration .and
intensity in simplified fashion as indtptndent random
variables: this is likely to result in a steeper derived flood
frequency curve (3). A statistical description of rainfall
similar to Bloschl and Sivapalan (3) seems to be appropriate
and has been adopted here. It uses the marginal distribution of
duration together with the conditional distribution of rainfall
intensity given a duration. The conditional distribution of
rainfall intensity is equivalent to the commonly used intensity-
frcquency-duration (IFD) curve, widely used in design
practice. This approach captures the correlation existing
between rainfall intensity and duration.



Complete storms:
At the beginning, wj need a meaningful storm definition. We
define a storm rainfall event as utarting at the onset of rain,
being separated from the next event by at least Y hours of
zero rainfall, and having a minimum average intensity above a
given threshold. As the average rainfall intensity reduces with
duration, the threshold intensity needs to be defined as a
function of duration, expressed as a proportion of the design
rainfall intensity for a selected frequency. Thus the adopted
threshold intensity for duration D is: Io(D) = b X 2IO, where b
is a reduction factor and 2ID is the design rainfall intensity of
2 years AJU and duration D, as provided in ARR87 (1). A
smaller value of b would result in a greater number of events
with lower average intensity; an appropriate value of b needs
to be determined by trial-and-error. A rainfall event with an
average intensity less than the threshold value but containing a
shorter period of intense rainfall embedded within the storm is
also of interest For this type of event, a new threshold value
bb x 2Id is used, where d is the duration of the intense part

The rainfall events selected by the above procedure are called
complete storms henceforth. With this definition (for Y = 6
hours, b = 0.5, bb = 0.6), rainfall events have been identified
for a number of pluviograph Stations in Victoria. The resulting
distribution of rainfall duration has the shape of a truncated
Gamma distribution, as :ho\vn in Figure 2. A conditional
distribution of avenge rainfall intensity ID for complete
storms of duration D can also be derived.
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Fig 2 Distribution of rainfall duration (complete storms)

Storm-cores:
The available IFD information' in ARR87 is not based on
complete storms but on periods of intense rainfall within
complete storms, called bursts. If this existing information is
to be used with the proposed new approach, it is more useful
to undertake the design rainfall analysis in terms of storm
bursts. However, as the duration of the bursts in the ARR87
analysis was predetermined rather than random, it is necessary
to consider a new storm burst definition that will produce
randomly distributed storm burst durations. These newly
defined storm bursts will be referred to as storm-cores
henceforth.

For each complete storm, there will be one storm-core; it is
the burst of that duration which is associated with the greatest
relative average intensity compared to the threshold. With this
storm-core definition, the distribution of storm-core duration
for a number of pluviograph stations of Victoria has been
obtained; it has the shape of an exponential distribution, as
shown in Figure 3.

The key issue is whether the conditional distribution of
rainfall intensity for bursts following this new definition will
be similar to the ARR87 IFD curves. The IFD curves derived
in this project, based on storm-cores, are clearly lower than
the ARR87 values. Further testing on a broader data set is in
progress to confirm the nature of the relationship between the
two types of IFD curves.
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Fig 3 Distribution of rainfall duration (storm-cores)

6.2 Rainfall Temporal Pattern

The methods available to represent the variability of temporal
patterns in observed storms range from a database of actual
storm (or runoff) patterns (9), over empirical distributions of
storm profiles (20), to theoretical distributions and synthetic
storm patterns (21). A trade-off has to be made between
simplicity of approach and flexibility of application,
particularly when the approach is to be applied to ungauged
catchments.

Temporal patterns are strongly correlated with rainfall
duration, and weaker correlations with rainfall intensity and
season also appear to be present If proven, they will be
modelled through conditional distributions of storm patterns.

63 Initial Loss Parameter

For a specific catchment initial loss values associated with
different storms vary more significantly than continuing
losies. The focus in this project is therefore on deriving a
probability distribution of initial loss from observed storm
rainfall and streamilow data. We proposed to base these
distributions mainly on the results of the empirical analysis of
data for South-Eastern Australia by Hill et al. (14).



The work of Hill et al. (14) has shown strong correlations
between initial loss and rainfall duration, and how initial loss
reduces with decreasing rainfall burst duration. We propose to
address the still unresolved issue of a possible correlation
between initial loss and rainfall intensity in a paulld project,
using results from continuous rainfall-runoff modelling.

7 CONCLUSION

Previous research and practical experience have demonstrated
the theoretical and practical limitations of the currently
applied Design Event Approach to rainfall-based design flood
estimation. One alternative approach investigated in the CRC
for Catchment Hydrology's Research Project FL1 is based on
the application of joint probability principles to the key
variables involved in the flood generation process.

Initial project work, including an extensive literature review
(13), has led to the following conclusions:

• The loss models and runoff routing models currently used
in Australia form a suitable basis for the deterministic
hydrologic modelling framework.

• The key model inputs and parameters to be represented by
probability distributions are the duration, average intensity
and temporal pattern of complete storms or intense rainfall
bursts, and the initial loss parameter (and, if storage
outflows are of interest, ths initial storage content).

• Further analysis and testing is required to determine the
extent to which currently available Australian flood design
data can be used to define the required probability
distributions of these variables.

• Monte Carlo simulation provides a suitable stochastic
modelling framework to synthesis; the derived flood
characteristics distributions from tii; model input/
parameter distributions.

Work is continuing to address the outstanding research issues
and to test the aodelling framework in a range of practical
design flood estimation situations.
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