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Summary

The objectives of this thesis are the numerical verification of the theory developed

by Derzho and Grimshaw for large-amplitude solitary waves with recirculation

regions in stratified fluids (1997) [16] and axisymmetric rotating flows through

cylindrical channels [15]. This study is further complemented by the verification

of the theory by Grimshaw and Yi (1991) [32] for the generation of solitary waves

by stratified flow over topography and the theory by Derzho and Velarde (1995)

[17] for multi-scaled internal solitary waves.

For this purpose two novel numerical methods are developed based on the

pseudospectral scheme by Rottman et al (1996) [58]. The time-dependent fully

nonlinear governing equations are integrated using spectral methods for the spa-

tial integration and a low-storage Runge-Kutta method for the temporal integra-

tion. For the case of stratified flow the governing equations are considered with

and without the Boussinesq approximation. In order to include the inertial effects

discarded in the Boussinesq approximation the Runge-Kutta method is coupled

with a Liouvillo-Neumann iteration. For both models a form of the generalized

Poisson equation is solved using direct methods.

The governing equations are given in chapter 2 and the asymptotic theory

for the four applications is described in chapter 3. The numerical methods are

described in chapter 4 and chapter 5 presents the results for the four applications,

followed by the conclusion in chapter 6.
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Chapter 1

Introduction

In 1834 John Scott Russell [59] was the first to record the existence of a new kind of

wave, which he observed on the surface of water flowing through the British canals.

Originally termed 'the great wave of translation' the observed wave consisted of a single

hump and became known as a solitary wave due to its localized horizontal extension

and non-periodicity in space. The discovery of solitary waves was particularly exciting

because their permanent nature seemed to contradict prevalent shallow water theory.

A theoretical equation for the shape of these waves was discovered by Kortweg and de

Vries (1895) [41] but the ubiquitous nature of solitary waves in many physical systems

was noticed only in the 20th century.

In 1965 Zabusky and Kruskal [73] discovered the mathematical significance of soli-

tary waves with respect to the Korteweg-de Vries equation. In their numerical inves-

tigations they observed several remarkable qualities. For instance that solitary waves

emerge unchanged from interactions with other solitary waves and that several con-

servation laws can be derived. Solitary waves are nonlinear waves of permanent form

which exist due to a balance between nonlinear wave-steepening effects and linear wave

dispersion. These discoveries lead them to coin the name 'solitons' for solitary waves,

signifying the attributed particle-like qualities. Since these fundamental discoveries non-

linear wave theory has become a fruitful field of study and nonlinear wave equations

similar to the Kortweg-deVries equation were found in a wide variety of physical con-

texts such as plasma physics, lattice dynamics and optics. A derivation of the KdV

equation and generalizations can be found in Gardner et al (1974) [23] with methods
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for solving the KdV equation.

This study focuses on the structure of internal solitary waves in a stratified fluid

and inertial solitary waves in an axially-symmetric rotating flow through a cylindrical

channel. Of particular interest are large-amplitude solitary waves with vortex cores. In

a stratified flow the structure, as well as the generation of large-amplitude solitary waves

by localized bottom topography in a channel of finite depth are investigated. The study

of internal solitary waves is further complemented by the study of multi-scale finite-

amplitude solitary waves.

The study of solitary waves in stratified fluids is significant with regard to the

ocean, where solitary waves of large-amplitude can threaten marine as well as submarine

constructions. Moreover, the results are relevant for atmospheric systems, regarding "lee

waves" as well as the "Morning Glory" phenomenon (also known as "roll clouds"), which

pose dangers to aviation. In both cases the solitary waves are believed to be directly

related to the evolution of bores. Inertial solitary waves with vortex cores propagating

in a rotating flow through a cylindrical channel are important, since they can provide

insight into the still unexplained phenomenon of vortex breakdown. Furthermore, they

are applicable to the construction of turbines, jet propulsion in aviation and space

technology as well as hydrodynamic technology.

In the following, the theoretical background and development of the applications

considered in this study are discussed.

Internal solitary waves

The first indication of internal waves in the ocean can be found in Nansen (1902),

who noticed naturally occurring internal waves - stumbling upon them on his famous

'Fram' voyage - and was confronted with the "dead water" phenomenon, which incited

Ekman (1904) to investigate this phenomenon. Initially interfacial internal waves were

studied by Stokes (1847) as well as von Helmholtz (1868). Subsequently, internal waves

in continuously stratified fluids were investigated by Lord Rayleigh (1883) and Love

(1891).
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The first elementary theoretical investigations of internal waves for a continuously

stratified ocean are from Fjeldstad (1933) [20], where the first comprehensive overview

of linear internal wave theory, for a rotating earth, along thermoclines and methods for

detecting internal waves at sea are given. Defant (1952) [14] provided an overview of

internal waves of tidal periods and discusses stability conditions of internal tidal waves,

but it was not until Long (1953/54/55,1964) [47, 48, 49, 50] and Dubreil-Jacotin (1937)

[19] that a complete theoretical and experimental foundation for the study of internal

waves - comprising linear and nonlinear "heory - was presented.

The governing equations for the system of six homogeneous partial differential equa-

tions describing the eigenoscillations in a frictionless two-stratified ocean without hori-

zontal limitation are derived by Krauss (1957) [42] and measurements of large-amplitude

waves in the ocean are presented, Krauss (1958) [43]. Magaard (1965) [52] derives exact

wave equations for non-stationary two-dimensional internal waves of finite amplitude in

incompressible continuously stratified media, where a first integral is found identical to

Long's equation (1953) [47] for stationary lee-waves.

Linear wave theory of inertial and internal waves is thoroughly presented in the work

by Krauss (1973) [44] and a comprehensive introduction to internal wave characteristics

as well as examples are presented by Lighthill (1967) [46].

In general solitary waves in stratified fluids can be characterized by the depth of the

fluid - ranging from shallow to deep - and the magnitude of nonlinearity, which is re-

lated to the amplitude of the disturbance. Small amplitude disturbances are treated in

a weakly nonlinear long wave approximation, typically leading to a Korteweg-de Vries

(KdV) type of equation for shallow fluids, or to the intermediate depth equation for

deep fluids (see, for instance the recent review by Grimshaw (1997) [30]). Inclusion

of higher-order terms in the asymptotic expansion enables the theory to be extended

to larger amplitude disturbances. For instance Gear and Grimshaw (1983) [24] have

extended the theory for shallow fluids to second order. However, this amplitude expan-

sion approach is generally not suitable for large amplitude waves, and in particular fails

to generate solutions with vortex cores, which are commonly observed in natural flows
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and tank experiments. Further, the analysis of Pelinovsky and Grimshaw (1997) [57]

indicates that solitary waves of large amplitudes may be unstable, and evolve into struc-

tures with vortex cores. The steady flow of a uniformly stratified, incompressible and

inviscid fluid in a channel of finite depth was first studied extensively by Long (1953)

[47]. Long independently derived a nonlinear equation commonly referred to as Long's

equation, which was originally obtained by Dubreil-Jacotin (1937) [19]. Long's equation

is applicable for the study of steady solitary waves in a stratified, incompressible and

inviscid fluid, when the solution has no closed streamlines, and there is no upstream

influence on the flow. Mclntyre (1972) [54] discusses Long's hypothesis of no upstream

influence in uniformly stratified or rotating flow.

Long's equation is linear for uniform stratification in the Boussinesq approximation

yielding an equation similar to that for linear waves (Chan et al (1982) [39], Tung et

al (1982) [66], Leonov and Miropol'skiy (1975) [45]). It follows that solitary waves are

then precluded. While for incompressible fluids and uniform stratification the Boussi-

nesq approximation removes the existence of solitary waves, Long and Morton (1966)

[51] and Grimshaw (1980/81) [28] have shown that allowance of the slightest compress-

ibility makes solitary waves possible. Grimshaw (1980) [28] derives evolution equations

for long nonlinear internal waves in compressible fluids, with the aim of comparing

these equations to their counterparts in incompressible fluids. Both the KdV and the

intermediate depth equation are discussed for dry and moist atmospheres. It is shown

that the effects of compressibility, or non-Boussinesq terms, are generally small, but

measurable and are manifested mainly in the nonlinear term of the evolution equation.

Grimshaw (1969) [27] derives integral constraints for steady recirculating flows of nearly

incompressible fluids, arising from the action of a small amount of viscosity and heat

conduction. He shows that waves with recirculation regions are isothermal, vorticity is

constant and that there is an analogous result for an axially symmetric flow.

Although Long's equation is linear in the Boussinesq approximation for uniform

stratification a small departure from the Boussinesq approximation, or a small departure

from uniform stratification again make solitary waves possible (see, for instance, Benney
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and Ko (1978) [5], Grimshaw and Yi (1991) [32]). For a fluid of finite depth with

rigid top and bottom boundaries, the absence "of recirculation regions limits Long's

equation to the study of waves of amplitudes less than a critical amplitude, for which a

stagnation point is situated at the upper boundary for a wave of depression (and at the

lower boundary for a wave of elevation). Note that waves of depression are considered

henceforth; waves of elevation are analogous. For amplitudes greater than the critical

amplitude a vortex will be generated near the upper boundary. The appearance of

closed streamlines terminates the strict validity of solutions to Long's equation, but

Derzho and Grimshaw [DG] (1997) [16] have shown that the range of solitary wave

solutions of Long's equation can be extended to solutions possessing vortex cores. The

usual solitary wave solution valid in the outer region is matched to another solution in

the inner region, thereby extending the study of solitary waves to amplitudes in excess

of the critical amplitude. To achieve this, it is necessary to include a small vortex core

region near the upper boundary, in which the flow is stagnant to leading order. The

solutions so obtained exhibit amplitude-width relationships characteristic for observed

large amplitude waves, which are known to possess closed streamlines and a pocket of

recirculating flow; the width of the disturbance increases with amplitude.

In the Boussinesq approximation and for uniform stratification Long's equation is

linear, without restriction to the wave amplitude. Solitary waves can then only be

generated by a deviation from these conditions, as shown by Derzho and Grimshaw

(1997) [16] , although waves resembling solitary waves may sometimes be generated by

topography. Grimshaw and Yi (1991) [32] derive an unsteady fully nonlinear, weakly

dispersive equation encompassing small departures from the case of the Boussinesq

approximation with uniform stratification, which also includes the effects of localized

topography. Rottman et al (1996) [58] report a detailed investigation, using numerical

simulations of the fully nonlinear unsteady equations in the Boussinesq approximation

for a uniform stratification, and compare their results to solutions of the finite-amplitude

long-wave equation (FALW) derived by Grimshaw and Yi (1991) [32].

In this study the inertial terms neglected in the Boussinesq approximation (called
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Boussinesq Approximation*

non-Boussinesq

Source of Nonlinearity

deviation from uniform (linear) stratification
N2 = N$ + go2f{z), (N=Brunt-Vaisala fre-
quency) and/or topography

combination of deviation from uniform strati-
fication and inertial effects and/or topography

Table 1.1: Table of the sources of nonlinearity for the stratified flow in a channel. (*) The
Boussinesq approximation can be regarded as the zeroth order in a perturbation expansion of all
primitive variables. Note: a deviation from uniform flow (ie. shear flow, U ^ const) introduces
nonlinearity too.

non-Boussinesq effects in the sequel) are included. For this purpose, a novel numerical

model is developed to model the time-dependent fully nonlinear governing equations for

incompressible, inviscid stratified flow in a channel of finite depth including the non-

Boussinesq terms. This part of the study thus aims to verify, firstly, the FALW equation

for flow over topography and secondly, the asymptotic theory of Derzho and Grimshaw

(1997) [16] [DG] for large-amplitude internal solitary waves with vortex cores. Brown

and Christie (1998) [11] present fully nonlinear internal solitary waves with vortex cores

in a continuously stratified incompressible inviscid, shear free Boussinesq fluid, but

do not include a different governing equation for the recirculation region. Numerical

experiments suggest that such waves are not stable since the same equation was used

in deriving the solution outside and inside the recirculation region.

Three sources of nonlinearity supporting the existence of solitary waves, or solitary-

like waves can be identified. First, the nonlinearity induced by the deviation from

uniform stratification in the Boussinesq approximation. £xond, the nonlinearity in-

duced by the non-Boussinesq terms and third, the role of the bottom topography (see

Table 1.1).

Subsequently, the aforementioned numerical model will be employed to study multi-

scaled internal solitary waves. Multi-scale solitary waves are solitary waves usually

governed by a generalized Korteweg-de Vries type equation and resemble an isolated
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hump situated on a bigger wider hump. Multi-scale internal solitary waves have been

derived by Derzho and Velarde (1995) [17] for the case of a shallow stratified fluid

with a free surface. Capillary dispersion and gravitational nonlinearity are considered

to represent the prevalent nonlinear balance necessary. See Benjamin (1992) [4] for

solitary waves in a two-fluid system and an interface subject to capillarity. In this

study, the internal solitary waves are derived in a channel of finite depth with no flow

boundary conditions. The derivation of multi-scale internal solitary waves is motivated

by the experimental observation of bore-like waves with smaller scaled solitary waves

located on top. The purpose of this part of the study is to show that solitary waves of

such type exist and are of permanent shape.

Inertial solitary waves

Apart from internal solitary waves, this study also focuses on large-amplitude inertial

solitary waves with vortex cores in an axisymmetric rotating fluid flowing through a

cylindrical channel, l u e interest in a rotating fluid - commonly known as swirl flow

- stems from the stabilizing effect of a rotating flow on high intensity combustion in

engines, gas turbines, industrial furnaces and many more propulsion mechanisms. Of

particular interest is the optimization of performance, stability, combustion intensity of

flames and the reduction of pollution of aforementioned technological applications, see

Gupta (1984) [33].

The existence of a recirculation zone can improve the efficiency of the burning process

in the combustion chamber, when the propagation velocity of the flame front equals the

propellant flow at the inflow opening of air where a sudden expansion in the cylindrical

channel exists. The recirculation zone is utilized as a flame stabilization by providing

an efficient burning region. The similarity of recirculation zones to vortex breakdown

effects is noted here; see Benjamin (1978) [3] for more details on the vortex breakdown

phenomenon.

Recirculating regions in fluids are generated by sudden expansions in pipes and are

propagated downstream for great lengths, Vennard (1961) [67]. Oswatitsch (1956) [56]
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discusses the gas dynamical context of the abrupt expansion of a channel. A closely

related occurence is cavitation behind a disk. The accompanying discontinuity surface

between the recirculation region and the main flow can create a low pressure surface with

a pressure below the vapor pressure of the fluid causing it to vaporize. The resulting

cavities greatly diminish the preformance of the system and can result in erosion of the

structures, Streeter and Wylie (1975) [63].

This study examines the unsteady behaviour of the large-amplitude solitary wave

solutions derived by Derzho and Grimshaw [15] [DG] by solving the fully nonlinear

time-dependent equations for an axially-symmetric rotating inviscid, incompressible flow

through a cylindrical cylinder. For this purpose a novel numerical model is developed.

The steady-state solutions derived by DG utilize the Bragg-Hawthorne equation (1950)

[9] for vorticity, for which circulation and head are invariants along streamlines. The

Bragg-Hawthorne equation, for a rotating flow in a cylindrical axisymmetric geometry,

uniquely defines all those streamlines originating upstream. The introduction of a re-

circulation zone necessitates the subdivision of the domain and the use of a modified

governing equation for the region of fluid where closed streamlines exist, similar to the

case of stratified flow.

In the limit of exact uniform inflow conditions the Bragg-Hawthorne equation is

linear, thus precluding the existence of solitary wave solutions. However, DG showed

that small departures from uniformity in the inflow conditions can provide the nonlin-

earity needed to obtain solitary waves. Further DG showed that the solutions can be

extended in amplitude to contain recirculation zones. The situation is closely related

to large-amplitude solitary waves with vortex cores in a stratified fluid. In fact, the

derivation is analogous. Instead of the Dubreil-Jacotin-Long equation, which is linear

for uniform stratification in the Boussinesq approximation, the flow is governed by the

Bragg-Hawthorne equation.

Hence the rotating flow can be compared to the stratified flow. The centripetal force

has a similar role to the gravitational force for stratified flow. Likewise, the sources of

nonlinearity for the generation of solitary waves can be deduced, as was done for the
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stratified flow. Sources of nonlinearity are the deviation from uniform axial and rotating

flow as well as topography. Grimshaw (1990) [29] considers the flow of a rotating fluid

past an axisymmetric obstacle placed on the axis of a cylindrical channel. The amplitude

function satisfies a forced KdV equation when the upstream flow contains radial shear

and/or radially dependent angular velocity. Thus solitary like waves are generated.

Grimshaw and Yi (1993) [31] show that for the case of a flow with uniform angular

velocity an equation different to a forced KdV equation is needed, similar to the finite-

amplitude long-wave equation (FALW) for stratified flow over topography [32].

Outline

This study develops novel numerical methods to integrate the time-dependent fully non-

linear governing equations for the stratified flow in a channel including topography, as

well as the fully nonlinear equations for the rotating flow through a cylindrical channel.

The main purpose is to verify the existence and permanence of large-amplitude inter-

nal and inertial solitary waves with vortex cores in these settings. Numerical evidence

for the existence and permanence of large-amplitude solitary waves is provided by con-

sidering the long-time behaviour of characteristic quantities such as shape, maximum

amplitude, phase speed and maximum adverse velocity at the top of the recirculation

region. The aim is to provide quantitative results substantiating the validity of the

solutions derived by Derzho and Grimshaw (1997) [16, 15]. Moreover results for the

generation of large-amplitude internal solitary waves by topography and multi-scaled

internal solitary waves are presented for the fully nonlinear equations.

In order to model the fully nonlinear unsteady governing equations for stratified

flow - including the non-Boussinesq terms - a novel numerical method is proposed

to solve the discrete elliptic problem arising from the inviscid equations. It consists

of a high-resolution pseudospectral method based on the scheme used by Rottman

et al (1996) [58] for spatial integration and a low-storage Runge-Kutta method for

temporal integration coupled with a Liouville-Neumann iteration for the solution to a

fixed-point problem. The simulations allow comparison of the fully nonlinear equations
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with the finite-amplitude long-wave model of Grimshaw and Yi (1991) [32], and the

large-amplitude solitary waves with vortex cores of DG.

The numerical technique developed for the rotating flow consists of the solution of a

generalized Poisson equation using direct methods and a pseudospectral scheme for the

spatial integration coupled with a Runge-Kutta method for the temporal integration.

Alternate methods for solving the generalized Poisson equation based on finite difference

iterative methods will be described and their capabilities related to the direct method

used.

This study is organized into seven chapters. The second chapter introduces the

time-dependent governing equations for the stratified flow in a channel of finite depth

in the Boussinesq approximation, as well as the fully-nonlinear non-Boussinesq case.

The equations for the rotating flow through a cylindrical channel are also stated. In

chapter three the theoretical asymptotic solutions are derived. The applications being

the large-amplitude internal solitary waves with vortex cores in the stratified flow for

the Boussinesq and non-Boussinesq case, the multi-scale internal solitary waves and

the rotating flow. The finite-amplitude long-wave equation derived by Grimshaw and

Yi (1991) [32] is described briefly. In the fourth chapter the novel numerical methods

derived throughout the course of this study are presented, the model for the stratified

flow in a channel and the model for the rotating flow through a cylindrical channel,

followed by the numerical results for all four applications in chapter five. Chapter six

provides the conclusion of this study followed by the Appendix.



Chapter 2

Governing Equations

In this chapter, the governing equations are discussed for the case of a density-stratified

uniform flow through a channel of finite depth, encompassing the equations in the

Boussinesq approximation and including the terms neglected in the Boussinesq approx-

imation, which will be called non-Boussinesq subsequently. Followed by the governing

equations for the rotating flow of a constant density fluid through a cylindrical channel.

2.1 Stratified flow in a channel of finite depth

Consider a two-dimensional inviscid incompressible fluid of undisturbed depth D, with

rigid upper and lower boundaries. The governing equations in standard notation are,

p{wt + u

+px =

+ pg =

Pt+u-Vp =

V-u =

0,

0,

0,

0.

(2-1)

(2.2)

(2.3)

(2.4)

The perturbation velocity u in the a;—direction, is relative to a uniform flow U, so that

the x—component of u is U+u. The continuity equation (2.4) is satisfied by introducing

a perturbation streamfunction xj) such that u = — xpz, w = ipx. Next, eliminating the

pressure p it follows that,

— (9 +
P

Pz

P
Dtp' + wpz

= o,

= o,

(2.5)

(2.6)

11
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Figure 2.1: Sketch of the geometry for the two-dimensional flow of undisturbed depth D. The
uniform background flow is denoted by U. The functions p(x,z,t), rp(x,z,t) represent surfaces
of constant density and streamfunction respectively. The undisturbed level is indicated by the
dashed horizontal line. The elevation of the topography is given by z = h{x) and its maximum
height by a. The characteristic length scale of the topography is L. Note that for the case of
the solitary waves with vortex cores the uniform flow is reversed and the topography vanishes,
i.e. a = 0.

where the total derivative is given by

at dx
(2.7)

J(-, •) is the Jacobian denned by J(a, b) = axbz — azbx, and the total density p is defined

by

The

p(x,z,t) = p{z)+p'{x,z,t). (2.8)

vorticity w is given by u = wx — uz -

Figure 2.1 shows a sketch of the geometry. Note that the topography is included in

the diagram, but vanishes for the case of the large-amplitude solitary waves with vortex

cores. The boundary conditions are

= 0 on z = h(x),

= U on z = D,

(2.9)

(2.10)

ensuring that there is no flow through the boundaries. When there is no topography

present the function for the shape of the hill is set to zero, h = 0. To identify the

Boussinesq approximation, it is appropriate to introduce the parameter K, which is

chosen such that the non-Boussinesq case is represented by K — 1, and the equations

m
li

t
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a

p(x ,z )

Figure 2.2: The last term in equation (2.11) can be thought of as the vector product of the
density gradient Vp = {px,0,pz) with the acceleration of fluid particles a = (ai,0,a3). given
by Vp x a. Notice that since the flow is two dimensional the vorticity vector w = u> j has only
one component in the y-direction.

in the Boussinesq approximation by K = 0. Thus the vorticity equation (2.5) can be

written as

K
} • (2-11)

Po + >HP — po) po + K (P — po) *• Dt Dt

The last term in equation (2.11) represents the inertial contribution to the vorticity

equation, see Figure 2.2. It contains the variation of the velocities with time and space,

and is neglected in the Boussinesq approximation. Furthermore, in the Boussinesq

approximation, the total density p = po + K(P — po) is set to a reference density p = Po,

except where it acts as the gravitational term, which is the case for K = 0 in equation

(2.11).

This term is retained in the non-Boussinesq case, whicii means that vorticity is

generated by a nonzero horizontal density gradient, as is the case in the Boussinesq ap-

proximation, and also by a variation in the horizontal and vertical velocity components,

that is, inertial terms in the horizontal and vertical directions.

The variation in the perturbation density is given by equation (2.6), or in full,

Note that the bouyancy frequency N(z) is defined by N2 = —gpz/po and is constant in

the Boussinesq approximation for uniform stratification. For the case of the flow over

topography the initial conditions are that ip = 0 and p' = 0 at t = 0. Together with the
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boundary conditions (2.9) and (2.10), these represent the case of an impulsively acceler-

ated obstacle, and mimic the initial conditions in tow-tank experiments in a laboratory.

The isopycnal surfaces are initially, horizontal, and thus intersect the obstacle surface.

This creates a small region of non-uniform distribution of density at the bottom bound-

ary, which is swept rapidly downstream after the flow is initiated. The sper -al filter

that is used filters out these modes and leaves the main flow behaviour unaltered. This

small abnormality is seen in all results, yet gives no further reasons for concern, since

the long-t^ne behaviour near the obstacle is not affected (for a detailed description see

Rottman et al (1996) [58]).

The propagating solitary wave solutions considered here are viewed in a reference

frame moving with the wave, this is achieved by setting the background flow U to the

phase speed of the wave U = c.

The governing equations for vorticity and density perturbation in the Boussinesq

approximation in explicit form are given by

ut = -Uus - J{ip,u) - a*, (2.13)

al = —Uax — «/(?/>, a*) + w • iV2, (2-14)

where

(2.15)
Po'

2.2 Rotating flow in a cylindrical channel

Consider the axisymmetric flow of an inviscid, incompressible swirling fluid of constant

density, confined to a channel of circular cross-section. In standard notation the equa-

tions for the unsteady flow through the cylindrical channel are,

I

ut + uux + vur + px = 0,

w2

Vt + UVX + VVT h Pr = 0,
r

vw
Wt + UWX + VWT -\ = U,

ux + ~(rv)r = 0.
r

(2.16)

(2.17)

(2.18)

(2.19)
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Figure 2.3: This diagram shows the coordinate system for the rotating flow in a cylindrical
channel of radius a. U is the uniform flow, w the rotational velocity and u, v the axial and
radial velocity respectively. The coordinate axes are x, r and 9 which is directed along the
circumference of a cylinder of radius r — const.

The coordinates are (x, r, 6) with x being in the axial direction, r in the radial direction

and 6 in the azimuthal direction, see Figure 2.3, {u, v, w) are the corresponding velocity

components, and p is the pressure. Eliminating the pressure, p, using u = i/>r/r

v — —ipx/r yields a vorticity equation and an equation for the circulation C = wr

rt = I

ct = l-

(2.20)

(2.21)

where

Note that the solitary wave solutions will be viewed in a reference frame moving with

the phase speed of the wave.

I
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Chapter 3

Applications

r

This section describes the four applications that are considered. For the case of strati-

fied flow through a channel the large-amplitude internal solitary waves with vortex cores

are derived, a short summary of the finite-amplitude long-wave equation for flow over

topography derived by Grimshaw and Yi (1991) [32] is given, followed by the construc-

tion of multi-scaled internal solitary waves. In the fourth subsection the large-amplitude

inertial solitary waves with vortex cores in a rotating constant-density fluid are derived.

3.1 Large-amplitude internal solitary waves with vortex
cores

For a reference frame moving with the wave in the positive x-direction at the phase

speed U = c a modified streamfunction <j>(x, z) for steady flow can be introduced,

il>(x,z) = -Uz + 4>{x,z). (3.1)

Then, for steady flow, equation (2.3) for conservation of density implies that

P = p{4>). (3-2)

Elimination of the pressure between the momentum equations (2.1,2.2) and making

use of the transformation (3.1) yields a single equation for the streamfunction 4>

| i | | with q = \np.

Using equation (3.2) this can be written as

16
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or

where J, the Jacobian operator, is given by J{A, B) =AXBZ- Az Bx. It follows that

for a vorticity function 9{<f>), determined from upstream conditions, the streamfunction

<£has to satisfy the following nonlinear equation, derived by Dubreil-Jacotin (1937) [19],

~( (3.3)

its equivalent to Long's equation for nonlinear leewaves for c = 0 [47]. The functions G

and p{4>) can be obtained on those streamlines originating upstream, where we assume

that $ -> 0, so that

cz, (3.4)

p ->• p{z), (3.5)

where p(z) is the basic density profile. It follows that

p{4>) = P(#/c), (3.6)

(3.7)

Dimensionless coordinates are introduced based on the height of undisturbed fluid

D and the phase speed c,

A- r' - - z'--
cD" X Dy D

and consider a basic density field close to uniform stratification

z') = po(l-cz'-a2f(z')),

(3.8)

(3.9)

where p0 is the reference density, having a value typical for water. Omitting the prime

superscripts subsequently the non-dimensionalisation (3.8) and the basic density field

(3.9) transforms equation (3.3) into the following equation, which, after omitting the

prime superscripts, is given by

act>)-\a((t>l + (l>
2
z-l) + O(a2)=0, (3.10)

\
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where the eigenvalue A is given by

18

ogD
(3.11)

Here A is an inverse Proude number, and scales with unity with respect to the small

parameter CT, which characterizes the weak stratification. The boundary conditions,

corresponding to equations (2.9,2.10), are

<j)x = 0 on z = 0,1

x —> ±oo.as

(3.12)

(3.13)

Equations (3.10,3.12,3.13) provide a complete formulation of the problem if all stream-

lines originate upstream, thus excluding the possible presence of a recirculation region.

Derivation of the steady solitary wave solutions

The steady solitary wave solutions are derived by introducing the stretched variable X =

ex and scaling the stratification parameter a with e2. Thus an asymptotic expansion of

<f) and A in terms of e2 is substituted into the governing equation (3.10)

4>(X,z)
fe=0

(3-14)

(3.15)
fc=0

which yields the zeroth order solution, < °̂) = z + A(X)sinn7rz and A(o) = IT2. Here

only the first mode n = 1 is considered. A secularity condition applied at the next order

then gives the amplitude equation,

+ \M A2 + KU A3 + 2 [A M(A')dA' = 0.
o JO

(3.16)

The nonlinear function M[A) is given by

M(A) = 2TT2 I A sin2(7r2) fo{z + A ein(irz))dz. (3.17)
Jo

Note that the parameter K is zero in the Boussinesq approximation and unity otherwise.

I

f

h
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Figure 3.1: Schematic picture of the three zones: (I) outer zone, (II) inner zone and (III)
recirculation zone. The recirculation region can be assumed to be stagnant to leading order.

t „

Solution to the Inner Region

Equation (3.16) holds in the whole x—domain when the amplitude A is less than the

maximum possible amplitude A* — i , for which no recirculation region exists, i.e.

A < A*. However, if A = A* at some point \X\ = XQ (where the centre of the wave is

situated at the origin of the x-axis for convenience) on the wave profile, then there is an

incipient flow reversal, and in the region \X\ < Xo, an asymptotic solution containing a

vortex core needs to be constructed. Thus, three regions of the domain can be identified,

each of which has a different asymptotic solution. First, the outer zone - denoted by

(I) in Figure 3.1, secondly the inner zone - denoted by (II), and the recirculation region

itself- denoted by (III).

The recirculation region can be assumed to be stagnant to leading order, as was

shown by DG. The streamfunction is set to ip = const, inside the recirculation region,

since the theoretical structure is not known. Yet the physical flow has of course no

discontinuity in the horizontal velocity u at the boundary between zone (II) and (III),

see Figure 3.2. The resultant change in the solution for a smoothed matching between

the solutions of zone (II) and (III) is small, and since it does not cause numerical

instability, it is omitted.

The solution in zone (II) is found by introducing a perturbation to the maximum

amplitude A*,

with 0<B(O<h (3-18)

ft i
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i

Pn.r

Figure 3.2: Schematic picture of A) the coordinate system for the stratified flow in a channel, B)
cross-section of the density field at the center of the recirculation zone, with non-zero vorticity
and static instability of the density field and C) the same as B) but with constant density.
The fluid inside the recirculation region is stagnant to leading order, thus streamfunction and
density are constant inside the recirculation region to leading order.

where £ = qx is the stretched variable for zone (II). Since e << q, it follows that

/iC2 = e2 and the total length scale of the recirculation region tends to zero as fj. -)• 0.

Further details of the balance of parameters are omitted here, since they can be found

in DG. Substituting equation (3.18) into equation (3.14), together with the condition

that the streamfunction <f> and the pressure have to be continuous across the vortex

core boundary, yields an approximative equation for B(£), again using an appropriate

secularity condition,

where

and

2M(A+) - •%- [ ' M{A')dA'
A* Jo

V =
(27T.U):

(3.19)

(3.20)

(3-21)

For a solution to exist the right-hand side of equation (3.19) must be positive. This

yields a bound on ;/ and /i, which in turn places an upper bound on the maximum

possible amplitude, that is,

= -R(At) * f
Z

= At, + Umax-

(3.22)

(3.23)

\

JJ
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The eigenvalue A ^ is given by

M(A')dA

Suppose that the function f(z') is given by

so that equations (3.17,3.20,3.24) yield

9TT2

M{A) = — - a 3 A 3 + 87rf(a3 + | a 2 ) A2,

and

4 32 155 9TT

where a\ is chosen conveniently to remove the linear term in M(A),

ai = - a 2 - ( l - a3.

Introducing i2 = —Â 1) equation (3.16) becomes

where
4?r 8 97T2

and r2 = - r - a 3 .

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

Equation (3.30) can be readily solved. In the following the two cases of a Korteweg-de

Vries (KdV) (T2 = 0) and modified KdV outer solution (n = 0) are considered, which

is then matched to the inner solution obtained by solving for B in equation (3.19).

1. Equation (3.30) simplifies to the KdV equation for T2 = 0 (a3 = 0), which has

the solution

U X * ) . (3.32)
n 2 '

2. For n = 0 equation (3.30) reduces to the mKdV equation which has the solution

A = 4= sech L(\X\ - X*). (3.33)
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The matching conditions X* for these two cases are given by

and

X, = |X0| - -In ( t , / ^ + Jt2— - 1 ) for T2 = 0,
I \ V T\ V Tl '

- I In for = 0.

(3.34)

(3.35)

Here Xo = e^o, is the halfwidth of the recirculation region, which is found by solving

equation (3.19).

The phase speed of the solitary waves is givea by

c = (3.36)

and the linear phase speed is given by Co = \fagD/-K. To leading order the nonlinear

phase speed can be approximated by

I J2. \

c = (3.37)

For T<I = 0, ie. 03 = 0. corresponding to the KdV outer solution, the eigenvalue Â 1^ is

— ' 1 -^max T - _ 9
10 £

(3.38)

If the recirculation region is absent equation (3.32) represents the solution over the

entire domain. The eigenvalue A^1) is then given by

l

where since A^) = —t2,

KdV —

Dropping the O(e4) term in equation (3.37), the phase speed of the solution with the

recirculating region can be expressed as

CGD | T 2 = 0 = CKdV - ^2
c0 (2TT) 2 5

15

where

CKdV = Co I 1 + -T-pT\Ama.x I >

(3.39)

(3.40)
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is the phase speed of the KdV solution without the recirculating region. Note that cKdV

increases with amplitude Amax.

Considering the case T\ = 0, one notices that the parameter K - which distinguishes

the Boussinesq approximation from the non-Boussinesq case - is absent from equation

(3.28). Thus the phase speed for the solution with the mKdV outer solution in the

Boussinesq approximation (K = 0) is the same as in the non-Boussinesq case (K = 1).

For T\ — 0 the eigenvalue A^1) becomes

= -T2-(Amax
7T

2 (2?r) 2 5

15 e2 (3.41)

Similarly, if the recirculation region is absent., aquation (3.33) is the amplitude equation

for the entire domain and its eigenvalue A ^ can be computed from

Amax =

yielding

for the eigenvalue and

CmKdV = Co ( 1 + ^ 2 T2A

(3.42)

(3.43)

(3.44)

for the phase speed. Note that the phase speed of the mKdV solution increases with

Afnax m contrast to the KdV solution which increases with Amax only. The phase speed

of the solution with recirculating region is

/ -2 1 I
CGD|n=O = Co I 1 + 7TZ9T2-(

The relative phase speed

c0 (27r)2

7TZ 15
(3.45)

(CGD -

for the two outer solutions (KdV/mKdV) considered and the Boussinesq and non-

Boussinesq case (K = Q/K = 1) is plotted in Figures 5.1 and 5.12 for the case of a KdV

outer solution together with the phase speed of the conventional KdV solution. Figure

5.2 shows the phase speed for the mKdV outer solution together with the corresponding

conventional mKdV phase speed for K - 0. The GD solutions are of the order O(10~3)
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and O(10"2) slower than the phase speed of the KdV and mKdV solutions and faster

than the speed of the linear long wave (see equation (3.40)). Also the width of the

initial streamfunction field increases with amplitude, see Figure 5.3. Note that in the

KdV case A ^ = -Ti/ir + 0{H), and in the mKdV case A^ = -T2/TT2 + O(/x). Thus in

both cases X» — \X0\ is O(/ia/2), which is required for consistency with the scaling for

the inner region.

3.2 Stratified flow over topography

In the numerical simulations, a Gaussian curve was chosen as the obstacle shape,

(i-in)2

h(x)=ae L* . (3.46)

The dimensionless quantities based on the amplitude of the hill a, the depth of the fluid

D, the horizontal dimension of the hill L and the flow speed U are introduced,

a L „ ND , o N2D
K * P (347)P ( )

where N is the Brunt-Vaisala frequency and /? the Boussinesq parameter which defines

the strength of the stratification, K is the inverse Froude number and g the gravitational

constant. The resonant points are where K — n, with n = 1,2, •••. Small values of

a/D and moderate values of L/D, with the inverse Froude number in the range 0.95 <

K < 1.2, are considered. Equations (2.5,2.6) together with the boundary conditions •

(2.9,2.10) complete the formulation.

FALW model ervation

Grimshaw and ' (1991) [32] derived the finite-amplitude long-wave equation (FALW)

for the resonant interactioi of flow with topography. Moreover an improved numerical

solution to the FALW equation was presented by Rottman et uc (1996) [58]. The FALW

equation is given by

G(A, A')^dX' + (U - cn)A - ^m(A) - \ ^ - ^ ( 1 - -A)h = 0. (3.48)
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The kernel G{A,A') is a complicated function of A and A' given in [32, 58], where

A(x,t) is the amplitude of the nth linear long wave mode, and Cn = ND/nir is the

linear long wave phase speed. Equation (3.48) holds for amplitudes less than a certain

critical amplitude, that is, \A\ < A* = D/nn in dimensional form. The non-Boussinesq

term in the FALW equation is included in m(A), and is asymptotically given by

m{A) = 3A2, (3.49)

as the Boussinesq limit is approached (/? -> 0), see [32].

3.3 Multi-scale internal solitary waves

Multi-scale solitary waves have been derived by Benjamin (1992) [4] in a two-fluid

system relying on the balance of capillary and gravitational dispersion and nonlinearity.

Subsequently Derzho and Velarde (1995) [17] derived multi-scaled internal shallow water

solitary waves for a continuously stratified fluid with a free surface. The amplitude

equation for these waves has nonlinearities that are of greater power than in the common

Korteweg-de Vries equation, similar to the generalized KdV equation. The generalized

Korteweg-de Vries (GKdV) includes the KdV and modified KdV equation and a term of

higher order nonlinearity. Benjamin (1972) [2] has proven the stability of Korteweg-de

Vries (KdV) type waves, which was extended by Bona (1975) [6]. The stability of KdV

type waves have been considered using the generalized KdV equation, which can be

written as

A2. = A2(aAp 4- b) = R{A) (3.50)

where p < 4. The KdV wave is given by p = 1 and the mKDV wave by p = 2. Weinstein

(1986) [68] has shown the stability and integrability for p < 4. For p > 4 no stability

proof is available. Bona et al (1987) [7] assume that an amplitude equation of the

generalized KdV type (3.50) is marginally stable for p = 4 and unstable for p > 4.

Derzho and Velarde (1995) [17] derive multi-scaled internal solitary waves for a

polynomial term R(A) on the right hand side of (3.50) of quintic power q and additional

polynomial terms of degree q < 5. The derivation is based on introducing multiple scales
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for the horizontal length scale of the solitary waves, where a balance of nonlinearity and

dispersion is maintained as is typical for Korteweg-de Vries type equations, but where

the dispersive effects are reduced by increased horizontal length scales.

The structure of these multi-scaled waves resembles those of oscillatory bores (see

[55]), with a solitary wave situated on top of a larger broader solitary wave.

The main concern of this part of the study is to show that such multi-scaled internal

solitary waves exist and are stable for polynomials given by R(A) of degree q = 5, see

equation (3.50).

Derzho-Velarde asymptotic solution

It is possible to derive multi-scale solitary waves by introducing a quartic term in the

second order function of the density field f(z),

a3z
3 + CL4Z4,f(z) =

p(z) = P0(l-az-a2f(z)).

The differential equation for the amplitude is then given by

Axx 2nA2 + M{A) = 0,

where M(A) is

and equates to a fourth-order polynomial in terms of the amplitude A

M(A) = 2K2 / Asin(nz)2fJz + Asm(irz))dz
Jo

M{A) = C3A3 + c2A
2

with the coefficients of the polynomial being given by

2 3 Or,
C\ = O27T - -O3 +

16 640

9 2
C3 = JOSTT

c4 =

9

128
—

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)
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Figure 3.3: Plot of the right-hand-side of equation (3.62) for a3 = 1.001 and Ao = 0.6.

Using the condition

on equation (3.53) yields the eigenvalue

4 . 2

for A = Ao

~KA0 c4Al - -c3Al - -c2A0 - ci,
o o J, o

(3.60)

(3.61)

which is used to compute the phase speed of the wave.

After some algebra the ordinary differential equation for the amplitude is found to

be

—if = (A — AQ) \a>i + a2(A + AQ) + as{A2 + A2, + AAQ) , (3.62)

where the coefficients 01,02,03 are given by

_ 2 4

2

a 3 = 5

(3.63)

(3.64)

(3.65)

From this equation it is apparent that the solution is singular for A = AQ and if

the quadratic polynomial on the right hand side has a root. If that is the case, the

amplitude equation reduces to the conventional KdV equation, which has no solution

for A > AQ.

It is thus the aim to find parameters for which the quadratic polynomial has no

root between A = 0 and A = Ao. Furthermore, in order to emphasize the multi-scale



CHAPTER 3. APPLICATIONS 28

1.001
1.1

a2

-0.157722 -0.240761
-0.141238 -0.261901

9.334810 2.923720
0.102580 2.874529

Table 3.1: Table of parameters for AQ = 0.3

character of the solitary wave, it is necessary to choose the parameters in such a way that

the local minimum is located very close to the horizontal axis. Picking the maximum

amplitude Ao there is one free parameter to choose the local minimum of the equation.

This results in a linear system of three equations for the three variables 02, 03 and

04, defining the density field. One example of the right-hand-side of equation (3.62) is

shown in Figure 3.3.

For 03 taking the values 1.001, 1.1 and the maximum amplitude .4o = 0.3 the cor-

responding parameters, together with the eigenvalues are given in Table 3.1. Equation

(3.62) is then solved for the amplitude function using a Runge-Kutta method.

3.4 Large-amplitude inertial solitary waves with vortex cores
in a cylindrical channel

The large-amplitude inertial solitary waves with vortex cores in a rotating flow are de-

rived using the steady form of equations (2.16,2.17) and (2.18), introducing the stream-

function by

u — c= —, v = - . (3.66)
r r

Equation (2.19) shows that the circulation is constant along a streamline, thus C =

C(ip), where the functional form of C(ip) is to be determined from the upstream inflow

condition for those streamlines which originate upstream. Inside the recirculation zone,

which is located on the channel axis, DG show that the circulation is very weak, and

in effect C(ip) « 0 there. Finally, it can be shown that the vorticity equation (2.20)

becomes
il) 2 / \ fn &n\

Ipxx + Iprr ~ + G(tl>)C (ip) = T G(ip), (3.67)
r

where G{if>) is also to be determined from the inflow conditions for those streamlines

which originate upstream. Inside the vortex core the flow is nearly stagnant, thus
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G{ip) « 0 there. Equation (3.67) is the Bi agg-Hawthorne equation (1950) [9] used in

numerous studies of rotating flows.

It is convenient to introduce dirnensionless co-ordinates based on a typical axial

velocity UQ and the radius of the cylindrical channel a.

, xr = - , x — —.
a a

(3.68)

Hereafter, the prime superscripts will be emitted. The inflow condition of axial velocity

and rotation are close to uniform and given in dimensionless form by,

u-»Uoo = 1+ «[/(£), as x -> -oo, (3.69)

> = fio ( 1 + cr^(O ) , as x -» -oo, (3.70)

where £ = r2 and L/(£), fi(£) are additional functions representing the departure from

uniform axial flow and rotation which will be defined later. Here fio is the swirl number,

which is proportional to the ratio of the azimuthal velocity at the channel wall to

the axial velocity and defines the strength of the rotation. Also, K and a are small

parameters, characterizing the small departures from uniform axial flow and uniform

rotation respectively. It follows that

ij) = f (l - c) + K f U{i)di, as x -> -oo. (3.71)
Jo

For those streamlines which originate upstream the functions C(ip) and G(ip) are

, -St- ^

) (3.72)

and

G(V)) = ^ J l _ _ ^ _ [ / ( - ^ -

)
1 — c

(3.73)

Here, the omitted terms are relatively of order of magnitude 0{K,O). Using the

expressions (3.72, 3.73) equation (3.67) can be rewritten in explicit form in terms of the

perturbed streamfunction cf> where

- (j). (3.74)
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Substituting equation (3.74) into equation (3.67) yields an equation for <j>

where

and

A =
2fir

(3.75)

(3.76)

h-o.t. .

The boundary conditions on the channel axis and wall are

<t> = 0, a t £ = 0 , 1 .

(3.77)

(3.78)

The boundary condition at £ = 0 derives from the requirement that the flow be finite

and regular there. Further, in the upstream and downstream directions it is required

that

(f> -> 0, as x -¥ ±00. (3.79)

In the absence of any recirculating zone, equations (3.75, 3.78, 3.79) provide a complete

formulation of the problem, since it is assumed that all streamlines originate upstream.

The condition for no flow reversal is given by

, , 4*
1 - c

> 0 (3.80)

everywhere, then, to leading order with respect to the small parameter K, U — c > 0

(< 0) according as c < 1 (c > 1) and there is no flow reversal at any point in the flow.

The critical condition, when condition (3.80) is violated on the channel axis is given

by,

l - c + ^ = 0, at £ = 0, (3.81)

which defines the critical wave amplitude A*. For waves with amplitudes greater than

the critical amplitude At, the wave exhibits a zone of recirculating fluid located on the
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channel axis. Outside the recirculation zone, the flow is determined by equation (3.75)

with the boundary conditions

4> + r?2(i - c) + K r u{£)d£ = o, at

Jo

where r\ defines the boundary of the recirculation zone and

(3.82)

<t> = 0 , a t = 1, (3.83)

as well as the conditions (3.79) at infinity. Inside the recirculation zone the governing

equation is (3.67), the circulation function C(tp) and the vorticity function G(ip) are

yet to be determined. DG have shown that G(if}) is essentially zero.

Derivation of the steady-solutions

In the derivation of the solitary wave solutions, it is assumed that the width of the

waves is much greater than the radius of the cylindrical channel. Hence it is convenient

to introduce the small parameter e and let X = ex. An asymptotic expansion of <f> and

c in terms of e2 yields

;), (3-84)

(3.85)

Jk=O
oo

k=0

These expansions are substituted into (3.75) and the boundary conditions (3.78). At

the lowest order,

W (3.86)

where

and

Here Jx is the Bessel function of the first kind and

(3.87)

(3.88)

(3.89)
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Solving equation (3.88) for the first root yields A<°> = 3.8317 for the value of A*0), which

represents the lowest mode. The highest modes may be considered in analogy, but it is

expected that higher modes do not exist in a purely steady form due to the generation

of lower mode radiation.

The amplitude A(X) is determined at the next order of the asymptotic expansion,

which is

4C4;) + A°V 1 )= JF\ (3. 9 0 )

where

r -JfiTTiAW- (3-91)

This is to be solved with the boundary conditions

at £ = 0,1.

By exploiting the appropriate compatibility condition,

/Wf-0.
Jo 2£

the following equation for A is obtained,

-AXx M{A) = 0.

Where
2A<°>V1>

A =

M(A) = kMK{A) + oMa{A),

IMK =

I Ma = -

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

- c ( ° )

(3.98)
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and

7 =

Equation (3.94) can be integrated once to yield an amplitude equation for A,

-A2
X M{A')dA' = 0.

(3.99)

(3.100)

Solution to the Inner Region

The flow field is divided into three regions, an outer region where equations (3.94)

and (3.67) hold combined with the amplitude equation (3.100), an inner region and a

recirculation core, which are discussed next. Assuming the width of the inner solution

large compared to the depth and the amplitude close to A*, the solution in the inner

region can be found by introducing a perturbed maximum amplitude

A(z) = At + n signal* £(z) with 0<B(z) <l,

where the maximum possible amplitude is given by

= ±0.272,

(3.101)

(3.102)

differentiating between the two cases when c^ > 1 (c(°) < 1), corresponding to A* > 0

(A* < 0), and z = fix is another stretched variable, with /3 = -4U and /J a small

parameter. Thus the width of the inner zone is smaller than the total length scale of the

wave and tends to zero as \x —>• 0. In order to derive an approximative governing equation

for the inner solution the depth of the vortex core 77 is assumed small, 77 = Sf(z), where

5 is another small parameter and F(z) is a function describing the shape of the vortex

boundary (i.e. the vortex core is given by z — 1 — 77 for \z\ < zo, where ZQ is to be

determined). It is shown by DG that an optimal balance of parameters occurs when

5 = e1/2, /j, = e and /3 = e1//2. The amplitude equation describing the shape of the

solution in the inner region is found by substituting equation (3.101) into the first-order

equation (3.75), satisfying the kinematic and dynamic boundary conditions. Using a

compatibility condition similar to (3.93) yields an approximative governing equation in

torms of B(z),

) (3.103)
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where

= signal A - / M{A')dA' - 2M{A) \ and v = yfr-r^. (3.104)

Inside the recirculation zone the key assumption is that the flow is stagnant to leading

order. For a nontrivial solution to exist the right-hand side of equation (3.103) must

be positive, yielding a bound on v and \i , which in turn places an upper bound on the

maximum possible amplitude,

V < "max = ^

= 4* + / W E •

(3.105)

(3.106)

Assume a basic velocity and swirl field as a quadratic in terms of the radial variable

— r2 given by

(3.107)

(3.108)

(3.109)

then M(A), equation (3.96), is given by

1 ;M{A) = a2A
2 + a3A

3.

The equations for a\, a2 and 03 in terms of a\, a2, 61 and b2 are given in the Appendix.

From equations (3.72,3.74), for the above flow functions, ip and C(ip) can be computed.

Equation (3.104) for R{A) evaluates to

R(A) = sign A. (--a2A
2 - a3A

3J . (3.110)

Subsuming the factor before M(A) in equation (3.109) in the a's, equation (3.100)

becomes

-A2
X + T2A2 + d2A

3 + dzA
A = 0, (3.111)

where r 2 = A + dx, ui -• ^j-ai, d2 = ^-02 and o?3 = ^-a^. Two different

outer solutions are considered in the following. The first is an outer solution governed

by a Korteweg-de Vries (KdV) equation. The second is governed by a modified KdV

equation.
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1. For c?3 = 0 equation (3.111) simplifies to the well known KdV equation, which

has the familiar solution

r2

«2
(3.112)

2. The second case 03 ^ 0 yields the modified KdV solution given by

AoA(X) =
Bocosh{r(\X\-Xt))'

where

= ~ and
OC2 CX2

(3.113)

(3.114)

The maximum // is given by

(3.115)

To find the solution of the inner region an asymptotic solution for B —>• 1 of equation

(3.103) is found first and an adaptive step size Runge-Kutta method is then used to

solve for B(z). The approximation for B -4 1 is given by

B{z) = 1 - cz2, (3.116)

where

c= - \ -



Chapter 4

Numerical Method

There are a number of methods to solve elliptic partial differential equations such as

the ones which appear in the study of fluids. Depending on the choice of primitive

variables one uses to describe a fluid in motion, there are generally three separate types

of tasks that can be treated independently of one another and that represent the whole

numerical scheme for solving the partial differential equations.

When solving the time-dependent equations the first task is to integrate the equa-

tions in time. Commonly known methods are explicit methods like the Runge-Kutta

method and related schemes as well as implicit methods such as the Crank-Nicholson

scheme. Generally implicit schemes are more stable than explicit schemes in the absolute

sense, but are computationally more expensive, since the associated matrix inversion is

complicated and not always straightforward. The stability condition for explicit schemes

restricts the size of the time-steps, but the computational effort involved is very small

and is the main advantage of explicit schemes.

Of the explicit schemes the Runge-Kutta schemes are the most robust. The Runge-

Kutta method approximates the differential by a Taylor series of a certain order, which

defines the order of accuracy of the method. The time-integration method used here be-

longs to the family of low-storage Runge-Kutta methods and reduces the computational

load while retaining a measurable order of accuracy. At various places in the literature

low-storage schemes have been introduced, see Williamson (1980) [72], Canuto et al

(1988) [12] and Stetter (1973) [61], which combine a reasonable level of accuracy with a

computationally efficient scheme and advantageous stability domains. The low-storage

36
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Runge-Kutta method used in this study is proposed by Williamson (1980) [72] and

originally stated in Stetter (1973) [61]. It is third order and possesses a stability region

identical to a fourth-order Runge-Kutta method.

The second task for solving the partial differential equations is the spatial inte-

gration. Two methods are predominantly used: Finite difference methods and finite

element methods. Finite difference methods approximate spatial differentials by a Tay-

lor series of finite order and are easily implemented, when problems are very complex

and need a fast solution, trading off accuracy.

Finite element methods approximate the solution to the differential equation by a

linear series of basis functions appropriate to the boundary conditions, approximating

the functions locally as is the case in the general finite element method or globally which

is the case in the spectral methods used in this study, see Hirsch (1988) [35].

The general finite element method is very accurate but requires an integral formu-

lation of the physical problem which is not always at hand. Related to finite element

methods are the finite-volume methods that also require an integral representation mak-

ing use of Gauss's flux theorems on a finite volume and applying the finite element

methods to solve the differential equation. As mentioned the integral representation

may be too difficult to acquire and generally not always possible.

The so-called pseudospectral method approximates the solution globally, not locally,

as is the case in the finite element/volume methods, and its error decreases exponentially

with the number of functions used. The exponential error decrease is the most important

advantage of spectral methods, and distinguishes them from conventional methods in

terms of accuracy. In practice, the exceptional accuracy of spectral methods is used to

the advantage of computational efficiency, making a coarser grid spacing possible.

Spectral methods approximate the solution using a finite sum of very smooth basis

functi ms, either for example trigonometric functions or Chebyshev polynomials - which

are ju&t trigonometric functions in disguise, see Boyd (1989) [8]. Chebyshev and Fourier

functions are widely used in situations where a reasonably simple geometry is given that

suggests the use of a function space related to that geometry - usually a rectangle or
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circle - and the function to be solved for is smooth and lies in the corresponding function

space. The limited applicability of spectral methods with respect to geometry and

boundary conditions shall not be overlooked here, but albeit these restrictions advances

have been made incorporating shock fronts and splitting areas, incorporating two sets

of function spaces, see Fornberg (1996) [21]. It is therefore fair to say that if spectral

methods can be used, they usually excel with all respects over conventional methods.

In some cases it is possible to use spectral methods in non-trivial geometries too. If,

as is the case in this study, the rectangular domain is modified by a change of depth over

a segment of the horizontal extension it is possible to transform the spatial derivatives

to cartesian derivatives. This is done for the stratified flow over topography.

If the domain cannot be transformed into an appropriate geometric domain by using

a transformation to cartesian coordinates or other relevant coordinate system transfor-

mations such as cylindrical and spherical domains, then multigrid methods can be used.

Multigrid methods belong to the family of finite difference methods but increase the

computational effort drastically, necessitating a trade off in accuracy, which then makes

standard finite difference schemes more affordable.

Spectral methods have special advantages when modelling waves in particular, since

dissipative and dispersive errors are very small, Fornberg (1996) [21]. This is fun-

damentally important when studying nonlinear waves, where even a slight increase in

dispersion - induced by the scheme - can change the whole balance between nonlinearity

and dispersion necessary for solitary wave existence.

In the cases studied here, pseudospectral Fourier collocation is used to represent the

function in the horizontal with a periodic domain. In the vertical Chebyshev colloca-

tion is used, because Chebyshev functions can account for the non-periodic boundary

conditions in the vertical.

A 2/3 filter on the highest modes is used to remove aliasing errors and a sponge

is situated across the periodic boundary condition in the horizontal to prevent energy

propagated downstream from re-entering the domain.

Since solitary waves conserve momentum and energy, it is of vital importance for the
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numerical scheme to be non-dissipative, more precisely that the nonlinear convective

term in the governing equation is represented in conservative form, see Zang (1990)

[74], Fox and Orszag (1973) [22] and Gottlieb and Orszag (1989) [26]. The nonlinear

convective term becomes, after taking the curl of the momentum equations,

V x (u x (3),

where the vorticity vector w is given by Q = V x u, which has only one component in

the y-direction u = 10 j . The computation of the nonlinear convective term in energy

conserving form is given by V • (u 3). The energy conserving form of the convective term

has been successfully employed by Rottman et al (1996) [58] to study the unsteady flow

of an incompressible, inviscid Boussinesq flow over topography.

The third problem usually encountered involves solving a discrete second-order el-

liptic linear partial differential equation, for example the Poisson equation or a form

of the generalized Poisson equation. One can use iterative finite difference methods or

direct methods, as will be explained in more deta'.l in the following. For a numerical

analysis of spectral methods see Gottlieb and Orszag (1989) [26] and Gottlieb et al

(1984) [25]. For another detailed study of pseudospectral methods see He (1997) [34],

the fundamental works of Boyd (1989) [8] for Chebyshev-Fourier methods in particular,

Canuto et al (1988) [12] for spectral methods in general and the recent publication by

Fornberg (1996) [21].

4.1 Solving equations of the type Lijj = f

For the governing equations occurring in this study two types of implicit matrix equa-

tions have to be solved. The stratified flow with and without topography poses a discrete

elliptic problem, which is solved using the solution to a Poisson equation and a Liouville-

Neumann iteration to a fix-point problem. In addition to solving a Poisson equation for

the stratified flow with a Laplace operator, it is similarly necessary to solve a generalized

Poisson equation, which occurs in the axisymmetric rotating flow through a cylindrical

channel. The generalized Poisson equation is solved using minimum residual methods
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combined with direct methods as outlined by Canuto et al [12]. The following discusses

the two methods in more detail.

Solving the equation V • pVij) = /

For the stratified flow using a Runge-Kutta method in time amounts to solving the

discrete elliptic problem in space at each iteration,

V- [p(x,z) = f{x,z). (4.1)

In the Boussinesq approximation the density p(x, z) on the left-hand-side of equation

(4.1) is replaced by po- Equation (4.1) then reduces to the Poisson equation.

In this special case the Laplace operator on the left-hand side of equation (4.1) is

positive-definite and relaxation schemes succeed. The relaxation method was success-

fully employed in the pseudospectral code of Rottman et al (1996) [58] and Aigner et

al (1999) [1]. In the case where p(x,z) is variable the operator on the left-hand side

becomes

p(x,z)V2 + Vp(x,z) -V. (4.2)

For an equidistant discretisation, analogous problems have successfully been solved using

multigrid methods and appropriate preconditioners for the case of periodicity in two and

three spatial dimensions, see [10, 64, 36].

The present pseudospectral model features an unequally spaced discretisation in

conjunction with a transformation of the original differential operator to a topography-

following differential operator. Furthermore, the model has mixed periodic-nonperiodic

boundary conditions. A multigrid technique due to Wesseling (1982) [70, 71] and Mc-

Carthy (1983) [53] was applied initially, but failed due to the operator not being suffi-

ciently diagonally dominant. As mentioned above in addition the multigrid technique

requires a lot more computational effort to solve the elliptic problem (4.1). Consider-

ing the aim of examining the long-time behaviour of solitary waves this is extremely

undesirable. For these reasons the multigrid technique was discarded in favor of a dif-

ferent iterative scheme, which splits up the elliptic problem (4.1) into the easily solvable

discrete elliptic problem of the Poisson equation and a fixed-point problem.
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Here, a method is proposed that employs a relaxation scheme for the spatial in-

tegration and a Runge-Kutta scheme combined with a Liouville-Neumann iteration to

integrate forwards in time. For this purpose consider that equation (2.5) can be regarded

as a fixed-point problem

(4.3)

where $ is the local temporal derivative of the streamfunction

df (4.4)

The left-hand side of equation (4.3) is inverted at each time step, applying the same

relaxation scheme used by Rottman et al (1996) [58] and a low-storage Runge-Kutta

scheme to solve

for ip(x, z, t), where t* is an intermediate time used in the iterative approximation of the

local time derivatives, $ x and $ 2 on the right-hand side of equation (4.3). The time-

differences on the right-hand side of (4.3) are approximated by a first-order two-point

stencil

$N = — — — , (4.6)

where i()N is the approximated streamfunction and tp° is the starting value for the

iterated streamfunction ip. The problem (4.3) can then be solved by iterating

L$N+1 = F$N, (4.7)

where L is the Laplace operator and F is the differential operator on the right hand side

of equation (4.3). If ipN lies in the solution space S which is complete, and the operator

F on the right-hand side is Lipschitz-bounded in S, then a converging Cauchy-series

exists for all N (see Collatz (1960) [13] and [40, 69] and references cited therein).

The low-storage Runge-Kutta method used is the memory efficient third-order scheme

based on the method by Williamson (1980) [72] and Stetter (1973) [61]. The temporal

approximation in the Liouville-Neumann iteration is first order. The accuracy of the
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temporal approximation could be improved by using higher order finite difference ap-

proximations for $ x and $ . , which would obviously increase the computational effort,

since more than two approximated streamfunction fields ipN have to be stored. Because

the computational expense is already high, employing the Liouville-Neumann iteration,

the use of higher-order approximations for <frx and $z is omitted here.

Solving the equation ipxx + iprT — ±ipT = f

For the rotating flow through a cylindrical channel the main difficulty lies in solving the

discrete second-order elliptic partial differential equation

(4.8)

where the operator L is given by

= dxx + drr dr.
r

(4.9)

In the previous problem, the operator L was the conventional Laplace operator, whereas

here a different operator L is given similar to the operator of a generalized Poisson

equation.

For solving equation (4.9) various methods were adopted in the course of this study.

At first a multigrid method from Wesseling (1982) [70] and McCarthy (1983) [53] was

employed, but this method is computationally extremely expensive and too slow. An

alternative method is to solve equation (4.9) in spectral space using the minimum resid-

ual method (MRM) due to Richardson. The MRM uses a preconditioner H as an

approximation to L, which is easily invertible. For a time-independent operator L, the

preconditioner H can be computed before starting the actual computation, thus greatly

reducing the cost. Note that L is the operator in spectral space and H is the operator in

an approximated space, which is typically second order accurate. The accuracy of this

approximation depends on the discretization used and can vary greatly. Typically, a

second order finite difference preconditioner is used, alternately it is much more accurate

to use direct methods if available, see Canuto et al (1988) [12].
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The minimum residual method used here is as follows

LPn = f-

where

or

or in this case

Pn =

Pn =

pn = H-l

The accelerator is given by optimizing according to the Rayleigh norm

_ {Rn,LPn)
q ~ {LPn, LPn)

and

Thus the only difficulty remaining is finding the preconditioning matrix H~l, desirably

close (or identical) to the spectrally accurate operator L~l. Assuming that if"1 was

exactly L~l, the solution would be obtained immediately in one step of the iteration,

the operator being the exact inverse of L. But as is the case here, the computational

effort of inverting L is high, thus an approximate inverse H~l is used.

Theoretically, the eigenvalues of H~l lie very close to L~l, thus the preconditioned

minimum residual method has very desirable properties and fast convergence (positive-

definiteness and so forth). Another way to think of it is that the second order approxi-

mation to L~l is made spectrally accurate by the minimum residual method.

4.2 Finite difference preconditioner

In the following two kinds of preconditioners commonly used are briefly described.

Although finally direct methods are used for preconditioning, both of them will be
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discussed, since the finite difference preconditioning provides illuminating insight into

the robustness of the direct method.

The preconditioner H is the finite difference representation of the two-dimensional

elliptic partial differential equation given by (4.9) for the rotating flow problem. The

preconditioner for the stratified flow problem is the Laplace operator and the derivation

of the preconditioner is closely analogous to the operator in cylindrical coordinates and

is therefore omitted here.

The finite difference preconditioning technique consists of the strongly implicit pro-

cedure to calculate the solution to the system of simultaneous algebraic equations of

the five-point molecule form on the two-dimensional rectangular mesh, see Stone (1968)

[62] and Jacobs (1972) [37]. The finite difference operator (4.9) can be written as

The partial x- and y-derivatives are discretized using second order accurate formulae

and

where

and
1

are the averages between j,j + 1 and j - l j , see Hirsch (1988) [35]. The complete

operator is thus discretized by the 5-point stencil (see Figure 4.1) given by

(4.10)

where

= — and m =
Ax2

2Ar2"
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Figure 4.1: Stencil of the FD approximation. The empty dots represent the five-points of the
stencil for the approximation of the F-econd-order differential operator, the filled dots represent
the averaged values of the function c = i used in the second-order approximation.

Establishing the finite difference matrix for (4.10) yields a diagonally dominant

matrix which is easily inverted. The maximum eigenvalue of this finite difference ap-

proximation to the operator (4.9) is very close to the eigenvalue of the Laplace operator

in cartesian coordinates, the same is true for the spectral radius. Thus the operator

(4.9) has the same qualitative properties as the Laplace operator in cartesian coordi-

nates, which is vital for the following direct methods, ensuring positive-definiteness of

the operator and convergence.

4.3 Direct methods

The most important advantage of direct methods is that they are more accurate than

finite difference preconditioners. They make use of the properties of the approximating

functions, in this case the globally approximating Fourier and Chebyshev functions,

and provide a solution to a single implicit discrete differential matrix equation. In

addition, direct methods are very attractive solution methods, because the operation

count involved is competitively low and comparable to the usual spectral differentiation

• [12].

In the following the direct method used to solve equation (4.8) for ip is described

briefly, for further details confer Canuto et al [12]. Consider

(4.11)2 d2 r drdx2 dr2 r dr
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The Chebyshev collocation derivative can be represented in matrix form as

jv

i=o
(4.12)

where {DN)ij is the operator matrix fc: l,j = 0, ...,N. The dhrerential opprator for

equation (4.11) can be expressed as for the case of the Laplace operator, if in the

Chebyshev collocation derivative, equation (4.12), for DN the following is substituted:

where X>$ = V2
N is the second Chebyshev collocation derivative in cartesian coordinates.

The matrix resulting from the above system can be transformed to Chebyshev space

and by computing the eigenvalues of the differential operator in the. r-direction, equation

(4.11) reduces to

dx* '

where A denotes the diagonal matrix with all the eigenvalues in Chebyshev space. Trans-

formation in Fourier space gives

-k2i}>k + \ i > k = fk, (4.13)

with the conventional wave number k. The solution to the implicit equation (4.13) is

trivially

(4.14)h
Yk~ (\-&y

The direct method is the fastest of all preconditioning methods considered and greatly

improves the speed of the minimum residual method used for solving the partial differ-

ential equation (4.11).

Equation (4.11) has an algebraic singularity at the axis, which is removed since

ip = 0 at the axis, but causes numerical conflicts. In order to remove this numerical

singularity, the boundary is moved from the axis at r = 0 to a small quantity e at r = e,

with the boundary condition ip = 0 there. The closed domain [0,1] is substituted by a

semi-closed interval (0,1]. The numerical results show that the solution is not sensitive

to e for small e. The parameter e was initially chosen to be 0.1 and was varied down
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to 0.01. As a consequence of the removable singularity, the time-step has to be rather

small (dt = 0.001) for the numerical scheme to be stable. This limits the length of the

total integration in time, a reasonable length being t = 30 sees in physical time [in « 6).

4.4 Testing the validity of the code

To establish the consistency and validity of the numerical model the results for exact

solutions were studied. The following is a collection of methods for verifying the nu-

merical model. All these tests show that the solutions are presented to within the error

of the numerical code and that the scheme is not dissipative.

A solution to the linearized equations

The fully nonlinear governing equations for stratified flow given by Grimshaw and Yi

(1991) [32] are the vorticity equation

[ | | ] } = 0 (4-15)

and the equation for the deflection of the density surfaces

(4.16)

where

and J ( / , ip) = Ix$z ~ fzi>x- Density is given by p{x, z, t) = po{z-0 and the Boussinesq

parameter p by p = —£—.

- This formulation has the advantage that only N2(z) is specified and obtained from

the basic density profile

and also that the '0' terms are not singular in this formulation. Now suppose N2 = const

then
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Linearization of equation (4.15) yields

48

Ct + V>* = 0.

A solution is given by

(4.19)

(4.20)

(4.21)

(4.22)

k2N2
with

From equation (4.21) it follows that a small amplitude sinusoidal disturbance initialized

at z=0 should increase as as z increases. A typical initial condition is

(4.24)

where the solution (4.21) has been multiplied by a Gaussian to satisfy the no-flow

boundary condition through the bottom boundary. The parameters m and k are suitably

chosen, m = ^ j , k = I? and for m ^ 0 the wave is propagating at an angle

arctan —
m

to the horizontal so that the change in amplitude is proportional to

—"-— — oc . (4.2o)
ip{x,z,t) co=L

V Po

The numerical model has been initialized with the solution given by equation (4.24)

and found to satisfy the predicted growth rate to within the error of the computation.

Conservation laws

A more powerful method to verify the numerical model is to test the preservation of the

conservation laws characteristic for solitary waves and the KdV solution in particular.

The first two conservation laws are given by

F A dx = const
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and

i: A2 dx — const,

where A is a solution of the KdV equation, or in this case the amplitude of the distur-

bance. For further details confer Johnson (1997) [38] and Drazin (1983) [18].

The nonlinear non-Boussinesq terms neglected in the Boussinesq approximation for

stratified flow can be tested using a traditional KdV solution with a linear density

profile. In the Boussinesq approximation a solitary wave solution cannot exist, thus it

is maintained solely by the non-Boussinesq terms. If the solitary wave is permanent

of shape and stationary in the frame of reference, the nonlinear terms introduced work

correctly up to the order of accuracy.

Kinetic and potential energy

Another method for verifying the numerical model is to calculate the change in kinetic

energy

AK= f f ]-p(v? + w2) dxdz

and the change in potential energy

AP = 9pz dxdz - I I 9pz dxdz

The scheme is conserving energy if the change in total energy

t=o

(4.26)

(4.27)

AE = AK = const (4.28)

is constant to within the error of the computation. Gaussian quadrature is used to

compute the two dimensional integrals and found to be conserved to within the error

of the numerical model.
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Numerical Results

This section presents the results for the four applications considered. Firstly the re-

sults for the large-amplitude internal solitary waves with vortex cores in the Boussinesq

approximation followed by the non-Boussinesq case. Then the results for the stratified

flow over topography and multi-scaled internal solitary waves. In the fourth subsection,

the results for the large-amplitude inertial solitary waves with vortex cores in a rotating

flow are presented.

5.1 Large-amplitude internal solitary waves with vortex
cores

Time is normalized with twice the halfwidth L = 2 (XQ + x) and the phase speed U = c,

tn ~. tU/L. A measure of the width of the outer region being x — 2/e/c for case (1)

and x = l/ew for case (2), these being the KdV and mKdV cases in the outer region

respectively, while XQ represents the halfwidth of the inner region where equation (3.19)

is valid. The stratification parameter a is set to a = 0.01 in the following to satisfy the

Boussinesq approximation.

For the initialization of the streamfunction field in the inner region the first term of

an expansion in powers of £2 is used to approximate the bounded solution to equation

(3.19) near 5 = 1,

= \R(A.)-\».where k = -R{A,)--u. (5.1)

Notice that the bound on v (3.22) appears as the coefficient of the first term in this

50
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expansion. A standard fourth-order Runge-Kutta solver continues the solution to B = 0,

determining the width of the inner region. Initially the streamfunction is set to a

constant, 0 = (f>{z = D), inside the recirculation region. The initial density field is

calculated taking advantage of equations (3.2,3.4) together with equation (3.9).

Results for the equations in the Boussinesq approximation

The numerical results for both the KdV and mKdV outer solutions show that the

approximate initial conditions shed transients (Figures 5.4, 5.5 and 5.8, 5.9), which

propagate downstream only. Permanent steady solitary waves evolve after the flow

has traversed the width of the waves for more than a hundred times, indicating the

steady state of the solutions. In the close-up contours of the recirculation regions the

streamfunction fields remain homogeneous (Figures 5.6 and 5.10), whereas the density

field shows density inversions of higher order (i.e. variability of O(10~6)), but remains

homogeneous to first order as predicted by DG. As a measure of the strength of the

closed streamline region the maximum horizontal velocity opposing the downstream

flow is measured at the top of the recirculation region. This adverse velocity opposing

the flow at the upper boundary is of second order (Figures 5.7 and 5.11). The adverse

velocity of the solution with the KdV outer solution decays to a level which cannot be

resolved numerically. In contrast, the adverse velocity of the solution with the mKdV

outer solution approaches a positive value. The results show that the recirculation

region is stagnant to first order, as predicted by the asymptotic analysis of Derzho and

Grimshaw (1997) [16] .

The amplitude of the steady state solution is measured for a number of different

phase speeds from 0.65/w* to Q.95(imax, denoted by diamonds in Figures 5.1 and 5.2.

The results agree with the theoretical results for the amplitude-phase speed relations

to within the error of the computation.

Results for the non-Boussinssq case

Next, the results for the fully nonlinear governing equations in the non-Boussinesq case

are presented. The maximum non-dimensional time the solutions were computed for is
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tn « 11, which corresponds to a dimensional time of more than 8.33 hours. It is argued

that the waves can be considered to be of permanent form if their shape is preserved

for more than 6 hours of physical time. This is the case for non-dimensional times

exceeding tn « 8.

Figure 5.13 shows the evolution of the streamfunction at 2/3 of the depth D for

fi = 0.99/imax for the case of a KdV outer solution, at the normalized time tn = t U/L,

where L is the length scale of the solitary wave as described above. Figure 5.14 is a

sequence of five contour plots of the streamfunction and density at the respective times.

Figures 5.16 and 5.17 display the results for the case of an mKdV outer solution for

the same parameters as in the previous case. Noticeable from the contour plots are the

transients propagating downstream and the essentially stagnant vortex core remaining

intact. Figures 5.15 and 5.18 show the evolution of the maximum adverse velocity at

the top boundary. Both show a non-vanishing velocity component in the upstream

direction, but indicate that the length of computation may be insufficient.

A series of results from seven measurements, for 0.7 < ^ < 0.99, shows a cor-

rection to the phase speed with an order of magnitude O(10~4), see Figure 5.19. The

relative error maximum ^ is 0.1 — 0.4%. Note that the theoretical phase speed is known

only to the order of magnitude O(10~4), i.e. O(a2) where here a = 0.01 (compare with

Figure 5.12). Hence the results suggest that the correction is to within the error of the

theoretical solution and numerical scheme.

Comparing the results to the phase speed corrections in the case of the Boussinesq

approximation, it is noticeable that the error of this numerical model is much larger than

the Boussinesq spectral model, but still small enough to prove a satisfactory consistency

with the above model.
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Figure 5.1: Relative phase speed £^SL and eigenvalue A(1> for the KdV outer solution (bold)
and KdV (dashed) solution for £ < Amax < ^+l*max\ diamonds denote the numerical results.
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Figure 5.2: Relative phase speed ^ and eigenvalue A ^ for the mKdV outer solution (bold)
and mKdV (dashed) solution for 1 < Amax < \ +Hmax\ diamonds denote the numerical results.
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Figure 5.3: Plot of the width for 0 < n < //maz for the KdV (bold) and mKdV (dashed) outer
solution (a2 = 1 and az — 1 resp.) for K = 0.
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Figure 5.4: Time evolution of density at depth §/i for \i = 0.95pmQI,<r = 0.01, a2 = 1 and
Q3 = 0 (KdV outer solution).
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Figure 5.5: Density plots for normalized times tn = 0,69.89,106.67 and 147.13 and the param-
eters given in Figure 5.4. The x-axis is along the horizontal and the depth along the vertical.
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Figure 5 6- Plot of density (left) and streamfunction (right) for normalized times tn =
0,69 89 106 67 and 147.13 for the parameters given in Figure 5.4 inside of the recirculation
region, 41 x 23 grid points resolution for p and 61 x 23 grid points for ^ Width along the
horizontal and depth along the vertical.
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Figure 5.7: Maximum adverse velocity uadv at the upper boundary versus normalized time for
the solution given in Figure 5.4.
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Figure 5.8: Time evolution of density at depth |ft for y. = 0.95 fimax,a = 0.01, o2 =
Q3 = 1 (mKdV outer solution).
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« • . : : *

* . - • = ? Figure 5.9: Density plots for normalized times £n = 0,70.24,107.21 and 147.88 and the param-
eters given in Figure 5.8. The x-axis is along the horizontal and the depth along the vertical.
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Figure 5.10: Plot of density (left) and streamfunction (right) for normalized times tn =
0,70.24,107.21 and 147.88 and the parameters given in Figure 5.8 inside of the recirculation
region, 41 x 23 grid points resolution for p and 61 x 23 grid points for ip. The x-axis is along
the horizontal and the depth along the vertical.
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Figure 5.11: Maximum adverse velocity uadv at the upper boundary versus normalized time
tn corresponding to the solution given in Figure 5.8.
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Figure 5.12: Plot of the phase speed versus the amplitude A, < A < A* +n for the solitary wave
with o vortex core and a KdV outer solution (dashed), and the phase speed of the traditional
KdV solitary wave (solid) for the non-Boussinesq case (CQ is the linear phase speed).
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Figure 5.13: Plot of the streamfunction for a KdV outer solution at the depth z = 2/3D for
fi = 0.99/imni) a = 0.01 and T2 = 0.
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Figure 5.14: Density (left) and streamfunction (right) contour plots of the KdV outer so-
lution with n = 0.99/xmoi, corresponding to Figure 5.13, for the non-dimensional times
tn = 0,2.8,5.7,8.6 and 11.5. Note that width is denoted along the horizontal and depth along
the vertical.
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Figure 5.15: Plot of the maximum adverse velocity uadV versus non-dimensional time tn for
the KdV outer solution given in Figure 5.14.
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Figure 5.16: Plot of the streamfunction for a mKdV outer solution at the depth z = 2/3D for
H = 0.99/imoa;, a = 0.01 and TX = 0.
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Figure 5.17: Density (left) and streamfunction (right) contour plots of the mKdV outer
solution with fi = 0.99pmax, corresponding to Figure 5.16, for the non-dimensional times
tn = 0,2.5,5.0,7.5 and 10.1. Note that width is denoted along the horizontal and depth along
the vertical.
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Figure 5.18: Plot of the maximum adverse velocity ua(iv versus non-dimensional time tn for
the mKdV outer solution given in Figure 5.17.

3.0x10 4

2.0x10 4 -

1.0x10 H -

0.3230 0.3240 0.3250 0.3260 0.3270 0.3280 0.3290

Figure 5.19: Plot of the absolute error in phase speed Ac = cexp - c of the phase speed in the
numerical model cexp to the theoretical phase speed c, versus the amplitude A»<A<At + n
of the solitary wave with a KdV outer solution. Notice that the error is constant over the time
of integration, see, for example the streamfunction plot in Figure 5.13, where the upstream
propagation of the wave is noticeable.
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5.2 Stratified flow over topography f

This section presents the numerical results of the non-Boussinesq model for resonant •

flow over topography. The basic density field is chosen to be I

-°WD, (5.2)

where a is a measure of the strength of the stratification, typically chosen to be a = 0.01.

Thus the Brunt-Vaisala, frequency is given by

N2 = -lLln(l-o) (5.3)

and from equation (3.47) it follows that the Boussinesq parameter /3 is 0.01. The flow

speed is given by

The region of stability for nonlinear hydrostatic flow in the Boussinesq limit /3 -»• 0 is

given by values for K and H = a/D, which satisfy the following equation (see Rottman

et al (1996) [58])

TTH* - | sin(7r(/r - H*))\ < 0, (5.5)

where K* and H* are given by

H* = KH, K* = K-n + l; (5.6)

K is the inverse Froude number and n the mode number. The region of instability and

the cases examined in detail in the following are plotted in Figure 5.20.

The numerical model is valid until the disturbance starts to overturn anywhere in

the fluid. This is called wave-breaking in the following and is relevant to the flow over
i

V topography. The nondimensional time that wave breaking occurs is called t^ = Ut/D

[ and is reached when the condition given by

is satisfied anywhere in the flow. Wave breaking generates small-scale disturbances that

are not resolved by the model and leads to aliasing errors and eventual numerical blow-

up. Thus the time of wave-breaking is the final time of the numerical computation.

L



CHAPTER 5. NUMERICAL RESULTS 67

K*
0.95

1.0
1.1
1.2

tbr = Ut/D (n

88.
28.
23.

B)
*

23
83
74

Ut/D (FALW)
*

77.9
25.9
21.1

Table 5.2 Table of nondimensional breaking times fj,r for the
non-Boussinesq model (nB) and the finite-amplitude long-wave
model (FALW).

In Figure 5.21 at the non-dimensional time Ut/D w 24 the disturbance has reached

wave-breaking (pz w 0) and the numerical model fails shortly after.

Four cases are of specific interest: when the inverse Froude number K is 1.2,1.1,1.0

and 0.95. The nondimensional hill height is chosen to be H* = 0.1, that is, the nondi-

mensional parameter Ka/D equals 0.1 for all four cases considered. The length to

depth ratio is L/D = 2.0. Figure 5.21 shows a plot of the streamfunction computed by

the spectral numerical model for K = 1.2, when it is essentially parallel to the density

contours. Note the development of the deep trough downstream of the obstacle near

the maximum slope of the hill and at the upper boundary at around Ut/D w 30.

The evolution in time of the amplitude function A(x,t) for the resonant mode as

computed by the spectral model, is plotted in Figure 5.22 and by the FALW model in

Figure 5.23, for the cases K = 1.2,1.1 and K = 1.0 up to the breaking time tbr (refer to

Table 5.2 for the exact breaking times of these cases). The amplitude function for the

case K = 0.95 is plotted in Figure 5.24. The flow approaches a steady state without

breaking.

In Figure 5.25, the maximum absolute amplitude |.A|mai normalized by the maxi-

mum possible amplitude |J4*| for the cases considered is plotted up to the brer ing time

tbr- The solid lines show the results for the spectral model; dashed lines the results

from the FALW model. In all these cases the amplitude increases nearly linearly with

time as predicted by linear resonant theory for times up to Ut/D « 10. For K = 0.95,

the growth ceases altogether, which is also consistent with linear theory. For K'= 1.0,

which is exactly on the margin of instability (confer with Figure 5.20), the growth is
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very slow, but eventually reaches the breaking amplitude. For K > 1 the growth rate

increases with K. For K = 1.2 the growth is close to linear. Note that the growth

as predicted by the FALW model is always bigger than the amplitude of the resonant

mode calculated by the spectral model for K > 1.

For K — 1.0 and 1.1, the downstream trough grows to a breaking amplitude and

the vertical position of breaking is located at the upper boundary. In Figure 5.26, the

vertical position of breaking is plotted for several cases of the inverse Froude number in

the range 1.0 < K < 1.2. Note that the vertical position is always off centre and changes

from close to the upper boundary to close to the lower boundary, and simultaneously

from downstream to upstream. For K = 1.2 the development is similar, albeit more

rapid. Nonetheless, the crest that develops over the obstacle does not start to propagate

upstream as given in the results of Grimshaw and Yi (1991) [32] (see in particular Figure

3). Overall, the FALW model and the spectral model compare quite well in their time-

dependent behaviour.

The drag FQ on the obstacle is plotted in Figure 5.27, where the drag force is given

by

FD = LjTxdx

and p is the pressure evaluated on the lower boundary. The plot of the drag shows the

agreement as well. Again, solid lines represent the spectral model and dashed lines the

FALW model. The FALW model slightly underpredicts the drag for K < 1.2.

For K = 0.95, which does not lead to breaking waves (see Figure 5.20) the drag

approaches zero, indicating that the flow eventually becomes symmetric about the ob-

stacle. For K > 1.0 the drag is non-zero, when breaking occurs, and the model indicates

that even after breaking it remains non-zero. This implies that the flow becomes asym-

metric about the obstacle with a high pressure on the upstream side and low pressure

on the downstream side.

The results presented here for the fully nonlinear case are consistent with the results

obtained by Rottman et al (1996) [58]. The spectral model slightly underpredicts the

FALW model, whereas it is just the opposite case in the Boussinesq spectral model.
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The drag computation of the spectral model slightly exceeds the FALW model, as is

the case in the Boussinesq spectral model.

The non-dimensional amplitude of the obstacle used by Rottman et al (1996) [58]

and in this study are different from the scaled obstacle height used by Grimshaw and

Yi (1991) [32] , since equations (4-2-4) therein state that a = fj^/o- In addition

to the improved computation of the kernel of the FALW equation by Rottman et al

(1996) [58] , the weak correlation between the results of Rottman et al (1996) [58] , the

results presented here, as compared to the results by Grimshaw and Yi (1991) [32] are

attributed to the above mentioned fact.
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Figure 5,20: The K* — H* parameter space diagram based on the hydrostatic Long's model so-
lution for flow over two-dimensional obstacles. Crosses denote the cases K* •— 0.95,1.0,1.1,1.2,
plotted in Figures 5.22 to 5.24. The hatched region denotes the region of instability for values
of K* and H* which do not satisfy equation (5.5).
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Figure 5.21: Contour plot of the streamfunction for K = 1.2 and H" = 0.1 at the times
Ut/D = 0.0,7.66,15.32,22.98,30.64. Breaking occurs at tbr = Ut/D = 23.74. The width of the
domain is denoted along the horizontal and the depth along the vertical.
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Figure 5.22: Plot of the amplitude function A(x, t) for the resonant mode of vertical displace-
ment as computed by the spectral model for the case with H* = 0.1, L/D = 2.0 and (a)
K = 1.2, corresponding to the case shown in figure 5.21, (b) K = 1.1 and (c) K = 1.0. The
obstacle is centered at x/D = 20. The corresponding breaking times are tbr = 23.7,28.8,88.2.
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Figure 5.23: Plot of the amplitude function A{x, t) for the resonant mode of vertical dis-
placement as computed by the FALW model for the case with, H* = 0.1, L/D = 2.0 and
(a) K = 1.2, (b) K = 1.1 and (c) K = 1.0. The obstacle is centered at x/D = 20. The
corresponding breaking times are <(,r = 21.1,25.9,77.9.
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Figure 5.24: Plot of the amplitude function A(x, t) for the resonant mode of vertical displace-
ment as computed by a) the spectral model and b) the FALW model for the case with, H* = 0.1,
L/D = 2.0 and K = 0.95 up to the time Ut/D = 115 and 160 respectively. The obstacle is
centered at x/D = 20.
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Figure 5.25: Plot of the maximum absolute amplitude normalized by the maximum possible
amplitude |.A/i4»|mai as a function of time, corresponding to the calculations for K = 0.95,
1.0,1.1 and 1.2: The solid lines indicate the spectral model and the dashed lines the FALW
model.
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Figure 5.26: Normalized vertical position zn = z/D of wave breaking for several cases, 1.0 <
K < 1.2, note that the breaking location is either at the top or at the bottom and sets in
downstream or upstream of the hill.
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Figure 5.27: Plot of the drag as a function of time on the hill of height H* = 0.1 corresponding
to the calculations for K = 0.95, 1.0,1.1 and 1.2: The solid lines indicates the spectral model
and the dashed lines the FALW model.
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5.3 Multi-scale internal solitary waves

Two multi-scaled internal solitary waves are considered for large and medium wave-

lengths. Time is normalized with the typical length scale of the wave W and the

uniform flow speed U. Figure 5.28 shows the streamfunction at a depth §/i and Figure

5.29 the corresponding streamfunction field at four respective non-dimensional times

for 0:3 = 1.001 and AQ = 0.3. The final time is about six hours, which is long enough

to consider the wave to be of permanent shape. Figure 5.30 and 5.31 show the stream-

function for a3 = 1.1 and AQ = 0.3. The solutions show little change of shape and agree

with the solutions derived by Derzho and Velarde (1995) [17] to within the accuracy of

the numerical model.

In order to illustrate that the solutions are not valid for amplitudes greater than

the maximum amplitude A = A* a solution with maximum amplitude AQ = 0.6 is used

in Figures 5.32 and 5.33. It shows a very rapid change in the maximum amplitude

and a downstream propagation of perturbations to a steady state solution of smaller

amplitude.
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0.29

Figure 5.28: Plot of the streamfunction at §/i versus normalized time tn = tj£? for the param-
eters a3 = 1.001 and Ao = 0.3.

Figure 5.29: Plot of the streamfunction field for the parameters given in Figure 5.28 and
normalized times tn = 0.0, 0.12, 0.37 and 0.56. Along the horizontal is the width of the domain
and across the vertical the depth of the fluid.
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Figure 5.30: Plot of the streamfunction at | / i verus normalized time tn — t^ for the param-
eters Q3 = 1.1 and Ao = 0.3.

Figure 5.31: Plot of the streamfunction field for the parameters given in Figure 5.30 and
normalized times tn = 0.0, 0.12, 0.25 and 0.37. Along the horizontal is the width of the domain
and across the vertical the depth of the fluid.
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0.34

Figure 5.32: Plot of the streamfunction at | / i verus normalized time tn - t^ for the param-
eters Q3 = 1.001 and Ao = 0.6. Notice that the solution is unstable for parameters outside the
validity.

Figure 5.33: Plot of the streamfunction field for the parameters given in Figure 5.32 and
normalized times tn = 0.0, 0.1, 0.2 and 0.3. Along the horizontal is the width of the domain
and across the vertical the depth of the fluid.
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5.0
0.0
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b2

-0.6
0.0
0

Type
KdV

mKdV
mKdV

n0
0.1
0.01
0.05

K

2.0
1.0
1.0

a

2.0
1.0
1.0

€

0.
0.
0.

1
1
1

0
0
0

M
.75 • • •
.75 • • •
.75 • • •

0
0

0

.9

.9

.9

Table 5.4 Table of parameters for the three cases considered. Case 1 and 2 are the cases of near
uniform horizontal velocity with uniform and non-uniform radial velocity respectively. Case 3
is the jet-like profile with uniform radial velocity.

5.4 Large-amplitude inertial solitary waves with vortex cores
in a cylindrical channel

In the following, the results for the propagation of large-amplitude inertial solitary waves

with vortex cores in a rotating flow are presented. Three specific inflow conditions are

of interest, the corresponding parameters are given in Table 5.4.

The horizontal and rotational velocities u and w in the first two cases feature a

typical shear in horizontal velocity and strong rotational shear velocity and uniform

rotational shear veloc:ty respectively. The third case features a jet-like profile for the

horizontal velocity and a uniform rotational velocity. The corresponding solutions are

a KdV outer solution in the first case and mKdV outer solutions in the two other cases.

The three specific inflow conditions are shown in Figures 5.34, 5.43 and 5.52.

Figures 5.35, 5.44 and 5.53 show plots of the streamfunction at 2/3 of the depth

for the three respective cases. Time is normalized with the flow speed and the typical

length scale of the wave. Figures 5.36, 5.45, 5.54 and 5.38, 5.47, 5.56 show contour plots

of the streamfunction field and an enlarged view of the recirculation region for the three

cases respectively for normalized times given in the Figures. Figures 5.37, 5.46, 5.55

and 5.39, 5.48, 5.57 show the corresponding contour plot of the circulation.

All contour plots depict little change of the solutions and the recirculation regions

in particular. The recirculation regions remain stagnant to first order.

The solutions given by DG for the three inflow conditions are studied for several

amplitudes up to the maximum amplitude, 0.75 < ^ ^ ^ °'9- I n a d d i t i ° n ' t h e

maximum adverse velocity at the axis as well as the maximum amplitude of the solutions

versus normalized time are measured.
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The results for the maximum adverse velocity are shown in Figures 5.40, 5.49 and

5.58 and for the maximum amplitude in Figures 5.41, 5.50 and 5.59.

It is pertinent to note here that the recirculation region was not set to constant,

as in the stratified flow case, since the discontinuity in ipT across the vortex boundary

caused numerical instability, but it is noted here that since ip = 0 at the axis it is

apparent from the close-ups of the recirculation regions that the recirculation regions

are yet stagnant to first, order.

All results show a nearly linear decrease of adverse velocity inside the recirculation

region of order of magnitude less than O(10~5), a relative change of less than 1%.

In Figures 5.42, 5.51 and 5.60 the phase speeds for the three inflow conditions are

depicted together with the final amplitude of the solutions. The final amplitudes in

all three cases are very close to the initial amplitudes. Remarkable is the increase in

maximum amplitude for the second and third inflow conditions and a decrease for the

first case. The relative change in maximum amplitude is less than 0.1% for the two

latter cases and 3% for the first case. For the latter two cases the change in amplitude
j

€ is bounded indicating that an equilibrium solution is to be expected. For the first case,
1;

the numerical evidence is not entirely convincing, but considering that the rotation Q.G

is much larger than in the subsequent cases and noting that the changes are to within

the error of the numerical scheme, all results confirm the permanence of the solutions

and the stagnancy of the recirculation region in particular.

I
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Figure 5.34: Plot of the inflow conditions (solid) for the KdV outer solution (03 = 0) and the
parameters ax = 0.1, a2 = 0.1, h = 5.0, b2 - -0.64, e = 0.1, K = 2.0, a = 2.0, R{A.) = 0.662,

= 0.00382, ft0 = 0.1 and c = 1.058.
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Figure 5.35: Plot of the streamfunction for the KdV outer solution at the depth | a for the
parameters given in Figure 5.34 and n = Q.7
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Figure 5.36: Contour of the streamfunction for the KdV outer solution of Figure 5.35 for
the normalized times tn = 0,5,7.6 and 10.5. The width of the domain is denoted along the
horizontal and the radius along the vertical.
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Figure 5.37: Contour of the circulation C{ip) for the KdV outer solution of Figure 5.35 for
the normalized times tn = 0,5,7.6 and 10.5. The width of the domain is denoted along the
horizontal and the radius along the vertical.
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Figure 5.38: Enlargement of the recirculation regions of the streamfunction contour-plot for
the KdV outer solution of Figure 5.36. The range is 70x36 points. The width of the domain is
denoted along the horizontal and the radial position along the vertical.
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i Figure 5.39: Enlargement of the recirculation regions of the circulation contour-plot for the
KdV outer solution of Figure 5.37. The range is 70x36 points. The width of the domain is
denoted along the horizontal and the radial position along the vertical.
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Figure 5.40: Plot of the maximum adverse velocity uadv relative to the initial value uadV{tn = 0)
at the axis versus normalized time tn for the KdV outer solution and the parameters given in
Figure 5.34 and /x.= 0.75/imoi (solid), 0.80/xmox (dotted), 0.85^mOj (dashed) and 0.9/zmoi

(dash-dot).

An,,,-Amo,(tn=0)

Ama,(tn=O)

0.000

-0.010

-0.020

-0.030

10

Figure 5.41: Plot of the maximum amplitude Amax relative to the initial value Amax(tn = 0)
versus normalized time £„ for the KdV outer solution and the parameters given in Figure 5.34
and n = 0.75/xmax (solid), 0.80/xmQa; (dotted), Q.&5(imax (dashed) and 0.9/Jmai (dash-dot).
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Figure 5.42: Plot of the theoretical phase speed versus Amplitude for the KdV outer solution
and the parameters given in Figure 5.34. Diamonds denote the results for several normalized
amplitudes 0.75 <{A- A.)/nmax < 0.9, ie. (.75, .8, .85, .9).
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Figure 5.43: Plot of the inflow conditions (solid) for the mKdV outer solution (a3 ^ 0) and the
parameters oi = 0.1, a2 = 0.1, 6i = 0.0, b2 = 0.0, e = 0.1, K = 1.0, a = 1.0, R{A») = 0.15853,
Mmox = 0.000419, % = 0.01 and c = 1.007.
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Figure 5.44: Plot of the streamfunction for the mKdV outer solution at the depth | a for the
parameters given in Figure 5.43 and mu = 0.9/xmax-
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Figure 5.45: Contour of the streamfunction for the mKdV outer solution of Figure 5.44 for
the normalized times tn = 0,3.7,5.7 and 7.9. The width of the domain is denoted along the
horizontal and the radius along the vertical.
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Figure 5.46: Contour of the circulation C(il>) for the mKdV outer solution of Figure 5.44 for
the normalized times tn = 0,3.7,5.7 and 7.9. The width of the domain is denoted along the
horizontal and the radius along the vertical.
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1

Figure 5.47: Enlargement of the recirculation regions of the streamfunction contour-plot for
the mKdV outer solution of Figure 5.45. The range is 70x36 points. The width of the domain
is denoted along the horizontal and the radial position along the vertical.
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i
Figure 5.48: Enlargement of the recirculation regions of the circulation contour-plot for the
mKdV outer solution of Figure 5.46. The range is 70x36 points. The width of the domain is
denoted along the horizontal and the radial position along the vertical.
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Figure 5.49: Plot of the maximum adverse velocity uaitv relative to the initial value uadv{tn = 0)
at the axis versus normalized time tn for the inKdV outer solution and the parameters given
in Figure 5.44 and fi = 0.75/jmoi (solid), 0.80/imoi (dotted), 0.85/jmaa: (dashed) and 0.9;/maz
(dash-dot).
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Figure 5.50: Plot of the maximum amplitude Amax relative to the initial value Amf-T(tn = 0)
versus normalized time tn for the mKdV outer solution and the parameters given in Figure 5.44
and n = 0.75/xmax (solid), 0.80/w* (dotted), 0.85/ima* (dashed) and 0.9/xmaI (dash-dot).
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Figure 5.51: Plot of the theoretical phase speed versus Amplitude for the mKdV outer solution
and the parameters given in Figure 5.43. Diamonds denote the results for several normalized
amplitudes 0.75 <{A- A.)/Umax < 0.9, ie. (.75, .8, .85, .9).
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Figure 5.52: Plot of the inflow horizontal velocity condition (solid) for the mKdV outer solution
with uniform axial velocity, (03 7̂  0) and the parameters a\ — -0.196, a2 = 0.5. 61 = 0.0,
62 = 0.0, e = 0.1, K = 1.0, a = 1.0, R{A,) = 0.0612, /xmax = .000184, fi0 = 0.005 and
c = 1.0052. '
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Figure 5.53: Plot of the streamfunction for the mKdV outer solution at the depth §a for the
parameters given in Figure 5.52 and mu = 0.9/xmai-
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Figure 5.54: Contour of the streamfunction for the mKdV outer solution of Figure 5.53 for
the normalized times tn = 0,3.6,5.4 and 7.5. The width of the domain is denoted along the
horizontal and the radius along the vertical.
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Figure 5.55: Contour of the circulation C{ip) for the mKdV outer solution of Figure 5.53 for
the normalized times tn = 0,3.6,5.4 and 7.5. The width of the domain is denoted along the
horizontal and the radius along the vertical.
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Figure 5.56: Enlargement of the recirculation regions of the streainfunction contour-plot for
the mKdV outer solution of Figure 5.54. The range is 70x36 points. The width of the domain
is denoted along the horizontal and the radial position along the vertical.
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Figure 5.57: Enlargement of the recirculation regions of the circulation contour-plot for the
mKdV outer solution of Figure 5.55. The range is 70x36 points. The width of the domain is
denoted along the horizontal and the radial position along the vertical.
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Figure 5.58: Plot of the maximum adverse velocity uaiv relative to the initial value uadv(tn — 0)
at the axis versus normalized time tn for the mKdV outer solution and the parameters given
in Figure 5.53 and n = 0.75/xmQi (solid), 0.80/zmQX (dotted), 0.85/xmai (dashed) and 0.9/imQI

(dash-dot).
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Figure 5.59: Plot of the maximum amplitude Amax relative to the initial value Amax(tn = 0)
versus normalized time tn for the mKdV outer solution and the parameters given in Figure 5.53
and /i = 0.75/xmai (solid), 0.80/imoi (dotted), 0.85/xmaa: (dashed) and 0.9/iniaI (dash-dot).
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Figure 5.60: Plot of the theoretical phase speed versus Amplitude for the mKdV outer solution
and the parameters given in Figure 5.52. Diamonds denote the results for several normalized
amplitudes 0.75 < {A - A,)/nmax < 0.9, ie. (.75. .8, .85, .9).
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Chapter 6

Conclusion

The main purpose of this study was to show the permanence and validity of the asymp-

totic theory developed by Derzho and Grimshaw for large-amplitude solitary waves with

vortex cores in a stratified fluid [16] and a rotating flow through a cylindrical channel

[15]. For this purpose two novel numerical methods have been proposed for the fully

nonlinear governing equations of stratified flow and the governing equations of rotating

flow. The numerical methods are described in chapter 4. In addition, the numerical

model for stratified flow was utilized to verify the finite-amplitude long-wave equation

derived by Grimshaw and Yi (1991) [32] for the generation of internal solitary-like waves

by flow over topography, as well as the study of multi-scaled internal solitary waves de-

rived by Derzho and Velarde (1995) [17]. In particular, the fully-nonlinear numerical

model for stratified flow has been compared to the results of the numerical model of the

finite-amplitude long-wave equation by Rottman et al (1996) [58].

Both numerical models developed used extremely accurate pseudospectral methods

to model the two-dimensional time-dependent governing equations. Fourier modes in

the horizontal and Chebyshev modes in the vertical have been employed for the spa-

tial integration and third order low-storage Runge-Kutta methods, combined with a

Liouville-Neumann integration in time for stratified flow for the temporal integration.

To solve the two-dimensional elliptic partial differential equation for the rotating flow,

a novel direct method was derived and combined with a minimum residual method. "

Section 5.1 presented the results for large-amplitude internal solitary waves with

vortex cores in the Boussinesq approximation and including the non-Boussinesq terms.
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The large-amplitude internal solitary waves in the weakly stratified shallow fluid proved

to be stable, and of permanent shape. The solutions possessed the characteristics of

large amplitude solitary waves. The width increase:; with amplitude and the phase

speed depends nonlinearly on the amplitude (since /x = A — A*). The width of the

solutions tends to infinity for the maximum possible amplitude (/i —> /imQx), indicating

the termination of this asymptotic theory. The results show that solitary waves with

an essentially homogeneous vortex core exist in a Boussinesq as well as fully-nonlinear

fluid. In addition, the results indicate that there is a non-vanishing adverse velocity

at the top boundary. The amplitude equation is in both cases governed by a slightly

more nonlinear equation, which can ba approximated by the nonlinear equation given

by Derzho and Grimshaw (1997) [16] .

The recent laboratory experiments by Stamp and .lacka (1995) [60] of solitary waves

with vortex cores, which were generated by displacing a large mass of fluid along a.

very thin thermocline, generally support the theoretical and numerical results presented

here, but seem to show that the recirculation region is not stagnant to first order. The

numerical simulation by Terez and Knio (1998) [65] of the gravitational collapse of a

mixed region along a thermocline produced similar solitary waves with vortex cores of

diminishing mass, which is in better agreement with the results presented here.

In section 5.2 results for the generation of solitary-like waves by uniformly stratified

flow over isolated bottom topography have been presented for a range of parameters.

The results indicate that the theory developed by Grimshaw and Yi (1991) [32] agrees

very well with the fully nonlinear spectral model proposed here. The amplitude growth

and the drag on the obstacle are in very good agreement with the numerical model of

the finite-amplitude long-wave equation by Rottman et al (1996) [58] . The agreement

between the spectral model proposed here and the FALW model allows the conclusion

that, to within the error of the computation, the proposed numerical scheme models

the fully nonlinear, inviscid, two-dimensional time-dependent governing equations very

well.

In section 5.3 multi-scaled internal solitary waves were presented that exist due
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to a balance between nonlinearity and dispersion different to the coinmon KdV type

balance. Multi-scaled internal solitary waves resemble bores with smaller-scale solitary

waves situated on top. The results presented here show that such waves are of permanent

shape and thus validate the theory derived by Derzho and Velarde (1995) [17].

In section 5.4 results for large-amplitude inertia! solitary waves with vortex cores

derived by Derzho and Grimshaw [15] in an axially-symmetric rotating, incompressible,

inviscid fluid of constant density in a cylindrical channel have been presented. As was

the case for the stratified flow the purpose was to show the permanence of such solitary

waves for a range of outer solutions and inflow conditions, by studying their longtime

behaviour as well as maximum adverse velocity at the axis and maximum amplitude.

The results indicate that the solutions are of permanent shape and that the recirculation

region remains stagnant to first order to within the accuracy of the scheme.

The results presented here reveal the relevance of large-amplitude solitary waves

with vortex cores in stratified and rotating flows for a whole class of flows and possible

analogues in vaiio"r other naturally occurring and engineering flows. The verification

of the asymptotic theory by Derzho and Grimshaw (1997) [16, 15] has proven the per-

manence of such waves and in particular the stagnancy of the recirculation region. It is

important to note here that the solutions represent steady-state solutions to be expected

in corresponding tank experiments for very large times. But since corresponding labo-

ratory experiments for extremely large times are usually not feasible, such results can

only give an impression for the near steady-state of the flow. This explains why in most

laboratory experiments large-amplitude solitary waves seem to possess a significantly

strong recirculation region. In addition to the advantage of steady-state results the

quantitative results provided here are otherwise not obtainable and are thus valuable

for future applications. Furthermore results presented for the generation of solitary-like

waves by uniformly stratified flow over bottom topography validates the asymptotic the-

ory developed by Grimshaw and Yi (1991) [32] and complements the numerical results

for the equations in the Boussinesq approximation by Rottman et ai(1996) [58]. The re-

sults for multi-scaled internal solitary waves derived by Derzho and Velarde (1995) [17]
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show the validity of their asymptotic theory and permanence of the bore-like solutions.

Finally it remains to be emphasized that the wide variety of applications studied

here reveal the excellent numerical accuracy, consistency and adaptability of spectral

methods for modelling stratified flow in a channel and constant density rotating flow

through a cylindrical channel.



Appendix

The parameters an (n = 1,2,3) of equation (3.109) are given by the following equations

( ( 3 3 + 9 6 ) + a 2 ( - 3 i + S 6 - )) •

f?e) + b2{-2g6 + 43 l)) ,

The factor in equation (3.109) equates to

I _ 1
°" ~ 2 = 181.02.

The 0n 's (n = 1, • • •, 7) in the equations for an are given by the Integrals

where

91 =

92 =

56 =

o7 = /"
JO

= 0.011802,

= 0.007496,

= 0.027035,

- 0.005976,

^ 0.021309,

0.081107,

0.108143.

106



Bibliography

[1] A. Aigner, D. Broutman, and R. Grimshaw, Numerical simulations of internal

solitary waves with vortex cores, Fluid Dyn. Res. 25 (1999), 315-333.

[2] T. B. Benjamin, The stability of solitary waves, Proc. R. Soc. Lond., Ser. A 328

(1972), 153-183.

[3] ., Theory of the vortex breakdown phenomenon, J. Fluid Mechanics 14

(1978), 593-629.

[4] , A new kind of solitary wave, J. Fluid Mechanics 245 (1992), 401-403.

[5] D. J. Benney and D. R. S. Ko, The propagation of long large amplitude internal

waves, Stud, in Appl. Math. 59 (1978), 187-199.

[6] J. Bona, On the stability theory of solitary waves, Proc. R. Sue. Lond., Ser. A 344

(1975), 363-374.

[7] J. L. Bona, P. E. Souganidis, and W. A. Strauss, Stability and instability of solitary

waves of KdV type, Proc. R. Soc. London Ser. A 411 (1987), 395-412.

[8] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Springer-Verlag, Berlin, 1989.

[9] S. L. Bragg and W. R. Hawthorne, Some exact solutions of the flow through annular

cascade actuator discs, J. Aeron. Sci. 17 (1950), 243-249.

[10] A. Brandt and S. R. Fulton, Improved spectral multigrid methods for periodic elliptic

problems, J. Comp. Phys. 58 (1985), 96-112.

[11] D. J. Brown and D. R. Christie, Fully nonlinear solitary waves in continuously

stratified incompressible Boussinesq fluids, Phys. Fluids 10 (1998), no. 10, 2569-

2586.

[12] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in

fluid dynamics, Springer Series in Computational Physics, Springer, 1988.

107



BIBLIOGRAPHY 108

[13] L. Collatz, The numerical treatment of differential equations, 3rd ed. ed., Springer

Verlag, 1960, p.36 ff.

[14] A. Defant, Uber interne Wellen, besonders solche mit Gezeitencharakter, Deutsche

Hydro. Zeit. 5 (1952), no. 5/6, 231-245.

[15] 0 . Derzho and R. Grimshaw, Solitary waves with redrculation zones in axisym-

metric rotating flows, J. Fluid Mechanics, sub judice.

[16] 0 . G. Derzho and R. Grimshaw, Solitary waves with a vortex core in a shallow

layer of stratified fluid, Phys. Fluids 9 (1997), no. 11, 3378-3385.

[17] O. G. Derzho and M. G. Velarde, Multiscaled solitary waves, private communica-

tion, 1995.

[18] P. G. Drazin, Solitons, Lond. Math. Soc. Lecture Note Ser., vol. 85, Cambridge

University Press, 1983, p. 33.

[19] M. L. Dubreil-Jacotin, Sur la determination rigoureuse des ondes permanentes

periodiques d'amplitude finie, J. Math. Pure Appl. 13 (1937), 217.

[20] J. E. Fjeldstad, Interne Wellen, Geofys. Publika. X (1933), no. 6, 3-35.

[21] B. Fornberg, A practical guide to pseudospectral methods, Cambridge University

Press, 1996.

[22] D. G. Fox and S. A. Orszag, Pseudospectral approximation to two-dimensional

turbulence, J. Comp. Phys. 11 (1973), 612.

[23] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Korteweg-de Vries

equation and generalizations. VI. Methods of Exact Solution, Comm. Pure Appl.

Math. 27 (1974), 97-133.

[24] J. A. Gear and R. Grimshaw, A second-order theory for solitary waves in shallow

fluids, Phys. Fluids 26(1) (1983), 14-29.

[25] D. Gottlieb, M. Hussaini, and S. Orszag, Introduction: Theory and applications

of spectral methods, Spectral Methods for Partial Differential Equations (R. Voigt,

D. Gottlieb, and M. Hussaini, eds.), SIAM, 1984, pp. 1-54.

[26] D. Gottlieb and S. A. Orszag, Numerical analysis of spectral methods, 1989.

[27] R. Grimshaw, On steady recirculating flows, J. Fluid Mechanics 39 (1969), 695-703.



BIBLIOGRAPHY 109

[28] ., Solitary waves in compressible fluid, J. Pure Appl. Geophysics 119

(1980/81), 780-797.

[29] ., Resonant flow of a rotating fluid past an obstacle: the general case, Stud.

Appl. Math. 83 (1990), 249-269.

[30] , Internal solitary waves, Advances in Coastal and Ocean Engineering (P.L.-

F. Liu, ed.), vol. 3, World Scientific Publishing Co., Singapore, 1997, pp. 1-30.

[31] R. Grimshaw and Z. Yi, Resonant generation of finite-amplitude waves by the uni-

form flow of a uniformly rotating fluid past an obstacle, Mathematika 40 (1993),

30-50.

[32] R. Grimshaw and Zengxin Yi, Resonant generation of finite-amplitude waves by the

flow of a uniformly stratified fluid over topography, J. Fluid Mechanics 229 (1991),

603-628.

[33] A. K. Gupta, Swirl flows, 1st ed., Abacus Press, 1984.

[34] J. He, Numerical spectral methods for nonlinear wave equations, Ph.D. thesis,

Monash University, 199?.

[35] C. Hirsch, Numerical computation of internal and external flows, vol. I, Wiley-

Interscience, 1988.

[36] M. Y. Hussaini and T. A. Zang, Iterative spectral methods and spectral solutions

to compressible flows, Spectral Methods for Partial Differential Equations (R. G.

Voigt, D. Gottlieb, and M. Y. Hussaini, eds.), SIAM, 1984, pp. 119-140.

[37] D. A. H. Jacobs, The strongly implicit procedure for the numerical solution of

parabolic and elliptic partial differential equations, Tech. report, Central Electricity

Research Laboratory, 1972, Note RD/L/N66/72.

[38] R. S. Johnson, A modern introduction to the mathematical theory of water waves,

Cambridge Texts in App. Math., Cambridge University Press, 1997, p. 249.

[39] T. F. Chan K.-K. Tung and T. Kubota, Large amplitude internal waves of perma-

nent form, Stud, in Appl. Math. 66 (1982), 1-44.

[40] L. Kantorovich, The method of successive approximations for functional equations,

Acta Math. 71 (1939), 63-97.



BIBLIOGRAPHY 110

[41] D. J. Kortevveg and G. de Vries, On the change of form of long waves advancing

in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. 39

(1895), no. 5, 422-443.

[42] W. Krauss, Interne Wellen grofier Amplitude, Teil 1, Deutsche Hydro. Zeit. 10

(1957), no. 5, 191-201.

[43] ., Interne Wellen grofier Amplitude, Teil 2, Deutsche Hydro. Zeit. 11 (1958),

no. 5, 194-255.

[44] , Interne Wellen, Borntrager, Berlin, 1973, p.134.

[45] A. I. Leonov and Yu. Z. Miropol'skiy, Toward a theory of stationary nonlinear

internal gravity waves, Atmospheric and Oceanic Physics 11 (1975), 298-304.

[46] M. J. Lighthill, Waves in fluids, Comm. Pure Appl. Math. XX (1967), 267-293.

[47] R. R. Long, Some aspects of the flow of stratified fluids, I. A theoretical investiga-

tion, Tellus 5 (1953), 42.

[48] ., Some aspects of the flow of stratified fluids, II. Experiments with a two-

fluid system, Tellus 6 (1954), no. 2, 97-115.

[49] , Some aspects of the flow of stratified fluids, HI. Continuous density gradi-

ents, Tellus 7 (1955), no. 3, 341-357.

[50] , The initial-value problem for long waves of finite amplitude, J. Fluid Me-

chanics 20 (1964), 161-170.

[51] R. R. Long and J. B. Morton, Solitary waves in compressible, stratified fluids, Tellus

XVIII,1 (1966), 79-85.

[52] L. Magaard, Zur Theorie zweidimensionaler nichtlinearer interner Wellen in stetig

geschichteten Medien, Kieler Meeresforschung 21 (1965), Inst. Meereskunde Uni-

versitat Kiel.

[53] G. J. McCarthy, Investigation into the multigrid code MGD1, Report AERE-R

10889 (1983), Harwell.

[54] M. E. Mclntyre, On Long's hypothesis of no upstream influence in uniformly strat-

ified or rotating flow, J. Fluid Mechanics 52 (1972), 209-243.



BIBLIOGRAPHY 111

[55] V. E. Nakoryakov, B. S. Pokusaev, and I. R. Schreiber, Wave propagation in gas-

liquid media, 2nd ed., CRC Press, Boca Raton, 1993.

[56] K. Oswatitsch, Gas dynamics, 1st ed., Academic Press, 1956.

[57] D. E. Pelinovsky and R. H. J. Grimshaw, Instability analysis of internal solitary

waves in a nearly uniformly stratified fluid, Phys. Fluids 9 (1997), no. 11, 3343-

3352.

[58] J. W. Rottman, D. Broutman, and R. Grimshaw, Numerical simulations of uni-

formly stratified fluid flow over topography, J. Fluid Mechanics 306 (1996), 1-30.

[59] J. S. Russell, Report on waves, Rep. 14th Meet. Brit. Assoc. Adv. Sci. (1844),

311-390.

[60] A. P. Stamp and M. Jacka, Deep-water internal solitary waves, J. Fluid Mechanics

305 (1995), 347-371.

[61] H. J. Stetter, Analysis of discretization methods for ordinary differential equations,

Springer Verlag, 1973.

[62] H. L. Stone, Iterative solution of implicit approximations of rnulti-dimensional par-

tial differential equations, SIAM J. Numer. Anal. 5 (1968), 530-558.

[63] V. L. Streeter and E. B. Wylie, Fluid mechanics, 6th ed., McGraw Hill, 1975.

[64] C. L. Streett and T. A. Zang, Spectral muW 'id methods with applications to tran-

sonic potential flow, J. Comp. Phys. 57 (1985), 43-76.

[65] D. E. Terez and O. M. Knio, Numerical simulations of large-amplitude internal

solitary waves, J. Fluid Mechanics 362 (1998), 53-82.

[66] K.-K. Tung, T. F. Chan, and T. Kubota, Large amplitude internal waves of per-

manent form, SIAM 66 (1982), 1-44.

[67] J. K. Vennard, Elementary fluid mechanics, 4th ed., J. Wiley &; Sons, 1961.

[68] M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolu-

tion equations, Comm. Pure and Appl. Math. 39 (1986), 51-68.

[69] J. Weissinger, Zur Theorie und Anwendung des Iterationsverfahrens, Math. Nachr.

8 (1952), 193-212.



BIBLIOGRAPHY 112

[70] P. Wesseling, A robust and efficient multigrid method, Multigrid Methods. Springer

Lecture Notes in Mathematics 960 (1982), 614-630.

[71] ., Theoretical aspects of a multigrid method, SIAM J. Sci. Statist. Comput.

3 (1982), 387-407.

[72] J. H. Williamson, Low-storage Runge-Kutta schemes, J. Computat. Phys. 35

(1980), 48-56.

[73] N. J. Zabusky and M. D. Kruskal, Interactions of solitons in a collisionless plasma

and the recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240-243.

[74] T. A. Zang, Spectral methods for simulations of transition and turbulence, Comp.

Meth. Appl. Mech. Eng. 80 (1990), 209-221.



List of amendments
1. On page (vi) in the second reference replace "to appear" with:

"28:323-247"

2. On page 2 in the second paragraph insert at the end of the first sentence:
"..., see Apel (1980,1995) and Ostrovsky and Stepanyants (1989)."
On page 2 hi the second paragraph insert at the end of the second sentence:
"... (see, the reviews by Smith (1988) and Christie (1989))."
On page 2 in the second paragraph insert at the end of the third sentence:
"..., see overview by Grimshaw (1997)."
On page 2 hi the second paragraph insert at the end of the last sentence:
".., see Gupta (1984)."

Add to the list of references in the Bibliography:

J. R. Apel (1980) "Satellite sensing of ocean surface dynamics", Ann. Rev. Earth Planet. Sci.
8:303-342

J. R. Apel (1995) "Linear and nonlinear internal waves in coastal and marginal seas", Oceanographic
Applications of Remote Sensing, eds. M. Ikeda and F. Dobson, CRC Press, Boca Raton, Florida

L. A. Ostrovsky and Yu A Stepanyants (1989) "Do internal solitons exist in the ocean?", Rev. Geo-
physics 27: 293-310

R. K. Smith (1988) "Travelling waves and bores in the lower atmosphere: the 'morning glory' and
related phenomenum", Earth Sci. Rev. 25: 267-290

D. R. Christie (1989) "Long nonlinear waves in the lower atmosphere", J. Atm. Sci. 46: 1462-1491

R. Grimshaw (1997) "Internal solitary waves", Adv. Coastal and Ocean Eng., ed. P.L-F. Liu, World
Scientific Publ. Co., Singapore, Vol. 3, 1-30.

3. On page 6 in Table 1.1 replace:
"deviation from uniform (linear) stratification N2 ... and topography"
by
"deviation from uniform (linear) stratification and topography.

4. Replace last sentence of first paragraph on page 11 with
"The governing equations for the stratified flow through a channel are followed by the governing equa-
tions for the rotating flow of a constant density fluid through a cylindrical channel."

5. On page 11 after equation (2.4) insert:
"Equation (2.1) and (2.2) are the momentum equations for the horizontal and vertical velocities u and
w. Equation (2.3) represents the conservation of total density p and equation (2.4) is the incompress-
ibility condition. The pressure is denoted by p.

6. On page 12 in the third line from the bottom replace
"To identify the Boussinesq approximation ... in the Boussinesq approximation by K = 0."
by
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"To identify the Boussinesq approximation, it is appropriate to introduce an artificial parameter «,
which is set to K = 0 for the equations in the Boussinesq approximation and set to K = 1 for the
equations in the non-Boussinesq case."

7. On page 17 in the fourth line from the bottom add to the end of the sentence: "... having a value
typical for water, and a = 0.01 typical for an oceanographic setting."

8. Put Figures 5.1, 5.2 and 5.12 on page 23 (chapter 3) rather than in chapter 5.

9. Insert the following at the bottom of page 24 after Rottman [58]:
"The complete derivation of the finite-amplitude long-wave equation can be found in [32] and is not
repeated here. It will only be stated here for reasons of completeness."

10. On page 25 replace the paragraph starting from line 4 after section 3.3 'The amplitude equation ..."
and ending at the bottom of the ??-gc "... polynomial terms of degree q < 5." with the following:

The amplitude equation for such multi-scale internal solitary waves that arises from an asymptotic
expansion of the governing equations has nonlinearities that are of greater power than in the common
Korteweg-de Vries equation. Due to the similarities of this amplitude equation to the generalized KdV
equation its stability properties are comparable to the characteristics of the generalized KdV equation.
The generalized KdV equation can be written as

• equation (3.50)

where p <= 4. Note that the generalized KdV includes the KdV and mKdV equation and a term
of higher order nonlinearity. Benjamin (1972) [2] has proven the stability of KdV type waves which
was extended by Bona (1976) [6]. The KdV wave is given by p = 1 and the mKdV wave by p = 2.
Weinstein (1986) [68] has shown the stability and integrability for p < 4. For p >= 4 no stability
proof is available. Bona et al (1987) [7] assume that an amplitude equation of the gKdV type (3.50)
is marginally stable for p = 4 and unstable for p > 4. The multi-scale internal solitary waves derived
by Derzho and Velarde (1995) [17] contain a polynomial term R(A) on the right hand side of equation
(3.50) of quintic power q = 5 and additional polynomial terms of degree q < 5.

11. On page 28 replace the sentence after equation (3.66) starting with "Equation (2.19)" with:
"The steady form of equation (2.21) shows that the circulation C is constant along streamlines, thus
C = C(ip) where the functional form of C = C(ip) is to be determined from the upstream inflow
condition for those streamlines which originate upstream."

12. On page 31 insert after the second sentence of section "Derivation of the steady-solutions":
"... and let X = ex as well as k = K/C2, a — a/e2."

13. On page 36 line 7 from bottom replace differential with derivative.
On page 37 line 6 from top replace differential with derivative.

14. On page 37 after the first paragraph add:
"In this study a time step of dt = 0.46 was used for the non-Boussinesq case and a time step of
dt = 0.001 for the rotating flow. The time step was usually limited by what the numerical scheme
required to account for the changes in the solution. Due to the small step size for the rotating flow the
maximum time that could be achieved computationally was much smaller."

15. On page 37 after the end of the first paragraph insert the following:
"The low-storage Runge-Kutta scheme is given explicitly by
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y = yn

for fc = 3 , l , -1

end for
yn+i=y.

16. On page 37 second paragraph in the last sentence replace
"Finite difference methods approximate spatial ... trading off accuracy."
with
"Finite difference methods in effect approximate spatial derivatives by a Taylor series of finite order.
They are frequently applied to complicated problems, due to their straightforward implementation."

17. On page 38 and line 3 from the top replace albeit with despite.

18. On page 38 after the second paragraph insert:
"The equations can be transformed to topography-following coordinates by making the transformation
(X,Z)

The top and bottom horizontal boundaries are then parallel regardless of the bottom topography h(x).

19. On page 38 in the second paragraph from bottom add to the sentence "In the vertical Chebyshev ...
the vertical." the following
"Typically 256 Fourier modes in the horizontal and 65 Chebyshev modes in the vertical are sufficient
to resolve the waves studied here."

20. Replace the second last sentence on page 38 "A 2/3 filter on the highest modes is used ... domain." by
"A 2/3 filter on the highest modes is used to remove aliasing errors, see Boyd [8] and Canuto [12]. It
consists of keeping only those coefficients of the Fourier transform for which the wavenumber \k\ < y
and set all other coefficients to zero. Without a filter the numerical growth of high wavenumbers is
aliased into low wa renumbers, which can lead to an unphysical cascade of energy from high to low
wavenumbers and evv ntual numerical instability.

A sponge is situated across the boundary condition in the horizontal to prevent energy propagated
downstream from re-entering the domain. The sponge layer covers about -^th on each end of the
computational domain and continuously smoothes any perturbation to the basic streamfunction and
density field using a tanh profile."

21. On page 42 insert the following after the paragraph ending on line 5 from the top:

"The equations of motion for the time-dependent non-Boussinesq stratified flow solved numerically are
given by equations (2.11) and (2.12) and explicitly

D^x\ P*
Dt J p

Drpz
p \* ' Dt J p Dt

for the vorticity w and
p't = -Uffx-J{-4>,/J)-i,xpx

for the density perturbation p'."

22. On page 42 and line 12 from the bottom replace reference to equation (4.9) with (4.8)
On page 42 and line 9 from the bottom replace reference to equation (4.9) with (4.8)
On page 44 and line 4 from the top replace reference to equation (4.9) with (4.8)



23. On page 46 and 1'ne 15 from the bottom add to sentence ending "... with all the eigenvalues in
Chebyshev space." the following:
"... with all the eigenvalues in Chebyshev space, see Canuto et. al. [12]"

24. On page 47 after the paragraph ending line 3 from the top insert:
"The equations of motion for the rotating flow through a cylindrical channel solved numerically are
explicitly are given by equations (2.20) and (2.21)."

25. On page 48 in the subsection on 'A solution to the linearized equations' replace the last sentence
"The numerical model... within the error of the computation."
with
"The non-Boussinesq model has been initialized with the solution given by equation (4.24). The error
in the growth rate, equation (4.25), is of order O(10~2) on a time scale of O(10 !s). Due to the no-flow
boundary condition enforced at the top and bottom boundary and the multiplication by a Gaussian
function, see equation (4.24), the theoretical growth rate (4.25) is only representative initially."

26. On page 49 in the subsection on 'Conservation laws' insert at the end of the paragraph:
"The error in the conservation laws is of order O(10~9) for a KdV solitary wave and the solitary wave
remains stationary in the reference frame for times of order O(103s).

27. On page 49 in the subsection on 'Kinetic and potential energy' replace the last sentence.
"Gaussian quadrature is used ... error of the numerical model"
with
"Gaussian quadrature is used to compute the two-dimensional integrals. The change in energy is
computed for the non-Boussinesq model for large times using a large-amplitude solitary wave with a
vortex core as an initial condition. The relative change in energy B'j^Bi?i.tial is of order O(10~9) for times
of order O(104s) , which confirms that the numerical scheme conserves energy and is non-dissipative.

28. On page 50 replace the first 3 sentences of the first paragraph by:
"This section presents the results for the four applications considered. Firstly the results for the large-
amplitude internal solitary waves with vortex cores in the Boussinesq approximation followed by the
non-Boussinesq case are presented. These results are followed by the results for the stratified flow over
topography and multi-scaled internal solitary waves."

29. On page 50 insert at the beginning of section 5.1:
"This section presents the results for the time-dependent simulation of large-amplitude internal solitary
waves with vortex cores in a stratified fluid. The results for the equations in the Boussinesq approxi-
mation will be discussed first and followed by the discussion of the results for the non-Boussinesq case
of the governing equations. The numerical results aim to show that the solitary waves derived by DG
are permanent of shape and that the recirculation region remains stagnant to first order, as predicted
by the theoretical results."

30. On page 51 in the second paragraph add the following after the sentence ending with "... as predicted
byDG.":
"Note that the contours of the streamfunction inside the vortex core are an artefact of the visualization
routine and do not represent an mhomogeneity of the core."

31. On page 51 in the last paragraph replace:
"The amplitude of the steady state solution is measured for a number of different phase speeds from

with
"Throughout the whole study a range of steady state solutions are investigated using 5 to 7 amplitudes
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within the minimum amplitude A* and maximum possible amplitude A* + fimax f°r which solitary
waves with vortex cores exist. The parameter fi was chosen to be greater than 65% and less than 95%
of the maximum possible value / i m o i (0.65/imaa: < /z < 0.95/imai).

32. On page 51 replace the sentence on the fifth line from the bottom
"The results agree computation."
with
"The numerical results displayed in Figures 5.1 and 5.2 represent the relative phase speed • £ ^ a versus
amplitude. The results exhibit a deviation of the numerical results from the theoretical of order much
less than 10~3 (Ac = O(10~4)). The deviation of the numerical results from the theoretical values is
much smaller than the error terms of the theoretical solution, which are of order e2 = 0.01. In the
numerical simulations a range of values in the interval Amin to Amax were chosen but the numerical
results do not exactly follow the theoretical curve. This is attributed to the limit of the accuracy of
the numerical scheme as well as the theoretical solution. The fact that the phase spced-sruplitude
results of Figure 5.1 and 5.2 are close to the theoretical values and the time-evolution of the solutions
in Figures 5.4 and 5.8 confirm the validity and stability of the theoretical solution."

33. On page 52 and in the first line replace the part "..., which corresponds ... hours." with
"..., which corresponds to the flow having traversed the width of the waves for approximately 11 times
and a dimensional time of more than 8.33 hours."

34. On page 52 in the first line replace "It is argued..." with
"The author of this thesis argues ..."

35. On page 52 on second last paragraph and third sentence replace O(10~4) with O(10~2), O(cr2) with
O(e2) and a = 0.01 with e2 = 0.01.

36. On page 66 at the beginning of section 5.2 replace the first sentence with:
"This section presents the results for the two-dimensional time-dependent stratified flow over topog-
raphy using the non-Boussinesq numerical model. The purpose of this investigation is to compare
the results of the non-Boussinesq model with the results of the numerical model based on the finite-
amplitude long-wave [FALW] equation derived by Grimshaw and Yi [32]. The numerical model used
for the FALW equation is not identical to the model used by Grimshaw and Yi. It it is based on the
improved scheme implemented by Rottman et.al. and applied to the FALW equation including the
non-Boussinesq term neglected in the Boussinesq approximation."

37. On page 66 after equation 5.2 insert
"... such that the buoyancy frequency N is constant, ..."

33. On page 77 insert at the beginning of section 5.3:
"This section presents the results for the simulation of multi-scaled solitary waves in a stratified fluid
using the non-Boussinesq numerical model. The purpose of this investigation is to show that the
multi-scaled internal solitary waves derived by Derzho and Velarde [17] are permanent of shape.

39. In the fifth line from the top on page 77 replace the sentence "The final time is about SL.. hours ...
shape." with
"The final time corresponds to approximately seven hundred buoyancy periods (T = ^-) and 6 hours
in dimensional time, which is long enough to consider the wave to be of permanent shape."
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40. Replace the last sentence in the first paragraph on page 77:
"The solutions show little change of shape ... within the accuracy of the numerical model."
with
"The two cases considered here are for two respective cases: when the wavelength of the solution is
quite large (03 = 1.001) and comparably small (0:3 = 1.1). In both cases the numerical results show
only little change of shape, wavelength and amplitude of the solutions derived by Derzho and Velarde."
and add at the end of the second paragraph
"The numerical results obtained here show that the multi-scale internal solitary wave solutions obtained
by Derzho and Velarde are stable solutions and retain a balance between nonlinearity and dispersion
necessary for solitary wave propagation. Furthermore the stability of these solutions agrees with the
stability analysis by Weinstein [68] and Bona et al [7] for amplitude equations of the generalized KdV
type."

41. On page 81 in Table 5.4 replace K and a with k and a.

42. On page 81 at the beginning of section (5.4) replace the first sentence with:
"This section presents the results for the time-dependent simulation of large-amplitude inertial solitary
waves with vortex cores in a rotating flow through a cylindrical channel. The purpose of this study is
to verify the existence and permanence of the large-amplitude solitary waves with vortex cores derived
by Derzho and Grimshaw [15] and in particular that the recirculation region remains stagnant to first
order."

43. On page 81 insert the following after the sentence on line 6 from the bottom:
"The solutions are computed up to a maximum time tn « 8 corresponding to approximately 20
revolutions of the fluid on the rotation timescale, T = jj- . This length of time is sufficient to verify
whether or not the theoretical solution by DG is permanent of shape."

44. On page 81 after the second paragraph from the bottom replace sentence
"The recirculation regions remain stagnant to first order."
with
"For the first case of a strong rotational shear and a KdV outer solution, see Figure 5.36, an upstream
steepening of the wave is noticeable. Transients moving downstream are observable in the contour plot
of the circulation, see Figure 5.37. The close up contour plot of the recirculation region shows a change
in the strength of the recirculation region of order O(10~4), but the recirculation region is only known
to first order of the asymptotic expansion, equation (3.84), where the corrections to the recirculation
region are of order e2 = 0.01. Thus the recirculation region remains stagnant to first order. For the
second case of uniform rotation and for the third case of a jet-like inflow condition the change in the
strength of the recirculation region are of order 0(1O~6."

45. After the first sentence on page 82 insert:
"For the first case of a strong rotational shear the change in amplitude is of the order O(10~2) indicating
that the steady state solution has not been reached. For the second and third case the change in
amplitude is of order 0(1O~4) and is approaching a constant. In all three cases considered the adverse
velocity is linearly decreasing with time on the order of 0(1O~~6) (O(10~3) in one run of the first case),
but as mentioned above this is to within the accuracy of the known theoretical solution.

46. On page 82 remove the first sentence of the last paragraph: "All results show a nearly linear ... less
than 1%."

47. On pages 83, 89, 95 in the captions of Figures 5.34, 5.43 and 5.52 replace K and a with k and a.

48. On pages 89, 95, 101 in the captions of figures 5.42, 5.51 and 5.60 replace Amplitude with amplitude.




