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AMENDMENTS TO THESIS

Table of Contents: 11" line from the bottom: “estimayion” should be corrected as

“estimation”.

Page 60: |* paragraph, last sentence should be medified as follows: “This is because the
second threshold intensity is intentionally set so high (by using an unrealistically high

value of 100 for F2) to ensure that no additional storms can be selected.”

Page 120: 1* paragraph, 1% line: Add at the end of “threshold value of 0.0tmm/h was
exceeded”: “Although this threshold seems low, Hill et al (1996a) found this value to
produce the best results from the 3 values tested. They also noted that the design peak

flow is relatively insensitive to the choice of surface runoff threshold.”

Page 155: 9™ line from the top: “Therefore, it is difficult assess how...” should be

corrected as “Therefore, it is difficult to assess how...”
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SUMMARY

The objective of this research was to develop a Joint Probability Model for estimating
design floods (with average recurrence intcrvals of 1 to 100 years) from design rainfalls.
The proposed model treats the key design inputs (rainfall intensity, duration, temporal
pattern, and initial loss) and the flood output as random variables, and takes account of
the correlations between these variables in the flood generation process. In the current
study, the model was applied to determine the frequency curve of the design flood peak
for unregulated rural catchments of medium size. However, scope of its application can
be broadened to estimate more extreme floods or the frequency curve of other

hydrograph characteristics (flood volume or time to flood peak).

In developing the proposed model, the initial loss — continuing loss model was adopted
for computing rainfall excess, and a single, concentrated non-linear runoff routing
model] for computing design flood hydrographs. The adopted runoff routing model
assumes that both rainfall and routing effects are spatially lumped. To compute the
probability distribution of design floods, Monte Carlo simulation was adopted. The
interaction of random variables involved in the design was taken into account by using

conditional probability distributions.

The proposed mode] was tested on two Victorian catchments. A storm definition was
first developed to extract significant stochastic storm events from rainfall records. The
correlations between the stochastic inputs were then examined, with an emphasis on the
dependence of the temporal pattern on season, storm duration, and depth. The
conditional probability distributions of the stochastic inputs were next derived, and
other fixed design inputs determined. Monte Carlo simulation was then used to
generate synthetic flood events. The derived flood frequency curves were finally

determined using a frequency analysis method.

To evaluate the proposed model, design floods estimated by the model were compared

with those obtained by direct flood frequency analysis and the Design Event Approach.
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It was shown that the proposed Joint Probability Model provided more reliable flood
estimates than those obtained from the Design Event Approach for one test catchment,
but, like the Design Event Approach, slightly underestimated the peak flood magnitude
for the other catchment. As these results are limited by the small number of test
catchments and the short flow records available at these sites, further testing of the
model on a larger number of catchments is réquired before firm conclusions about its

performance can be drawn.

Sensitivity analyses indicated that the design fiood estimates were very sensitive to
variations in the design rainfall intensity, initial loss, and routing model parameter.
Errors in the design continuing loss rate or baseflow had more influence on frequent
floods than rare floods. The modelling of the dependence of the temporal pattern on
season, duration, and depth was found to be of limited practical importance in the

present application.

Overall, the proposed model was found to be fundamentally sound and practically
workable. The results are promising, however, further work is still required to tum it

into a practical design tool.
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Chapter 1

INTRODUCTION

This research investigates the overall feasibility of a Jouint Probability Model for
rainfail-based design flood estimation. The model aims to estimate the frequency
distribution of design floods from the joint distributions of rainfall and loss
characteristics, taking account of their interactions. The key issue is how to represent
adequately the flood production process and the variability and interaction of design

inputs so that the model can stifl be easily applied in practice.

This research addresses this issue by using practical loss and runoff routing models to
characterise catchment flood response, representing key flood producing factors by
probability distributions (rather than fixed design values), and adopting a simple method
to compute the design flood distribution. In particular, it introduces a storm definition
that can reflect the great variability of real rainfall characteristics, and examines the
dependence of rainfall temporal pattern on season, rainfall duration, and depth. The
objective is to realistically represent the characteristics of real rainfall events and real

catchment conditions in the flood production process.

1.1 RESEARCH BACKGROUND

Design floods are statistical estimates of flood characteristics. These characteristics
may inciude peak discharge, flood volume or time to flood peak. Design flood
estimates always correspond to an annual probability of exceedance, which is a measure
of the likelihood of a flood characteristic reaching or exceeding a particular magnitude

in any given year.

In hydrology, flood estimation can be either estimation of design floods or estimation of
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floods resulting from actual rains. To estimate design floods directly from design
rainfalls, a hypothetical storm of a specified annual exceedance probability is required.
This hypothetical storm is used as input to the design, along with a typical value
assumed to represent the caichment condition at the time of the rain. By contrast, to
estimate floods at the time of actual rains, real (not hypothetical) rainfalls are used, and
actual (not assumed) conditions of the catchment when the rain occurs must be
considered in the estimate. Thus, design flood estimation and real-time flood estimation
are different in nature, which may result in differences in the choice of flood estimation
methods, or in the manner in which para: aeter values are derived. This research focuses

on the estimation of design floods.

Design flood estimiction can be undertaken using streamflow-based or rainfall-based
methods. The streamflow-based methods are preferred at sites where long observed
flow data are available. However, due to the relatively longer penod of records, the
greater number of locations at which rainfall amounts are observed, and the capability to
estimate design flood hydrographs, rainfall-based methods are adopied in the majority
of designs. Among these rainfall-based design flood estimation methods, the Design
Event Approach is widely used in Australia, as well as in many other countries in the

world.

The Design Event Approach aims to estimate a design flood of a specified annual
exceedance probability from a design storm event of the same probability. To achieve
this objective, several steps are undertaken, as described by Beran {1973), the Institution
of Engineers, Australia (1987) and Viessman et al. (1989). In general, the design
rainfall intensity of the specified annual exceedance probability for a selected storm
duration is firstly determined. This probabilistic rainfall intensity is then combined with
representative values of other design inputs and parameters to produce a design flood
hydrograph, and the peak flocd discharge is extracted. These steps are then repeated for
a range of storm durations. The estimated flood peaks are next plotted against the
corresponding storm durations, and a smooth curve is drawn through the plotted points.
The maximum peak discharge on this curve, corresponding to the critical storm

duration, is finally taken as the design fiood for the given probability.

The Design Event Approach has long been criticised for its three basic limitations.
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Firstly, it underestimates the variability of design rainfall inputs (namely design rainfall
duration and temporal pattern) and actual catchment moisture conditions. Secondly, it
adopts the critical storm duration concépt that has no scientific basis and introduces bias
in the probability of the design flood. Finally, in practical applications, it is difficult to
select representative values of design inputs in order to correct this probability bias.
These limitations result in errors in the magnitude and probability of design floods
(Wood, 1976; Bloeschl and Sivapalan, 1997), which bring about significant economic

consequences in design and planning.

To overcome the limitations of the Design Event Approach, a number of rainfall-based
design flood estimation methods have been proposed. Among these, the Joint
Probability Approach is considered to have great potential (Beran, 1973; Ahem and
Weinmann, 1982; Institution of Engineers, Australia, 1987; Consuegra et al.,, 1993).
This approach nses the same rainfall-runoff modelling elements as the Design Event
Approach, but treats several design inputs and the flood output as random variables, and
considers the joint probability of these inputs. Therefore, it can model the variability of
design inputs, eliminate the need of determining the critical storm duration, and ailow
the probability of the design flood to be rigorousiy determined. Furthermore, the
approach can provide significant improvements in rainfall-based design flood
estimation in the near future because it can make use of existing data and expertise

available in the Design Event Approach.

A review of previous studies of the Joint Probability Approach shows that a great deal
of development is still needed before the approach can be applied in practice. This is
attributed to many factors, such as their mathematical complexity and limited flexibility,
along with the inappropriate selection of the models representing the flood generation
process. More importantly, the vanability of important flood causing factors and their

interactions have still been inadequately considered.

The present research' aims to develop and test a Joint Probability Model, based on the

"This study is a part of project FL1 ‘Holistic Approach to Rainfall-Based Design Flood Estimation’
undertaken by the Cooperative Research Centre for Catchment Hydrology. The overall objective of the
project is to explore the potential of some holistic procedures as alternatives to the currently applied
Design Event Approach. The project also investigates possible links between the proposed procedures
and existing design data by using different definitions of storm events causing floods.
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general Joint Probability Approach, for estimating design floods (with average
recurrence intervals of 1 to 100 years) from design rainfalls. The proposed model is
intended for small to medium sized rural catchments with no significant artificial
storage. At this early stage of development, the model aims to determine the flood
frequency curve of flood peak magnitude, even though it could also be applied 1o other

flood hydrograph characteristics and to more extreme flood events.

Unlike past studies of the Joint Probability Approach, the proposed Joint Probability
Model introduces a storm definition? that can account for the great variability of rainfall
duration, average intensity, and temporal pattern. The model also considers the
stochastic nature of losses from rainfall, as well as the correiations of stochastic design
variables. In addition, it adopts a loss model that can not only realistically characterise
the runoff production process, but also be easily applied in practice. Even though the
ultimate goal is to adopt a distributed runoff routing model to represent the hydrograph
formation process, in the current appiication, the proposed model uses a lumped
conceptual model in which the spatial variation of rainfall, loss, and routing effects is

neglected.

1.2 RESEARCH RATIONALE

Design flood estimates are necessary for two main areas of hydrologic applications:

design of hydraulic structures and floodplain managemeht.

For design purposes, estimates of design floods of some specified annual exceedance
probability are vital for determining the size of hydraulic structures such as crossroad
culverts, drainage ditches, urban storm drainage systems, or spillways of dams. All
these hydraulic works are designed on a risk basis with the expectation that the intended
structure will only fail due to a flood larger than the one used for the design (Institution
of Engineers, Australia, 1987). Consequently, there are two main considerations in the

design process.

? A variant of this storm definition, referred to as storm cores, is also investi gated in another sub-project
of FL1 (Rahman et al.. 2001).
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The first consideration is the selection of an appropriate probability of the design flood
for the intended structure. This essentially involves finding the optimum level of risk
for the given design. The optimum risk level can be found by selecting the optimum
structure size as that which minimises the total expected cost. This is the sum of
structural costs and risk costs. The risk costs include the direct costs of flood and
structural damages, and other indirect costs such as traffic interruptions due to floods
exceeding the design value. If there were a complete knowledge of floods, it would

then be possible to find the optimum design correctly.

The second consideration is the effect of errors in design flood estimates for the selected
probability. Uncertainties in the probability of design floods result in errors in the
optimum design, either in the form of under-design or over-design of the intended
structure. In either case, there are significant economic consequences. For example, in
Australia, every year, about $800-1,000 million is spent on small hydraulic structures
sized by design flood estimates, and $30-40 miilion is spent on spillway upgrades
(Mein, 1995). Thus, if the above structures were over-designed, it would clearly cost
the nation millions of dollars. As a result, an improved approach to design flood
estimation would certainly lead to significant savings on a national scale. The sa:s;'s

could be in the form of reducing flood damages or costs of structures.

In terms of floodplain management, planners require flood estimates in probabilistic
form in order 1o define the areas that will be flooded at different levels of probability.
As a result, the development of industrial or housing projects in high-risk areas can be
avoided. However, due to ermors in design flood estimates, there are always
developments on some flood-prone land. Therefore, flooding continues to cause severe
damage to life, property, and the environment, despite considerable efforts and
expenditure in the identification of floodplain and flood-prone areas. It is estimated
that, in Australia, there is an average annual cost of $300-400 million due to flood
damage (Mein, 1995). Again, better estimates of floods wouid help to reduce this cost,

and thus have remarkable economic benefits,
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1.3

RESEARCH OBJECTIVES

As briefly discussed in Section 1.1, the main objective of this research is to develop and

test a Joint Probability Model for estimating design floods from design rainfalls. To

achieve this goal, the present research has the following specific objectives:

1))

iii)

v)

vi)

vii)

viii)

1.4

To justify the potential of the Joint Probability Approach by critically reviewing
the currently used Design Event Approach and other rainfall-based methods for
design flood estirnation.

To review and critically assess various derived distribution methods for estimating
the design flood probability distribution using the Joint Probability Approach, and
select an appropriate method for this present study.

To develop the elements of a practical, conceptual Joint Probability Model for
estimating design floods from design rainfalls.

To develop a storm definition that can reflect the variability of actual storm events,
and examine the correlations of random varables involved in the design, with
special emphasis on the dependence of temporal patterns on season of storm
occurrence, storm duration and depth.

To apply the proposed Joint Probability Model to estimate the design flood
frequency curve for a Victorian catchment, and test it on another catchment.

To evaluate the performance of the proposed model by comparing its flood
estimates with those obtained from other flood estimation methods.

To investigate the sensitivity of design flood estimates to changes in some design
inputs.

To assess the advantages and limitations of the proposed mode! and outline future

research.

THESIS OUTLINE

The research undertaken to achieve the above objectives is presented in this thesis. An

outline of each chapter of the thesis is presented below.
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Chapter 2 provides a review of methods for estimating design floods from design

rainfalls. In this chapter, the commonly used Design Event Approach is examined and

its limitations are discussed. Alternative methods to the Design Event Approach are
then investigated. From these alternatives, methods that have the potential to overcome
the limitations of the Design Event Approach are identified. The Joint Probability
Approach is then examined in detail and various joint probability studies using derived
distribution techniques for detel:mining the design flood probability distribution are

critically reviewed.

In Chapter 3, a Joint Probability Model for rainfall-based design flood estimation is
developed. In this chapter, the deterministic model component (the Joss and runoff
routing models) is first examined. The development of the stochastic model component
is then described. This includes the selection of key design inputs to be considered as
random variables, an assessment of the correlations of random design inputs, and the
selection of a derived distribution technique for design flood estimation. A research

procedure is alsc presented.

After developing the conceptual Joint Probability Model for rainfail-based design flood
estimation, elements of this model are determined in Chapier 4. This chapter firstly
describes the collection and verification of data for applying the proposed model. The
storm definition used to identify storm events from continuous rainfall records is then
introduced. The investigation of the correlations of variables involved in the design,
and the development of the frequency distribution of rainfall intensity, the probability
distributions of rainfall duration and initial loss, and a stochastic mode! of temporal
pattern are next presented. The determination of parameters of the runoff routing model
is then derailed. This chapter concludes with the determnination of other fixed design
inputs used in the Joint Probability Model. Observed rainfall-runoff data for the La

Trobe River catchment at Noojee are used for the above initial analyses.

In Chapter 5, the proposed Joint Probability Model is applied to estimating design
floods for one catchment in South Eastern Australia, the La Trobe River catchment.
This chapter describes the generation of random numbers from the probability

distributions of flood-causing factors determined in Chapter 4. The generation of fiood
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events using Monte Carlo simulation is then presented. Finally, the determination of the

derived flood frequency curve for the specified catchment is documented.

The proposed Joint Probability Model is evaluated in Chapter 6. In this chapter, design
flood peaks for the La Trobe River catchment are also estimated by two other methods,
namely direct flood frequency analysis and the Design Event Approach. A comparison
of these estimates with those obtained from the proposed Joint Probability Model is then
presented. Details of the sensitivity analyses carried out to determine the effects on the
design flood of changes in some stochastic and fixed design inputs are next descnbed.
The chapter concludes with an additional method testing in which the proposed Joint
Probability Model is applied to another Victorian catchment, the Tarwin River

catchment at Dumbalk North, and the results are discussed.

A summary of the research conducted and the main conclusions that can be drawn from
it are finally presented in Chapter 7. This chapter also provides some recommendations

for further studies.
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Chapter 2

REVIEW OF RAINFALL-BASED DESIGN FLOOD
ESTIMATION METHODS

2.1 INTRODUCTION

A design flood of a specified annual exceedance probability can be estimated by
different methods. The type of method selected will depend on the availability of data
and the purpose of flood estimates (that is, whether it is for urban or rural catchments, or
for the design of major hydraulic structures). Broadly speaking, these methods can be
ciassified as streamflow-based or rainfall-based methods (Figure 2-1). Streamflow-
based methods give estimates of floods by analysing observed streamflow data. By
contrast, rainfall-based methods estimate design floods from analyses of rainfall inputs,
often in conjunction with a rainfall-runoff model that represents a catchment’s response
to rainfall. Flow data, if available, are also used for estimating or testing parameters of
the catchment response model. This project focuses on developing an improved

approach for estimating design floods from design rainfalls.

[Design flood estimation melhods]

I 1
[ Rainfall-based methods [ Streamflow-based methods |
l I
(Singte-eventmethods) [Mutti-event methods )

Design Event Empirical Continuous LRunoﬁ Files ] Joint Probability
Approach Methods Simulation Approach Approach

Figure 2-1: General classification of design flood estimation methods
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Rainfall-based flood estimation methods can be subdivided into single-event and multi-
event methods (Figure 2-1). The former uses a single cesign rainfall event as input,
whereas the latter uses a series of historical or synthetic storms in the calculation.
Single-event methods include the Design Event Approach and Empirical Methods,
while multi-event methods can be divided into the Runoff Files Approach, Continuous

Simulation, and the Joint Probability Approach.

The objective of this chapter is to review the various rainfali-based design flood
estimation methods in order to identify their strengths and weaknesses. In this chapter,
the widely used Design Event Approach is firstly reviewed. Altemative methods to the
Design Event Approach are then examined and the Joint Probability Approach is
identified as the most promising option for an improvement in design flood estimation
in the near future. The statistical basis of the Joint Probability Approach is next
introduced, together with a review of previous studies of the Joint Probabiliiy Approach
to design flood estimation. This chapter concludes with a discussion of the necessary
features of an improved method, based on the Joint Probability Approach, for the

estimation of design floods from design rainfalls.

2.2 THE DESIGN EVENT APPROACH

The Design Event Approach is a method currently used to estimate a design fiood
hydrograph from a design storm. To assess the need for improvements in rainfall-based
design flood estimation methods, it is necessary to critically review the Design Event
Approach. The procedure, features, and limitations of this approach are examined

below.

2.2.1 Procedure

The procedure adopted by the Design Event Approach for estimating a design fiood
event from a design rainfall event basically involves, firstly, the estimation of the design

rainfall input and the rainfall loss due to interception, infiitration, or depression storage,
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and subsequently, the routing of rainfall excess through the catchment to produce the

flood hydrograph. This procedure, summarised in Figure 2-2, includes the following

steps:

(a) Sclect the annua) exceedance probability (AEP) of the design rainfall. This AEP is
assumned to be also that of the design flood.

(b) Select an arbitrary rainfall duration D;.

(c) For the specified AEP and D, determine the average point rainfall intensity for the
location of interest.

(d) Compute the point rainfall depth for the design event.

(e) Obtain an areal reduction factor to convert the point rainfall depth into the average
rainfall depth over the catchment.

() For the given D; and AEP, specify a temporal pattern and a spatial pattern for the
design rainfali.

(g) Select a loss model and its parameters, and corapute the rainfall excess hyetograph.

(h) Select a runoff routing model, determine its parameters and compute the surface
runoff hydrograph.

(i) Select a design baseflow.

(i) Compute the total flood hydrograph and record the peak discharge.

To determine the critical storm duration and the critical design flood, peak discharges
are computed for different storm durations. For the specified AEP, these dische: zes are
then plotted against the corresponding storm durations. A smooth curve is next drawn
through the plotied points. The storm duration that gives the maximum discharge of
this smooth curve is finally taken as the critical storm duration, and the corresponding

peak discharge taken as the design flood for the specified AEP.

2.2.2 Features

In the procedure described above, various methods are available for determining the
inputs and parameters of a design flood estimation problem (Institution of Engineers,
Australia, 1987, Chapters 2, 6-9; Linsley et al., 1988; Viessman et al., 1989). However,
there are no definite guidelines on how to select an appropriate value or method for a

particular problem. It is common for a designer to have to select an input or parameter
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value from a wide range. For example, in the case of Eastern Queensland (Australia},
the recommended range of initial loss is 0 to 140mm (Institution of Engineers,
Australia, 1987, Chapter 6). This can result in a large variation in flood estimates from
the recommended design values of losses. Similarly, other inputs to the design such as
the critical rainfall duration, the spatial and temporal distributions of the design storm,
or the baseflow can also be determined by many methods or formulas, the choice of
which is totally dependent on the various assumptions and preferences of the individual

designer.

Rainfall temporal and Design rainfall depth
spatial patterns (AEP = 1in Y, duration = D))

[ Loss parameters . H Loss madel ]

[ Rainfall excess depth

Runoff routing Runoff routing
parameters model
e

Surface runoff
hydrograph

[ Baseflow ]—

Total design flood hydrograph
(AEP=1inY)

Figure 2-2: Procedure of the Design Event Approach
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Design rainfall (AEP = 1 in 1).'

1

Rainfall duration
[_Eﬂ‘ @ D_3 and rainfall depth
Total rainfall depth
|
T1 ) I T3 I Temporal pattern
) B &
Sl S2 83 Spatial pattern
.
Total rainfall hyetograph

i |
| Ll l L2 Loss parameters

1
Rainfall excess hyetograph

P2 Runoff routing parameters

-
Surface runoff hydrograph

:. i

: @ B3 Baseflow

- ]

|

| Design floed (AEP = 1 in Y) Design flood

Figure 2-3: Attributes of the Design Event Approach (modified from Beran, 1973)

The uncertainty in input values to design can be illustrated by a tree diagram, as shown
in Figure 2-3. This figure represents a practical design sitvation where the unknown
inputs are shown by ranges of values. For example, the storm duration may be D1, D2
or D3, or the storm losses may take on a range of values such as L1, L2 or L3. Thus,
there are various ways in which a design rainfall and other inputs can be combined to
produce a design flood. However, due to the uncertainty about the correct value of each
| input in a design situation, designers tend to adopt the median as the representative

value for each input, except for the rainfall depth, which is described by a probability
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distribution. They assume that adopting these median values will lead to 2 flood
estimate of the same probability as that of the design rainfall. Therefore, the highlighted
path in Figure 2-3 illustrates designers’ single choice of input values in which the storm
temporal pattern is represented by a pattern of average variability, the storm loss is

characterised by 2 median value, and so on.

The discussion above highlights the following two features of the Design Event
Approach. Firstly, of the various design inputs, only the design rainfall depth is
assumed to have a probability distribution. Other inputs such as the rainfall temporal
patiern, duration, losses, or catchment response parameters are represented by constant
values. Secondly, the probability of the design flood is assumed to equal the probability
of the design rainfall.

2.2.3 Limitations

The procedure and features of the Design Event Approach, as discussed above, lead to
three basic limitations. The first limitation is the underestimation of the variability of
design inputs. It is clear that rainfal]l event characteristics such as rainfall duration,
depth, temporal and spatial distributions are highly variable. The antecedent soil
moisture of the catchment at the time of the rain also varies from event to event, not to
mention its spatial variation. Therefore, the use of fixed design values for all inputs of
the design except the design rainfall depth does not adequately reflect the high degree of
variability of actual rainfall events and real catchment conditions, and may lead to
serious errors. For example, Wood (1976) proved that a single loss rate used in design
does not accurately represent a distribution of catchment antecedent conditions for
design flood estimates. He showed that the use of a point estimate for the water loss

underestimated the peak discharge for a given annual exceedance probability.

The second limitation is the non-scientific basis of the critical storm duration concept
and the probability bias associated with its application in design flood estimation. As
explained in Section 2.2.1, the critical duration is the storm duration that gives the
maximum peak flood magnitude of a specified annual cxceedance probability. It varies

from catchment to catchment and is influenced by the design inputs that represent
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rainfall, loss, and catchment characteristics. The application of the critical storm
duration concept in design flood estimation has no sound basis and obviously does not
result in an AEP-neutra} transformation of design rainfalls into design floods. Instead of
preserving the probability of the design rainfall input, the adopted 'worst case scenario’
leads to systematic probability bias of design flood estimates. For a given flood
magnitude, Bloeschl and Sivapalan (1997) proved that the design flood probability,
determined by the Design Event Approach, is overestimated by a factor of at Jeast 2, but

this factor may be as large as 10.

The third limitation is the difficulties involved in selecting representative values of
design inputs in order io correct this probability bias in practical design problems. As
mentioned in Section 2.2.2, in order to satisfy the assumption that the probabilities of
the design rainfall input and the design flood output are equal, median values of inputs
and parameters (except for the design rainfall depth) are used in design. However, this
would be correct only if the rainfall-runoff transformation and the frequency curves of
the various transformed inputs were linear. In reality, the linear rainfall-runoff
transformation is not observed due to the complex interaction of rainfall, losses, and
other catchment attributes such as caichment size, shape, or drainage characteristics.
Similarly, the probability distributions of various design inputs are generally
represented by complex functions (curves) rather than linear relationships (straight
lines). Therefore, the choice of a fixed value for each design input (or parameter) is
unlikely to be representative of the particular input in a statistical sense. As a result, the
probability bias in the design flood is generally not corrected for, and the true
probability of the flood output becomes questionable (Hughes, 1977, Ahem and
Weinmann, 1982; Huber et al., 1986).

2.3 ALTERNATIVES TO THE DESIGN EVENT APPROACH

To overcome the limitations of the Design Event Approach, several rainfall-based
methods for flood estimation can be employed. These methods include Empirical
Methods, Continuous Simulation, the Runoff Files Approach, the ‘Improved’ Design

Event Approach, and the Joint Probability Approach. In the following sections, a
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general description of each of these methods is given, followed by a discussion of how a
particular method can overcome the limitations of the Design Event Approach. General
characteristics of each method are also examined, and the best option in lieu of the

Design Event Approach is selected.

2.3.1 Empirical Methods

] Broad!y speaking, Empirical Methods are of a ‘black-box’ type because they transform
rainfall into runoff using techniques that have little or no physical basis. These methods
usually use an equation to represent the rainfall-runoff transformation. The coefficients
of this equation are determined frem rainfall and flood events of the same probability.
These events are obtained from frequency analyses of observed rainfail and runoff data.
One example of these methods is the Probabilistic Rational Method (Institution of

Engineers, Australia, 1987, Chapter 5).

With the Empirical Methods, the uncertainty in the true probability of design floods can
be avoided. This is attributable to the fact that design coefficients are determined such
that a flood of a selected probability is directly linked with a rainfall of the same
probability (James and Robinson, 1986; Institution of Engineers, Austraiia, 1987). In
doing so, effects of other variables affecting floods are said to be automatically

considered.

Nevertheless, for practical design problems, Empirical Methods have very limited scope
because they give only peakflow estimates and can not eliminate model errors.
' Furthermore, they can only be applied to catchments which are representative of those
| vsed in the original research to derive the original equations (James and Robinson,

1986), making extrapolation of the results very limited.

2.3.2 Continuous Simulation

Continuous Simulation uses deterministic catchment models or rainfall-runoff process

models for estimating runoff sequences from rainfalls. More detailed descriptions of
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this approach are given by James and Robinson (1986), the Institution of Engineers,
Australia (1987), and more recently by Boughton et al. (1999). Generally speaking,
Continuous Simulation generates streamflow hydrographs over lengthy periods of time
from continuous rainfall and eva‘poration inputs and continuous modeiling of losses. It
usually has two essential components: a continuous simulation water balance model (for
simulating losses and rainfall excesses during both dry and wet periods) and a runoff
routing model (for computing flood hydrographs). A data generation model may also
be needed for generating long sequences of rainfall and evaporation data. Time steps
used in the simulation usually vary from one hour to one day, sometimes maybe as short

as 5 or 15 minutes, and the simulation period is often many years.

Continuous Simulation is regarded as having the potential to solve the hirmtations of the
current Design Event Approach for many reasons. It eliminates the subjectivity in
selecting antecedent conditions for the land surface by using a water balance model to
compute the soil moisture antecedent to each rainfall event, as described above. It also
overcomes the trial and error method for determining the critical storm duration because
it simulates the resultant flows for all storms during the year and selects the largest
flows as the critical events (Lumb and James, 1976). In addition, it avoids the
assumption of equal probability of the causative rainfalis and the resulting floods by
undertaking a frequency analysis of the time series of model output to determine the
frequency of the parameter of interest (such as peak flowrate or flow volume) (Huber et
al., 1986). Finally, it can eliminate the underestimation of the variability of rainfall

characteristics by using actual storm events.

Despite these advantages, there are still problems of Continuous Simulation to be dealt
with. For example, simulation outcomes are sensitive to many factors, such as the
choice of the water balance model, the appropriateness of calibration methods, and the
reliability of observed rainfall-runoff data for model calibration (Lumb and James,
1976; Ahem and Weinmann, 1982; Institution of Engineers, Australia, 1987; Boughton
et al., 1999). Furthermore, it may be difficult to preserve the serial-correlations of

rainfalls and streamflows at short time steps. Finally, continuous simulation models

have not yet been developed for applications to ungauged catchments.

L Wl 4
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2.3.3 The Runoff Files Approach

The Runoff Files Approach; described in detail by Lumb and James (1976), is a
modified version of Continuous Simulation. It aims to convert a time series of
precipitation into a time series of unrouted runoff stored in runoff files for repeated
subsequent use. To apply this approach, the study area is first divided into smaller units
according to surface characteristics such as land use, vegetal cover, soil types, or
landslopes. A continuous water balance model is then calibrated for these units.
Precipitation and other climatological data are next input to the calibrated model to
simulate runoff. The resulting flood volumes for major storms are then stored on a
computer file. A set of runoff files is thus obtained for the study area. These runoff
files are then combined according to the distribution of the characteristics of the study
area. The combined runoff is finally routed through a runoff routing model to produce
the required flood estimates. This approach has been applied in some previous studies,

for example, Lumb and James (1976) or Russel] et al. (1979).

Compared with Continuous Simulation, the major advantage of the Runoff Files
| Approach is the exclusion of the cost of repeated model calibration for individual
: watersheds. Nevertheless, this approach 1s mainly useful for urban catchments where
| recurring hydrologic evaluation of land-use control, development of detention storage,

or channel modifications, is required.

2.3.4 The ‘Improved’ Design Event Approach

Recognising the fact that one limitation of the current Design Event Approach stems
from the uncertainties involved in selecting input values in design, the objective of the
‘Improved’ Design Ev;nt Approach is to compute design floods with better estimates of
some of these design inputs or parameters. The approach also converts a design rainfall
of a specified annual exceedance probability to a design flood of the same probability, :

but takes into account the probability disiributions of some key design factors (for

example the loss parameter) in determining the design flood. In other words, it derives
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a distribution of the design flood peak of a specified annual exceedance probability,

from which a ‘best estimate’ and confidence limits can be determined.

A number of research projects were carried out along this line. For exampie, Haan and

Schulze (1987) used a probability distribution to characterise the uncertain behaviour of

maximum water abstraction (S). S is the parameter involved in the simple SCS Curve

Number equation (Soil Conservation Service, 1972) for peak flow estimates (Q). For a

given rainfall event of a specified return period, different values of S were used for

estimating Q and for placing confidence intervals on that estimate. In a much more

complicated fashion, the Bayesian theorem was used to analyse the uncertainty of the

parameters S and Tp (time to peak of the unit hydrograph) (Edwards and Haan, 1989).

A few thousand values of peak flows were then computed using the SCS Unit

Hydrograph (Soil Conservation Service, 1972) with stochastic inputs of S and Tp

generated from their corresponding probability density functions.

Although the above methods do offer different ways of improving estimates of

individual parameters in the design process, they all still have the fundamental

limitation of the current Design Event Approach. That is a design rainfall input of a

specified annual exceedance probability is directly converted into a corresponding

design flood event of equal probability.

2.3.5 The Joint Probability Approach

The Joint Probability Approach can be broadly defined as the approach to computing

_ the probability distribution of an output from the joint occurrence of random design

inputs. It employs a denved distribution method to transfer the joint probability

distribution of the inputs to the probability distribution of the ouiput via a

transformation function. For design flood estimation, this approach aims to estimate

design floods from design rainfalls by considering the stochastic nature of design

rainfall characteristics and possible other design inputs, the flood output, their joint

probabilities and interactions. It also requires design rainfalls, runoff production and

runoff routing models as the Design Event Approach, but allows for the variability of

design inputs, avoids the artificial concept of the critical storm duration, and treats
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probability effects rigorously. Its rationale is based on the realistic fact that any flood

L nﬁ-ﬂ‘-ﬁiﬂﬁ-wﬁi‘&-{f}ﬂJ

hydrograph characteristics could result from many combinations of circumstances,
rather than from a single representative combination as in the Design Event Approach.
For example, the same peak flood could result from a moderate storm on a saturated
basin or a large storm on a dry basin. Applications of the Joint Probability Approach to
hydrology have been described by many authors, for example Laurenson (1974), Ahern
and Weinmann (1982), Heideman et al. (1989), or Durrans (1995).

The Joint Probability Approach is considered to be theoretically superior to the Design
Event Approach (Institution of Engineers, Australia, 1987; Consuegra et al., 1993) for
three main reasons. Firstly, it uses the full range of likely values of key inputs of design
and therefore sojves the problem of underestimating the variability of design inputs in
the Design Event Approach. Secondly, it considers explicitly all possible combinations
of storm durations and other inputs to design, and thus does not need to determine the
' critical storm duration. Finally, it describes the design flood characteristic by a
probability distribution, thereby allowing the flood probability to be rigorously

estimated.

Regardless of its conceptual superiority, previous studies of the Joint Probability
t Approach to design flood estimation have not yet been successful in getting the
approach adopted for routine applications. This is generally attributable to the
mathematical complexity of the proposed approach, the lack of flexibility, the use of
inappropriate models to represent the flood formation process, and the inadequate

[ consideration of the variability of important flood causing factors and their interactions.

2.3.6 Best alternatives to the Design Event Approach

It is clear that, of the methods discussed above, only Continuous Simulation and the
Joint Probability Approach can fully overcome all the limitations of the current design
procedure. That is, both methods can eliminate the subjective selection of antecedent
moisture, the estimation of the critical storm duration, and the assignment of equal
probability to rainfall and runoff. However, for significant improvemenis in rainfall-

based flood estimation ir the near future, the Joint Probability Approach is considered
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to be a beiter alternative because it is more closely related to the current Design Event
App:oach, therefore, in using this approach, it is possible to make use of a large body of
existing experience and data. This research is focused on the Joint Probability

Approach.

2.4 THE JOINT PROBABILITY APPROACH

The theoretical basis of the Joint Probability Approach is the derived distribution
theory. Applying this theory to design flood estimation, the flood probability
distribution can be computed from the joint probability distributions of flood causing
factors. In order to provide the necessary theoretical background of the loint
Probability Approach, the derived distribution theory is introduced below. A review of
previous studies of the Joint Probability Approach to design flood estimations is also
presented. Some other basic statistical concepts relevant to the Joint Probability
Approach and the joint probability distribution of random varniables are summarised in

Appendix A.

2.4.1 Derived distribution theory

The aim of derived distribution theory is to determine the probability distribution of an
output random variable D which is functionally dependent upon one or more input
random variables A, B, C according to the functional relationship: D = f(A, B, C). This
functional relationship may be in an analytical form or in the form of a conceptual
model. The probability distributions of the input random variables A, B, C and the
functional relationship must be specified. For the special case in which at least two
input random variables are involved in the estimation of the output distribution, it is also

necessary to define the joint probability distributions of the inputs.

In applying the derived distribution theory to design flood estimation, the input random
variables A, B, C may be the design rainfall parameters, loss rates, or baseflow; the

output random variable D being a characteristic of the resu'ting flood (for example,
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peakflow or flood volume); and the functional relationship being a rainfall-runoff-flood

hydrograph transformation.

There are three groups of methods for determining the derived distribution of the
functionally dependent random variable D. They are analytical methods, approximate
numerical methods, and simulation techniques. In these groups, the model formulation
is the same, but the methods used to obtain results are different. Descriptions of these
methods can be found in some statistical textbooks such as Benjamin and Cornell
(1970) or Haan (1977). A summary of these methods is also given by Weinmann

(1994). An outline of each of these groups of methods is presented below.

2.4.1.1 Analytical methods

Using analytical methods, the probability distribution of the output random variable D is
found by directly applying the principles of probability. In general, its cumulative
density function should be determined. This can be done by enumeration if the
probability distributions of the input random variables are discrete, or by analytical or
numerical integration if the probability distributions of the input random variables are
continuous. The density function of the output random variable can then be determined

by differentiating the cumulative density function.

2.4.1.2 Approximate numerical methods

Numerical methods are applied when an analytical approach to determining the
statistical distribution of the random variable D as a function of some random variables
A, B, C becomes difficult or impossible. To simplify the calculation procedure, these
methods approximate continuous distributions by discrete onies by dividing the possible
range of values of each random variable into class intervals. The discrete distribution
characterising each varnable is thus represented by discrete points, each of which is the
probability that the variabie is within a certain class interval. The approximate derived

distribution of the output D is finally found by numerical computation or complete
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enumeration of possible input values. The degree ‘of approximation depends on the

degree of discretisation adopted. which is the size of the class intervals.

2.4.1.3 Simulation techniques

Simulation, often viewed as a “method of last resort” to be employed when everything
else has failed (Rubinstein, 1981), may be broadly defined as a technique that involves
setting up a model of a real situation and then performing experiments on the model. It
is commonly used to describe the operation of a complex system or to identify

important variables and how variables interact.

A special variant of simulation is stochastic simulation, also called Monte Carlo
analysis (Hammersley and Handscomb, 1964). This is the branch of experimental
mathematics concemed with experiments on random numbers. Monte Carlo analysis
involves the performance of a sufficient number of repeated experiments to generate a
large number of output values. A histogram of results can then be plotted, which
approximates the desired probability distribution of the dependent variable. Even
though the shape of the plotted histogram remains similar, its details will vary as the

number of experiments varies.

The successful application of simulation depends on the appropriateness of the model,
the interpretation of the results, as well as on the sophistication of the simulation

techniques used (Benjamin and Comell, 1970).

2.4.2 Review of previous studies of the Joint Probability Approach

In hydrology, the Joint Probability Approach has been extensively explored in order to
apply it to different problems. For example, this approach was £xamined to enable the
computation of drag loads on offshore structures from the joint occurrence of current
profiles and waves (Heideman et al., 1989). It was also applied to compute the joint
probability of flows in two tributaries of a stream (Laurenson, 1974), of flood water

levels and variations in ocean water levels (Lambert et al., 1994). In addition, it was
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used to derive the flood frequency curves for regulated catchments from the statistical
distributions of initial reservoir-depths and peak inflows (Laurenson, 1973; Ahern and
Weinmann, 1982; Durrans, 1995). For the purpose of this research, however, only
previous studies of the Joint Probability Approach which aimed to compute the flood
probability distributions from probabilistic characternistics of the causative rainfalls and
other flood-causing factors in unregulated catchments are investigated. The derived
distribution method adopted in these studies must also involve the transformation of at
least two input distributions into the flood output distribution so that the joint

probability of the mputs is taken into account.

Depending on the specific derived distribution method used, previous studies on the
Joint Probability Approach can be assigned to three groups. These consist of studies
based on analytical methods, approximate numerical methods, and Monte Carlo
simulation. Recent summanes of these studies have been presented by Sivapalan et al.
(1996), Loukas et al. (1996), and Rahman et al. (1998). A review of these studies is

given below.

2.4.2.1 Studies based on analytical methods

The analytical methods have been studied quite extensively to enable the probability
distribution of design floods to be computed from the joint probability distributions of
rainfall, loss, or catchment response mode! parameters. Detailed descriptions of these
studies, their main characteristics and results are tabulated in Appendix B. In

examining these studies, the following conclusions can be made.

In terms of the design rainfall, Eagleson’s rainfall model (Eagleson, 1972) has
commonly been used to s.tatistically represent point rainfall. This is a simple model that
describes rainfall intensity and duration as independent exponential distributions. It
ignores both the strong comrelation known to be present between rainfall intensity and
storm duration, and the temporal variation of rainfall intensity during the storm
duration. This model was applied by Eagleson (1972), Wood (1976), Hebson and
Wood (1982), Diaz-Granados et al. (1984), Shen et al. (1990), Cadavid et al. (1991),
and Raines and Valdes (1993).
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With respect to the generation of rainfall excess, a number of loss models have been
proposed. These models vary from the very simple constant loss rate (Eagleson, 1972;
Hebson and Wood, 1982), and the commonly used SCS Curve Number method (Haan
and Edwards, 1988; Raines and Valdes, 1993), to the complicated Philip’s infiltration
equation (Diaz-Granados et al., 1984; Shen et al., 1990; Cadavid et al., 1991). The

runoff coefficient has also been employed (Sivapalan et al., 1996).

To convert the rainfall excess into the flood hydrograph, the kinematic wave model has
gencrally been adopted in some early studies (Eagleson, 1972; Wood, 1976; Cadavid et
al., 1991). The unit hydrograph theory seems to have been more commonly used in
more recent studies (for example, Wood and Hebson, 1986; Sivapalan et al., 1990;
Raines and Valdes, 1993; Sivapalan et al., 1996).

In terms of random variables used in design and the relationship between them, in most
of the above mentioned studies, only rainfall intensity and duration have been treated as
random variables. The random nature of the infiltration rate or the maximum
abstraction from rainfall has only been considered by Wood (1976) and Haan and
Edwards (1988). The assumption of statistical independence of rainfall intensity and
duration, or of rainfall and loss model parameters has very commonly been adopted (for
example, Eagleson, 1972; Wood, 1976; Hebson and Wood, 1982; Diaz-Granados et al.,
1984; Wood and Hebson, 1986). The dependence of rainfall intensity on duration has
only been considered by Sivapalan et al. (1996).

With regard to the derivation of the flood frequency distribution, it is clear that, in
previous joint probability studies based on analytical methods, mathematical
expressions for computing design floods have been derived for very specific situations.
For example, Eagleson (1972) developed rainfall-runoff equations for V-shape
catchments, or Cadavid et zﬂ. (1991) used basins conceptualised as (wo symmetrical
planes discharging into first order streams. In addition, the set of equations
characierising the flood frequency distribution has been defined, in some cases, by very
complicated functions (Hebson and Wood, 1982; Diaz-Granados et al., 1984; Wood and
Hebson, 1986). Furthermore, attempis have been made to include in flood frequency
behaviour physical properties of catchment and drainage networks (Hebson and Wood,

1982; Diaz-Granados et al., 1984; Raines and Valdes, 1993) or different runoff
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generation processes (for example, Eagleson, 1972; Wood and Hebson, 1986; Sivapalan :

B

? et al., 1990). Despite these efforts, when the derived flood frequency curves were i
compared with observed flood records, in general, the proposed methods did not E?
i e
.* i

e

perform well. This is mainly attributed to the simplicity of the rainfall model used, and

the inaccuracies in estimating parameters of the adopted rainfall and loss models
(Eagleson, 1972; Moughamian et al., 1987; Cadavid et al., 1991; Raines and Valdes,

1993). 1t has been suggested that removal of the assumption of independence of some

P T R,

stochastic inputs (rainfall intensity and duration} may lead to significant improvements

in design flood estimates (Eagleson, 1972).

- summary, previous studies of the Joint Probability Approach based on the analytical
methods for design flood estimation have not led to successful applications in design
practice. While it is clear that the results of these studies enhance understanding of the
flood frequency behaviour, and tha the flood probability functions for some specific
situations can be mathematically formulated, there are many drawbacks in these studies.
For example, the solution of the integration of the joint distribution of inputs may be
computationally demanding if the input distributions are defined by different functions
i over different regions. Moreover, in order to allow analytical derivation of the

equations representing the design flood distribution, the design rainfall and antecedent

catchment conditions are generally modelled in a very simple fashion. The interactions
of inputs involved in the design are also ignored. These factors, together with the
complicated mathematical equations derived for the resulting floods, make the

analytical methods intractable in design situations.

2.4.2.2 Studies based on approximate numerical methods

Besides analytical methods, there have been many joint probability studies that adopt
the approximate numerical derived distribution methods for estimating design floods.
General features and results of these studies are summarised in Appendix B. In

ex .mining these studies, the following conclusions can be made.

With respect to rainfall models, design IFD curves have been adopted in the majority of

these studies. Using the IFD curves, the dependence of rainfall intensity on duration is
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taken into account. In some research, the temporal variation of rainfall intensity during
storm duration has been considered (Beran, 1973; Goyen, 1983) and its stochastic

nature accounted for (Beran, 1973).

In terms of loss models, the SCS Curve Number model has been commonly adopted
(Hughes, 1977; Fontaine and Potter, 1993; Consuegra et al., 1993). The infiltration rate

has also been employed to compute the rainfall excess {Goyen, 1983).

With regard to runoff routing models, the unit hydrograph is the model most popularly
adopted (Beran, 1973; Consuegra et al., 1993). More general rainfall-runoff models
such as HEC-1 (Fontaine and Potter, 1993), RAFTS (Goyen, 1983) have aiso been
considered. One advantage of these two models is that they take into consideration

spatial variations of rainfall and catchment characteristics.

In relation to random variables involved in design and the relationships between them,
rainfall intensity and parameters of the adopted loss models have always been
considered as random variables (for example, Goyen, 1983: Fontaine and Potter, 1993;
Consuegra et al., 1993). The random nature of rainfall duration or temporal patterns has
only been modelled by Beran (1973). The assumption of statistical independence of
these random variables has been adopted in the majority of these studies (Beran, 1973;

Hughes, 1977; Goyen, 1983; Consuegra et al., 1993).

With regard to the determination of the flood frequency distribution, the Theorem of
Total Probability (see Appendix A) has been a popular means for determining the flood
frequency curves (Beran, 1973; Laurenson, 1974; Hughes, 1977; Fontaine and Potter,
1993). Application of this theorem to design flood estimation is very easy for cases
where random variables involved in the flood generation process are assumed to be
independent of one another. A practical implementation of the theorem has been
proposed by Laurenson (1974). With this method, any design problem can be solved by
dividing the problem into a sequence of consecutive steps. Each step transforms an
input probability distribution into an output probability distribution, which becomes the
input to the next step. The probability of the output at each step can be calculated using
the input probability distribution and a transition probability, which reflects the

deterministic components of the system. This method has been applied by Laurenson
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and Pearse (1991). In general, application of the approximate derived distribution
methods to one or two caichments produced satisfactory results, but a complete
verification of these methods.by applying them to a variety of catchments is siill
required. The design rainfall depth and parameters of the loss model have been

identified as the most important factors affecting the design flood (Beran, 1973).

In summary, despite the advantages of the joint probability studies based on the
approximate numerical methods, these studies need to be further developed and tested
before they can be applied to practice. In thesc studies, many design inputs involved in
the flood generation process are realistically represented by probability distributions
instead of fixed design values. Design floods and the corresponding probabilities are
generally computed using the Theorem of Total Probability or Laurenson’s method
{Laurenson, 1974). Nevertheless, in applying the approximate numerical methods, it is
necessary to discretize continuous random variables, and to conveniently assume that
these design random variables are independent of each other. In addition, the variability
of design inputs is still inadequately modelled because, in most studies, the stochastic
nature of only two random variables (namely the design rainfall depth and loss model
parameters) is accounted for. Moreover, the loss and runoff routing models adopted in
most of these studies are not commonly used in Australia. Therefore, for an
improvement in Australian design flood estimation, the random nature of design inputs
other than the rainfall intensity and loss, the correlations of these stochastic inputs, and
the application of loss and runoff routing models more appropriate to the Australian

environment should be addressed.

2.4.2.3 Studies based on Monte Carlo simulation

Together with the analytical and approximate numerical methods, Monte Carlo
simulation has also been applied to some studies that are based on the Joint Probability
Approach for rainfall-based design flood estimation. Detailed descriptions of these
studies, their main characteristics and results are tabulated in Appendix B. In

examining these studies, the following conclusions can be made.
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In terms of the design rainfall, Eagleson’s model (Eagleson, 1972) has been adopted by
Beven (1987), whereas IFD curves have been employed by Bloeschl and Sivapalan
(1997). Altematively, the Gumbet distribution (also called the Extreme Value type 1
distribution) has been used to characterise the design rainfall intensity (Muzik, 1993;
Loukas et al., 1996). The variation of design rainfall intensity during storm duration has

been considered by Beven (1987), and Loukas et al. (1996).

To compute the rainfall excess, the SCS Curve Number method or the infiltration rate
has been adopted in a few studies such as Muzik (1993) or Loukas et al. (1996).
Complicated models such as the TOPMODEL or the ARNO mode] have also been

recommended (Beven, 1987; Franchini et al., 1996).

To compute flood hydrographs, the unit hydrograph or linear routing method has still
been adopted by some authors, for example, Muzik (1993) and Loukas et al. (1996).
Nevertheless, more complicated flood routing models such as those included in the
TOPMODEL (Beven, 1987) or ARNO model (Franchini et al., 1996) have also been

employed.

With regard to random variables involved in design and their correlations, the design
rainfall intensity and soil moisture antecedent to rainfall events have always been
considered as random variables. The stochastic nature of other rainfall characteristics
(either rainfall duration or temporal pattern) has only been taken into account in some
studies, for example, Beven (1987), Bloeschl and Sivapalan (1997), or Loukas et al.
(1996). Runoff routing model parameters have been treated in a probabilistic fashion
only by Loukas et al. (1996). The correlations of some of these random variables have
also been taken into consideration. For example, Beven (1987) considered the
relationship between discharge and initial soil moisture deficit, Muzik (1993) accounted
for the dependence of potential maximum soil moisture storage and antecedent rainfall,
and Bloeschl and Sivapalan (1997) adopted IFD curves in which rainfall intensity is a

function of storm duration and return period.

In terms of the derivation of the flood frequency distribution, Monte Carlo simulation
has been used to compute design floods from various combinations of fixed and

variable inputs randomly generated from the corresponding continuous distributions.
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For thz limited number of test catchments used in these studies, in general, the proposed
procedures gave satisfactory results. Nevertheless, there are some cases in which the
estimated flood volumes were significantly different from the observed flocds, as
reported by Loukas et al. (1996), and Muzik (1993).

In summary, like joint probability studies based on the analytical and approximate
numerical methods, pre: :ws flood studies adopted Monte Carlo simulation still need

further developments so that they can be applied in design practice. In these studies,

-design rainfall characteristics (including intensity, duration, and temporal pattems) and

parameters of the loss and caichment response models are characterised by continuous
probability distributions, and their correlations are accounied for. Nevertheless, in each
individual study, the variability of design inputs is still inadequately modelled, because
generally only two or three inputs are considered as random variables. In addition, a
linear response of caichments to rainfall is generally assumed. These factors, together
with further testing required to verify results in a broader range of situations, are the

main reasons that make these studies not readily applicable to flood design practice.

24.2.4 Concluding remarks

From the review above, it is clear that for an improved method for rainfall-based design
flood estimation based on the Joint Probability Approach, the following factors should
be taken into account:

(a) the incorporation in a single study of all those random inputs that have significant
influence on design floods. These inputs may include design rainfall characteristics
(intensity, duration, temporal and spatial patierns), loss model parameters and
possibly runoff routing model parameters;

(b) the consideration of the correlations of these design inputs and parameters;

(c) the selection of a loss model and a runoff routing mode! that are not only able to
realistically characterise the flood generation process but also are simple enough for
practical applications;

(d) the selection of an appropriate derived distribution method (cither the approximaie
numerical methods or Monte Carlo simulation) for design flood estimation; and

(e) the verification of the proposed procedure in a variety of test catchments.
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It would also be desirable to examine the sensitivity of the derived flood frequency
curve to the model representation of the above factors, and 1o estimate the uncertainty in

design flood estimates.

2.5 SUMMARY

The Design Event Approach is a procedure commonly used to estimate design floods
from design rainfalls. The design floods are estimated by assuming equal probability of
the flood output and the rainfall input, using representative values for all inputs and
parameters to the design (except for the rainfall depth), and adopting 4 critical storm
duration. This design procedure leads to three limitations of the Design Event
Approach. The first is the underestimation of the variability of design inputs, in
particular design rainfall characteristics and antecedent soil moisture conditions. The
second is the non-scientific basis of the critical storrn auration concept and the
probability bias associated with its application in design flood estimation. The third is
the difficulties in selecting suitably representative values of design inputs in order to

correct the probability bias in practical applications.

To overcome the limitations of the Design Event Approach, Empirical Methods,
Continuous Simulation, the Runoff Files Approach, the ‘Improved’ Design Event
Approach and the Joint Probability Approach can be employed. Of these altematives,
only Continuous Simulation and the Joint Probability Approach have the potential to
fully overcome the limitations of the current design procedure. Continuous Simulation
generates flood runoff sequences from time series of rainfall and other climatic inputs
using a continuous simulation water balance model and a flood rouiing model. The
Joint Probability Approach estimates design floods by adopting the same rainfall-runoff
modelling elements as the Design Event Approach but treating key inputs of the design
and the flood output as random variables and accounting for their correlations. It is
concluded that the Joint Probability Approach has the potential to provide significant
improvements in rainfall-based design flood estimation in the near future because, being
more closely related to the Design Event Approach. it can make the best use of existing

data and experience.
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The theoretical basis of the Joint Probability Approach is the derived distribution
theory. In design flood estimation, this theory can be applied to compute the flood
probability distribution from the joint probability distributions of the flood causing
factors using a rainfall-runoff transformation. Three groups of methods can be used to
carry out this computation. They are analytical methods, approximate numerical

methods, and simulation techniques.

A review of previous studies of the Joint Probability Approach to rainfall-based design

flood estimation indicates that the analytical methods are unlikely to be successful in

~ design practice. This is attributable to the fact that the flood probability distributions

are developed from simple assumptions about the design rainfall, catchment model, and
their interactions, and despite of this, the derived flood distributions are »:3ually very
mathematicaily complicated. The approximate numerical methods and Monte (Carlo
simulation are more effective means of estimating the probability distribution of design
floods. Using these methods, the stochastic nature of rainfail characteristics (duration,
intensity, temporal pattems), of catchment wetness antecedent to a rainfall event, or of
rainfall losses can be considered and converted into a flood frequency distribution with
relatively little difficulty. The correlations of random variables involved in the flood
producing process can also be considered. In this way, variables representing both the

design rainfall and the catchment response are modeiled in 2 much more realistic way.

For an improvement of rainfall-based design flood estimation using the Joint Probability
Approach, it is desirable to consider all the following factors in one single study. These
are the incorporation of all the random inputs that have significant influence on the
design floods, the consideration of their correlations, the selection of models of rainfali
loss and runoff routing that can both realistically characterise the flood generation
process and can be readily applied in practice, the selection of an appropriate derived
distribution method for practical design flood estimation, and the verification of the
proposed procedure in a variety of test catchments. The examination of the sensitivity
of design floods to the model representation of the above factors, and the investigation

of the uncertainty in design flood estimates would also be desirable.
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Chapter 3

DEVELOPMENT OF A JOINT PROBABILITY MODEL
FOR DESIGN FLOOD ESTIMATION

3.1 INTRODUCTION

The estimation of design floods from design rainfails generally consists of two stages,
namely runoff production and hydrograph formation. The objective of the runoff
production stage is to compute the depth of rainfall excess {or runoff) from the design
rainfall. This is undertaken by subtracting all losses due to interception, infiltration, and
depression storage from the total rainfall depth. The objective of the hydrograph
formation stage is to convert the rainfall excess hyetograph over the catchment into the
flood hydrograph at the catchment outlet. This is carried out by selecting a runoff
routing model, routing the rainfall excess hyetograph through the selected routing

model, then adding the design base flow.

In the Joint Probability Approach to rainfall-based design flood estimation, each of the
above two stages may have both deterministic and stochastic components. For example,
the loss model applied in determining the rainfall excess from a specific rainfall input
and the runoff routing model to determine the resuiting flood hydrograph are the
deterministic components. They represent the processes that can be modelled
mathematically or graphically without probabilistic statements. By contrast, the
characterisation of design inputs such as rainfall intensity, duration, or routing model
rarameters by probability distributions instead of representative design values, and the
determination of the design flood distribution from the joint probability distributions of
design inputs, are the stoq_haslic components. It is noted that in the conventional Design
Event Approach, the only stochastic component in design flood estimation is the

probability distribution determining the design rainfall intensity.
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To develop a Joint Probability Model that can improve estimates of design floods, both
the deterministic and stochastic components need to be realistically represented. To do
this, two stages can be carried out. The first stage is the selection of the deterministic
components that can realistically represent the munoff production and hydrograph
formation processes. The second stage is the selection of the stochastic components that
can reflect the high degree of variability of design inputs, outputs, and their interactions.
This stage also includes the selection of an appropriate method for computing the flood
probability distribution. The success of this model will depend on its performance and
practicability, that is whether or not it can give reliable flood estimates, and can be

applied to routine problems.

The stages undertaken to develop a Joint Probability Model for rainfali-based design
flood estimation are reported in this chapter. A research procedure for applying and

evaluating the proposed model is also described.

3.2 DETERMINISTIC ELEMENTS

Like the currently used Design Event Approach, the deterministic elements of the
proposed Joint Probability Model consist of a loss model and a runoff routing model.

The selection of these elements is discussed below.

3.2.1 Loss modei

In the runoff production process, a loss model is used to compute rainfall losses. The
rainfall loss is the part of rainfall that does not appear as direct runoff after a storm. It is
caused by interception by vegetation, infiltration into the soil, retention on the surface of
the soil (called depression storage), or losses through stream beds and banks (called

transmission loss) (Hili et al., 1996a).

Loss models can be broadly classified as infiltration models and practical loss models.

A brief review of these models is given in Appendix C. The objective of the infiltration
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models is to compute the time varying rate of storm losses at a point through
infiltration. Some of the well-known infiltration models include the Horton model
(Horton, 1935), the Philip model for computing vertical infiltration into non-layered
homogeneous soils with & constant initial moisture content (Philip, 1569), and the
modified Green-Ampt model for computing infiltration capacity for different rainfall
and surface conditions (Mein ~nd Latson, 1971). In previous joint probability studies,
the infiltration rate was used by *¥ood (1976), Hebson and Wood (1982), and Loukas et
al. (1996), whereas the Philip infiltration model was used by Diaz-Granados et al.
(1984), Shen et al. (1990), and Sivapalan et al. (1990). Even though infiltration models
provide an insight into the infiltration process, they may not be directly applicable to
determining the loss of rainfall in flood estimation applications for two reasons. Firstly,
they ignere the transmission loss and the rainfall losses caused by inteiception and
depression storage. These forms of storm losses follow different laws from infiltration
theory and may be significant under certain circumstances. For example, the
interception loss may be a considerable portion of storm losses in regions with dense
vegetation, or the depression loss may be significant fo- deep storage (Linsley et al.,
1988). Secondly, it is difficult to accurately estimate a representative value of the
infiltration loss on the catchment scale due to the spatial variability of catchment

characteristics (such as soil types or vegetation) and limited information.

In routine applications, practical loss models are preferred to infiltration models due to
their conceptual simplicity and their ability to approximate catchment runoff behaviour,
These are lumped models because they ignore the spatial variation of storm losses
during stonn duration. The practical loss models include the loss rate model, the
propostional loss model, the initial loss — continuing loss (IL-CL) model, and the SCS
Curve Number model. Some of these models have been applied in previous joint
probability studies for design flood estimation. For example, the constant loss rate was
used by Eagleson (1972), and the SCS Curve Number method adopted by Haan and
Edward (1988), or Raines and Valdes (1993).

In Australia, the IL-CL model is most commonly used (Institution of Engineers,
Australia, 1987; Hill et al., 1996a), and is adopted in this project. The model has two
parameters, namely the initial joss and the .ontinuing loss. The initial loss is the rainfall

loss that occurs before the commencement of surface runoff, and the continuing ioss is
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the average rate of rainfall loss during the rematning storm duration (see Figure 3-1).

The model can be applied to compute the average loss of rainfall at the catchment or

sub-catchment scale.
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Figure 3-1: Initial loss-continuing loss model (from Hill et al., 1996a)

3.2.2 Runoff routing model

In the hydrograph formation process, a runoff routing model is required through which
the rainfall excess hyetograph is routed to become the flood hydrograph at any location
of interest or at the catchment outlet. Also, baseflow contributions need to be accounted

for,

As mentioned in Chapter 2, commonly used runoff routing models in previous derived
flood frequency studies are the kinematic wave, unit hydrograph, and geomorphologic
unit hydrograph models. Whereas the kinematic wave models ignore attenuation of
flood peaks, the unit hydrograph models assume that the rainfall-runoff relationship is
linear and (for lumped models) that the rainfall excess is uniform over the entire
catchment (Institution of Engineers, Australia, 1987, Chapters 8 and 9). For these
reasons, the kinematic wave models and the lumped unit hydrograph models are
unlikely to be successful in design practice where simplicity in application is required

but the spatial and temporal variations of hydrologic variables and the non-linearity of

catchment response should be accounted for to some extent.
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In Australia, many runoff routing models are available for computing the flood
hydrograph from the hyetograph of rainfall excess. These include RAFTS, RORB,
URBS, and WBNM (Institution of Eﬁgineers, Australia, 1987, Chapter 9). All of these
are distributed and non-linear models because they take into consideration the non-
linear response of the catchment, the areal variability of rainfalls and losses, and the
distributed nature of the catchment storage. Even though all these models are capable
of reproducing realistically the fiood transformation process, RORB and URBS are
most widely used in design practice. However, neither of these two models could be
readily incorporated in the Joint Probability Model for use in this research where Monte
Carlo simulation is selected for estimating design floods (see Section 3.3.2). This is
attributable to the fact that the current versions of these models are not designed to
provide thousands of simulations of design floods in one computer run. Therefore a
simple runcff routing mode! that can be readily incorporated in the present Monte Carlo

simulation model is adopted 1n this study.

The adopted runoff routing model consists of a single, concentrated, non-linear storage
at the catchment outlet. The rainfall excess over the catchment is routed through this
storage using a2 non-linear storage routing procedure. The relationship between the

storage S (unit: m®) and the discharge Q (unit: m’/s) is assumed to be as follows:

S = kQ™ 3G-1)
where k is a coefficient that determines the storage delay time of the model, but which
also depends on the value of m, and m is a dimensionless constant, being a measure of
the catchment’s non-linearity. In this study, m is assumed to be 0.8, which is the value

generally recommended as a first trial value (Laurenson and Mein, 1995).

For simplicity, the adopted model neglects the spatial variations of rainfall and losses

over the catchment.

3.3 STOCHASTIC ELEMENTS

As explained in Chapter 2, the major difference between the Joint Probability Approach

and the current Design Event Approach is the probabilistic treatment of inputs to and
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outputs from a model. In this section, key inputs to be treated in a probabilistic fashion
are first determined. A method for computing the derived distribution of floods from
the distributions of input variables is then selected. Finally, issues related to the

correlations of design random variables are highlighted.

3.3.1 Determination of key inputs to be treated as random variables

In order to improve estimates of design floods, as discussed in Section 2.4.24, it is
imponant to take into account the stochastic nature of design inputs and outputs, and
their interactions. Ideally, all design inputs should be treated as random variables.
However, it is preferable to consider a smaller number of key stochastic inputs as this
reduces the data requirements and makes practical applications easier, without
sacrificing much accuracy. The selection of stochastic input variables for this study is
described below.

Rainfall variables

Real rainfall events vary considerably with respect to rainfall intensity, rainfall duration,
the temporal distribution within the event duration, and the spatial distribution of
rainfall at the catchment scale. Of these factors, average rainfall intensity, the direct
input to the rainfall-runoff process, is clearly the most important rainfall characteristic.
Its stochastic behaviour has already been characterised by a probability distribution in
the current Design Event Approach. Since rainfall events that have the potential to
produce floods vary considerably in their duration, the inclusion of rainfall duration as

a random variable in this study is considered essential.

Besides rainfall intensity and duration, the temporal pattern of rainfall is another input
that is worth considering as a stochastic input. For a given rainfall depth over a
specified duration, the time distribution of rainfall intensity may vary considerably for
different storms. In almost all cases, rainfall intensity is distributed non-uniformly
during storm duration. Moreover, the patiem adopted can have a major effect on the
computed flood (Institution of Engineers, Australia, 1987). There is evidence that flood
peaks may differ by up to 50% due to the use of different design temporal patierns
(Askew, 1975; Brown, 1982; Wood and Alvarez, 1982; Cordery et al., 1984; Hoang,
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1997). In addition, adopted exireme pattems may cause computed flood peaks to vary
by up to 2.5 times for heavy rainfalis (Institution of Engineers, Australia, 1987).
Viessman et al. (1989) also stated that the shape and peak magnitude of flood
hydrographs are affected by temporal patterns of storms. Hence, the rainfall temporal
patiern is another impon;lnt input to be treated as a random variable, especially for
small catchments. However, due to the multi-dimensional nature of the temporal

pattern, several parameters may be required for its description.

Compared with rainfall intensity, duration and temporal paiterns, the modelling of the
areal pattern of rainfall as a random variable is considered less important in most rural
catchments. Moreover, it would generally be difficult to determine the probability
distribution of areal rainfall pattern due to limited observed rainfall data at a catchment
scale. For these reasons, the rainfall spatial pattem is not modelled in a probabilistic
fashion in this project. It might be noted that the deterministic application of temporal
and areal rainfall patterns each increases the dimensionality of rainfall intensity by one.
For example, in applying a temporal pattern to a constant average rainfall inteasity for 2
given location, average recurrence interval and duration, the rainfall intensity becomes a
function of time. The patterns are what Laurenson (1974) called “distributive”
parameters as distinct from “concentrative” parameters like initial loss, which would
convert the above constant into a different constant. The increased dimensionality adds

an order of magnitude to the complexity of the computat-- ns.

The areal reduction factor applied to rainfall, as mentioned in Chapter 2, converts
average point rainfall intensity into average catchment rainfall intensity. It takes
account of the random variability of rainfall depth over the catchment. For this study,
the use of a single value of the areal reduction factor for a particular rainfal] duration,

calchment size and average recurrence interval is considered adequate.

Runoff production process

The runoff production process has been recognised as a crucial process in design flood
estimation (Cordova and Rodriguez-Iturbe, 1983; Beven, 1987). It is represented by a
loss model with one or more parameters. As early as the seventies, the strong impact of
the loss parameters on design floods has been highlighted. For example, Beran (1973),

in examining the sensitivity of the design flood to alterations to the assumed vaiues of
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design input variables, concluded that correct choice of loss rate is the most important.
Wood (1976) provided evidence that the use of a constant loss rate instead of a

probability distribution underestimates the exceedance probability for a given peak

discharge, which may lead to serious design problems. Hoang (1997) also conducted an

investigation into the effect of changes in design foss values on design floods for a small
catchment in Austraiia. Results showed that for the test caichment, the peak discharge
might increase by up to 120% when an initial lnss lower than the median value but
within the range of recommended design values was assumed. The strong influence of
loss vaiues on design flood estimates is based on the fact that catchment conditions (and
therefore rainfall losses) can vary widely, and that a given rainfall occurring on a dry
watershed produces considerably less runoff than the same rainfall occurring on a wet
watershed. It is thus concluded that the rainfall loss is an important input and should be

treated as a random variable in estimating design floods.

As discussed in Section 3.2.1, the initial loss — continuing loss mode} is adopted in this
study for computing the rainfall excess. Of these two parameters, the initial loss reflects
the catchment condition at the time of rainfall, and is therefore more variable than the
continuing loss rate. Thus, it is considered sufficient to treat only the initial joss as a
stochastic variable, whereas the continuing loss rate is represented by a fixed design

value,

Hydrograph formation process

As discussed previously, the hydrograph formation process deals with routing the
rainfall excess hyetograph to produce the design flood hydrograph. Factors affecting
the hydrograph formation process are runoff routing characteristics (represented by

model type, model structure, and model parameters) and baseflow contributions.

It is well known that, in design flood estimation, the problem is more what to route than
how 1o route (Cordova and Rodriguez-Iturbe, 1983). This implies that the variability of
runoff routing model parameters and baseflow on flood estimates is of secondary
itnportance compared with that of the runoff production process. There are a number of
reasons for this. Firstly, the event to event variability of model parameters may be the
result of data errors, or model inadequacy in characterising the non-linearity of the

rainfall-runoff process or the true variability in catchment response to rainfall.
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Secondly, the selection of an appropriate runoff routing model and procedure can allow
a single set of model parameters to be determined for a given caichment with reasonable
confidence. Thirdly, except for very small floods, design baseflow generally accounts
for only a very small portion of total flood fiow. Even though any streamflow
hydrograph has a random baseflow component, in reality, the variability in baseflow
magnitude is mainly seasonal, and regarded as having a small effect on design flood
estimates. Therefore, the stochastic modelling of the parameters representing the
hydrograph formation process and base flow is considered as a refinement to the current

method that may be examined at a later stage.

3.3.2 Selection of a Joint Probability Method

As discussed in Section 3.2, application of the analytical methods to derive the flood
frequency distribution is unlikely to be successful in practice. This is attributed to the
simplifying assumptions about rainfall, loss, and runoff routing models, the complexity
in mathematical equations of the derived flood distribution, and the simplified treatment

of the correlations of random variables involved in the design.

The approximate numerical methods and Monte Carlo simulation are considered as
much more effective means than the analytical methods to compute the derived flood
frequency distribution. With these methods, the design rainfall can be more realistically
modelled (that is, the dependence of rainfall depth on duration, or the time variation of
rainfall intensity during storm duration can be readily accounted for). In ad“tion,
catchment characteristics or catchment conditions at the time of the storm ¢» be
examined in a more realistic way. For example, by using distributed runoff routing
models, the spatial variation of rainfall and losses over the catchment, or catchment
physical characteristics can be modelled; the effects of varying catchment wetness on
the computed flood can be accounted for by using an appropriate model to describe it.
Moreover, using these methods, if input variables are dependent on one another, their

correlations can then be taken into account without much difficulty.

Of the approximate numerical methods and Monte Carlo simulation, the Theorem of

Total Probability for computing the flood distribution is the simplest for routine
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applications if the assumption of statistical independence of random variables can be
's justified. If flood causing factors are correlated, Laurenson’s general modelling scheme
(Laurenson, 1974), or Monte Carfo simulation are the most promising methods. Using
Laurenson’s method in which a modelling problem can be divided into several
modelling steps, each with only two stochastic variables, the complexity in determining
the joint probability of three or more correlated random variables can be avoided. With
Monte Carlo simulation, probability distributions of input variables are determined first.
For each model run, a design flood is then simulated from input values generated

randomly from their corresponding distributions. Any significant correlation between

jnputs can be allowed for through the use of conditional distributions. By running the

mode] several thousand times, a large sample of design floods, and therefore the flood

frequency distribution, can be obtained, and the reliability of the results assessed.

For this project, Monte Carlo simulation is selected because it is a general apprcach that
can be applied to both independent and correlated random variables. In addition, a
computer program for computing the probability distribution of floods from statistical
distributions of flood causing factors is readily available from a parallel study (Rahman,
: 1999),

3.3.3 Correiations of random variables

As discussed in Section 2.4.2, one of the critical elements of the proposed Joint
Probability Model is the representation of the variability of key flood causing factors
and their correlations. In doing so, characteristics of real observed rainfall events and
catchment conditions are preserved in the flood simulation process. By contrast, in the
majority of previous studies of the Joint Probability Approach, only two or three design

inputs are considered as random variables and their correlations are generally negiected.

With regard to the relationship between rainfall intensity and duration, it was commonly
assumed in early joint probability studies that rainfall intensity is statistically
independent of storm duration. However, Bloeschl and Sivapalan (1997) argued that
this assumption may lead to steep flood frequency curves as a result of unrealistic

combinations of high rainfall intensities and long durations. As it is generally accepted
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that average rainfall intensity decreases with increasing storm duration, the
consideration of this relationship in this present study seems to be indispensable.
Eagleson (1972) has also recommended the removal of the assumption of statistical
independence between rainfall intensity and duration in order to obtain better design

flood estimates.

In the published research of temporal pattemns of rainfall, there are conflicting
conclusions about the relationship between temporal patterns and season of storm
occurrence, storm duration, and storm depth. For exampie, in the currently used model
of design storms in Australia, temporal patterns are developed for different climatic
zones, rainfall durations, and average recurrence intervals. This implies that the
temporal pattern is dependent not only on Jocation, but also on storm duration, and
storm severity. In overseas studies, Huff (1967) showed that dimensionless mass curves
of observed temporal patterns in Illinois can be divided into four distinct groups,
depending on whether the heaviest rainfall occurs in the first, second, third or fourth
quarter of the storm duration. However. in each group, the storm duration and areal
mean rainfall account for only a small portion of the variance in the time distribution of
rainfall. Moreover, Yen and Chow (1980) and Bonta and Rao (1989) stated that
dimensionless hyetographs of storms in summer, dominated by short duration, high
intensity convective siorms, are markedly different from those of other seasons,
particularly long duration, low intensity cyclonic winter storms. By contrast, Garcia-
Guzman and Aranda-Oliver (1993) found that the time distribution of rainfall at three
stations in Southem Spain is independent of season and amount of rain. Similarly,
Robinson and Sivapalan (1997), from an analysis of hourly rainfalls at a catchment in
Western Australia, suggested that the rainfall temporal patitem is not correlated with

storm duration.

To date, it is thus unclear whether or not the rainfall temporal pattern is dependent on
factors such as season of storm occurrence, storm duration or depth. While some
authors suggest that the time distribution of rainfall is independent of any of those three
factors, most evidence in the literature supports the hypothesis that there is a
dependence on at Jeast some of them. Therefore, as a part of the examination of the

correlations of random variables involved in design, one of the objectives of the present
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research is to investigate the dependence of the rainfall temporal pattem on season of
storm occurrence, storm duration or depth.

With regard to the relationship between design storm losses and other input variables, it
has been found that the rainfall initial loss increases with rainfall burst duration (Hill et
al., 1996a,b). This relationship is examined for the data used in this study, along with
the investigation of the comrelation between the initial loss and average rainfall intensity.

At this development stage, the seasonal variation of the initial loss is not considered.

3.4 RESEARCH PROCEDURE

In order to apply and evaluate the proposed Joint Probability Model for design flood
estimation, the procedure adopted in this research consists of three major steps, namely
determination of model elements, model application, and mode! evaluation. Each of

these sieps is outlined below.

The determination of model elements (see Figure 3-2), documented in detail in Chapter
4, starts with the collection and verification of rainfall and streamflow data used in this

study. The defimtion of storm events is next introduced and then applied to derive a

database of storm events. A storm definition is required in this research to ensure that

storm duration becomes a random variable. The correlations between the random
variables involved in design are next investigated. The outcome of this investigation is
necessary to assess to what extent it is necessary to develop the conditional probability
distributions of design inputs. The probability distributions of rainfall duration and
initial loss, the rainfall intensity-frequency-duration (IFD) curves, and a model to
generate storm temporal patterns are then determined. Lastly, other fixed inputs of the
design (runoff routing model parameters, design continuing loss rate and baseflow) are

estimated.

After determining the deterministic and stochastic elements of the proposed Joint
Probability Model, Monte Carlo simulation is applied to generaie flood events for an

example catchment. At this stage, a random value of storm duration is generated from
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ihe probability distribution of storm duration. A random average recurrence interval
(ARI) is then selected and assigned to the design storm with the specified duration.
Given the storm duration and ARI, the average design rainfall intensiry for the design
storm is then determined from the IFD curves developed for the design location. Next,
a random temporal pattern is generated for the design storm of the specified duration
and depth. This design rainfall event is then combined with a random value of initial
loss generated from the probability distribution of the storm initial loss 1o produce a
rainfali excess hyetograph. The design rainfall excess hyetograph is then passed
through a runoff routing model, from which a flood hydrograph is determined, and the
peak flood recorded. By repeating the above procedure thousands of times, thousands
of values of floodpeaks are generated. A frequency analysis of the generated
floodpeaks is finally camried out to determine the derived flood frequency curve., The

procedure described above is illustrated in Figure 3-3 and documented in Chapter 5.

[Data collection and veriﬁcatitﬂ———)[ Storm event definition J

4
L Extraction of storm events

"

-

\
Determination of correlations of

random inputs J
\ 4 4
Determination of fixed Determination of probability distributions
design inputs of random inputs

Figure 3-2: Determination of mode] elements

To evaluate the proposed model for design flood estimation, the generated flood
frequency curve obtained by Monte Carlo Simulation is then compared with that
obtained from flood frequency analysis and the Design Event Approach (see Chapter 6).
The sensitivity of design flood estimates to variations in some stochastic and

deterministic design inputs is next examined and some conclusions are drawn on the
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reliability of the derived flood estimates. The model is finally tested on another

catchment and the results are discussed.

Probability . Inte
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Figure 3-3: Model application
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3.5 SUMMARY

In this chapter, a Joint Probability Model for rainfali-based design flood estimation is
proposed. This model consists of a deterministic component and a stochastic
component. The deterministic component vses the initial loss — continuing loss (IL-CL)
model for computing a rainfall excess hyetograph from given design rainfall inputs, and
a lumped non-linear runoff routing model to convert this rainfall excess hyetograph into
a corresponding flood hydrograph. The stochastic component defines the design rainfall
intensity, duration, temporal pattern, and initial loss as random inputs, and employs

Monte Carlo simulation method to estimate design floods.

A research procedure is recommended for applying and evaluating the proposed Joint
Probability Model. This includes the determination of the deterministic and stochastic
elements of the proposed model, the application of Monte Carlo simuiation for
generating design floods for two example catchments, and the evaluation of the
proposed model by comparing results with those obtained from flood frequency analysis
and the Design Event Approach. In the nexi chapter, the first step of the procedure, the

determination of modei elements, is presented.
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Chapter 4

DETERMINATION OF MODELLING ELEMENTS

4.1 INTRODUCTION

The proposed Joint Probability Model for rainfall-based design flood estimation has two
components: a deterministic and a stochastic component. The deterministic component
includes a loss model for computing rainfall excess, and a lumped runoff routing model
for estimating design flood hydrographs. The stochastic component models the
statistical behaviour of four important design inputs to the flood generation process
(namely the average rainfall intensity, duration, temporal pattem, and initial loss), the

flood output, and the interactions of the stochastic inputs.

The objective of this chapter is to document the development of the above stochastic
and deterministic components of the proposed Joint Probability Model. In particular,
this chapter first describes the selection of test catchments, and the collection and
verification of rainfall and streamflow data used in this study. It then introduces the
storm definition developed to extract storm events from the rainfall database. The
determination of the stochastic elements of the proposed model is presented next. This
includes the development of the probability distribution of rainfall duration, the
frequency curves of rainfall intensity, the stochastic representation of design temporal
patterns and the statistical distribution of storm initial loss. Finally, the derivation of the
deterministic modelling elements, including the estimation of the parameters of the
lumped runoff routing model and other fixed design inputs, is discussed. For
illustration, observed rainfall-runoff data at one Victorian catchment, the La Trobe
River catchment at Noojee, were used in this development. Testing of the Joint

Probability Model on another catchment is dealt with in Chapter 6.
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4.2 DATA COLLECTION AND VERIFICATION

For this project, two types of data were necded: rainfall and streamflow data. Observed
rainfall data were used to extract'slorm events from records, from which the probability
distributions of rainfall characteristics (dvration, intensity, and temporal patterns) were

developed. Streamflow data (annual maximum series) were used in the development of

the flood frequency curve for evaluating the proposed Joint Probability Model. The

derivation of the statistical distribution of the initial loss and the calibration of runoff

routing mode] parameters required concurrent rainfal! and streamflow events.

The collection and verification of data necessary for this study include the selection of
test catchments, along with the extraction and checking of rainfall and streamflow data.

These steps are described below.

4.2.1 Selection of test catchments

In order to select test catchments for applying the proposed Joint Probability Model,
catchment type, size, and data availability were important considerations. The selected
catchments should be rural and have no significant artificial storage. Furthermore, they
should be small to medium-sized (up to 500km? in mountainous regions, or 1000km? in
flat areas). In addition, they should have readily obtainable rainfall and streamflow data
of good quality and quantity. It is also desirable that the selected catchments cover a

wide range of locations, rainfall regimes, or catchment characteristics.

It would have been preferable to select several catchments to apply the proposed model.
However, due to the limited project time, only two catchments, the La Trobe River
catchment at Noojee (station number 226205C), and the Tarwin River catchment at
Dumbalk North (station number 227226) were finally used in this study. These
catchments were selected from a database compiled by Hill (1994) because they
satisfied the above considerations. In particular, they have relatively long records of
streamflow {at least 27 years of data) necessary for flood frequency analysis.

Furthermore, observed rainfalls from some recording rain gauges in or near the
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catchments were also available for periods concurrent with recorded streamflow. This
is an important condition that enables the comparison of rainfall-based flood estimates
with those from flood frequency analysis. Due to the small number of catchments

selected, the test catchments cover only a limited range of catchment conditions.

The La Trobe River catchment at Noojee (see Figure 4-1), with centroid located at
37.83 ° latitude and 145.96 ° longitude in south-eastern Victoria, is a rural and
unregulated basin. It covers an area of 290km?, and the length of the mainstream
channel, the La Trobe River, is 27.8km. There are a few pluviometers inside this
catchment, among which pluviometer 85237 has the longest length of rainfall record (22
years). This catchment is characterised by dense forest (93% of catchment area),

relatively high mean annual rainfail (1360mm), and high baseflow (Smith, 1998).

Figure 4-1: Location map of two test catchments and al} pluviometers used in this study

The Tarwin River catchment at Dumbalk North (see Figure 4-1) is also a rural and
unregulated basin in south-eastern Victoria. Its centroid is located at 38.51° latitude and
146.20° longitude. The catchment area is 127km’, and the mean annual rainfall is
1020mm. There are a few pluviometers in and around the catchment, of which
pluviometer 85106 just outside the catchment boundary has the longest record length

(22 years).
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4.2.2 Rainfall data

Observed rainfall data used in this study were extracted not only at pluviometer 85237
(for the La Trobe River catchmentj and at pluviometer 85106 (for the Tarwin River
catchment), but also at surrcunding pluviometers. While the recorded rainfalls at the
specified pluviometers may have been sufficient for the derivation of the probability
distributions of rainfall intensity and duration, the development of a stochastic model
for the rainfall temporal pattern clearly requires a larger database of rainfalls.
Therefore, rainfall records at 19 pluviometers in and around the selected catchments
were used, not only to facilitate the derivation of temporal pattern distribution, but also
to gain an understanding of the variability of uther rainfall characteristics. A location

map of the 19 pluviometers used in this study is also presented in Figure 4-1.

Recorded rainfalls at six-minuie intervals at the 19 pluviometers are stored on a
HYDSYS database maintained by the Cooperative Research Centre for Catchment
Hydrology (CRCCH). These data can be extracted from the database and cumulated
over any time step using the HYDSYS program (HYDSYS, 1994). In this study, 2 one-
hour time step was considered to be a reasonable compromise for rainfall extraction, as
longer accumulation periods lead to the loss of information on the temporal variation of
rainfall and flood events. On the other hand, the use of finer time steps requires more
time for rainfall event extraction and produces very large data files, as rainfall data were

recorded over many years at the stations used in this study.

The availability of data stored on the HYDSYS database for the selected 19 recording
rainfall stations is summarised in Table 4-1. Station identification numbers (station ID),
station names, start and end dates of each record, record lengths and periods of missing
data or gaps are summarised in this table. These periods were determined by extracting
annual totals of rainfall at a site together with the corresponding data quality codes.
Data quality codes are those used by the HYDSYS program to indicate the quality of
data stored (for example, codes 1, 80, 151, and 255 denote good continuous data,
accumulated data, missing data, and gaps in records, respectively). At some rainfali
stations, it is also noted that, there are some years in the record during which annual
rainfall totals were zero but flagged with code 1, possibly due to errors in data

transcription. For example, at station 85034, the whole year of 1992 was recorded as




Chapter 4 52

having good coniinuous records, but the annual rainfall total for the year was given as

zero. In Table 4-1 this situation is described as “zero rainfall in 1992".

Table 4-1: List of flow gauging sites and 19 recording rainfall stations vsed and data

availability
No. Station ID Siation name Stant of Endof Record length Remarks
record record (years)
| 226205C La Trobe River at Noojee 1961 1995 35 This is a flow gauging station
2 227226 Tarwin River at Dumbalk 1971 1997 27 This is a flow gauging station
1 85000 Aberfeldy 10/1969 08/1984 14 Gaps in 1981-1982 (inclusive)
2 85026  Erica State Forest 04/1959 0911975 16 Zero rainfall in 1966
3 B5034 Glenmaggie Weir 121957 1171993 36 Zero rainfall in 1992
4 85072 East Sale AMO 05/1953 12/1991 39
5 85103  Yallourn SEC 1171949 0141972 24
6 85106 Oisens Bridge 01/1957 1271978 22
K 85170 Traralgon LV.W 08/1961 1211975 15
8 85176 Tanjil Bren PO 06/1957 1241979 22 Gap in 1960
9 85236 Callignee North 08/1961 1211975 14 Zero rainfall in 1973
10 85237 Noojes Eng. HMSD 03/1959 12/1980 22
11 85240  Ellinbank 08/1961 12/1993 32 Gap in 1969
12 85256 Barkley River 04/1974 11/1993 19 Gap in 1992
13 86038 Essendon Airpon 02/1951 1171986 36
14 86071 Mch. Regional Office  O4/1873 071997 109 pors i 60 aeransinilin
15 86142 Mu. St Leonard 01/1954 0171983 30
16 86219 Coranderk 1271955 12/19,7 23
17 86224 Dandenong Composite 0171965 10/1991 27
18 86234 Croydon South 04/1965 /1991 24 Gap in 1976-1978
19 86314 Koo-Wee-Rup 0171957 12/1991] 35
Min 14
Max 169

Average 204

In the present study, in order to ensure the quality of outputs, only periods with good
continuous records were included in the analysis, whereas periods with missing or
accumulated data, gaps, or errors in data transcription were not taken into consideration.
The accumulated data were discarded because they were considered of very little use,
especially in the analysis of rainfall temporal patterns. For the 19 recording rain gauges,
it is evident from Table 4-1 that the record lengths of these good data vary from a
minimum of 14 years to a maximum of 109 years, with an average of 29 years. It can
also be seen in Table 4-1 that most of the pluviometers used only have concurrent data
of 15 years from 1961 to 1975. However, possible effects on the regional analysis of
part of the pooled data coming from non-concurrent rainfall periods are considered

small and therefore neglected in this study.
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Before deriving the statistical distributions of rainfall characteristics, it was considered
essential to check the homogeneily' and c:onsistenc,\,f2 of these observed rainfall data.
The importance of data verification has long been emphasised in the literature. For
instance, the WMO (1966) stated that "homogeneity can not be taken for granted;
indeed, it can be safely assumed that any series longer than 10 or 20 years has some
kind of inhomogeneity in it, and possibly several kinds". Linsley et al. (1988) and
Hosking and Wallis (1997) confirmed that before beginning any statistical hydrologic
analysis, it is important to be sure that the data are homogeneous. Further support is
given by Stedinger et al. (1993) who wamed users of precipitation data about possible
errors in data collection caused by wind effects, changes in station environments and
observers, and stated that precipitation data should be checked for outliers and
consistency. Searcy and Hardison (1960) also confirmed that a consistency check is one

of the first steps in the analysis of a long record.

In order to check the homogeneity of rainfali at each individual station, a combined
procedure using both graphical and statistical methods was employed in this research.
The graphical technique, in the form of time-series plots, enabled a quick visual
detection of any apparent trend or change in the mean value in the plotted series. The
CUSUM test for discontinuity (McGilchrist and Woodyer, 1975) and the Mann-Kendall
rank correlation test for trend (WHO, 1966) were then used to verify the conclusions
obtained from the time-series plots, as well as to compute the statistical significance of
any departure from homogeneity. These tests were applied to annual series of
maximum daily rainfalls at each of the 19 rainfall stations. Details of the tests, the
procedure used to check the homogeneity of rainfalls, together with test results are
presented and discussed in Appendix D. Results of the homogeneity tests showed that
the observed rainfall data at statton 85103 from 1956 onwards, and at other 18
pluviometers during their periods of record satisfy the requirement of homogeneity. It
was then assumed that the conclusions from the homogeneity tests on daily rainfall data

also apply to the hourly data observed at the same sites.

"The requirement of homogeneity is that data should be drawn from the same statistical distribution.
he requirement of consistency is that lypes and techniques of measurement or the manner of data
processing should be consistent.
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Checking of the consistency of rainfall data was carried out for rainfall events extracted
from the rainfall database. As the event definition used in this study is introduced in
Section 4.3, the consistency check of the extracted events is also described in the same

section.

4.2.3 Streamflow data

Streamflow data used in this study are those recorded at station 226205C {at the outlet
of the La Trobe River catchment at Noojee) and station 227226 (at the outlet of the
Tarwin River catchment at Dumbalk North). Like observed rainfall, observed
streamflow data are stored on the HYDSYS database.

The availability of streamflow data stored on the HYDSYS database for the specified
flow gauging sites is also suminarised in Table 4-1. It can be seen from this table that
recorded flow data are available for 35 years (from 1961 to 1995) for the La Trobe

River catchment, and 27 years (from 1971 to 1997) for the Tarwin River catchment.

Like rainfall data, observed streamfow data at the two catchments under study were aiso
checked for homogeneity. The CUSUM and Mann-Kendall tests were applied to annual
maximum instantaneous flows at each of the two sites. Test resuits, tabulated in
Appendix D, indicated that there is no evidence to reject the assumption of homogeneity

of the recorded flow data at these two sites.

4.2.4 Summary

To apply and evaluate the proposed Joint Probability Model for design flood estimation,
two catchments and 19 recording rain gauges were selected. The selected test
catchments were the La Trobe River catchment at Noojee (station number 226205C)
and the Tarwin River catchment at Dumbalk North (station number 227226). The 19
selected pluviometers were in and around these test catchments. The La Trobe and
Tarwin catchments have 35 years of flow data (from 1961 to 1995), and 27 years (from

1971 to 1997), respectively, whereas record lengths at the 19 pluviometers range from
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14 years to 109 years, with an average of 29 years of data. These observed rainfall and

streamflow data are stored on the HYDSYS daiabase.

In this study, the verification of observed rainfall and flow data for homogeneity and
consistency was considered essential {0 make sure that the data were drawn from the
same probability distribution at any given site. To achieve this, annual series of
maximum daily rainfalls at each of the 19 rainfali siations and annual maximum
instantaneous flows obtained at the flow gauging stations were checked for
homogeneity over time. Test results indicated that the observed rainfall and flow data at
the selected stations satisfy the requirement of homogeneity. Checking of the
consistency of rainfall data was carried out for storm events extracted from the rainfall

database and is described in Section 4.3.

4.3 STORM EVENT DEFINITION

4.3.1 Overview

Application of the proposed Joint Probability Model involves the generation of rainfall
and flood events that will simulate observed events. Before the statistical distributions
of these event characteristics can be determined, it is necessary to develop a clear
concept of what is meant by an ‘event’, that is, to come up with an event definition. For
the case of rainfall, once a storm event is clearly defined, these events can be extracted
from the rainfall database and their characteristics (intensity, duration, and temporal
patterns) analysed, Additional checking of the extracted events is then necessary to

ensure the requirement of consistency for statistical analyses is satisfied.

There are various ways to define a storm event. For example, Huff (1967) described a
storm as a rain period separated from preceding and succeeding rainfall by 6 hours or
more. He used all storms in which the network average rainfall exceeded 0.5 inch,
and/or one or more gauges recorded over one inch. In another study, Beran (1973)
defined the beginning of a storm as the onset of rain, and the end to be when there was

less than X mm of rain in the preceding Y hours. X and Y were chosen to represent the
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conditions under which a flood hydrograph would retum to near baseflow and to aliow
short spells of zero rainfall to occur within a storm event. Other researchers such as
Yen and Chow (1980), Istck and Boersma (1986), and Sivapalan et al. (1996) simply
defined storms as periods of rain separated from each other by at least one, six, and two
hours of zero rainfall, respectively. Thus, it can be seen that, in order to define a storm
event, the start and end of the event must be specified. Additionally, a threshold
average rainfall intensity (or depth) may also be required to exclude smail events that

are insignificant in producing flood runoff.

This section first details the development of a storm definition used in this research. It
then describes an application of the adopted storm definition to extract storm events
from the time series of observed hourly rainfalls at the 19 selected rainfall stations.

Finally, it outlines the verification of the extracted storm events for consistency.

4.3.2 Development of storm definition

For the purpose of this study, three criteria were used to define storm events. Firstly,
they are mutually exclusive stochastic events so that storm duration becomes a random
variable. That is, any wet spell contributes oniy a single data point to the frequency
distribution of each rainfall characteristic. Secondly, the events must have the potential
to produce significant runoff. In other words, the average rainfall intensity during the
duration of an event should exceed some threshold value. Lastly, the events should
exclude periods of insignificant rain at the start or end of the rainfall period. A storm

definition to satisfy these three criteria was developed in the four steps outlined below.

4.3.2.1 Stast and end of storm events

In the literature, the start of a storm event is usually the onset of rain after a minimum
separation time from the previous evenl. This separation time represents a rainless or
‘dry’ period when no significant rainfall occurs. The end of the event is also defined by

the separation time.
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There are different methods for determining the separation time between storms. Some

examples are the combined rainfall-streamflow analysis (Beran, 1973), the ‘critical

|| duration’ method (Bonta and Rao, 1988), and the subjective method (Huff, 1967, Yen
and Chow, 1980; Nguyen and Rousselle, 1981; Sivapalan et al.,, 1996). With the
B subjective method, the break between individual events can be subjectively chosen, say

f at least one hour (Yen and Chow, 1980; Nguyen and Rousselle, 1981), two hours
(Sivapalan et al., 1996), or six hours (Huff, 1967; Istok and Boersma, 1986). This
| method is the simplest for practical applications, and therefore was adopted for

deterrining the separation time between storms used in this study.

A
Using the subjective method for determining the event separation time (H), first of all, a
storm was preliminarily defined as beginning with 2 non-zero hourly rainfall and being
h separated from the previous and the next events by at least H hours of no rain. In order
to determine an appropriate value of H, an exploratory analysis was then carried out for
a observed hourly rainfalls at pluviometer 8§5237. Three value_s of H (1, 3, and 6 hours,
' minimum) were tried. Results of the exploratory analysis indicated that, as H increases,
the size of the resulting storm sample decreases but the mean and the maximum storm
i durations increase. In examining the extracted events, it can be seen that some periods
of no rain can occur within storm events separated by 3 hours or 6 hours. However, the
use of the separation time H of one hour tends to produce many very short events (with
A duration of 1 or 2 hours) that are very likely to belong to the same weather mechanism.
- From the results of the exploratory analysis, the minimum separation time of six hours
y of no rain between successive storms was preliminarily selected as the most suitable for
the catchment sizes used in this study (290](1112 and 127km?). This separation time tends
Jg to produce long duration storms (with average duration of at least 15 hours) which are
generally more responsible for producing runoff for the given catchment sizes. In
ii addition, it avoids breaking up storms of the same weather system into separate, very

short and small events.

4.3.2.2 Storm threshold intensities

To eliminate small storms that are not able 1o produce floods, a threshold average
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rainfall intensity was required. This threshold intensity could be seiected as a constant,
or as a function of storm duration. However, it is reasonable to vary the average
threshold rainfall intensity with storm duration, as high average intensities are often
associated with short duration storms and vice versa. In this research, for convenience,
the 2-year ARI average rainfall intensities of various durations at the design location, as
provided by the Institution of Engineers, Australia (1987, Chapter 2), were used as the
basis for computing two threshold intensities for storms obtained from the record at that

location.

The first threshold intensity was defined to be the product of the overall intensity
reduction factor (F1) and the 2-year ARI average intensity (*I,,) for a storm of duration

D at the design location. Using this threshold value, a storm event, separated from the
previous and the subsequent events by at least six hours of no rain, was included in the
storm sample if its average intensity (RFIp) during the whole storm duration (D)
satisfied the following condition:

RFI,, > F1x (1)
where 0 < F1 «1.

However, in the storms that were discarded from the above selection process on the
basis of average rainfall intensity over the whole storm duration, there could have been
storms that had some internal periods of intense rain. Such storms may have caused a
rise of flood hydrographs if the catchment surface was already wet, and therefore were
worth included in the rainfall analysis. To include such storms, the concept of sub-

storms was required.

A sub-storm of duration d was defined as d successive hourly periods during a given
storm of duration D, on the condition that d < D. For example, in a storm of four-hour
duration {D = 4 hours), there are four sub-storms of one hour, three sub-storms of two
hours, and two sub-storms of three hours. In other words, a complete sample of sub-
storms having a duration d within a storm of duration D is an overlapping series of all
sub-storms lasting d hours. Figure 4-2 illustraies how sub-storms of two hours can be

formed within a rain period of four hours.
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Figure 4-2: Formation of sub-storms of 2 hours within a storm of 4 hours

| To select extra storms that have relatively low average intensity but include periods of
intense rain, a second threshold average rainfall intensity was used. This threshold
intensity was defined to be the product of the internal sub-storm intensity reduction

factor (F2) and the 2-year ARI average intensity for a sub-storm of duration d at the

design location (’I,). Thus, a storm was also selected if the maximum average

i intensity from all sub-storms of duration d (RFI ;™) satisfied the following requirement:
RFI;* = F2 x (’1,)

) where F2 > 0.

This requirement was checked for all values of sub-storm duration d (d < D}.

i In order to determine numerical valtues for F1 and F2, an exploratory analysis was again
carried out using hourly rainfall records at pluviometer 85237 inside the La Trobe River
‘ catchment. In this analysis, to extract storm events from the record, the minimum event
separation time of six hours of no rain was used with various combinations of Fl and
F2. The values of F1 used ranged from 0.3 to 0.7 at 0.1 increments, and the values of
| F2 were 0.3 to 0.6 at 0.1 increments. For some cases, F2 of 100 was also used (for

reasons explained below).

|

From the results of the exploratory analysis, two important conclusions were drawn.
‘ Firstly, the values of the intensity reduction factors F1 and F2 directly affect the number
‘ of storms in the storm sample, and therefore the ‘quality’ of the extracted storms. The
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lower the intensity reduction factors are, the bigger the storm sample becomes, but this
sample may also include storms thai have relatively low average intensities. In other
words, the use of low threshold rainfall intensities produces more storms that may be
insignificant in producing runoff, and vice versa. Secondly, in order to include
additional storms that mayv ha 80;113 potential in producing runoff, 1t is necessary to
set F2 not too high. For example, the number of storms obtained using F1 of 0.5 and F2
of 100 is equal to the number of storms obtained using only F1 of 0.5. This is because

the second threshold intensity is so high that no additional storms can be selected.

Results of the exploratory analysis for station 85237 indicated that any of the following
four combinations of F! and F2 would be appropriate. They are F1=0.4 and F2=0.5,
F1=0.4 and F2=0.6, F1=F2=0.5. and Fi1=0.5 and F2=0.6. On average, each of these

combinations gives about 4 to 7 storms per year.

In order to determine the best comnbination of F1 and F2 for the 19 rainfall stations in
the test region, a sensitivity analysis was also carried out. In this analysis, the above
four combinations of F1 and F2 determined for station 85237 were applied to extract
storm events for the other 18 sites. Results of this analysis showed that these
combinations gave an average of about 5 to 7 events per year per station. For this study,
the combination of F1=0.4 and F2=0.5, giving an average of 7 events per year per

stat.on, was adopted.

4.3.2.3 Visual check of the extracted events

After determining the separation time and the intensity reduction factors for defining
storm events, the next step was to visually check the extracted events. This was carried
out by plotting all storms in te sample obtained at pluviometer 85237 and visually
examining them. Results indicated that, whereas there were mostly ‘normal’ storms in
the sample (see an exami:lc in Figure 4-3), a number of storms could be considered as
‘abnormal’ (see examples in Figure 4-4). These are the storms that have lengthy
periods of insignificant rain at the start or at the end of the storm, or even during the
storm duration. For flood analysis, these periods could be considered as unimportant in

producing runoff. Therefore, the storm definition had to be refined.
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Figure 4-3: Example of a ‘normal’ storm (station 85237, H=6 hours, F1=0.4, F2=0.5)
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Figure 4-4: Examples of ‘abnormal’ storms (station 85237, H=6 hours, F1=0.4, F2=0.5)
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4.3.2.4 Refinement of storm definition

In order to reduce possible biases in storm duration due to periods of very little rain at g

the start or end of storm events, and to produce storm events that are more appropriate

for flood analysis and simple to analyse, periods of very littie rain at the beginning or

end of the events were eliminated. Storms with internal periods of very little rain were

also separated into two or more events. To do this, the following two additional criteria
were introduced.

o The ‘dry hour’ criterion: An hour was considered as dry if its rainfall amount was
less than or equal to C1 mm of rain.

s The ‘insignificant period’ criterion: A rainfall period was considered to be
insignificant if all hourly rainfalls in the period were less than or equal to C2 mm of
rain, and the average rainfall intensity during the period was less than or equal C1
(mm/h).

Incorporating these two cniteria in the previous storm definition that made use of the

separation time between storms and the two threshold intensities, a storm (see Figure

4-5) was defined in three steps:

e Step 1: A ‘gross’ storm was a period of rain starting and ending with a ‘non-dry
hour’, preceded and followed by at least H ‘dry hours’,

e Step 2: Any ‘insignificant’ period of rainfall at the beginning or end of a gross storm
was then cut off from the gross storm to produce the ‘net’ storm of duration D.

» Step 3: The net storm was then assessed with regard to its severity and only kept as a
‘significant’ storm if it had the potential to produce a flood. This assessment was
performed by firstly comparing the average rainfall intensity of the net storm (KFIp)

with a threshold average intensity for that storm duration: Rrrr, > Fix(*1,). A second

criterion was then applied to allow for the possibility of a storm-internal period of
heavy rainfall (duration d and average intensity RFl;) producing a flood:

RFI™ 2 F2x(*l,), where 3, and 3 were respectively the estimated 2-year ARI

intensities for the durations D and d.

In this analysis, the following values were adopted: H=6 (hours), F1=04, F2=0.5,
C1=0.25 (mmvh), and C2=1.2 (mm/h).
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Figure 4-6: Examples of storms obtained using the adopted storm definition
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Using the extracted storm data at station 85237 for illustration, it was concluded that the

inclusion of two additional parameters C1 and C2 in the storm definition results in

events that better satisfy the criteria described in Section 4.3.2. Figure 4-6 shows how
‘abnormal’ storms in Figure 4-4 change using the refined storm definition with the

adopted parameter values.

4.3.3 Extraction of storm events

The storm definition with the specified five parameters was applied to extract storm
events from hourly rainfall records at each of the 19 rainfali stations used in this
research. The resulting number of events obtained at each site is summarised in column
3 of Table 4-2. This table shows that the number of events per station ranges from 51 1o

797 with an average of 210 events.

Table 4-2: Sampie size of extracted storms using the proposed storm definition
[H=6 hours, F1=0.4, F2=0.5, C1=0.25 (mnvh), C2=1.2 (mm/h)]

Station ID | Record o Number of storms Average
length | be:or: discarding events | after discarding events | number of events
(years) iy repeated values with repcated values per year

35000 14 51 50 3.6
85026 16 129 129 8.1
85034 36 178 178 4.9
85072 39 231 231 5.9
85103 24 143 143 6.0
85106 22 208 2006 9.4
85170 15 113 113 7.5
85176 22 185 179 8.1
85236 14 74 74 53
85237 22 168 167 7.6
85240 32 335 331 10.3
85256 19 94 92 4.8
86038 36 210 209 5.8
86071 109 797 797 7.3

| 86142 30 230 229 7.6
86219 23 196 195 8.5
86224 27 176 176 6.5
86234 24 209 207 8.6
86314 35 269 269 7.7

Average 29 210 209 7
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4.3.4 Checking of extracted events for consistency of hourly rainfails

As discussed in Section 4.2.2, only recorded hourly rainfalls of good quality were used
to extract individual events, but this criterion was insufficient to guarantee the resulting
events are free of errors. These errors may oceur in the form of repeated or outlying

hourly values, which may arise from errors in recording or transcribing the data. A

consistency analysis was therefore needed as a final check of the event data before

further analyses were undertaken.

A preliminary investigation of the storm events at station 85237 indicated that there
were a few observed storms that contained periods of repeated hourly data during the

storm duration. An example of such a storm is given in Figure 4-7.

For this analysis, a storm was excluded from the storm sample if it has a period with
repeated data whose length is greater than a quarter of the storm duration. Using this
criterion, the extracted storms at the 19 pluviometers were inspected, and 21 events at
10 stations were discarded from the original storm samples. The number of the
remaining storms at each of the 19 stations is given in column 4 of Table 4-2. The
average number of storms per year at each rain gauge is shown in Table 4-2 (column 5).
On average, over the 19 selected rainfall stations used in this study, the proposed storm

definition gives 7 storms per year per station.

Raiafall (mm)

(]
o

Storm time (h)

Figure 4-7: An example of a storm with repeated rainfall values (station 85237)
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4.3.5 Summary

In this research, a storm definition was developed in order to extract storm events from
continuous rainfall records for developing the probability distributions of event
characteristics. These probability distributions are to be used as inputs to the proposed

Joint Probability Model for design flood estimation.

Storm events were defined such that they are stochastic events,‘ have no periods of
insignificant rain at the start and end of the events, and have the potential to produce
floods. Five parameters were used to extract those events, namely the minimum hourly
rainfall when a gross storm starts (C1), the minimum hourly rainfall to define the start
and end of the corresponding net storm (C2), the minimum separation time between
successive events (H), and the intensity reduction factors (F1 and F2) to compute the
threshold average rainfall intensities during the entire storm duration or during intemal
periods of intense rain. Values of these parameters were determined by exploratory and

sensitivity analyses.

Using the proposed storm definition, samples of rainfall events were extracted from
continuous rainfall records at the 19 pluviometers used in this study. The extracted
events were then visually examined for possible errors in recording or transcribing
hourly rainfall in each individual event. In some samples, there were a number of
events that had long periods of repeated hourly rainfalls, so these storms were discarded
from the corresponding samples. With the remaining storms, the adopted storm

definition gave an average of 7 stors per year per station.

With respect to rainfall analysis, it can now be concluded that the samples of significant
storm events were extracted from homogeneous observed data (with respect to time),
and that they were free of detectable errors in data transcription or recording. Such
storm samples can now be statistically analysed for characteristics such as storm
duration, average intensity, and temporal patterns. In the next section, the development

of the frequency distribution of storm duration is presented.
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4.4 FREQUENCY DISTRIBUTION OF STORM DURATION

4.4.1 Background

Frequency analysis refers to methods for determining how frequently possible values of
a random variable occur. The analysis is carried out on a sample in order to make
inferences about the probability distribution of the population from which the sample is
drawn. In hydrology, the selected random variable may be the flowrate of a stream, the
average rainfall intensity of a storm, or the duration of a storm event. Frequency
analyses can be conducted using at-site or regional methods. Broadly speaking, at-site
frequency analysis uses observed data at a particular site to produce probability
estimates of the particular variable. In contrast, regional frequency analysis uses
multiple samples of the same variable at different measuring sites and is often employed
for frequency estimates at ungauged sites where there is no or insufficient «bserved
data.

In order to develop the frequency distribution for storm duration at pluviometer 85237
in the La Trobe River catchment at Noojee, either at-site or regional frequency analysis
could be used. There is a sufficient number of the extracted storm events at the
specified site (167 events) for at-site frequency analysis, but samples of storm duration
data are also available at other gauges around this site that can be used for regional
frequency analysis. However, regional frequency analysis was adopted because, when
used at gauged sites, it can yield more accurate estimates of the frequency of storm
duration (due to the availability of more data). In addition, extrapolation can be made to

ungauged sites in the region of interest, iIf necessary.

Many regional frequency analysis methods are available. A description of these is
given by Cunnane (1988). Among the available methods, the procedure developed by
Hosking and Wallis (1997) has been widely applied in regional flood frequency
analyses, low flow analyses, as well as in rainfall regionalization (Fill and Stedinger,
1995). The popularity of this procedure stems from its many advantages. For example,
it can yield reasonably accurate quantile estimates even when there are plausible
departures from the assumptions used in the procedure. In addition, it employs L-

moments that can provide simple and reasonably efficient estimates of distributional
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parameters. Furthermore, a complete computer program for applying the procedure is
readily available (Hosking, 1997). For these reasons, this procedure was adopted in this

study for determining the frequency distribution of storm duration.

This section first describes the Hosking and Wallis method of regional frequency
analysis. The application of this method to derive the frequency distribution of storm

duration at pluviometer 85237 is then presented in detail, and the resulis are discussed.

4.4.2 The Hosking and Wallis method of regional frequency analysis

The Hosking and Wallis regional frequency analysis method (Hosking and Wallis,
1997) is developed from the assumption that the frequency distributions of a random
variable at N sites in a homogeneous region are identical apart from a site-specific
scaling factor. The objective of this method is to compute the regional growth curve
q(F) for a group of sites, from which the frequency curve at each individual site Q;(F)

can be computed from the following relationship:

Qi(F) = puiq(F) i=1,2,...,N 4-1)
in which Q;(F) 1s the quantile of non-exceedance probability F (0<F<1) at site i; J; is the
scale factor at site i, usvally taken as the mean of the observed data; q(F) is the
dimensionless regional frequency distribution common to all sites {called the regional

growth curve); and N is the number of sites.

To estimate the regional growth curve, four stages are required, namely the screening of
data, the identification of homogeneous regions, the choice of a regional frequency
distribution, and the e¢stimation of the parameters of the regional frequency distribution.

These stages are discussed below.

The aim of data screening is to ensure that the data at each site are homogeneous and
consistent over time. At this stage, sites that seem to have erroneous data are flagged as
discordant sites. Data at these discordant sites then need to be closely examined to
eliminate gross errors and inconsistencies. [In practice, to screen the data, the

discordancy measure D; (see Appendix E) is computed for each individual site. A site
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is discordant with others in the group if its discordancy measure exceeds a critical value
suggested by Hosking and Wallis (1997).

After inspecting the data, the next step is to define the homogeneous region® for the
group of sites. This region can be tentatively defined by geographical contiguity, site
characteristics, or statistics computed from at-site measurements of the variable of
interest. The homogeneity of the proposed region can then be tested by comparing the
between-site variability of site statistics with what would be expected of a homogeneous
region. In practice, this is undertaken by computing the heterogeneity measures H,, H,
or H; (see Appendix E). The region is declared to be heterogeneous if any of the

heterogeneity measures is sufficiently large (that is, H), H; or H3 2 2),

In the choice of an appropriate regional frequency distribution for the homogeneous
region, a goodness-of-fit test is applied, which involves computing summary statistics
of the data and testing whether their values are consistent with what would be expected
if the data were a random sample from some hypothesised distribution. In the
estimation of the parameters of the regional frequency distribution, the distributional
parameters are first estimated separately at each site. These at-site estimates are then
combined to give a regional average. In practice, the above two sieps are carried out by
computing the goodness-of-fit measure Z°*" (see Appendix E) for each of five general
distributions. These distributions are the Generalised Logistic (GLO), Generalised
Extreme Value (GEV), Generalised Pareto (GP), Lognormal (LLN), and Pearson type 111
(PII). A given distribution is considered to give an acceptable fit to the observed data

if Z is sufficiently close to zero (that is, |z°'5'f| <1.64).

A FORTRAN subroutine to compute the above three statistics for regional frequency
analysis has been written and provided by Housking (1997). The theoretical background
_ of L-moments, on which the Hosking and Wallis regional frequency analysis method is

based, is also summarised in Appendix E.

A homogeneous region is a group of sites whose frequency distributions of a random variable are
considered to be the same, after appropriate scaling.
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4.4.3 Application and results

In order to derive the frequency curve of the storm duration at pluviometer 85237 using

the Hosking and Wallis method of regional frequency analysis, the following procedure

was adopted. First of all, unbiased estimates of sample L-moments of storm durations
at all 19 pluviometers were calculated using the formulas documented in Appendix E.

The computed L-moments include the sample mean (1;), sample L-CV (t), sample L-
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skewness (t3), and sample L-kurtosis (tg). The discordancy measures were next

estimated for each of the 19 rainfall sites. The computed value of each site was then
compared with the critical value of 3 suggested by Hosking and Wallis (1997). If there
were any discordant sites, data at these sites would then be examined to eliminate
possible errors. Next, the homogeneous region of the storm duration was tentatively
defined. The heteorogeneity statistics were then computed to decide whether or not the
defined region was acceptably homogeneous. Finally, for the accepted homogeneous
region, the goodness-of-fit measures were determined for each of the five candidate
distributions and the distribution that best fitted the observed duration data at the

specified sites was selected.

The L-moment statistics computed for the observed storm durations at the 19 selected
pluviometers, and the corresponding discordancy statistics (D;) are presented in Table
4-3. Plots of these L-moment statistics are shown in Figure 4-8 and Figure 4-9. From
Table 4-3, it is clear that none of the D; values exceeds the critical value of 3. This
implies that there is no . vidence of gross errors or inconsistencies in the storm duration
data at any of the 19 rainfall stations used. This result is not surprising because the
rainfall data at all these pluviometers had already been checked for consistency and
homogeneity in time, as described in Sections 4.2 and 4.3. Of all the computed D;, the
largest value is 2.71 at pluviometer 86314. This indicates that the variability of sample
L-moments at this site is quite large compared with other sites in the group. This large
variability is associated with the largest L-skewness (13=0.362) and L-kurtosis (14=0.21)
of this site. However, as shown in Figure 4-8 and Figure 4-9, the large deviation of the
L-moment ratios at this site from the group average is in a direction concordant with the
corresponding deviations of other sites in the group. As there is no evidence of errors in
data at this site, there are no physical grounds to move this site to another region, <r to

eliminate it from the group.
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Table 4-3: L-moments and the discordancy statistics of storm duration for 19

pluviometers used

Site]D  Number of storms 1; (h) . t tg ts D,
85000 50 18.66 0.472 0.270 0.079 2.440
85026 129 20.38 0.457 0.280 0.132 1.400
85034 178 16.51 0.441 0.290 0.139 0.260
85072 231 14.16 0.421 0.238 0.097 0.340
85103 143 18.99 0.394 0.195 0.118 1.630
85106 206 24.58 0.422 0.245 0.125 0.210
85170 113 15.58 0.382 0.184 0.089 1.650
85176 179 29.07 0.410 0.187 0.094 1.280
85236 74 16.14 0.424 0.230 0.086 0.510
85237 167 23.49 0.420 0.209 0.089 0.420
85240 331 15.58 0.445 0.311 0.156 0.560
85256 92 18.50 0.423 0.276 0.159 0.740
86038 209 13.18 0.401 0.224 0.087 1.820
86071 797 12.62 0415 0.287 0.140 0.830
86142 229 20.23 0.411 0.291 0.177 1.080
86219 195 22.31 0.435 0.244 0.092 0.430
86224 176 10.95 0.445 0.312 0.143 0.600
86234 207 15.17 0.432 0.255 0.118 0.090
86314 269 15.10 0.421 0.362 0.210 2.710
l{.c_gional wei ghted mearn 16.96 0.423 0.268 0.131
0.5
L 2
L ]
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Figure 4-8: Plot of L-CV versus L-skewness for storm duration at 19 pluviometers
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Figure 4-9: Plot of L-kuortosis versus L-skewness for storm duration at 19 pluviometers

To define the homogeneous region for storm duration, three attempts were made. In the
first attempt (Trial 1), all 19 sites were included a single group. Fowever, the
heterogeneity measures H; and H; computed for this group were greater than 3 (see
Table 4-4), indicating that the intended region was definitely heterogeneous as far as the
L-skewness and l.-kurtosis were concemed. Therefore, the region of 19 pluviometers
could not be regarded as homogeneous in terms of storm duration and had to be

redefined.

Table 4-4: Heterogeneity statistics computed for various regions of storm duration

Trial Numbi: Region name Heterogeneity measures
of sites H] Hz H3
1 19 All 19 sites 0.20 3.08 3.29
2 11 Group | 0.03 1.66 2.06
3 Group 2 0.46 2.39 2.42
3 6 Gruup 3 0.06 1.42 1.30

In the second attempt (Trial 2), site elevation was used as a criterion to define the
region, because when plotting gauge elevation against the average storm duration at
each site (see Figure 4-10), there seemed to be a trend for the average duration of storms
to increase as gauge elevation increases. In this trial, the 19 sites were divided into two
groups (Group 1 and Group 2) using an arbitrary threshold elevation of 150m.

Nevertheless, the heterogeneity measures H; and Hi computed for the sites in these two
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groups still exceeded 2 (see Table 4-4), suggesting that the groups so formed were
heterogeneous. As a result, another criterion was needed to define the homogeneous

region of storm duration.
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Figure 4-10: Plot of average storm duration against gauge elevation at 19 pluviometers

In the last attempt (Trial 3), sites contiguous to the pluviometer under consideration
(station 85237) were grouped together. This group (called Group 3) consisted of 6 sites
as follows: 85000, 85026, 85034, 85176, 85237, and 85256. The heterogeneity
measures computed for the group of 6 sites in Trial 3, tabulated in Table 4-4, are:
H,=0.06, H,=1.42, and H3=1.30. As H, is very close to zero, it can be concluded that
the proposed region of six sites is acceptably homogeneous with respect to L-CV.
Nevertheless, the values between 1 and 2 of H, and H; suggest that the population
distributions of storm duration for the six pluviometers in Group 3 are possibly
different. The possible heterogeneity of the storm duration is in the form of sites having
equal L-CV but slightly different L-skewness and L-kurtosis. As discussed by Hosking
and Wallis (1997), this form of heterogeneity has little effect on the accuracy of quantile
estimates except very far into the extreme tails of the distribution. For the current
application in which frequency estimates of very long storm duration are of little
interest, this form of heterogeneity is not important. Therefore, at this stage, it is

reasonable to consider Group 3 as acceptably homogeneous.

The goodness-of-fit measures computed for the five distributions fitted to the storm

duration data of six pluviometers in Group 3 are presented in Table 4-5. Plots of the I.-
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CV and L-kurtosis of these siies against the corresponding L-skewness, along with
those of some theoretical distributions are given in Figure 4-11 and Figure 4-12. These
plots, callzd L-moment ratio diagrams, are graphical tools used to select a theoretical
distribution that gives the best fit to an observed set of data. Mathematical expressions
used to plot the theoretical distributions shown in these plots are documented by
Hosking (1991), and Vogel and Wilson (1996).

Table 4-5: The goodness-of-fit measures computed for storm duration data of Group 3

Number Region Goodness-of-fit measure (Z°°)
of sites GLO GEV LN PIII GP
6 Group 3 7.86 5.33 4.02 217 -0.90

From Table 4-5, it can be seen that, of the five candidate distributions, only the ZP®7
statistic computed for the Generalised Pareto distribution (GP) is less than 1.64.
Therefore, this distribution was selected as the parent distribution of storm duration
because it gave an adequate fit to the storm duration data for all six sites in the proposed
greup. This selection is supported by evidence shown in the L-moment diagrams
(Figure 4-11 and Figure 4-12). For example, in Figure 4-11, the GP and Weibull
distributions give the best fit to the observed storm duration data, as observed sample L-
moments cluster more closely around these distributions, Similarly, in Figure 4-12, the

GP distribution gives the best fit to the observed storm durations for the six selected

sites.
0.6
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> 04— 7 | - Weibull

- 03 & m——GP
02 28  QObserved data

' X Regional weighted mean

0.1 4 ] .’ F :

0.1 0.2 0.3 0.4 0.5 0.6
L-skewness

Figure 4-11: Plot of L-CV against L-skewness for storm duration data for stations in

Group 3 and some theoretical probability distributions
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Figure 4-12: Plot of L-kurtosis against L-skewness for storm duration data for stations

in Group 3 and some theoretical probabiiity distributions

The GP distribution is a three-parameter distribution with the following parameters: &
(location), o (scale), ¥ (shape). More details of this distribution are given in Appendix
E. For the region of the six selected pluviometers, the parameters of the fitted regional
GP distribution are: £=0.045, a=1.158, ¥=0.212. Quantile estimates [D(F)] of the
regiona} growth curve fitted to the observed storm duration data for six stations in

Group 3 are given in the second row of Table 4-6.

Table 4-6: Quantile estimates of the regional growth curve (for Group 3) and of the

probability distribution of storm duration for pluviometer 85237

F 00t 005 01 02 05 08 09 09 098 099
DB(F) 006 010 017 030 079 162 215 261 312 345

1*D(F) (hours) | 1.3 24 39 70 186 381 506 614 734 811

To determine the frequency distribution of the storm duration for pluviometer 85237,
quantile estirates of the regional growth curve were multiplied by the at-site average

storm duration (1;=23.49 hours, in this case). Results of this calculation are given in the




Chapter 4 76

third row of Table 4-6. This table shows that 10%, 50% and 95% of storms at station
85237 have estimated duration less than or equal to 3.9 hours, 18.6 hours, and 61.4

hours, respectively.
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Figure 4-13: Observed and fitted frequency curves of storm duration for station 85237

A plot of the observed and fitted cumulative distributions of the storm duration for

station 85237 is given in Figure 4-13. As these two frequency curves arc almost

identical, it can be concluded that the adopted GP distribution is a suitable

representative of the duration of the observed storm events.

4.4.4 Summary

In this section, the probability distribution of storm duration for station 85237 was
determined using the regional frequency analysis procedure developed by Hosking and
Wallis (1997). Analysis results indicated that there was no evidence of gross errors or
inconsistencies in the sterm duration data, and that the duration of the observed rainfall

events for the rainfall sites used in this study had very similar L-CV but quite variable

1-skewness and L-kurtosis. In order to determine the homogeneous region of storm
duration, sites contiguous to the site of interest were grouped together. The group of

sites so-formed was homogeneous in terms of L-CV, but possibly heierogeneous in
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terms of L-skewness and L-kurtosis. However, this form of heterogeneity was assumed

not to have an effect on the quantiles of duration of interest.

The three-parameter Generalised Pareto distribution was used to characterise storm
duration. The fitted and observed probability distributions at the specified site were
almost identical, confirming the suitability of the adopted GP distribution.

4.5 CONDITIONAL FREQUENCY DISTRIBUTION OF RAINFALL
INTENSITY

4.5.1 Background

In rainfall-based design flood estimation, rainfall intensity is considered to be one of the
inputs that have significant influence on flood estimates. Therefore, in the proposed
Joint Probability Model as well as in the current Design Event Approach, rainfall

intensity is used as a stochastic input to the flood estimation process.

With the current Design Event Approach, at any location in Australia, estimates of the
average intensity of a rainfall event of a specified average recurrence interval (ARI) for
a given duration can be determined from a set of intensity-frequency-duration (IFD)
curves readily available for any design location (Institution of Engineers, Ausiralia,
1987, Chapter 2). These design IFD curves, developed for intense rainfall bursts within
storms, represent the frequency distributions of point rainfall intensity as functions of
rainfall duration. The current design IFD curves are accurate and consistent because
these curves have been obtained from a regional analysis of observed data collected at a

large number of sites.

In this research, a rainfall event is defined very differently from the definition of bursts
used by the Institution of Engineers, Australia (1987) for deriving the current design
IFD curves. As a resuit of the discrepancy in these event definitions, the current IFD

curves cannot be used direcily in the present research, so new IFD curves based on the
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present rainfall event definition must be derived. This section presents the work

undertaken to achieve this objective for pluviometer 85237,

This section starts with the investigation of the correlation between rainfall intensity and
duration for observed rainfall events at the specified pluviometer. A description of an
at-site frequency analysis procedure is then given, along with the application of the
procedure to the observed data at the given site. The evaluation of the derived IFD

corves is then documented and the results are discussed.

4.5.2 Correlation between rainfall intensity and duration

To determine the degree of correlation between rainfall intensity and rainfall duration,
average intensities of the observed events at station 85237 were plotted against the
corresponding storm durations (see Figure 4-14). A regression line was then fitted to

the plotted data points, and the coefficient of determination (R%) of this line was

computed.
100
%‘ logl=-0.57logD+1.0056
E 10% . . R’=0.7994
- : < .
py
2 .1
g L 4
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1 10 100

Duration, D (hours)

Figure 4-14: Relationship between average rainfall intensity and duration (station
85237).

The plot of rainfall intensity versus rainfall duration for station 85237 shows a strong
relationship between them. There are three points to note about this. Firstly, the form

of the relationship between rainfall intensity and duration is a power function,
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| to storm duration, In other words, as the storm duration increases, the average rainfall
| intensity decreases, and vice versa. As a result of the strong correlation between rainfall

intensity and duration, the frequency distribution of rainfall intensity needs to be

[ conditioned on duration.

4.5.3 Development of the IFD curves

1 To develop the frequency curves of rainfall intensity, either an at-site or a regional
frequency analysis method can be used. In this study, initially, the rainfall intensity
frequency curves for station 85237 were determined using the regional frequency
analysis method developed by Hosking and Wallis (1997).
investigation into the IFD curves was undertaken using an at-site frequency analysis

procedure readiiy available from a parallel project (Rahman et al., 2001). For the

: the fitted distribution.

| compilation of series of rainfall intensities for some representative duration, the fitting

) ; of a distribution to each intensity series, the checking of the goodness-of-fit of the fitted

detail below.

i Stepl: Compilation of rainfall intensity series

This is achieved in the following steps:

- i AT A—P i, i = Fo ¢

‘ represented by a straight line on a log-log plot. Secondly, R? is approximately 0.80,
indicating that 80% of the vaniation in rainfall intensity is attributable to the variation in
' rainfall duration. Thirdly, the slope of the regression line between intensity and

duration is negative (-0.57), implying that average rainfall intensity is inversely related

However, further

present study, this procedure was modified slightly to include a goodness-of-fit test for

With the modified procedure, the rainfall intensities for storm events in predefined

duration intervals are pooled for frequency analysis. This analysis involves the

distributions, and the interpolation and extrapolation of the intensity-frequency curves

to other durations. The modified procedure comprises four steps, as described in more

The objective of this step is to convert the average rainfall intensity for storms of

various durations into the corresponding average intensity at some selected duration.
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b e The range of storm durations is divided into a number of intervals. The number of

intervals is selected such that there is a sufficient number of storms in each interval
for distributional fitting, and that the lengths of the class intervals are similar on a
logarithmic scale. Each interval is then represented by a single duration
approximately at the middie of the interval (on the logarithmic scale). This duration
is termed the representative duration. For pluviometer 85237, five representative
durations were used to characterise five class intervals of storm durations, as shown
in Table 4-7.

Table 4-7: Representative durations used to develop the IFD curves

Duration intervals (h) Representative durations (h)

1-5 2
6-11 8
12-24 16
25-36 32
> 36 43

Average intensities of all observed storms whose durations are within a duration
interval are extracted together with the corresponding durations.

For each duration interval, a linear regression line is fitted between the logarithm of
the extracted intensities (log I) and the logarithm of the extracted durations {log D).

An example is given in Figure 4-15.
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E logl=-0.5362logD+0.9551
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Figure 4-15: Plot -f rainfall intensity versus duration for the interval of (6h, 11h)
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» For each duration interval, the extracted intensities for various durations are adjusted
to the corresponding representative duration using the slope of the fitted regression

line and the following formula:

Lgusea =10% ,in which W =logl;, +a"(logD ~logD,) (4-2)

where D is the duration of the storm under consideration, Ip is the comesponding
average rainfall intensity of the storm, D; is the representative duration under
consideration, Lagusea is the average rainfall intensity of the storm event adjusted to

the representative duration, and a’ is the slope of the regression line.

For station 85237, the observed rainfall intensities for various durations were

transformed into five intensity series having representative durations of 2h, 8h, 16h,

32h, and 48h. A summary of the statistical properties of these series is given in Table
4-8.

Table 4-8: Statistical properties of the adjusted rainfall intensity series and parameters
of the fitted exponential distributions (station 85237)

Representative durations

2h 8h 16h 32h 48h
Maximum intensity (mm/h) 15.86 4.50 4.07 3.30 3.03
Minimum intensity (mmvh) 5.39 242 1.59 0.92 0.76
Average intensity (mm/h) 7.58 3.01 2.13 1.42 1.27
Standard deviation (mmvh) 246 0.58 0.54 0.54 0.54
Coeffcient of skewness 2.08 1.02 2.23 2.30 1.81
Parameter (w,) 1.18 1.09 1.86 1.73 1.45
Parameter (w,) 2.19 0.59 0.54 0.50 0.51

Step2: Determination of the intensity-frequency curves for representative
durztions

At this stage, it is noted that the storm sample obtained from the observed record at
station 85237 forms a partial duration series of rainfall intensity. This sample consists
of storm events with the averagc intensity at least equal to some threshold value, as

mentioned in Section 4.3.2.

AT R IRy 1T T
I DT R

rrTle o

To develop the intensity-frequency curve for each partial duration series of rainfall

intensities, the procedure is as follows:
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An exponential distribution® is fitted to each series of rainfall intensities.
Parameters w; and ; of this distribution can be computed by:
w, =M /N

M . (4-3)
0, = Y L/M -],

i=l
where ; is the average number of events per year in each series, M’ is the number
of data peints in the senies, N’ is the record length (years), and Iy is the minimum
value of rainfall intensity in the series.
The design average rainfall intensity (of the representative duration under

consideration) for any average recurrence interval (T) is then calculated as follows:

I(T) = 1o+ @In(0yT) (4-4)
where K(T) is the T-year design rainfal] intensity for the given duration, and T is the

average recurrence interval (ARI) of the design rainfall. In this analysis, the ARIs

used were: T = ARI =1, 2, 5, 10, 20, 50, 100 years.

For station 85237, parameters of the beta distributions fitted to the five series of rainfall

mntensities are also summarised i Table 4-8.

Step3: Checking of the intensity-frequency curves

In order to check whether each of the fitted exponential distributions ¢an reproduce well

the observed rainfail intensity data, the following steps can be undertaken:

The rainfall intensity series of each representative duration is plotted on a graph

using the following plotting position:

PP(j) = (N" +0.2)/(j- 0.4) 4-5)
where PP(j) is the plotting position of a data point ranked j in the series (in
decreasing order of magnitude) and N is the record length in years.

The exponential distribution fitted to the intensity series is plotted on the same
graph.

The goodness-of-fit of the fitted distribution is visually checked, outliers are

eliminated, and the distribution is refitted, if necessary.

* Initially, both the Log Pearson IIl and the exponential distributions were fitted 10 the observed data,
however the exponential distribution was adopted because it gave a better fit.
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An example of the plot of the exponential distribution fitted to the rainfall intensities

series for the representative duration of 8h (for station 85237) ts given in Figure 4-16.

6 L 1 1 1 ' 1 i i i | 4
Fy ©  Observed data 1 ,.|
z aF aldisrbut L7

Fitted exponential distribution ]
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Figure 4-16: Piot of rainfall intensity series of the 8-hour representative duration and the

fitted exponential distribution

Step 4: Interpolation and extrapolation of the intensity-frequency curves to all

durations

To determine the complete IFD curves, the intensity-frequency curves developed for the

representative durations are interpolated and extrapolated to all durations. For each of

the ARIs used, the steps below are adopted:

¢ The design rainfall intensity for each of the five representative durations is estimated
from the fitted exponential distributions. An example of these estimates for storms

of 20-year ARI is given in Table 4-9.

Table 4-9: Estimates of design rainfall intensities for ARI = 20 years

D) I(mm/h) log(™ log(l)

2 12.30 G.30 1.09
8 4.23 0.90 0.63
16 3.55 1.20 0.55
32 2.69 1.5t 0.43
48 247 1.68 0.39
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} ;. ¢ A second-degree polynomial is fitted to the logarithm of the estimated intensities
and the logarithm of the corresponding representative durations (see an illustration

in Figure 4-17).

“’"
E logl=0.2776(logDDy’-1.0451logD+1.3739 :
) 10 J %
g :

1 ;
1 10 100

Puration, D (hours)

Figure 4-17: Plot of the polynomial curve fitted to the estimated intensities of

representative durations {ARI = 20 years)

EER G T N S P S

o The design rainfall intensity for a storm of any duration D and the specified ARI is

T T T TR T 1

finally computed using the coefficients b", ¢’, and e” of this polynomial curve as

follows:

Lo

B

logI=b"(logD)’ +c¢ (logD)+e’ 4-6)

It is noted that, even though the polynomial intensity-frequency-duration curves were

determined from storms with representative durations of 2, 8, 16, 32, and 48 hours, the
curves were used to estimate the average rainfall intensity for durations of 1 hour to 120

hours for the study site,

TR R Y
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4.5.4 Preliminary results
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Using the procedure described above, the design IFD estimates for station 85237 were
obtained and are presented in Table 4-10. A plot of these estimates, cailed the derived
IFD curves, is presented in Figure 4-18. It can be seen from the table and figure that the
average design rainfall intensity of frequent storms (with ARIs less than 20 years)

decreases for increasing event duration. This relationship still holds true for rarer events
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(ARIs greater than 20 years) with duration up to 48 hours. However, for rare, long
duration storms (ARIs of 20 years or greater, and duration exceeding 48 hours), the
average intensity ircreases although the storm duration increases (see bold values in
Table 4-10).

Table 4-10: Derived IFD estimates for station 85237 (rainfall intensity in mm/h)

Duoration (D] Average recurrence interval (ARI)
(hours) lyear 2vyears Syears 10years 20 years 50 years 100 years
1 . 829 11.74 16.40 20.00 23.65 28.52 32.23
2 5.67 7.19 9.16 10.65 12.15 14.12 15.61
6 3.09 3.61 4.30 4,83 5.35 6.06 6.59
12 2.10 2.47 2.96 3.34 3.71 4,20 4.58
24 1.42 1.76 2.21 2.55 2.89 3.33 3.66
36 1.13 1.48 1.94 2.28 2.63 3.09 3.43
48 0.96 1.32 1.79 2.16 2.52 3.00 3.37
72 0.76 1.13 1.65 2,05 2.46 3.01 3.42
120 0.57 0.96 1.54 2.02 2.52 3.21 3.74
100 — = T
N —o0— ] year
—0—2 years
—— 5 years

Average rainfall intensity
(mm/h)

%% —-] —t— 10 years
e ! e R
"-::Q%sggs% ..... | =20 years
:Q:EH—-{ ; —¥- 50 years
- ST [ ——
\'“'-\Q\m _-1: i 100 years
1 oL 0
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Figure 4-18: Derived IFD curves for station 85237

There are two main factors that may cause the unusual increase in the design rainfall
intensity for long duration storms at station 85237. The first factor relates to errors in
the data points to which each of the polynomial curves were fitted. As shown in Table
4-9, these data points are the rainfall intensity estimates for storm events of a specified

retum period corresponding to five representative durations. These intensities were
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estimated from the five exponential distributions fitted to the five adjusted rainfall
intensity series, which were initially formed by converting the average rainfall
intensities of various durations into the intensities of five representative durations. As
each of these steps introduces uncertainties to the outcome at the end of the step, the
final rainfall intensity estimates are consequently uncertain. The second factor is the
common error of extrapolating a regression curve. The second-degree polynomial curve
fitted to the rainfall intensity-duration data, as illusirated in Figure 4-17, has a parabolic

shape, and therefore, must start going up if it is extrapolated far enough.

4.5.5 Adjustment of the derived IFD curves

To provide better estimates of the design rainfall intensity for rare, long duration storms
at station 85237, one possible method is to adjust the tails of the derived IFD curves.
This can be done by comparing the derived storm IFD curves with the existing design
rainfall IFD curves for storm bursts. For any design site, there are two sets of burst [FD
curves available for comparison. The first set of IFD curves is based on rainfall
intensity data collected at several sites and analysed using a regional technique, as
applied by the Institution of Engineers, Australia (1987). The design data to derive
these IFD curves for a specific site are provided by the Institution of Engineers,
Australia (1987, Volume 2). The second set 1s the at-site IFD curves, herein referred to
as the IFD-HYDSYS curves, developed by HYDSYS (1994) from data avaitable at the
site, using an at-site frequency analysis method consistent with that of the Institution of
Engineers, Australia (1987). As the IFD curves derived in the present study were
developed using the at-site rainfall data at station 85237, it is relevant to compare them
with the [FD-HYDSYS curves.

The IFD-HYDSYS curves are derived for storm bursts, which are periods of intense
rain during storm events. Storm bursts of a given duration are obtained from an
observed record by progressively passing a ‘window’ of the specified duration
throughout the record, and selécting events that have average intensities grzater than

some threshold valves. The bursts so identified therefore have two characteristics.

Firstly, for a specified duration, the bursts selected may overlap, so they are not
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independent of each other. Secondly, a burst of a short duration may be a part of a

longer duration burst.

In order to compare the derived IFD curves with the IFD-HYDSYS curves, it is
important to note that storms defined in this study have sampling properties different
from bursts for which the IFD-HYDSYS curves were developed. In this study, any
rainfall period is included only once in the storm sample (so all the extracted events are
essentially independent), but may have been included several times in the burst sample,
because a shorter duration burst may be a part of a longer duration burst, as explained
above. Thus the series of storms defined here generally consists of events with average
intensities lower than those in the burst series, However, the difference between burst
intensities and storm intensities will reduce with increasing duration, because both
samples will share common events. As a result, the IFD curves derived for storms
defined in this project should always lie below the IFD-HYDSYS curves, but the two

curves tend to converge at Jong storm durations.

An illustration of the comparison of the derived IFD curves and the IFD-HYDSYS
curves for station 85237 is illustrated in Figure 4-19. In this figure, the IFD-HYDSYS
curve for the ARI of 20 years is plotted together with the denved IFD curve for the
same ARI. This figure shows that the derived 20-year IFD curve is only below the
corresponding [FD-HYDSYS curve for duration up to 48 hours (approximately). For
longer storms, the design average rainfall intensities estimated by the current procedure
exceed those of the IFD-HYDSYS curve estimated by HYDSYS. A similar conclusion

is drawn for the derived IFD curves of other return periods.

The comparison of the derived IFD curves and the IFD-HYDSYS curves indicates that
the IFD-HYDSYS intensity for long duration storms can be used to adjust the tails of
the derived IFD curves, as for these storms, the difference between the two sets of
curves becomes insignificant. Therefore, for each ARI, two storm events with the
duration of 72 hours and 144 hours were used as additional events for fitting the
polynomial curves of intensities of varying durations. The average intensities of these
storms were assumed to equal the IFD-HYDSYS rainfall intensity estimates for storm

bursts of the same duration and ARL
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i Figure 4-19: Derived IFD curve and the IFD-HYDSYS curve for ARI=20 years (station
85237)

Table 4-11 gives an example of the intensity values {(original and additional) for fitting

the polynomial curve, and Figure 4-20 illustrates the resulting polynomial curve for

-. design rainfall intensity estimates for storms of 20-year ARL It is noted from this figure

that a linear relationship rather than a polynomial curve may have been sufficient

because of the small coefficient of the square term.

Table 4-11: Data used to determine the intensity-duration curve (ARI = 20 vears)

D {h) 1 (mm/h) log(D) log(I)

2 12.30 0.30 1.09
8 4.23 0.90 0.63
16 3.55 1.20 0.53
32 2.69 1.51 0.43
48 247 1.68 0.39
72 1.84 1.86 0.27
144 1.01 2.16 0.004

(Bold values are those obtained from IFD-HYDSYS)
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Figure 4-20: Plot of the polynomial rainfall intensity-duration curve (ARI = 20 years)

- The derived IFD curves (after adjustment) were then compared with the IFD-HYDSYS
curves and the originally derived IFD curves (before adjustment). As an illustration, the

three IFD curves for the ARI of 20 years are piotted in Figure 4-21. From this figure, it

is clear that, for all durations, after adjustment, the design rainfall intensity at station

85237 decreases as the storm duration increases. In addition, the adjusted IFD curve is

always below the IFD-HYDSYS curve for the given ARI, as expected from the
difference between the average intensity of storms defined in this study and storm
bursts. The same conclusion is reached for the intensity-duration curves of other ARIs

used. In general, the adjustments of rainfall intensities of long duration storms are fairly

substantial, but justified.
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Figure 4-21: Plot of the IFD curves at station 85237 (ARI=20 years)
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The final set of the derived IFD estimates for station 85237 is presented in Figure 4-22.
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Figure 4-22: The estimated IFD curves at Noojee (pluviomeler 85237)

4.5.6 Discussion

The comparison of the derived IFD curves and the IFD-HYDSYS curves indicates that
the adopted at-site frequency analysis procedure can give consistent estimates of the
design rainfall intensity for events with duration up to 48 hours and ARI up to 100 years
for station 85237. However, there are uncertainties in estimates of the average rainfall
intensity for long duration, low frequency storms (duration and ARI exceeding 48 hours
and 20 years, respectively). This is essentially the result of errors in exirapolating a
regression curve, the lack of observed long duration storms, and the use of only five

class intervals to represent storm duration, as discussed in Section 4.5.4.

It is obvious that more reliable intensity estimates for long duration and very infrequent
storms could be obtained by increasing the corresponding storm sample. This can be
achieved by two methods. The first method is to increase the separation time used to
define storm events. However, this method also leads to a reduction in the number of
short duration events (see Section 4.3.2.1), which in turn affects the reliability of rainfal}
intensity estimates for these events. In other words, by increasing the separation time

used in the storm definition, better estimates of design rainfall intensity for long
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duration events may be achieved at the cost of more uncertainties in estimates of short
duration events. The second method is to use regional rainfall data for developing the
IFD curves. This is considered 1o be a very effective method, as it not only increases
the sample size of long duration storms, but also of short duration events. In addition,
the discretisation of storm duration will become more accurate due to the possibility of
an increased number of class intervals used. As a result, betier rainfall intensity
estimates can be obtained for events of any duration and frequency. Whereas the
implementation of this method is desirable, it is considered outside the scope of this

project.

4.5.7 Summary

In this section, a modified at-site frequency analysis procedure for partial duration series
was used to derive the IFD curves at station 85237 for storm events defined in this
research. With this procedure, observed rainfall intensities of various durations at the
design site were represented by fives series having representative durations of 2, &, 16,
32, and 48 hours. An exponential distribution was then fitted to each series,
distributional parameters were estimated, and the goodness-of-fit of the distnibution was
visually checked. For each representative duration, design rainfall intensities of various
ARIs were then estimated from the fitted exponentiai distributions. For a given ARI a
polynomial curve was next fitted to the design intensities of the Hive representative
durations. The design average rainfall intensities of any duration were finally
determined by interpolating and extrapolating the fitted polynomial curve for a given
ARL

It was found that, for storms with duration up to 48 hours and ARIs up to 100 years, the
IFD curves derived by the adopted procedure were consistent with the existing IFD
curves {for the same site). The latter IFD curves were developed for storm bursts using
the method proposed by the Institution of Engineers, Australia (1987). However, there
was an unusual relationship between the design rainfall intensity and rainfall duration
for longer duration and less frequent events. In particular, for storm events whose ARI
exceeding 20 years and duration greater than 48 hours, the design rainfall intensity

increased even though the rainfall duration increased. This was attributed to the tack of
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observed rainfall data in this range, the extrapolation of the polynomial curves for
intensity estimates, and errors in the representation of the observed intensities at the

design site by only five senes.

In order to provide better estimates of the rainfall intensity for the design site, the upper
tails (for long duration storms) of the derived IFD curves were adjusied based on the
IFD analysis of storm bursts. It was assumed that the design intensities for storms
defined in this study and for storm bursts were equal for durations of 72 hours and 144
hours. These rainfall intensities were used to provide additional data points for the
fitting of polynomial equations to the IFD data. The adjusted IFD curves were
satisfactory because the relationship between design rainfall intensity and duration was
consistent =7 all durations and ARIs. Nevertheless, it was concluded that more reliable
rainfall intensity estimates for storm events of any duration and frequency could be

obtained by using regional rainfall data.

4.6 STOCHASTIC REPRESENTATION OF TEMPORAL PATTERNS

4.6.1 Background

Knowledge of the temporal pattern of rainfall (that is, the time distribution of rainfall
intensity during storm duration) is important in determining the timing and magnitude
of peak flow, especially for urban or small rurai catchments where the time of
concentration is relatively short and catchment response is less influenced by storage or
channel characteristics. In addition, the spatial variability of rainfall influences the
generation of runoff, especially for large catchments. However, it seems to be difficult
to assign a numerical value to differentiate a small catchment from a large cne, as
catchment size is not the only index that characterises catchment behaviour. With the

lack of artificial storage within the ‘medium-sized’ catchments under study (less than

_ 500km?), the consideration of the temporal pattern as a stochastic factor may be

vnnecessary but is prudent.

The time distribution of real rainfall events may be influenced by many factors that need
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to be reflected in design temporal patterns. These factors may include location, storm
duration, storm depth, or season of storm occurrence. As discussed in Section 3.3.3,
there are conflicting conclusions about the relationships between rainfall temporal
patterns and these factors. For example, whereas design temporal patterns of storm
bursts used in Australian design practicge are dependent on location, storm duration and
frequency (Institution of Engineers, Australia, 1987, Chapter 3), rainfull temporal data
at three Spanish stations have shown no correlation with any of the above factors
(Garcia-Guzmo: and Aranda-Oliver, 1993). Thus, before developing a stochastic
model of temporal patterns of storm events defined in this study, it is necessary to
investigate if the temporal pattern is dependent on season of storm occurrence, storm
duration and depth. At this stage, for the relatively small region considered, it is
assumed that the 19 selected rainfall sites form a homogeneous region as far as the
storm temporal pattern is concemed. It is also noted that the analysis of the dependence
of temporal patterns on season is not directly applied in this study, but was conducted
for the sake of a broader understanding of the factors that affect the variability of

temporal pattems.

To represent the temporal pattern by a statistical medel, conditional probability analysis
is required if the temporal patiern is dependent on any of the factors above. For
example, if temporal patterns vary with storm duration, they then need to be separated
into different duration groups. For each duration group, a probability distribution can
then be used to characterise the observed temporal pattems in the group. From the

adopted model, design temporal patierns can be generated.

This section presents the research undertaken to investigate the dependence of the
temporal pattern on season, storm duration and depth, as well as the characterisation of
the temporal pattern by a statistical model. The data used for this investigation and the

representation of the temporal pattern are also described.

4.6.2 Data

In order to examine whether the temporal pattern is dependent on any of the above three

factors, a large database of observed temporal patterns was required. Initially, this
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database consisted of all storm events extracted at the 19 selecied pluviometers.
However, as these events were recorded at fixed time intervals of one hour, the amount
of rain recorded in the first or last hour of a storm usually represents the rainfall that fell
in a fraction of an hour. For example, a real rainfall event lasting 5 hours and 25
minutes from 04:50 AM to 10:15 AM would have been recorded as a 7-hour storm from
4:00AM to 11:00AM. Thus, the average hourly rainfall intensity of the first and last
hour of any storm is consistently underestimated. As the temporal variation of rainfall
events used in this study was represented by the average rainfall intensity in each hourly
time step of the storm duration, the underestimation of some of these data values may
have affected the analysis outcome. This effect became even more pronounced for short
duration events. Thus, to avoid introducing possible errors caused by short duration
storms into the results, only the extracted events with duration of at least 4 hours were

included in this analysis.

For the 19 sites under investigation, the siorm sample selected for this analysis
consisted of 3587 storms (with the minimum duration of 4 hours). The average duration
of these events was 20 hours, and the average rainfall depth was 35.4mm. As these
storms constituted more than 90% of the total number of the observed storms in the test
region (N=3975 storms), the selected storrn sample was considered to be representative

of all rainfall events in this region as far as the time distribution of rainfall is concerned.

4.6.3 Representation of temporal patterns

Before explaining how the temporal pattern is defined, it is worth noting that there is a
basic difference between the temporal pattern and other rainfall characteristics such as
storm duration or depth. Whereas storm duration and depth are ‘concentrative’
variables, and consequently can be described by one number each, the temporal pattern
is a ‘distributive’ random variable, and therefore needs more than one number in its

representation.

In order to describe the temporal pattern by numbers, two alternatives were adopted in

this study. The first alternative, suggested by Laurenson (Personal communication,

1998), used 3 statistical characteristics of the dimensioniess storm hyetograph. The
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second alternative used internal ordinates of the dimensionless storm mass curve. In the

literature, the first altenative was used by Yen and Chow (1980), whereas the second

by Huff (1967), Garcia-Guzman and Aranda-Oliver {1993), and Robinson and

Sivapalan (1997). In this study, the number of mass curve ordinates varies according to
the purpose of analysis. For eiampie, the dimensionless storm mass curve was
represented by 9, 4, 3 or 2 ordinates in sensitivity analyses for investigating the
dependence of temporal patterns on season, storm duration and depth (see Section
4.6.4.2), and by 7 ordinates for representing design temporal patterns (see Section
4.6.5).

To determine the 3 statistical characteristics or mass curve ordinates describing the
temporal pattern, the dimensionless storm hyetograpn was first computed in order to
homogenise observed storm events of heterogeneous durations and total rainfall depths.
The dimensionless rainfall hyetograph represents dimensionless rainfall depths
computed for equal increments of dimensionless storm time (Figure 4-23). In the
present analysis, 10 increments were used to ¢ 3scnibe the observed dimensionless
hyetograph as it was assumed that the overall shape of the pattern is more important

than small-scale variations.

Representation by 3 statistical characteristics of the dimensionless hyetograph

To represent the temporal pattern by 3 statistical characteristics, the mean (m,), standard
deviation (s), and coefficient of skewness (C;) of the dimensionless hyetograph were
used (see Figure 4-23). These characteristics were calculated with reference to the
starting time of a rainfall event. The mean is the centre of gravity of the observed
dimensionless hyetograph, which represents the dimensionless time from the start of the
event to the centroid of the rainfall hyetograph. A large mean value thus indicates that
the rain is heavier in the later part of the storm duration, and vice versa. The standard
deviation gives an indication of the degree of dispersion of the dimensionless rainfall
depth about the mean. The coefficient of skewness specifies the degree of asymmetry

of the temporal pattern distribution.

For each observed dimensionless storm hyetograph, these statistical characteristics were

computed using the following form.las:
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m, = ¥ t;h(t;)
i=l
n 112
s=| Y, (t, —m)’h(t,) @-7)

where h(t;) is the relative rainfall in a time interval (2 h(t,) =1); t; is the mid point of a

time interval; and n is the number of time intervals used to define the rainfall

hyetograph {n=10 in the present analysis).
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Figure 4-23: Dimensionless rainfall hyetograph and its statistical characteristics

Representation by ordinates of the dimensionless mass curve

To describe the temporal pattern by 9 ordinates of the dimensionless storm mass curve,
the dimensionless mass curve of the dimensionless storm hyetograph was first
determined. The dimensionless mass curve of a storm is a plot of the dimensionless
cumuljative rainfall depth versus the dimensionless cumulative storm time.
specified time during the storm duration, the former is the ratio of the accumulated
rainfall depth to the total depth, and the latter is the ratio of the time from the start of the

storm to the storm duration. The temporal pattern ordinates were then taken as the

0.00 L& i .
005 015 025 035 045 055 065 075 08 095

T

At any




i
i
!
P

Chapter 4 97

internal ordinates of the dimensionless mass curve, as the ordinates of the two ends of
any mass curve are always 0 (for the low end) and | (for the top end). The number of
temporal pattern ordinates is thus the number of time increments used to define the
corresponding dimensionless rainfall hyetograph minus 1. An example of a temporal
pattern defined by 9 ordinates (corresponding to a dimensionless hyetograph defined at
10 equal time intervals) is given in Figure 4-24. Similarly, if a storm hyetograph is

defined by 5, 4 or 3 time increments, then 4, 3 or 2 ordinates, respectively, define the

storm temporal pattern.
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Figure 4-24: 9-ordinate representation of temporal patterns

4.6.4 Dependence of temporal patterns on season, storm duration and
depth

Three methods for determining whether the rainfall temporal pattern is dependent on
season {(or month) of storm occurrence, storm duration or depth have been used in the
literature. They are correlation analysis, the chi-square test of independence, and the
comparison of Huff curves. Clearly, any one of these methods could be used for the
present objective. However, due to the controversial conclusions reached by previous
researchers about the relationship between the temporal pattern and the above factors
(see Section 3.3.3), it is desirable to use at Jeast two methods to investigate this issue.
Therefore, for this present study, correlation analysis and the chi-square test of

independencs were adopted.
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4.6.4.1 Correlation analysis

Correlation analysis measures the degree of linear relationship between two or more
random variables. This relationship is characterised by the correlation coefficients
computed for each pair of variables. Correlation analysis was applied by Huff (1967) to
determine whether “the variance in the time distribution of rainfall” was attributable to

the variation in duration and mean rainfall.

The population correlation coefficient (px v) between two random variables X and Y is
defined in terms of the covariance of X and Y (Oxy) and the standard deviations of X

and Y (O, Oy) as follows:

Ox.v
Py =L (4-8)
UXGY
Given two samples of size n with observations x;, X2, ..., X, and ¥y, ¥2, ..., Y, the

sample estimate ry y for px.y is similarly given by:

ey =2 (4-9)
SxSy
in which
1 n
Sxy = ;E(xi = Uy X¥; = Hy) (4-10)
i=1

is the sample covariance, sx and sy are the sample estimates of the standard deviation,

and px and py are the sample means.

The value of pxy can range from -1 to +1. If py,, =*1, there is a perfect linear

relationship between X and Y. If p, , =0 orclose to it, there is no linear relationship,

but other types of dependence may exist between X and Y. If X and Y are independent

random variables, then p, , = 0.

Correlation analysis was applied to investigate the relationship between the 3 statistical
characteristics describing the temporal pattem and storm duration or depth in the

following manner.
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¢ Dimensionless hyetographs of the observed rainfall events were first determined.

o The 3 statistical characteristics of the observed dimensionless hyetographs (m;, s,
and C;) were next computed using Equation (4-7).

e The correlation coefficients between each of these 3 characteristics and storm
duration or storm depth were then computed using an EXCEL spreadsheet. Results
are tabulated in Table 4-12.

e A visual inspection of the relationship between the temporal patterm characteristics
and storm duration or depth was also carried out by plotting each of the computed
characteristics against the corresponding storm duration or depth. Two examples of

such plots are given in Figure 4-25 and Figure 4-26.

Table 4-12: Correlation coefficients between 3 statistical characteristics of observed

dimensionless hyetographs and storm duration or depth

Mean Standard deviation  Coefficient of skewness
Duration 0.04 0.23 -0.06
Depth 0.07 0.02 -0.07

In examining the correlation coefficients between the 3 statistical characteristics of
temporal patterns and rainfall duration or depth (see Table 4-12), it is clear that for all
cases, the maximum absolute value of the comelation coefficient is 0.23, and the
minimum absolute vajue is 0.02. That is, the ~stimated correlation coefficients are
generally well below 1 and very close to 0. The corresponding graphs between each of
the 3 temporal pattern characteristics and storm duration or depth indicate no systematic
relationship between each pair of variables (see an illustration in Figure 4-25), with the
exception of the standard deviation. For this special case, the standard deviation of the
temporal pattern seems to increase as storm duration increases (see Figure 4-26). This
relationship corresponds to the correlation coefficient of 0.23 between the standard
deviation and storm duration. Nevertheless, the coefficient of determination (R?)
computed for this case is only 0.05, indicating that only 5% of the variation in the
standard deviation of the temporal pattern is explained by the variation in the storm
duration. Therefore, using correlation analysis, it can be concluded that the temporal
pattern of rainfall, described by 3 statistical characteristics of the dimensionless rainfall

hyetograph, is independent of both storm duration and storm depth.




100

Chapter 4

1
= A L 4 ¢ : :
g 0‘0. ’... . *
= o

L 4
0 + + ‘ l
0 50 100 150 200 250
Rainfall depth (rmm)

Figure 4-25: Plot of the mean (centre of gravity) of observed dimensionless hyetographs

versus rainfall depth
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Figure 4-26: Plot of standard deviation (degree of dispersion) of cbserved dimensionless

hyetographs versus rainfall duration

4.6.4.2 The chi-square test of independence

The chi-square test of independence aims to determine whether two variables are

associated. For example, it can be used to decide if product price is associated with

product quality, or if level of education is associated with income. In hydrology, this

test was applied by Garcia-Guzman and Aranda-Oliver (1993) to claim that the
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hyctographs of rainfall events observed at three rainfall stations in Spain were

independent of storm season, duration and depth. The test, summarised from Daniel

(1978), is described in detail in Appendix G.

To apply the chi-square test of independence, it is assumed that a random set of data
may be cross-classified according to two criteria, which are the variables of interest in a
given situation. The data are then displayed in a contingency table with r rows and c
colurnns (see an illustration in Appendix G). To test the null hypothesis that the two
criteria are independent, the expected cell frequencies (expected when the assumption of
independence of the two variables is true) are computed and compared with the
comresponding observed cell frequencies. The null hypothesis may be rejected at the o

level of significance if the computed value of the test statistic x* exceeds the tabulated

chi-square critical value for {r—1)c - 1) degrees of freedom.

The following section describes the application of the chi-square test of independence to
determine if the rainfall temporal pattern is dependent on any of the three factors,
namely season of storm occurrence, storm duration and depth. In this particular case,
the temporal pattern is represented by 9 ordinates of the dimensionless mass curve (see
Figure 4-24). The investigation of the effects on the test results of using different

numbers of mass curve ordinates (namely 4, 3 and 2) is also documented.

Dependence on season

The dependence of the storm temporal pattern on season was examined using the

following procedure:

(a) First of all, the chi-square test was applied to test the nuil hypothesis (i) that storm
temporal patterns are independent of the month of storm occurrence (Test 1).

(b) To test this hypothesis, observed values of temporal pattern ordinates were arranged
in 10 classes. These classes were: (0, 0.1), (0.1, 0.2), (0.2, 0.3), ... , (0.8, 0.9), and
(0.9, 1.0). The month of storm occurrence was assigned to 12 levels (months).

(c) For any observed temporal paitern, the frequency of obtaining a given ordinate
within any of the 10 classes above, jointly with the known month of the storm, was

counted and placed in the corresponding cell of the observed contingency table.
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! (d) The total observed frequency in each cell was then compuled by adding the
frequencies in the cell for all observed storms.

(e) The corresponding expected frequency for each cell was computed next.

(f) Lastly, the chi-square test statistic was computed and compared with the critical
value determined for the known degree of freedom of the contingency table. A test
statistic smaller than the critical value at a specified level of significance (LOS)
indicates that the null hypothesis can not be rejected, that is, temporal pattern

ordinates, and therefore temporal patterns, are independent of month. In this case,

the variation of temporal patterns with months of the storms can be neglected in the
analysis. Otherwise, temporal patterns are dependent on the month in which they

ocCur.

Results of the initial investigation of the dependence of rainfall temporal patterns on
months of storm occurrence (Test 1) are summarised in the first row of Table 4-13. It is
clear that the chi-square test statistic (203.7) is much greater than the critical value at the
5% LOS (123.2), and therefore, the null hypothesis is rejected. That is, storm temporal
patierns are not independent of the month of storm occurrence. Therefore, the variation
of rainfali temporal patterns with season of storm occurrence should be accounted for in

a stochastic representation of temporal patterns.

Table 4-13: Results of the chi-square test of independence to examine the dependence

of storm temporal patterns on season

Test  Classification into months ~ Hypothesis Degrees of Critical value Test statistic

No or seasons (groups of months) freedom  at 5% LOS
1 12 months (1) 99.0 123.2 203.7
2 4 rainfall seasons (ii) 27 40.1 93,2
3 Summer (Dec. - Mar.) (iii) 27 40.1 394
4 Autumn (April - May) (iif) 9 16.9 7.0
5 Winter (June - Sep.) (i) 27 40.1 289
6 Spring (Oct. - Nov.) (iii) 9 16.9 13.9

The issue now is the degree of dependence of temporal patterns on season (that is, a
group of months), and how to form independent sub-samples of temporal patterns
within each of which the variation of the temporal pattern with season can be neglected.

To do this, a calendar year was tentatively divided into four rainfall seasons as used by
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the Bureau of Meteorology for extreme rainfall analysis (Minty et al., 1996). These
rainfall seasons are Summer (December to March), Autumn (April to May), Winter
(June to September), and Spring (October to November). The procedure described
above was next applied to test the two null hypotheses as follows: (ii) between four
defined rainfall seasons, temporal pattems are independent of season, and (iii) within
each rainfall season, temporal patterns are independent of the month of storm

occurrence.

Resuits of these tests are also tabulated in Table 4-13. It can be seen from this table that
the chi-square test statistic computed for the four seasonal groups of temporal patterns
(93.2, see Test 2) exceeds the critical value at 5% LOS (40.1). Thus, the null hypothesis
(ii) is rejected. By contrast, the test statistic computed for each of the four seasonal
groups is Jess than the corresponding critical value at the 5% LOS (see Tests 3-6 in
Table 4-13). As a result, the null hypothesis (iii} can not be rejected. In other words,
there is insufficient evidence to conclude that storm temporal patiems in different
months within a seasonal group are dependent on the corresponding months of the

stormns.

In summary, results of the chi-square test of independence showed that observed rainfall
temporal patterns, characterised by 9 ordinates of dimensionless mass curves, are not
independent of the month in which they occur. Further analyses of the degree of
dependence of temporal pattems on season indicated that four distinct seasonal groups
of months (rainfall seasons) could be identified. Within these seasons, temporal

pattemns are independent of the month of storm occurrence.

Dependence on storm duration

As mentioned in Section 3.3.3, there has been evidence in previous studies that the
temporal pattern of short duration storms is different from that of long duration storms
(Yen and Chow, 1980; Bonta and Rao, 1989). In Australia, temporal pattems of design
storms are also different for different durations (Institution of Engineers, Australia,
1987). For the data set li.SCd in the present study, it has also been found that the
temporal pattem is dependent on season. Therefore, for each seasonal group, the
following two hypotheses were established: (iv) temporal patierns are independent of

duration groups, and (v) within each duration group, temporal patterns of storms are
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} independent of the storm duration. The hypotheses were also tested using the chi-

square test of independence.

To apply the chi-square test, the temporal pattern ordinates were still classified ia 10

classes as described in step (b} under seasonal dependence. However, for the suramer

' season, the storm duration was divided into three duration groups as follows: (4h -
12h), (13h — 24h), and greater than 24 hours. Similar to step (c), the cell frequency of
obtaining a given temporal pattern ordinate within a duration group was determined.

Steps (d) through (f) were then undertaken. Subsequently, the tests were applied with

only two duration groups of (4h ~ 12h) and greater than 12 hours for the other seasons.

] Table 4-14: Results of the chi-square test of independence to examine the dependence

of temporal pattems on storm duration

Rainfall seasons } Classification into | Hypothesis | Degrees of | Critical value | Test statistic
duration groups freedom at 5% LOS
Summer 3 groups (iv) 18 28.9 124.1
: 4h- 12h (v} 72 92.8(*) 98.0
; 13h - 24h (v) 99 123.2 (% 138.1
>24h (v) 27 40.1 34.6
Auturmn 2 groups (iv) 9 16.9 20.8
4h- 12h (v) 72 92.8 55.8
>12h (v) 36 51.0 27.7
Winter 2 groups (iv) 9 16.9 32.8
4h- 12h ) 72 92.8 77.3
>12h {v) 36 51.0 44.2
Spring 2 groups (v) 9 16.9 45.2
4h- 12h v) 72 92.8 66.8
>12h ) 36 51.0 43.2
Note: (*)CV at 1% LOS = 102.8

(**) CV at 0.5% LOS = 139.0

Results of the examination of the association between the temporal pattern of the
observed storms in each of the four seasonal groups and storm duration are summarised
in Table 4-14. It is evident from this table that temporal patterns are not independent of

the duration groups as hypothesis (iv) is always rejected. As an example, for autumn

i storms, the test statistic (20.8) is greater than the critical value (16.9). This means that
the temporal pattern of autumn storms is dependent on whether the storm duration is in

the group of (4h — 12h) or greater than 12h. However, within each of the identified
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[ duration groups, temporal patterns can be considered to be independent of duration
because hypothesis (v) is not rejected, as the chi-square statistic is less than the
cormresponding critical value. An exception is the summer storms in which the storm
temporal pattern is dependent on duration in the following three duration groups: (4h -
12h), (13h — 24h), and greater than 24 hours. It is noted that in this case, the storm
temporal patterns of the two duration groups, namely (4h — 12h) and (13h — 24h) can be
marginally considered to be independent on storm duration at fairly low levels of
significance (1% and 0.5%) (see Table 4-14).

Dependence on storm depth
In examining whether the temporal pattern of storm events is dependent on storm

magnitude, the nul} hypothesis (vi) was that the temporal pattern of the observed storms

in each seasonal and duration group is independent of storm depth. To test this
hypothesis, the chi-square test of independence was again used. In applying the test, the
observed storm patterns in each specified season and duration group were assigned to
the following levels of total depths: (0 — 15mm), (15mm - 20mm), (20mm — 25mm),

..., (35mm - 60mm) and greater than 60mm.

Table 4-15: Results of the chi-square test of independence to investigate the dependence

of temporal patterns on season, storm duration, and storm depth

Rainfall | Duration |  Classification into Hypothesis | Number of | Degrees of| Critical value j Test statistic
seasons | groups | groups of rainfall depths storms | freedom | at 5% LOS
Sumerer| 4h- 12h ali groups (vi) 686 45 61.7 49.6
13h - 24h all groups (vi) 362 81 103.02 145.4
2 groups (vii) 362 9 169 46.5
{0 - 50) mm (viii) 314 54 72.1 71.9
> 50 mm {viii) 48 9 16.9 10.1
>24h all groups (vi) 216 36 51.0 42.5
Autumn| 4h - 12h all groups (vi) 232 45 61.7 390
>12h all groups (vi) 444 45 61.7 61.6
i Winter | 4h-12h all groups (vi) 263 45 61.7 254
>12h all groups (vi) 659 45 61.7 67.1
Spring | 4h- 12h all groups {vi) 384 54 721 66.G
>12h all groups (vi) 341 45 61.7 50.2

Note; (*)CV at 1% LOS = 70.0

Results of the chi-square test are summarised in Table 4-15. From this table, it can be
concluded that the temporal pattern is independent of total storra rainfall depth, as the

test statistic computed for each rainfall season and duration group is smaller than the
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L& critical value at 5% LOS (but at 1% LOS for winter storms with duration greater than 12
hours). Again, there is an exception for summer storms, in which the chi-square test
results show that the temporal patierns of storms in the duration range of {13h — 24h) are
L dependent on storm depth (see Table 4-15) because the test statistic (145.4) exceeds the
corresponding critical value (103.0) at 5% LOS, This means that the variation of

temporal patterns with storm depth needs to be considered.

The issue now is how to form sub-groups of temporal patterns so that within each group
the dependence of temporal patterns on storm depth can be neglected. To do this, the

| observed patterns of summer storms in the duration group of 13 to 24 hours were

divided into the following two groups of depth: (0 — 50mm) and greater than 50mm.
The chi-square test of independence was then applied to test the two nuil hypotheses as
follows: (vii) between the two defined groups of rainfall depth, temporal pattems are
independent of rainfail depth groups, and (viii} within each specified group of rainfail
depth, temporal patterns are independent of storm depth. Test results are also tabulated
in Table 4-15.

It is clear from Table 4-15 that the hypothesis (vii} is rejected because the test statistic
of 46.5 exceeds the corresponding critical value of 16.9 at 5% LOS. As a result, the
dependence of temporal patterns of summer storms from 13 to 24 hours on storm depth
should be taken into consideration. However, there is insufficient evidence to reject the
hypothesis (viii) because for each specified group of storm depth, the computed test

statistic is less than the corresponding critical value.

Summary of chi-square test results

From the investigation of the dependence of the temporal pattern on season, storm
duration, and depth, the following conclusions can be made:
® The rainfall temporal pattern, represented by 9 ordinates of the dimensionless mass

curve, is dependent on the four seasons of storm events. These rainfall seasons,

initially formed using the results of an extreme rainfall analysis undertaken by Minty
‘ et al. (1996), are Winter (June to Septémber), Spring (October to November),
| Summer (December to March) and Autumn (April to May).

* Within each seasonal group, the temporal patiern is also associated with storm

duration. Iu particular, in Spring, Autumn and Winter, the temporal pattern is

Ak
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dependent on whether the storm duration is less than or equal to 12 hours, or greater
than 12 hours. In Summer, storm temporal patterns are associated with three
different duration groups, namely, up to 12 hours, from 12 to 24 hours and greater
than 24 hours.

e After being so grouped by season and duration, the temporal pattern is independent
of rainfall depth, except for summer storms in the mid-range of duration. In this
case, the temporal pattern is dependent on whether the rainfall total is greater or less
than 50mm.

« In total, there are thus 10 independent groups of temporal pattern, as shown in Figure
4-27. It is worth noting that even though this investigation was undertaken using
storm events of 4 hours or greater (see Section 4.6.2), it was assumed that the test

results can be applied to storms of any duration from 1 to 120 hours.

[ Rainfatl temporal pattern ]
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Note: The number in brackets represents the temporal pattern group

Figure 4-27: Independent groups of temporal patterns (by the results of the chi-square

test of independence)

Sensitivity analysis

The results of the chi-square test of independence indicated that the storm temporal
pattern, represented by 9 ordinates of the dimensionless storm mass curve, was
dependent on season, storm duration and depth. By contrast, the correlation analysis
showed that the temporal pattern was not correlated with storm duration or depth. The
latter conclusion was drawn from an analysis in which the temporal patiem was
characterised by 3 statistical characteristics of the dimensionless rainfall hyetograph.
As in these two separate analyses the temporal pattern was represented by different

numbers of parameters, the contradictory conclusions above could have been the result
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of the discrepancy in the number of parameters used to describe the temporal pattem. In
order to test this hypothesis, the chi-square test of independence was repeated for the
temporal pattern defined by 3 ordinates (that is, the same number of parameters as used
in the correlation analysis). Moreover, to gain an insight into the effects of using
different numbers of parameters on results of the chi-square test, the test was also
undertaken for the temporal pattern defined by 4 and 2 ordinates. An example of a 4-

ordinate temporal pattern, already defined in Section 4.6.3, is illustrated in Figure 4-28,
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Figure 4-28: 4-ordinate representation of temporal patterns

To investigate the effect on the chi-square test results of the number of ordinates used to
characterise mass curves, the procedure described at the beginning of this section was
repeated, That is, the test was applied first to test the null hypothesis that temporal
pattemns, defined by 4, 3 or 2 mass curve ordinates are independent of the month in
which they occur. Test results are summarised in Table 4-16. It can be seen from this
table that, depending on the number of ordinates used to represent the temporal pattern,
djfferent conclusions can be drawn about the association of the pattern with season.
When the temporal pattern is defined by 4 ordinates or more, the null hypothesis is
rejected at 5% LOS because the computed test statistics exceed the corresponding
critical values. Consequently, the variation of the temporal pattern with month of storm
occuirence should be taken into account. By contrast, when only 3 ordinates or less are

used 1o characterise the storm temporal pattern, the results of the chi-square test indicate
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t

that there is insufficient evidence to reject the null hypothesis. The entire storm sample

of the observed patterns can therefore be regarded as a single group as far as the rainfall

temporal pattern is concerned.

Table 4-16: Effects of number of ordinates used to define temporal patterns on resuits of

the chi-square test of independence

Factor under Number of mass Degrees of Critical value Test statistic
consideration  curve ordinates freedom  at 5% LOS

Season 9 99 123.2 203.7
4 44 60.5 934

3 33 474 44.8

2 22 33.9 22.5

Duration 2 4 9.5 17.7
3 6 12.6 51.8

For the simplest cases in which the observed temporal patterns were independent of
season (that is, when they were represented by mass curves with 2 or 3 ordinates), the
chi-square test was again applied to check if the temporal paitern is associated with
storm duration. For this purpose, the storm sample was divided into three duration
groups (€12h, 13h - 24h, and >24 h). Results are also summarised in Table 4-16. It is
evident from this table that, regardless of whether 2 or 3 ordinates are used to represent
the temporal pattern, the test statistics computed are always greater than the critical
values. This indicates that, in these particular cases, the temporal pattern of storms in

all seasons is dependent on storm duration.

By using the same number of parameters to define the storm temporal pattemn in two
different statistical tests, it is possible to assess the power of the tests to detect any
association between the temporal pattern and any of the factors such as season, storm
duration and depth. In this particular analysis, the chi-square test seems to be more
p({werful than the correlation amalysis in detecting the dependence of the temporal
pattern on duration and depth. However, the power of the chi-square test also reduces

with a reducing number of ordinates used in the representation of temporal patterns.
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‘ 4.6.4.3 Discussion

From the investigation of the dependence of the temporal pattern on season, storm
duration or depth using storm events observed at 19 pluviometers used in this study, it
was found that different results were obtained depending on the method adopted to
represent the temporal pattern and the statistical test used. On the one hand, the use of 3
statistical characteristics to define the rainfall temporal pattern and the correlation
analysis to examine this association seem to be blunt measures which led to the
conclusion that the time distribution of rainfall intensity was invariant with any of the
factors being considered. On the other hand, when the temporal pattern was
characterised by the storm mass curve defined at a sufficient number of time steps, the
results of the chi-square test of independence indicated that the temporal pattern is
dependent not only on season, but also on storm duration and, in one case, on storm
depth. In addition, the power of the test used is possibly another factor affecting the

analysis outcome, as discussed above.

Of the two contradictory results obtained from the investigation described in this
section, the results of the chi-square test of independence for the temporal pattern
defined by 9 paramelers are judged to be most reliable, and they conform to most
findings in previous studies (Huif, 1967; Pilgrim and Cordery, 1975; Yen and Chow,
1980; Institution of Engineers, Australia; 1987, Bonta and Rao, 1989). Results of the
chi-square test indicated that the time distribution of rainfall intensity is dependent on
the storm season, when four independent seasonal groups were formed based on the
seasonal groupings of extreme rainfall (Minty et al., 1996). In each of these seasonal
groups, the temporal pattern is generally dependent on two duration groups, the upper
limit for the short duration storms being 12 hours. The 12-hour limit may characterise
the maximum duration of convective-type storms in this particular study. In the
literature, Yen and Chow (1980), and Bonta and Rao (1989) obtained similar resuits.
Their studies showed that storm temporal pﬁttcm is significantly affected by the season
of the storms, and that the general characteristics of short-duration convective storms
differ from those of long-duration cyclonic storms. In Australia, Pilgrim and Cordery
(1975) found that the variability of the temporal pattern increases with increasing storm
burst duration and decreasing rainfali depth. Similarly, the dependence of the temporal

pattern on location and storm duration has been recognised by the use of different




Chapter 4 1t

design storm pattemns for different climatic zones, storm durations, and levels of severity

of the design storm (Institution of Engineers, Australia, 1987).

Results of the analysis carried out in this section so far have indicated significant
variation of the temporal pattern with the factors of seasonality, rainfall duration and
depth, and with the number of parameters used to describe the temporal pattern. The
question now is to what extent this variation is important in flood estimation. This
raises two research issues in terms of sensitivity of design flood estimates, namely (1)
how many groups of temporal patterns should be used, and (ii) how many parameters
are required to adequately characterise the temporal patten. With regard to (i),
temporal patterns could be assigned to up to 10 groups (using the results of the chi-
square test of independence) or only one single group (using the results of the
correlation analysis). For the present study, however, it was decided to use 10 temporal
pattern groups and examine the effect of this on design flood estimates using a
sensitivity analysis. With regard to (ii), it is clear that the use of the storm mass curve
defined by at least 4 ordinates is preferable to 3 statistical characteristics of the rainfall
hyetograph (as 3 parameters are clearly not sufficient to describe the temporal pattern).
The minimum number of ordinates required to adequately represent the variability of
rainfall intensity during the storm duration and its effects on flood hydrographs are

investigated in Chapter 6.

In the section below, the development of a stochastic model to reproduce the observed

temporal patterns in the 10 temporal pattern groups is described.

4.6.5 Development of a stochastic model to reproduce observed storm
mass curves

The representation of the observed temporal pattems by a statistical model and the
generation of design storm pattemns from this model are interrelated as they use the same
source formulas in their formulation. Therefore in this section the model selected for
generating design storm patterns and the determination of the parameters of this model
from the observed temporal pattemns are described. The application of the selected

model to temporal pattemn generation is presented in detail in Chapter 5.
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There exist several methods for developing a design temporal pattern for a selected
design rainfall depth and duration (Pilgrim and Cordery, 1975; Chow et al., 1988). A
review of these is presented in Appendix H. Among these, the multiplicative cascade
model presented by Robinson and Sivapalan (1997) has the simplest structure and is the

easiest to apply in practice. For these reasons, the model was adopted in this study.

Generally speaking, the multiplicative cascade model can be applied to generate
dimensionless rainfall hyetographs with 2™ rectangles (corresponding to dimensionless
mass curves defined by (2™-1) ordinates), where m represents the chosen level of
disaggregation. For example, when m equals 3, the design storm depth is disaggregated
into a hyetograph with 32 blocks of rainfall, computed at 32 equal time increments of
the storm duration. The corresponding storm mass curve is thus represented by 31

ordinates.

The multiplicative cascade model operates on the principle that the disaggregated
rainfalls at a disaggregation level should equal the rainfall at the previous level. This

principle, illustrated in Figure 4-29, is explained in great detail in the section below.

Let w; be some disaggregation parameters (0 < w; 1) and h(ty,t) be the dimensionless
rainfall from the dimensionless time t, to t; of the storm duration (0<t, <t, <1). For

example, h(0,1) is the relative rainfall from the start to the end of a storm. By
definition, h(0,1)=1, which represents the unit dimensionless rainfall hyetograph [see
Figure 4-29 (2)].

At the first level of disaggregation (m=1), a parameter w, is used to break the unit
rainfall hyetograph into a hyetograph defined for 2 (=2') equal intervals of storm
duration [see Figure 4-29 (b)]. The disaggregated hyetograph thus has two rectangular

blocks whose ordinates are:

h(0,0.5) = w,

h(0.5]) = 1-w, @1

Note that the sum of the disaggregated relative rainfalls [h(0,0.5) and h(0.5,1)] is 1.




Chapter 4

113

- (a) Dimensionless rainfall hyetograph - T

0
0 H
1
(b) First level of disaggregation
1-w,
0.5 -
Wy
0
0.5 1
H
(¢) Second kevel of disaggregation
0.5 - (1-wy)w,
L ] Gewil-wy)
Wiy wi(l-wa) o : —
0
0.25 G5 0.75 i
1
(d) Third level of disaggregation
0.5

0 N e —

Dinemsionless stormdepth

0.125 0.25 0375 05 0.625 0.75 0.875 1
Dimensionless storm time (t)

Figure 4-29: Principles of the multiplicative cascade mode!
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At the second level of disaggregation (m=2), iwo additional parameters (wz, w3) are
required, each divides a block of the hyetograph generated in the previous step into two
smaller blocks. The dimensionless hyetograph obtained at this step is thus defined for 4
(=2%) equal time increments of the storm duration [see Figure 4-29 (c)]. The ordinates

of this hyetograph are determined as follows:

h(0,0.25) = w,h(0,0.5) = w,w,
h(0.25,0.5) = (1- w,)h(0,0.5) = (1- w,)w,
h(0.5,0.75) = w;h(0.5,1) = w,(1 - w,)
h(0.75,0) = (1 - w,)h(0.5.0) = (I - w,)(I - w,)

In the above four formulas, it is noted that the sum of the first and second pairs are

(4-12)

respectively wy and (I-w;), which are the ordinates of the hyetograph obtained at the
first disaggregation level.

At the third level of disaggregation (m=3), another four parameters (wq, Ws, wg, W7) are
used to break the hyetograph generated in the previous step into a hyetograph defined
for 8 (=2°) equal time increments of the storm duration [see Figure 4-29 (d)]. In
particular, w4 separates the first rectangular block of the hyetograph at the second
disaggrega::on level [that is h(0,0.25) in Figure 4-29 (c)] into two rectangles [see Figure

4-29 {(d)] whose ordinates are:

h(0,0.125) = w h(0,0.25) = w,w,w, (@-13)
h(0.125,0.25) = (1 - w,)h(0,0.25) = (1 - w,)w.w,
As the dimensionless rainfall of the previous level is preserved, the sum of the two

disaggregated rectangles is equal to h(0,0.25), that is, wyws.

Similarly, ws is used to break the second rectangle of the second level hyetograph [that

is h(0.25,0.5) in Figure 4-29 (c)] into two rectangular segments as follows:

h{0.25,0.375) = w,;h(0.25,0.5) = w,w, (1-w,) 414
h(0.375,0.5) = (1 - w,)h(0.25,0.5) = (1 - w)(1 - w,)w, “-14)
The sum of the ordinates of these two rectangles are equal to wy(1-wz), which is the

ordinate of h(0.25,0.5).

In a similar manner, the parameters w, and wo respectively divide the third and fourth

rectangular blocks in Figure 4-29 (¢) into two smaller rectangles.
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The disaggregation procedure above can be continued to higher levels of disaggregation
until the desired time scale is reached. In this analysis, the disaggregation process was
stopped at the third level-of disaggregation (m=3). That is, the multiplicative cascade
model was applied to generate rainfall hyetographs with 8 (=2’) rectangular blocks,
corresponding 1o mass curves defined by 7 intemal ordinates. While it was considered
sufficient for the purpose of this study to represent the storm temporal pattern by 7-
ordinate mass curves, it is emphasised that the model can be used to generate rainfall
hyetographs at any chosen level of disaggregation. The effect on design flood estimates
of representing storm mass curves (and therefore temporal patterns) by a greater number

of ordinates is later examined in a sensitivity analysis (see Section 6.5.4).

In order 1o generate dimensionless rainfall hyetographs that are similar to the observed
ones, the disaggregation parameters should be estimated from the observed hyetographs.
To do this, the dimensionless mass curves of the observed storms are required. Let H(t)
be the dimensionless cumulative rainfall depths from the beginning of the storm to the
dimensionless storm time t (0 <t <1) (see Figure 4-30). For exampie, H(0) and H(1)

are the relative cumulative storm depths at the start and end of a storm, respectively. By

definition:
H©)=0
H{l) =1

It is clear that the disaggregation parameters w; can be related to H(t) according to the
following relationships established for various disaggregation levels. For example, at

the first level of disaggregation:

H(0.5) = H(0) + h(0,0.5) = w, (4-15)

At the second level of disaggregation:

H(0.25) = H(0) + h(0,0.25) = w,w, = w,H(0.5)

H(0.75) = H(0.5) + h(0.5,0.75) = w, + (1= w )w; = H(0.5) + (1- H(0.5)}w, (“4-16)

At the third level of disaggregation:
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H(0.125 = H(0) +h(0,0.125 = w,w,w, = w H(0.25)
1(0379 =H(0.29+h(0250379 = H(0.29) +(w, — w,w,)w, = H(0.25) +(H(0.5) ~HO.25)w,
H(0.629 =H(0.5) + h(0.50.629 =H(0.5) + (H(0.75 - HO.)w,

H0.879=H(0.79 +h(0.750.879 =H(0.75)+(1- HO.75w,

(4-17)
1
" H(0.875)
% - 0.8 - H(0.75)
g s 0 1H(0.625)
2 B 3
T3 04 H(0.50)
Z E H(0.375
=& o02- H(0.25)
E H(0.125
U 0 T T ¥ T T T

0 0.125 025 037 0.5 0.625 075 0875 |

Dimensionless storm time (t)

Figure 4-30: Dimensionless mass curve at the third level of disaggregation

In applying the multiplicative cascade mode] for storm hyetograph generation, the
disaggregation parameters can be represented by a probability distribution. The beta
distribution, described in Appendix F, was selected for representing these parameters
because the parameter estimation of this distribution is very simple. In addition, when
being used in the adopted multiplicative cascade model, it can reasonably preserve the

characteristics of the observed temporal patterns, as will be shown in Section 5.2.5.2.

The procedure adopted for determining the parameters o and 3 of the beta distribution
from the observed storm mass curves of each of the 10 temporal pattern groups includes
the following steps:

¢ 7 ordinates of the dimensionless mass curve were computed for each storm.

* For each observed storm J» the disaggregation parameters w; (where i varies from 1
to 7) were computed from their relationships with the mass curve ordinates using
Equations (4-15), (4-16) and (4-17).

* The mean and variance of these w; values were then computed, from which the two

parameters oy, fj of the beta distribution representing the disaggregation parameters
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of the storm j were determined using the method of moments (see Appendix F).

o The medians’ of the computed ¢ and f; values of all the observed storms in a group
were then determined. These median o and  values, tabulated in Table 4-17, were
adopted as the parameters of the beta distribution representing the disaggregation

parameters of all the observed storm mass curves in a temporal group.

It is noted that in each temporal pattern group, each of the parameters & and 8 varies
quite considerably. The typical range of & is from 0.11 to 24.82, and of P is from 0.27
to 52.4. By representing this great variability of each of the parameters by just the
median value, it is clear that the variability of the disaggregation parameters, and

therefore of the generated temporal patterns, is significantly reduced.

Table 4-17: Parameters of the beta distribution representing the disaggregation

parameters of storm mass curves

Temporal pattern  Beta distributional parameters

group o B
i 2.22 2.06
2 1.52 1.35
3 1.59 1.6}
4 2.49 2.44
5 2.86 2.51
6 2.44 2.15
7 3.43 3.12
8 277 2.58
9 2.38 2.29
10 2.00 1.93

In examining the parameters of the beta distributions representing the disaggregation
parameters of the 10 specified temporal pattern groups, it can be seen that the
parameters of the beta distributions of Groups 2 and 3 are relatively similar. This
suggests that the same distribution can be used to characterise the disaggregation
parameters of these two groups. In other words, the two specified temporal pattern

groups might be combined into one single group. As the observed storms in these two

A preliminary analysis indicated that, using the median values of o; and P, the frequency curves of the
observed mass curves and the cumulative frequency curves of the maximum dimensionless intensity were
reproduced better than when the mean values were used.
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groups have the same duration range (from 13 to 24 hours) but their storm depths are
either less than 50mm or greater than 50mm (see Figure 4-27), the combination of these
two groups implies that the time variation of rainfall intensity might not be strongly
dependent on storm depth. Nevertheless, as there are only 48 observed storm events in
the duration group whose storm depths exceed 50mm (see Table 4-15), a larger storm

datai ase would be needed to justify the above postulation.

The adequacy of the beta distributions representing the disaggregation parameters of the
observed temporal patterns was tested by comparing the statistical characteristics of the
observed patterns and the design temporal patterns generated using these fitted beta
distributions. As the generation of design temporal patterns is presented in Chapter 5
(along with the generation of data from other stochastic inputs), the analysis undertaken
to check the adequacy of the fitted beta distributions is also presented and discussed in
Chapter 5.

4.6.6 Summary

In this section, the investigation of the dependence on season, storm duration and depth
of the temporal pattern of the storms recorded at 19 pluviometers used in this study was
covered. In this investigation, the rainfall temporal pattern was either represented by 3
statistical characteristics of the dimensionless rainfall hyetograph, or by intemal
ordinates of the dimensionless storm mass curve. The correlation analysis and the chi-
square test of independence were used to examine the dependence of the temporal

pattern on the factors of season, storm duration and depth.

Depending on the test used as well as the level of detail of the representation of the
rainfall temporal pattern, the dependence of temporal pattern on season, storm duration
or depth was or was not detected. On the one hand, the chi-square test of independence
appeared to be more powerful than the correlation analysis in detecting this relationship.
On the other hand, the chi-square test itself could not detect the dependence of temporal
paitems on duration (or depth) when the temporal pattern was described by a small
number of ordinates, that is, when not much information of the variation of rainfall

intensity during storm duration was given.
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Results of the chi-square test indicated that the temporal pattern represented by 9
ordinates was dependent on neason, storm duraticn and depth. For the storm sample
used in this study, 4 independent seasonal groups of temporal patterns were formed
using seasonal groupings of extreme raingall in Australia. In each seasonal group, the
observed storm pa‘terns were divided into two duration groups, with 12 hours being the
upper limit for short duration storms. An exception was the summer storms in which
the temporal pattern was dependent on three duration groups, and for one case, on storm
depth. As these results conformed to most findings in previous studies, these temporal

groupings (10 groups in total) were adopted for further analysis.

The muitiplicative cascade model presented by Robinson and Sivapalan (1997) was
adopted for generating design temporal patterns. For each of the 10 temporal patiern
groups, a beta distribution was also used to represent the disaggregation parameters of
the model. The two parameters of the beta disiributions were estimated from the

analysis of the observed storm patterns.

4,7 PROBABILITY DISTRIBUTION OF INITIAL LOSS

4.7.1 Background

The initial loss — continuing loss model is a runoff production model with two
parameters, namely the initial loss and the continuing loss rate. This model is widely
used in Australia due to its conceptual simplicity, ease of application, and the ability to
reasonably estimate representative values of rainfall losses over a catchment. For these
reasons, it was adopted in this research for estimating rainfall excess. As discussed in
Section 3.3.1, in the present application, the initial loss is considered to be a random
variable and the continuing loss a fixed design value.

Data used for deriving the probability distribution of the initial loss for the La Trobe
River catchment at Noojee were the initial losses estimated for various rainfall-runoff
events observed at the study catchment. These data were obtained from a parallel study

(Rahman et al., 2001). In that study, it was assumed that surface runoff started when a
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threshold value of 0.0imm/h was exceeded. The initial loss of a storm event was
computed to be the rainfall that occurred before the commencement of surface runoff.
The estimated initial losses for different events were also assumed to form a

homogeneous sample for frequency ana;lysis.

An at-site frequency analysis procedure was used to analyse the available initial loss
data for the study catchment. With this procedure, there are three steps involved,
namely the selection of a distributional type, the estimation of distributional parameters,
and the checking of the goodness-of-fit of the adopted distribution. Each of these steps
involves the choice of a single method among many alternatives, the bases of which are
dependent on many factors, such as the feasibility of a particular method, the required
accuracy, or ease of application. A brief review of the available methods in each step is

presented in Appendix 1.

In this section, the comrelations of initial loss with rainfall duration and average rainfall
intepsity are first investigated for the particular catchment. The procedure for
developing the probability distribution of the storm initial loss is then described, along
with its application to the observed data for the La Trobe catchment. A discussion of

results is also presented.

4.7.2 Correlations of initial loss with rainfall duration and average rainfall
intensity

To examine the relationship between the storm initial loss and storm duration or average
rainfall intensity, the corresponding correlation coefficients were first computed. The
initial Joss estimated for each rainfall-runoff event was then plotted against the
comresponding storm duration (see Figure 4-31) and average rainfall intensity (see
Figure 4-32). Tt cau be seen from Figure 4-31 that storm losses seem to increase as
storm durations increase. However, this relationship is very weak, as shown by the low
value of the corresponding correlation coefficient (0.29). In addition, the coefficient of
determination (R?=0.0854) of the regression line fitted to these sets of initial loss and
duration data is close to zero. Similarly, the storm initial losses scatter widely about

their corresponding average rainfall intensities, and the estimated correlation coefficient
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and R? are very close to zero (-0.02 and 0.0007, respectively), as seen in Figure 4-32.
Consequently, it is reasonable to assume that the initial loss is independent of storm

doration and intensity. The same conclusion has been obtained in a parailel study

(Rahman et al., 2001). :
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Figure 4-31: Relationship between initial loss and storm duration
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Figure 4-32: Relationship between initial loss and average rainfall intensity

4.7.3 Development of the probability distribution of initial loss

4.7.3.1 Selection of a distributionatl type

In order to determine the parent distribution of a data sample, histograms, moment ratio
diagrams, or L-moment ratio diagrams, described briefly in Appendix I, can be used.

For this study, the method of histograms was adopted because it is the simplest method
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for a preliminary choice. The adequacy of the assumed distribution was later assessed

using 2 goodness-of-fit test.

To determine the histogram of the initial loss for the La Trobe River catchment, the
observed frequencies of the initial losses were plotied against the corresponding class
intervals. The result is presented in Figure 4-33 where it can be seen that the histogram
of the initial loss has a long right tail. The corresponding coefficient of skewness
computed for this data sample was 2.7. As theoretical distributions such as gamma,
beta, or lognormal are all positively skewed and have the shape similar to this
histogram, they could be tentatively selected as the parent distribution for the initial loss
for the particular catchment. Nevertheless, the beta distribution was adopted because

the parameter estimation and data generation of this distribution are very simple.
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Figure 4-33: Histogram of initial losses for the 1 .a Trobe River catchment

4.7.3.2 Estimation of distributional parameters

To estimate the parameters of a distribution, the method of moments, method of L-
moments, method of maximum likelihood, or Bayesian methods can be used. An
outline of these methods_is presented in Appendix 1. Of these, the method of L-
moments has been popularly used in recent applications because it is less subject to bias
in parameter estimates, is able to characterise a wide range of distributions, and is more
robust to outliers of data (Hosking, 1990). Nevertheless, for the present study, the
method of L-moments is not feasible, because mathematical formulation to compute L-

moments of the assumed beta distribution is not readily available. The method of

Lﬁ: .
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moments was used instead because it is simple, and more importantly, the product

moments of the beta distribution can be readily obtained from statistical texts.

In order to estimate distributional parameters by the method of moments, sample
moments are equated to their corresponding distributional moments. For the case of the
beta distribution, its two parameters o and 3 can be computed from the lower limit (a),
upper limit (b), mean [E(Y)] and variance [Var(Y)] of a data set using Eguation (F-7)
(see Appendix F).

The two parameters of the beta distribution were computed for the sample of initial
losses for the La Trobe River catchment with the following statistics: a=1.85mm,
b=143.9mm, E(Y)=27.3mm, and Var(Y)=302.7mm’. The estimated parameters were:
a=1.6 and =7.2. The cumulative probability distributions of the fitted beta distribution

and of the observed initial josses are plotted in Figure 4-34.
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Figure 4-34: Plot of the cumulative distribution function of observed initial losses and

the fitted beta distribution

The visual comparison of the cumulative frequency curves of the observed loss data and
the fitted beta distribution shown in Figure 4-34 indicates that the two curves match
very well for the initial loss of about 60mm or greater. However, for the initial loss
below this range, there is quite a difference between the two cumulative frequency
curves. Therefore, the adequacy of the fitted beta distribution needs to be further

assessed, as described below.
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4.7.3.3 Checking of the adequacy of the fitted distribution

Common methods for evaluating the goodness-of-fit of a theoretical distribution to a set
of data are the Kolmogorov-Smimov one-sample test, the chi-square goodness-of-fit
test, and the probability plot correlation coefficient test (Haan, 1977; Cunnane, 1989;
Stedingcr. et al., 1993). Of these methods, the chi-square goodness-of-fit test is very
widely used due to its simplicity and ease of application. For these reasons, this test

was selected for assessing how well the adopted beta distribution fits the observed loss

data.

In order to apply the chi-square goodness-of-fit test, in general, observed data are first
assigned to class intervals. The expected number of observations that falls in each class
interval {expected according to the theoretical distribution under test) is then computed
by multiplying the expected relative frequency by the number of observations. The test

statistic is finally calculated as follows (Haan, 1977):

'L

— . 2
. =E(0i EEI) {4-18)
i=l ]

where k" is the number of class intervals, and O; and E; are the observed and expected

number of observations in the i class i. ;. vvals.

The hypothesis that the data are from the specified distribution is rejected at a given
level of significance if the computed test statistic exceeds the corresponding critical
value of a chi-square distribution with k’-p-1 degrees of freedom, where p is the number

of parameters estimated from the data. These critical values can be obtained from Haan

(1977, Table E6).

An application of the chi-square goodness-of-fit test for assessing the adequacy of the
fitted beta distribution to the observed initial losses for the given catchment is illustrated
" in Table 4-18. In this application, tic observed values of the storm initial loss were
divided into five class intervals, as shown in Table 4-18. The number of degrees of
freedom of the chi-square distribution used was: k™-p-1 = 5-2-1 = 2, The critical value
at 3% LOS was 5.99. It can be seen in Table 4-18 that the computed test statisiic (3.5)

is less than the specified critical value. Therefore, for the selected class intervals, the
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nuil hypothesis that the observed initial losses for the La Trobe River catchment are

from the specified beta distribution (c=1.6, B=7.2) can not be rejected at 5% LOS.

Table 4-18: Results of the chi-square goodness-of-fit test on initial loss data

Class intervals of ~ Expected relative Frequency

storm losses {mm) frequency Expected (E)  Observed(O;)  (O;- E)Y/E;

0-20 0.401 63.0 62 0.01

20-40 0.379 59.5 68 1.21

40-60 0.163 25.6 20 1.22

60-80 0.043 7.5 5 0.85

80-143.9 0.009 1.4 2 0.24

Test statistic (xz) = 3.55

At this point, it is worth noted that results of the chi-square goodness-of-fit test are quite
sensitive to the number of class intervals used to summarise the observed data. For
example, a subsequent analysis showed that when 6 or 8 intervals were used, the null
hypothesis is rejected at 5% LOS (but can not be rejected at lower levels, say 2.5% or
1% LOS). This suggests that the adopted beta distribution is not necessarily the best
distribution characterising the storm initial loss for the specified catchment. However,

this was discovered late in the study, and no other distribution was investigated.

4.7.4 Summary

The loss model adopted in this research was the initial loss — continuing loss model in
which the initial loss was treated as a random variable, and the continuing loss rate as a
fixed design value. It was found that the storm initial losses derived for observed
rainfall-runoff events for the La Trobe River catchment were independent of storm
duration and average rainfall intensity. A two-parameter beta distribution was fitted to
lhese_ initial losses. Results of the chi-square goodness-of-fit test indicated that the
adopted beta distribution provides an acceptable fit to the observed losses for the study

catchment.
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4.8 PARAMETERS OF THE LUMPED RUNOFF ROUTING MODEL

4.8.1 Background .

Runoff routing models give estimates of a surface runoff hydrograph by routing rainfall
excess through a model representing the catchment storage. To obtain the total flood

hydrograph, baseflow must be determined separately, and then added to the sstimated

surface runoff hydrograph.

The runoff routing model adopted in this research, as discussed in Chapter 3, assumes a
non-linear relationship between storage and discharge. It has iwo parameters k and m,
in which k is a dimensional coefficient representing storage delay time, and m is a
dimensionless constant representing the non-linearity of catchment response. The
adopted model is relatively simple in that it does not take into account the spatial
variation of rainfalls and losses over the entire catchment, and assumes only one model
storage at the catchment outlet. Due to this simplicity, it was considered necessary to
evaluate the performance of this model in design flood estimation by comparing flood
estimates obtained from this model with those from a distributed model developed for
the catchment. Results of this compariscn would give indications of how design floods

would have been estimated had a distributed model been used for the catchment.

This section presents the research undertaken to estimate the parameters of the adopted

mode} and evaluate the model performance.

4.8.2 Determination of the lumped model parameters

The determination of the parameters of the adopted Jumped runoff routing model for the
La Trobe River catchment at Noojee, with the catchment area of 290km?, consisted of
four steps: event selection, baseflow separation, model calibration, and model testing.

These steps are described below.
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4.8.2.1 Event selection

To select observed rainfall-runoff events for model calibration and testing, two criieria
were used. Firstly, there had to be a minimum of five large observed flood events, of
which about half were required for model calibration and the remainder for model

testing. Secondly, there had to be concurrent rainfall data for the selected floods.

Nine largest flood events were extracted from the flow record of the La Trobe River
catchment.  The threshold discharge of 22m%s (corresponding to floods of
approximately S-year ARI) was used for this extraction. Among the extracted floods,
only 5 events had concurrent rainfall data. Therefore, these 5 events were selected for
calibrating and testing the adopied lumped runoff routing model. Even though it was
desirable to obtain more events for model calibration and testing (by reducing the
threshold discharge), it was decided to use only the 5 selected rainfall-runoff events, as
the use of a smaller threshold discharge would result in even smaller events for analysis.
The peak discharge of the selected floods ranged from a minimum of 24.3ms to a

maximum of 60m°/s {see Table 4-19).

Table 4-19: List of observed floods used for model calibration and testing

Event start daie  Peak discharge = Surface runoff  Baseflow % of baseflow

(m’/s) (m’/s) (m’/s)  to peak discharge
27/01/1963 24.3 18.6 5.7 23.6
28/05/1969 27.5 15.0 12.5 45.5
5/11/1971 60.0 48.6 11.4 19.0
7/04/1977 25.6 L2222 3.5 13.5
30/06/1980 33.0 31.3 1.7 5.1

4.8.2.2 Baseflow separation

The separation of baseflow from observed (total) streamflow was necessary in
determining runoff routing model parameters because only surface runoff is modelled,

and thus the calibration and testing procedures relate to surface runoff only.
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Many methods are available for baseflow separation (Institution of Engineers, Australia,
1987, Chapter 8). In general, it is necessary to define the start and end of the surface
rupoff hydrograph and the shape of the ba‘seﬂow hydrograph. Whereas the start of
surface runoff can be easily determined, the determination of the end of surface runoff
and the shape of the baseflow hydrograph involves more subjective judgement. In this
study, the HYBASE baseflow extraction program (HYDSYS, 1994), based on a
recursive digital filter technique, was adopted. In this program, the surface runoff at
time step (k) is a function of a filter factor, the number of passes, and the total
streamflow at time steps (k) and (k-1). As the filter factor is increased, the baseflow
hydrograph becomes flatter, and as the number of passes is increased, the baseflow
hydrograph becomes smoother. The choice of the correct combination of these two

parameters is also a highly subjective process.

For the La Trobe River catchment, it was necessary to separate baseflow for only one of
the five selected flood events (the 1963 flood, see Table 4-19), as the surface runoff
hydrographs of the other four events were available from a previous study (Smith,
1998). To do this, the specified flood event was first extracted at hourly time steps from
the HYDSYS database. The HYBASE program was then used to estimate baseflow.
The surface runoff hydrograph was finally exiracted using program HYCSV (HYDSYS,
1994).

Results of the baseflow separation are also presented in Table 4-19 and illustrated in
Figure 4-35. In Table 4-19, the estimated surface runoff and the corresponding
baseflow under the peak discharge of the five selected floods are listed. In Figure 4-35,
the total streamflow hydrograph of the 1963 flood is shown along with the
corresponding baseflow hydrograph. It is noted from Table 4-19 that the ratio of
baseflow to the peak discharge is relatively high, ranging from 5% to 45% with an
average of 21%, for all the events used. Baseflow has been noted to be high for the

study catchment by other authors, for example, Smith (1998).
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Figure 4-35: Plot of total streamflow and the extracted baseflow (the 1963 flood)

4.8.2.3 Model calibration

The aim of model calibration is to determine the parameters k and m of the adopted
runoff routing model. For the L Trobe River catchment, the parameter m was assumed
to be 0.8. This value has been recommended in many previous investigations, as

documented by the Institution of Engineers, Australia (1987, Chapter 9).

To estimate the routing model parameter k, a trial and error process was adopted. In
this process, the initial loss was varied first so that the rising limb of the estimated
surface runoff hydrograph fitted that of the observed hydrograph. The continuing loss
rale was then determined to give the correct surface runoff volume. Finally, the
parameter K was varied to match the peak flows of the two hydrographs. For each
event, this process was repeated until the observed and estimated hydrographs fitted as
closely as possible in terms of flood peak, as this was the flood characteristic of i.terest.
Nc-verthe]ess, the time to peak and hydrograph shape were also considered. Three
observed rainfall-flood events were used in this calibration (the 1969, 1971, 1980

events). The calibration program was written by Rahman (1999).

Results of the calibration of the runoff routing model for the La Trobe River catchment
are presented in Table 4-20. This table shows the values of the storm initial loss,

continuing loss rate, and the routing model parameter k for each of the three events
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used, along with the observed and calculated flood peaks and time to peaks. A plot of
the observed and estimated surface runoff hydrographs for one calibrated event is
presented in Figure 4-36. It is noted here that for all the events used for model
calibration, it was very difficult 1o match the rising limb and the shape of the observed
and calculated hydrographs, regardless of changes in the initial loss, continuing loss and

the routing model parameter k used. This situation is clearly illustrated in Figure 4-36.

Table 4-20: Results of mode! calibration (lumped runoff routing mode!, La Trobe River

catchment) (m=0.8)

Event 1L CL Peak discharge (m’s) Time 10 peak (h)
(mm) (mmh) k  observed calculated % difference observed calculated % difference
1960 25 32 56 15 15.15 ] 89 48 6.1
1971 34 43 47 486 48.1 -10 73 42 425
1980 25 79 55 313 33.7 7.7 60 46 -23.3
16
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Figure 4-36: Observed and estimated hydrographs (the 1969 flood, model calibration)

Results of model calibration, as shown in Table 4-20 and Figure 4-36, indicate that the
adopted lumped runoff routing model satisfactorily reproduces the observed flood peak,
but significantly underestimates the time to peak of all the three evenis used, and does
not preserve very well the hydrograph shape. For these events, the difference between
the peak discharge of the observed and computed hydrographs is only within the range
of 1% and 8%. Nevertheless, there is a discrepancy from 23% up to 46% between the
observed and computed ‘ime to peak of the hydrographs. It is also noted from Table
4-20 that the continuing loss rate used for the 1980 flood seems to be high (7.9mmvh).

However, according to an independent study of data used for loss modelling, the
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adopted value of the continuing loss rate for the La Trobe River catchment is reasonable

(Hill et al., 1996a).

In order to select a common value of the routing parameter k for the study catchment, it
is noted from Table 4-20 that k values for the three calibrated events (56, 47, 55) are
approximately equal. Therefore, the global parameter k for the catchment was initially

adopted as the average k value (k=353).

4.8.2.4 Model testing

The aim of model testing is to check whether the calibrated runoff routing model with
the specified parameters k and m (k=53, m=0.8) can reproduce other observed floods.
This was carried out by varying the initial loss and continuing loss rate until the
estimated flood hydrographs matched the shape and volume of the observed ones as
closely as possible. Two observed rainfall-runoff events that were not used in model

calibration (the 1963 and 1977 events) were used in the testing.

Results of the model testing are suramarised in Table 4-21. A plot of the observed and

estimated flood hydrographs of one test event is also illustrated in Figure 4-37.

[ ]
<

—o—Observed flow |

[N
wn
H
1

—a— Computed flow

Peak discharge (m:"!s)
w o

o

Time (h)

Figure 4-37: Observed and estimated hydrographs (the 1963 flood, mo." .| testing)
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Table 4-21: Results of model testing (k=53, m=0.8) - Lumped runoff routing model

Fvemt IL CL Peak discharge (m’/s) Time 10 peak (h)

(mm) {(mm/h) observed calculated % difference observed calculated % difference
1963 35 9.2 18.6 18 32 34 20 -14.7
1977 0 11 222 224 0.9 31 23 -25.8

It can be seen in Table 4-21 that the adopted runoff routing model preserves very well
the peak discharge. In particular, errors in peak flood estimates are less than 3% for
both test events used. On the other hand, the time to peak of the predicted hydrographs
is underestimated by at least 15%. In addition, the shape of the observed hydrograph

for both test events is not satisfactorily reproduced, as illustrated in Figure 4-37.

As the calibrated model only reproduced well the peak discharge in the test runs, efforts
were made to improve its performance by using the two test events for further modei
calibration. However, results of this analysis indicated that the estimated flood
hydrographs were not better predicted both in timing and in shape. Therefore, it was
decided to keep the specified values of k and m (k=53, m=0.8) as the parameters of the
lumped routing model for the study catchment. Possible reasons for poor model

performance and avenues for improvements are discussed below.

4.8.2,5 Discussion

The discrepancy between the observed and calculated surface runoff hydrographs,
especially in the time to flood peak and hydrograph shape, in both mode] calibration and
testing could have been caused by many factors. Fiistly, the esiimation of losses from
rainfail and the separation of baseflow in some selected =vents might have been
incorrect. As baseflow was known to be high for the siudy catchment, the choice of a
. baseflow separation technique would certainly affect the estimated amount of baseflow,
and consequently, the resulting surface runoff and the calibrated routing mode!
parameters, as confirmed in previous studies (Bates and Davies, 1987). In addition, the
selection of a combination of the filter factor and number of passes in the adopted

baseflow extraction program was highly subjective.
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Secondly, the rainfall-runoff data recorded for these events may have been erroneous.
As the time 10 flood peak was underestimated in both model calibration and testing, the
data errors might be in the form of a shift in the recorded event time. Nevertheless,
after examining ali rainfall-runoff events used in this study (see an iliustration of a
typical event in Figure 4-38), it was evident that the recorded timing of flood of these
events was reasonable because the peak flood discharge always occurred after the

occurrence of peak rainfall for each individual event.

25 1 & | WEERanfal at station 85237 | T 12
2 | & % | —o—Flow at 226205C

Rainfall (inm)

Discharge (m’/s)

Figure 4-38: Plot of observed flood and the corresponding rainfail event (the 1963
flood)

Thirdly, the estimated rainfall over the catchment may have gross errors. It is obvious
that rainfall is highly variable in spatial extent, therefore the use of rainfall data
recorded at only one rain gauge might have not been representative of the catchmeni

rainfall and the spatial variation of rainfall over the catchment.

Lastly, the runoff routing model itself may have been inadequate. That is, the non-
linearity of the catchment, the hydrologic processes involved in the generation of runoff,
or characteristics of the catchment and its drainage neiwork may not have been
modelied adequately. In the latter case, for example, the lower reaches of the study
catchment might be very flat, resulting in very long delay in the time to flood peak, but
the adopted model might have failed to consider this flat slope in the catchment

representation. The adopted model could have been improved by using a much larger
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value of m and including some translation, as suggested by the results shown in Figure
4-36 and Figure 4-37. Otherwise, distributed runoff routing models such as RORB

(Laurenson and Mein, 1995) could be uged to provide more reliable design floed

estimates.

To summarise, the calibrated lumped runoff routing model for the La Trobe River
catchment satisfactorily reproduced the peak discharge of the observed hydrographs.
As this study focussed on the determination of the flood frequency curves of flood peak,
the adopted model is considered to be adequate for this purpose. In applying the
calibrated model for design flood estimation, it is emphasised that the model is directly
applicable only for flood estimates within the range of the flood magnitudes used for
model calibration and testing (from about 20m*/s to 60m®s). Extrapolation of results

beyond this range will involve additional uncertainties.

4.8.3 Comparison of lumped and distributed runoff routing modeis

As mentioned in Section 4.8.1, the comparison of design {loods estimated by the
adopted lumped runoff routing model with those by a distributed model would give
indications of the likely improvements of flood estimates had the more refined model
been adopted.

The selection of a distributed model for the La Trobe River catchment was undertaken
with the aim to minimise the effort of model calibration. To achieve this objective, it
was desirable to use a distributed model readily available for the catchment of interest.
In this regard, there are some calibrated catchment RORB and URBS models available
from previous studies (Dyer et al.,, 1994; Baker, 1997; Smith, 1998), but all these
models have not yet been independently tested. A preliminary analysis was therefore
“carried out to select the best model b)} testing the available models with an observed
rainfall-runoff event that was not used in model calibration. Details of this analysis are
documented in Appendix J. Analysis results indicated that the equivalent RORB
caichment model developed by Baker (1997) reproduced the observed floods relatively

well, and therefore was selected for this comparison.
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In Baker’s model, the study caichment and its drainage system were represented by 11
sub-areas and 15 river reaches (see Figure 4:39). The model parameters were: k.=30,
m=0.8. The theoretical background of the URBS and RORB programs from which

Baker's model was developed and modified is also summarised in Appendix J.
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Figure 4-39: Equivalent RORB model for the La Trobe River catchment at Noojee
_ (Baker, 1997)

In order to compare the lumped and distributed models developed for the La Trobe
catchment, these models were applied to the five selected rainfall-runoff events (sec
Table 4-19). In these test runs, the model parameters were fixed and the loss parameters
were varied within reasonable limits until the calculated surface runoff hydrographs

matched the observed ones in terms of flood volume, hydrograph shape, time to peak
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and most importantly, flood peak. Results of this comparison are tabulated in Table

4-22. The percentage differences between hydrograph characteristics determined by the

lumped and equivalent RORB models and the observed hydrograph characteristics were

also computed and are presented in Table 4-23. A plot of the observed and calculated

flood

hydrographs for one test event used is also illustrated in Figure 4-40.

Table 4-22: Performance of runoff routing models

Event Observed hydrograph Lumped model (k = 33, m = 0.8) RORB model (kc = 30, m = 0.8)
Peak dischasge Time to peak Volumzg Peak discharge Time to peak  Volume Peak discharge Time to peak Volume
(’ls) IR IR Y ) M 1) ) 0*mh
1963 186 M 20 18.0 29 22 18.3 40 1.9
1962 150 89 2.6 15.9 48 24 16.0 59 26
1971 486 73 50 43.3 42 50 499 49 50
1977 222 k1l 2.0 224 23 25 209 29 2.0
1980 33 60 4.1 42.0 46 3.7 48,1 33 4.1

Table 4-23: % difference between estimated and observed hydrographs

Event Lumped model (k =53, m =0.8) RORB model (k¢ = 30, m = 0.8)
Peak discharge Time to peak Volume Peak discharge Time to peak Volume
1963 -32 -147 13.3 -1.6 17.6 -1.5
1969 6.0 -46.1 -1.0 6.7 -33.7 04
1971 -10.9 42.5 -1.0 2.7 -32.9 0.2
1977 1.0 -25.8 224 -5.8 -6.5 -1.5
1980 34.2 -23.3 -9.5 53.7 -11.7 -1.0
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Figure 4-40: Observed and estimated flood hydrographs (the 1969 flood)
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In comparing the lumped model with the distributed RORB mode! calibrated for the La
Trobe River catchment at Noojee, it can be seen in Table 4-22 and Table 4-23 that peak
discharges of the surface runoff hydrographs calculated by these models are quite
similar. For example, compared with the observed peak discharge, errors in the
estimated flood peak are generally below 10% for both lumped and distributed models.

An exception is the 1980 event for which both models overestimate the observed flood

peak by more than 30%.

With regard to other hydrograph characteristics, the Jumped model does not preserve the
hydrograph shape of the observed events as well as the distributed model, as illustrated
in Figure 4-40. Similarly, compared with the observed floods, errors in the time to
flood peak estimated by the lumped model are slightly greater than the distributed
model. For example, the absolute difference between the estimated and observed timing
of flood varies from 14.7% to 46.1% for the lumped model and from 6.5% to 33.7% for
the distributed model (sec Table 4-23). Thus, both models considerably underestimate
the time to flood peak. In addition, as seen in Table 4-22 and Table 4-23, ervors in the
flood volumes reproduced by the lumped model are greater than those from the
distributed model. This is possibly due to errors in estimates of losses from rainfall,

especially in the continuing loss rate.

The comparison of the lumped and distributed routing models shows that even though a
simple lumped runoff routing model was adopted for this present study, peak flood
discharges estimated by this model compared well with those obtained from a
distributed model. Therefore, it can be inferred that design floods obtained from the
adopted lumped model would be indicative of those estimated by distributed models had
the latter been used in Monte Carlo simulation. Both modelled hydrographs do not
match well the observed ones in terms of hydrograph shape and time to flood peak,
possibly indicating that the available rainfall data is not representative of catchment

rainfall, as well as inadequacies of the catchment representation in both models.

4.8.4 Summary

In this study, the runoff routing model adopted for the La Trobe River catchment at




Chapter 4 138

Noojee was a Jumped model with a concentrated storage at the catchment outlet. The
model does not consider the spatial variation of rainfalls and Josses over the catchment.
Tt has two parameters k and m, the former represents the storage delay time and the

latter characterises the non-linearity of the catchment response to rainfall.

In estimating the parameters of the adopted model, m was assumed to be 0.8. To
evaluate the model parameter k, five rainfall events observed at one recording rain
gauge inside the catchment and the corresponding flood events were used. The
calibrated model (k=53, m=0.8) was found to reproduce the peak discharge of the
observed surface runoff hydrographs quiie well. On the other hand, the timing of

peakflow was significantly underestimated.

Due to the simplicity of the adopted lumped model, design floods estimated by the
mode! were compared with those of a distributed RORB model developed for the same
catchment. The objective of this comparison was to assess how flood estimates would
have differed had the spatial vanability of rainfall and catchment characteristics been
considered. Results of the comparison confirmed that the peak flow estimates by both
models were quite similar. Therefore, it was concluded that, even though the distributed
runoff routing modz) is clearly superior (both in theory and practice), the adopted
lumped model was able to provide adequate estimates of the peak discharge in the range

of flood magnitude used for model calibration and testing.

4.9 OTHER FIXED DESIGN INPUTS

In this study, design inputs considered as having fixed design values were the storm

continuing oss rate and the design baseflow.

The design continuing loss for the La Trobe River catchment at Noojee was taken to be

4.Tmm/h. This value was obtained from a previous study of loss modelling (Hill et al.,
1996a).
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For the study catchment, the adopted design baseflow was 0.75m’/s (Siriwardena et al.,
1997). This is the median pre-storm baseflow derived from monthly median values,
which in wrn were computed from observed baseflow hydrographs at the catchment
outlet. Even though it is desirable to describe baseflow by a hydrograph, for simplicity,

the adopted baseflow hydrograph was assumed to be time invariant.

It is noted at this point that baseflows (at the time of the peak discharge) for the five
events used for calibrating the adopted runoff routing model for the study catchment
ranged from 1.7 10 12.5m’/s (see Table 4-19). These values are generally much higher
than the adopted design basefiow (0.75ms), and might be biased towards wet
catchment conditions, Therefore, they are considered as not representative of the

typical antecedent wetness of the catchment.

4.10 SUMMARY

Results of the analyses documented in this chapter and findings are summarised below.

» Two rural catchments (the La Trobe River catchment at Noojee and the Tarwin
River catchment at Dumbalk North) and 19 pluviometers in and around the selected
catchments were selected to apply and evaluate the proposed Joint Probability
Model for design flood estitnation. Observed rainfall and flow data at these sites
were checked for homogeneity. Results of the Mann-Kendall test for trend and the
CUSUM test for a change in the mean value indicated that the observed rainfall and
flow data at the selected sites were homogeneous in time. The La Trobe River
catchment was selected for the initial analyses described in this chapter.

* In order to extract storm events from continuocus rainfall records, a suitable storm
definition was developed in this study. Using the adopted definition, the extracted
events had the following characteristics: they are stochastic events, have no

significant rain before the start and after the end of the events, and have the potential

to produce significant runoff. The extracted events were then checked for
consistency, and those that had evidence of errors in data recording or transcription
were discarded. In total, there was 3975 observed storms extracted from the 19

selected pluviometers, with an average of seven events per year per station.
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¢ In order to develop the probabiliiy distribution of storm duration for the La Trobe
Rjver catchment, the Hosking and Wallis method of regional frequency analysis was
adopted. Analysis resulis indicated that homogeneous regions with respect to storm
duration could be formed by grouping sites contiguous io the site of interest. A
three-parameter Generalised Pareto distribution was used to characterise the storm
duration.

o As there was a strong relationship between average rainfall intensity and duration, a
conditional probability distribution was used to represent the rainfall intensity. In
order to develop the conditional frequency curves of the average rainfall intensity
(the IFD curves) for station 85237 within the La Trobe River catchment, a modified
version of the at-site frequency analysis procedure developed by Rahman et al.
(2001) was adopted. An exponential distrnibution was fitted to the observed average
intensities for each of the five class intervals of storm duration and a polynomial
equation was used to generalise the resuits for all durations. This procedure
provided consistent rainfall intensity estimates for short duration and frequent
storms, but resulted in some inconsistencies in the intensity estimates for longer
duration and rarer events (duration greater than 48 hours and ARI exceeding 20
years). The tails of the derived IFD curves were therefore adjusted using the at-site
IFD curves for storm bursts. The adjustrnents to the inital IFD curves were quite
substantial but justified, and preserved the inverse relationship between storm
duration and average intensity.

¢ In order to examine the dependence of rainfal} temporal patterns on season, storm
duration or depth, correlation analysis and the chi-square test of independence were
used. Test results indicated that, depending on the test used and the leve! of detail of
the representation of the temporal pattern, this dependence was or was not detected.
According to the results of the chi-square test, the rainfall temporal pattern was
dependent not only on season but also on storm duration and depth. Ten
independent groups of temporal patterns were defined.

¢ A multiplicative cascade model was adopted to generate synthetic temporal patterns.

For each temporal pattem group, disaggregation parameters of this model were

represented by a beta distribution. Parameters of the beta distribution were

determined from the observed storm temporal patterns in each group.
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Values of the initial loss of observed rainfali-runoff events for the catchment being
studied were obtained from a parallel study. The initial loss was found to be
independent of storm duration and average intensity. A beta distribution was then
used to characierise the initial loss.

A lumped runoff routing model was adopted and calibrated for the catchment. The
adopted model reproduced well the peak discharge of the observed hydrographs. In
comparing the adopted lumped model with a distributed RORB model developed for
the same catchment, it was found that design flood peaks estimated by the former
compared well with those estimated by the latter and the observed events.
Therefore, it was concluded that, even though the lumped model was conceptually
simple, it was able to provide adequate approximation of peak flows for the
purposes of this study.

Other inputs to the design flood estimation process that have fixed design values
were the continuing loss rate and baseflow. These design values were extracted

from results of previous studies.
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Chapter 5

MODEL APPLICATION

5.1 INTRODUCTION

After determining the probability distributions of the important flood producing factors
and the representative values of other design inputs, the subsequent step is to estimate
Jesign floods using the proposed Joint Probability Model. For this research, Monte
Carlo simulation was selected for design flood estimution for three reasons. Firstly, it
car. take account of the dependence of the random variables involved in the design.
Secondly, it has the potential to be easily applied in practice. Finally, a computer
program that can be modified to be applied to the data used in this research is readily

available.

Broadly speaking, Monte Carlo simulation is a computer experiment used to simulate a
physical or mathematical system that is too complicated to be understood property,
and/or appears to be based on random processes. The experiment is performed on a
probabilistic model that represents the system: and all random variabies and other fixed
design inputs involved. In the experiment, the probability distributions of the input
variables first need to be specified. Different sets of random values of these input
variables are then generated from their corresponding probability distributions. Values
of the output variable resulting from the joint occurrence of the fixed and variable
design inputs are next computed using the adopted simulation model. By repeating the
experiment a large enough number of times, a sample of the output can be obtained.
Methods of statistical estimation finally can be applied to the output sample in order to
provide frequency estimaies of the system output, These estimates are also subject to
sampling variability due 10 the statistical nature of Monte Carlo simulation. Thus, one
of the fundamental issues of Monte Carlo simulation 1s how to design the experiment to

obtain reliable results.
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To increase the accuracy of the system output, two methods can be applied. The first is
to repeat the experiment a large enough number of times so that the mean of the output
estimates approaches the population mean, according to the jaw of large numbers
(Perlado, 1990). The second is to apply variance reduction techniques (Perlado, 1990;
Kottegoda and Rosso, 1997). Broadly speaking, these techniques aim to reduce the
standard error or the variance of the simulation outcomes by biasing the probabilistic
scheme to the domain of design interest without increasing the sample size. Of these
two methods, the generation of a large number of trials is adopted because it is
considered to be adequate for the purpose of this study, that is, to estimate design floods
with ARIs in the range of 1 to 100 years. In addition, it is simpler and easier fer

practical applications than using variance reduction techniques.

The application of Monte Carlo simulation to the proposed Joint Probability Model for
estimating design floods from design rainfalls involves two stages. The first stage is to
generate flood events. This includes the determination of number of random number to
be generated, the generation of random values from the probability distributions of the
flood causing factors, and the estimation of design floods by passing through the
proposed model various combinations of these random numnbers and other fixed design
inputs. Afier generating a large sample of synthetic floods, the second stage is to carry
out a frequency analysis of these flood events in order to determine the derived flood
frequency curve. The objective of this chapter is to report the application of the above
two stages to the development of the generated flood frequency curve for the La Trobe

River catchment at Noojee.

5.2 GENERATION OF hANDOM NUMBERS FROM THE INPUT
DISTRIBUTIONS

5.2.1 Background

A random number is a number selected at random from a population of numbers such
that each number in the population has a chance of being selected in accordance with

the probability distribution from which the numbers are drawn. Random numbers can
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be classified as uniform random numbers and random numbers generated from other

distributions. Uniform random numbers, also called uniform random deviates or
uniform deviates, are random numbers generated from a uniform distribution, usually
on the interval from 0 to I. Random numbers generated from other distributions are

obtained by performing appropriate operations on uniform random numbers.

Many methods are available for generating random numbers. For example, the linear
congruential method is most popularly used to generate uniform deviates, and the
inverse cumulative distribution function method or the rejection method can be
employed to generate random numbers from other continuous distributions (Press et al.,
1989). In practice, utility subroutines (also called system-supplied random number
generators) are widely used. For example, for FORTRAN language, utility subroutines

for selecting the type of generators or for setting and retrieving the seed (the starting

T e

value of a sequence of random numbers) are available in the Microsoft International
Mathematical Statistical Library (MSIMSL) (Microsoft Corporation, 1995). A
collection of subroutines for generating random numbers from common distributions
such as uniform, beta, exponential, and normal distributions can aiso be found in this
library. In addition, some subroutines for generating random numbers from a general

continuous distribution are also provided.

This section documents the research undertaken to generate random numbers from the
statistical distributions of storm duration, rairfall intensity, temporal pattern, and initial
loss. It first specifies the number of random numbers to be generated, then describes the
application of computer subroutines for generating random data from the abo've

distributions.

5.2.2 Number of generated data

For the present application, the number of random data to be generated depends on
many factors such as the degree of accuracy required, the range of flood return periods
of interest, the number of random variables involved in simulation, and the degree of
correlations among them. When using four random variables (intensity, duration,

temporal pattern, and initial loss) in the proposed loint Probability Model with some
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degree of correlations, it was considered adequate to generate 2000 years of data to

estimate design floods with return periods of 1 to 100 years. It was also assumed that
the generated floods form a partial duration series, therefore the number of random data

to be generated (NR) can be determined from the following relationship:

NR =0, XN, (5-1)
where o, is the average number of events per year, and Ny is the number of years of

data to be generated.

For the La Trobe River catchment, the average number of significant rainfall events per
year was 7.6, recorded at pluviometer 85237. Therefore, the data generation scheme

was applied 10 generate 15000 events over the period of 2000 years.

5.2.3 Storm duration

In order to generate 15000 random storm durations from the Generalised Pareto
distribution representing the storm duration at station 85237, subroutines DRNGCS and
DRNGCT of the MSIMSL (Microsoft Corporation, 1995) were used. These
subroutines have been developed for generating randem numbers from a general
continuous distribution using the inverse cumulative distribution function method
(Haan, 1977; Press et al., 1989). With this method, a random number can be generated
from a probability distribution by equating a randomly generated uniform random
number with the cumulative distribution function of the specified probability
distribution. More details of this method are documented in \ppendix K. The
cumulative distribution function of the Generalised Pareto distribut’ >n is documented by
Hosking (1997).

Before vsing the generated storm durations for design floed estimation, it was necessary
to check if the generated data could reproduce the important statistical properties of the
observed storm durations. In order to do this, the mean, standard deviation, skewness,
and percentiles of the simulated storm durations were computed and then compared
with those of the observed storm events. A summary of these statistical properties of

the observed and generated storm durations is presented in Table 5-1. It can be seen
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from this table that the average duration of the observed storms is reproduced very well
in the sirulated storms. Other statistical characteristics of the observed storms such as
skewness and percentiles of the storm duration are also preserved well in the generated
events. However, the standard deviation of the simulated storm duration is slightly
greater than that of the historical data. This means that, the duration of the simulated
storms is slightly more variable than that of the observed storms. In general, it can be
concluded that the generated storm durations for station 85237 preserve very well the

statistical properties of thc observed storm durations.

Table 5-1: Statistical properties of observed and simulated storm durations

observed storms simulated storms

Number of events 167 15000
Mean (h) 23.5 23.6
Standard deviation (h) 18.1 18.9
Skewness 1.1 1.1
25th percentile (h) 9 9
50th percentile (h) 19 19
75th percentile (h) 35 34

5.2.4 Rainfall intensity

In order to determine the average rainfall intensity corresponding to a specified random
storm duration and an ARI, the procedure below, developed by Rahman et al. (2001)
was adopted.

* AnIFD table, showing average rainfall intensities for some selected storm durations
and ARls, was developed for the site of interest (see Table 5-2}. The average
rainfall intensities shown in this table were computed using the method described in
Section 4.5. There are two points to be noted in this table. Firstly, even though the
ARI of design floods of interest in this study is from 1 to 100 years, the simulated
range of ARIs is much wider (from 0.1 to 10° years) to allow for various input
combinations that might arise during simulation, Secondly, the derived IFD curves
for the design site are considered to be reliable in the ARI range from 1 to 100 years
(see Section 4.5). Therefore, extrapolation of these curves outside this range is

subject to considerable uncertainties.
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Table 5-2: IFD tabie for observed storms at pluviometer 85237 (unit mm/h)

D AR (years)
()] 0.1 1 1.11 125 2 5 10 20 50 100 500 1000 1000000

221 833 881 942 1042 1282 1460 1641 1877 20.66 26.63 2840 52.26
1.82 569 592 617 6.98 867 995 1122 1289 14.17 17.34 1859 31.93
149 309 317 326 378 474 547 619 7.5 7.86 927 999 16.33
£22 142 147 153 180 227 262 297 344 379 461 498 849

021 076 082 088 1.03 129 148 168 194 215 286 3.07 5.89
0.16 057 062 069 080 100 1.14 129 149 166 234 250 3520

i

2

6

24

48] 038 09 101 107 126 159 183 207 239 265 338 364 664
72

120

A random duration was then generated using the method described in Section 5.2.3.
A random annual exceedance probability (AEP) to be assigned to the generated
storm duration was next generated from a unifoim distribution on the interval from
0 to 1. To avoid values of AEP that are too low or too high and are not of direct
interest in this study, the following constraint was applied to the generated AEP:
10° < AEP <1-e™, where ®, is the average number of storms per year.
The AEP was then converted into the corresponding ARI for partial duration series
by the foliowing relationship (Stedinger et al., 1993). ARI =-1/ (ln(l - AEP)) .
The average rainfali intensity for the specified storm duration and ARI was finally
computed by linearly interpolating values of the IFD table on a logarithmic scale.
The linear interpolation was considered to be adequate here for two reasons. Firstly,
for a given storm duration, a straight line represents the relationship between average
rainfall intensity and storm ARI (see Section 4.5.3). Secondly, for a given AR], a
near straight line characteriscs the relationship of average rainfall intensity and
duration. As illustrated in Figure 4-20, this latter relationship is described by a
second-degree polynomial function, but due to the very small coefficient of the

square term, the polynomial function is closely approximated by straight-line

segments on a log-log scale.

3.2.5 Temporal patterns

3.2.5.1 Generation ui design temporal patterns

As mentioned in Section 4.6.5, in this study, the design rainfall temporal pattern is
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represented by 7 internal ordinates of the dimensiconless storm mass curve. This design
pattern represents a dimensionless rainfall hyetograph defined at eight equal time
increments of storm duration, each being 1/8 of the storm duration. To generate such a
design temporal pattern using the multiplicative cascade model (Robinson and

Sivapalan, 1997), 7 random numbers are needed.

In order to generate design temporal patterns for each of the 10 temporal pattern groups,
the following procedure was adopted. The subroutine RNBET from the MSIMSL was
first used to generate 15000 sequences of 7 random numbers from the beta distribution
representing the disaggregation parameters for each temporal pattern group. Each
sequence of random numbers was then used to construct a dimensionless rainfall
hyetograph using the multiplicative cascade model described in Section 4.6.5. An

example of a generated dimensionless hyetograph is iliustrated in Figure 5-1.

0.35
0.3 -
0.25 -
0.2 -
0.15 -
0.1 -
0.05 £&%
.

Relative rainfall depth

1/8 2/8 3/8 4/8 5/8 6/8 78 B/8
Relative storm time

Figure 5-1: An example of a generated temporal pattern

5.2.5.2 Model verification

The generated temporal patterns of rainfall have to be able to reproduce the peak
intensity of the observed storm hyectographs. In addition, the correlation between
rainfall intensity at one time step and the next, if any, needs to be preserved, as veell as
the hyetograph statistical characteristics. For these reasons, the adequacy of the model
used to generate storm patterns and of the beta distribution characterising the

disaggregation parameters of each temporal pattern group was verified by comparing
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the observed and generated hyetographs witn respect to the distribution of the maximum
dimensionless intensity, the lag one auto-correlation', and the frequency characteristics

-

of mass curves.

Comparison of the maximum dimensionless rainfall intensity

To compare the distribution of the maximum dimensioniess intensity, dimensionless
rainfall depths at time intervals equal to 1/8 of storm duration, henceforth refesred to as
dimensionless rainfall intensities, were calculated for each (observed or simulated)
storm. For each storm, the maximum dimensionless rainfall intensity (im) was then
determined. This intensity was then assigned to one of the 10 class intervals as follows:

(0, 0.1), (0.1, 0.2), ..., (0.9, 1), where (0, 0.1) indicates 0<i_, £0.1. The above two

steps ‘were next repeated for all storms in each temporal pattern group. For each group,
the frequency of obtaining the maximum dimensionless storm intensity within each of
the 10 specified class intervals was computed. The curnulative relative frequency of the
maximum dimensionless intensity was finally determined. Results are tabulated in
Table 5-3 and illustrated in Figure 5-2 and Figure 5-3.

Table 5-3: Cumulative relative frequencies of the maximum dimensionless intensity of

observed and generated temporal patterns

Temporal pattern Class imervals of dimensiotless maximum intensity
group (0.0.1) ¢0.1,0.2) (0.2, 6.3) (0.3,04) (0.4.05) (0.5, 06) (0.6,0.7) (0.7,0.8) (0.8, 0.9) (0.9, 1.0)
1 Observed 0 0.067 0.523 0.778 0.898 0.952 0.983 0.994 1 1
Simulated V] 0.025 0.455 0.806 0.949 0.993 0.999 1 1 1
2 Observed 0 0.022 0.427 072 0.911 0.965 0.99 1 1 i
Simutmed 0 0.022 0.315 0.675 0.86% 0.965 0.987 0,994 1 1
3 Observed 0 0.083 0.354 0771 0917 0.958 0.979 1 | 1
Simulated 0 0.021 0.396 0.646 0833 0.938 0.979 1 1 |
4 Ohserved 0 0074 0.56 0.866 0972 0,936 0.995 1 1 |
Sirmulated 0 0.06 0.579 0.866 0.963 0.995 -1 i 1 ]
5 Observed 1] 0.125 0.578 0.849 0953 2.983 1 1 1 ]
Simulated 0 0.056 0.556 0.471 0.97 0.99%6 1 1 i 1
6 Observed 0 0.056 0.565 0.876 0.975 0.993 0.998 ] 1 1
Simulated o 0043 0514 0258 0968 0.998 1 1 | |
7 Observed 0 0.183 (0.726 0.894 0.951 0.985 0.996 1 I 1
Simulated 0 0.0(18 0.643 0.947 0.996 1 1 ] 1 1
8 Observed 1] 0.064 0.624 0921 0.982 0.997 I 1 1 |
Simulated 0 0.062 0.564 0.879 0.968 0.997 1 1 i |
9 QObserved 0 0,102 0.581 0.526 0.924 0.96% 0.987 0.997 1 1
Simulated 1] 0.047 0.526 0.872 0.961 0.99 | 1 1 1
10 Dbserved 0 0.044 0.463 0.801 0921 091 0.985 0.997 | |
Simulated 0 0.029 0.443 0.774 0.956 0.991 1 1 i |

1 . . . . L.
The lag one auto-correlation, also called lag one serial correlation, is a statistical measure computed for

a time series of data to determine if an observation at one time period is corretated with the observation at
one time period earlier (or later).




Chapter 5 150

1 —
-]
% 08 ¢
— ;-. d
E 2 06 -+ ‘ o.bserve
g ] — == girmulated
32 04+
i,
3 02+

0 t - —t }

0 02 04 06 08 1
Dimensionless maxinum jntensity

Figure 5-2: Distributions of the maximum dimensionless intensity for observed and

generated temporal patterns of Group 4
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Figure 5-3: Distributions of the maximum dimensionless intensity for observed and

generated temporal patterns of Group 2

It can be seen from Table 5-3 that, for temporal patterns of Groups 4, 5, 6, 8 and 10, the
cumulative frequency distributions of the maximum rainfall intensity of the observed
storm temnporal pattéi‘ns are very similar to those of the generated patterns. This means
that the relative frequency of the observed storms having the dimensionless maximum
rainfall intensity within a given intensity interval is almost the same as that of the
generated data for these temporal pattern groups. For storm patterns of Groups | and 9,

the observed and simulated intensity distributions are reasonably similar. However, the
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observed peak intensity is not very well preserved in the generated storm patterns of

Groups 2, 3 and 7, as illustrated in Figure 5-3 for Group 2. In these cases, the frequency

of the maximum intensity of the observed storms is either underestimated or
overestimated in the generated storms. For example, for Group 7, the relative number
of the simulated storms that have the maximum relative intensity in the range of (0.1,
0.2) is much less than that of the observed data. Overall, it can be concluded that the
distributions of the maximum rainfall intensity of the observed storms are reasonably

well preserved in the simulated storms.

Comparison of lag one auto-correlation coefficient
To compare the lag one auto-correlation (r;) of the observed and generated temporal

patterns, 1y was first computed for each storm using the following formula (Haan, 1977,

Chapter 11):

]. n-1 n-1

nz-ihihm _ﬁzhizhm

T = i=] i=l i=l (5 _2)

12 142

n=1 5 1 =1 2 n-l s 1 n-1 2
Eh; -:[ghi) Ehm _ﬁ[zhiuj

il i=1 =l
where h; is the dimensionless rainfall intensity during the time step i, and n is the
number of time increments used to define storm hyetographs (n=8 in this case). For
each temporal pattern group, the mean and standard deviation of the r; values of the
observed and generated storms were then calculated and are summarised in Table 5-4.
To aid in the comparison process, the limits of the 95% confidence intervals of the
estimated mean of r; were also computed based on the assumption that the r; values for
each group were from a normal distribution (see Table 5-5). Due to the large number of

storms in each temporal pattern group (see Table 5-5), this assumption was justified.

In assessing values of ry for the observed and generated storms, it is clear from Table
5-4 that the mean and standard deviation of ry computed for each temporal pattem group
are much less than 1, but generally not close to zero. For the observed storms, the
highest mean value is 0.392 for temporal patterns of Group 7, and the lowest mean
value is 0.12 for Group 4. The standard deviation of the r; values is also low, varying
from 0.035 to 0.116. However, because of the very large number of the observed

storms, the upper and lower limits of the 95% confidence intervals of ry (see Table 5-5)
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are very close to the computed mean value. Thus for the observed storms, the computed

values of the correlation of the dimensionless rainfall intensity at one time step with the

intensity at one time step earlier or later are significant. By contrast, the mean and
confidence Jimits of the ) values of the generated storms, are much closer to zero (see
Table 5-4 and Table 5-5). It can therefore be inferred that the lag one auto-correlation
between the dimensionless rainfall at successive time steps is significantly

underestimated in the generated storms.

Table 5-4: Mean and standard deviation of lag one auto-correlation coefficients of

observed and simulated storm temporal pattems

Temporal pattern mean of 1, standard deviation of ,
group observed simulated observed simulated
1 0.385 0.098 0.099 0.123
2 0.180 0.066 0.116 0.122
3 0.295 0.116 0.113 0.142
4 0.120 0.065 0.128 0.112
5 0.373 0.097 0.102 0.130
6 0.15< 0.070 0.127 0.136
7 0.392 0.065 0.099 0.151
8 0.171 0.056 0.113 0.118
9 0.355 0.062 0.109 0.126
10 0.168 0.035 0.120 0.128

Table 5-5: 95% confidence intervals of the lag one auto-correlation coefficient

Group No. of storms Observed storms Gernerated storms
Lower limit Upper limit Lower limit Upper limit
1 686 0.378 0.392 0.089 0.107
2 314 0.167 0.193 0.053 0.079
3 48 0.263 0.327 0.076 0.156
4 216 0.103 0.137 0.050 0.080
5 232 0.360 0.386 0.080 0.114
6 444 0.178 0.202 0.057 0.083
7 263 0.380 0.404 0.047 0.083
8 659 0.162 0.180 0.047 0.065
9 384 0.344 0.366 0.049 0.075
10 341 0.155 0.181 0.021 0.049
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The reduced lag one auto-correlation of rainfall intensity at successive time steps of the

generated temporal patterns is not surprising because the adopted multiplicative cascade
model, as described in Section 4.6.5, does not try to preserve this correlation for the
observed storm temporal pattems. However, in reality, there is a tendency of high
rainfall values to be followed by high values (rather than randomly distributed), and this
would tend to produce larger peaks. Th;:reforc, for design flood estimation, the reduced

serial correlation in the generated temporal patterns likely leads to underestirnation of

design floods.

Comparison of frequency characteristics of mass curves

To compare the frequency characteristics of mass curves, Huff curves (Huff, 1967) were
used. Huff frequency curves, developed from observed storm mass curves, are smooth
curves with various levels of severity. For example, the 10% probability curve can be
defined as the average mass curve that is equalled or exceeded by 10% of the observed
patterns. Being smooth curves, Huff curves reflect the average rainfall distribution with
time, and do not exhibit burst characteristics of the observed storms. They provide a
quantitative measure of both inter-storm variability and the storm-to-storm variability in

a storm sample.

To determine Huff curves of the observed and generated storms for each of the ten
temporal pattern groups, the dimensionless cumulative rainfall depths at 8 equal
increments of storm duration were first computed for each storm. For all storms in a
group, for each time increment, the accumulated dimensionless depths at 9 probability
levels from 10% to 90% at equal increments of 10% were then estimated. For each
probability level, the computed dimensionless depths at each of the 8 equal time
increments were finally plotted on a graph, and a smooth curve was drawn through the

plotted points. These smooth curves are termed Huff frequency curves.

The comparison of Huff frequency curves of the observed and generated storms was
carried out by plotting the frequency curves at the same probability leve! on a graph and
visually comparing them. Only three probability levels of 10%, 50%, and 90% were
used in this comparison because these levels summarise the set of frequency curves and

they are generally of interest in practical situations.
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Results of the comparison showed that, for any temporal group, Huf frequency curves
developed for the generated storms very resembled those of the abserved storms. This
implies that the variability in the temporal distribution of the observed and generated
storms in any group is very similar. A typical example of the observed and simulated

Huff frequency curves determined for one temporal pattern group is jttustrated in Figure

5-4.
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Figure 5-4: Huff frequency curves of the observed and generated temporal pattems of
Group 2

In summary, the generated storm temporal pattems reproduced fairly well the
distrsibution of the maximum dimensionless intensity and the frequency characteristics
of the observed temporal patterns. However, the lag one auto-correlation between
successive storm depths in the observed storms is significantly underestimated in the

generated storms.

5.2.6 Initial loss

To generate 15000 random valtues of the initial loss for the La Trobe River catchment at
Noojee from the beta distribution characterising the observed storm losses, subroutine
RNBET from the MSIMSL was again used. This subroutine is based on the rejection
method (Press et al., 1989), the principles of which are described in Appendix K.
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To assess the generated initial losses, their statistical properties were computed and
compared with those of the observed losses. Results are summarised in Table 5-6. It is
evident from this table that the mean and standard deviation of the observed initial
losses are relatively well repreduced in the generated loss values. However, the
coefficient of skewness of the observed data is significantly underestimated in the
generated loss. In addition, there are more low and high loss values in the generated
data than in the observed data, as indicated by the estimated 25™ and 75" percentiles.
This implies that there is some overestimation and underestimation of the generated
storm initial loss values. Therefore, it is difficult assess how the errors in the estimates
of losses translate to errors in design flood estimates. The question of sensitivity of

design floods to the representation of the initial loss is further examined in Section 6.5.

Table 5-6: Characteristics of observed and generated initial loss data

observed storms simulated storms

Number of events 167 15000
Mean (mm) 27.3 26.9
Standard deviation (mm) 174 17.3
Coefficient of skewness 2.7 0.9
25th percentile (mm) 15.8 13,5
50th percentile (mm)} 222 23.6
75th percentile (mm) 344 37.0

5.3 ESTIMATION OF FLOOD EVENTS BY MONTE CAFLO SIMULATION

After generating the random input values of the storm duration, temporal pattern, initial
loss, and determining the corresponding average rainfall intensities, Monte Carlo
simulation was applied to generate flood events. As discussed in Section 3.3.3, one
important aspect of this simulation process was the consideration of the correlations of
the input random variables. How this was allowed for in simulation and the procedure

used to simulate flood events are described in the section below.,
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5.3.1 Correlations of flood causing factors

In order to model realisticalty the flood generation process, the correlations between the
flood causing components must be considered. In this research, no relationship was
found between the initial loss and storm duration or average rainfall intensity (see
Section 4.7.2). However, there was significant statistical evidence of the correlation
between rainfall intensity and duration (see Section 4.5.2), and of the variation of the
temporal pattemn with season of storm occurrence, storm duration, or storm depth (see

Section 4.6.4). The above relationships were accounted for in the simulation in the

following ways.

With respect to average rainfall intensity, the dependence of rainfall intensity on
duration was taken into consideration by the use of IFD curves. That is, average rainfall
intensity was conditionally computed for a given storm duration and annual exceedance

probability.

To account for the seasonal variation of temporal patterns, it would have been necessary
to have other inputs (for example, rainfall intensity, duration, or storm loss) defined on a
seasonal basis. However, in the absence of these other seasonal inputs, the following
procedure for considering the variation of temporal patierns with season was adopted. It
was first assumed that the occurrence of storm events over 12 months foliows a uniform
distribution. In other words, there is an equal probability of a storm to fall in any
month. From this assumption, the occurrence probabilities of the four rainfall seasons
defined in this research (as far as the variation of temporal patterns is concerned) were
computed and are presented in Table 5-7. In order to assign a storm to a rainfall season,
it was further assumed that the first 33% of all the generated storms were summer
storms, the next 17% of storms were autumn storms, the next 33% were winter storms,

and the last 17% were spring storms (see Table 5-7).

The consideration of the dependence of the storm temporal pattern on duration or depth
was straightforward. First, a storm duration was generated. The season of this storm
event was next determined using the assumptions described above. The total depth of

the storm was then computed. The temporal pattern group of the generated storm was
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finally determined from the known information of season of storm occurrence, storm

duration, and depth (see Figure 4-27).

Table 5-7: Seasonal probabilities of storm occurrence

Seasons
Summer Autumn Winter Spring Total
Number of months 4 2 . 4 2 12
" Probability 0.33 0.17 0.33 0.17 1

5.3.2 Simuiation procedure

In order to compute design floeds for the La Trobe River catchment from various

combinations of flood causing factors, the procedure below was adopted.

(@ A storm duration D; was randomly generated from the Generalised Pareto
distribution (see Section 5.2.3).

(b) For the generated storm duration D;, an AEP; was randomly generated from a
uniform distribution on the interval from 0 to 1. This AEP; was then converted into
the ARI; for the given storm (see Section 5.2.4).

(c) The average point rainfall intensity corresponding to the randomly selected duration
D; and ARJ; was then computed by interpolating values of the IFD table established
for the design site (see Section 5.2.4). To obtain the areal average intensity, the
computed point rainfall depth for the specified duration was estimated and then
multiplied by the interim areal reduction factor (Siriwardena and Weinmann, 1996)
determined for the given catchment area, average recurrence interval, and storm
duration.

(d) The temporal pattern group of the specified storm was next determined by the
method described in Section 5.3.1. The design temporal pattern of the storm was
then taken randomly from the generated samples of patierns for the particular
temporal pattern group (see Section 5.2.5.1).

{e) A random initial loss value IL; was generated from the beta distribution fitted to the
observed loss data for the catchment under study (see Section 5.2.6).

(f) The rainfall excess hyetograph of the specified storm was then estimated by passing

the above stochastic design rainfall event characteristics through an initia) loss -
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continuing loss model with an initial loss of IL; and a fixed continuing loss rate
(CL=4.7mm/h). This hyetograph was next routed through the calibrated tumped
runoff routing model with fixed design parameters (m=0.8, k=53) to produce a
surface runoff hydrograph. A fixed value of the design baseflow (0.75m’/s) was
then added to the surface runoff hydrograph to obtain the design flood hydrograph.

The maximum peak flow of this flood hydrograph was recorded.

The FORTRAN programs to undertake steps (b), (c), (e), and (f) of the above procedure
were provided by Rahman (1999).

After repeating the above procedure for 15000 times, a partial duration series with
15000 generated design peak discharges was obtained. A flood frequency analysis was
then carried out to determine the frequency distribution of the generated flood series.

This analysis is described below.

5.4 DETERMINATION OF DESIGN FLOOD FREQUENCY CURVES

To determine the frequency distribution of the partial duration series of the generated
floods, the non-parametric method, outlined in Appendix I, was adopted. In this
method, the flood series was first ranked into decreasing order of magnitude. That is,
the highest flood was ranked 1, the second highest ranked 2, and so on. The plotting
position of the flood ranked j in the series was then computed using Equation (4-5),
where N* is the data length in years (in this case, N'=2000 years). The generated floods
in the series were finally plotted on a semi-logarithmic graph paper against their

cormresponding plotting positions.

The flood frequency curve derived for the La Trobe River catchment is illustrated in
Figure 5-5. Due to the very large number of the generated flood events (in the order of
thousands), it is evident from Figure 5-5 that design flood peaks for the ARI range of
interest (from 1 to 100 years) can be determined directly from this graph without the
need for fitting a theoretical probability distribution to the flood series. The estimated

design floods for the study catchment, read from Figure 5-5, are tabulated in Table 5-8.
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For example, the design peak discharges of 5-year and 100-year ARI for the specified
catchment are 45m°/s and 127m’/s, respectively (see Table 5-8). It is noted that, during
the simulation process, about 20 flood events with ARIs exceeding 100 years were
generated. Nevertheless, as the design floods of interest in this study have ARIs of up

to 100 years, those design flood peaks with ARIs exceeding 100 years are not shown in

Figure 5-3.
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Figure 5-5: The generated flood frequency curve for the La Trobe River catchment

Table 5-8: Design flood estimates for the La Frobe River catchment by Monte Carlo

simujation (unit: m3ls)

Average recurrence interval (ARI, years)
1 2 5 10 20 50 100
Peak discharge 17 29 45 62 76 101 127

As mentioned in the Introduction, design flood estimates by the proposed Joint
Probability Model are subject to uncertainty due to sampling variability inherent in
Monte Carlo simulation. However, the uncertainty in these estimates may also be
induced by the uncertainties in the adopted form and estimated parameters of the
probability distributions used to represent design random variables, and by the
inadequacy of the runoff routing model adopted to represent the hydrograph formation

process, along with errors in its parameter estimation. Whereas the uncertainty of flood
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estimates due to sampling variability can be easily assessed by changing the sample size
of the generated data, the assessment of the uncertainty due to model or parameter
uncertainties obviously is not a trivial task and may require additional sources of data.
For these reasons, the former is examined in a sensitivity analysis detailed in the next

chapter, and the latter is left for future improvements of the proposed model.

5.5 SUMMARY

The application of the proposed Joint Probability Model to the determination of the
generated flood frequency curve for the La Trobe River caichment at Noojee was
carried out in two stages. The first stage involved the generation of stochastic input data
from the relevant distributions, and the generation of flood events using Monte Carlo

simulation. The second stage was the frequency analysis of the generated floods.

The stochastic design inputs were the storm duration, average intensity, temporal
pattern, and initial loss. Random data for these variables were generated from the
corresponding probability distributions using computer subroutines from the Microsoft
Intemational Mathematical Statistical Library. The generated data were then checked to
ensure that they were able to reproduce statistical properties of the observed data:

15000 random events spanning 2000 years of data were obtained from this step,

The comparison of important statistical characteristics of the observed and generated
data for each random input showed different results. Whereas the statistical properties
of the observed storm durations were very well preserved in the generated storm
durations, there were uncertainties in the estimates of the rainfall intensity outside the
ARI range of 1 year to 100 years. In addition, the coefficient of skewness of the
observed storm losses was significantly ui.derestimated. With respect to the rainfall
temporal pattern, whereas the maximum dimensionless rainfall intensity and the
variability of the observed temporal patterns were reasonably well preserved in the
generated pattern, the lag one auto-correlation coefficient was underestimated. Errors in
these stochastic design inputs have the potential to be transferred to errors in the

resulting design flood estimates. This will be further investigated in Section 6.5.
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In generating flood events using Monte Carlo simulation, the correlations of design
inputs were taken into account. The dependence of rainfall intensity on duration and
return period was accounted for by using the conditional probability expressed in the
IFD curves. The relationships between a generated storm and season, storm duration,
and depth were considered by using temporal patterns from appropriate temporal pattern
groups. A partial duration series of 15000 design flood peaks was obtained. The
empirical distribution of these generated floods was finally derived using a flood

frequency analysis.
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Chapter 6

MODEL EVALUATION

6.1 INTRODUCTION

The evaluation of the proposed Joint Probability Model is a crucial task in determining
whether or not it can reduce the bias and uncertainty in design flood estimates. The
assessment of bias can be carried out by comparing design floods obtained from the
proposed model with the best estimates available for a particular catchment. Likewise,
the evaluation of uncertainty can be determined by comparing the estimated floods with

those from other methods routinely applied in Australia, using readily available data.

For the catchment under study, the La Trobe River catchment at Noojee, there exist long
and concurrent rainfall and streamflow records. Therefore, the two flood estimation
methods that would nomally be applied are direct flood frequency analysis and the
Design Event Approach. Direct flood frequency analysis is the most direct method for
design flood estimation for the study catchment because it is based on observed
streamflow data. The rainfall-based Design Event Approach is also a suitable design
flood estimation method for this site because parameters of its hydrograph model can be
calibrated directly from the observed rainfall-runoff events. Therefore, flood estimates
obtained from these two methods are used as the basis for the evaluation of the

proposed model.

The objective of this chapter is to document the research undertaken to evaluate the
design floods estimated by the proposed Joint Probability Model. The chapter starts
with the determination of the flood frequency curve for the La Trobe River catchment
using direct flood frequency analysis. The estimation of design floods for this site by
the Design Event Approach is presented next. The comparison of flood estimates
obtained by these techniques with those from the proposed model is then detailed and

the validity of the proposed mode! is discussed. Details of the sensitivity analyses
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conducted to determine the effects on design flood estimates of changes in the
prebabilistic inputs, in other fixed design values and in the sample size of the generated
data are next documented. Finally, an additional testing of the method is described in
which the proposed Joint Probability Model is applied to another Victorian catchment,

the Tarwin River catchment at Dumbalk North, and the results are discussed.

6.2 ESTIMATION OF DESIGN FLOODS BY DIRECT FLOOD FREQUENCY
ANALYSIS

As already outlined in Chapter 2, direct flood frequency analysis is a technique that
gives estimates of peak flood magnitudes of specified exceedance probabilitics by
statistical analysis of observed floods at or near the design site. The analysis can be
applied to an annual flood series or a partial flood series. The former series consists of
the maximum instantaneous peak discharge in each year of record, whereas the latter
comprises all independent floods with peak discharges above a selected threshold value.
Even though partial flood series is more relevant to practical problems, probability
methods have commonly been applied to annual series due to the simplicity of

technique and easy interpretation of results (Laurenson, 1987).

In the present study, direct flood frequency analysis was applied to the annual flood
series for two reasons. Firstly, the observed annual flood series for the La Trobe River
catchment only differs significantly from the partial series for ARIs less than 5 years.
Secondly, the procedure for fitting a theoretical probability distribution to an annual

series is readily obtainable in the form of a computer spreadsheet (Hill et al., 1996¢).

The theoretical basis of the adopted spreadsheet, called the CRCCH Flood Frequency
Analysis Spreadsheet (or shortly, the CRCCHFFA Spreadsheet), is briefly described
below. The application of this spreadsheet to the observed flow data at the study

catchment is then presented in detail, and the design floods obtained are discussed.
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6.2.1 Theoretical basis

The CRCCHFFA Spreadsheet employs the procedure currently recommended by the
Institution of Engineers, Australia (1987) for estimating design floods from observed

streamflow data. In this procedure, a log Pearson III (LPIII) distribution is fitted to an

annual series of recorded flood peaks by the method of moments, and the confidence

limits for the estimated floods are calculated. The procedure includes the following

steps:

Plotting positions of the observed floods are first calculated using Equation {4-5).
The observed floods are then plotted against the corresponding plotting positions,
preferably on a logarithmic normal probability graph paper.

Statistics of the annual series, including the mean (M), standard deviation (Sg), and
coefficient of skewness (g) of logarithms (to the base 10) of the flood peaks, are
next computed.

Data are then checked for low or high outliers. These are the values at the low or
high end of the observed range of floods that depart significantly from the trend of
the remaining data. If there are outliers, they should be deleted and the flood
statistics M, Sq and g recomputed using the remaining data.

Design floods for a range of ARIs are next estimated by the equation:
logQ, = M+K,S8,, where Qy is the design flood peak having an ARI of Y, and Xy
is the frequency factor for use with the LPHI distribution. Valucs of Ky are
tabulated as a function of g (Institution of Engineers, Australia, 1987, Table 10.2).

The confidence limits for the estimated floods are then gstimated by the following

relationship: log(CLm( .,.))= logQ, *1.645 35, where CLsos are the 5% and

N

95% confidence limits, N” is the record length (in years), and O is a parameter for

determining ‘the standard error of the Pearson IH distribution (Institution of
Engineers, Australia, 1987, Table 10.4). The positive sign applies to the 5%
confidence limit, and the negative sign to the 95% limit.

The fitted distribution is finally plotted on the same graph with the observed data.
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6.2.2 Application to the La Trobe River catchment at Noojee

The detesmination of the flood frequency curve for the La Trobe River catchment by
direct flood frequency analysis involved three steps. These are the extraction of the
annual flood seres, the checking of the extracted series for homogeneity and
independence, and the application of the CRCCHFFA Spreadsheet to the extracted

series,

The annual flood senies was extracted from the HYDSYS database using the HYPEAKS
program (HYDSYS, 1994). A summary of the extracted peak annual floods from 1961
1o 1995 and the corresponding dates of flooding are presented in Table 6-1.

Table 6-1: Annual flood series - La Trobe River catchment at Noojee

Date  Peak annual flow Date Peak annual flow| Date Peak annual flow

(rnais) (rn3ls) (m3 /s)
03/02/61 13.06 06/02/73 18.09 08/08/85 13.69
29/09/62 16.56 01/05/74 20.43 17/12/86 1261
29/01/63 24.34 12/08/75 16.88 29/07/87 17.22
17/07/64 £5.27 08/08/76 21.44 18/09/88 18.00
25/11/65 12.71 08/04/77 25.63 01/11/89 2293
29/07/66 10.68 14/06/78 20.91 12/10/90 29.59
01/09/67 7.29 15/10/79 8.22 17/12/91 19.43
27/12/68 15.01 30/06/80 32.99 23/12/92 26.37
01/06/69 27.50 26/05/81 16.55 16/09/93 63.27
28/04/70 16.96 25/01/82 10.98 11/02/94 14.65
08/11/71 59.95 16/10/83 19.27 23/10/95 19.67
30/08/72 9.94 29/07/84 20.96

As previously discussed, the verification of data used in a statistical analysis is
indispensable for a valid frequency analysis to ensure that the data used is a random
sample of independent vaiues from a homogeneous population. The verification of the
extracted annual flood series for the study catchment for homogeneity was discussed in
Section 4.2.3, In order to test if the extracted floods were independent of one another,
the dates of the extracted floods in successive years (see Table 6-1) were checked to

make sure that they were separated by considerable intetvals of time. Resulis of the
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data vcrification indicated that the extracted floods satisfied the two requirements of

homogeneity and independence.

In order to provide an understanding of the flood regime in the study catchment and
flow characteristics that were used to estimate future flows for the design site, the
statistical properties of the extracted flood series were computed. These were the mean,
standard deviation, coefficient of variation, coefficient of skewness, maximum and
minimum of the observed floods. Results are presented in Table 6-2. A seasonal

distribution of the annual floods is provided in Figure 6-1.

Table 6-2: Statistical properties of wne annual flood series - L.a Trobe River catchment

Flow characteristics  absolute value log domain (log,o)

-

Record length (years) 35
Mean (m’/s) 20.5 1.26
Standard deviation (mjfs} ii9 G.10
Coefficient of variation 0.58 0.08
Skewness 2.49 0.66
Maximum (m’/s) 63.3 1.80
Minimum (m3fs) 73 0.86
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Figure 6-1: Seasonal distribution of annual floods - La Trobe River catchment

To determine the flood frequency curve, the annual flood series was then input to the
CRCCHFFA Spreadsheet. Results of this analysis are presented in Table 6-3 and

Figure 6-2. In this figure, for comparison, the partial flood series is also plotted using
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the procedure described in Section 5.4. The partial flood series, which consisis of all
flood peaks above a base value of 14m’/s, was provided by Thiess Environmental

Services (Dworakovski, Personal communication, 1999).

Table 6-3: Flood estimates by direct flood frequency analysis (LPII distribution)

ARI Peakflow Confidence limits
(years)  (m’/s) 95% 5%

1 11 9 12
2 17 15 20
5 26 22 31
10 34 27 43
20 42 31 57
50 55 36 84
100 66 39 113
140 r T T T T TT1
O Observed floods (partial series)
120 e Observed floods (annual series)
» Fitted LPHI distribution "
g 00— --=-- 95% confidence linmit -1
O A 5% confidence lirmit |
o 80 b
-g - -t7 ’l"
S 6 1" -
B8 PP s
K Jor --"'"""#-
g 4 e
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20 + O
0
1 i 100
ARI(years)

Figure 6-2: Observed peak discharges and the fitted LPIII distribution - La Trobe River

catchment at Noojee

6.2.3 Discussion

In order to understand the flood regime of the La Trobe River catchment, the timing of

floods and the duration of storm events causing major floods are important
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considerations. It is evident from Table 6-1 and Figure 6-1 that the recorded annual
maximum floods at the given site occur more often from winter to early summer
(December) than in the other months of the year. These are the months when the
rainfall loss on the catchment is generally low due to the relatively high moisture in the
catchment soil. In investigating the concurrent rainfall record at this site, it was found
that the duration of the storms (defined in Section 4.3) responsible for these peak floods
ranged from a minimum of 26 hours to a maximum of 53 hours with an average of 41
hours. That is, the major floods observed at this catchment were the result of storms

with duration of at least one day.

The statistical properties of the observed floods are also useful to provide an overall
understanding of the flood flow at the design site. It can be seen from Table 6-2 that the
length of flood record at this site is fairly short (35 years). In this record, the observed
annual peak discharges vary from a minimum of 7m’/s to a maximum of 63m’/s. The
mean and standard deviation of the observed annual peak flows are approximately
21m’/s and 12m’/s, respectively. These statistics indicate that the observed floods are
moderately variable. In addition, the coefficient of skewness of the peak flows is
positive and quite high (2.5), implying that there are fewer flood peaks above the mean
than below the mean, but these high peaks cover a wider range. All these factors would
certainly result in difficulties in estimating design floods for the specified site, and in
inevitable uncertainty, both in the determination of the true population from which the

abserved flood data were drawn, and in the resulting flood estimates.

In examining the LPIII distribution fitted to the observed floods, it can be scen from
Figure 6-2 that there are no low values of the annual flood series that would have an
undue effect on the fitting of the theoretical distribution to the observed flood data. It is
also clear that the adopted distribution gives a better fit to the intermediate floods (with
return periods up to 15 years) than to the big floods. The flood frequency curve for
ARIs greater than 20 years is not very well defined due to the shortness of record and
the fact that there were only two big floods on record with return periods exceeding this
value. Nevertheless, the computed confidence limits, which represent the probabie
range of a random sample drawn from the flood population, enclose all the observed

flow data except for the second largest flood.
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In examining the design floods estimated by the LPIII distribution shown in Table 6-3,
it can be seen that the confidence intervals for rare floods are much wider than those of
the more frequent floods. For example, the design peak discharge of 100-year ARI is
66m’/s, and the corresponding 90% confidence interval is from 39m¥s to 113m™/s. The
ratios of the 95% and 5% flood confidence limits to the 100-year ARI flood estimate are
therefore 0.59 and 1.71. By contrast, the 2-year ARI design flood peak is 17m’/s and
the corresponding 90% confidence interval is from 15m?s to 20m/s. Thus, the ratios of
the lower and upper confidence limits to the 2-year ARI design flood are 0.88 and 1.18,
respectively. The wide confidence intervals of the rarer floods are the result of both the
shortness of record and the variability of the observed floods. Therefore, it may be
concluded that there is considerable uncertainty associated with design flood estimates
by direct flood frequency analysis for ARIs of 20 years or more, which are of major

interest in design.

6.3 ESTIMATION OF DESIGN FLOODS BY THE DESIGN EVENT
APPROACH

In the Design Event Approach cumrently applied in Australia, design floods are
estimated from stormn bursts, which are periods of heavy rains during storm events (see
Section 4.5.5). In order to estimate design floods by this approach, it is necessary to
specify the design rainfall, loss and runoff routing models. However, to provide a fair
comparison of the performance of the Joint Probability Model and the Design Event
Approach, differences in these design components need to be kept to 2 minimum.
Hence the Design Event Approach employs the same loss model, runoff routing model
and the same deterministic inﬁuts as those used in the proposed Joint Probability Model.
The parameters of the loss and runoff routing models and other fixed design inputs have
been determined and reported in Chapter 4. Nevertheless, the Design Event Approach
adopts a different design rainfall model because it uses representative values of rainfall
duration and temporal patterns (instead of probability distributions). In addition, the
initial loss used also needs to be represented by a fixed design value rather than a
probability distribution.
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This section describes the estimation of the design rainfall, initial loss, and the resulting
flood estimates for the La Trobe River caichment using the Design Event Approach. A

discussion of the flood estimates is also provided.

6.3.1 Estimation of the design rainfall

The estimation of the design rainfall included the specification of sets of design events
for specified ARIs and durations. For each design event, the average rainfall intensity
and the corresponding temporal pattern were determined. For design flood estimation
by the Design Event Approach, the ARI of the flood output is assumed to equal that of
the rainfall input. As the design floods of interest in this study were in the ARI range of
1 to 100 years, the ARIs of the design rainfall input were adopted to be of I, 2, 5, 10,
20, 50, and 100 years.

To determine the appropriate range of durations of storm bursts to be used in the design,
it was necessary to obtain a preliminary estimate of the critical storm duration of the
study catchment. This duration can be roughly determined as the time of concentration
(t) of the catchment, which is defined as the travel time from the most remote point on
the catchment to the catchment outlet. t. can be estimated from the catchment area A

(km?) by the formula below (Institution of Engineers, Australia, 1987):

t. =0.76 A** {6-1)
For the La Trobe River catchment, t.=6.6 hours. Hence, the burst durations used were
2,3,6,9, 12, 18, and 24 hours.

The average design rainfall intensities for the specified ARIs and rainfall burst durations
at the design location were determined using the procedure presented in Chapter 2
(Institution of Engineers, Australia, 1987). In this procedure, a log Pearson III
distribution is used to characterise design raintalls at any location in Australia. For a
particular location, this distribution is estimated from the six basic rainfall intensities for
a lognormal distribution and one skewness value (to adjust the lognormal to the log
Pearson HI distribution) determined from the latitude and longitude of the design

lacation. For the La Trobe River catchment, the representative location for estimating




Chapter 0 171

catchment rainfalls was taken as the location of the recording rain gauge at station
85237 (37.88° latitude, 146° longitude). The basic rainfall intensities and skewness
value for this location were read from the maps published by the Institution of
Engineers, Australia (1987, Volume 2). The skewness of rainfall determined for the
design site was 0.35. The estimated average point design rainfall intensities determined
for the specified return periods and rainfall durations are presented in Table 6-4. It is
important to emphasise at this point that the design rainfall intensities presented in this
table represent the average intensities of intense bursts of rain, rather than representing
rainfall intensities of the storm events defined in Section 4.3. To obtain the areal
average rainfall intensities over the study catchment, the design rainfall intensities
shown in Table 6-4 were then multiplied by the interim areal reduction factors
(Siriwardena and Weinmann, 1996, Equation 7-17 and Figure C-5) determined for the

specificd durations, return periods and catchment area (290km2).

Table 6-4: IFD estimates at station 85237 {37.88° latitude, 146° longitude) (unit: mm/h)

Duration Average recurrence intervals (years)

(hours) i 2 5 10 20 50 100
2 10.2 13.3 17.3 19.83 23.3 28.1 32.1
3 8.1 10.6 13.6 15.6 18.3 22.1 25.1
6 5.5 7.1 0.1 10.4 12.1 14.5 16.5
9 44 5.7 7.2 8.2 G.5 114 12.9
12 3.7 4.8 6.1 6.9 3.0 9.6 10.9
18 2.9 3.7 4.7 53 6.1 7.3 8.3
24 2.4 3.0 3.8 43 5.0 6.0 6.8

In order to determine the temporal patterns of the design events, it is noted that in
Australia, design rainfall patterns are developed for eight zones based on climatology
and the expected differences in temporal pattems. These design patterns are published
by the Institution of Engineers, Australia (1987, Volume 2). For the La Trobe River
catchment at Noojee, the témporal patterns of the design rainfall events were selected

from the published temporal patterns of Zone 1 for the specified storm durations and
ARIs.
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6.3.2 Estimation of initial loss

Values of the design initial loss for use with the Design Event Approach are published
by the Institution of Engineers, Australia (1987, Chapter 6). However, there are three
limitations in these design loss values. Firstly, there is a lack of design loss data for a
large portion of Australia, especially for Tasmania and areas in the north and west of the
Great Dividing Range. Secondly, they were derived from the analysis of large observed
flood events that are biased towards wet catchment conditions. Therefore the design
initial losses tend to be underestimated and design floods overestimated. Finally, the
design initial loss values were derived for complete storms rather than for storm bursts
used to determine design temporal patterns and thus tend to be overestimated. For these

reasons, these design losses were not used in this analysis.

In the present application, fixed design values of the initial loss of the selected design
burst events were determined using a formula developed by Hill et al. (1996a). In this
formula, the initial loss (ILy) of a design storm burst is related to the mean catchment
storm inittal loss (IL), the mean annual rainfall (MAR), and the event duration (D) by

the following relationship:

L, =m1-— (6-2)

D

1+142———o
MAR
where ILy, IL, and MAR are in millimetres (mm} and D in hours, .
The design loss estimates for the La Trobe catchment [IL=18mm (from Rill et al.,

1996a), and MAR=1360mm) are tabulated in Table 6-5. It is clear from this table that

the design initial loss of design storm bursts increases with burst duration.

Table 6-5: Design initial loss - La Trobe River catchment

Rainfall duration (h)
2 3 6 9 12 i8 24
Initial loss (mm) 2.3 2.8 3.7 43 4.8 5.5 6.1
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6.3.3 Estimation of design floods

In order to estimate design floods for the La Trobe River catchment using the Design
Event Approach, the procedure described in Section 2.2.1 was adopted. In this
procedure, design floods resulting from storm events of varying durations and retum
periods were first estimated. For each return period, the critical rainfall duration was
next determined using the method described in Section 2.2.1. The design flood for the

specified return period was finally taken as the design flood caused by the critical storm

duration.

Results of the design flood estimation for the study catchment are summarised in Table
6-6 and illustrated in Figure 6-3. In Table 6-6, flood estimates for various storm
durations and ARIs are shown, whereas the design peak discharges and the
corresponding critical storm durations for the study catchment are denoted as bold
values. In Figure 6-3, the determination of the critical storm duration for an ARI of 20
years is illustrated. It can be seen from this figure that the highest design flood of about
150m*/s is produced by a storm burst event of 12-hour duration. Therefore this duration

is adopted as the critical duration for events of 20-year ARI for this catchment.

Table 6-6: Design flood estimates by the Design Event Approach (unit: m*/s)

Storm duration ARI (years)
(hours) 1 2 5 10 20 50 100
2 0.8 2.6 154 27.8 477 81.3 110.8
3 23 7.6 27.1 41.3 67.9 107.9 143.2
6 28 14.7 462 70.5 106.9 149.2 165.1
9 229 46.7 66.9 95.8 138.5 188.0 2314
12 24.7 52.5 853 1129 152.7 211.7 270.9
18 19.6 414 822 101.1 149.2 193.4 250.5

24 11.5 37.9 69.6 94.0 121.9 160.5 204.7
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Figure 6-3: Plot of design flood peak against storm burst duration (ARI=20 years)

6.3.4 Discussion

Results of the estimation of design floods for the La Trobe River catchment using the
Design Event Approach indicates that for all return periods, the critical rainfall burst
duration for this catchment is 12 hours. This critical duration is only a third of the
average duration of 41 hours of the observed storm events (determined using the storm
definition described in Section 4.3) causing major floods in the study catchment (see
Section 6.2.3). One of the reasons that causes the discrepancy in the critical duration is
the difference in the definitions of rainfall bursts used in the Design Event Approach
and storms defined in this study. That is, a rainfall burst (a period of heavy rainfall) is

embedded in a storm, with periods of some rain prior to and after the burst.
In estimating the design flood, it is clear that there are uncertainties in selecting fixed
design values of rainfall and loss characteristics, as well as in determining the

parameters of the adopted runoff routing model. As a result, the magnitude of the

design flood is also uncertain.

6.4 COMPARISON WITH THE JOINT PROBABILITY MODEL

The determination of the best design flood estimates for 4 catchment provides a basis
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against which vasious flood estimation methods can be compared. For the La Trobe
River catchment, these best estimates can be obtained from empirical frequency analysis
of the partial flood series for relatively frequent floods, and from direct flood frequency
analysis of the annual series for extrapolation to higher ARIs. An ARI of 5 years was
adopted as the limit for design flood estimates by these two series, as this is the value
below which the observed annual flood series for the La Trobe River catchment differs

significantly from the partial series (see Figure 6-2).

It is also noted that design flood estimates by direct flood frequency analysis are only
considered to be the best available estimates for a given catchment for a particular range
of ARL. The lower limit of this ARI range can be taken as that of the smallest design
flood of interest (estimated by frequency analysis of partial flood series). The upper
limit of this range (ARIy) can be computed using the following empirical formula

(Institution of Engineers, Australia, 1987):

ARI,; = FN%* exp(0.02N") (6-3)
where N is the record length in years, and F is a factor depending on the standard
deviation and the coefficient of skewness of the logarithms of the flood values (sece

Table 12.1, Institution of Engineers, Australia, 1987).

For the La Trobe catchment, the computed value of ARIy was estimated to be 15.4
years. This estimate is similar to the conclusion that design floods of up to 20-year ARI
obtained by direct flood frequency analysis were the best estimates of floods for the
study catchment (see Section 6.2.3). However, with the lack of data for better estimates
of more severe design floods, the design flood estimates of 50-year and 100-year ARI
by direct flood frequency analysis are still shown for comparison, but given less weight

in the performance assessment.

A summary of design floods for the La Trobe River catchment, estimated by flood
frequency analysis, the Design Event Approach and the proposed Joint Probability
Model is tabulated in Table 6-7. It is noted from this table that design floods of 1-year
and 2-year ARI (estimated by flood frequency analysis) are obtained from an empirical
analysis of the observed partial flood series using the procedure described in Section

54. However, design floods of 5-year ARI or greater obtained from the LPIII
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distibution fitted to the annual flood series (see Table 6-3 and Figure 6-2). The bold
values indicate the best available design flood estimates for the catchment. In Table
6-7, the ratios of flood estimates obtained from a particular method to the best estimates
obtained from flood frequency analysis are also presented. The flood estimates for
various ARIs listed for the Joint Probability Model were obtained from Chapter 5. A

plot of these estimates against their corresponding return periods is illustrated in Figure

6-4.

Table 6-7: Summary of design flood estimates obtained from different methods

ARI (years)  Flood frequency analysis  Joint Probability Model Design Event Approach
Peak discharges Peak discharges Ratios Peak discharges Ratios
(mls) (r'fs) (m’/s)
1 17 17 1.0 25 L5
2 20 29 i.5 53 2.7
5 26 45 1.7 85 33
10 3 62 1.8 1i3 i3
20 42 76 1.8 153 36
50 55 101 1.8 212 3.8
100 66 127 1.9 21 4.1
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Figure 6-4: Plot of design flood estimates for the La Trobe River catchment
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In examining the magnitude of design floods estimated by the three methods, it can be
seen from Table 6-7 that, on average, the flood magnitudes estimated by the Design
Event Appreach are about three times those obtained from flood frequency analysis,
except for very frequent floods of I-year or 2-year ARI. In addition, the ratio of design
flood magnitudes predicted by these two methods increases for rarer flood events. By
contrast, the flood magnitudes estimated by the proposed Joint Probability Model are at
most double those obtained from flood frequency analysis, except for very common
floods. The ratios of design floods estimated by the proposed Joint Probability Model
to those of flood frequency analysis seem to be stable for all return periods, except for
ARIs of 1 or 2 years. It is also evident from Figure 6-4 that design flood estimates by
the Joint Probability Model are closer to the upper confidence limits established by
direct flood frequency analysis, even though the design floods predicted by these two
methods are all outside the 90% confidence intervals. Therefore, it can be concluded
that, whereas both the Joint Probability Model and the Design Event Approach
overestimate the design flood of a given return period, the proposed new model can give

better estimates in terms of flood magnitude for the study catchment.

The reduction in the magnitude of the design floods obtained by the Joint Probability

Mode! compared with the Design Event Approach is the result of the differences in

mputs and assumptions used by these two approaches in design. These differences can

be found in the definitions of storm events, or in the representation of design inputs and
their correlations.

*  With respect to the storm definitions used by these methods, as already discussed in
Section 4.3 and Section 4.5, storm events used in the proposed Joint Probability
Model generally have ionger durations than the bursts of rain typically used in the
Design Event Approach. In addition, the average rainfall intensity of a storm event
is lower than that for a storm burst of the same duration. For example, at station
85237, the average intensity estimate of a storm of 24-hour duration and 10-year
ARI is 2.62mm/h (see Table 5-2), whereas the average intensity of a burst of the
same duration and ARI is 4.3mm/h (see Table 6-4). The discrepancy in duration
and intensity between storm events and storm bursts is clearly due to different
sampling. As a storm burst used in the Design Event Approach is defined as the
most intense part of a storm event, design floods estimated by the approach are very

likely 1o be higher than those obtained from the Joint Probability Model.
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With regard to the representation of design inputs, whereas the design rainfall depth,
duration, temporal pattern, and initial loss are considered as random variables in the
proposed Joint Probability Model, only the rainfall depth is regarded as a random
variable in the Design Event Approach. All these differences therefore lead to the

discrepancy in design flood estimates obtained by the two methods.

Even though the proposed Joint Probability Model can give more accurate estimates of

design flood peaks for the La Trobe River catchment, when compared with the best

flood estimates obiained by flood frequency analysis, these estimates are siill

overestimated. This overestimation might be the result of many factors such as the

inappropriate assumptions used in the modelling process or errors in the design inputs.

With regard to the assumptions involved in modelling, it was assumed that the
rainfall-runoff response of the study catchment was non-liniear and that this non-
linearity was represented by a factor of 0.8. Nevertheless, this factor seems to be
low for the study catchment, as discussed in Section 4.8. If a larger value of m with
a corresponding lower value of k had been adopted, for discharges greater than those
of the observed floods used in model calibration, the storage would have been
greater, and the design discharge would have been less. Fuorthermore, the study
catchment was represented by a lumped mode! with only one storage. Neglect of
distributed storage effects on the catchment could have introduced errors,
particularly for floods much smaller or larger than those used in calibrating the
lumped model.

Another implicit assumption involved in application of the proposed Joint
Probability Model is the neglect of the seasonal effect of the rainfall and loss. This
implies that a surnmer storm can be randomly combined with a winter loss and vice
versa. For such unlikely extreme combinations of design rainfall and loss, design
flood peaks can either be overestimated or underestimated.

Finally, the adopted runoff routing model was calibrated and tested using only five
observed rainfall-runoff events. The relatively small number of events used in
calibration and testing indicated that they may not be representative of the
hydrometeorological conditions at the site. As a result, application of the model for
estimating design floods outside the flood range for calibration and testing

inevitably is subject to errors and uncertainties.
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¢ In terms of errors in design inputs, it is clear that these errors may occur in both the

stochastic inputs (namely, the gencrated rainfall intemsity, duration, temporal
pattern, and initial loss), and the determinisiic inputs (namely, the continuing loss
rate, baseflow, and the runoff routing model parameters). Among these inputs, the
generated storm duration is less likely to be a contributing factor to the
overestimation of design floods because the statistical properties of the storm
duration were repioduced well in the generated storms (see Section 5.2.3). By
contrast, there were uncertainties in the design rainfall intensity estimates
(especially for events with duration greater than 48 hours and return periods
exceeding 20 years) due to the extrapolation and adjustiment of the IFD curves, as
discussed in Section 4.5. The estimated rainfall for the catchment mignt also have
gross errors, as the use of rainfall data at only one gauge may not adequately
represent the catchment average rainfall and the spatial variation of rainfall on the
catchment scale. In addition, the adopted multiplicative cascade model clearly
underestimates the lag one auto-correlation of the observed temporal pattemns (see
Section 5.2.5). Likewise, the probability distribution used to characterise the
rainfall initial loss for the study catchment does not reproduce very well the
coefficient of skewness of the observed losses (see Section 5.2.6). The adopted
design baseflow (0.75m’/s) also seems to be low compared with the estimated
baseflow of the five observed storms used {see Table 4-19). Due to the fact that the
generated floods were overestimated, it is also likely that the design rainfall
continuing loss and/or the runoff routing parameter k for the catchment were
underestimated. The effects of the uncertainties in these inputs on design flood

estimates were therefore investigated, and are presenied in the next section.

6.5 SENSITIVITY ANALYSES

In order to gain an insight into the performance of the proposed Joint Probability Model,
$iX sensitivity analyses were carried out in this study:

® The first and second analyses aimed to determine how design flood estimates would

change if there were changes in estimates of the design rainfall intensity or in the
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probability distribution characterising the rainfall initial loss for the La Trobe River
catchment.
| e The third analysis aimed to determine the effects on design flood estimates of
neglecting the dependence of rainfall temporal patterns on season, storm duration
) and storm depth. Results of this analysis would determine if the subdivision of
| temporal patterns into ten different groups was practically important.
| e The fourth analysis investigated the influence of the resolution used to define
/ rainfall temporal patterns on the resulting floods. Results of this investigation
| wou'd be necessary in determining the minimum number of parameters to represent
adequately the variability of rainfall intensity during storm duration, and its impact
on the design floods.
The fifth analysis aimed to identify the effects on the design flood estimates of the

variation in the fixed design inputs, namely the continuing loss rate (CL), the

e B
]

routing model parameter (k), and the design baseflow. Results of these analyses
would determine whether these design inputs could have caused the overestimation

of the generated flood frequency curve for the study catchment.

- ——

¢ The sixth analysis aimed to examine the effect on flood estimates of changes in the
sample size of the design floods generated in the Monte Carlo experiment. Resuits

of this analysis would shed light on the reliability and stability of simulation results,

In the sensitivity analyses outlined above, the base case floods were those determined
using the procedure, input distributions and parameter values described in Section 5.3.2,

unless otherwise specified. These analyses are described in detail below.

6.5.1 Effects of design rainfali intensity

In order to investigate the effects of uncertainties in estimates of the design rainfall
intensity at pluviometer 85237 on the resulting floods, the values of the IFD table
established for this site were decreased by 20% and 50%' whereas other design inputs

were kept the same as for the base case. Design floods for these two cases were

' It would probably have been better to adopt values of 10% and 20% reduction or increase in the design
rainfall intensity, as a 50% error in catchment average rainfall is probably too extreme.
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computed using the procedure detatled in Section 5.3.2. The frequency curves of the
resuiting floods were then determined using the method described in Section 5.4. The
design flood peaks estimated for various ARIs were finally compared with those of the

base case simulation, as tabulated in Table 6-8.

Table 6-8: Design flood estimates (m3fs) from variation of design rainfall intensities

Base case 20% decrease 50% decrease
ARI Peak discharge Peak discharge % difference  Peak discharge % difference
1 17 7 -60 3 -85
2 29 12 -58 5 -82
5 45 21 -54 10 -18
10 62 28 -55 14 -78
20 76 36 -53 18 76
50 101 47 -54 24 -76
100 127 59 -53 32 -73

It is evident from Table 6-8 that changes in estimates of the design rainfall intensity
have a very large impact on the resulting flood estimates. For example, a 20% decrease
in the average rainfall intensity results in at least a 50% decrease in the corresponding
flood peak for any return period when other design inputs were unchanged. For an
extreme example in which the average rainfall intensity is reduced by 50%, the resulting
peak discharge for the study catchment can be decreased by up to 85%. This result is
not surprising as it has been found that the design rainfall depth is one of the most
important factors affecting the design flood magnitude (Beran, 1973; Cadavid et al.,
1991; Loukas et al., 1996). In general, the percentage of change in flood magnitude is

almost stable for all return periods, with a slightly greater reduction of frequent floods.

6.5.2 Effects of initial loss

The sensitivity of design flood estimates to variability in the initial loss for the La Trobe
River catchment was investigated by using of a constant initia) loss of 27.3mm, which is
the average of the observed initial losses for the study catchment. Flood events were
generated by Monte Carlo simulation using the constant initial foss, whereas other
design inputs were kept unchanged. The generated flood frequency curve was then

established. The flood peak estimates for various ARIs, summarised in Table 6-9, were
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finally compared with the corresponding base case floods (where the initial loss was

represented by a beta distribution with the parameters o of 1.6 and B of 7.2).

Table 6-9: Design flood estimaies (mfs) frgm different representations of initial loss

ARI  Base case distribution Constant initial loss % difference

(years) a=16,8=7.2 (27.3mm)
1 17 "1l .33
2 29 19 .34
5 45 31 32
10 62 41 .34
20 76 51 .32
50 101 70 -31
100 127 82 -36

When using a constant design initial loss for the La Trobe River catchment, it is evident
from Table 6-9 that, for all ARIs, the design flood estimates are approximately 30%
smaller than those obtained when a statistical distribution was used to characterise the
initial loss. In previous studies, it has also been found that small variations in parameter
estimates of the loss model could cause significant :rrors in the derived flood frequency
curves (Beran, 1973; Moughamian et al., 1987; *caines and Valdes, 1993). Therefore, it
can be concluded that design flood peaks are very sensitive to variations in the

probability distribution representing the storm initial loss.

6.5.3 Effects of temporal pattern groups

As already discussed in Section 4.6.4.3, the temporal pattems of observed storms used
in this study can be classified into 10 groups, depending on three factors: season of
storm occurrence, storm duration, and storm depth. In estimating design floods using
the proposed Joint Probability Model, the dependence of rainfall temporal patterns on

season, storm duration, and storm depth was taken into consideration, as described in

‘Section 5.3. This was taken as the base case (see Section 5.3.2). In the following

sensitivity analysis, the effect on design flood peaks of neglecting the dependence of

temporal patterns on season, storm duration and depth was examined.
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To generate design temporal patterns for this analysis, temporal patiems of the observed
storms of the 19 pluviometers were first pooled together, regardless of season, storm
duration, and storm depth. A beta distribution common to 19 sites was next used 1o
represent the disaggregation parameters of the multiplicative cascade mode] adopted to
generate storm mass curves (see Section 4.6.5). The two parameters (c, B) of this
distribution were computed from the observed patterns using the procedure described in
Section 4.6.5. Design temporal pattems were finally generated from this common beta
distribution using the method detailed in Section 5.2.5.1.

In order to estimate design floods resuiting from generated storm events, the procedure
detailed in Section 5.3.2 was again adopted. However, in step (d), the design temporal
pattern of a synthetic event was taken at random from the sample of the patterns
generated from the common beta distribution determined above. Other input
components were kept the same as for the base case. The flood frequency curve of the

computed flood peaks was finally estimated and compared with the base case curve.

Table 6-10: Design flood estimates (m’/s) from different numbers of temporal pattemn

groups

Base case (10 groups)  Dependence neglected (1 group)

ARI1 Peak discharge Peak discharge % difference
1 17 18 3
2 29 29 0
5 45 46 3
10 62 62 0
20 76 78 2
50 101 100 -1
100 127 _ 119 -6

Design floods computed when the dependence of temporal patiems on season, storm
duration, and depth was considered (base case) and neglected are presented in Table
6-10, along with percentage differences between the estimates for these two cases. It is
clear that, when the dependence of temporal patterns on season, storm duration and
depth is neglected, design floods may increase or decrease, depending on the ARI of the
design flood. Nevertheless, for all ARIs, estimates of the peak disCharge differ from the
base case floods by at most 6% in absolute values, but more typically by 0 to 3%. In
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other words, for the La Trobe River catchment, the consideration of the dependence of
the temporal pattern on season, storm duration or depth seems to have only minor
effects on design flood estimates. This conclusion is clearly limited to the specific
study catchment and needs to be verified by applying the proposed model to a wider
range of catchment areas. It should also be bome in mind that, in the present study,

design inputs other than the temporal pattern do not vary seasonally.

6.5.4 Effects of number of time increments used to describe temporal
patterns

In this study, a statistical model has been developed for temporal pattemns represented
by dimensionless hyetographs defined at 8 equal time increments of storm duration.
Whereas 8 increments may be adequate to characterise the varnability of rainfall
intensity during storm duration for short duration storms, they may be inadequate for
longer events causing floods in large caichments. Therefore, a sensitivity analysis was
attempted to examine the effects » . 1esign floods of changes in the number of time

increments used to describe the te. ' oral pattem.

The objective above was achieved by doubling the number of intervals used to describe
rainfall temporal patterns (observed and generated) from 8 to 16. For simplicity, the
base case simulation (for 8 intervals) was chosen as the case in which the dependence of
temporal patterns on season, storm duration, and storm depth was not taken into account
(see Section 6.5.3). The procedure below was then adopted:

* A beta distribution was first used to represent the disaggregation parameters of the
adopted model for generating temporal patterns. Parameters of this beta distribution
were computed from the mass curves of the temporal patterns observed at 19
pluviometers using the method outlined in Section 4.6.5.

» Synthetic temporal patterns were next generated from the beta distribution using the
procedure described in Section 5.2.5.).

* Design floods were then computed using these generated temporal patterns whereas

other design inputs were kept unchanged.
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o The peak flood estimates were finally compared with those of the base case in which

the temporal pattern was defined at 8 equal increments of storm duration.

Preliminary results of this sensitivity analysis indicated moderate sensitivity of design
floods to the number of time intervals adopted, and that small floods are more sensitive
to variations in the number of time increments used to describe temporal patterns than
big floods. However, quite substantial work would be required to obtain conclusive
results. Whereas these results are desirable, the exira work is considered to be outside

the scope of this thesis due to the limited research time.

6.5.5 Effects of fixed design inputs

As mentioned at the beginning of Section 6.5, the fixed design inputs to be used in the
current sensitivity analysis are the continuing loss rate, the runoff routing parameter k,

and the design baseflow.

Continuing loss rate

In order to investigate the effects on flood estimates of changes in values of the
continuing loss rate (CL), design floods were computed for loss rate values increased by
20% (corresponding to 5.6mm/h) and 50% (corresponding to 7mm/h) from the base
case value (4.7mm/h) used in simulation. Other design inputs were kept the same as for
the base case. The resulting flood frequency curves were then estimated and compared
with those obtained from the base case. It is noted that the continuing loss rate used in
the base case was increased for the sensitivity analysis, because the simulated flood
frequency curve was overestimated, suggesting that the base case continuing loss might
be low. In addition, a 50% error is quite common due to the high uncertainty in

continuing loss values.

Results of this sensitivity analysis are presented in Table 6-11. In this table, design
floods estimated for the three values of continuing loss rates are shown, along with the
ditferences relative to the base case floods. It is clear from Table 6-11 that for a 20%
increase in the design continuing loss rate, the resulting peak discharges estimated for

the La Trobe River catchment decrease from 1% to 8%. Nevertheless, when there is a
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50% increase in the continuing loss, the resulting floods reduce only by 6% to 12% in
the peak magnitude. As the design loss rate increases, small floods tend to be more
affected than large floods, other inputs being kept unchanged. In general, it can be
concluded that changes in the design continuing loss rate have moderate effects on the

resulting flood estimates, especially at high retum periods.

Table 6-11: Design flood estimates (m*/s) from different values of continuing loss rate

Base case 20% increase 50% increase
(CL = 4.7mm/) (CL = 5.6mm/h) (CL = 7mmv/h)
ARl Peak discharge Peak discharge % difference Peak discharge % diffcrence
] 17 16 -5 15 -5
2 29 27 -7 26 -12
5 45 42 -6 41 -10
10 62 57 -8 55 -11
20 76 73 4 71 -7
50 101 100 -1 95 -6
100 127 124 -3 118 -7

Routing parameter k

Similarly, in order to investigate the effects on design flood estimates of changes in the
runoff routing model parameter k, the value of k was varied while other fixed design
inputs were Kept unchanged. In choosing the values of k for the sensitivity analysis, as
the design floods were overestimated (see Table 6-7), it was decided to increase k in
order to reduce the flood estimates. Hence, two values of k, increased by 20%
{corresponding to k=64) and 50% (k=80) respectively, were used. The estimated fioods
were then compared with the base case simulation (with k=53). At this point, it is worth
noting that the adopted variation of k is typical of errors in estimated k-values for

gauged and ungauged catchments.

The design flood estimates resulting from three different values of the routing model
parameter k are shown in Table 6-12, along with the percentage differences between
these flood estimates and the base case floods. It can be seen from this table that, for all
ARIs, as k increases, the peak flood magnitude decreases. For example, a 20% increase
in the runoff routing model parameter k brings about a decrease from 15% to 20% in the
design peak discharge. When k is increased by 50%, the resulting flood peak is reduced
by at least 32%. These results indicate that design flood peaks estimated for the La
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Trobe River catchment are sensitive to uncertainty in the parameter k of the runoff

routing model.

Table 6-12: Design flood estimates (m*/s) from varying values of the runoff routing

model parameter k

Base case (k = 53) 20% increase (k = 64) 50% increase (k = 80)
ARI Peak discharge Peak discharge % difference Peak discharge % difference
1 17 14 -19 11 -36
2 29 23 -20 18 -37
5 45 38 -16 30 -33
10 62 51 -18 41 -35
20 76 65 -15 52 -32
50 101 86 -15 60 -32
100 127 104 -18 83 -34
Design baseflow

It has been shown in Section 5.3.2 that in estimating design floods for the La Trobe
River catchment, the adopted design baseflow was 0.75m*s (base case). However, this
value seems to be low compared with the median baseflow of 5.7m%'s of the observed
flood events for the catchment (see Table 4-19). Therefore, the effects on design flood
estimates for the study catchment of using the specified median baseflow were

examined.

To estimate design floods, it is clear that in this study, a constant value of base flow has
been added to all the generated flood peaks. Therefore, design flood estimates
corresponding to the new median baseflow were determined by subtracting the old
design baseflow of 0.75m’/s from the base case floods (of all ARIs) and adding the new
design baseflow of 5.7m’/s. The resulting design floods are listed in Table 6-13, along
with the base case floods and the percentages of difference between these flood

estimates,

It is clear from Table 6-13 that, as the design baseflow increases from 0.75m’/s to
5.7m’/s, the corresponding peak discharge increases from 17m’/s to 22m’/s for floods of
l-year AR and from 127m’/s to 132m’/s for floods of 100-year ARL. The percentage
of change decreases from 29% for the 1-year ARI flood to 4% for the 100-year ARI
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flood. Therefore, it can be concluded that uncertainty in the value of the design

baseflow mainly affects small floods,

Table 6-13: Design flood estimates (m*/s) from varying values of the design baseflow

ARI Design baseflow % difference
(years) (0. 75m’/s, base case)  (5.7m’/s)

1 17 22 29

2 29 34 17

5 45 50 11

10 62 67 8

20 76 81 7

50 101 106 5

100 127 132 4

6.5.6 Effects of sample size

As discussed is Section 5.2.2, the sample size of the generated outcomes in a Monte
Carlo expeniment plays an important role in determining the reliability of these
outcomes. In order to examine the effect on design flood peaks of changes in the
number of generated data, in this sensitivity analysis a sample of 30000 flood events
was generated for the La Trobe River catchment. All other design inputs were kept
unchanged (including the seed for random number generation). The estimated peak
floods of various return periods were then compared with those of the base case

simulation where 15000 data were generated.

A summary of the estimated flood peaks for the sample sizes of 30000 and 15000, along
with the percentage difference in these estimates, is given in Table 6-14. It is clear from
Table 6-14 that, as the size of the flood sample changes from 15000 to 30000, the
estimated peak discharge of very frequent floods of 1 or 2-year ARI remains unchanged.
The design flood estimates for return periods of 5 up to 50 years only change at most by
3%. By contrast, the magnitude of floods of 100-year ARI varies quite considerably, by
an amount of 12%. It can therefore be concluded that, up to the ARI of 50 years, a
stable estimate of the flood frequency curve for the La Trobe River catchment can be

derived using a random sample of 15000 data (spanning 2000 years).
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Table 6-14: Design flood estimates from varying sample sizes

Sample size of 15000 Sample size of 30000
ARI Peak discharge (m’ /s) Peak discharge (m’fs) % difference
1 17 : 17 0
2 29 29 0
> 45 46 2
10 62 63 2
20 76 78 3
50 101 99 -2
100 127 112 -12

The variation in the estimated peak flood magnitude of 100-year ARI in response to
changes in sample size is not surprising. This is attributable to the relatively small
number of rare events generated by the Monte Carlo experiment. As design floods of
this low probability are the result of extreme combinations of flood causing components
(such as very high rainfall of long duration and low losses), to obtain better estimates of
these rare floods, a number of methods can be used. The first is to further increase the
number of the generated flood events. However, this method may only be adequate for
estimating design flonds of up to 100-year ARI. The second is to apply more efficient
generation methods such as variance reduction techniques. As discussed in Section
5.2.2, these techniques aim to reduce the variance of the simulation results by biasing
the sampling scheme in the domain of interest (without changing the sample size).
Details of these techniques can be found in Thompson et al. {1997), Perlado (1990), and
Kottegoda and Rosso (1997). These techniques are more complicated for routine
applications and most relevant to the estimation of floods with ARIs greater than 100

years, They were therefore considered to be beyond the objective of this research.

6.5.7 Discussion

Results of the sensitivity analyses described in Section 6.5 indicate that changes in
different stochastic and deterministic inputs have different impacts on the derived flood
frequency curve for the La Trobe River catchment at Noojee. Whereas the design flood
estimates are very sensitive to errors in the estimated design rainfall intensity and initial
loss, they are moderately influenced by uncertainties in the selected routing parameter k,

and only slightly affected by the modelling of the dependence of temporal patterns on
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season, storm duration, or depth. Uncertainties in the adopted continuing loss rate and
design baseflow were found to have more impacts on frequent floods than rare floods.
By generating 2000 years of data, it was concluded that the resulting design flood

estimates were stable, except for the ARI range beyond 50 years.

From the results of the sensitivity analyses, it can be concluded that the estimation and
representation of the design rainfall intensity and loss model parameters are crucial in
order to obtain reliable design flood estimates. The same conclusion can be inferred
from previous studies (for example, Beran, 1973; Moughamian et al., 1987; Cadavid et
al., 1991; Raines and Valdes, 1993; Loukas et al., 1996), as it has been found that small
variations in parameter estimates of the rainfall and loss models can cause significant
errors in the derived flood frequency curve. By contrast, the modelling of the stochastic
nature of the rainfall temporal pattern and the dependence of the temporal pattern on
season, storm duration, and depth seem to have minor effects on the design flood peak.
In the past literature, Sivapalan et al. (1996) also suggested that peak runoff is not
affected by the temporal pattern of rainfail for catchments with response time large

compared to storm duration.

The availability of data is another factor that may have considerable impact on the
reliability of flood estimates. As discussed in Section 4.5.6, in the current application,
the design IFD curves for the La Trobe River catchment were determined from
observed rainfall data at only one pluviometer inside the catchment, and therefore were
of limited accuracy, particularly for rare storms of long duration. Had additional data
from daily rain gauges and supplementary rainfall information in a larger region been
used in the derivation of ¢ - design IFD curves for the specified site, flood estimates by
the proposed Joint Probability Model would have been more reliably determined.
Similarly, the statistical distribution representing the initial loss and the routing model
parameter k were also estimated using at-site data. Again, pooling of supplementary
information from catchments Iwith similar flood response could have led to better
estimates of the loss and runoff routing model parameters, and therefore, of the design
floods.

It is clear that the flood frequency curve derived by the proposed Joint Probability

Model reflects the variability of key design inputs to the flood generation process
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(rainfal] intensity, duration, temporal pattern, and initial loss) and their correlations, but
not the uncertainty in the selected model representations and parameter estimation.
Even though it would be desirable io quantify the effects of this uncertainty on flood
estimates by determining the confidence limits of the derived flood frequency curve, as
mentionzd in Section 5.4, this has been left for future work, due to both the lack of data

and the time limits placed on this research.

6.6 ADDITIONAL METHOD TESTING

In the analyses described in previous chapters and sections, the proposed Joint
Probability Model was applied to estimate design floods for just one catchment, the La
Trobe River at Noojee. In order to understand more about the performance of the
proposed model, the model was tested on another catchment, the Tarwin River
catchment at Dumbalk North (flow gauging station number 227226). As mentioned in
Section 4.2.1, this catchment has an area of 127km?, and 27 years of flow record (from
1971 to 1997). The pluviometer with the longest record that can be used for rainfall
analyses is just outside the catchment boundary and has 22 years of data (station 85106,
from 1957 to 1978). The estimation: of the derived flood frequency curve for the Tarwin
River catchment and the evaluation of the proposed model using observed flow data for

this catchment are described below.

6.6.1 Estimation of model elemenits

Before e-timating the derived flood frequency curve for the Tarwin River catchment
using the proposed Joint Probability Model, as for the case of the La Trobe River
catchment, the stochastic and detesministic elements of the model had to be determined.

The stochastic elements were the trequency curves of design rainfall intensity, the

probability distributions of rainfall duration, temporal pattem, and initial loss. The
deterministic elements were the parameters of the lumped runoff rv_ting model, the

continuing loss rate, and the design baseflow.
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Data used to derive the stochastic elements of the proposed model for the Tarwin River
catchment were observed rainfall events extracted from the rainfall record at
pluviometer 85106, streamflow data recorded at station 227226, and observed initial
losses obtained from a parallel study (Rahman et al., 2001). Similarly, parameters of
the lumped runoff routing model for this catchment had already been calibrated and
were readily obtainable {from the same study. The observed rainfall and streamflow data
at those sites have been checked for time homogeneity and the extracted storm events

for consistency (see Section 4.2.2).

To determine the probability distribution of storm duration, the IFD curves, and the
probability distribution of storm initial loss for the Tarwin River catchment, the
methods described in Sections 4.4, 4.5 and 4.7 were adopted. To represent temporai
patterns by a statistical model, it is important to note that the temporal pattern was
assumed to be independent of location within the relatively small region used in this
study. Therefore, the statistical modei used to characterise the temporal pattern for the
Tarwin River catchment was taken as that dzveloped for the La Trobe River catchment.
In this case, the dependence of temporal patterns on season, storm duration, and storm
depth was neglected, as it has been shown that this simplification has minor effects on
design flood estimates (see Section 6.5.3). A summary of the probability distributions
characterising the stochastic inputs, their distributional parameters, and the values of

other fixed design inputs is given in Table 6-15.

Table 6-15: Tarwin River catchment at Dumbalk North - Summary of design elements

used in the proposed Joint Probability Model

Elements Type of fitted distribution Distributional parameters
or design values
Rainfall duration | Generalised Pareto distribution [location =0.077, scale = 1.102, shape =0.193

Rainfall intensity Exponential distribution vary, depending on class intervals of duration
Temposal pattern Beta distribution 0 =2.363,=2212
Initial loss Beta distribution o=15B8=17
Baseflow fixed value 0.18 m'/s
Continuing loss rate fixed value 2.5mmv/h

Runoff routing model fixed value k=33, m=038
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6.6.2 Estimation of the derived flood frequency curve

As discussed in Section 5.2.2, for the purpose of this study, it is considered adequate 10
generate 2000 years of data. As there was an average of 9.4 significant storm events per
year of record for the Tarwin River catchment, the minimum number of data to be
generated over 2000 years of simulation was {see Equation (5-1)]:

NR = 9.4x 2000 = 18800
Therefore, the number of generated data for the specified catchraent was taken as
20000.

To estimate the design flood frequency curve for the Tarwin River catchment, the
procedures detailed in Chapter 5 was adopted. In this procedure, 20000 random sets of
data from the input distributions were first generated. Flood events were then generated
using Monte Carlo simulation. A frequency analysis was finally carried out to

determine the generated flood frequency curve for the catchment.

The derived flood frequency curve for the Tarwin River catchment is illustrated in
Figure 6-5. In this figure, it can be seen that the shape of the derived flood frequency
curve does not follow closely that of the observed floods. This suggests that some of
the non-linearity of the rainfall-runoff process may not be correctly modelled. In
addition, design floods of very small ARIs (less than 1 year) are much smaller than the
observed floods. One possible explanation for this is that the adopted design baseflow
(0.18m%/s, see Table 6-15) might have bzen too low. Had a bigger value of the design
baseflow been adopted (say, Sm*/s), design flood estimates would have been increased
for all ARIs. However, for big floods of design interest (ARIs of 50 or 100 years), the

magnitude of change in the design peak discharge may be insignificant.

Design flood peaks of various return periods for the Tarwin River catchment are
summarised in Table 6-16. From this table, it can be seen that, using the proposed
model, the design flood peak for the study catchment varies from 27m/s to 114m°/s for

ARIs from 1 year to 100 years.
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Figure 6-5: Observed floods and the generated flood frequency curve - Tarwin River

cetchment at Dumbalk North

Table 6-16: Design flood estimates for the Tarwin River catchment by different

methods

ARI (years) Food frequency analysis  Joint Probability Model Design Event Approach
Peak discharges Peak discharges  Ratios  Peak discharges  Ratios

(mifs) (m'’/s) (m’/s)
i 32 27 0.9 22 0.7
2 47 39 0.8 39 0.8
5 73 56 0.8 58 0.8
10 97 69 0.7 72 0.7
20 120 84 0.7 89 0.7
50 149 103 0.7 114 0.8
100 170 114 0.7 137 0.8

6.6.3 Evaluation of the proposed model

To assess the performance of the proposed Joint Probability Model on the Tarwin River
catchment, the design floods estimated by this model were compared with the best flood

estimates determined by flood frequency analysis and the flood estimates by the Design

Event Approach.
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To determine the best design flood estimates for the Tarwin catchrent, the procedure
- described in Section 6.2 was first applied to the annual flood series for the site. The
ouicome of this step was a fitted LPIII distribution and the corresponding 90%
confidence intervals (see Figure 6-6). The empirical frequency analysis described in
Section 5.4 was next applied to a partial flood series {selected from a threshold
discharge of 30m®/s) in order to provide estimates of more frequent floods. The best
design flood estimates for the Tarwin catchment were finally selected as the estimates
from partial series analysis for events with return periods less than 5 years, and from the
fitted LPIII distribution for return periods of 5 years or greater (see Table 6-16). The
return period of 5 years was adopted as the transition between the two flood series as at
or above this value the partial flood series does not significantly differs from the annual

flood series for the design site.
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Figure 6-6: Observed floods and the fitted LPII distribution — Tarwin River catchment

To estimate design floods by the Design Event Approach, the procedure detailed in
Section 6.3 was adopted. Results are summarised in Table 6-16 and illustrated in Figure
6-7.

In comparing design floods estimated by the proposed Joint Probability Model with the
best estimates determined by flood frequency analysis, it is evident from Table 6-16 that

the flood estimates by the proposed model are smaller than those of the flood frequency

:




Chapter 6 196

analysis for all ARIs. The difference between the flocd ¢stimates by these two mcthods
increases from 10% for very frequent floods to 30% for rarer floods. Neverthieless, the
flood estimates by the proposed model are all within the 90% confidence intervals

determined by direct flood frequency analysis. and very close to the lower 93% liinits

{see Figure 6-7).
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Figure 6-7: Flood frequency curves, Tarwin River caichment

Similarly, estimates of design floods by the Design Event Approach are all less than
their corresponding counterparts obtained from flood frequency analysis (see Table
6-16). The difference in flood estimates between thesg two methods varies from 20% to
30%. However, as clearly indicated in Table 6-16 and Figure 6-7, the flood estimates
by the Design Event Approach are always bigger than those obtained by the Joint
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Probability Model (except for events of 1-year ARI), and tend to be closer to the

estimates by flood frequency analysis.

In general, it can be concluded that, compared with the best flood estimates by flood
frequency analysis, both the proposed Joint Probability Mode! and the Design Event
Approach underestimate the design flood peak for the Tarwin River catchment.
Nevertheless, the flood peaks estimated by these latter two methods are of similar
magnitude, all within the 90% confidence intervals deterrnined by direct flood
frequency analysis, and very close to the lower confidence limits.

6.7 OVERALL ASSESSMENT OF THE SOINT PROBABILITY MODEL

The applications of the proposed Joim Probability Model to design flood estimation for
two Victorian catchments have shown different results. For the La Trobe River
catchment, the model overestimates design floods, but the estimated flood peak
discharges are not too far from the upper confidence limits established by direct flood
frequency analysis. By contrast, for the Tarwin River catchment, the model
underestimates the design flood peak, however, these design floods are very close to the
lower confidence limits determined by direct flood frequency analysis. Compared with
the currently used Design Event Approach, the proposed model performs better for the

former catchment, and performs similarly for the latter.

For the two test catichments, the discrepancy of design floods estimated by the proposed
model and the best available estimates obtained from flood frequency analysis may have
been the result of many factors. As discussed in Section 6.4, these factors include the
use of a lumped model for runoff routing, and errors in the assumed degree of non-
linearity of catchment response. Uncertainties in determining the design rainfall
frequency curves, in estimating the parameters of the stochastic and deterministic
models representing the catchmernit flood response, or in the adopted values of other
fixed design inputs, certainly have an impact on the flood estimates. In addition, the

average rainfall over the catchment estimated from observed data at only one location
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may not be representative of the catchment rainfall and its variability over the study

catchment.

An original element of the proposed model was the development of a new storm

definition. This has been successfully applied and has shown a number of advantages.

Firstly, in the new storm definition, storm events are defined such that the storm

duration, rainfall intensity, and temporal pattern can be analysed as random variables.

Secondly, the parameters of the storm definition could be changed to suil the particular

type of catchment uncer study. For example, the separation time between successive

storms could be increased in order to extract longer storms that are likely to produce

runoff for large catchments. Thirdly, the adopted definition produces nearly complete

siorm events in contrast to storrn bursts. Therefore, the modelling of storm losses

becomes easier. Finally, in this study, using the proposed storm definition, the storm

duration has been characterised by a three-parameter Generalised Pareto distribution. In

previous studies (for example, Eagleson, 1972; Wood and Hebson, 1986; Bloeschl and

Sivapalan, 1997}, the storm duration has been modelled by the exponential distribution,

which is a special case of the Generalised Pareto distribution. It is thus clear that this

study has described the storm duration in a more general fashion.

However, there are also a few disadvantages in the developed storm definition. As a

storm represents a greater portion of the actual rain (rather than just a burst of the rain

currently used in design flood estimation in Australia), the temporal pattern becomes

more complex, is highly variable, and thus more difficult to model. Consequentiy, a

great deal of effort was spent on correctly modelling this variability. In addition, the

difference between the developed storm definition and the currently used storm bursts

means that some of the existing design data can not be used directly.

Overall, it can be concluded that the proposed Joint Probability Model is fundamentally

sound, theoretically superior to the currently used Design Event Approach, and

practically workable. It offers a rigorous method to compute the probability of design

floods without the need for the critical storm duration concept. It can model the great

variability of real storm event characteristics (storm duration, average intensity, and

temporal pattern) and their interactions. Applications of the model to two Victorian

catchments showed satisfactory resuits, even though the performance of the proposed
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model could be improved by using a better model for runoff routing and/or better
estimates of design inputs and modet parameters. Testing of the proposed model on a
larger number of catchments is required before a firmer quantitative assessment of the

model performance can be made.

6.8 SUMMARY

The evaluation of the proposed Joint Probability Mode] was carried out by comparing
design flood estimates for the La Trobe and the Tarwin River catchments obtained from
this model with those estimated by flood frequency analysis and the Design Event

Approach.

In examining the observed flow data at the La Trobe catchment, it was evident that the
floods in the annual series for this site were the results of prolonged storms with the
average duration of 41 hours. These peak floods occurred throughout the year but more

often in winter and spring when the catchment was relatively wet.

In estimating design floods using direct flood frequency analysis, it was shown that the
flood frequency curve for this catchment was not well defined for return periods greater
than 20 years, and the corresponding confidence intervals of these flood estimates were
also wide. The uncertainty in these design fioods was attributed to the shortness of big
floods on records. Similar’y, there was also uncertainty in design flood estimates
obtained by the Design Event Approach, due to many factors such as uncertainties in

the choice of fixed design inputs or in estimates of the routing model parameters.

In comparing design flood estimates obtained from the three methods, it was evident
that the currently used Design Event Approach significantly overestimated design
floods for the La Trobe River catchment. For any given return period, design flood
magnitudes were at least three times those estimated by flood frequency analysis. Even
though the proposed Joint Probability Model also overestimated design floods for this

catchment, the degree of overestimation was reduced to about half. The flood estimates
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by the proposed mode! were not too far from the upper confidence limits determined by

direct flood frequency analysis.

In examining the effects of variations or uncertainties in the stochastic and fixed design
inputs on the resulting flood estimates, the results of the sensitivity analyses confirmed
that the design rainfall intensity plays a key role in design flood estimation.
Uncertainties in the adopted design initial Joss were found to have considerable impact
on estimates of the flood peak discharge. Emors in the routing model parameter k
resulted in moderate changes in the design flood peak. Uncertainties in the design
baseflow or the adopted storm continuing loss had more influence on small floods than
big floods. These results suggest that in applying the proposed Joint Probability Model
to practical situations, in order to obfain better flood estimates, it is crucial to
concentrate on the estimation of the design rainiall IFD curves and the parameters of the
adopted loss model. More detailed representation of the catchment model for runoff

routing is also desirable.

The examination of the sensitivity of the resulting floods to the modelling of the
dependence of temporal patterns on season, storm duration, and storm depth showed
that, the design flood magnitude estimated for the La Trobe River catchment changed
only slightly if this dependence was neglected. Nevertheless, application of the
proposed model to a wider range of catchment areas is reqguired to verify this

conclusion.

The investigation of the effects of the size of the generated sample of floods on design
flood estimates confirmed that for the specified sample size of 15000 (over 2000 years),
the generated flood frequency curve in the range of l-year to 50-year ARI was
satisfactorily stable. More reliable flood estimates for ARIs greater than 50 years can
be obtained by increasing the generated flood sample or by applying variance reduction

techniques.

Results of an additional testing of the proposed model on the Tarwin River catchment
indicated that, when compared with the best available flood estimates by flood
frequency analysis, the proposed model generally underestimated the design peak

discharge. However, the flood estimates by the proposed model were very close to the
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lower confidence limits established by direct flood frequency analysis, and of similar

magnitude with those determined by the Design Event Approach.

On the basis of the different results for the two test catchments, it was concluded that
testing of the proposed model on a larger number of catchments with long flow records
is required before a firm conclusion on the quantitative performance of the proposed

model can be drawn.

In assessing the proposed model, it has been shown that the storm definition developed
for this study has many advantages. These include the ability of modelling the real
variations of storm event characteristics, the flexibility of its parameters to be changed
1o suit a particular catchment, the ease of modelling the catchment wetness conditions,
and the ability to describe the storm duration by a general statistical distribution. By
contrast, the proposed storm defiition also has a few disadvantages. These include the
greater complexity of the storm temporal patterns, making it more difficult to model,

and the less direct relationship with current design rainfall data.

In summary, the proposed Joint Probability Model is considered to be fundamentally
sound and theoretically superior to the cumrently used Design Event Approach, because
it explicitly models the variability of key design inputs and their correlations in the
flood generation process. The method is alse practically workable. However, design
floods estimated by this model are still subject to crrors due to uncertainties in model
selection or parameter estimation. While it is desirable to quantify the uncertainty in the
flood estimates, this has been left for future research due to the lack of data and the

limited time frame of this study.
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Chapter 7

CONCLUSION

This chapter presents a summary of the research reported in this thesis, conclusions

drawn from the work, and recommendations for further study.

7.1  SUMMARY OF WORK DONE

Throughout this study, the main objective has been the development of a Joint
Probability Model for rainfall-based design flood estimation. This objective was
achieved by reviewing design flood estimation methods, selecting the most promising
approach among various alternatives, developing a conceptual flood estimation model
based on the selected approach, and testing the performance of the proposed model on

two Victorian catchments.

Review of design flood estimation methods

The review of rainfall-based design flood estimation methods revealed major
weaknesses in the currently used Design Event Approach and the need for an improved
method of estimating design floods from design rainfalls. These weaknesses are the
underestimation of the variability of real storm events causing floods and associated
catchment moisture conditions, the non-scientific basis of the critical storm duration
concept and the resulting probability bias in design flood estimates, together with the
difficulties in selecting representative values of design inputs to correct the probability
bias. These are likely to resull in significant uncertainties in flood estimates, which
could have considerable economic consequences in the design of hydraulic structures

and floodplain management.
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Among the rainfall-based design flood estimation methods, Continuous Simulation and
the Joint Probability Approach have the polential to overcome the above limitations of
the current design procedure. Both methods can account for the great degree of
variability of rainfall and loss characteristics, eliminate the need for estimating the
critical storm duration, and more rigorously estimate the probabilities of design floods.
However, of these two methods, the Joint Probability Approach has greater potential to
provide significant improvements in rainfall-based flood estimation in the near future;
because, being more closely related to the current Design Event Approach, it is possible
to make use of a large body of existing experience and data. This research has focused

on the Joint Probability Approach.

The Joint Probability Approach to rainfall-based design flood estimation has two
essential elements: deterministic and stochastic elements. The deterministic elements
convert a design rainfall event input into a rainfall excess and then into an output of a
flood event hydrograph. The stochastic elements include the probability distributions
representing the key model inputs, and a derived distnbution method for determining

the probability distribution of the flood event output.

The review of previous studies of the Joint Probability Approach indicated that even
though this approach has been applied to design flood estimation since the 1970s, it has

not yet been developed to be a practical design tool, due to many restrictions in the

elements used. These are:

* the use of inadequate models of the design rainfall, loss, and catchment response,
» the inadequate consideration of the variability of key flood producing factors,

s simple assumptions about the relationships between stochastic design inputs,

» the use of complicated derived distribution methods, and

¢ the lack of flexibility to apply the approach to actual catchment conditions.

Development of Joint Probability Model
Unlike previous models of the Joint Probability Approach, the Joint Probability Model

proposed in this study uses an initial loss — continuing loss model and a simple lumped,

non-linear runoff routing model that can be easily applied in practice. In addition, it

represents key design inputs to the flood generation process (namely, the design rainfall
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intensity, duration, temporal pattern and initial loss) by probability distributions, and
models the correlations between these design inputs. In order to simulate design floods,
it employs Monte Carlo simulation. The distinctive features of the proposed model are
the use of a storm definition that can reflect the great variability of real rainfall event
characteristics, the consideration of the correlations of design random variables,
especially the dependence of rainfall temporal pattemns on season, rainfall duration, and
depth, and the simplicity for routine applications. At this development stage, the
proposed model aims to determine the frequency curve of the peak flood magnitude up
to the 100-year ARI by means of a lumped runoff routing model. However, the
proposed model is intended for use with a distributed runoff routing model and, in
principle, it could be applied to derive the frequency curves of other flood hydrograph

characteristics and to more extreme events.

To apply and evaluate the proposed model, two Victorian catchments (the La Trobe
River catchment at Noojee and the Tarwin River catchment at Dumbalk North) were
selected. The analyses of rainfall inputs used data at 19 pluviometers in and around
these catchments. Observed rainfall and flow data at these sites were checked for
homogeneity in time. Results of the Mann-Kendall test for trend and the CUSUM test
for discontinuity indicated that the data at any particular site were all drawn from the

same statistical distribution.

Before developing the probability distributions of rainfall characteristics, a storm
definition was developed to extract significant rainfall events from continuous rainfall
records. Five parameters were used to define these events, such that they are stochastic
events, have the potential to produce significant runoff, and exclude periods of
ipsigniﬁcant rain at the start and end of the events. The values of these parameters were
determined by exploratory and sensitivity analyses. The extracted events were finally
checked for consistency and those with recording errors were eliminated. The adopted

storm definition' gave an average of seven storms per year per station.

In developing the probability distribution of the storm duration at Noojee, the regional

frequency analysis procedure developed by Hosking and Wallis (1997) was adopted.

' A variant of this storm definition, called ‘storm core’, has also been investigated in a parallel study
{Rahman et al., 2001).

L o o
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Analysis results showed that homogenecus regions of storm duration could be formed
by grouping sites contiguous to the site of interest. A three-parameter Generalised
Pareto distribution was used to characterise storm duration. The fitted distribution

preserved very well the statistical properties of the observed storm durations.

To determine the frequency curves of the rainfall intensity for the design site, the
correlation between average rainfall intensity and storm duration was first investigated.
A conditional probability distribution, expressed by the IFD curves, was then used to
characterise this relationship. The IFD curves for the design site were determined using
at-site frequency analysis of rainfall intensities for selected duration intervals, and a
smoothing procedure for other durations. Results indicated that there were uncertainties
in average intensity estimates of long duration and low frequency storm events due to
the lack of observed data. As a future improvement, it would be desirable to use

regional rainfall data to obtain more reliable rainfall intensity estimates.

Before developing o stochastic model for storm temporal patterns, the dependence of
the temporal patiern on season, storm duration and depth was examined using
correlation analysis and the chi-square test of independence. It was found that,
depending on the test used and the level of detail of the characterisation of the rainfall
temporal pattern, such dependence might be or might not be detected. When the
temporal pattern was represented by a dimensionless mass curve defined by nine
ordinates, results of the chi-square test showed that the temporal pattem was dependent
on season of storm occurrence, storm duration and even on storm depth (in one case).
Based on these results, the observed temporal patterns of the storm events used in this

study were divided into ten independent groups.

The multiplicative cascade model presented by Robinson and Sivapalan (1997) was
adopted for generating design temporal patterns. For each of the ten temporal pattern
groups, disaggregation parameters of this model were generated from a beta distribution
whose parameters were determined from the observed dimensionless mass curves in the
group. The adopted model satisfactorily reproduced the distribution of the maximum
dimensionless rainfall intensity and the frequency characteristics of the observed
temporal patterns. However, it underestimated the lag one auto-correlation between

successive storm depths of the observed patterns.
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Before deriving the probability distribution of storm initial loss, the relationships
between the storm initial loss and storin duration and average rainfall intensity were
investigated. Analysis results indicated that the initial loss derived for observed events
for the La Trobe River catchment was independent of storm: duration and average
intensity. The probability distribution of the storm initial loss was then derived using an
at-site frequency analysis method. A two-parameter beta distribution w~s again used to

represent the initial loss for the catchment,

A trial and error approach was applied to determine the parameters of the lumped runoff
routing model for the study catchment. It was shown that the calibrated model
reproduced relatively well the peak discharge, but significantly underestimated the time
to peak of the observed flood hydfographs. A similar conclusion was drawn when
design floods were estimated using a distributed RORB model calibrated for the same
catchment. On this basis, it was concluded that, for the purpose of this study, the

adopted model was able to give reasonable estimates of the design flood peak.

Model application and evaluation

In applying the proposed Joint Probability Model for estimating design floods for the
test catchments, random rainfall events and loss data were first generated from the
frequency distribution of rainfall intensity, the probability distributions of rainfall
duration and initial loss, and the stochastic model of temporal patterns. Monte Carlo
simulation was then used to simulate flood event hiydrographs resulting from various
combinations of these design inputs, taking into account the relationships between them.
The derived flood frequency curve of peak flows was finally determined using a

frequency analysis for partial duration series.

To evaluate the proposed Joint Probability Modci, design floods estimated by the model
were compared with the estimates obtained from direct flood frequency analysis and the
Design Event Approach. For the La Trobe River catchment, it was evident that the
proposed model was abie to reduce the bias in the results of the Design Event Approach
by about 50%. It was also found that the generated flood frequency curve was close to
the upp... confidence limits for the curve derived from direct flood frequency analysis,
while the flood frequency curve determined by the Design Event Approach was far

above it, By contrast, for the Tarwin River catchment, the proposed model as well as
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the Design Event Approach underestimated the peak flood discharge. However, in this
case, the design flood estimates by these two methods were of similar magnitude and

very close to the lower confidence limits determined by direct flood frequency analysis.

To examine the effects on design flood estimates of likely errors in the stochastic and
fixed design inputs, sensitivity analyses were carried out. It was found that the design
rainfall intensity plays a criticai role in the estimation of design floods. Uncertainties in
estimates of the initial loss and the runoff routing mode} parameter k were found to have
important effects on the resuliing floods. Errors in estimates of the fixed design
continuing loss rate or the adopted baseflow had more influence on frequent floods than
rare floods. For the present application where the seasonal variations of other design
inputs were not considered, the neglect of the variation of the rainfall temporal pattern
with season, storm duration and depth was fcand to have little effect on design flood

peaks for the La Trobe River catchrnient.

In examining the stability of the design floods, results of a sensitivity analysis showed
that, for the specified sample size of 15000 eveuts spanning 2000 simulated years, the
peak discharge estimates were stable for floods of ARIs less than 100 years. Better
estimates of floods with ARIs of 100 years or more could be obtained by increasing the

generated flood sample or applying variance reduction techniques.

7.2 CONCLUSIONS

From the research conducted in this study, the following main conclusions can be

drawx;:

¢ [t is desirable to improve the currently used Design Event Approach for estimating
design floods from design rainfalls, as the limitations of this approach have lead to
considerable uncertainty and bias in design flood estimates, which have significant
economic impaéts on the design of hydraulic structures and floodplain management.

¢ The proposed Joint Probability Model is theoretically superior to the Design Event
Approach and easy to apply in practice. The model adopts the same rainfall-runoff

modelling elements as the Design Event Approach, but explicitly takes into account
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the variability of the design rainfall depth, duration, temporal pattemn, and initial
loss, and the relationships between them. Using the proposed model. the probability
of design {loods can be rigorously determined (within the bounds of uncertainty of
design inputs). Furthermore, the non-scientific basis of the critical storm duration
concept applied in the Design Event Approach can be avoided. In addition, being
closely related to the Design Event Approach, the proposed model can be applied
using some of the existing design data and expertise.

Applications of the proposed model to two gauged Victorian catchments showed
different results. Design flood estimates by the model are within the 90%
confidence intervals determined by direct flood frequency analysis for one
catchment, but outside the intervals for the other. Compared with the Design Event
Approach, the model performs better for one caichment but similarly for the other,
Further testing of the proposed model on a larger number of catchments is therefore
required to obtain firmer conclusions about its performance.

The flood peak discharge is strongly influenced by estimates of the design rainfall
intensity, as expected, and to a lesser extent, by estimates of the storm initial loss
and the runoff routing model parameter k. Therefore, in order to obtain reliable
design floods, it is crucial to obtain good estimates of the design rainfall intensity
for a catchment. Efforts should also be devoted to the modelling of the design
rainfall loss and the parameter estimation of the runoff routing model.

From the results of the model applicatton and sensitivity analyses, it can be
concluded that the proposed Joint Probability Model is practically workable. It can
be readily applied to gauged catchments with good pluviograph data and limited
streamflow record. For these catchments, it is feasible to derive the statistical
distributions of the random dasign inputs (rainfall intensity, duration, temporal
pattern, and initial loss) using observed rainfall and filow data.

The storm definition developed in this research has proved successful in modelling
the great degree of variability of real storm event characteristics. It represents a
greater portion of the actual rain than the currenily used storm bursts, and therefore
makes the modelling of storm loss easier. In addition, its parameters could aiso be
changed in order to represent the typical storms causing floods for a particular

catchment.
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o Of the issues involved in the modelling of variable desigr inputs, the model
representation of the rainfall temporal pattern required the greatest analysis and
development effort. Although temporal patterns were found to depend on season,
storm duration, and depth, with limited testing, it was concluded that design flood
estimates were relatively insensitive to the modelling of this dependence.

¢ Even though the proposed Joint Probability Model has conly been tested for the
design flood peak, the model could be applied to determine the frequency curves of
other hydrograph charactenistics such as flood volume or time to flood peak. It
could also be applied to determine the flood frequency curves for catchments with
artificial storage, in which initial reservoir storage content can be considered to be

an additional random variable.

7.3 RECOMMENDATIONS FOR FUTURE STUDIES

The proposed Joint Probability Model can be further improved in order to become a

practical design tool. In this development, the following aspects should be considered.

o Application of the model to a wider range of catchments: As the proposed model
has been applied to only two catchments, further testing of the model on a larger
number of catchments is considered essential. The catchments should be selected
such that they represent a wider range of flood hydrology characteristics (size, shape
and geographic location). In addition, they should have relatively long and
concurrent observed streamflow and pluviograph data, and large floods on record
(preferably with ARIs approaching 100 years). Application of the proposed model
to such catchments would allow better quantification of the model performance.

¢ Incorporation of a distributed runoff routing model: Clearly, the use of a simple,
lumped runoff routing mode! as adopted in this study is inadequate for design flood
estimation, especially for large catchments. This is because the lumped model
ignores the spatial variation of rainfall and loss charactenstics, and the distributed
nature of catchment storage. The use of a distributed runoff routing modet would
allow the above characteristics to be more realistically modelled and therefore

would lead to improved design flood estimates.
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Derivation of the IFD curves using a regional frequency analysis method: The
at-site frequency analysis procedure used to develop the IFD curves of storm events
defined in this study is inadequate, due to the shortness of rainfall record, especially
for the estimation of the average intensity for rare events. The use of a regional
frequency analysis method clearly could produce better IFD estimates, as the
shortness of record at the site of interest can be compensated by pooling data from
several sites. In this regard, the procedure developed by Hosking and Wallis (1997)
seems to be a promising method.

Investigation of an improved model to represent the rainfali initial loss: The
modelling of the storm initial Joss could be improved by the investigations of (i) an
altemnative distribution to represent the initial loss, and (ii) methods for taking into
account the dependence of the rainfall loss on season. With respect to (i), in this
study, it has been shown that the beta distribution adopted tc represent the initial
loss for the study catchment is not necessarily the best distnbution, and that
variations in the model representation of the initial loss have significant effects on
design floods. Therefore, it is clear that the examination and adoption of a better
statistical distribution for the initial loss would improve the performance of the
proposed Joint Probability Model for design flood estimation. With respect to (ii),
the variation of the rainfall loss with season i1s not considered in this research.
However, it is obvious that there is a strong correlation between the rainfali loss and
season, because infiltration and evaporation losses are higher in summer than in
winter. The incorporation of this relationship into the flood generation process
would better reflect the real interaction between rainfall and catchment conditions,
which should lead to improved design flood estimates. An example of an
investigation of the seasonal variation of the initial loss can be found in Hill et al.
(1996a). .

Investigation of a more detailed representation of the temporal pattern: The
stochastic model of the rainfall temporal pattern in this study could be improved in
the following two aspects. The first is the incorporation of the auto-correlation into
the adopted model. It has been shown in the present study that the multiplicative
cascade model adopted to represent the temporal pattern does not reproduce the
auto-correlation of rainfall intensity in successive time steps. This may lead to
underestimation of design flood estimates, as in reality, high rainfall tends to be

followed by high rainfall, and this would tend to produce large peak discharge.
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Thus, it is desirable to incorporate the auto-correlation of rainfall intensity into the
adopted stochastic model of the rainfall ternporal pattern. To achieve this objective,
the method recently developed by Seed et al. (1999) or the mode] proposed by
Garcia-Guzman and Aranda-Oliver (1993) could be used. The second is the
determination of the minimum number of ordinates necessary to adequately define
the temporal pattern of rainfall. In this study, the adopted stochasiic model of the
temporal pattern has been applied to generate random dimensionless rainfall
hyetographs defined at 8 equal increments of storm duration. The adopted number
of time increments may be adequate for short duration storms, but possibly
inadequate to represent the time distribution of rainfall intensity during the storm
duration of longer events, say, greater than 24 hours. In design flood estimation,
coarsely defined temporal pattems tend to smooth out the flood peak discharge.
Thus it is important to determine the minimum resolution of the temporal pattern in
order to correctly modef the design flood peak.

Stochastic treatment of the spatial variation of rainfall on a catchment scale:
As real rainfall events causing floods vary considerably in time and space,
modelling of the spatial variation of rainfall on the catchment scale is considered to
be necessary in flood estimation procedures, especially for medium to large
catchments. At the time of this study, this was difficult to achieve due 10 limited
number of rain gauges over catchments. Nevertheless, current development in
radar-based rainfail estimation is expected to make this objective feasible in the
future.

Application of the model to ungauged catchments: In this study, it has been
shown that the probability distributions of rainfall duration and temporal pattern can
be derived using regional data. Therefore, to apply the model to ungauged
catchments, future work is required in order to develop the probability distributions
of average rainfall intensity and initial loss using regional data. In this regacd,
regional design data for storm bursts provided by the Institution of Engineers,
Australia (1987) may be used to derive the IFD curves for complete storms. The
development of the statistical distribution of the storm initial loss could be carried
out using some results of a previous study (Hill et al., 1996a).

Uncertainty analysis: The derived flood frequency curve estimated by the
propused Joint Probability Model reflects the variability of key design inputs

(rainfall intensity, duration, temporal pattern, and initial loss), but not the
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uncertainties in model selection or parameter estimation. It is therefore desirable to
examine the uncertainty of design floods as the result of the uncertainties in design
inputs. For example, a Bayes;ian framework could be used to quantify the
uncertainty involved in parameter estimation (Kuczera, 1983a,b), or Monte Cario
simuiation could be applied to derive the confidence jimits of the flood outputs
(Bates and Townley, 1988). It is also worth noting that, so far, the sensitivity
analyses conducted in this study have been limited to examining the individual
‘impacts on design flood estimates of input or parameter uncertainty. Further work
on combined effects of the uncertainties in these factors is thus needed to get a
better understanding of their interactions and compensating effects in design flood

estirnation.
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Appendix A

JOINT PROBABILITY APPROACH:
STATISTICAL BASIS

This appendix introduces some basic statistical concepts relevant to the Joint Probability
Approach, along with the theoretical background of the joint probability distribution of
random variables. The material presented below is summarised from Benjamin and
Corneil (1970), and Walpole and Meyers (1993).

A.1 SOME IMPORTANT STATISTICAL CONCEPTS

The concepts of probability of intersection, probability of union, and the Theorem of

Total Probability are discussed below.

A.1.1 Probability of intersection

The interseciion of two events A and B;, denoted as AN B,, is the event that contains
all elements common to A and B;. Its joint probability is determined by:

prob(A m B, } = prob{A|B, )prob(B;) (A-1)
where prob(A|B,), called the conditional probability of event A given B;, is the

probability of occurrence of the event A on the condition that the event B; has occurred.
Conditional probability is a concept of great practical importance. It provides the
capability to re-evaluate the probability of an event using additional information
(Walpole and Meyers, [993).

If the occurrence of event B; has no impact on the occurrence of event A, that is if:
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prob(A|B,) = prob(A) (A-2)
then A and B; are independent events. The concept of statistical independence plays a
vital role in all areas of statistical applications. From a practical viewpaint, the analysis
of many statistical models may become very complicated if the assumption of

independence of certain random variables is not accepted in certain key situations
(Benjamin and Cornell, 1970).

N S S

For the case of independent events, Equation (A-1) becomes:

nrob(A M B,) = prob(A)prob(B,) | (A-3)

A.1.2 Probability of union

The union of two events A and B, denoted as A B, is the event that occurs if either A

or B or both occur. Its probability is computed by:

prob(A U B) = prob(A) + prob(B) — prob(A N B) (A-4)

A.1.3 Theorem of Total Probability

If B; (i varies from | to n, where n is a positive integer) represents a set of events which

satisfics the following two conditions:

/
§ e the events are mutually exclusive, that is, prob(B, U B,U...uUB )= prob(B,) +
prob(B,) +...+ prob(B,), and
ﬂ » the events are collectively exhaustive, that is, prob (B, U B,U..UB, ) =1,

then the probability of another event A can be determined using the Theorem of Total
Probability (Figure A-1):

prob(A) = Y. prob(A|B,)prob(B,) (A-5)

i=1

This equation indicates that the probability of event A is the sum of the joint
probabilities of A and B; for all possible B; values. Thus, the Theorem of Total
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Probability allows the calculation of the unconditional probability of an event from a set
of its conditional probabilities. It is considered as one of the workhorses in probability

applications (Kuczera, 1994).

B
B] Bz / 3

Figure A-1: Venn diagram for the Theorem of Total Probability

The Theorem of Total Probability, expressed in one dimension (B) by Equation (A-5)
can also be expanded to two or more dimensions. For example, in three dimensions B,
C, D, the theorem can be written for discrete distributions as follows (McCloud,

Personal communication, 1996):

prob(A) = ¥ ¥, 3, prob(AlB,,C,,D, )prob(B, nC, N D,) (A-6)

i=] k=) x=)

If B, Cy, Dy are independent events, Equation {A-6) becomes:

n m

prob(A) = 3, ¥, 3 prob(A|B,,C,,D, )prob(B, )prob(C, )prob(D, ) (A-T)

i=l k=1 x=1

In applying the theorem to the calculation of the probability of design floods,

explanations for the terms invelved in the above formula are as follows:

» prob{A) is the unconditional probability of a flood (to be exceeded in any given
year),

¢ prob(A|B;) is the conditional probability of a flood given an input B; that occurs at
the same time as A, not just in the same year,

¢ prob(B;) is the probability of obtaining a value of B; for the input B, and

-¢ B, C, D are design random variables, for example, the storm duration, temporal

pattern, or loss.
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A.2 JOINT PROBABILITY DISTRIBUTION OF RANDOM VARIABLES

A random variable is a function defined on a sample space. There are two types of
random variables: discrete or continuous. A discrete random variable is a random
variable that can assume a finite set of values. By contrast, a continuous random

variabie is a random variable that can assume an infinite set of values.

When two or more random variables are considered simultaneously, their joint
behaviour is determined by a joint probability distribution. For discrete random
variables, this joint probability distribution is called the joint probability mass function,
and for continuous random variables, the joint probability density function. For
generality, the section below presents the theoretical background of the joint probability
distribution of continuous random variables. The joint probability behaviour of discrete

random variables can be studied in standard statistical textbooks.

A.2.1 Joint probability density function

Consider two random variables X and Y. The joint probability that X lies between x,

and x3, and Y between y, and y; is given by:

Xa¥2

probl(x, < x < x,)and(y, S y S y,)]= | [py.y(x y)dydx (A-8)

%1 ¥

where px y(X,y) is the joint probability density function.

The joint cumulative distribution function Fxy(X,y), which represents the joint

probability that X is less than or equal x and Y is less than or equal vy, is defined as:

x ¥
Fey(x.y) = prob[(X < x) and(Y £ y)]= | [pyy(x,y)dydx (A-9)

—ty -t

The relationship between px y(x,y} and Fx y(x,y) is as follows:

-

axdy

Pxy(X,¥)= E (X y) (A-10)

ey s
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A.2.2 Marginal distributions

The marginal distributions may be used to describe the behaviour of one of a pair of
random variables, regardless of the value of the second random variable. For example,
the marginal density function of X, px(x), is obtained by integrating px y(x,y) over all

possible values of Y.

px(x)= Ipx.y (x,y)dy (A-11)

A.2,3 Conditional distributions

The distribution of one variable with restrictions or conditions placed on the second
variable is called a conditional distribution. For example, the conditional density

function of X when Y is given is defined by:

Py (x| yy = e (A-12)
Py (¥)

A.2.4 Independence of random variables

Two random variables X and Y are independent if the conditional density function

equals the marginal density function, that is:

Pxiy (X | ¥} = px(x) (A-13)

In this case, the joint probability density function of X and Y is the product of their

marginal density distributions.

Py (X, ¥) =P (OPL () (A-14)
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Appendix B

PREVIOUS STUDIES OF THE JOINT PROBABILITY
APPROACH TO DESIGN FLOOD ESTIMATION

This appendix presents a2 summary of previous studies of the Joint Probability Approach
to the estimation of design floods from design rainfalls.

The appendix consists of three tables. Tables B-1, B-2 and B-3 document previous
studies that use analytical methods, approximate numerical methods, and Monte Carlo
simulation for determining the flood probability distribution, respectively. For each
study, the models used to represent the design rainfall, runoff production and runoff
routing processes are described. Characteristics of each study, together with the results

obtained are also summarised.
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Table B-1: Studies based on anatytical methods

Authors Rainfall models | Runoff production | Runoff routing Characterisiics of the studies and results

models madels

Eagleson - rainfall - constant loss rate | kinematic wave - The method was developed for a catchment of V-shape.

(1972) intensity and - partial area theory - Rainfall intensity and duration were assumed to be independent random variables.
duration: concept - The form of the flood frequency curve was influenced by catchment and rainfall
exponentiat parameters.
distributions - Flood peaks were overestimated because the kinematic wave equation omitted the
- uniform attenuation of flows.
temporal patterns - A significant improvement of the method could be made by removing the assumption

of independence of stochastic inputs.

Woaod (1976) Eagleson’s infiltration rate kinematic wave - Rainfall intensity, duration, and loss rate were assumed to be independent randoim
(1972) rainfall (represented by theory variables.
model ' different - Infiltration rate was characterised by uniform, exponential, or Gamma | distribution.

distributions) - Serious design problems may arise due to parameter uncertainty. For example, the
use of a point estimate for the rainfall loss rate underestimated the exceedance
probability of a given peak discharge.

Hebson and Eagleson’s - conslant geomorphologic unit | - The GUH is a linear rainfall-runoff model developed from considerations of physical

Wood (1982) (1972) rainfall infiltration capacity | hydrograph (GUH) properties of catchment and drainage networks.
model - partial area - In studying flood frequency behaviour, the GUH appeared to be theoretically more

concepl svitable than the kinematic wave method.
- Catchment shape plays an important role in flood frequency behaviour.

Diaz-Granados | Eagleson’s Philip’s infiltration  } geomorphoclimatic - The GeUH, developed by Rodriguez-liurbe et al. (1982), is a modified version of the

et al. (1984) (1972) rainfall equation unit hydrograph GUH in that it incorporates climate and catchment geomorphology in rainfall-runoff
model {GcUH) behaviour.

- The flood frequency distribution derived was a function of initial soil moisture.
- The mode! did not perform well in humid regions, possibly because soil moisture may
play an important role in estimating rare events.

vEgr
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Wood and - storm intensity: | - Hortopian runoff | dimensionless - Random variables (rainfall intensity and duration) were assumed to be independent.
Hebson (1986) | gamma * generation process | geomorphologic unit | - The dimensionless flood frequency curve was derived from dimensionless aveal
distribution hydrograph rainfalt to improve understanding of hydrologic similarity among basin responses and
- storm duration: their influence on flood frequency characteristics.
exponential
distribution
Moughamian et - Examined performance of the methods recommended by Hebson and Wood (1982)
al. (1987) and Diaz-Granados et ai. (1984).
- Both methods performed poorly on 3 test basins.
- Significant errors in derived flood frequency curves could have resulted from small
variations in parameters of the rainfall and loss models.
- Eagleson's rainfall model (Eagleson, 1972} did not include any information about the
nature of farge storms which were responsible for large floods.
- The catchment response models used were probably not sufficiently general to
describe runoff generation over a wide range of events,
- Tt was recommended that further research should investigate rainfall models that put
mor¢ emphasis on large storms, and identify qualitative differences in runoff
mechanisms influencing floods of different sizes.
Haan and storm intensity: | SCS Curve Number - Rainfall volume and maximum abstraction from rainfall were assumed to be
Edwards (1988) | Extreme Value method (Soil independent random variables.
type | Conservation - For the 7 test catchments and for a given return period, the proposed approach always
distribution Service, 1972) gave flood volume estimates higher than the current event method. However, the
estimates tended to converge for Jow return periods.
Sivapalan et al. | - scaled rainfall - infiltrativn mode! | generalised GUH - The generalised GUH is a modified version of the GUH that includes partial area

(1990)

intensity: gamma
distribution
- scaled duration:
exponential
distribution

- partial runoff
generation process

runoff generation by both Hortonian and Dunne mechanisms.

- The flood frequency model was theoretically developed but Monte Carlo simulation
was used to numerically evaluate the derived dimensionless cumulative distribution
function of flood peaks.

- Sensitivity analysis showed that the flood frequency curve was strongly influenced by
the runoff generation process, the scale of catchments and storms. The flood frequency
curve seemed to be the result of mixed runoff production mechanisms, each governing
the shape of the curve at a particular range of return periods.

- Tests of the method on actual catchments were needed,




Appendix B

233

Shen et al. Eagleson’s Philip's infiltration | kinematic wave - The flood frequency distribution was analytically derived, but numerical integration
(1990) (1972) rainfall equation theory was used to practically solve the derived distribution.
model - For the 4 conirived basins used in the study, it was shown that floods of a given
frequency were strongly influenced by soil types and initial soil moisture used in the
infiltration model. An accurate estimation of soil properties seemed to be extremely
important,
- The rainfail-runoff mode! used in deriving the flood frequency curve was developed
for smail basins having some specified physical characteristics.
Cadavid et al. Eagleson’s Philip's infiltration | kinematic wave - The method was derived for catchments conceptualised as two symmetric planes
(1991) (1972} rainfall equation theory discharging into first order streams.
model - The derived and observed peak flow distributions deviated appreciably for high
events, possibly due to differences in the precipitation process controlling flood
formation, and sampling errors in high flood values.
- Inaccuracy in the estimation of rainfall parameters, especially the mean intensity,
appeared to have @ major impact on results.
Raines and Eagleson’s SCS Curve Number | geomorphoclimatic - There was a wide variation in the flood frequency curves derived for 4 test
Valdes (1993) (1972) rainfali rmethod (Soil unit hydrograph catchments when compared the results obtained from the propased approach with those

model

Conservation
Service, 1972)

(GcUH)

obtained from the methods developed by Hebson and Wood (1982), and Diaz-
Granados el al, (1984). i

- The magnilude and slope of the derived flood frequency curve seemed to be stronply
influenced by the estirmation of rainfalt paraineters, and the loss model used.

Sivapalan et al. | - IFD curves runoff coefficient instantaneous unit - Periods of zero rainfail exceeding two hours were used to separale individual rainfall
{1996) {Gumbel hydrograph (IUH) events.
distribution) based on 3 parallel - The joint probability distribution of rainfall intensity and duration was approximated
- storm duration linear storages by multiplying the burst IFD curves with the marginal distribution of storm duration.
(Weibull - The study aimed at identifying the processes that control the shape of the flood
distribution) frequency curve. Results indicated that this shape was influenced by the rainfall

temporal pattern and multiple storms, and the non-linear dependence of runoff
coefficient on rainfall depth.

- It was demonstrated that peak runoff was not affected by rainfail temporal patierns for
catchments with response time large compared to storm duration.
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Table B-2: Studies based on approximate numerical methods

Authors

Rainfall models

Runoff production
models

Rumnoff routing
modeis

Characteristics of the studies and results

Laurenson
(1974)

Not applicable

Not applicable

Not applicable

- Laurenson {1974) proposed a method of modelling systems that contain both
stochastic and deterministic components, This ig achieved by dividing the system into
a sequence of steps, each step transforms an input distribution into an output
distribution, which becomes the input to the next step. The probability of the output at
each step can be calculated from the Theorem of ‘Fotal Probability using the input
distribution and a transition probability that reflects the deterministic components of
the systern.

- In general, the method offers a wide range of application in hydrology when the
stochastic-deterministic nature of the problem needs to be accounted for (Laurenson,
1973; Laurenson, 1974; Ahern and Weinmann, 1982), For example, in extreme flood
estimation, the method was applied to compute the frequency of extreme precipitation
from the joint distribution of the convergence component of rainfall and dew point
(Lavrenson and Pearse, 1991),

Beran {1973)

IFD curves

infiltration loss

unit hydrograph

- Rainfall depth, duration, temporal pattern, and catchment wetness index were
assumed to be independent random variables.

- A storm definition was used to allow any wet spell to conlribute a single value to the
distributions of depth and duration. However, due to insufficient rainfall record for the
development of the statistical distribution of storm depth, existing IFD curves, which
were derived from a different storm definition, were used to represent storm depth.

- The distribution of storm temporal patterns was described by Huff curves (Huff,
1967).

- Given a specific combination of inputs, the probability of the resulting flood was the
product of the probabilities of input variables. The flood distribution was then
established by summing probabilities in each discharge interval.

- The storm losses and rainfall depth are identified as the most important factors
affecting the flood magnitude.

- The derived {flood frequeacy curve was flatter than the observed one, possibly
because of the discrepancy between the storm definitions used.
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Hughes (1977) | IFD curves SCS Curve Number - The frequency curves of peak discharge and runoff volume were developed using the
method (Soil Theorem of Total Frobability.
Conservation - Loss rales, characterised by curve numbers, were represented by statistical
Service, 1972) distributions.
- The proposed method produced acceptable results in a test catchment. Nevertheless a
complete verification of the procedure was recommended.
Goyen (1983) IFD curves Stochastic RAFTS model - Rainfall and antecedent soil moisture were assumed to be independent random
Deterministic Loss variables,
Modet (SDLM) - The SDLM is a loss model which combines the stochastic nature of rainfall and
based on the antecedent moisture index through the deterministic infiltration component of (the
ARBM model Australian Representative Basins Model (ARBM) (Chapman, 1968).
- The distribution of antecedeat moisture index was determined from the water balance
described by the ARBM and the Philip infiliration equation.
- Laurenson’s stochastic-deterministic modelling approach (Laurenson, 1974}, which
makes use of the Theorem of Totat Probability, was employed to determine the
probability distribution of flood peaks.
- The recommended method gave satisfactory results for an urban catchmenit.
Fontaine and stochastic rainfalf | SCS Curve Number | HEC-1, based or: the | - The discrete probability distribution of antecedent soil moisture was represented by
Potter (1993) mode! developed | method (Soil unit hydrograph three curve numbers.
by storm Conservation theory - The Theorem of Total Probability was used to calculate the exceedance probability of
transposition Service, 1972) floods from all significant combinations of rainfail and soil moisture conditions.
method - The method can only be applied to certain types of sites where data about soil
moisture, land use, and soil types are sufficient to develop the distribution of
antecedent moisture.
Consuegra et IFD curves improved SCS unit hydrograph - Rainfall depth and antecedent precipitation index (API) were considered as
al. (1993) Curve Number independent random variables.
method (Rowney, - The method computed flood return periods from the joint probability of occurrence of
1985, rainfall and APL

- In applying the method 10 a watershed, the results obtained compared fairly welt with
those computed using continuous simulation.
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Table B-3: Studies based on Monte Carlo simulation

Authors Rainfall models | Runoff production | Runoff routing Characteristics of the studies and results
models models
Beven {1987) - Eagieson's TOPMODEL TOPMODEL - Rainfall intensity and duration were assumed to be independent variables, but the
€1972) rainfall correlation of initial soil moisture deficit and discharge was considered.
model - The temporal pattern of rainfall was considered as a random variable by adding a
- simulated storm random component to the mean rainfail profile for each hour of rain. The random
temporal patterns component was assumed to be a first order Markov process with mean, standard
deviation, and lag one auto-correlation determined from observed data.
- Soil moisture deficit was described by an exponential distribution.
- The TOPMODEL is a runoff production and routing model that considers catchiment
geomorphology and the contributions of surface and sub-surface runoff to flood flows.
Model parameters should be determined from soil profile conductivity, soil water storage,
or time varying infiltration rate, etc,
- The procedure satisfactorily simulated hourly mean flow for a catchment, however,
further improvements of the mode! were supgested.
Muzik (1993) ] rainfall depth modified SCS unit hydrograph - The modified SCS Corve Number method considers the stochastic nature of initial
described by the | Curve Number abstraction (I,), 5-day antecedent rainfail (P35}, and maximum potential soil moisture
Gumbel method storage (S},
distribution - The dependence of S and P53 was considered.
- Monte Carle simulation was used to generate peak discharge from randomly chosen
values of rainfall depth and parameters of the SCS Curve Number model.
- Compared with the LPIII plotted for recorded floods at the test catchment, there was a
significant difference in the tail of the derived flood frequency curve,
Bioeschl and - IFD curves linear reservoir - Rainfall probability was drawn from a uniform distribution.
Sivapalan - storm duration routing method - Monie Carlo simulation was used to calculate peak flows from rainfall depths and
(1997 (exponential randomly selected storm durations.

distribution)
- uniform storm
temporal patterns

- It was shown that the assumption of equality of rainfall and flood return periods caused
significant errors in the estimated flood. For the test caichment, the current event-based
method underestimated flood return periods by a factor of at feast 2, but this factor may
be as large as 10.
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Franchini et al.
(1996)

extremne rainfall
developed by the
stochastic storm
transposition
method

ARNO model

ARNO model

- Temporal paticrns and initial soil moisture were assumed to be independent random
variables.

- ARNO is a 14-parameter rainfall-runoff model representing 2 components: a soil-level
water balance and a transfer (routing) component.

- Huff curves (Liuff, 1967) were used to statistically describe the temporal distribution of
storims,

- To account for the stochastic nature of moisture conditions, the analysis was repeated
for a range of fixed antecedent moisture conditions.

- It was demonstrated that, for a given storm depth: (i) the variability of flood pezks was
produced from the variability of the temporal distribution of storm depths and initial s0il
moisture conditions, and (ii) the frequencies of the design storm depth and flood peak
were unequal, especially for very wet antecedent moisture conditions.

Loukas et al. - rainfall depth: infiltration rate linear routing model | - A triangular distribution was used to statistically modei the dimensionless cumulative
(1996) EVI disteibution rainfall depth.
- rainfall - Infiltration loss is a constant for each event and normally distributed from event to

duration: 24-hour
- rainfal}
temnporat
patterns:
triangular
distribution

event.
- Storage fuctor of fast runoff is normally distributed, and can be computed from.
catchment geomorphology.

- Monte Carlo simulation was used to generate 5000 estimates of runoff hydrograph
characieristics (peak hourly, daily discharge, peak flood volume).

- Compared with observed data from eight coastal British Columbia basins, the simulated
peak hourly and peak daily flows were not significantly different from the observed ones
at 5% level, but the simulated flood volume was.

-Sensitivity analysis showed that: {i) of the three hydrograph characieristics investigated,
hourly peakflow was most sensitive to the variation of rainfall depths and parameter
values, and distributional types of storage faclor, and {ii) overall, the procedure was nol
very sensitive to uncertainties in the values and form of model parameters.
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LOSS MODELS

C.1 INTRODUCTION

In rainfali-based design flood estimation, specifying losses from a design rainfall is a
recurring issue faced by many hydrologists. With the commonly used Design Event
Approach, the design loss is often adopted as a representative value of a recommended
range. As the resulting design flood estimate is very sensitive to the adopted value of
the rainfall Joss, the uncertainty in the correct rainfall loss for use in a design situation

constitutes one of the major drawbacks of the Design Event Approach.

To account for the fact that the rainfall loss can take on a range of values depending on
the actual condition of the caichment at the time of a rainfall evem, the rainfall loss
should be represented by a probability distribution. This is cne of the aims of the
proposed Joint Probability Model for rainfali-based design flood estimation, in which
the probabilistic nature of flood causing components is considered. To provide the
theoretical background of the development of the probability distribution of the rainfall
loss, this appendix introduces elementary loss concepts and models for computing

losses from rainfall.

C.2 ELEMENTARY LOSS CONCEPTS

Before being able to evaluate different models for computing rainfali losses, some
important loss concepts need to be clarified. These include (i) loss definitions, and (i)
runoff generation processes. Item (i) plays an important role in loss modelling because

the way the rainfall loss is defined determines its estimated value and therefore affects
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the resuiting design flood. Item (ii) provides a-basis for the evaluation and selection of

an appropriate loss model for this research.

C.2.1 Loss definitions

I hydrology, the term “loss”™ can bz roughly defined as the difference between rainfall
and runoff. This leads to two possible loss definitions, depending on the type of runoff
being referred to. Figure C-1 shows two runoff types together with the components of

rainfall and runoff.

Y. ¥ ¥ ¥
ﬁmerccption] LDcprcssion storagc] [Inﬁltmion] ISnrfacc runoﬂ'}—
1

¥
[Water retained in soil] &oundwatcr ﬂow] [lmcrﬂoﬂ v
J

Baseflow

Figure C-1: Components of rainfall and runoff

The first definition relates the loss to the portion of rainfall that does not come out as
rotal runoff. The rainfall loss thus comprises the interception loss, depression storage,
and only the part of infiliration that replenishes soil moisture deficiencies (see Figure
C-1). Baseflow is not considered as loss, but added to the surface runoff to produce the
total runoff. Depending on the size of the drainage area, the release of baseflow into
‘streamflow may occur within days after the storm event, or more often in months or
years (Viessman et al., 1989). This definition of loss is used when long time steps are
considered in flood estimation, therefore baseflow has enough time to reach the stream
channel. This is relevant to yield hydrology where the movement and transfer of water
from the atmosphere to the land and back to the atmosphere are usually accounted for
on a monthly or annual basis. It is noted that, over a long period of time, the above loss
components are eventually the evapo-transpiration transferred from the catchment into

the atmosphere (and possibly ground water outflows other than to streams).
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The second definition relates the loss to the difference between the rainfall and surface
runoff (also called direct runoff). From Figure C-1, it can be seen that baseflow is also
a loss component. This is true for short time intervals such as the duration of a storm, in
which case the baseflow has insufficient time to reach the stream channel as it usually
has a long response time. This definition of the rainfall loss is applied to flood
hydrology and adopted in this research. In this case, due to the use of short time

periods, evapo-transpiration is neglected during storms.

C.2.2 Runoff generation processes

There are three recognised runoff mechanisms, namely, Hortonian overland flow,
saturated overland flow, and interflow. An outline of these mechanisms, summarised
from the Institution of Engineers, Australia (1987, Chapter 6) and Viessman et al.

(1989), is given below.,

€221 Hortonian overland flow

The Hortonian runoff mechanism is the classical concept of storm runoff generation.
This mechanism assumes that surface rnoff occurs on the ground surface when rainfall
intensity exceeds infiltration capacity. As infiltration capacity varies from point to point
(depending on antecedent rainfall, soil characteristics, or vegetal cover), in theory,
Hortonian runoff is not uniform over the catchment. However, in practice, it is often
assumed that infiltration capacity, rainfall and, consequently, runoff are spatially

uniform.

Hortonian overiand flow is likely to occur on impervious surfaces in urban catchments,
or in rural catichments with soil layers of low inciltration capacity, as in arid or semi-arid
regions (Chow et al., 1988). It is also assumed to be the result of heavy storms because

in these cases runoff tends to occur over the entire caichment.
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C.2.2.2 Saturated overland flow

The saturated overland flow concept postulates that surface runoff occurs when
precipitation falls onto a soil saturated from below, due to the rise of a shallow water
table, or the build up of a saturated zone above a soil layer of low hydraulic
conductivity. Due to the spatial variability in the soil structure and in the depth to the
water table, it is likely that the saturated surface may net cover the entire catchment.
This leads to the ‘source area’ (also called ‘partial are.’) concept in runoff generation,
which assumes that the overland flow occurs only on saturated parts of the catchment.
These source areas vary during the storm and in different seasons, deperding on

antecedent conditions and storm rainfall (Linsley et al., 1988).

Saturated overland flow is dominant in a number of cases, for example, in regions with
high water tables, at the bottom of slopes or near stream banks where the soil surface is
likely to be saturated by underlying water, or in areas with thin soil layers overlying

relatively impervious strata.

C.2.2.3 Interflow

Interflow (or through flow) is the part of infiltrated water that moves horizontally in a
temporarily saturated zone, often above a nearly impervious soil stratum, to reach a
stream channel relatively quickly. It is commonly considered as a component of surface

runoff because it rapidly contributes to streamflow during the duration of a storm.

Interflow most often occurs in areas having a shallow and highly permeable surface soil

layer lying above an impermeable base.

C.3 LOSS MODELS

Many models are available for estimating the rainfall loss. A description of these

models is presented by the Natural Environment Research Council (1975), the
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Institution of Engineers, Australia (1987, Chapter 6), and Nandakumar et al. (1994). In
general, these loss models can be classified as infiltration models and practical loss

models. A brief review of both types of models is presented in the following section.

C.3.1 Infiltration models

Inhitration is generally the most important component of the rainfall loss. It is the
process by which water passes through the soil surface into the soil. This process is
dependent on many factors such as soil type, soil characteristics, land cover, or rainfall

intensity.

There are innumerable models for computing the infiliration loss from rainfall, resulting
in various infiltration equations (Viessman et al., 1989; Rawls et al., 1993; Nandakumar
et al., 1994). These equations can be classified as theoretical 2quations and empirical

equations. An introduction to these equations is given below.

C.3.1.1 Theoretical equations

The theoretical infiltration equations are analytically derived to describe the movement
of water in porous media. The basis of these equations 15 Darcy’s Law (Rawls et al.,
1993) which calculates flow velocity through a saturated porous medium. This equation
was then modified in order to reflect the real sitvation in which water flows in
unsaturated soils, and combined with the law of conservation of mass o become the
Richard equation. This is a general infiltration equation describing three-dimensional
flow in unsaturated soils as a function of time. Finding an analytical solution to this
equation is computationally demanding and so far the equation is still considered

impractical for routine applications (Nandakumar et al., 1994).

Other well-known physically based infiltration equations include the Philip model
(Philip, 1969) and the Green-Ampt mode! (Green and Ampt, 1911), the latter being
modified by Mein and Larson (1971) to calculate the infiltration capacity for different

rainfall and surface conditions. The Phillip equation is introduced in more detail here
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because it was applied to derive the probability distribution of antecedent soil moisture
for estimating design floods (Goyen, 1983). This equation, developed for vertical
infiltration into nonlayered homogeneous soils with a constant initial moisture content,

takes the following form:

1 - L]
ORSX KA (C-1)

where q(t) is the infiltration rate at time t; S, is sorptivity, dependent on initial moisture
content and water depth in soil; and A" is a constant, assumed to equal the saturated

hydraulic conductivity. Both S, and A" can be estimated using observed data.

C.3.1.2 Empirical equations

Empirical equations are developed from observations of field experiments to describe
and formulate the infiltration process. In these equations, the infiltration rate is
generally a function of time, antecedent soil moisture and some soil properties. The
earliest empirical infiltration model was proposed by Horton (1935). In this model,
infiltration capacity starts with an initial value, decays with time according to an
exponential function, and reaches a final constant rate when the soil is saturated. Some
other popular infiltration models are the Huggins-Monke model or the Holtan model, an

introduction of which is presenied by Viessman et al. (1989).

One common feature of these models is that they enable the infiltration loss to be
estimated at a point, and that their model parameters should be estimated from observed
data. However, as mentioned before, infiltration rates vary from point to point due to
many factors such as rainfall intensity, soil characieristics, vegetation cover, and
topography. As a result, a number of methods have been proposed to account for the
spatial variability of infiltration rates. A review of these methods and their applications

in nmoff estimation is given by Nandakumar et al. (1994).

In general, the use of infiltration models for computing the rainfall loss from a storm
event can be considered as inappropriate for three reasons. Firstly, they neglect the
storm losses due to interception and detention storage. These forms of losses follow

different laws from infiltration, and may be significant under certain circumstances. For
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instance, the interception may be a considerable portion of rainfall in regions with dense
vegetation, or the depression loss may be significant for deep storage (Linsley et al.,
1988). Secondly, infiltration in itself may not be entirely a loss in that a part of it, the
interflow, actually contributes to streamflow. This is true for areas where the interflow
runoff mechanism applies. Finally, it may be difficult to determine the coefficients or

parameters of some infiltration equations due to the lack of observed data.

C.3.2 Practical loss models

Practical loss models are commonly used in place of infiltration equations because they
are conceptually simpler. In essence, these are lumped models because they ignore the
spatial variation of the loss during the duration of a rainfall event. Practical loss models
can be classified as loss rate models, proportional loss models, initial loss — continuing
(or proportional) loss models, and the SCS Curve Number method. A summary of these

models is given below.

C.3.2.1 Loss rate models

The loss rate models can be subdivided into the constant loss rate model and the

variable loss rate model.

The constant loss rate model

The constant loss rate model (also called the ¢ index) is the simplest loss model in
which the total loss from rainfall is averaged throughout the rainfall event. The constant
loss rate is the rate which equates the volume of rainfall excess (from the rainfall
hyetograph) to the surface runoff volume (from the flood hydrograph over the
catchment), both of which are measured in the same units. A variation of this model is
the ' W index, which is the ¢ index minus the average rate of retention by interception

and depression storage (Linsley et al., 1988).
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The constant loss rate model is suitable for large storms on initially wet catchments, in
cases where the Hortonian runoff is dominant, or where the infiltration rate may be
assumed constant (Viessman et al., 1989). It is also applicable to storms of long
duration, in which cases the time distribution of infiltration may not be very important
(Bras, 1990).

The constant loss rate model has many characteristics. It is a simple model with only
one parameter. It considers all forms of rainfall losses (including interception, detention
storage, and all components of infiltration) regardless of whether it contributes to
groundwater flow or interflow, then averages them over the catchment area and
throughout the supply period. In addition, it is event dependent, that is, the loss rate

derived for one storm is not applicable to another storm.

Traditionally, the event-dependent characteristic of the constant loss rate model is often
considered as the main disadvantage of this model. Viessman et al, (1989) argued that
unless the constant loss rate is comelated with basin parameters other than runoff, it is of
little value. Nevertheless, for cases where the rainfall loss is considered as a random
variable, the constant loss rate model may offer the simplest means to derive the

probability distribution of the rainfall loss.

The variable loss ratc model

The variable loss rate model, originally introduced by the Natural Environment
Research Council (1975), describes the rainfail loss as a curve that decreases as the rain
progresses and increases during periods of no rain. The loss rate is thus a random
variable inversely related to soil moisture conditions antecedent to and during a storm
event. The soil moisture is represented by a catchment wetness index (Natural
Environment Research Council, 1975) determined from soil moisture deficit (that is, the
amount of water needed to bring the soil to field capacity) and a five day antecedent
precipitation index of the accounfing period. The latier is the most widely used

moisture index that relates the moisture status of the basin directly to rainfall.

The variable loss rate model has many characteristics. For example, it is a complex,
multivariate model. It is also a realistic model because it distributes the loss according

to the changing moisture condition of the catchment. In addition, the loss rate
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computed is dependent on rainfall intensity.

Broadly speaking, the variable loss rate model is more appropriate for flood forecasting
than for design flood estimation. This is due to the fact that the variable rate of rainfall
loss is estimated from updated catchment wetness at the start of each calculation period.

This type of information 1s often available in flood forecasting,.

C.3.2.2 Proportional Joss models

Like the case of loss rate models, proportional loss models can be subdivided into

constant and variable proportional loss models.

Constant proportional loss model
The constant proportional loss model is equivalent to the runoff coefficient concept
because the loss (and therefore runoff) is a fixed proportion of the rainfail rate. In other

words, rainfall excess always occurs regardless of the rainfall intensity.

The proportional loss model is best applicd to cases where runoff is generated from
source areas. An example is urban catchments where the tmpervious area is often a
constant fraction of the total catchment area. In this case, it is assumed that one hundred
percent nmoff is produced from the impervious areas and none from the pervious areas.
Therefore, even when a very light rain occurs, rainfall excess is always generated from
the impervious parts of the catchment. This loss model can also be applied to forested

rural catchments (Flavell and Belstead, 1986).

The variable proportional less model
Adopting the variable source area concept, the variable proportional loss model assumes
‘that as the rain progresses, a greater portion of rainfall contributes to runoff because a

greater portion of the catchment becomes saturated.

Many methods have been suggested for computing the variable proportional loss, a
summary of which is presented by Siriwardena and Mein (1993). For example, a

regional model that relates the variable proportional loss to the antecedent wetness
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index, storm rainfall, and catchment characteristics is proposed by the Natural
Environment Research Council (1975). In another method, the size and location of
catchment source areas, expanded during the storm, are predicted as a function of pre-
storm baseflow and rainfall depth (Mein and O’Loughlin, 1991). This approach is then
further developed by Sinwardena and Mein (1995), the results of which indicate that the
variable proportional loss can be described by a family of curves called the saturation
curves. The accuracy in the estimation of these saturation curves is dependent on the

estimation of the volumetric runoff coefficient.

Even though the above proportional loss models provide relatively satisfactory results,
the main restriction of these models is that they have solely been investigated for flood

forecasting purposes.

C.3.2.3 The initial loss — continuing loss model

The intial loss — continuing loss model (IL-CL) assumes that there is no surface runoff
until an initial loss is satisfied. A continuing loss then occurs during the remaining
storm duration. The ini.ial loss consists of interception, depression storage and initial
infiltration, and the continuing loss can be expressed as a rate or as a proportion of
rainfall. The continuing loss rate may be a constant or a variable rate, and so is the
proportional continuing loss. In Australia, the initial loss ~ constant contirreing loss rate
model is most commonly used due to its simplicity and its ability to approximate the

actual loss process (Hill et al., 1996a).

The IL-CL model is appropriate where runoff is generated by the Hortonian process. In
this case, it is noted that the continuing loss rate determined for large floods is fairly
independent of catchment conditions (Cordery and Pilgrim, 1983; Institution of

Engineers, Australia, 1987, Chapter 6).

~

C.3.2.4 The SCS Curve Number method

Another popular method for directly computing runoff (and thus relevant for the
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estimation of storm losses) is the SCS Curve Number method (Soil Conservation
Service, 1972; US Department of Agriculture, 1986). This empirical procedurc was
originally developed for the estimation of peakflows and runoff volumes for small

agricultural catchments, then extended for the estimation of complete hydrographs.

The SCS runoff equation is as follows:

(P-~1,)*

(P-1)+8" (€2

Q=

where: Q is runoff; P is rainfall; $” is the maximum retention after runoff begins; and I,

is init1al abstraction, all expressed in units of depth (inches).

For the case 1, = 0.2S", Equation (C-2) becomes:

_(P- 0.28")°

P+08S" (€-3)

Q

The SCS Curve Number method essentially adopts an initial loss - variable continuing
loss model for the computation of rainfall excess. This is attributed to the fact that it
uses the initial water abstraction that is equivalent to the initial loss concept, and the

maximum potential water retention which decreases during the rain duration.

As I, can be empirically estimated through S”, and §” is related to soil and conditions of
the watershed through a Curve Number, this method allows direct runoff to be directly
determined from a specified storm and a series of curves, each curve is represented by a
number. The Curve Number is a function of antecedent moisture contents, agricultural
land use and treatment, catchment hydrologic conditions and hydrologic soil groups.
The last item classifies soils according to their potential to produce runoff (high,
medium, or low). The precision of this method is affected by both the choice of the

Curve Number and the estimation of antecedent moisture conditions of the catchment.

The SCS Curve Number method is widely used in the United States for agricultural
watersheds of up to 2000 acres or 8km”? (Viessman et al.,, 1989). In Australia,
application of this method to some catchments reveals large errors and substantial bias

(Institution of Engineers, Australia, 1987, Chapter 35).




Appendix C 249

The SCS Curve Number method is recommended for use only when locally derived
Curve Number values are available (Institution of Engineers, Australia, 1987, Chapter
5). The method does not consider the storm. duration or the rainfall intensity. In
addition, the equation used to caiculate runoff has no theoretical or empirical

justification.

C.4 SUMMARY

This appendix introduces two different definitions of storm losses and describes the
three processes for runoff generation, namely Hortonian overland flow, saturated
overland flow, and interflow. 1t also gives a brief review of infiliration and practical
loss modeis for computing the rainfall loss. Practical loss models appear to be more
appropriate for design flood estimation due to their conceptual simplicity and their

ability to approximate caichment runoff behaviour.
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Appendix D

DATA VERIFICATION

D.1 INTRODUCTION

The reliability of data used in a statistical analysis plays a crucial role in the analysis
outcomes. For environmental data such as temperature, rainfall, or flowrate, in order to
estimate future values at a given site, it is important that data collected at the site must
be a true representation of the quantity being measured and must all be drawn from the
same frequency distribution. As this study aims to derive the flood frequency curve
from the statistical distributions of rainfall and loss characteristics, it is clear that

rainfall and flow data should be inspected before analyses of these data are undertaken.

Broadly speaking, the four requirements of environmental data used in a statistical
analysis are homogeneity, stationarity, consistency, and representativeness {(McMahon
and Mein, 1986). The requirement of homogeneity is that data should be drawn from
the same statistical distribution so that they are comparable throughout the period of
record. Similarly, a data sample is stationary if its statistical properties do not change
with time, Thus, stationarity is essentially homogeneity, expressed in the time domain
(Laurenson, Personal communication, 1998). Heterogeneity or non-stationarity is
generally caused by shifts in location of gauges, changes in land use or exposure
conditions. These may bring about an abrupt change (in the form of a discontinuity, or
a jump), or a gradual change (in the form of a trend) which takes placc over a period of
time in the absolute measurements of a data series. The requirement of consistency is
that types and techniques of measurement or the manner of data processing should be
consistent, Representativeness of data ensures that samples used in an analysis are

representative of the long-term variability of data at a specified Jocation.

For the present study, observed rainfall and flow dala were assumed to represent the

long-term variability of rainfall or streamflow at any given site, but the verification of
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these data for homogeneity and consistency was considered essential. This appendix
describes the homogeneity tests used in this study, and applications of these tests to the

extracted rainfall and flow data.

D.2 HOMOGENEITY TESTS

In order to check the homogeneity of rainfall or streamflow at each individual station, a
combined procedure using both graphical and statistical methods was employed in this
research. The graphical technique, in the form of time-series plots, enabled a quick
visual detection of any apparent trend or change in the mean value in the plotted series.
Statistical methods with objective measures were then used to verify the conclusions
obtained from the time-series plots, as well as to compute the statistical significance of

any departure from homogeneity.

The distribution-free CUSUM test (McGilchrist and Woodyer, 197%) and the Mann-
Kendall rank comelation test (WMO, 1966) were selected to pe:firm the statistical
check because they are simple and can be applied to general cases in which the change
point is unknown (for example, when a change in a gauge location is not recorded). In
addition, they are not based on any assumption regarding the distribution of the input

data set (that is, they are non-parametric or distribution-free tests).

The CUSUM test checks the hypothesis of no change in a distribution against the
alternative hypothesis of one single change. Given » number of observations X, X,
X35 «vvy Xiy ... » Xy having the median kp, the CUSUM test statistic, called max |Vj|, can
be compute.d from:
i \ '
V.= YalX, -k, ®-1)
j=
where q{x)=1, x=0,
g{x) =~1, x<0.
The position of the maximum gives an estimatc of the position i the change point

where a jump in the mean occurs.




Appendix D 252

At the 5% level of significance, the upper confidence limit of the test statistic is given

by 1.92+/n’ (for n’> 40), where n'=n/2. For other values of n*, the confidence limit

is given by the product of n’ and the corresponding value given by Conover (1971,
Table 16).

The Mann-Kendall rank correlation test checks a time series for a trend without
specifying whether the trend is linear or non-linear (Salas, 1993). The null hypothesis
that the time series of n observations Xi, X, ..., Xn is randomly ordered is tested

against the alternative hypothesis that there is a monotone trend in observations.

The Mann-Kendall rank correlation statistic, T, is computed as follows:

[4”2‘ J/[nn Dl-1 ©-2)

where n; is the number of observations larger than the i™ observation in the series

subsequent to its position.

For n > 10, T is almost normally distributed with the mean of zero and the vartance of
Var(T), where:

Var(T) = (4n +10)/[9n(n - 1))} (D-3)

The 95% confidence limits of T are 1.96y/Var{T).

D.3 APPLICATION OF HOMOGENEITY TESTS

D.3.1 Rainfall Cata

As the basic data used in rainfall analyses were rainfall events extracted from observed
hourly rainfall accumulations, in principle, it would be necessary to check the recorded
event rainfall at hourly intervals for homogeneity. Nevertheless, the homogeneity tests
were applied to annual series of maximum daily rainfall for two reasons. Firstly, it was
considered sufficient to detect heterogeneity on an annual maximum basis, even though

partial series of rainfall events was extracted. Secondly, it was assumed that the results
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of the homogeneity tests on daily data also apply to hourly data.

The procedure below was adopted to check the homogeneity of rainfall data at each

individual recording rain gauge:

¢ Series of daily rainfails and the corresponding quality codes were extracted from the
rainfall database. The extracted daily series generally had missing data points
because rainfall records had gaps and missing data. However, to aveid introducing
further uncertainties into the data series, no infilling of gaps or missing data was
undertaken.

¢ The annual series of maximum daily rainfali was then extracted from the daily
rainfalls flagged as good continuous records.

e The data series obtained from the above step was plotted against time to visually
detect any change in the mean value or trend.

¢ The Mann-Kendall test for trend and the CUSUM test for discontinuity were then
applied to the extracted series to statisticaily determine if the data series were
homogeneous or not. Results are summarised in Table D-1.

¢ For stations that failed either of the tests, station documents were examined to find
out if there was any record of a change in gauge location or in the environment
surrounding the gauge.

* If there was evidence of sources of heterogeneity, a decision was made on whether to
exclude the whole record or only a part of it from subsequent analyses. In the latter
case, the two selected tests were applied to the remaining record to finally verify its

homogeneity.

The examination of the time-series plots of the annual series of daily rainfall for each of
the 19 rainfall sites used in this study indicated that, there was no identifiable trend or
change in the mean of rainfall series for 18 out of 19 sites. An example of these plots is
given in Figure D-1, which shows the annual maxima of daily rainfall at station 85237
plotted against time. It can be seen from this plot that the observed annual maxima
fluctuate quite randomiy. Results of the CUSUM and the Mann-Kendall tests (see
Table D-1) also confirm that the assumption of no change in the mean or of no trend in
data series can not be rejected at the 5% level of significance (LOS). This is

demonstrated by the fact that, at each of the 18 stations (with the exception of station
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4 85103), the test statistic computed for the CUSUM or Mann-Kendall test is less than the
corresponding critical value (CV) at 5% LOS (see Table D-1).

Table D-1: Results of homogeneity tests for 19 recording rainfall stations

! No. Station ID CUSUM test Mann-Kendall test
CV at 5% LOS Test statistic CV at 3% LOS Test statistic

r 1 85000 7 2 0.393 0.143
2 85026 7 2 0.363 0.000
3 85034 8 5 0.301 0.247

| 4 85072 11 4 0.219 0.082
5 85103 8 7 0.309* 0.438
6 85106 8 2 0.301 0.004
7 85170 7 3 0.377 0.086
8 85176 8 2 0.301 0.117
9 85236 7 2 0.393 0.209
16 85237 8 5 0.301 0.004
11 85240 10 2 0.244 0.120
12 85256 8 5 0.328 0.111
13 86038 11 8 0.228 0.190
14 86071 4 12 0.127 0.034
15 86142 10 5 0.253 0.113
16 86219 9 2 0.293 0.099
17 86224 9 4 0.268 0.140
18 86234 9 5 0.286 0.116
19 86314 11 3 0.232 0.022

* CV at 1% LOS = 0.406
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Figure D-1: Time-series plot of annual series of maximum daily rainfall (station 85237)
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However, there seems to be problems with the ‘homogcnei ty of the recorded rainfall data
at station 85103. In the time-series plot for this site (see Fi gure D-2), there seems to be
a trend in the daily maxima before 1956. This suggests that there might have been a
change in the environment surrounding the gauge at this station. Results of the Mann-
Kendal! test for rainfall data at this site (see Table D-1) also confirm that the assumption
of no trend in the annual series of daily rainfall can not be accepted at 5% LOS because
the test statistic (0.438) exceeds the critical value (0.309) at the specified LOS.
Nevertheless, an investigation of the station history indicated that there was no record at
all of any changes in the type of insttument used for measuring rainfalls, methods of
observation, or site conditions at the station before 1964. However, to be conservative,
the station data before 1956 were discarded, according to the results of the Mamn-
Kendall test.

To ensure that the remaining data (that is, annual maxima from 1956 onwards) at site
85103 are homogeneous, the CUSUM and Mann-Kendall tests were again applied to
these data. Table D-2 presents the results of these tests. From this table, it is clear that
the assumnption of no trend or change in the mean of the annual series of maximum daily
rainfall from 1956 onwards at station 85103 is not rejected at 5% LOS, because the test
statistics are less than the computed critical values. Therefore, this part of the station

data was included for subsequent analyses.
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Figure D-2: Time-series plot of annual series of maximum daily rainfall (station 85103)
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Table D-2: Results of homogeneity tests (station 85103, data from 1956 onwards)

Station ID CUSUM test Mann-Kendall test
CV at 5% LOS Test statistic CV at 5% LOS Test statistic
25103 7 4 0.377 0.105

D.3.2 Streamflow data

To verify the homogeneity of streamflow data for the La Trobe River catchment at
Noojee (226205C) and the Tarwin River catchment at Dumbaik North (227226), the

CUSUM and Mann-Kendall tests were applied to annual series of instantaneous flows.

The annual series of instantaneous flows can be extracted from the HYDSYS database
using the HYPEAKS program in HYDSYS. However, as this program ignores periods
of missing data or gaps in the record when outputting peaks (HYDSYS, 1994), it is
possible that the extracted flood series may not consist of the true maximum floods that
may occur when data are missing. This in turn would cause errors in any subsequent
analysis that directly makes use of annual maximum flows. To avoid this, the
maximum annual floods for this catchment were obtained from a data-collecting agency
(Dworakovski, Personal communication, 1999). In this case, the maximum
insiantaneous annual flows were extracted from record, together with the number of |
missing days for each year of record. As there were no missing data in the flow records o J
of the two study catchments, it was concluded that the extracted flood series at each site

represented the true maximum annual floods.

The CUSUM and the Mann-Kendall tests were again applied to the extracted annual
maximum floods. Test results are summarised in Table D-3, and for iliustration, the
plot of maximum instantaneous annual flows against time for station 226205C is shown
in Figure D-3. From this figure, it can be seen that neither a change in the mean nor a
trend in the annual peak discharge at station 226205C is apparent. This is confirmed by
the results of the statistical tests in which the test statistics are less than the
corresponding critical values at 5% LOS (see Table D-3). Therefore, the assumption
that the distribution of annual peak flows for the La Trobe River catchment is

homogeneous can not be rejected at the specified level of significance. The same
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conclusion is drawn from the examination of flow data for the Tarwin River catchment.

Tabie D-3: Results of homogeneity tests on observed annual peak flows

Station ID CUSUM test Mann-Kendall test
CV at 5% LLOS Test statistic CV at 5% LOS Test statistic
226205C 11 6 0.232 0.217
227226 6 3 0.268 0.014
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Figure D-3: Time-series plot of annual series of peak discharge (station 226205C)

D.4 CONCLUSIONS

In this study, observed rainfall and flow data at the gauging sites used in this study were
assumed to be representative of the long-term variability of rainfall or streamfiow at the
selected sites. Nevertheless, the verification of these data for (time} homogeneity and
consistency was considered essential to ensure that these data come from the same
probability distribution at any given site. The CUSUM test for discontinuity and the
Mann-Kendall test for trend were selected to undertake the homogeneity checks. The
tests were applied to annual series of maximum daily rainfall at each of the 19
pluviometers used in this study, and to maximum instantaneous annual flow at the two
flow gauging stations. Test results indicated that the observed rainfall and flow data at

the selected stations satisfied the requirement of hornogeneity.
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Appendix E

THE HOSKING AND WALLIS
REGIONAL FREQUENCY ANALYSIS STATISTICS

This appendix summarises the theoretical background of L-moments, and the
development of the Hosking and Wallis statistics for regional frequency analysis. These
statistics are the discordancy measure, the heterogeneity measure, and the goodness-of-
fit measure. The material described below is mainly summarised from Hosking and
Wallis (1997).

E.1 L-MOMENTS

L-moments, like thz conventional product moments, are a way to describe statistical
properties of a probaoility distribution ¢haracterising a random variable. L-moments of
a statistical distribution are linear functions of probability weighted moments and
defined as (Hosking, 1990):

A =§Bk("1)r- (;J{I‘;k] (E-1)

in which: -

B, =Efx[FO)} E2)
F(X) = prob(X £ x)

where B, are the probability weighted moments, which are expectations of X times

powers of F(X), and F(X) is the cumulative distribution function of X.

The L-CV (short for coefficient of L-variation, denoted as T) and the L-moment ratios

(t,) are defined as follows:
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(for r 2 3) (E-3)

The above L-moment quantities are useful in summarising statistical distributions. For
example, A, is the mean or the location parameter of the distribution, A, is a measure of
scale, whereas T3 and 14 are measures of skewness and kurtosis, respectively. The L-CV

is analogous to the coefficient of variation used in product moments.

Estimators of distributional L-moments are generally computed from estimators of
probability weighted moments of a given data set. Formulas used for these estimates
are available in both biased and unbiased forms (Stedinger et al., 1993). (Bias is 2
statistical term used to denote a tendency of estimates that are consistently higher or
lower than the true value). However, for regionalization procedures, unbiased estimates

are recommended.

Unbiased estimators (b,) of probability weighted moments of a sample can be computed
by:

(E-4)

in which x, <...<x,, represents a sample of n observations ranked in descending

order.

The unbiased sample L-moment estimators (I;) can then be calculated by substituting

the unbiased probability weighted moment estimators into the following equation:
-k
4 fry(r+k
b = 2bu(~1) ( } ( ] (E-5)
k=0 kji k

Similarly, sample estimates of T, T3, and T4 are denoted as ¢, t3 and t4, and calculated as

follows:
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t= -1—2- =sample L-CV
la 2]

t, = 1 =sample L-skewness (E-6)
1, .

1, =—=sample L-kurtosis

1

-

Thus, sample L-morments (11, I3, t, t3 and ty) are summary statistics of a data sample.
Like the conventional product moments, sample L-moments can be used to identify the
probability distribution from which a sample of data is drawn, or to estimate
distributional parameters. They can also be used to construct statistics useful for

regional frequency analysts, as described in the next section.

E.2 THE HOSKING AND WALLIS STATISTICS FOR REGIONAL
FREQUENCY ANALYSIS

In order to estimate the dimensionless regional frequency distribution common to all
sites in a homogeneous group of sites, the three statistics developed by Hosking and

Wallis (1997) can be used. A description of these statistics is given below.

The discordancy measure (D;)

Given a group of sites, the discordancy measure is used to identify discordant sites that
seem to have erroncous data. These are the sites whose sample L-moments are
markedly different from those of other sites in the group. The discordancy measure at
site i, denoted as D;, is defined by:

D, = -;:N(ui ~u) A"y, ~ u) (E-7)

in which:

u=N"Yy, (E-8)
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where u; is the vector containing the L-CV, L-skewness, and L-kurtosis, respectively,

for site 1; uis the unweighted group average; A is the matrix of sum of squares and
cross-products; N is the total number of sites in the group; and T is the superscript

denoting transposition of a vector or matrix.

Site i is declared to be discordant with the whole group if D, exceeds a critical value
which depends on the number of sites (N) in the group. For example, for N =15, a site
can be suggested as discordant if 'Di 2 3. Cntical values for other values of N are

recommended by Hosking and Wallis (1997, Table 3-1).

The heterogeneity measure (H;)

The heterogeneity measure is used to assess whether a group of sites may reasonably be
treated as a homogeneous region'. In order to do this, the between-site variations in
sample L-moments are compared with the dispersion expected for a homogeneous
region that has the same number of sites with the same record lengths as those of the
observed data. By repeated simulation of this homogeneous region, the mean and
standard deviation of the chosen dispersion measure can be obtained. The comparison
between the observed and simulated dispersion is performed using the following

statistic:

_ (observed dispersion) - (mean of sirulations)

H.
(s tan dard deviation of simulations)

¥

(E-9)

A large positive value of this statistic indicates that the observed L-moments are more
dispersed than is consistent with the hypothesis of homogeneity. On the other hand,
negative values of H; can be obtained. In this case, the dispersion among values of the
at-site sample L-CV is less than would be expected. The most likely cause is the cross-

correlation between data at different sites. If large negative values of H; are obtained

(say H, <=2), further examination of the data is then warranted.

' A homogeneous region is a group of sites whose frequency disiributions are considered to be the same,
after appropriate scaling.
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Three dispersion measures can be used to astzss the homogeneity of a group of sites in
different dimensions. The first measure (H;) is based on the sample L-CV, the second
(H>) on the weighted average distance from the site to the group weighted mean on the
graph of L-CV and L-skewness, and the third (H3) on the weighted averags distance

from the site to the group weighted mean on the graph of L-kustosis and L-sk ewness.

To calculate the heterogeneity measures, assume that the proposed homogenous region

has N sites, with n; being the record length of site i, and sample L-moment ratios
tth,th. Let t*,t},(} be the regional average L-CV, L-skewness, and L-kurtosis,

weighted proportionally to the sites’ record length. For example:

N . N
t* = >t [ on, (E-10)
i=1 i=l

The hetorogeneity measures (H;) defined in Equation (E-9) are thus expressed by:

H, =vi"Hu (i=1,2,3) E-11)
Oy

where

Vi

{ini(‘i—t“f/gni}uz

172

i

v, gni{(ti—t“)zﬂt;—t;‘):} iz:,ni (B-12)
S ol -0 -y} /3,

i=1 iel

112

vy

and [vi, Ovi are respectively the mean and standard deviation of the dispcrsion measure

Vi, determined by simulation.

The region is declared to be heterogeneous if the heterogeneity measures are sufficiently
large. By simulation, the following values are suggested:

e H. <l acceptably homogeneous
e |1<H, <2 possibly heterogeneous

e H, 22 definitely heterogeneous




Appendix E 263
ZPT

The goodness-of-fit measure (
Given a homogeneous region of sites, the goodness-of-fit measure can be used to test
whether a given distribution gives an acceptable fit to observed data. This measure is
developed by comparing how well the fitted distribution matches the regional average
L-kurtosis. There are two reasons for choosing the L-kurtosis. Firstly, in au acceptably
homogeneous region, L-moment ratios of the sites are well summarised by the regional
average. Therefore, the distribution being tested will have the location and scale
parameters that can be chosen to match the regional average mean and L-CV.
Secondly, the distribution fitted by the method of L-moments has L-skewness equal to
the regional average L-skewness. Therefore, the quality of fit is judged by the next
higher moment not used in fitting, that is, by the difference between the L-kurtosis of
the fitted distribution and the regional average L-kurtosis. To account for possible

biases in estimating the L-kurtosis for short record lengths (n;, £20), a bias correction

for the regional average L-kurtosis is used.

Five general 3-parameter distributions are used in the Hosking and Wallis (1997)
procedure to perform the goodness-of-fit test. These are the Generalised Logistic
{(GLO), the Generalised Extreme Value (GEV), the Generalised Pareto (GP), the
Lognormal (LN), and the Pearson type 1II (PIlI). For a particular candidate distiibution,

the goodness-of-fit measure is defined as:

ZDIST = (TEIST - tf + B4) (E"l3)
04

in which 1% is the L-kurtosis of the fitted distribution, where DIST can be any of the

above five candidates; B, is the bias of t§; and o, is the standard deviation of t},

obtained by repeated simulation of a homogeneous region whose sites have the same

record lengths as those of observed data.

ZPT is sufficiently close to

A distribution gives an adequate fit to the observed data if
zero. Under the assumptions that the at-site L-kurtosis estimators have independent

identical normal distributions, and that there is no cross or serial correlation in the data,

the candidate distribution gives an adequate fit if [Z%| < 1.64.
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Appendix F

STATISTICAL DISTRIBUTIONS

This appendix presents details of two statistical distributions, the Generalised Pareto
distribution and the beta distribution, used in this study. The former was used to
represent the duration of storm events, whereas the latter characterised the rainfall
temporal pattern and initial loss. The material documented below is summarised from
Hosking and Wallis (1997), and Benjamin and Comell (1970).

F.1 THE GENERALISED PARETO DISTRIBUTION

The Generalised Pareto distribution is a distribution with three parameters: £ (location),

« (scale), K (shape).

The probability density function p(x) of this distribution is given as follows (Hosking
and Wallis, 1997):

p(x) = a-le-(l-ﬂ)’
{— K log{l - x(x -E)a}, k%0 (F-1)

(x-E)/a, x=0

The cumulative distribution function F(x) is defined by:

F(x)=1-¢”’ F-2)

and the range of x is given by:

E<x<E+alk  ifk>0 (F-3)

g5x<oo ifx<0
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There arc some cases, depending on the shape parameter K, in which the Generalised
Pareto distribution becomes a special distribution. These cases include:
e ¥ =0: exponential distribution

¢ x = I: uniform distribution on the interval E<x <€+

F.2 THE BETA DISTRIBUTION

The beta probability distribution is a very flexible distribution as it can assume a wide
variety of shapes by varying its parameters. It is generally defined over the interval
from O to 1, but can also be transformed to any interval from a to b. The probability
density functions of the beta distribution are described below, along with the method for
estimnating distributional parameters. The special shapes that the distribution can

represent are also documented.

F.2.1 Beta distribution on the interval (0,1)

On the interval from 0 to 1, the beta distiibution is a two-parameter distribution with the

probability density function defined as follows:

_ No+p)
NCYN(S)

where 0<x<1; 0> 0, B> 0; T'(.)is the gamma function; and « and P are the two

Py (X) x* (1= %)M (F-4)

parameters of the distribution.

The mean and variance of the beta distribution, denoted as E(X) and Var(X),

respectively, are computed by:

E(x)_—.__a__
a+

B F-5
of (F-5)

Ve = G B @t B D)
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Parameters of the beta distribution can.be estimated by the method of moments by

equating the mean and variance of a data sample to those of the population.

F.2.2 Beta distribution on t*.« interval (a,b)

On the interval from a to b, the beta distribution function takes the following form:

I'(o+B)

()T (BXb -~ a)m-s-l (y- 3)“" (b- y)ﬂ-l 6

py(y) =

where a<y<b.

The mean and variance of this distribution are:

o
a+

E(Y)=a+

l3(b—f':\)

(F-7)

(b a2 af
Var(Y)=(b-2) (e +B) (e +B+1)

Like the case of the beta distribution on the interval from 0 to 1, parameters of the beta
distribution on the interval from a to b can be easily computed by the method of

moments.

There is a linear relationship between the beta density function and the beta cumulative

distribution function defined on the interval from 0 to 1 [p,x) and KE (X),
respectively] and their counterparts defined on the interval from a to b [p(y)and

E,(y)]. These relationships are defined below:

F,,(y).—.Fx(;::)

_ 1 y-—a
py(y)= b—apx(b—a]

(F-8)
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F.2.3 Distributional shapes

The beta distribution can assume a wide variety of shapes (see Figure F-1), depending
on its parameter values. It has some special cases, some of which are listed below:

e Rectangular distribution: r=1, 1=2

b T T

o Triangular distribution: t=3, and r=1 or 2

e Symmetrical distribution about x=0.5 if r=0.5t

In the above cases, r=0. and t=0+f3, where o and B are the two prrameters of the beta

distribution.

0 0.2 04 0.6 0.8 1.0

Figure F-1: Shapes of the beta distribution (Benjamin and Cornell, 1970)
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Appendix G

THE CHI-SQUARE TEST OF INDEPENDENCE

This appendix presents the theoreticai background of the chi-square test of
independence. The test is used to determine whether two variables are associated. The

material described below is summarised from Daniel (1978).

It 1s assumed that an observed set of data forms a random sample of size n, and that
these data may be cross classified according to two criteria, so that each observation
belongs to one and only one level of each criterion. The criteria are the variables of
interest in a given situation. The data may be displayed in a contingency table as shown
in Table G-1.

Table G-1: Contingency table for the chi-square test of independence

First criterion of Second criterion of classification
classification Level

Level 1 2 ves i ¢ Total
1 Ny ELH3 Ry Thye n,
2 ny N iy Ny 1y
1 n; Dj2 Ny Nie n;,
r iy Np nrj Iye n,

Total n, n2 n; L n

where n;; is the observed frequency of cell ij; r is the number of rows; ¢ is the number of

columns; and n is the total number of observations.




Appendix G ’ 269

To test the null hypothesis that the two criteria of ~lassification are independent, the cell
frequencies expecied when the assumption of independence of the two variables is true

are computed and compared with the corresponding observed cell frequencies.

The test statistic (called the Pearson chi-squared statistic) is computed in the following
manner. If the two criteria of classification are independent, then the probability of the
joint occurrence of two levels of each observation is equal to the product of their
individual probabilities. In other words, the probability of counting an observation in
cell ij is equal to the probability of counting it in the i™ row times the probability of
counting it in the j" column. To obtain N;j. the expected frequency of cell ij, the

probability of counting the observation in cell ij is multiplied by the total sample size.

Thus:
N, = H(ELIEA] (G-1)
n ) n

[Pl | (G-2)

Thus, the expected frequency of cell ij is the product of row total (n;) and column total

(n;) divided by the total sample size (n).

The test statistic is then computed as follows:

- T c n' — Nl .

xX=2 by f (G-3)
i=1 j=1 Nij :

This test statistic is approximately distributed as a chi-squared distribution when the

null hypotiesis is true.

The null hypothesis that the two criteria of classification are independent may be
rejected at the o level of significance if the computed value of the test statistic x
exceeds the tabulated chi-square critical value for (r-1)(c-1) degrees of freedom. These
critical values at various levels of significance are available for contingency tables with

up to 100 degrees of freedom.




Appendix G 270

It is noted that ¥* is approximarely distributed as a chi-squared distribution if the
expected cell frequencies (Nj) are large. In general, the minimum cell frequency of 5 is
recommended. However, the minimum Nj; of 1 is acceptable for contingency tables
with more than one degree of freedom, and only 20% or fewer of the cells with
expected cell frequency less than 5. It is also noted that rows and columns of

contingency tables may be interchanged without affecting the results.
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Appendix H

METHODS FOR DEVELOPING
DESIGN TEMPORAL PATTERNS

H.1 INTRODUCTION

Methods for developing a design temporal pattern for a design rainfall depth and
duration can be divided into four groups. They are methods based on IFD curves,
methods based on analyses of observed hyetographs, rainfall disaggregation models,
and sampling from historical patterns. In this appendix, all these methods are critically

assessed in order to select a method suitable for this study.

H.2 METHODS BASED ON IFD CURVES

In order to develop a design rainfall temporal pattern for a design rainfall depth and
duration, some methods based on design IFD curves of rainfall have been proposed.
The commonly used methods in this category include the alternating block method and

the instantaneous intensity method (Chow et al., 1988).

With the alternating block method, the storm duration D is divided into n equal time
. increments of T (that is D=nT). The average rainfall intensity for each of the durations
T, 2T, 3T, ..., nT is then determined from the IFD curves at the site location, and the
corresponding rainfall depth computed. The incremental rainfall depth to be added for
each unit of time T is then taken as the difference between successive rainfall depihs.
Next, these incremental rainfall depths are reordered such that the maximum depth
occurs at the centre of the storm duration. The design storm hyetograph is finally
determined by rearranging the remaining depths in descending order alternately to the
left and right of the central maximum depth. In Australia, this method has been slightly

modified by Boughton (2000) in order to disaggregate daily totals into hourly rainfalis.
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With the instantaneous intensity method, the principle is similar to that employed in the
alternating block method. That is, the rainfall depth for a time interval around the storm
peak is equal to the depth given by the IFD curves. The only difference is that the

rainfall intensity is considered to vary continuously throughout the storm.

Even though methods for developing design temporal paiterns from the IFD curves are
simple, they can not be adopted in this research for two reasons. Firstly, the patterns
derived are unrealistic because they represent a series of unrelated values of rainfall
intensities from a variety of storms, rather than a sequence of intensities in a particular
storm. Secondly, they fail to characterise the variability of temporal patterns of real
rainfall events. That is, for a given storm duration and depth, each of these methods can
produce a single design temporal pattern, as opposed to multiple patterns that happen in

the real life.

H.3 METHODS BASED ON ANALYSES OF OBSERVED HYETOGRAPHS

Temporal patterns of design rainfall can also be derived from analyses of observed
rainfall hyetographs. Some of the well-known methods in this category include the
average variability method (Pilgnm and Cordery, 1975), the triangular hyetograph
method (Yen and Chow, 1980), and Huff’s method (Huff, 1967).

The average variability method is the basis on which design temporai pattems currently
used in Australia are derived. With this method, the design pattem for a given storm
duration is determined from the observed heaviest bursts of the same duration in the
following manner. First of all, each of the bursts is divided into the sume number of
periods. The periods in each burst are then ranked according to the amount of rain in
each period; rank 1 denoting the period of most intense rain. For all bursts, an average
rank is determined for each period. The period with lowest average rank is then taken
as the heaviest rainfall period of the design pattern, whereas the period with Jargest
average rank denotes the period of slightest rain of the design pattem. In order to
determine the percentage of rain in each period of the design pattem, for each storm

burst, the percentages of rainfall per period are arranged in descending order of
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magnitude. For all observed storm bursis, the average percentage of the heaviest
periods is computed and then assigned to the heaviest period of the design pattemn. The
average rainfall percentage of other less intense rainfall periods of the design pattem is
similarly determined. Thus, the design temporal natterns derived in the above manner

represent the average variability of intense bursts of rain.

The triangular hyetograph method aims to derive design rainfall hyetographs of a
triangular shape. This method is very simple because once the design rainfall depth and
duration are known, the base length and the height of the triangular hyetograph can be
determined. In order to determine the location of the peak intensity, a storm
advancement coefficient r;, defined as the ratio of the time before the peak to the total
storm duration, is used. For example, a value of r, of 0.5 corresponds to a storm with
the peak intensity occurring in the middle of the storm, whereas r, less than 0.5 is used
for early-peaked storms, and r, greater than 0.5 for late-peaked storms. A suitable value
of r, is determined as the mean of the observed values of r; computed for a series of

storms of various durations, weighted according to the duration of each storm event.

In Huff's method, the time distribution pattems of heavy storms were developed for
four quartile groups, depending on whether the heaviest rainfall occurred in the first,
second, third or fourth quarter of the storm duration. Other factors such as storm
duration, storm types, or mean rainfall were found to have small effects on the time
distribution patterns. In each quartile group, dimensionless mass curves of nine
probability levels, ranging from 10% to 90% with 10% increments, were developed (see
Figure H-1). For example, the 90% curve can be defined as the disirbution that is
equalled or exceeded by 10% or less of the storms. These empirical probabilistic mass
curves, called Huff curves, are smooth because they reflect average rainfall distribution
with time and do not exhibit the burst characteristics of observed storms. The first
quartile 50% mass curve has been used in a storm drainage simulation model by

Terstriep and Stall (1974).

Regardless of their conceptual simplicity, both the average variability method and the
triangular hyetograph method can not be used directly in the present research due to at
least one or mere of the following reasons:

» They do not represent the variability of observed temporal patterns;
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» Simple hyetograph shapes (for example, triangles) are inadequate {0 represent the
actual variation of rainfall intensity in typical rainfall eveats; and

e They were developed such that when being used with average values of other design
inputs, the resulting design flood is assumed to have the same probability as that of

the design rainfall.

-

CUNILLATIVE PERCENT OF PRECIFTATION
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Figure H-1: Time distributions of first quartile storms (Huff, 1967)

For the comparison of observed and modelled patterns, Huff’s method seems to be
partially relevant to this study because it can describe characteristics of rainfall temporal
patterns in probabilistic terms. In applying this method, it may be necessary to examine
the effects of storm types, storm duration, or seasonal varation on the time distribution
of rainfall. Results of this investigation would be useful in dividing observed storms

into groups before constructing Huff curves for each individual group.

H.4 RAINFALL DISAGGREGATION MODELS

There exist many disaggregation schemes for simulating the temporal distribution of
rainfall within storm events. These include methods proposed by Nguyen and Rousselle
(1981), Hashino (1986). Hershenhom and Woolhiser (1987), Garcia-Guzman and
Aranda-Oliver {1993), Robinson and Sivapalan (1997), and Heneker et al. (1999).
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Among these, the model proposed by Garcia-Guzman and Aranda-Oliver (1993), and
the multiplicative cascade mode! by Robinson and Sivapalan (1997) are conceptually

simple and appear to be simple enough for practical applications. The models are

therefore described in detail below.

The objective of the model proposed by Garcia-Guzman and Aranda-Oliver (1993) was
to disaggregate the total depth of a rainfall event of a specified duration into hourly
rainfall depths. In this model, the temporal pattern was characterised by the
dimensionless storm mass curve defined at hourly time steps. The ordinates of the
dimensionless mass curve were assumed to be ordered samples from a beta distribution.
Parameters of the beta distribution were estimated from observed storm data. Given a
rainfall event of a specified duration, the hyetograph of the design event was determined
by generating random numbers from the fitted beta distribution. These ordered random
numbers (in ascending order of magnitude) represented the ordinates of the mass curve

of the design storm pattern.

When applying this model to the observed rainfall data at three stations in Southern
Spain, it was shown that the model reasonauly preserved the lag one auto-cosrelation
between rainfall depths at successive time steps, the maximum dimensioniess hourly
precipitation, and Huff frequency curves of the historical rainfall temporal patterns.
This model was applied by Loukas et al. (1996) to determine stochastic design temporal

pattems for design rainfall.

In the multiplicative cascade model (Robinson and Sivapalan, 1997), the dimensionless
storm mass curve was used to describe the temporal pattern of rainfall, and Huff
frequency curves (Huff, 1967) were used to summarise the characteristics of observed
temporal patterns. The model parameters were represented by a beta distribution whose
distributional parameters were determined by trial and error such that the Huff
frequency curves of the generated storm patterns matched the observed Huff frequency
curves. The model employed a multiplicative cascade structure to determine mass
curve ordinates as a function of random numbers drawn from the fitted beta distribution.
In essence, the multiplicative cascade structure aims to generate rainfall hyetographs
with 2™ rectang..s, where m is the level of disaggregation, chosen to obtain the desired

time step of temporal patterns at the end of the disaggregation process.
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H.5 SAMPLING FROM HISTORICAL PATTERNS

To generate a design temporal pattern for a given design storm depth and storm
duration, a very simple method is to sample from historical temporal patterns. This
requires pluviograph data of good record lengths so that a large sample of all observed
ternporal patterns for the specified duration could be determined. The design temporal
patternt for the defined event can then be randomly taken from the sample of
dimensionless temporal pattemns for the corresponding duration. This method has been
applied by Rahman et al. (2001) in a parallel project to determine the flood frequency

curve resulting from events defined as storm cores.

H.6 METHOD SELECTION

For the purpose of this study, the method selected for generating design temporal
patterns should be able to produce muitiple patterns to refiect the great variability of
ternporal patterns of real storm events. The modelled patterns shouid also preserve the
characteristics of observed patterns. In addition, the adopted method should be simple

enough to apply in practice.

Of the four groups of methods for developing design temporal patterns discussed above,
it is clear that none of methods based on IFD relationships or on analyses of observed
hyetographs can be used in this research. This is mainly because they are incapable of

representing the variability of temporal patterns of real rainfall events.

Of the remaining groups of methods, Huff’s method has the advantage of being able to
- characterise the temporal pattern in plrobabilistic terms. However, this method was not
selected for this project because Huff curves are only a statistical summary of data, not
actual patterns of individual storms. Furthermore, the ordinates of these curves are

developed without taking into account the correlation of rainfall intensity in successive

time periods.

The sampling of historical patterns is also a promising method because it is simple and
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it can model the vanation of temporal patterns from event to event. However, one
possible problem of this method is that it can only characterise patterns that are actually

observed, but not the patterns that could have equally likely occurred.

As far as rainfall disaggregation models are concerned, the models introduced by
Garcia-Guzman and Aranda-Oliver (1993) and Robinson and Sivapalan (1997) are the
simplest in terms of model structure. Nevertheless, the multiplicative cascade model
proposed by Robinson and Sivapalan (1997) was adopted in this research because it is
mathematically much simpler than the other. Moreover, it is the easiest for
implementing in design applications and when tested with observed data, it produced

good results.

H.7 CONCLUSIONS

In this appendix, four groups of methods for developing design temporal pattemns of
rainfall were briefly reviewed. The multiplicative model proposed by Robinscn and

Sivapatan (1997) was adopted in this research.
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Appendix |

AT-SITE FREQUENCY ANALYSIS METHODS

.1 INTRODUCTION

The primary objective of methods for at-site frequency analysis is to determine the
probability (or recurrence interval) of an event of a given magnitude using data at a
specified site. There are several at-site frequency analysis methods, as described by
Haan (1977, Chapter 7) and Stedinger et al. (1993). In general, these methods can be
divided into two groups, namely non-parametric and parametric methods. In the former,
the probability distribution representing a set of data is determined without a priori
assumption regarding the underlying distribution of the data values. By contrast, in .he
latter, it is necessary to assume the parent distribution of the data set at the outset of the
analysis. The objective of this appendix is to present a brief review of the most

commonly used techniques available in these two groups.

1.2 NON-PARAMETRIC METHODS

In order to determine the frequency distribution of an observed data set using non-
parametric methods, three steps are undertaken. Firstly, a plotting position for each
observed data is computed. The plotting position can be defined as a distribution-free
estimator of a cumulative distribution function (Hosking, 1990). Secondly, the observed
data and their corresponding plotting positions are plotted on a graph. Finally, a curve
that best fits the plotted points is drawn subjectively or by means of mathematical or
statistical smoothing functions. This curve represents an empirical distribution of the

data. From the fitted curve, quantiles at specified probability levels can be estimated.
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The non-parametric methods are easy to apply, and probably most appropriate for very
long series of data (in the order of hundreds to thousands) in which quantile estimates of
the parameter of interest can be read directly from the graph without the need for fitting
a curve through the plotied data points. However, for more general cases, they are not
widely used for frequency analysis due to their arbitrary and subjective nature (Haan,
1977). In addition, the extrapolation of probabilities outside the range of observations
can not be reliably determined. Finally, regionalisation of the frequency curve is

difficult to achieve.

i.3 PARAMETRIC METHODS

To develop the probability distribution of a random variable using parametric methods,
the foliowing three steps can be undertaken: selection of a distributional type, estimation
of distributional parameters, and checking of the adequacy of the fitted distribution.
Each of these steps involves the choice of one single method among a variety of
alternatives. A bnef introduction to the most commonly used methods in each step is

presented below and their characteristics are discussed.

i.3.1 Selection of a distributional type

To tentatively determine the parent distribution of an observed set of data, histograms,
moment ratio diagrams, or L-moment rati6 diagrams of the observed data can be used.
Histograms are plots that show the frequencies of occurrence versus class intervals of
the observed data. The histogram shape gives an indication of the probability

distribution that underlies the daia.

Moment ratio diagrams and L-moment ratio diagrams are constructed on the basis that
any probability distribution has specific values (or ranges of values) for its coefficient of
variation (Cy), coefficient of skewness (C;), and coefficient of kurtosis (Ci). Therefore,

sample estimates of these quantities can be used to preliminarily specify the distribution
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underlying the sample (McCuen, 1985). Moment ratio diagrams include plots of Cy
versus C; (for identifying two-parameter distributions), and Cy versus C; (for identifying
three-parameter distributions). On these graphs, the moment ratios of different
theoretical statistical distributions are plotted, along with those of the observed data.
The distribution most suitable to describe the data is taken as the theoretical distribution
closest to the plotted points on the graphs. The same principle is applied to construct
the L-moment ratio diagrams, but L-moment ratios (L-CV, L-skewness, and L-kurtosis)

are used instead of the conventional product moments ratios (Cv, C;, C)).

L-moment ratio diagrams are considered as a diagnostic tool superior to histograms and
moment ratio diagrams in identifying a parent distribution from which a sample is
drawn (Cunnane, 1989; Vogel and Fennessey, 1993). There are two main reasons for
this. Firstly, they are based on unbiased sample estimates of L-moment ratios. By
contrast, estimates of conventional product moment ratios (in particular, C;) are highly
biased, especially for small samples. And secondly, they are more reliable than
histograms because the shape of a histogram generally depends on sample size and the

class intervals used, especially for small samples (McCuen, 1985).

1.3.2 Estimation of distributional parameters

Parameters of a distribution can be estimated using non-Bayesian or Bayesian methods
(Stedinger et al., 1993). In the former, distributional parameters are considered as fixed
design values, whereas in the latter, as random varables. Characteristics of these

methods are summarised in Table 1-1.
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Table I-1: Parameter estimation methods

probabitity
weighted
moments
(PWM)

PWMj to theoretical

moments.

Groups Methods Principles Characteristics
Non-Bayesian | Method of Distributional parameters § - This method is conceptually simple and easy to apply.
methods moments are estimated by equating | - Parameter estimates are generaily biased, therefore bias correction factors often need to be
sample product moments | used (Cunnane, 1989).
to theoretical moments. - Estimates of parameters of three-parameters distributions may not be feasible for small
samples because the coefficient of skewness may not be reliably estimated (Cunnane, 1989).
- For highly skewed distributions, the accuracy of parameter estimates is severely affected if
there are data errors (Haan, 1977).
- Estimates of the coefficients of skewness and kurtosis are not always easily interpreted in
terms of distributional shape (Hosking, 1990; Guttman, 1992).
Non-Bayesian | Methods of | Distributional parameters | - These methods enable more secure inferences about the parent distributions of small
methods L.-moments are estim~t~ Sv equating | samples, and are able to characterise a wide range of distributions (Hosking, 1990).
and sample L- ..ioments (or - They are more robust to outliers of data, and less subject to bias in estimation.

- Sometimes they can be more accurate than the method of maximum likelihood (Hosking,
1990).

- L-moments have been developed for only standard distributions such as the vniform,
exponential, Gumbei, normal, Generalized Pareto, Generalized Extreme Value, Generalized

Logistic, Lognormal, Pearson type HI, and Kappa distributions {Hosking and Wallis, 1997).
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Table I-1: Parameter estimation methods {continued)

Group Methods Principles Characteristics
Non-Bayesian | Method of Distributional parameters | - This method is generally preferred to the method of moments (Haan, 1977) because
methods maximum are the values that parameter estimates are most eificient (Cunnane, 1989), and asymptotically unbiased for
likelthood maximise the probability | very large samples (Haan, 1977).
of obtaining a sample. - It is mathematically complex and therefore difficult to obtain parameter estimates for some
distributions (Lin and Vogel, 1993).
- It sometimes performs poorly when there is a significant deviation of observations from the
fitted distribution (Stedinger et al., 1993).
Bayesian Posterior distributions of | - These methods allow parameter uncertainties to be wodelled explicitly.
methods parameters are ~ They provide a theoretically consistent framework for the integration of at-site observations
(Stedinger et determined by combining | with regional and other hydrologic information.
al., 1993) prior (regional) - They are generally used in regional analysis.

information with a sample
likelihood function via

Bayes’ Theorem
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3.3 Checking of the adequacy of the fitted distribution

After estimating parameters and guantiles of a distribution, the suitability of the adopted
distribution should be checked to ensure that the distribution could reproduce the
features of the data that are important to a particular application. In order to do this,

graphical or analytical methods can be employed.

1.3.3.1 Graphical methods

Graphical methods allow a visual inspection of the adequacy of a distribution fitted to a
data set. To do this, a plotting position for each observation is first computed. The
observed data are then plotted on a graph along with their corresponding plotting
positions. The adopted theoretical distribution is finally plotted on the same graph. The
adopted distribution is considered to be acceptable if, over the probability range of

interest, it fits closely to the observed data.

Even though simple and easy to apply, the obvious disadvantage of using graphical
methods for checking the adequacy of a fitted distribution is that it is difficult to decide
if deviations of the observations from the fitted distribution are statistically significant

or purely due to sampling variability.

.3.3.2 Analytical methods

The analytical methods aim to test the null hypothesis that a given data set comes from
an assumed distribution. A vast number of techniques are available to achieve this goal,
as presented by D’Agostino and Stephens (1986) and Cunnane (1989). Among these,
the Kolmogorov-Smirmov one-sample test, the chi-square goodness-of-fit test, and the
probability plot correlation coefficient test are popularly applied in hydrology. These

tests are briefly reviewed below.
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In the Kolmogorov-Smimov one-sample test, the theoretical cumulative distribution
function underlying a data set is assumed 10 be completely . ecified. That is, no
parameter of the distribution is estimated from the observed data. Under this
assumption, for each observed data point, the deviation from the data to the theoretical
cumulative curve is determined. The test statistic is then taken as the maximum of the
computed deviations. The Kolmogorov-Smimov test thus provides bounds within
which every observed data point should lie if the sample is actually from the 2ssumed
distribution. To test the hypothesis that the given data comes from the assumed
distribution, the test statistic is compared with the critical value for a given level of
significance. The Kolmogorov-Simirnov one-sample test can also be applied to cases in
which distnibutional parameters rre estimated from observed data. Nevertheless, for
these cases, critical values of the test are smaller than those given in the case that the

distributional parameters are completely specified (Haan, 1977).

The chi-square goodness-of-fit test is one of the most commonly used tests for checking
the fit of a data sample to a nypothesised population distribution. This test is applicable
to discrete data, or to continuous data expressed in a discrete form by using class
intervals on a continuous scale. The test statistic is constructed from the actual and
expected number of observations in the class intervals. Critical values for the test
statistic are dependent on the number of parameters of the adopted theoretical

distribution.

The Kolmogorov-Smirnov one-sample test and the chi-square goodness-of-fit test are
simple and easy to apply. However, it is argued that neither of these tests is very
powerful because of the high probability of accepting the null hypothesis when it is
actually false (Haan, 1977). In addition, these two tests also lack power in determining

the best-fit distribution among a group of alternatives (Cunnane, 1989).

The probability plot correlation coefficient test was originally introduced by Filliben
(1975) for testing if a probability distribution with unspecified location and scale
paramelers is a normal distribution. However, it can be readily extended to test non-
normal distributional hypotheses. The test statistic uses the correlation between ordered

observations and the corresponding fitted quantiles determined by the plotting position
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of each observation. A near unity value of the test statistic indicates that the observed

data could have come from the fitted distribution.

The provability plot correlation coefficient test is considered as a powerful goodness-of-
fit test (Stedinger et al., 1993). It can also be used to select the best-fit distribution from
a set of candidate distributions (Cunnane, 1989). Nevertheless, critical values for the
test statistic are only available for certain distributions such as the normal, Lognormal,
uniform, Generalised Extreme Values and Pearson type Il distributions. This prevents
application of the test to other distributions such as the beta or Generalised Pareto

distribution that are used in this study.

14 SUMMARY

In this appendix, methods for determining the parent statistical distribution of a data set
using at-site frequency analysis procedures are described and discussed. In general,
parametric methods are preferable to non-parametric methods. With parametric
methods, there are three steps involved, namely seiection of a distributional type,
estimation of distributional parameters, and checking of the adequacy of the fitted
distribution. Many methods are available to carry out each of these steps. Among these,
L-moment diagrams, method of moments, method of L-moments, and the chi-square
goodness-of-fit test are popularly used in routine applications due to their simplicity and

ease of application without sacrificing much accuracy.
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SELECTION OF A DISTRIBUTED RUNOFF ROUTING
MODEL FOR THE LA TROBE CATCHMENT

J.1 INTRODUCTION

This appendix documents the research undertaken to select a distributed runoff routing
model for the La Trobe River catchment at Noojee (catchment area of 290km?). The
selection is restricted to those RORB and URBS runoff routing models that had already
been developed and calibrated for the catchment by others.

In this appendix, an introduction to the catchment’s distributed runoff routing models
available from previous studies is first presented. The theoretical background of two
runoff routing programs for developing these models 1s then summarised, together with
a detailed description of the two corresponding caichment models. Finally, the

selection of the best available model is reported.

J.2 AVAILABLE DISTRIBUTED RUNOFF ROUTING MODELS

Available distributed runoff routing models for the La Trobe River catchment can be
divided into two groups: RORB and URBS models. RORB catchment models had been
developed by Dyer et al. (1994) and Smith (1998), whereas an URBS catchment model
had been developed by Baker (1997). Of these models, as reported by Baker (1997), the
model parameters estimated by Baker compared favourably with those developed by
Dyer et al. (1994). Therefore, in order to select the best distributed model, only the
catichment models and the corresponding parameters determined by Baker (1997) and

Smith (1998) were tested and are reported in the following section.
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J.2.1 RORB modet

J.2.1.1 Theoretical background

RORB (Laurenson and Mein, 1995) is a spatially distributed, non-linear runoff and
streamflow routing program for calculating flood hydrographs from rainfall and other

channel inputs. The program can also be used for retarding basin design and flood

routing in channels.

To simulate a given catchment and its stream system, the catchment is divided into sub-
areas bounded by catchment divides and ridge lines. The stream network is also sub-

divided into reaches, each of which is associated with a model storage.

To model streamflow on the catchment, RORB performs a sequence of operations
described by numeric control codes specified in the catchment data file. The routing
process starts with the deduction of losses from rainfall for each sub-area. The rainfall
excess at the catchment upstream end is then routed to the first stream confluence where
the rainfall excess hydrograph is stored. The rainfall excess hydrograph from another
sub-area contributing to another branch of the confluence, if any, is then added to the
stored hydrograph. This step is repeated until the modelling of all areas contributing to
other branches of the confluence is completed. The combined hydrograph is then routed

downstream in a similar fashion until it reaches the catcliment outlet.

To compute stream discharge, the following non-linear storage-discharge relation is
assumed:

§ = 3600kQ™ “ a-1)
where S is the storage (m”); Q is the outflow discharge (m’/s); m is a dimensionless
exponent which reflects the catchment’s non-linearity; and k=kck, is a dimensional
coefficient, which is a function of the relative delay time computed for the reach storage
under consideration (k,) and an empirical coefficient applicable to the entire catchment

and its stream network {k.).

The two main parameters of RORB are k. and m. They are evaluated by a trial and

error procedure (by means of fit and test runs) using concurrent observed rainfall and




e T

Appendix J 288

flood data for a particular caichment. Once determined, these parameters are fixed for
the given catchment and can be used to estimate floods resulting from hypothetical

design conditions {design runs).

J.2.1.2 Smith's RORB model for the La Trobe River catchment

In Smith’s RORB meodel, the La Trobe River catchment at Noojee was represented by
19 sub-areas and 28 channel reaches (see Figure J-1 and Table J-1). Four observed
rainfall-runoff events were used to calibrate the model parameters k. and m. Data files
of the rainfall events and the corresponding surface runoff, together with the RORB

catchment file, are available in electronic form (Smith, 1998).

A S9605e

O 56099

A 96325

Figure J-1: Smith’s RORB model for the La Trobe River caichment at Noojee (Smith,
1998)
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A summary of some statistical characteristics of the observed surface runoff used for
model calibration and the calibrated parameters of the catchment model (m=0.8,
k=43.3) is also presented in Table J-1. Generally speaking, the calculated hydrographs
preserved well the flood peak and flood volume of the observed hydrographs, but the

time to peak was not satisfactorily reproduced.

Table J-1: Summary of distributed models of the La Trobe River catchment at Noojee
(m=0.8)

Study Catckment formulation No. of Range of calibrated flows (m¥s) Average
No. of sub-areas No.of reaches  fitted events Minitnum Maximum  Average k.
Baker (1997) 11 15 7 73 59.9 26.8 26,05
Smith {1998} 19 28 4 25.6 59.9 3645 43.3

J.2.2 URBS model

J.2.2.1 Theoretical background

URBS (Carroll, 1994) is a modified and extended version of RORB in which key words
are used in place of the numeric codes used in RORB for describing the model sequence
of operations. The representation of catchment and channel network in URBS is
identical to that used in RORB. The two main parameters of URBS are o and m. There
is a relationship between the parameter o of URBS and the parameter k. of RORB as

follows:

e _ 3-2)

where d,, is the average flow distance (in km) in the channel network of sub-area

inflows.

The above relationship indicates that URBS and RORB are interchangeable in
operation. That is, a given RORB catchment model with the parameters ke and m can
be converted into an equivalent URBS model with the parameters o and m. In other
words, a RORB model developed for a given catchment can be easily modified to be

run using URBS and vice versa.
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J.2.22 Baker’'s URBS model for the La Trobe River catchment

In Baker’s URBS model, the La Trobe River catchment was characterised by 11 sub-
areas and 15 river reaches. Seven observed rainfall-runoff events were used for model
calibration. The average value of o obtained from calibravion was 1.8, and dav was
14.47. Therefore using Equation (3-2), the average k. for the equivalent RORB model
for the same catchment was computed to be 26.05. The catchment model was available

in hard copy, whereas none of the rainfall-runoff events used in model fitting was

available.

Details of the URBS model for the La Trobe River catchment and the average k. value
for its equivalent RORB model are summarised in Table J-1. Overall, for the events
used in fitting runs, this model predicted flood hydrographs with sufficient accuracy in

terns of the flood peak magnitude and the time to flood peak.

J.3 SELECTION OF A DISTRIBUTED RUNOFF ROUTING MODEL

In order to select the best distributed runoff routing model for the study catchment, the
two available models were tested using an independent event which was not used in the
fitting runs. The event selected for testing was the flood event from 2100 hours on
27/1/1963 to 0000 hours on 30/01/1963, with a peak flow of 24.3m’/s, produced by

120.9mm of rain in 52 hours.

The following procedure was adopted:

¢ The URBS model for the La Trobe catchment was modified to be able to run with
RORB.

» Rainfall depths at the daily and recording gauges within and near the study
catchment for the period concurrent with the selected flood event were then extracted
from the HYDSYS database (HYDSYS, 1994). The rainfall depths obtained were
next recorded on the catchment map at their corresponding gauge location. Lines of
equal rainfall depths (isohyets) were then drawn. Rainfalls on sub-catchment areas

were approximately computed by interpolating between these isohyetal lines.
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¢ For each of the two catchment models, the RORB program was run with the selected
rainfail-runoff event and the fixed mode! parameters (k. and m) shown in Table J-1.
In each run, the initial loss and continuing loss rate were varied until the observed

and estimated flood hydrographs matched.

A summary of the values of the initial Joss, continuing loss and the fixed k¢ used to
compute the flood hydrograph is presented in Table J-2. In this table, the flood peak
discharge and the comresponding time to peak of the observed and calculated
hydrographs are also given. An example of the flood hydrographs estimated by Smith’s

and Baker’s models and the corvesponding observed flood is illustrated in Figure J-2.

Table J-2: Comparison of URBS and RORB models (test run, the 1963 flood, m=0.8)

Cachmemt IL CL Peak discharge (m’/s) Time to peak (h)
mode! {mm) (mm/h) Observed Calculated % difference Observed Calculated % difference
Smith(1998) 30 11.19 4330 18.6 153 -17.6 34 51 50.0
Baker (1997) 30 11.17 2605 18.6 213 14.5 34 38 11.8
25
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—o— Calculated hydrograph, Baker's model, ke = 26.05

Figure J-2: Flood hydrographs estimated by Smith’s and Baker’s models (testing run,
m=0.8, the 1963 flood)
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In comparing the performance of the available distributed models for the La Trobe
catchment, it can be seen from Table J-2 and Figure 1.2 that Baker’s model (with
ke=26.05, m=0.8) gives better estimates of both the flood peak and time to peak than
Smith’s model. Therefore this model was adopted as the best distributed runoff routing

model for the specified catchment.

To improve the estimate of k. for the selected model, the test event was also used for
fitting. As the estimated flood peak is greater than the observed one (see Table J-2), k.
needs to increase so that the computed flood peak decreases. As a final test, Baker’s
model with k=30, m=0.8 was used to test all the five flood events, of which four data
files were documented by Smith (1998), and the other one was compiled in this study.

Results of this final test are shown in Table J-3 and illustrated in Figure J-3.

Table J-3: Baker’s model - Summary of model testing (k.=30, m=0.8)

Evemt 1. CL Peak discharge (m'/s) Time 10 peak (h) Volume (10 m’)
{tmm) {mm') observed calculated % difference observed cakulated % difference observed  calculated
1963 30 11.2 186 18.3 -1.6 34 40 176 1.96 1.93
1969 © 4.3 15.0 16.0 6.7 89 59 -33.7 2.58 2.59
1971 8 4.6 48.6 49.9 2.7 73 49 -32.9 5.02 5.03
1977 23 102 222 20.9 58 31 29 6.5 2.01 1.98
1980 O 6.1 31.3 48.1 $3.7 60 53 -11.7 4.11 4.07
60
50 A —o— Observed

P
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Peak discharge (m3ls)
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Time (hours)

Figure J-3: Observed and calculated hydrographs (Baker’s model, k=30, m=0.8, the
1971 flood)
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In examining the performance of Baker’s model of the La Trobe catchment, it is evident
in Table J-3 that this model preserves well the observed flood peak and the flood
volume for four of the five flood events used. Differences between the peak discharge
or flood volume of the computed and observed flood hydrographs are less than 7%,
except for the 1980 flood. Nevertheless, the time to peak of the observed hydrographs
is not reproduced well in the estimated hydrographs. The difference in the lag time

between the observed and computed hydrographs is also different from event to event.

J.4 SUMMARY

There are three distributed runoff routing models available for the La Trobe River
catchment at Noojee. Parameters of these models had been calibrated but not yet tested.
In order to select the best distributed model available, two of these models were tested
with an observed rainfall-runoff event not used in model calibration. Resuits indicated
that Baker’s model (Baker, 1997) produced beiter estimates of the peak flood discharge
and the time to flood peak than Smith’s model (Smith, 1998). Therefore, Baker’s model
with k. of 30 and m of 0.8 was adopted as the best available distributed runoff routing

model for the study catchment.
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Appendix K

DATA GENERATION

This appendix provides the theoretical bases of the computer subroutines used in this
research for random number generation. It first describes the linear congruential
method for the generation of random numbers from a uniform distribution, which forms
the basis of the data generation from any other distributions. The inverse cumulative
distribution method and the rejection method for generating random numbers from other
continuous distributions are then documented. More details of these methods can be
found in Haan (1977), Press et al. {1989), and Knuth (1998).

K.1 THE LINEAR CONGRUENTIAL METHOD

In the linear congruential method, a sequence of NR uniformly distributed random
numbers X, X, ..., Xng (NR 2 0) can be obtained by setting:

XNR = (aXnr-1 + Co) mod mg (K-1)
where mod m, is the moduius of m, (0 < my), a, is the multiplier (0 < a;, < my), ¢, is the
increment (0 £ ¢, < M), X, is the starting value (also called the seed, where 0 < X, <

m,), and NR is the length of the sequence.

The integer parameter values of mo, a,, Co, and X, are usually selected such that the
length of the generated sequence is long and the speed of generation is fast. For the
special cases in which c,=0 and c¢#0, the linear congruential method is termed the

multiplicative congruential method and the mixed congruential method, respectively.
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K.2 THE INVERSE CUMULAT!VE DISTRIBUTION METHOD

In the inverse cumulative distribution function method, it is assumed that py(y) is the
probability density function of the probability distribution of interest. It is also assumed
that Fy(y), the cumulative distribution function of Py(y), exists and that it is a
monotonically increasing function on the (0, 1) interval. Under these assumptions, in
order to generate a random value y from py(y), 2 uniform random number x is chosen
between O and 1. The selected random number is then related to the cumulative
distribution function by the relationship: Fy(y) = x (see Figure K-1). Finally, the

required random value y is obtained by solving the above equation for y.
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Figure K-1: The inverse cumulative distribution function method (Press et al., 1989)

K.3 THE REJECTION METHOD

The rejection method is used when the cumulative distribution function of the variable

of interest X does not exist, thus the inverse cumulative distribution function method

can not be applied.

In the rejection method, the distribution function p{x) from which random numbers are

to be generated is plotted on a graph so that the area under this curve is one unit.




Appendix K 206

Another function f(x), called the comparison function, is then chosen such that its
cumulative distribution function exists, and when plotted on the same graph it is
everywhere above p(x). In order to generate a random value from p(x), the inverse
cumulative distribution function method is first used to generate a random deviate X
from the distribution f(x). To decide whether to accept or reject xq, a second uniform
deviate is then generated. If this second value is less than the ratio p(x0)/f(xo), that is the
random point [Xxo, f(xo)] lies within the area under the original probability distribution
p(x), xo is accepted (see Figure K-2) Otherwise, xq is rejected, a new random deviate of

f(x) is then generated and the procedure above is repeated.

first random —p
deviate in

- fixo)

second random
deviate in

Figure K-2: The rejection method (Press et al., 1989)




Appendix L

Appendix L

CONFERENCE PAPERS

This appendix contains the conference papers that were written based on the research

conducted in this study.

e Paper 1: Weinmann, P.E., Rahman, A., Hoang, T.M.T., Laurenson, EM., Nathan,
R.J. (2000). Monte Carlo Simulation of Flood Frequency Curves from Rainfall —
The Way Ahead. Proceedings of the 3™ International Hydrology and Water

Fesources Symposium, Perth, Australia. 1. E. Aust. Natiopal Conference
Publication, 564-569.

e Paper 2: Hoang, T.M.T., Rahman, A., Weinmann, P.E., Laurenson, E.M., Nathan,
R.J. (1999). Joint Probability Description of Design Rainfalls. Handbook and
Proceedings of Water 99 Joint Congress, Brisbane, Australia. I. E. Aust. National
Conference Publication, 379-384.

e Paper 3: Weinmann, P.E., Laurenson, EM., Rahman, A., Hoang, T.M.T. (1999).
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Polytechniques et Universitaires Romandes. Paper 2.2 on CD-ROM.
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Monte Carlo Simulation of Flood Frequency Curves
from Rainfall - The Way Ahead

P E Weinmann'?, A Rahman®*, TMT Hoang™, E M Laurenson' and R J Nathan®
! Department of Civil Engineering, Monash University, Clayton, Victoria: Cooperative Research Centre for
Catchment Hydrology: * Queensland University of Technolopy, Brisbane; * Bureau of Meteorology, Melbourne;
* Sinclair Knight Merz, Melbourne

Abstract : This paper summarises the results of a 3-year research project by the CRC for Catchment
Hydrology (CRCCH]). it identifies significant shortcomings in the current Design Event Approach to rainfali-
based design flood estimation, and argues that substantial improvements in the accuracy and reliability of floed
estimates can be obtained from a more rigorous treatment of probability aspects in the generation of design
floods. Application of the proposed Monie Carlo Simulation approach to three test catchments in Victoria has
produced promising results, and has demonstrated the feasibility and in-principle advantages of the approach.
The paper discusses how far the CRCCH work has advanced towards resolving the main research issues, and
outlines desirable future development work to allow the new method io be routinely applied as a design tool.

1 INTRODUCTION

Where reliable flood data are available for the site and conditions of interest, flood frequency analysis is
generaily the most direct and most accurate method for estimating design floods for average recurrence intervals
(ARIs) less than 107 years. However, for most Australian catchments, reliable streamflow records are either
unavailable, of insufficient length or quality to allow reliable flood frequency analysis, or do not relate to the
carrent or future catchment conditions of interest. In all these situations, a significant degree of extrapolation
beyond the range of available flood observations is involved, and flood data thus has to be substituted or
supplemented by rainfall and catchment data, and by knowledge of flood generation processes. The knowledge
gained from well-gauged catchmentz is embodied inlo hydmlogical models (eg. loss models, runoff routing
models), and can then be applicd to other catchments.

Because of the widespread usc of rainfall-based desipn floud estimation methads as a basis for designing
structures and other development exposed 10 flood risks, any shorticomings in the currently applied methods may
have significant economic implications; continued improvements in methodology and design data are thus

desirable.

This paper identifies inherent shortcomings of the Design Event Approach to rainfall-based design flood
estimation, discusses results of research intc a proposed method that promises significant improvements, and
indicates the direction of desirable future development of the method to allow its application in design practice.

2 THE CURRENT APPROACH AND ITS LIMITATIONS

2.1 Conceptual basis of the Design Event Approach

The current Design Event Approach represents a combination of conceptual hydroiogic medeliing and 'black-
box' modelling approaches. The input 10 the modelling process consists of probabilisiic design rainfall events of
pre-selected durzion, formed by combining design values of rainfall intensity with comesponding temporal and
areal patterns of rainfall. Conceptual hydrologic medels are then used to transform a selected design rainfal]
input event firstly into a runoff event (by use of a loss model}, and then into a design flood hydrograph ourpu
{by use of a runoff rowting model). This design flood may include a baseflow component (i.c. delayed
contributions from previous rainfall evenis). The ‘black-box’ aspect is introduced when models calibrated to
actual observed events are applied for modelling of probabilistic events, with design inputs or parameters

adjusted arbitrarily to produce the desired output probabilily characteristics.

Figure 1 shows a schematic representation of the Design Event Approach. The approach embodies the important
assumption that, for each rainfall duration, there is a unique (iypical} combination of all the mode! inputs and
mode} parameters that transforms the design rainfali of given average recurrence interval (ARI) into a flood

hydrograph cutput of the same ARI.
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Figure I Schematic representation of the Design Event Approach

The approach also assumes that, for a given catchment and selected ARI, there is critical rainfall duration that
produces the design flood. However, the critical rainfall duration for a catchment is not known a pricri, but
depends on the interplay of catchment characteristics, as reflected in the loss and runoff routing models, (eg.
catchment size and shape, runoff production and drainage network characteristics), and rainfall characteristics
(average rainfal! intensity, temperal and areal variability). A number of trial rainfall durations thus need to be
applied; the one producing the highest flood peak {or volume) for the specific case is then adopted as the critical
duration. Figure 2 illustrates the process of deriving design floods based on the critical rainfall duration concept.

Design Rainfall Depths {(mm) Flood Peaks (m/s) Design Floods (m¥s)

Figure 2 The critical rainfall duration approach to design flood estimation
2.2 Theoretical limitations and practical problems of the Design Event Approach

It is well known that actual floods of a given peak magnitude could be the result of quite different rainfall events,
combined with & range of other flood producing factors. Relalively moderate storms occuming on saturated
catchments have produced major historic floods, while very heavy storms lalling on dry catchments may have
only rcsulted in moderate flooding. The task of defining a rypical combination of flood producing faciors for
application in the Design Event Approach is made particularly difficult by the fact that flood response to rainfall
is generally non-linear and can be highly non-linear. This means that average conditions of rainfall or loss 2re
unlikely to produce average flood conditions. While the stated intent of the Design Event Approach of
“probability-heutral” transformation of design rzinfalls into design floods is quite clear and plausible, its
piactical implementation is fraught with difficulties and pitfalls for the unsuspecting designer.

The problems inherent in the ‘critical rainfa!l duration’ concept are best illustrated by reference 10 observed
flood series. The events forming an observed series of annual floods correspond to different rainfall durations




and thus define a marginal distribution of flood magnitude (repardless of rainfall duration). The arbitrary
selection of the ‘critical rainfall duration® as the basis for cstimating the design flood is eguivalent to an
assumption that “the marginal distribution of flood magnitude is equal 1o the conditional distribution of flooding
for the critical rainfall duration™. There is no reason why this assumption should be true in the general case.

The effect of the critical duration assumption is a systemalic bias in Nood frequency estimates, resulting in a
tendency to over-estimate the magnitude of design floods (Bloschl e al, 1997). In practice, this systematic error
bas to be compensated by arbitrary corrections, such as increased losses or greater storage delays in runoff
routing models. These comections tend to obscure any relationships that may exist between design paramsters
and information derived directly from flood observations, thus making the task of deriving reliable design
paramelers for ungauged caichments more difficult.

Recent developments in design flood estimation have generally concentrated on specific components of the
overall design flood estimation process, e.g. rainfall areal reduction factors, losses or runoff routing parameters.
Improvements in the estimation of these individual factors have been achieved by using a broader database,
sounder methods of analysis and/or better explanatory variables. However, due to the complex interactions of the
different facters and the clouding effects of corrections applied in the calibration 1o flood frequency resulls, it
has ntt been possible to realise the full benefits of these developments (Hill et al. 1996,).

As an example, Hill e al. (1996) found that, while there is theoretical justification for the use of the more
consistent set of ‘filtered’ temporal patterns of design rainfall, their use in conjunction with other improved
design inputs tends 1o underestimate design floods. The ‘correction factor” built into the ‘unfiliered’ patierns
generally leads to better design flood estimales, but the intemal inconsistencies contained in these patlerns can
preduce inconsistent flood estimates for different rainfall durations. This requires the designer to make difficalt
and highly subjective decisions in the selection of a critical rainfall duration.

3 THE WAY AHEAD: HOLISTIC SIMULATION OF DESIGN FLOODS FROM RAINFALL

The main problem with the Design Event Approach is that it does not adequately allow for the large variability
of the flood preducing factors, and the interactions bevween them. The simplislic treatment of important
probability aspects in the flood formation process severely limits the scope for further improvements in design
flond estimates. Such improvements require a more realistic representation of how the key factors work tngether
1o produce floods. CRCCH Project FL1 (Holistic approach to rainfall-based design flond estimation) has
investigated wwo different approaches for deriving design flonds: the Continuous Simulation Approach and the
Joint Probability Approach. Both atiempt to simulate more realistically how floods are formed from rainfail

inputs, but they do 50 in quite a different fashion.

In the Continuous Simulation Approach, a long continuous time series of streamflow (and floods) is derived
from observed or synthetically gencrated time series of rainfall and evaporation, using appropriate Tunoff
generation and hydrograph formation models (Boughton et al., 1999). From this simulated streamflow time
series, the flood events of interest can be extracted and analysed by conventional frequency analysis. The
Continuous Simulation Approach is conceptually the most desirable one, as it can simulate most closely the way
an actual flood series is produced. However, at the moment its application is limited to gauged catchments.

In the Joim: Probability Approach, the frequency distribution of a selected flood characteristic is derived by
combining the probability distributions of key input variables (Rahman et al., 2000). Rather than producing a
time series of floods, the flood events are only generated in the probabilily domain; the simulated flood series
conlains no information on the timing ot sequencing of events. The joint probability apprrach can be regarded as
a further development of the cumrently used design event approach, but treats probability aspects more

rigorously.

Since the pioneering work of Eagleson (1972). many derived flood distribution methods based on joint
probability principles have been developed and tested in research projects. Some of these methods are reviewed
in Rahman et al. (1998). Their limited application in practice can be atiributed to the fact that many of the
methods are constrained in their generality by employing simplistic runofl production and iransfer functions.
There is also a lack of specific design data to allow the application of these methods to ungauged catchments.
The Monte Carlo simuiation method de:. ~vibed below is intended to overcome many of these limilations.




4  THE ELEMENTS OF THE PROPOSED MONTE CARLO SIMULATION APPROACH

4.1 General

The proposed approach employs a Monte Carlo simulation technique to generate say 10,000 flood events at the
point(s}) of interest, from which a very long series of peak flows or flood volumes can be extracted. Conventional
flood frequency analysis is then applied 10 this pantial flood series to produce a frequency curve of design floods.
In developing the new method, emphasi§ was placed on improved representation of those elements in the flood
generation process that have a dominant influence on the derived flood frequency distribution. The loss and
runoff routing models used in the Design Event Approach are generally adequate and can thus be applied in their
present form, but important probabilistic elemerts in the flood estimation process need to be represented more
realistically. This involves the simulation of stochastic runoff events from the probability distributions of their

main characteristics.
4.2 Simulation of stochastic runoff events

Precipitation, in the form of rainfall, is the main flood-producing factor in most situations in Australia. The
process of simulating flood events thus starts with generating stochastic rainfall events. Two types of rainfall

events have been defined as part of this project:

(i) a complete storm comprises those parts of the rainfall time serics that can be regarded as forming a single
event as far as the flood response of the catchment is concerned, and
(ii) a storm core represents that part of a complete storm with the highest relative rainfall intensity.

Historic rainfall records from pluviograph stations in and around a catchment are analysed to identify the partial
series of significant rainfall events and their stochastic properiies. Rainfall evenis are only selected for the
analysis if they have the potential 1o produce a flood, with the average rainfall intensity over the duration of the
event being used as an indicator of event magnitude. Typically, an average of 3 to 7 events per year are selecled.

The rainfall characteristics of interest for simulation are (i} the rainfall event duration {D/, (ii) the average
rainfall intensity f7}. {iii) the temporal pattern {TP} and (iv) the areal pattern [AP] during the event. The
variation of the first three of these variables is represented by their probability distributions, while the area?
rainfall pattern is assumed 10 be constant (generally uniform). Information on the comelations between the
rainfall variables is also required, to ensure that the generated stochastic rainfall cvents preserve the
characteristics of real observed rainfall events. Rainfall intensity is so strongly dependent on duration that it
needs to be represented by a conditional distribution of intensity for a given duration. A more detailed discussion
of the stochastic representation of rainfall events is given in Hoang et al. (1999).

The next step in the simulation is the transformation of the rainfall events into sfeckastic runoff events, by
application of a loss model. In accordance with cumrent practice for the Design Event Approach, a conceptual
loss model, the initial loss-continuing loss model, is applied. The initial Joss parameter fIL}] which can vary
widely beiween different flood events, is represented by a probability distribution, while the continuing loss
parameter fCL}] is generally less variable for a given catchment and thus represented by a fixed value.

The statistical models used 1o represent the stochastic variation of the selected three rainfalt characteristics and
one loss parameter are summarised in Table 1, together with the data used to estimate their parameters. Further
details arc given in Rahman et al. (2000) for storm cores, and Hoang (2000) for complete siorms, respectively,

Table 1 Derivation of probability distributions of key variables in Monte Carlo simutation model

CHARACTERISTIC TYPE OF STATISTICAL MODEL PARAMETERS FROM

Rainfall Duration (D) Exponential Distribution (Storm Cores)  Regional Rainfall Data
Gen. Pareto Distrib. (Complete Storms)

Rainfall Intensity () Exponential Distribution (Conditional on  Catchment Rainfall Data
Rainfall Duration)

Rainfall Temporal Pattern (TP} Sampling from Observed Storms, or Regional Rainfall Data
Muttiplicative Cascade Model

Catchment Rainfall and

Enitial Loss (IL) - Beta Distribution
Streamflow Data




4.3 Modelling of hydrograph formation - runoff routing

The Monte Carlo simulation framework developed in the CRCCH project is inended for application with any of
the non-linear. semi-distributed runoff routing models (e.g. RORB, Laurenson and Mein, 1997) currently used
with the Design Event Approach. A simpler conceptual runoff routing model (with & single non-linear storage
concentrated at the catchment outlet) was used in the initial applications of the proposed Monte Carlo simulation
approach described below. For these medium size catchments (less than 500 km?), the simpler model provides an
adequate indication of the catchment’s runoff routing response. but a semi-distributed runoff routing model
could be expected to produce more accurate resuils. It would also bz more flexible in reproducing special
catchment features, such as natural or artificial storage basins, or the effects of changes 10 the drainage system.

5 INITIAL RESEARCH OUTCOMES

The proposed Monte Carlo simulation methodology has so far been applied 1o four catchments in Victoria,
Australia, ranging in size from 78 to 290 km®. Here the storm core simulation results for the Boggy Creek
catchment {(catchment arca 108 km®, mean anaual rainfall 1020mm) are presented. The simulation procedure was
applied to a partial series of 10,000 storm/runoff events, with an average of 5 evenlis per year, equivalent 10 an
annual series of 2000 years. Figure 3 shows the comparison of the simulated flood frequency curve with the
observed one. Some design flood estimates obtained from the Design Event Approach are also shown,
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Figure 3 Comparison of derived and observed flood frequency curves for Boggy Creek catchment

The evaluation of the results is made difficuit by the fact that the true flood frequency curves are not known. The
magnitude of the 1993 flood in the Boggy Creek catchment (180 m™/s) had only been estimated, and the
available flood record is relatively short (32 years). This introduces considerable uncertainty into the ‘observed’
flood frequency curve. Two sets of resulis are shown for the Design Event Approach, both obtained with the
same RORB model of Boggy Creek catchment. The first set used the initial and continuing loss parameters froin
model calibrations, the second is based on an adjusted continuing loss rate, so as to match the ‘observed” flood
frequency curve for an ARI of 20 years. The flood frequency curve from Monte Carlo simulation with
independently derived design inputs, shown by the heavier line, underestimates the observed flood frequency
curve. However, the second line shows that a much better overall match between simulated and observed flood
frequency curves can be obtained by a small adjustment of the continuing loss rate from 3.5 to 3 mm/h.

Resuits for the other catchments indicated similar performance of the Monte Carlo simulation approach, with
deviations from the "observed® flood frequency curves being generafly less than 25% in the range of flood: that
could be confidently =stimated from flood frequency analysis. Sensitivity analyses indicated that the simulated
flood frequency curves are very sensitive 1o correct representation of the conditional distribution of rainfall
intensity, and moderately sensitive Lo the representation of temporal patterns and initial loss.

Overall, the results of the initial applications show that the principles employed in the Monte Carlo simulation
spproach are sound, and that the approach is workable in practice. The application in gauged catchments is
straightforward and, by eliminating the concept of “critical duration’, avoids arbitrary smoothing of inconsistent
results. The simulation of 10,000 stochastic runoff and flocd events takes less than half an hour on a standard

personal compuler.




6 TURNING THE RESEARCH RESULTS INTO PRACTICAL TOOLS

While the results of the initial applications of the proposed method for deriving flood frequency curves by Monte
Carlo simulation are promising, there is a nced for more extensive testing of the method on a broader range of
catchments. A significant amount of developmant work is still needed 1o turn the methed into a user-friendly 1ool
that can be widely applied in design practice. The method offers the prospect of using much of the cumrently
available regionalised design rainfall and loss data, and should thus also be applicabie to ungauged caichments.
Further research and development should address the following high priority objectives:

® (o incorporate into the method one of the currently used semi-distributed runoff routing models, to allow
more detailed representation of catchment features and modelling of spatially varying catchment rainfail;

= o combine the at-site rainfall frequency estimates for storm cores with regional design rainfall estimates;

= to better represent significant seasonal effects by replacing annual rainfall and loss characteristics by

values derived from a seasonal analysis;
= to improve the regional estimation methods for continuing loss and runoff routing parameters.

Some of these research and develepment initiatives would also benefit the Design Event Approach but, for the
reasons stated carlier, the benefits of any future flood estimation research can only be fully realised, if some of
the fundamental deficiencies in the current approaches are addressed first. The proposed Monte Carlo simulation

approach promises to overcome these limitations.

7  CONCLUSIONS

This paper has highlighted some of the theoretical and practical limitations of the curmrently used Design Event
Approach 1o rainfall-based design flood estimation. It has argued that substantial improvements in design flood
estimates are only possible if the variability and interaction of flood producing factors are better allowed for.
Both the Continuous Simulation Approach and the proposed Monte Carlo Simulation Approach described in this
paper can overcome these limitalions, and have the potentizl to be routinely applied in the future, The Monle
Carlo simulation approach has the advantage that it can utilise some of the models and design data used with the
Design Event approach; this will allow it to be more readily applied to flood estimation in ungauged catchments.
The results of the initial applications of the proposed Monte Carlo Simulation approach are very promising.
Further 1esting, and development of the approach inwo a practical design tool, are theretore highly desirable.
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Joint Probability Description of Design Rainfalls
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SUMMARY
In the currently applied rainfall-based flood estimation methods, design storms for pre-defined durations are

represented by probabilistic desipn rainfall intensitics and fixed temporal pattems. This does not adequately
reflect the great degree of variability of real storm events and, in caichments with strongly non-linear runoff
response, may lead to significantly biased flood estimates. The paper proposes a new definition for storm evenis
of random duration. It demonstrates that a joint probability description of design rainfall using these new storm
events is quite feasible, and explores their potential for practical design flood estimation applications.

1. INTRODUCTION
All rainfall-based design flood estimation methods start from the premise that a probabilistic design rainfall input

can be transformed into & flood frequency output. Available methods range from the simple Rationa! Method to
complex rainfall-runoff simulation models. The degree of simplification adopied by 2 specific method determines
the error and bias introduced into the derived flood frequency distribution compared to the ‘true’ distribution.
The operational 2im of any practical design flood estimation method is to minimise errors and bias by adequately
representing alt aspects of the catchment hydrologic system that significantly influence its flood cutputs.

One factor thought to have a significant influence on derived flood frequency distributions is the large variability
of hydrologic variables from event to event. The non-linear nature of the catchment response to rainfail inputs
means that a simple representation of highly variable inputs or parameter values by their mean or median values,
as in the commoniy applied design event approach, is likely to introduce bias into the derived flood distribution
[1), £2]. The Joint Probability Approach to design flood estimation, being investigated as part of the CRC for
Catchment Hydrology's Project FL1, aims to overcome this problem by an appropriate probabilistic

representation of the key flood-producing or flood-modifying variables,

In this paper we concentrate on the st . rainfall characteristics that arc influential in defining the {lood
frequency distribution. The principal ¢ .o istics of a rainfall evens considered here are its duration, average
intensity and the within-event temporat  .nern. Randnm variability of rainfall over a catchment is allowed for
through an areal reduction factor, while spatial (rends in rainfall, although important in some catchments, have
not been allowed for at this stage. Pre-storm rainfall is important in determining initial loss associated with a
storm cvent. However, as our analysis of Victorian data has shown little correlation between slorm event rainfail
and pre-storm rainfail; the disiribution of initial loss will be derived independently of the storm rainfall analysis.

The research described in this paper builds on previous research applications of the Joint Probability Approach,
in particular by Bldschl and Sivapalan {3] using data from caichments in Austria; our work is specifically
oriented towards exploring the potential of the approach for practical application in Australia. At this stage the
analysis has been restricted to rainfall data from a limited region in Victoria [2].

2, DATA COLLATION AND CHECKING
The derivation of the joint probability distribution of rainfall duration, intensity, and temporal pattern requires

continuously recorded rainfall data from a represcntative set of pluviograph stations. For this stwudy, hourly
rainfall records from 19 pluviometers in South-eastern Victoria, have been used. The stations are spread over a
region of approximately 30,000 km’, extending from Melbourne in the west to Sale in the east. Record lengths
range from a minimum of 14 years to a maximum of 123 yesrs (Melbourne pluviograph), with an average of 23

years.

The hourly rainfalls obtained from the above gauges were checked for homogeneily with respect 1o time. As
stated by many authors, e.p. [4), [3]. and {6], this is an important check before any hydrologic frequency analysis
is undertaken, to avoid biased results due to possible errors in data collection, changes in station environments,
and observers. The CUSUM test [7) (for a change in the mean} and the Mann-Kendal! rank correlation test (4]
(for trend in data series) were applied to test for homogeneity of the annual maxima of daily rainfall totals. Of the
19 pluviometers used, only one station fajled the Mann-Kendall trend test. After checking the station
documeatation and a plot of the data series at the station against time, only § yeass of record had 10 be discarded.




3. STORM EVENT DEFINITION
In the joint probability description of design rainfalls, the key rainfall characteristics (duration, intensity. and

temporal patiem) are treated as random variables. Before determining the joimt distribution of these three
characteristics, a storm definition is required 1o separate the lime series of hourly rainfall observations into
individual rainfall evenis. A storm of interest for flood estimation is one that has the potential 10 produce a flood.
In this study. twotypes of storm events were defincd: complete storms and storm cores.

A complete storm for the purposes of this approach is defined in three steps (Figure 1):

s Step I: A ‘gross’ storm is a period of rain starting and ending with a ‘non-dry hour’ (ie hourly rainfall greater
than C1 mm), preceded asd followed by at least h *dry hours®,

s Step 2: Any period of insignificant rainfall at the beginning or end of a gross storm (referred 10 as ‘dry
pericd’) is then cut off from: the gross storm to produce the “ner’ storm of duration D. (A period is "dry” if all
hourly rainfalls in the period are £ €2 mm, and the average rainfall intensity during the period is s cimm/h).

» Step 3: The net storm i5 then assessed in regard (o its severity and only kept as a ‘significant’ storm if it has
the potential to produce a flood. This assessment is performed by firstly comparing the average rainfali
intensity of the net storm (RFlp) with a threshold intensity for that storm duration: RFI, = FIx(*1,)- A
second criterion is then applied to allow for the possibility of a str~-internal period of heavy rainfall
(duration d and average inlensity RFI, ) producing a flood: RFIT" 2 F2 xt*,). where 2y and ¥y , are

respectively the estimated 2-year ARI intensities for the durations D and d.

In this analysis, we have adopied b = 6 hours, FI=0.4, F2=0.5, C1=0.255 mm/h and C2=1.2 mm. This produced
an average of 7 storms per year of rainfall record.

-
= end of het’storm

g 61 sian of storm

T 5 end of gross’storm
2 44 stormcore | ,

S dry

E

=

£

&

Figure 1: Storm definition

For each complete storm, a storm core can be identified, which is defined as “the mosl intense rainfall burst
within a complete storm™. it is found by calculating the average intensities of zll possible storm bursts, and the
ratio with the threshold intensity #;, for the relevant duration d, then selecting the burst of that duration which

produces the highest ratio. In the example storm shown in Figure 1, the storm core has a duration of 3 hours.

It is clear that the flood production patential of a rainfall event depends not ontly on the storm characteristics but
also on catchment factors that determine the flood regime, such as the time of concentration [8]. A particular set
of storm definition parameters is thus only relevant to catchments within a limited regime range.

4. DISTRIBUTION OF RAINFALL DURATION

With storms selected using the above event definition, storm duration is a random variable with an unknown

probability distribution. Regional frequency analysis by the method of Hosking and Wallis |6] was applied to

identify the distribution of duration of the complete storm and storm core events in the selected rainfall data set.

The procedure is as follows:

» Define 2 homogeneous region of sites with similar rainfall characteristics. Criteria used for forming regions
may include gauge elevation, site physiography, or geographical contiguity with the site of interest, ete.

e Compute the discordancy measure D for each site in the region. Discordant sites have markedly different at.
site sample L-moments from those in the group; therefore their data merit a close examination,

-




» Compue the heterogeneity measwres H, H{(2), and H(3) to assess if the proposed region is acceptably
homogeneous. If these measures exceed a critical value for homogeneity, the region should be redefined.

» For an acceptably homogeneous region, compute the goodness-of-fit measure Z (o select a distribution that
yields an acceptable fit to the data points for each site. The selecied distribution should have [Z]< 1.64.

Preliminary results for complete storms indicate that the whole study arca is net homogeneous with respect 1o
storm duration, but smaller regions can be formed by grouping sites contiguous Lo the site of interest. The 3-
parameter generalised Pareto (GP) distribution has been found 1o be the most appropriate 1o describe the duration
of complete storms in the test region.

For storm cores, the whole study area forms a homogeneous region, and the 1-parameter exponential distribution
was found to be the appropriate distribution. Figure 2 shows the distribution of storm duration (for storm cores
and complete storms) for Station 86071 (Melbourne).
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Fipure 2: Distribution of storm duration at Melbourne

5. CONDITIONAL DISTRIBUTION OF RAINFALL INTENSITY

The strong relationship between rainfall duration and average rainfall imensity means that the disiribution ef

intensity (I} for both complete storms and storm ceres needs to be conditicned on duration. The procedure

adopled to develop intensity-frequency-duration (IFD) curves for complete storms or storm cores is as follows:

« The range of storm event durations D is divided into a number of class intervals (with a mid point for each
class): e.g. 1h, 2-3h , 4-12h, 13-36h, 37h and greater.

¢ For the data in each class interval (except the 1h class), a linear regression ling is fitted between log(D) and
log(I}. The slope of the fitted regression line is used to adjust ihe intensities for all durations to the mid point.

¢ For each class, an exponential distribution is fitted 1o the adjusted data series I; (i = 1, ..., M), where M is the
number of data points in a class. Quantiles are obtained from I(T) = L+ BIn(AT) where Iy is the smallest value
in the series; § = £ /M ~ Ip; A = M/N; N is the number of years of data; and T is the ARl Adopting this
procedure, design rainfall intensity valves I(T) are computed for ARI =2, 5, 10, 20, 50 and 100 years.

s The computed HT) values for each duration range are used to fit a second degree polynomial between log(D)
and log(I) for a selected ARI. This is the basis of the storm core or complete storm [FD curves in Figure 3,

A key issue is whether the IFD curves for the random duration storm events used in our study, IFD.op sium and
IFD, 1000 cone» @F€ similar to the currently used design rainfall IFD curves. The derived IFD curves for a station can
be compared with two other IFD curves: (a) regional design values for fixed duration storm bursts from ARRB7
([9], Chapter 2 and Vol 2), referred to as IFDypy: and (b) values from at-site analysis of storm bursts using
procedures consistent with ARR87 (IFDy}. The 1ype (b) curves are more directly comparable with the at-site

IFD curves developed here.

The ARRS7 bursts and the storm cores used hers have different sampling properties: an observed intense rainfall
spell is included only once in the storm core dalabase, but it may have been included several times in the busst
rainfall database, as 2 shorter duration burst may formn part of a longer duration burst, Thus the burst zeries will
consist of higher values relative to storm cores, and bence IFDyiony core Will be located below IFD,gg. Similarly

with IFD,mp.yom. However, the difference will reduce with increasing duration; at higher durations both the
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samples will share many common events. The empirical results for the 19 stations analysed are generally
consisient with the above sampling properties of bursts, complete storms and storm cores {see Figure 3).

Examination of the results of our IFD analysis for different stations shows a fairly reguotar relationship between
JFD,; 0rm core a0d [FDpyq- The ratio of these two IFD carves, the JFD adjustment factor, depends on D and AR, as
shown ir Tigure 4. The IFD adjusiment factor could be used (o estimate storm core IFD values from ARRS? IFD
values for a given duration and ARI, but further work is required to generalise the relationship of the adjustment
factor with duration and ARI. For complete storms, the relationship between IFD o sorm 20t IFDpyry appears to
be less consisient., offering little scope for derivation of design JFD adjustment factors.
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Figure 3: Comparison of IFD» curves for Melbourne Figure 4: Typical IFD adjustment factors

6. PROBABILISTIC RAINFALL TEMPORAL PATTERNS

The probabilistic description of rainfall temporal patterns is made complex by their multi-variate nature: current
design temporal patterns (Vol 2, ARRS? [9]) are defined by up 1o 24 paramciers. We characterise the time
distribution of rainfall during a storm using srermt mass curves, graphs of dimensionless cumolative rainfall depth

versus dimensionless storm time, with 8 1o 10 equal time increments,

Temporal patterns may vary not only with location, but aiso with season, storm duration and storm severity. The
analysis of rainfall data for the probabilistic description of temporal patterns thus has to start by checking of
observed temporal patterns for differences with respect to season of storm occurrence, storm duration, and storm
depth. This was performed by using contingency tables and the chi-square test for homogeneity, described in
[10]. Garcia-Guzman and Aranda-Oliver [11] also applied the test for the same purpose. It was assumed that, for
the relatively small region considered, the storm patterns did not depend on Jocation within the region.

To apply the test, 2 contingency table was established for a hypothesised grouping (e.g. into seasons), the chi-
square statistic computed and then compared with the value of the statistic that would be obtained from a
homogeneous population (e.g. no distinct seasonality). The tests were performed for different groupings of storm
events in relation (o season, storm duration and severity. For each factor, the events were first grouped into small
units (e.g. single months) and, if the data was shown to be homogeneous within those groups, larger groups ( e.g.
several months) were formed and tested. The results of this analysis for complete storms in Figure 5 indicate that,
when temporal patterns are characterised by mass curves using 10 equal time intervals, the time distributions of
rainfall are heterogencous with regard to season of stonm occumrence, storin duration, and (in one case) total
storm depth. The practical significance of these results for flood estimation is yet to be confirmed by simulation

studies.

For storm cores, the time distributions of rainfall are not dependent on season and total storm depth but on storm
durations, yielding two groups: {a) up to 12 hours duration, and (b) greater than 12 hours duration.

For design flood applications, the observed mass curves in each group now need to be represented by 2 model, to
allow generation of synthetic mass curves. In its simplest form, the model would consist of randomly drawing a
dimensionless pattern from the sample of observed mass curves in the relevant group. The adopted model
employs a muttiplicative structure [8) to disaggregate rainfall from a given depth and duration. [t first finds the
relative rainfall depth at the mid-point of rainfall duration, then at the mid-points of the two intervals created, and

so on. The model was used to gencrate temporal patterns of 8 blocks.
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Figure 5: Factors affecting temnporal paiteres (complete storms)

For each temporal pattern group, the step.. in the generation process are as follows:

¢ Fit 2 beta distribution to all observzd mass curves in the group. The parameters of this distribution are
selected as the medians of the parameters of the individual beta curves in the group.

* (enerate synthetic storm hyetograpas from the beta distribution.

The performance of the generation madel has been assessed by comparing the following characteristics of the
observed and generated sets of patterns:

» the cumulative frequency curve of maximum dimensionless intensity, a measure of peakiness (Figure 6),

» the lag one auto-correlation coefficients, a measure of persistence in temporal patlems, and

s the Huff frequency curves {12), a measure of temporal pattern variability (Figute 7).
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Figure 6: Comparison of cumulative Figure 7: Comparison of Huff frequency curves (December-March,

relative frequency of maximum intensity 13h-24h, up to S0mm)
(June-September, >12h, compiete storms)

The resulis from the application to the data set from 19 stations indicate that the model preserves the
characteristics of observed complete siorms relatively well. The accurate representation of the less complex

storm core temporal patterns poses less of a challenge.

7. JOINT DISTRIBUTION OF DESIGN RAINFALL
Together, the marginal distribution of siorm duration, the conditional distribution of rainfall intensity and the

generation model for temporal patterns define the joint distribution of rzinfall events to be used for design. In
practical application, a set of complete storm or storm core design events would be generated by first generating
a random duration, then a rainfall intensity for this duration and finaily a vemporai pattern for the corresponding
duration and intensity group (at this stage neglecting the seasonality of temporal patterns) {2].

8. DiSCUSSION
The preliminary project results presented in this paper demonstrate that it is feasible to describe design rainfall

characteristics for a site (or a smail region) in a joint probability framework that better accounts for the variability
between rainfall events and the interaction between different rainfall characteristics. Work is currently under way




to combine these ncw design rainfall characteristics for complele storms and storm cores with probability
distributed initial loss values, and to apply them 1o selected test caichments to determine their derived flood
frequency distributions. The method employs a Monte Carlo simulation framework, initially with a lumped, non-
lincar runoff routing model for sensitivity studies, but eventuaily with a semi-distributed runoff routing model to
allow a comparison with results from the current design event approach and from flood frequency analysis.

If these test applications confirm the potential of the Joint Probability Approach to produce less biased estimates
of design floods, further work will be necessary 1o allow the wider application of the approach to practical design
flood estimation problems. In particular, regional methods 1o estimate rainfall event duration, average inlensity
and temporal pattern will be required. For siorm duration, this will involve further research on the regional
variation of the distribmion parameters and the climate characteristics responsible for it. For the design rainfal)
intensities associated with storm cores, it is proposed 10 make use of the established link with the rainfall IFD
data for storm bursts provided in ARR87. The sensitivity studies will determine to what extent the variability of
tetnporal pattems with season, duration and depth influences the derived flood frequency distribution.

Iniuvitively, it appears preferable 10 define complete storms rather than storm cores for use in design flood
estimation, particularly as initial losses are more readily determined for complete storm events. However, our
analyses have shown that complele storms are characterised by more complex and more variable diswributions of
rainfall duration and temporal pattern compared to storm cores, It is also more difficult 10 relate the rainfall
intensitics of complete storms to the design IFD data available in ARRR7. Further work is required 1o fully assess

the relative merits of these two approaches for practical application.

9. CONCLUSION
The research work on joint probability represemation of design rainfal) characteristics described in this paper has

led to the following conclusions:

+» It is quite feasible to derive a joint probability distribution of storm rainfall duraiion, average intensity and
temporal pattern, either for complete storms or for stomm cores (the most intense portion of a complete
storm), but storm cores appear to offer greater potential for praciical application with current design data.

o The reatment of rainfall event duration as a random variahle leads to Jower design rainfall intensities for a
given dura“ion than indicated by the IFD informanon in ARRAT; Tor sinrm cores there appears to be a more
uselul systematic relationship between the ranfall intensines derived by the two approaches.

»  Further work is reguired to test the performance of the overall Joint Probability Approach to design flood
estimation and to develop regional methods for estimating the required distribution parametuers.
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IMPROVED DESIGN FLOOD ESTIMATION THROUGH
JOINT PROBABILITY

P. E, Weinmann, E. M. Laurenson, A. Rahman, T. M. T. Hoang
CRC for Catchment Hydrology, Depl. of Civil Engineering, Monash University, Australia

This paper places rainiali-based fjood hydrograph estimation into the broader context of the ds-
sign tiood estimation process. It shows up weaknesses in the current methods of dealing with sto-
chastic elernents in design flood estimalion and proposes a joint probability approach lo overcome
these weaknesses. The initial application of the approach to a small number of rural catchments in
Victoria, Australia showed promise for further davelopment into a practical fiood design tool.

1 INTRODUCTION

Fiood design generally requires the estimation of a flood frequency curve; Le. a
relationship between the magnitude of a selected flood characieristic (e.g. peak flow
rate or maximum flood level at a site) and its probability of exceedance, This flood
frequency curve can be based either directly on the analysis of observed flood data,
or on simulating floods from more basic hydrologic catchment inputs, like rainfall.
Ideally, the simulation methods wouid try to represent in a realistic fashion ali the
factors involved in producing a fiood and modifying it on its passage through the
catchment. However, practical simulation methods involve a substantial degree of
simplification, relating to the nature of the basic inputs, the physical realism of the
detarministic models invoived, and the treatment of the probabilistic aspects of the
{lood simulation process.

This paper first discusses imporiant distinctions between different flood estima-
tion approaches, in pardicular the fole of deterministic models and stochastic ele-
ments in the floow estimation process. It then explores the potential of a more holistic
fiood estimation approach, based on concepts of joint probability analysis.

2 OVERVIEW OF DESIGN FLOOD ESTIMATION PROCESS

in an ideal situation, fiood design would be based directly on statistical analysis
of a very iong, homogeneous time series of reliable flood observations at the site of
interest. Such analysis would require only limited knowledge and understanding of
the causative factors of floods, as all the important factors would be adequately rep-
resented in the flood data,
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However, in most practical design situations, the adopted flood estimation
methods have to deal with the following limitations in the available flood observa-

tions:

« they are only available for a limited time period,;

» they do not relate directly to the specific site, flood characteristic or flood

magnitude of interest;

» they are only of limited accuracy and reliability;

* they do not form a homogeneous time series, as they reflect changes in cli-

mate, catchment or site characteristics.

These practical constraints on available ficod information limit the scope of di-
rect frequency analysis of flood observations. A degree of extrapotation in time,
space, flood magnitude and generality of results is typically required. This means-that
the design flood estimation process has to start at an earlier stage, using different
design inputs, and transforming them into the required fiood design outputs by
means of models, as indicated in Figure 1. Tha hydrologist or flood designer then
requires a range of supplementary data for the hydrometsorological, hydrological and
hydraulic stages of the estimation process, plus the empirical or process-baset
knowledge incorporated into the models of the transformation processes. Compared
to direct frequency analysis of flood characteristics, the design flood simulation proc-
ess represents a more mature form of the science of fiood estimation: the knowledge
of what has happened must be supplemented by knowledge of how it happened [1].
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The schematic diagram in Figure 1 shows the main stages of the overall proc-
ess; some of them consist of several processes and sub-models with sets of in-
puts/parameters. Together, these sub-models form a complex modelling framework
that should reflect the physical and stochastic nature of the fiood formation and flood
modification process.

While the basic hydrometeorological data consists of continucus time series,
the flood designer's direct interest is on probability distributions of defined events,
€.g. annual, maximum peak flows. In the most complete modelling framework, the
continuous modelling approach (the continuous time series of hydrometeorological
and secondary inpuls) are used to simulate a complete time series of streamflow (or
flood levels) at the point of inferest [2). From this simulated output time series, the
required event characteristics can be extracted and subjected to frequency analysis.
The advantage of this approach is that, when using historic time series data, mos: of
the important dependencies between inputs are implicitly allowed for. However, when
extended input data series are to be derived by data generation techniques, these
dependgncies need to be explicitly built into the data generation models.

In the more commonly applied design event approach, the primary input time
series (rainfail) is subjected to frequency analysis to derive a probability-based de-
sign input. This is combined with representative values of other inputs/parameters to
construct design events of given average recurrence interval {ARI} which are then
transformed Dy the estimation models into output everts of the same ARI. The as-
sumption of ‘probability-neutral’ transformations involved in tiis approach and its po-
tential effect on derived flood frequency distributions is further discussed below.

In the remainder of this paper, an improved stochastic framework for event-
based flood estimation is outlined. The specific focus is on the transformation of de-
sign rainfall inputs to the primary design fiood hydrograph output (hightighted parts of
Figure 1} using joint probability principles. The authors' application of joint probability
concepts to other parts of the flood estimation process is described in [3], [4]), [5] and

(8).

3  DETERMINISTIC AND STOCHASTIC MODELLING ELEMENTS

The =sign flood estimation approaches autlined above contain both stochastic
and deterministic elements. The stochastic elements are the unexplained (random)
factors that give rise to the probability distributions of variables, and the unexplained
relationships between variables that are measured by statistical correlation. On the
other hand, the deterministic modelling elements express those relationships be-
tween variables that are direct enough and sufficiently understood to be represented
by simple parametric models. This stochastic-deterministic modeliing framework has
been formufated and explored by Laurenson [3] and Klemes {1},

It is worth roting that the term ‘deterministic’ is used here not to indicate a
unique causal relationship between inputs and outputs, but rather a pragratic con-
ceptual link that approximates the true (but generally unknown) dependence of out-
puts on inputs with sufficient accuracy for the practical purposss of flood estiration.
The deterministic finks are closely related to the concept of statistical correfation be-
tween variables (or statistical dependence). In the conventional sense, a determinis-
tic relationship between two variables implies a correlation coefficient that has an
absolute value of one. However, the random factors invalved in the transformation of



2 Inter-Regional Conference on Environment-Water 92

INputs 1o outputs (expressed as probability distributions of model parameter values)
mean that the relationship between individual inputs and outputs is not fully determi-
?Lsr:::, but there exists a one-to-one relationship between their probability distribu-
ions.
~ Inpast flovd estimation practice, the degree of sophistication of a fiood estima-
tion method has been judged principally on the basis of its deterministic modelling
elements, depending mainly on whether their basis was purely empirical or physi-
caliconceptual. Over-simplistic assumptions in the determinisiic medelling compo-
nents place clear fimitations on the degree of allowable extrapolation of modelling
results in the time, space and probability domains. Similarly, the representation of
stochastic modetling elements can range from complex to simpiistic, with important
effecis on the flood estimation results. The stochastic elements thus deserve equal
attention in the development of reliable and efficient tiood estimation methods.
_Probability distributions of fiood estimation inputs are generally multi-variate and
mulll-pargmetric in nature {e.g. rainfall should be characterised by distributions of its
average intensity and its variability in time and space). However, for the sake of con-
venience, their dimensionality is ofien reduced (by making simplistic assumptions
regarding some of the dimensions), and one- or two-parameter distributions are as-
sumed for the remaining dimension(s). Similarly, despite their wefl-known random
variabiity, model parameters are frequently assumed 1o be invariant, i.e. their prob-
ability distribution is represented only by a measure of central tendency, the mean or
the median of observed values, '

The adequate representation of dependencies {correlations) between different
inputs and mode! parameters is another important stochastic modelling element. in
many practical design flood estimation methods such dependencies are neglecled,
and the compulationally simpler case of independence is assumed (e.g. initial loss
had been assumed to be independerit of rainfall burst duration {7)). Significant de-
pendencies between variables used in the flood estimation process can be allowed
for either through deterministic relationships between the variables (e.g. rainfall in-
tensity-frequency-duration relationships) or by approximate methods to preserve the
statistical correlations between variabtes. ,

4  THE DESIGN EVENT APPROACH AND ITS LIMITATIONS

The design event approach applied in Austrafia for rainfall-based flood hydrog-
raph estimation [7] is similar to the approach applied in other parts of the world. i
involves the definition of the design inpuls and parameters indicated in the first col-
umn of Table1, and their applicaticn with appropriate deterministic modeis of the run-
off generation and hydrograph formation phases. The basic premise of the approach
is that, by using appropriate representative values of the secondary inputs and modei
parameters, the primarty input of design rainfall for a given average recurrence inter-
val (ARl will be transformed into a flood output of corresponding AR,

Although conceptual in nature, the deterministic models applied with this ap-
proach, and their parameter estimation methods, have a direct physical or empirical
basis. Unfortunately, the solid basis of the deterministic models is not matched by
appropriate treatment of the probability aspects of flood estimation {8). The only sto-
chastic input considered is the average rainfall intensity for a given rainfall burst du-
ration; all model parameters are represented by single representative values, usually
selected as the mean of the values obtained from model calibration runs or, in un-
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gauged catch[nenls. ffom regional estimation equations. Apart from the dependence
of average ragnfail intensity on burst duration, the dependence of rainfall temporal
patterns on rainfall duration and intensity is also allowed for, as is the dependence of
zr);e rainfall areal reduction factor on rainfall duration and catchment area (see Table
This simplistic treatment of the stochastic aspects of flood estimation, assuming
an ARl-neutral transformation of rainfali input to flood output, has been shown to lead
to potentially significant bias in derived flood frequency curves [9]. Furthermore, the
concept of deriving a critical rainfall duration for a given AR! {as the one that results
in the largest flood outputs) has no sound statistical basis.

DESIGN ELEMENT MODELLING CHAR- ADOPTED REPRE- DEPENDENCIES
ACTERISTIC SENTATION MODELLED

Time Basis Season Non-seasonal (Annual)

Rainfall Event Input Event Type (ET) Stochastic Events

{Complete Stoms
or Storm ‘Cores’)

Duration (D) Stochastic ET
Averaga Intensity {1) Stochastic ET, D
Areal Reduction Factor  Deterministic D, Area
Temporal Pattern Stochastic ET,. D1
Spatial Pattarn Uniform

Loss Paramelers Initial Loss (IL) Stochastic ET,D
Contirnting Loss {CL} Mean (from calibration)

Runioll Rouling Paramelers  Non-linearity Param. (m) Fixed Value
Attenuation Param. (K} Mean (from calibration) m

Baseflow input Basefiow al Peak Mean (of observations)

Table 1 Summary of stochastic elements in adopted joint probability modelling approach
(Bo'd text indicates modifications 1o current Design Event Approach)

5 MODELLING COMPONENTS OF IMPROVED APPROACH

A reliable and efficient design flood estimation approach should concentrate on
those elements in the estimaticn process that have a dominant influence on the out-
put flood frequency distribution(s). These include critical deterministic and stochastic
modelling elerments, as well as their interactions. One important aspect that needs to
ha considered in this context is the strongly non-linear response of most hydrologic-
hydraulic systems to system inputs - it can have a significant influence on the derived
flood frequency distributions.

The proposed improved approach to design flood estimation can be termed sto-
chastic design event simulation. It employs Monte Carlo simulation techniques to de-
rive the empirical distributions of selected flood output characteristics from distribu-
tions of key inputs and parameters {10}, The simulation uses the same deterministic
modelling elements as the design event approach, but joint probability concepts are
introduced to represent more correctly the most important stochastic elements in the

flood estimation process. These inciude:

i e S Bany Saatiados M ey ORDRATES
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« definition and use of stochastic design events,

* ‘representation of most important design rainfall input characteristics and loss

parametiers by probability distributions,

» modeliing of all important dependencies between inputs and parameters.

. Table 1 summaiises the adopted representation and highlights the differences
with the currently applied design event approach. Two different definitions of sto-
chastic rainfall-runoif events have been developed and trialed in the research by the
Cooperative Research Centre for Catchment Hydrology (CRCCH). A complete storm
event includes all the significant rainfall within a rainfali event that has the potential to
produce fiood runoff, while a sform core represents only the most intense part of a
complete storm, i.e. the pari whose average intensity has the highest ARI [11]. With
both types of events, rainfall duration is treated as a random variable.

The input/parameter probability distributions are based on the analysis of ob-
served storms and resulting hydrographs. For gauged catchments, this can be based
directly on rainfall/streamflow data, but for ungauged catchments the distributions
have 1o be determined from regional estimation methods. In the example applications
used to test the approach, the rainfall inputs were described by probability distribu-
tions of rainfall duration, average intensity and temporal pattern, with an additional
distribution for a loss parameter. Table 2 summarises the types of data and the sta-
tistical distributions/models used in the stochastic description of these in-
puts/parameters. Due to the multi-parametric nature of temporal pattems, their vari-
ability was represented either empirically, by re-sarnpling of observed pattems, or by
daia generation techniques, using a muitiplicative cascade modsl {12].

CHARACTERISTIC BASIC DATA TYPE OF STATISTICAL MODEL
Rainfalt Duration (D) Regional Rain{al! Exponential Dist. (Storm cores)

Gen. Pareto Dist. (Comp. siorms)
Rainfall Intensity (1) Catchment Rainfall Exponential Distribution

{with adjusted upper tail)

Sampling from observed storms

Rainfall Temporal Pattern (TP} Regional Rainfall
Or Muitiplicative Cascade Modal

Injtial Loss (IL) Catchment Rainfall’Streamflow  Beta Distribution

Table 2 Derivation of probabitity distributions of key inpuls/parameters

In the example applications of the joint probability approach described beiow, a
single non-linear storage was used to transform the runoff input into a flood hydrog-
raph output at the catchment outlet (K and m are respectively the coefficient and the
exponent in the power function relating storage to discharge). Compared to the
commonly used, semi-distributed runoff routing models such as RORB [13], this in-
volves some loss of modelling accuracy and flexibility [12].

6 RESULTS AND DISCUSSION

- The prototype version of the joint probability methodoiogy has so far boen ap-
plied to four catchments in Victoria, Australia, ranging ir. size from 78 to 290 kv’ The
application in the Avoca River, Boggy Creek and Tarwin River catchments was
based on storm core events [10], while complete storms were used in the La Trobe
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River catchment {12]. The Monte Cario simuiation procedure was applied to a partial
series of 10 000 storm/runoff events, with an average of 5 evenis per year,

Figure 2 shows the empirical distribution of flood peaks for the Boggy Creek
catchment produced by the joint probability simulation procedure summarised in Ta-
bies 1 and 2, and compares it with the observed flood series. It should be noted that
the individual design inputs/parameters have been derived independently, with only a
small adjustment fo the fixed continuing loss parameter to produce a beiter overall
match between simulated and observed distributions. It is particuiarly noteworthy that
the simulation methad was able to correctly reproduce the non-linearities in the flood
production process over a large range of fiood magnitudes.

There is considerable scope for improvement of the procedure by more detailed
representation of the following modelling elements:

o use of semi-distributed or distributed runoff routing model,
seasonal rather than annual analysis of rainfall and loss characteristics,
stochastic treatment of spatial variations of catchment rainfall,
stochastic treatmant of continuing loss parameter.
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Fig. 2 Comparison of simulated flood frequency curve with observed partial fiood series
{Boggy Creek catchment, storm core events)

The practical scope for the last three of these improvements will depend on the
availability of appropriate data bases for an adequate definition of the seasonal.disf-
tributions of rainfall and loss characteristics. In particular, the relatively sparse distri-
bution of rain gauges over caichments makes it difficult fo define spatial patiemns of
rainfall, but current developments in radar-based rainfall estimation are expected io
improve this situation,

For application to ungauged catchments, the distributions of rainfail and ]oss
characteristics will have to be derived from regional estimation techniques. As indi-
cated in Table 2, our work has shown that the distributions of rainfall duration and
temporal pattern can be derived from regional data. [t has aiso been shown [19,12]
that a strong link exists between the locally derived conditional distributions of rainfall
intensity for storm cores and complete storms, and the regional design information
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for rainfall intensity-frequency-duration provided in Australian Rainfall and Runoft [7].
With regard to the regional estimation of loss parameter distributions, previous werk
at the CRC for Catchment Hydrology [14] has shown some promise, provided the
dependencies of losses on season, rainfall event type and duration are allowed for.

In a further improvement, the stochastic description of inputs and parameters
could be refined to reflect not only the natural variability but aiso the uncertainty due
to various error sources.

7 CONCLUSION

This paper has placed rainfall-based flood hydrograph estimation into the
broader context of the design flood estimation process. It has shown up weaknesses
in the current methods of dealing with stochastic elements in design flood estimation
and proposed a joint probability approach to overcome these weaknesses. In the ini-
tial application of the approach, ihe rainfall duration, rainfali intensity and temporal
patiern, as well as a loss model parameter, were represented by probability distribu-
tions and then transformed into an empirical flood distribution, by means of Monie
Carlo simuiation.

Testing on a limited number of caichments has proved the feasibility of the ap-
proach and showed promise for further development into a practical flood design tool.
One strength of the approach is that it can use proven deterministic modelling com-
ponents (loss and runoff routing models) and combine them with improved repre-
sentations of stochastic elements. Compared to the continuous modeling approach,
it has the advantage of being able to draw on availabie regional design information
for application to ungauged catchments. Further testing on a broader range of
catchments and identification of critical modeliing components is desirable.
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A New Modelling Framework for Design Flood Estimation

P E Weinmann', A Rehman', T Hoang', EM Laurensen’, R J Nathan®
'CRC for Caichment Hydrology, Department of Civil Engineering, Monash University, Australia
* Sinclair Knight Merz, Victoria

Summary: The widely vsed Design Event Approach to rainfall-based design flood estimation is based on the assumption that the
Average Recurrence Interval of the main design minfall input (average intensity for given rainfali duration) is preserved in the
transformation to the design flood outpuL Recent research has drawn altention to the limitations of this approach. The proposed
new modelling framework uses existing loss medels and runoff ronting models as the deterministic elements in the simulation of a
derived flood frequency curve. However, it makes explicit allowance for the probability-distributed naturc of the key variables snd
for the dependencics between them. The key variables described in the paper are the duretion, average intensity and temporal
pattern of complete storms or intense rainfall bursts, and the initial loss parameter.

i INTRODUCTION

Flood design and floodplain mansgement decisions require
estimates of flood peaks and comesponding flood levels. 1f
adequale streamflow data js available at or aesr the site of
interest, the flood estimates can be derived directy from flood
frequency analysis, but in catchments with limited streamflow
data or in caichments subject to major land use changes,
design fioods are gencrally cstimated based on design
rainfalls. Depending on the purpose of the flood estimate,
simple design rainfall-based methods are spplied, such as the
Rautional Method for urban drainage design, or more detniled
modelling approaches are adopted, as in the case of flood
design of major structures.

With all metheds of rainfall-based design flood estimatior, a
key issue to be resolved is how the design rainfall inpat for a
given Average Recumence Interval (ARI) ean be wansformed
into a design flood puiput of corresponding ARL For the
simple case of the ‘Probabilistic Rational Method® [Australian
Reinfall and Runoff (ARR)S7, Chapter 5, (1}] this problem
has been directly addressed by using calibration data from
gauged catchments to ensure that the derived design runoff
coefficient for the gauged site correctly transforms the design
rainfall frequency curve into the “observed” flood frequency
curve at the catchment outlet. However, the simplifyin>?
assumptions made when transferring the design runoff
coefficients from pauped to ungavged catchmenis place severe
constraints on the applicability and accuracy of the method.

For the unitgraph or runoff routing modelling approaches,
such calibration is much morc difficult to achicve, as several
interacting inputs and parameters are involved, The current
practice aims 1o define hypothetical ‘design evenis® of model
inputs and mode] parameters that can be considered
representative in a probability sense, that is they should
irapsform the design rainfall input of given AR into a flood
output of the same ARL The problem of finding the eritical
rainfall duration for a specific design sitvation is addressed by
a trial-and-error approach, adopting the rainfall duration that

produces the largest flood outputs for a given input ARI. With
this design practice, the equivalence of input and output AR
is not intrinsically assured but, unless checked against
regional or at-site flood informalion, remains an assumption
that i5 satisficd only for a limited set of conditions (2). The
question to what extent the current approach introduces bias
into flood estimates has only been partly resolved (3).

The purpose of this paper is Lo outline mejw:h directed at
finding an alternative, more holistic, madelling framework for
rinfali-based design flood information,

2 DESIGN EYENT APPROACH - LIMITATIONS

The rainfail-based floog estimation 1echnigues used currently
are based on the Design Event Approach in that design
rainfall intensity for specified duration and ARI is unsed in
combination with “typical values” of other relevant model
inputs and parameiers lo obtein design flood cslimaies, as
indicated in Figure 1. .

The key assumption invelved in the Design Event Apptoach is
that the representative design values of the Inputs/parameters
at the above steps can be defined in such a way that they are
“ARI ncutral™ i.e. they result in a flood output that has the
same ARI as the rainfall input. However, there are no definite
suidelines on how to select the appropriate valucs of the
inputs/parameters in the above steps except for the rainfall
depth, which is described by a probability distribution, A
designer is commonly in (he simation to sclect a
representative input/parameter value (e.g. median value from
a sample of inpuis or firted paramncter values) from a wide
range. For example, in the case of eastem Queensiand, the
recommended range of initial loss is 0 to 140 mm [ARRE7,
Chapter 6, (1)]. Due 10 the non-lineanty of the transfonmation
process involved, it is generally not possible to know a priori
how a rcpresentative value for an input should be selected 10
preserve the AEP. The arbitrary ireatment of various
inputs/parameters in the Design Event Approach can lead 10
inconsistencies and significont bias in flood cstimates for




given ARL This is likely to result in systematic under- or
over-design of engineering swuctures, both with important
CCONUMIC CONSEqUENCES.

Design Rainfall input
(Dursilon = D, ARl = 1)

= Averagm iy

» Areal Raduction Factor
= Temporsl Poatbem

= Arsal Pritem

Fig 1 Design Event Approach 1o rainfall-based design flood
estimation

3 OPTIONS FOR IMPROVEMENTS

To overcome the limitations asseciated with the Design Event
Approach, a number of methods have been proposed: (a) an
‘Improved” Design Event Approach; (b) & Joint Probability
Approach; and (e} Continuous Simulation.

In the *Improved’ Design Fvent Approach, the same flood
estimation procedure (Figure 1} is used but with better {more
representative} estimates of design paraineters and inputs,
‘This approach could provide improvement to sonwe extent, but
will still be subject to the basic limitation of the current
Design Eveat Approach: the probability of the resulting flood
is assumed to be equal to that of the causative rainfall event

The Joint Probability Approach recognises that any design
flood characteristics {e.g. pcakflow) could result from a
vatiety of combinations of flood producing factors, rather then
from a single combination, as in the Design Event Approach.
For cxample, the same pesk flood could result from a
moderete storm on & saturated basin or a large stotm on 2 dry
basin. Thus, a Joint Probability Approach, where the output
probability distribution reflects the influence of all the
probability distributed inputs and parameters and accounts for
their comelation structure, will provide a more realistic
representation of the flood generation process.

Another promising altemative to the Design Event Approach
is Continuous Simmlation using deterministic catchment
models or rainfall-runoff process models, This approach is
being evaluated in a parallel research project by the CRC for
Catchment Hydrology (4). Although the approach appears o
hold considerable potential in the long termy, as it triss to
model the processes involved in flood generstion more
directly, it will have lo overcome some major difficulties (e.g.

adequate modelling of soil maisture redistribution during
normal and flood periods) before it can provide a practical
design tool for routing flood estimation.

The greawer immediste promise of ibe Joint Probability
Approach stems from the fact that il can readily wtilise the
(deterministic) models and much of the design data used with
the current Design Event Approach. The approach therefore
has the potestial to lead to significant improvements in flood
estimation with relatively modest efforts in the pear future, It
is the approach that forms (he basis of the modelling
framework outlined in this paper.

4 JOINT PROBABILITY APPROACH - OVERVIEW

The aim of the Joint Probabilily Approach is the
determination of a derived distribution of a selected flood
characteristic. This design flood estimation procedure can be
thought of as a combination of deterministic and siochastic
hydrologic modelling elements (S). The stochastic elements
are reflected in the adopted distributions of the input variables
and parameters, as well sz in the assumed correlation
stucture. These are generally determined not only from the
dala at the sile but from a broader information base for the
region. The transformation of catchment inputs into cutputs is
deserministic in nature, and is achieved by means of a rainfa)i-
rupoff model.

The Derived Distribution Approach was pioncered by
Eagleson (6) who used an apalytical msthod (o derive he
probability distribution of peak streamflow from an idealised
V-shaped flow planc. His approach assunwd that sworm
duration and intensity are independent random variablss with
a joint exponential probability density function. He adopted a
pantial arez munoff gencration model end a nmioff routing
model based on Kinematic Wave Equations. A sitilar
analytical approach has been adopied in some later
applications {c.g. 7) for idealised conditions, but it has limited
applicability 1o real caichment situations.

A number of researchers (eg, 5, B, 9) have used an
approximate method in that the continuous disoributions of
hydrologic varisbles have been discretized by dividing the
possible range of a random varizble into class intervals. The
Theorem of Total Probabitity is then applicd to derive the
joint probability distribution of the output in a discrete form.
An example of this approach is the "Transposition Probability
Mamrix Method® developed by Laurenson (5). The method
partitions a design problem into a sequence of basic
probability transformation steps, each step transforming an
input distribution inlc an outout distribution by means of a
deterministic relation between the input and output of a step.
The output distribution from the previous step then becomes
the input to the next step. The approach has been adopicd in
severa! practical cases {c.g. 2, 10).

Some investigators (e.g. 3, 11, ¥2) adopted a Monte Carlo
Simulation Approach to deternine a derived flood
distribution. This involves random sampling from continuous
distributions of input variables and paramneters, and use of a
rainfall-rynoff mode! to ¢buin the flood hydrograph, The




procedure is repeated N times (N in the order of thousands),
and the N different values of the output variable are then used
19 determine the derived distribution.

We found that most of the previous applications employing
the Joint Probobility Approach were confined fo theorclical
siudies; mathematical complexity, difficulties in parameter
cstimation and limited fiexibility constrain the application of
these techniques in practical siwations (13}, From the
cousideration of practical applicability and ability to sccount
for dependence between the input variables, Monte Carlo
simolation and the application of the Total Probability
Theorem to discrelized distributions appear to be the most
promising methods to detcrmine derived flood frequency
distributions. Among these, Monte Carlo simulation offers
greater flexibility.

5 KEY ELEMENTS OF ROPOSED MODELLING
FRAMEWORK

The proposed modeiling framework is based on thiee

principal elements:

) 2 (deterministic) hydrologic modelling framework 1o
simu)aie the flood formation process;

(it) the key model variables [inputs and pmameters) with
their probability disttibuticns; and

(iii) a stochastic mwodelling framework to synthesise the
derived  flood  distribution from  (he  model
input/parameter distributions.

These clements are discussed below:

5.1 Hydrologic Modelling Framework

The proposed hydrologic model of the fluod formation
process involves the same components as the models most
cornmonly used with the current Design Event Approach (see
Figure 1}: a runoff production function {or loss model}, and a
runoff wansfer function {or renoff routing model).

Runoff Production Function - Loss Model

A nunoff prodoction model (or loss model) is needed to
partiion the gross rainfall input into effective runoff (or
rainfall excess) and loss. Most of the previons derived
distribution studies (e.g. 6, 9) have used an empirical
equation {such es Horton's equation) or a2 more physically
based equation (such as Phillip and Green Ampt equations) 1o
estimate the ruinfall excess.

In design practice, use of simplified lumped conceptual loss
models is preferred over the mathematical equations bacause
of their simplicity and ability to approxitnate catchment runoffl
behaviour (J4). This is particularly true for design loss which
is probabilistic in nature and for which compticated
theoretical models may not be required. On this basis, the
initial loss-continuing loss model appears 1o offer the greatest
potential for the present joint probability study.

TFransfer Function - Runeff Reuting Model

A catchment response model js needed to convert the rainfall
cxcess hyetograph produced by the Joss model into a surface
runoff hydrograph. The models commonly used in previous
joint probability studies include: Kinematic Wave Model (e.g.

6}, Geomorphologic Unit Hydrograph Model (c.g. 7). Usit
Hydtograph Method (e.g. 8, 11), and Clark’s Model (9).

In Australian flood design practice, it is common 10 vse o
semi-distributed and nop-lincar type of catchment response
mode), referred to as runoff routing model, This type of modc!
appears preferable to the models mentioned above because,
being distributed in nature, it can accoumt for the arcal
veriastion of rainfalf and losses, and consider catchment non-
lineasity. Examples of models in this group intlude RORB
{15) and URBS (16), 2 fivther development of the concepts
embodied in RORB. There is a considerable body of
experience avalleble on appropriate paramster values for
RORB and similar models for different types of catchments in
Australia. Based on its ready adaptability for the purposes of
this project, the URBS model has been adopted.

52 Variables to be Treated in Probzbilistic Fashion

The major factors affccting runoff production are: minfall
duration, rainfall intensity, temporal pattern of rainfall, areat
pattern of rainfall and storm Josses. Factors affecting
bydrograph formotion are (he caichment response
characieristics embodied in the ronoff routing model {mods)
lype, structure, and parameters) and design baseflow. 1deelly,
all the veriables should be treated 2s random varinbles, but
consideration of a smaller cumber of wvariables without
sacrificing much accuracy is preferable, to reduce the data
tequirements and allow casier application in practice. The
selection of variabies to &2 considered as random variables is
described below. :

Rainfall varinbles:

Rainfall depth. as the direct input to rainfall-runoff process, is
wndoubtedly the most important variable, and its probability
distribulion is alreany being considersd in the Design Event
Approach, Rainfall events that have the potential to produce
floods vary considerably in their duration, and the in¢lusion of
rainfall duration as a random variable in this study is thus
considered cssential. In order to amalyse the probability
distribution of rainfall duration, a minfdll event needs 1o be
defined in such a way that both the rainfall duration and the
average rainfall intensity for that duration become random
varisbles funlike the burst definition in ARRS7 (1) where
rainfall bursts have predelermined durations}.

Rainfall temporal pattern varies significantly between storms
and has been found to have a significant effect on the shape
and peak magnilude of a flood hydrozraph (3). Differences of
up to 50% in flood peaks may resull from different assumed
tzmporal patterns (17). From the findings of these studies, it is
clear that lemporal patiera is an important variable, and needs
to be considercd as a random variable.

For design flood estimates, the effects of random variability of
rainfall over a catchment are considered through the use of
arecl reduction faciors (ARFs). These modify the design
peint rainfall intensities to average catchment rainfall
intensities, The single-valued ARFs in the current edition of
ARRET (1) or the more recent values produced for Vicioria by




the CRC for Caichment Hydrology (18) are considered
adequate for this study.

An areal rainfall paiiern needs to bz considered where there
are systematic trends in catchment rainfall, such as strong
orographic effects or “rain shadow™ areas. For the present
study, the modelling of the rainfall areal paitem as a random
varinble is considered less important beceuse: (i} for most
catchments, consideration of rainfall areal pativm as a random
varigble will have a lesser effect on the results than is the case
for rainfall duration, intensity and temporal pattern; and (ji)
due 1o limited rainfall data availability on a catchment scale, it
would be difiicult to derive jts probability distribution.

Loss Variables:

In the previous joint probability studies, loss has been found
to be the most influential variable (e.p. & 19). The strong
influence of Joss values on design finod estimates is based on
the fact that loss conditions can vary widely, and a given
rainfall occuxting on a dry watershed produces a significanily
smaller flood than the same rainfall occuring on 2 wet
watershed, In many cases, loss is the most important factor
and hencs will be treated as a random variable here,

Catchment Response Paramaters and Baseflow:

It is expected that the incorporation of the probabilistic nature
of the rainfall and icss characteristics will result in significant
reduction of bias and uncertainties in design flood estimates
associmed with the current Design Event Approach.
Consideration of runoff routing and baseflow variables as
random varisbles would then be of secondary importance
{13): thus the effects on design flood estimates of randomness
of these variables may be examincd as a refinement 1o the
present mediod ot a later stage

To summarise, we will consider rainfoll duration, rainfal!
intensity, rainfall temporal pattern and losses as primary
random variables in the new modelling framework.

5.3 Stochastic Modelling Framework

The basic idez underlying the proposed new modelling
framework is that the distribution: of the flood outputs can be
directly determined by simulating the possible combinations
of hydrologic model inputs and parameter values. For each
run of the combined loss and runoff routing model, a specific
value for each input and model parameter witl be drawn from
its respective distribotion. Any significant correlation between
the variables can be allowed for by using conditional
probability distributions. For example, the strong correlation
between rainfall duration and intensity can be allowed for by
first drawing a value of duration and then a value of intensity
from the conditional distribution for that duration interval.

The two stochastic modelling frameworks lo be investigaled
in the project are the deterministic simulaton approach and
the stochastic or Monte Carlo simulation appraach. In e first
approach, employed with Laurenson’s  Transposition
Probability Matrix Method (5). the: probability distributions of
mode] inputs and parameters are used in a discrete form. and
the probability distibution of the output from a modelling

step is defermined by enumerating all possible combinations
and calculating their cumulative probabilitics. The procedure
is then repeaied for the nexi modelling step, using the outpul
distribution from the previous step as the input distribution for
the next step.

In the Monte Carlo Simulalion approach, all inpuls and
parameters required for a model nm are selected randomiy
from their probability distibuions (Lut allowing for
significant comelations through the use of condilional
distributions). The results of the un (ie. the flood
characteristics of inlerest) are then stored and the Monte Carlo
simulation process is repeated a sufficiently large number of
times to fully sefleet the range of vadation of input and
parameter values in the generated outpul.  The comptational
efficicncy of the simulation process can be enhanced by
judicious sampling from the probability distributions (12).
The output velues of a selected flood characteristic (e.g. peak
inflow {0 a dam) can then be subjected to a frequency analysis
to determine the flood quantiles of interesl.

The proposed modelling framework provides the ability to
concurrently determine flood characteristics at many points of
interest in a system. As an example, it will be possible 1o
determine frequency curves for both inflows and outflows
from a reservoir or a retarding basin. In ths case of outflows
from a storage with significent variation at initial storage
content, the probability distribution of initial storage content
will be required as an additional model input. Again,
important correlations would peed to be considered through
conditional probability distributions,

In principle, it would he possible 10 extend the modelling
framework by coupling a hydrologic model with other
components that have probabilistic inpuis or paramelers, e.g. 2
hydraulic model or a Mlood damage model (12).

& DISTRIBUTIONS OF KEY VARIABLES
6.1 Rainfall Durption: and Average Rainfall Intensity

The initial research has concentrated on the identification of
the probability distributions of rainfall intensity and duration.
In the proposed modelling framework, a rainfall event needs
1o be defined in such a way that both rainfall duration (D) and
average imensity (I) become random varisbles. Several
previvus applications {¢.g. 6, 8) treated siomm duralion and
intensity in simplified fashion as independent sandom
variables; this is likely to result in a sieeper devived flood
frequency curve (3). A statistical description of rainfal}
similar to Bloschl and Sivapalan (3} seems > be appropriate
and has been adepted here. It uses the marginal distribution of
duration together with the conditional distribanion of rainfall
intensity given a duration. The conditional distribution of
rainfall intensity is equivalent to the commonly used intensity-
frequency-duration (EFD) curve, widely used in design
practice. This approach capnures the correlation existing
between rainfall intensity and duration.




Complete storms:

At the beginning, we need a meaningful storm definifion. We
define a storm rainfall event as starling at the onset of rain,
being separaied from the next event by ot Jeast Y hours of
2zro rainfall, and having a minimum average iniensity above a
given threshold. As the average rainfal] intensity reduces with
durstion, the threshold intensity needs to be defined as a
function of duration, expressed as a proportion of the design
rainfall intensity for a selected frequency. Thus the adopted
threshold intensity for duration D is: ID) = b x i, where b
it a reduction factor and *Ip is the design rainfall intensity of
2 years ARI and duration D, as provided in ARRS? (1). A
smaller valez of b would result in a greater number of events
with lower average intensity; an approprisle vaive of b needs
to be determined by trial-and-crror, A rainfall event with an
average intensity less than the threshold value but conaining a
shoster peziod of intense rainfall embedded within the storm is
also of interest. For this type of ¢vent, a new threshold value
bb x 2, is used, where d is the duration of the inlcnse part.

The mainfall events selected by the above procedure are catled
complete storms henceforth. With this definition (for Y = 6
hours, b = 0.5, bb = 0.6), rainfall events have beep identified
for a pumber of pluviograph siations in Victoria. The resulting
disuibution of rainfall duration has the shape of a tuncated
Gamma distribution, as zhswn in Figure 2. A conditional
distribution of average rainfall intensity Ip for complete
sterms of duration D can also be derived.

40

Frequency

i

0
s 415 65 TS

Dusation (hou}

25 175

Fig 2 Distribution of rainfall duration (compleie storms)

Storm-cores:
The available IFD information "in ARRE7 is not based on

compicte siorms but on periods of intense rainfall within
compleie siorms, called bursts, If this existing information is
1o be used with the proposed new approach, it is more vseful
to vndertake the design rainfsl] apalysis in terms of stom
bursts. However, as the duration of the bursis in the ARRE?
analysis was predetermined rather than random, it is necessary
16 consider a new storm burst definition that will produce
randomly distributed storm burst durations. These newly
defined storm bursts will be referred to as storm-cores

hencefonth.

For cach compleie storm, there will be one storm-core; it is
the burst of that duration which is associated with the greatest
relative average intensity compared 1o the threshold. With this
storm-core definition, the distribution of storm-core duration
for a number of pluviograph siations of Vicloria has been
oblained; it has the shope of an exponential distribution, as
shown in Figure 3.

The key issuc is whether the conditional distribution of
rainfall intensity for bursts following this new definition will
be gimilar to the ARRS? IFD curves. The IFD curves derived
in this project, based on storm-cores, are clearly lower than
the ARRR7 values. Further testing on a broader data set is in
progress io confirm the nature of the relationship between the
two types of IFD curves,

40
30
B
§ 2
E
10
0 =
25 175 325 475 625 715

Duraion thour)
Fig 3 Distribution of rainfall durstion (storm-cores)
6.2 Rainfall Temporal Pattern

The methods avaiiable to represent the variability of temporal
patiems in observed storms range from a database of actua)
storm {or runoff) pattemns (9), aver empirical disributions of
storm profiles (20), to theoretical distributions and synthetic
storm patterns (21). A tade-off has to be made between
simplicity of approach and flexibility of application,
particularly when the approach is to be applied to ungavged
catchments.

Temporal patterns are -strongly correlated with rainfall
duration, and weaker correlations with rainfall intensity and
scason glso appear to be present. If proven, they will be
modelied through conditiona! distributions of storm patierns.

6.3 Initia) Loss Parameter

For a specific catchment, initial Joss values associated with
diffcrent storms vary more significantly than continuing
losies. The focus in this project is thercfore on deriving a
probability distribution of initial loss from observed storm
rainfall and sucamflow data. We proposed o base these
distributions mainly on the results of the empirical analysis of
data for South-Eastern Australia by Hill et al. (14).




The work of Hill et al. {14} has shown strong comelations
between initial loss and rainfall duration, and haw initial Joss
reduces with decreasing rainfall burst duration, We propose to
address the still unresofved issue of a possible corrslation
between initial loss and rainfall intensity in & pa.licl project,
using resuiis from continvous rainfall-runofl modelling,

7 CONCLUSION

Previous research and practical expericnce have demonstreted
the theoretical and practical limitations of the cumently
applied Design Event Approach to rainfall-based design flood
estimation, One aliernative approach investigated in the CRC
for Catchrent Hydrology's Rescarch Project FL1 is based on
the application of joint probability principles to the key
variables involved in the flood generation process.

Initial project work, including an extensive literziure review
{13), has led to the following conclusions:

+ The Joss models and runoff ronting models currently used
in Awustralia form a suitable basis for the delerministic
hydrologic modeiling framework.

+ The key model inpuls and parameters to be representzd by
probabitity distributions are the duration, average inicasity
and temporal patiern of complete storms or intznse rainfall
bursts, and the initial loss parameter {and, il storage
outflows are of interest, the inital sworage content).

+ Further enalysis and testing is required to determine the
extent to which currenty available Australian flood design
data can be used to definc the required probability
distributions of these variables,

* Monte Carlo simolation provides a smitable stochastic
modelling framework to synthesisz the derived flood
characteristics distributions from ¢z model inputf
parametcr distributions.

Work is continuing to address the outstanding research issues
and 1o test the modelling framework in a range of practical
design flood estimation sitvations.
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