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Abstract

For the past decade or so, neural networks have been developed as a new computing

tool to solve combinatorial optimization problems (COP's). One of the main

advantages of neural networks is that they promise a dramatic performance gain when

implemented in parallel hardware. This factor makes neural networks an attractive

option for solving COP's commonly encountered in business and engineering

applications. However, for neural networks to be a robust and effective tool for

practical use, further research into their optimization dynamics is needed to improve

their optimization performance such as solution quality, efficiency, etc.

There are currently two major neural approaches to COP's: the Hopfield-type and the

self-organizing approach, each with limitations of its own. The traditional Hopfield-

type approaches are based on the minimization of an energy function via the steepest

descent dynamics of the Hopfield network, which often result in local minimum

solutions. Furthermore, solution feasibility is sensitively dependent on the choice of

penalty parameters. For the self-organizing approaches, a number of models have

been limited to solving Euclidean problems only, and most of them suffer from

i
convergence problems that affect solution quality.

In this thesis, we study the theoretical foundations of using nonlinear system

dynamics (NSD) to improve the optimization performance of the two neural



approaches. This includes investigations on the generation, characterization, and

exploitation of NSD in the neural networks for improved optimization. For the

Hopfield-type approach, we study the Hopfield-type chaotic neural networks

(HCNN's) which use chaotic dynamics for performance enhancement. A theoretical

framework unifying various existing HCNN models is proposed, which serves the

purpose of classifying the chaotic models in a new dynamical perspective. We then

I experimentally investigate the optimization performance of the HCNN models by

their implementation to solve the N-queen problem, which is an example of constraint

satisfaction problems. Computer simulation results of the chaotic simulated annealing

(CSA) models show that the associated chaotic dynamics are able to improve

optimization performance by having good feasibility, efficiency, robustness and

scalability. Similar measurements on a chaotic noise model also show a corresponding

performance enhancement. By combining the parametric study of performance with

observations of the dynamical behaviors during the solution process, we identify

characteristic chaotic dynamics responsible for improved solution qualities, and

provide a guide for choosing the corresponding parameters.

For the self-organizing approach, we study the self-organizing neural network with

[| weight normfdization (SONN-WN) for the role of NSD in improving optimization

performance. The SONN-WN is implemented to solve the N-queen problem via

computer simulations. Through a parametric study of the annealing schedules

associated with the normalization process, we demonstrate the use of noise and small

neighborhoods for improvements in feasibility and robustness. By means of a detailed

computational investigation of the network's convergence dynamics, a special
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normalization temperature range for ensuring effective convergence to good quality

solutions is discovered. These results enable us to propose a noise-induced

mechanism for oscillation control that leads to improved convergence, as well as

providing a guide for choosing annealing schedules of the normalization process. A

theoretical model describing the essential equilibrium dynamics of the SONN-WN is

also derived. The model reveals the key role of bifurcation dynamics in characterizing

the convergence behaviors observed in our experiments. Furthermore, a range of

nonlinear phenomena is revealed by the equilibrium model, thereby opening up a

dynamical perspective for understanding and improving the SONN-WN.
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The following is a list of notations used in this thesis:

Combinatorial Optimization

.1

X

fix)

R

vector solution of a 0-1 COP

matrix solution of a 0-1 COP

objective function to be minimized

constraint coefficient matrix

Hopfield-type Neural Networks

internal state of neuron /

h

output state of neuron i

internal state of neuron (ij)

output state of neuron (i,j)

weight of the connection between neuron i and j

weight on the external inputy applied to neuron i

threshold of neuron i

external input of neuron i

energy function of the continuous Hopfield network

The original notations from various sources have been altered where necessary for consistency.
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Chapter 1

Introduction

in

This thesis studies neural networks with features of nonlinear dynamical systems for

solving combinatorial optimization problems. These features include chaos,

bifurcation, intermittency, and other attractor properties of nonlinear systems. We

investigate how these nonlinear phenomena arise in the networks, their properties, and

how they can be exploited to make neural networks more practical and effective for

combinatorial optimization. From a theoretical point of view, this can be seen as a

generalization of traditional neural networks to cover a wider spectrum of possible

dynamics and functionality. We begin this chapter with an introduction to

combinatorial optimization, and describe various traditional neural approaches for

tackling the problem. Theoretical and practical limitations of these approaches are

then outlined, from which we draw the motivation of this thesis. A brief summary of

basic concepts in chaos theory and related dynamics is also included. We then present



Chapter 1: Introduction

the objectives and major contributions of this thesis, followed by an overview of its

organization.

1.1 Combinatorial optimization

Combinatorial optimization problems (COP's) are concerned with finding optimal

solutions to satisfy a given set of constraints. Many problems in engineering and

business are found to be combinatorial in nature, therefore efficient and robust

methods to obtain optimal solutions are highly sought after. A well-known example of

a COP is the travelling salesman problem (TSP) [67]. Given a number of cities to

visit, a salesman has to find the shortest route around them with each city visited

exactly once. The constraint here is the requirement of visiting each city exactly once,

and an optimal solution is the shortest route satisfying this constraint. In this example

and also in general, there is usually more than one optimal solution to each COP.

Because of the combinatorial nature of these problems, the solutions are discrete and

usually expressed as matrices of 0 and 1 (0-1 solution). A general optimization

problem with a quadratic objective function f[x) with linear constraints can be written

as

Minimize f(x) = xTQx + cTx (1.1)

subject to Ax = b (1.2)

* e { 0 , 1} i = l / / (1.3)

An optimal solution to the problem specified by (1.1), (1.2) and (1.3) is called a

global minimum, and a local minimum is a sub-optimal solution. An infeasible



Chapter 1: Introduction

solution is one that does not satisfy (1.2), Common problems of this class are: the

TSP, transportation problem, facilities layout problem, vehicle scheduling problem,

etc. In this thesis, the //-queen problem which also belongs to this class is used as a

test case for our investigations.

For a class of problems called integer linear programming (ILP) where both the

objective function and constraints are linear, exact methods are available for

guaranteed optimal solutions. There are two broad approaches: enumeration

techniques and cutting planes [40]. Examples of implicit enumeration techniques are

branch-and-bound [66] and dynamic programming [17]. These methods are only

useful for small-sized problems due to their complexity. As the problem size grows,

they become too consuming in time and resources even with modern computers.

Because of combinatorial explosion, many COP's belong to a class called NP-hard

problems [60]. Algorithms whose computational time is a polynomial function of the

problem size are unlikely to be found for these problems.

Since many COP's found in engineering and business are nonlinear, medium to large

scale, and often NP-hard, more practical approaches are required due to limitations in

time and resources. To this end, heuristics have been developed to deliver near-

optimal solutions in reasonable computational time. An example is the local search

method, where the optimal solution is obtained by searching through neighboring

feasible vertex solutions. A steepest descent mechanism is often employed in this

method, and while this converges quickly to a stable solution, it is often only a locally

optimal solution. A more robust and widely used heuristic is simulated annealing
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(SA) [61], which enables local minima to be escaped in the search for globally

optimal solutions. It was inspired by the physics of statistical mechanics governing

the annealing of a molten metal to its solid state. The transition of the atomic

configuration from a disordered state to a more ordered one as the temperature

decreases is described by the Boltzmami distribution, which is exploited by SA as the

functional mechanism for optimization. Since uphill moves on the energy landscape

are allowed, this method can avoid being trapped in local minima. One important

feature of SA is its stochastic element and its role in the optimization process, which

is also shared to a certain extent by some neural network methods described later.

Many other heuristics have been developed for general or special purposes, e.g. tabu

search, maximum spanning trees, etc. Since the treatment of heuristics lies outside the

scope of this thesis, interested readers should refer to other sources, e.g. Reeves [82].

1.2 Neural approaches to combinatorial optimization

For the past decade or so, neural networks have become a new tool for solving COP's.

There are currently two main types of neural networks for this purpose: the Hopfield

neural network and self-organizing approaches. In this thesis, we base our

investigations on these two types of neural networks. In order to draw the motivation

behind this thesis, a brief outline of the neural approaches is given here, and more

detailed literature surveys are presented in Chapter 2 and 5.

In 1985, Hopfield and Tank first demonstrated that the TSP could be solved using a

Hopfield neural network [54]. This marks the beginning of using neural networks to
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solve NP-hard problems. The seminal paper of Hopfield and Tank introduced the

mapping of a quadratic objective function of a COP to the Hopfield energy, where the

optimization is achieved by the network's convergence to the nearest fixed point via

steepest descent dynamics. This approach treats the Hopfield network as a dynamical

system, and exploits the local behavior of fixed points to fulfill the goal of

optimization. However, other nonlinear phenomena and global dynamics, together

with their potential functionality, have been largely unexplored.

Despite the success of bridging the fields of neural networks and combinatorial

optimization, many problems have been identified with the Hopfield-Tank (H-T)

approach as a practical tool. There were initial difficulties in the determination of

various parameters, as well as the problem of infeasible solutions and poor solution

quality [111]. As a result, techniques have been devised to improve the feasibility

problem by tuning the parameters [57, 65] and modifying the energy function

[20,103]. Although the problem of feasibility was subsequently solved [6, 39],

solution quality remains to be improved. Not surprisingly, many modifications and

variations of the Hopfield network have been proposed to improve the solution

quality, and some of the more successful ones are stochastic in nature, e.g. Boltzmann

machines [51], Cauchy machines [96] and Gaussian machines [8]. The improvement

in solution quality in these methods is principally achieved by incorporating

principles of S A to avoid local minima.

Recently, a class of Hopfield-type neural networks exploiting the global dynamics of

nonlinear systems has been developed for improved optimization performance. They
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are generally called chaotic neural networks (CNN's), or more specifically Hopfield-

type chaotic neural networks (HCNN's), which feature the nonlinear phenomenon of

chaos in various ways. Broadly speaking, they can be divided into two major classes.

One is the internal approach where chaos is generated within the network. Examples

of this type include chaotic simulated annealing (CSA) approaches [24, 107] and the

globally coupled map (GCM) model [75]. The other type is the external approach,

where an externally generated chaotic signal is added to the network as chaotic noise

[15, 47,48], Many of these approaches have been used to solve the TSP, with

measured performance gains including improved feasibility, solution quality,

robustness, ease of parameter choices, etc., when compared to the basic H-T

approach.

The other major class of neural networks for solving COP's is based on Kohonen's

self-organizing feature map (SOFM) [62]. Most of these efforts have been directed to

solving the TSP with the elastic net approach [30]: an 'elastic band' or a ring of nodes

representing a tour is stretched to seek the shortest path. This technique of combining

SOFM with the elastic net method have been limited to solving problems defined in

the Euclidean plane, where the inter-node distances on the 'elastic band' are measured

in the same space [34, 37]. To extend self-organizing networks beyond elastic net

based approaches and thereby solving a broader class of "0-1" optimization problems,

a more general model called the self-organizing neural network (SONN) was later

developed to operate within feasible permutation matrices rather than the Euclidean

space of the elastic net [90,91].
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Common among the self-organizing approaches is the oscillation problem during

convergence. This occurs when cheaper nodes are favored in the competition to be the

winners, leading to infeasible or local minimum solutions. Many ways have been

proposed to suppress the oscillations, e.g. by the creation/deletion of nodes [11], by

punishing the 'greedy' nodes with a conscience mechanism [22,29], or by the

incorporation of explicit statistics into the learning [13]. For the SONN, a weight

normalization procedure was introduced [45,44] for the purpose of constraint

satisfaction, as well as for reducing oscillations. The normalization procedure

involves the lowering of a temperature parameter as the network learning proceeds,

which is akin to the cooling process in SA. How this normalization process interacts

with the self-organizing dynamics of the network is an important open question in

terms of understanding and improving the optimization ability of the SONN. Also,

solution quality depends sensitively on the cooling parameters, which are often

difficult to choose.

Most of the research mentioned so far, for both the Hopfield-based and self-

organizing approaches, has been implemented as computer simulations in software to

solve the COP's. In fact, the parallel and interconnected structure inherent in the

networks makes them perfect candidates for hardware implementations [53, 85,106].

The result would be a drastic reduction in running time and cost, which makes neural

networks a more powerful tool for solving COP's in engineering and business.
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1.3 Chaos and related dynamics

In this section, we briefly outline the basic concepts of chaos and related dynamics

relevant to this thesis. Since chaos theory belongs to the enormous field of nonlinear

dynamics, a detailed treatment is beyond the scope of this thesis.

For a broad class of systems, their dynamical behaviors can be described by a set of

first order differential equations in the form:

at

dx2 _
—- — r 2 \Xi ,X2,..., XN
at

-^L=FN(xl,x2,...,xN) (1.4)
at

where F is in general a nonlinear, continuous function of the time dependent

variable x. The space specifying the system state x is called the state space of the

system. For dissipative systems, the long-term behavior is largely independent of its

transients (although the final state can be affected). As the system evolves in time, the

trajectory approaches an attractor, which may be a point, curve or an area. A basin of

attraction is the set of initial points in the state space that gives rise to the attractor. To

find the fixed point of (1.4), we set F = 0 and then solve the resultant system of

algebraic equations. The local behavior around the fixed point can be determined by a

stability analysis. For a stable (unstable) fixed point, nearby points in the state space

follow convergent (divergent) trajectories as time evolves. For one-dimensional



Chapter 1: Introduction

systems (N= 1), the only possible dynamics are convergent or divergent behaviors

relative to the fixed points. For two-dimensional systems (JV= 2), cyclic or periodic

behaviors can also exist. Because of the fundamental property that trajectories in the

state space never cross, chaos cannot exist for N<3, i.e. only in three or higher

dimensions can chaos be found (note: this condition refers to continuous differential

equations, not to discrete difference equations).

Although a single definition of chaos is yet to be agreed upon among scientists, some

necessary but not sufficient characteristics of chaotic dynamics have been

documented [35]:

1 Deterministic: chaotic dynamics are completely deterministic. The future of a

chaotic system is completely determined by its past history (c.f. random

processes where a future state is uncorrelated with the present);

2 Sensitive dependence on initial conditions: errors in the initial states grow

exponentially with time, rendering accurate long-term predictions impossible;

3 Ergodic: a chaotic trajectory always returns to the local region of a previous

point along the trajectory (but never repeating itself);

4 Embedded: there are an infinite number of unstable periodic orbits embedded

in the chaotic attractors.

Since chaos requires at least a three-dimensional state space to describe its dynamics,

a low dimensional section of the state space called the Poincare section is commonly

used for analysis. With this approach, the continuous dynamics can be described by a

• : • • . ]
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set of difference equations of lower dimensions. A well-known example of a

difference equation is the logistic map:

= ax(n)(l-x(n)) (1.5)

where n denotes the iteration, and a is the bifurcation parameter. The logistic map

(1.5) captures most of the important nonlinear phenomena observed in continuous

systems of three-dimensions or higher. Starting from an initial point x(O), (1.5) is to

be computed repeatedly to represent a discrete time evolution of the dynamical

system. It can be seen that a strong feedback effect is at work in (1.5) where the

present value x(ri) nonlinearly generates x(n +1). The feedback strength is controlled

by the parameter a, which determines the characteristics of the whole system.

Figure 1.1 (a) shows the long-term state values of* with varying values of a (the early

transients are not shown). Such a diagram is called the bifurcation diagram of the

system (1.5).

From Figure 1.1 (a), the period-doubling bifurcation route to chaos can be observed.

For 0 < a < 3 , the system converges to a fixed point. For a>3, the fixed point

becomes unstable and bifurcates into a two-cycle, where the long-term behavior is an

oscillation between two x values. Successive bifurcations can be observed from

Figure 1.1 (a), and such a scenario is called a cascade of bifurcations. For a > 3.57

(approx.), the system exhibits deterministic chaos interspersed with windows of

periodic behaviors. A quantitative measure known as the Lyapunov exponent (ALya) is

used to describe the stability of attractors. The Lyapunov exponent of the logistic map
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is plotted in Figure 1.1 (b). Negative values (ALya<0) indicate periodic or quasi-

periodic motion, while positive values (A,Lya > 0) indicate chaos.

Another bifurcation event relevant to this thesis is a phenomenon known as crisis. A

crisis occurs when a chaotic attractor vanishes or suddenly increases in size [42]. It is

caused by the "collision" of an unstable fixed point or unstable limit cycle with the

chaotic attractor as some system parameter is changed. Common to systems with

multi-stable states is another bifurcation phenomenon known as symmetry-breaking

bifurcation. It occurs when a stable state is destabilized by a change of system

parameters, and the new stable state is "decided" among many others by very small

fluctuations. In other words, the symmetry between the stable states is broken by the

outcome of the event.

Since (1.5) is only a one-dimensional example of an iterative map, there are others in

two or higher dimensions. A famous two-dimensional example is the Henon map,

whose chaotic attractor, or strange attractor, can be observed in a two-dimensional

space. For a more detailed treatment of iterative maps and chaos in general, there are

some other excellent sources available e.g. Peitgen et al [78] and Hilborn [50].

1.4 Motivation

This thesis is motivated by the current need to fine-tune neural network algorithms in

order to ensure convergence to optimal solutions. In light of the promising perspective

of using nonlinear system dynamics (NSD) in neural networks for improved



Chapter 1: Introduction 12

optimization performance, we study in this thesis the theoretical foundations of this

new approach. For the Hopfield-type chaotic neural networks (HCNN's), there are

important similarities and differences among different models both in construction

and performance. An investigation is thus required to experimentally compare the

optimization performance of various HCNN models when solving the same COP, and

then theoretically examine their characteristics to explain their behavior. For the self-

organizing approach, there is currently a lack of self-organizing models focusing on

NSD for COP's, which are potential candidates to address the issues of convergence

and solution quality. Therefore, just like the Hopfield approach, a dynamical system

perspective is needed to study the possible role of NSD in enhancing the optimization

performance of the self-organizing approach.

1.5 Objectives and major contributions

4

The main theme of this thesis is the effective exploitation of nonlinear system

dynamics (NSD) in neural networks for enhanced performance in solving

combinatorial optimization problems. The theoretical basis of how NSD can be

effectively utiHzed for improved optimization is investigated for the two main types

of neural networks for combinatorial optimization. For the Hopfield-type approach,

we propose a unifying framework in which various chaotic models can be placed and

compared, thus providing a means to classify existing HCNN models and study their

dynamics in a new perspective. The HCNN models are implemented (via computer

simulation) to solve the constraint satisfaction problem known as Af-queen, such that

their optimization performance can be compared in different parameter spaces
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measuring feasibility, efficiency, robustness and scalability. Further computational

results on the network dynamics are investigated and examined in the light of the

unifying framework. This allows an identification of characteristic chaotic dynamics

crucial to effective optimization, as well as providing a guide to choosing model

parameters.

For the self-organizing approach, we study the SONN with weight normalization

(SONN-WN) for solving general 0-1 COP's in the perspective of NSD. We show how

existing limitations in convergence and solution quality can be overcome by

bifurcation dynamics due to the normalization process, especially with the presence of

noise. The SONN-WN is studied both theoretically and experimentally by using the

//-queen problem as an example to demonstrate the dependence of optimization

performance on annealing schedules and other system parameters. In order to explain

such dependence, an equilibrium model of the SONN-WN is derived, which unfolds

the phenomenon of bifurcation and its crucial role in the convergence process. The

dynamical systems view of the SONN-WN also reveals various nonlinear phenomena

such as cascades of period-doubling bifurcations to chaos and a strange attractor.

Combined with the action of added neuronal noise, we also demonstrate how the

improved solution quality is achieved by reducing unwanted oscillatory behaviors of

the network.

Since the focus of this thesis is on the theoretical foundation of the generation,

characterization, and exploitation of NSD in neural networks for combinatorial

optimization, in-depth performance evaluations e.g. comparisons with heuristics,
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intensive scalability study with large problem sizes, application to other COP's, etc.,

are beyond our scope. This research contributes to the literature an alternative view of

these neural networks. It shows the role of existing NSD and presents opportunities

for including richer dynamics for optimization. From the study presented here, it is

indeed surprising to find various aspects of NSD relevant to both Hopfield and self-

organizing type of neural networks for combinatorial optimization, despite their many

differences.

In summary, the main contributions of the thesis are:

• proposal of a theoretical framework for unifying HCNN approaches to COP's,

thereby suggesting a systematic classification of HCNN models according to their

formulations and chaotic properties;

• optimization performance comparisons of various HCNN models in terms of

feasibility, efficiency, robustness and scalability on representative parameter

spaces (which also serves as a general guide for choosing parameters);

• implementation of various HCNN models to solve the Af-queen problem, and

characterization of their time-dependent dynamics via computer simulation;

• identification of promising new HCNN models with theoretical foundations

informed by the unifying framework;

• implementation of a SONN with weight normalization (SONN-WN) to solve the

//-queen problem, with feasibilities measured on the normalization parameter

space;
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• discovery of improved feasibility by 1). adding external noise to the nodes of the

SONN-WN and 2). using a small neighborhood for nodes updating, with an

explanation based on symmetry-breaking in node competitions;

• discovery of high feasibility bands in the normalization parameter space, revealing

the sensitivity of solution quality on annealing schedules for the SONN-WN;

• derivation of an equilibrium model of the SONN-WN, revealing bifurcation

dynamics hidden in the weight updating-normalization system;

• explanation of high feasibility bands in terms of the bifurcation dynamics of the

SONN-WN, and providing a guide for choosing various system parameters;

• discovery of various nonlinear phenomena exhibited by the equilibrium model e.g.

multi-dimensional cascades of period-doubling bifurcations to chaos, crisis,

strange attractor, etc.

An outline of the organization of this thesis is as follows:

Chapter 2 presents an overview of the Hopfield neural network and the Hopfield-

Tank method in combinatorial optimization, together with various approaches to

overcome their limitations. As one of these approaches, a new breed of Hopfield-type

neural networks incorporating chaotic dynamics are introduced.

Chapter 3 proposes a unified framework for Hopfield-type chaotic neural networks

(HCNN's), and discusses its role as a theoretical foundation on which various HCNN

models can be placed and compared. This framework has been published in IEEE

Transactions on Neural Networks.
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Chapter 4 demonstrates the implementation of HCNN models to solve the iV-queen

problem, followed by computational results measuring and comparing their

optimization performance. Computational illustrations of chaotic dynamics arising

from these models are also presented. We then discuss the significance of these results

in the light of the proposed unified framework. This investigation has been published

in Neural Networks.

The second half of this thesis is devoted to the self-organizing approach of neural

networks for COP's, in particular self-organizing neural networks (SONN's) with

nonlinear system dynamics (NSD):

Chapter 5 reviews various self-organizing approaches of neural networks for COP's,

and their corresponding limitations. The self-organizing neural network with weight

normalization (SONN-WN) is introduced as the main model for our NSD

investigation.

Chapter 6 demonstrates the implementation of SONN-WN to solve the N-queen

problem, followed by computational results measuring its optimization performance

with respect to normalization annealing schemes. The dynamics of the network are

illustrated computationally, and the effects of added neuronai noise and small

neighborhood sizes are presented and discussed. The dependence of solution quality

on annealing parameters is demonstrated. Part of this investigation has been published

in the Proceedings of the ICSC Symposia on Intelligent Systems and Applications

(ISA2000).



Chapter 1: Introduction 17

Chapter 7 presents a dynamical systems view of the SONN-WN via the derivation of

an equilibrium model. Numerical investigations of the model are presented to

illustrate the bifurcation properties of the weight updating-normalization process,

together with other nonlinear phenomena. The significance of these results is then

discussed. Also, the experimental observations of Chapter 6 are explained by these

theoretical insights. A paper containing part of this study has been accepted for

publication in the Proceedings of the 6th International Work-Conference on Artificial

and Natural Neural Networks (IWANN2001).

Chapter 8 closes the thesis with our main conclusions, and suggests directions for

future research.
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Figure 1.1: (a) Bifurcation diagram of the logistic map and (b) the

corresponding Lyapunov exponent.



Chapter 2

Hopfield-type Neural Networks
for Combinatorial Optimization

2.1 Introduction

In this chapter we discuss the Hopfield-type neural network approach for

combinatorial optimization. Among the many variations and modifications of the

original Hopfield network [52,53], we survey the recent developments of

Hopfield-type chaotic neural networks (HCNN's), which utilize chaotic dynamics for

improved optimization performance. The nonlinear dynamics in a HCNN can be seen

as a generalization to the local convergence dynamics in the original Hopfield neural

network. In Section 2.2, we introduce the development of the Hopfield networks and

the Hopfield-Tank (H-T) approach to combinatorial optimization, which represents a

new era of solving difficult COP's with neural networks.

19
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Realizing the collective computational power of the Hopfield network, Hopfield and

Tank [54] developed the method of using the continuous Hopfield network to solve

difficult COP's. The inherent energy minimization property of the network is

exploited for 0-1 optimization from a continuous decision space. The method was

applied to solve the TSP by computer simulation of the Hopfield model. Their mixed

results show that the Hopfield network can indeed be used to solve COP's, but there

are problems of poor solution quality and feasibility, especially when the problem size

is increased. They encountered difficulties in choosing penalty parameters of the

energy function that can lead to satisfactory solutions. An investigation by Wilson and

Pawley [111] to apply the H-T approach to larger instances of the TSP further

revealed serious weaknesses of the method. No parameter combination could be

found in an attempt to solve a 64-city TSP, and even Hopfield and Tank's result on a

10-city TSP could not be repeated. Serious doubts were cast on the H-T approach as a

practical means to solve COP's. In Section 2.3, the H-T approach is introduced,

followed by a review of Wilson and Pawley's investigation in Section 2.3.1.

To overcome the limitations of the H-T approach, many improvements and

modifications have been proposed. Since the solution feasibility is sensitively

dependent on the penalty parameter combinations of the Hopfield energy function,

one of the approaches extensively studied in the literature is on the treatment of these

parameters for improved solution feasibility [49, 57, 28, 65, 23, 12, 68, 70]. To

improve the solution quality, modifications to the energy function have also been

suggested [20,74, 103, 6, 39, 2]. Inspired by simulated annealing (SA) [61], a number

of stochastic variations of the Hopfield network have also been proposed for further
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improvements in solution quality [1, 8,96], together with related techniques in

adjusting activation levels [54, 9,101,104,105,79]. All these improvements are

outlined in Section 2.3.2.

Since the main limitation of the H-T approach is due to the existence of many local

minima in the energy function and the simple steepest-descent dynamics of the

Hopfield network, a novel class of neural networks with more general network

dynamics has been proposed. A HCNN utilizes chaos to avoid being trapped in local

minima, and also to facilitate a kind of chaotic searching process, hi Section 2.4, we

introduce various HCNN approaches for solving COP's.

By using chaotic neurons of refractory properties, Aihara et al [5,4] constructed a

HCNN based on the Hopfield network which exhibits chaotic dynamics. It was

implemented to solve the TSP with interesting transitions of network states during the

chaotic solution process [114]. Nozawa [75,76] proposed another approach to HCNN

by starting from the Euler discretization of the Hopfield model, and then adding a

negative self-feedback term to generate chaos in the system. Experiments in solving

the TSP suggested a relationship between a possible 'chaotic search' process and the

chaotic itinerancy phenomenon in nonlinear dynamics. The dynamical basis of such a

relationship was later clarified by Tokuda et al [99]. Details of these are given in

Section 2.4.1.

Although the chaotic dynamics of a HCNN allow the network to escape from local

minima, its chaotic nature means the lack of a converged solution state. This problem
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of combining chaotic search with solution convergence was solved by a method called

chaotic simulated annealing (CSA) [24]. There are two approaches to CSA: the

decaying self-feedback method [24] and the decaying time-step method [107]. Both

methods involve an initial chaotic search phase, followed by convergence to a fixed

point as the converged solution. Models employing CSA are discussed in

Section 2.4.2.

All the HCNN's described above generate chaos by the inherent instability of the

networks, but there are models where the chaos is not generated within the network

itself, hi these models, externally generated chaotic noise is added to the network for

the purpose of escaping from local minima. Various chaotic noises have been used

and their optimization performance was often compared to stochastic noises

[47,48,15]. These models are further described in Section 2.4.3.

The purpose of this chapter is to review relevant techniques in the literature with

Hopfield-type neural networks, before proposing a unifying framework of HCNN's in

Chapter 3.

2.2 Hopfield neural networks

The Hopfield neural network was first proposed in 1982 by Hopfield [52], and has

been considered to be a significant neural network architecture ever since. It was

inspired by biological and physical systems to capture the dynamics of a system

having u large number of simple and equivalent components. The Hopfield network
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consists of interconnected neurons, forming an architecture with strong backward

coupling (or feedback) that performs asynchronous parallel processing. At the system

level, the network exhibits collective computational abilities of a content-addressable

memory (CAM), allowing a memory item to be retrieved by presenting sufficient

partial information. Because of the network's general nature, many potential

applications were anticipated, e.g. generalization, familiarity recognition,

categorization, error correction, and time sequence retention.

The original model of the Hopfield network was discrete in nature, comprising of

two-state threshold neurons [52]. For neuron i, the output JC,- can attain values of either

0 or 1, which can be interpreted in the biological sense as not firing or firing

respectively. The total input to a neuron i is given by

N

Total input to neuron / = v. = ^W^Xj + /, (2.1)

where Wy is the strength or weight of the connection between neuron i andj, with the

summation representing inputs from other neurons (TV neurons in total), and /,• the

external input. The output of a neuron is then given by

(2.2)
v J • I «^ u

where 0< = 0 is the threshold. The emergent computational behaviors of the network

are described by the motion in a state space where (2.2) is used for updating. A

stochastic evolution scheme is employed where each neuron is updated at random
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times. The use of such an asynchronous updating scheme is justified by its biological

resemblance.

From a dynamical system perspective, the Hopfield network behaves as a content-

addressable memory (CAM), where memory items are mapped to the fixed points in

the state space. The retrieval of a memory item from incomplete information then

corresponds to a state space flow where an initial point is attracted to the local fixed

point. Such an abstract computational property is a result of the neurons' collective

dynamics, and is the main feature of the Hopfield network that sets it apart from

others like the McCulloch-Pitts model [72] and the discrete Perceptron [73].

The Hopfield network with continuous variables and responses was developed in

1984 [53]. The modification allows a closer resemblance to biological neural systems

as well as analogue electronic systems, and still retains all the significant behaviors of

the original discrete Hopfield network. Given a total net input (or internal state) y, to

neuron i, the output is given by JC,- = g(yd, which is a continuous, monotonically

increasing function bounded beiow by 0 and above by 1. A sigmoidal activation

function is often used:

*,=£,• (>>/)=- tanhf^-

where £ is the gain control parameter.

To describe the evolution of the network in the context of a biological neural model,

some specific parameters are required. C, is the input capacitance of cell membranes
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for neuron i; i?, is the trans-membrane resistance; Wif1 is the finite impedance between

output Xj and cell body of cell i; and /,• represents other fixed input current to neuron /.

The resistance-capacitance (RC) charging equation governing the evolution can then

be expressed as

dt I jA >J J R,

(2.3)

The same set of equations also describes a corresponding electronic implementation

of the network, with appropriate re-definitions of various parameters.

The convergence and stability of the continuous Hopfield network can be examined

by constructing the energy function

^ J ' j x i (2.4)
1=1 ;=1

For a symmetric matrix W, the time derivative of E is given by

R,

fcr ' I d t k d t )

i=\

For a monotonically increasing function gf\xd and positive C,-, we have
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0, and ^ = 0 = > ^ - = 0 Vi. (2.5)
dt dt dt

Given E is bounded, (2.5) represents a steepest descent dynamics, where the state

space motion is a convergence toward a local minimum of E. Thus (2.5) shows that

the energy function E in (2.4) is a Lyapunov function and guarantees convergence of

the continuous Hopfield network. This analysis can be extended to examine the

stability and convergence of the discrete Hopfield network. For a high-gain limit of

g(yi), i.e. e —> 0, the activation function approximates the threshold function of 0; = 0

in (2.2), and the integral term in (2.4) becomes zero. It follows that the Lyapunov

function for the discrete network is

£ ;=i j=\ i=i

For the state space of the discrete case, the local minima of E lie at the corners of the

unit hypercube. When we consider the high-gain limit of the continuous case, as long

as Wis symmetric and g'(yi) exists, then there is guaranteed convergence to corners of

the hypercube and E is also minimized.

2.3 The Hopfieid-Tank approach

In 1985, Hopfield and Tank pioneered an approach to use the Hopfield network for

combinatorial optimization [54], and since then it has become the main approach to

using neural networks to solve COP's. Inspired by the effectiveness of the biological

neural network in solving difficult perceptual problems, the method makes use of the

collective computational power of the Hopfield network to solve difficult COP's. It is
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based on the continuous Hopfield network because of its resemblance to the

biological counterpart and the resultant speed in an analogue electronic circuit. With

this approach, discrete problems are solved in a continuous decision space.

In the Hopfield and Tank (H-T) approach, the energy minimization property of the

Hopfield network is exploited for general combinatorial optimization. The weights

and external inputs are chosen such that the energy function E represents the function

to be minimized. The constraints to be satisfied are also included in the energy

formulation. As an example, consider a typical COP as follows [88]:

Minimize fix)

With constraints [R] i x = b}

[R]mx = bm

where [R]i represents the ith row of a constraint matrix R, and there are m constraints.

Both [R]t and x are vectors of dimension n. According to the H-T approach, the

energy formulation would be

E = A f{x) + Bj ([R]iJC - bj)2 + B2 ([R]2x - b2f + . . . + £ « ([R]m* - bmf .

A, Bj,..., Bm are penalty parameters representing the relative importance of various

terms. For this COP, the minimization of fix) with satisfied constraints (all the

constraint terms equal to zero) corresponds to the minimization of E. It is this

correspondence that allows COP's to be mapped onto the Hopfield network for the

minimization process. For the actual implementation of this approach to solve a
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specific COP, the weight matrix W and the external input / must be fixed according

to the problem mapping. This is done by expanding the objective function f(x), and

then re-grouping various terms (quadratic and linear) in the same form as (2.6) for

extracting various coefficients.

For the general solution process, it starts with an initial state of the Hopfield network.

For an unbiased choice, the initial state values can be set to around 0.5 (the center of

the unit hypercube) with perturbed variations among neurons. With asynchronous

updating, the network evolves from the interior of the hypercube toward a stable fixed

point sufficiently close to the vertex. The gain of the activation function should be

high enough such that the converged state corresponds to an unambiguous 0-1

solution. The choice and balance of various penalty parameters in the energy function

is a critical issue in the H-T approach, since it greatly affects the feasibility and

quality of the solution. There is a trade-off problem in the choice of these parameters.

If the constraint terms are emphasized (with greater values of 5, than A), then feasible

solutions are often produced at the expense of optimality of the objective function. On

the other hand if the objective function term is emphasized (by a larger A value), then

non-zero constraint terms may result, which represents an infeasible solution.

*

To illustrate the computational power of the Hopfield network, the H-T approach was

used by Hopfield and Tank [54] to solve the TSP that is well known to be NP-hard.

The 10 and 30-city problems were solved by computer simulation of the Hopfield

network. For the case of 10 cities, good results were achieved: 16 legitimate tours

were obtained out of 20 random starting states, and about 50% of all the trials attained
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one of the 2 shortest paths. For the bigger problem size of 30 cities, the results were

less satisfactory and fragmentary due to the demanding O(n3) simulation of

differential equations involving 900 neurons. Also, Hopfield and Tank reported that it

was difficult to choose parameter combinations that yielded good solutions for such a

problem size.

2.3.1 An investigation by Wilson and Pawley

An investigation into the performance of the H-T approach for large problem sizes

was published in 1988 by Wilson and Pawley [111]. The TSP was again used as the

benchmark problem for their study. They began by applying the H-T approach to a

64-city problem, but the results were unsatisfactory. Primarily, they could not find

any parameter combination that would yield a valid tour (or feasible solution).

Surprisingly, in an attempt to reproduce Hopfield and Tank's results by solving the

10-city problem, they obtained different outcomes. An Euler approximation of a

differential equation similar to (2.3) was used, and with the same parameters as

Hopfield and Tank's. But out of 100 random starts, only 15 valid tours were obtained,

with 45 local minima (invalid tours), and 40 didn't converge within 1000 iterations.

Moreover, for 10 cities randomly generated, only 8% were valid. Even when valid

tours were obtained, the solution quality was poor. The overall results were much

worse than those reported by Hopfield and Tank despite solving the identical

problem. There are some reasons that may explain these inconsistencies in part, e.g.

discrepancies in simulation procedure, halting conditions, etc.
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Modifications were attempted in Wilson and Pawley's paper toward solving the

difficulties they encountered. These included variations in parameter selection,

measures to prevent re-visiting the same city in succession, etc., but none

significantly improved the percentage of valid tours obtained, or solution quality.

Their investigation could not find any parameter combination that yielded consistent

results as the problem size grows. Their paper concluded that the difficulty is inherent

in the H-T approach, which makes it unreliable and not amenable to improvements.

2.3.2 Traditional approaches to overcome limitations

hi general there are two approaches in the literature [88] to overcome the limitations

of the H-T approach: by selecting optimal penalty parameters that yield good results,

or by modifying the energy function. An experimental study on the choice of penalty

parameters was carried out in 1988 by Hegde et al [49]. A parameter space was used

to show parameter combinations resulting in feasible solutions to the TSP. It was

found that as the problem size grows, parameter regions of feasible solutions become

narrower, thus indicating poor scalability. They concluded that the result is due to the

H-T formulation of the TSP, and suggested that the penalty parameters interact with

each other. Also on the TSP, a theoretical study on penalty parameters selection by

Kamgar-Parsi et al [57] examines the dynamic stability of valid tours. Eigenvalues

are calculated for the Jacobian matrix of the H-T energy function, from which the

penalty parameters corresponding to stable valid tours are determined. Agreements to

these outcomes are also found from an extensive analysis by Davis [28], where only

limited ranges of parameters that correspond to stable valid solutions are obtained.
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Despite all the difficulties, the search for optimal penalty parameters continued. Lai

and Coghill [65] used genetic algorithms to breed the penalty parameters with the

goal of satisfying the validity requirements of the networks, while Cavalieri and

Russo [23] applied a fuzzy logic approach for automatic parameter tuning. An exact

method was proposed by Aourid et al [12], where the penalty parameters are treated

as Lagrange multipliers in order to find the optimal parameter selection. The

algorithm of augmented Lagrange multipliers from optimization theory has also been

applied to the H-T approach [68, 70].

An alternative way to refine the H-T approach is to modify the energy function. A

variety of suggestions could be found in the literature, e.g. using alternative forms of

constraints expression, reducing the number of terms and parameters in the energy

function, etc. [20,74,103]. Notably, the valid subspace approach of Aiyer at al [6]

and the associated polytope concept [39] have succeeded in reducing the

representation of constraints to a single term in the energy function, thus drastically

reducing the number of penalty parameters. A technique of suppressing spurious

states of the H-T approach has also been proposed [2],

Apart from efforts in enhancing the H-T approach, many variations of the Hopfield

network have been proposed to improve the solution quality. Of particular relevance

to this thesis are the stochastic methods, which supplement the deterministic Hopfield

network with introduced randomness for escaping from local minima. The Boltzmann

machine [1,51] is based on the discrete Hopfield network, but with a stochastic

activation function. The Boltzmann probability distribution is employed within the
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activation function to affect the binary output of the neurons. This allows uphill

movements in the H-T energy landscape, thus enabling the escape from local minima.

One disadvantage of this method is its large computational time, which renders it

unsuitable for many real world applications. The Gaussian machine [7, 8] is based on

the continuous Hopfield network, but with a Gaussian distributed noise added to the

net input of each neuron. Both the Hopfield network and the Boltzmann machine can

be considered as special cases of this model. By solving various COP's, the Gaussian

machine was found to perform better than the Hopfield network and the Boltzmann

machine [8]. Another variation on stochastic Hopfield networks is the Cauchy

machine [93,96]. It incorporates a parallel version of the fast simulated annealing

algorithm proposed by Szu [94] that uses Cauchy noise to generate new search states.

Compared to the Gaussian machine, the Cauchy noise used in this model allows

global as well as local jumps for escaping from local minima. Furthermore, hybrid

neurons having binary outputs from analog inputs are used, which allow the Cauchy

machine to be reduced to the discrete Hopfield network in the high-gain limit. Related

techniques in gain sharpening of the Hopfield networks have also been proposed

[54, 9,101]. The mean field approximation annealing approach is another widely

adopted method for improving solution quality [79,104,105]. On the other hand, a

way of escaping local minima by means of a deterministic "rock and roll"

perturbation approach to the energy landscape has also been devised [69].
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2.4 Hopfield-type chaotic neural network approaches

In this section, we review Hopfield-type chaotic neural networks (HCNN's) and their

applications to solve COP's. These networks are based on the Hopfield network, but

instead of the simple steepest descent dynamics toward a local fixed point, they

exhibit more general nonlinear dynamics associated with chaos. There are various

existing HCNN models for combinatorial optimization, and we examine their

respective ways of incorporating chaos as part of their dynamics. Despite their

differences, all these models have the common aim of utilizing chaos or associated

dynamics to improve optimization performance for wide ranging COP's.

2.4.1 Chaotic neural networks and the 'chaotic search'

In 1990, Aihara et al [5,4] proposed a neuron model capable of chaotic dynamics and

includes some other neuron models as its special cases. It captures significant

properties of biological neurons by having graded responses, relative refractoriness

(self-feedback), and spatio-temporal summation of inputs. As an element of a neural

network, the discrete-time chaotic neuron model is governed by the equations

r=0

r=0
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where yt(t + 1) is the internal state of neuron i at time t+ 1, x{(t + 1) is the output of

neuron /, M is the number of neurons in the network, Wy is the connection weight

from neuron i to neuron j , Vy is the weight on external input /, of neuxon /, TV is the

number of externally applied inputs, 0, is the threshold of neuron /, k is the refractory

decay parameter, and a is the refractory scaling parameter. The first three terms in

(2.7) represent mutual interactions between neurons, the external force, and the

neuron refractoriness respectively. The response characteristics of this neuron model

were experimentally demonstrated to reveal cascades of period-doubling bifurcations,

with positive Lyapunov exponent in chaotic regions. Moreover, the model is designed

to be general, and the resulting chaotic neural network includes other conventional

networks such as the McCulloch-Pitts networks [72] and the Hopfield network [53] as

special cases.

The application of the above chaotic neural network in combinatorial optimization

was demonstrated by Yamada et al [114] in 1993. The TSP is solved by using a

simplified version of (2.7) [5,4]:

^ijxj(t)-di(l-k). (2.9)

Both the continuous activation function given by (2.8) and the following discrete

version are used

'1

0 'f
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The 10-city problem is solved with different values of the refractory scaling

parameter a. The results show that global minimum can be obtained for both

continuous and discrete activation functions, and that the solving ability (best routes

obtained out of 1000 initial states) varies with relative refractoriness a. Time series

depicting the chaotic behaviors of the network are also presented.

Instead of building a chaotic neural network from chaotic neurons, Nozawa [75, 76]

proposed a HCNN by using the Euler's discretization of Hopfield's continuous model

(2.3) with a negative self-feedback connection Wu < 0:

At M

y> + l) = (l )yi(n) + AtWiig(yi(n))+AtYwiJg(yi(n))+AtIi. (2.10)

yi(n) is the input of neuron / at the discrete time n, At is the time-step, % is the time

constant parameter (T > 0), g is the sigmoidal activation function, and M is the

number of neurons in the network. It is wsll known that nonlinear self-feedback

mechanisms can often generate chaos in one-dimensional dynamical systems (see

Section 1.3). Indeed, the derived model is equivalent to the simplest version of

chaotic neural network proposed by Aihara et al [5]. The HCNN model is then cast

into the form of a globally coupled map (GCM) [58, 59] to demonstrate how various

nonlinear phenomena such as chaos and periodicity arise as a result of different

nonlinear maps. This GCM formulation of the HCNN is then applied to solve the TSP

with 10 cities. Within 1000 iterative steps, the model is able to achieve the shortest

route from 94% of the random starts. It was observed that during the solution process,

the firing pattern of the network chaotically itinerates between both global and local

minimum solutions, and that it stays mostly in the global minimum solutions. This
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chaotic itinerancy was suggested to be reflecting a kind of 'chaotic search' whose

detailed dynamics was unknown. A concrete explanation was not given as to why the

observed nonlinear system dynamics are capable of improving the solution quality.

However, it was suggested that clusters are formed in the internal state of the GCM,

and it is the interaction among these clusters that contributes to the improvement.

In 1997, Isao Tokuda and his colleagues adopted Nozawa's chaotic neural networks

[75,76] to study the dynamical basis of chaotic itinerancy as a searching mechanism

for global/local minimum solutions, with an emphasis on global bifurcation structures

[99]. The chaotic neural network was then implemented to solve TSP's with 5 and 10

cities for the purpose of investigating the solution process. In order to trace the

solution states of the network, a coding of attractors was introduced to map every

attractor of the dynamical system to a possible TSP solution. By decreasing the

bifurcation parameter r = l-(At/r), local minimum solutions were observed to

undergo period-doubling bifurcation routes to chaos, followed by a size increase in

the localized chaotic attractors, which then merge into a global attractor via crises.

Specifically, the dynamical phenomenon of crisis-induced intermittent switching

[41,42] was found to be the dynamical basis of the previously observed chaotic

itinerancy among minima. Global/local minimum solution states identified as ruins of

localized chaotic attractors were observed to switch from one to another as the

network is in the solution process. This occurs when attractors are merged together

via crises, and represents the 'chaotic search'.
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The result of solving the 5-city TSP with the above dynamics reveals that the

probability of transition from a local minimum to a global minimum solution is

higher than the reverse, thus demonstrating the efficiency of the 'chaotic search'. It

was remarked that the efficiency of the 'chaotic search' depends on the complex

linkage structure of previous localized chaotic attractors. Thus an efficient search

only occurs when there are a large number of dynamical paths leading to a global

minimum. The study of the bifurcation procedure above also serves as a guide for

choosing the bifurcation parameter r such that a 'chaotic search' occurs.

2.4.2 Models with chaotic simulated annealing

It is clear from the HCNN models [5,75, 76,114] described so far that when a COP

is being solved, global/local minima are accessible by chaotic dynamics of the

network [75, 76, 99]. The problem of the solution state being trapped at a local

minimum, which is the main drawback of the H-T approach [54], is essentially solved

by the itinerant nature of the HCNN's dynamical searching process. However, the

issue of arriving at a converged solution with optimal/near-optimal quality from the

chaotic searching process had not been dealt with. This was addressed by the proposal

of chaotic simulated annealing (CSA) by Chen and Aihara in 1995 [24]. This scheme

is analogous to Kirkpatrick et al's simulated annealing (SA) [61], but the solution

searching process is deterministically chaotic rather than stochastic. The main feature

of CSA is that it allows a neural network to be transiently chaotic, meaning the

chaotic searching phase is temporary, and the algorithm terminates at a converged

stable state.
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In their paper [24], a transiently chaotic neural network (TCNN) model based on

Aihara et aVs chaotic neural network [5] was proposed:

f N \
yi(t + l) = kyi(t)+a\ 2^Wr

(rxy(0 + /, -z,-(Ofa(O-/o) C2-11)

zi(t + l) = (l-P)zi(t), (2.12)

where i = 1,...,N, y,(r) is the internal state of neuron i, xi{t) = g(yi(t)) is the output of

neuron i, g is the sigmoidal function in (2.8), a > 0 is a scaling parameter, /? is the

damping factor of z,(0 with 0 < /? < 1, k is the nerve membrane damping factor with

0 < k < 1, Zi(t) > 0 is the self-feedback connection weight (replacing the role of Wu),

Io is a positive parameter, and Wtj is the connection weight matrix element defined by

with Wly = W;v and Wu = 0, and E is the Hopfield energy function in (2.6). The last

term in (2.11) represents the self-feedback of the network with Zi(t) controlling its

strength. For simplicity, the same z(t) is used for all neurons. Analogous to the

temperature parameter in SA, z{t) acts as the annealing parameter of the system.

Together with (2.12), the self-feedback strength of the system is exponentially

decayed, and the network passes through a reversed period-doubling bifurcation from

chaos to a stable fixed point. As z(t) —> 0 for increasing time, the term - z(x,- - Io) also

tends to zero, and the TCNN asymptotically approaches a Hopfield-like network. The

parameters that require tuning in this model are: e, a, ft, k, z(0) and IQ.
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By applying the TCNN with CSA to solve TSP's with 4, 10, 48 cities, general

nonlinear dynamics were observed. It was shown that there are two phases of the

solution search: a chaotic searching phase for large z(t), followed by a stable

convergent phase for small z(t). The parameter a was also found to carry the function

of balancing the nonlinear refractory dynamics and the steepest descent dynamics of

the network, e.g. transient chaos could be suppressed by using a large a. The best

result obtained with the TCNN on the 10-city problem yields optimal solutions to

100% of all 5000 random starts, which is significantly higher than that of Hopfield

and Tank [54]. For comparison, a 92% rate was obtained by using traditional SA.

The high efficiency of the TCNN was suggested in the paper as due to the solution

search in a possibly fractal subspace, while SA searches all possible states by varying

probability distributions. Their experimental results also suggested a possible

relationship between annealing speed (controlled by p) and solution quality, with

slower annealing (smaller /J's) leading to more optimal solutions out of the random

starts. However, a theoretical study of the hierarchical merging of chaotic atiractors

shows that an infinitely slow annealing does not necessarily lead to the global

minimum [98], and some adaptive and learning schemes have been proposed for fast

convergence to good solutions [98,100]

Issues of asymptotical stability and the existence of chaos in both the TCNN and

general discrete-time recurrent neural networks were later studied by Chen and

Aihara [25]. They proved that the networks only have one bounded fixed point when

the absolute value of the self-feedback connection weight (zt in (2.11)) is sufficiently

large, and derived sufficient conditions on asymptotical stability toward the fixed
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point for the symmetrical versions of the networks. For the formulation in (2.11) with

sigmoidal activation function (2.8), Wy = Wji, and an asynchronous updating,

asymptotic convergence to a fixed point is guaranteed if one of the following is

satisfied:

1. 1/3 > k > 0, 4(1 - k)£ > - min £, {- Zi(t)}, or

2. 1 > k > 1/3, 8te > - minj!, {- Zi(t)}, or

3. k> 1,8e> -min ( ^ {-z,(0}. (2.13)

This stability condition determines how small the refractory parameter z&t) should be

for convergence. For synchronous updating, the corresponding stability condition is:

Amin ,or

2. 1 >A:> 1/3, 8/ce> - A ^ , or

3. k>l,S£>-Xmin , (2.14)

where X^ is the smallest eigenvalue of the matrix aW.

In 1998, Wang and Smith [107] proposed an alternate approach to CSA with fewer

system parameters, and hence less effort for parameter tuning. The governing

equation of the network is given by

j t i j j i j (2.15)

(2.16)

where xi(f) is the output of neuron /, y,-(f) is the corresponding internal state, and'% is a

positive parameter. The activation function g in (2.16) can be any monotonically
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increasing function, and the sigmoidal function (2.8) is often used. In fact, (2.15) is

the Euler's discretization of the continuous Hopfield model (2.3) with the discretized

time-step At. As At -» 0, (2.15) is equivalent to the Hopfield model. Moreover, (2.15)

can be transformed to Chen and Aihara's TCNN [24,25] if At = 1. This relationship

suggests that Tokuda et aV§ [98,99,100] global attractor scenario of 'chaotic search'

may also be applicable to this CSA scheme.

The chaotic simulated annealing in this Wang-Smith model is achieved by a reversed

bifurcation process controlled by At. Initially At is chosen to be sufficiently large to

induce chaos in the network. As At is gradually reduced, for example by an

exponential decaying rule similar to (2.12), a transition from chaos to a fixed point

takes places. The convergence to a fixed point occurs when At becomes sufficiently

small, and for asynchronous updating the following stability condition applies:

1. 0<At<r,

2T

2. At < , and

3. W,.<0 (2.17)

where W is a symmetric matrix and Hm^ is the maximum slope of the activation

function. For synchronous updating, w,, is replaced by the minimum eigenvalue of W.

When compared to the stability conditions of the TCNN in (2.13) and (2.14) where

the sigmoidal activation function is used, this model only requires an arbitrarily

increasing function for the activation function. This would be an advantage for

hardware implementation. The parameters that require tuning in this model are: £, z,

At(O) and /?. Hence fewer than the Chen-Aihara model.
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2.4.3 Models with chaotic noise

In the previous sections, we have presented HCNN models with chaotic dynamics

embedded within the network by the use of a particular term or a system parameter.

Here we outline another approach to HCNN for combinatorial optimization: adding

externally generated chaotic noise or chaotic time series into the Hopfield model. The

objective of this approach is to improve solution quality by using chaotic noise to

escape from local minima. The main difference between chaotic noise and other

random noises is that it possesses short-term autocorrelation only, and the long-term

behavior is deterministically stochastic. The study of this approach often prompts

interesting comparisons with the previously mentioned HCNN models with internally

induced chaos, in the aspects of optimization performance, functional role of chaos,

theoretical relationships, etc.

Based on phenomena of the interactions between correlated noise and various

physical and chemical systems, Hayakawa et al [48] proposed a chaotic neural

network by introducing chaotic noise to the Hopfield model. An Euler discretized

model (2.15) with T = 1 and At = 1 is used, with the usual sigmoidal activation

function. The noise is added to the internal state of the neurons:

y. (t) <- v(. (f) + Aprji (t) (2.18)

where Ap controls the amplitude of the noise and r/,(r) is the normalized noise for

neuron /. Three kinds of noises are used: random noise, logistic map time series, and
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shuffled logistic map time series. The logistic map time series is generated from the

logistic map

77,. (r +1) = a?7. (f)(l - 77, (0) (2.19)

where a is the bifurcation parameter. The shuffled logistic map is obtained by

randomly shuffling the time series generated from (2.19).

The model was applied to the TSP with 10 cities to measure for how many iterations

the optimal state is attained during the second half of each run. The best result was

obtained with the logistic map noise where 100% of the 1000 steps are at the global

minimum, while the corresponding result for random noise is 49%. This performance

varies with a, suggesting a relationship between noise structures and the search for

global minima. Interestingly, the use of the shuffled logistic map noise dramatically

worsens the result for various values of a. It was unclear what aspects of the chaotic

noise are responsible for the enhanced performance, but it was suggested that the

characteristic autocorrelation in the chaotic noise plays an important role.

hi order to study the effects of noise autocorrelation on the network's ability to attain

global/local minima, Asai et al [15] constructed an autoregressive time series of the

form

where £(/) is the time series added to the internal state of the network after

normalization, (f) controls the degree of autocorrelation, and rj(t) is any normalized

noise. In their experiments, four kinds of noise were used: random noise, logistic map
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noise (2.19), and two time series from the chaotic Chua's circuit [71]. By solving the

6-city TSP, the frequency of feasible solutions obtained during iterations was

measured. It was found that a larger 0 representing a stronger autocorrelation

generally gives better results in attaining the global/local minima. However, it is

unclear from the study whether chaotic noise gives better results than random noise.

A more intensive experimental study was carried out by Hasegawa et al [47] to

compare the optimization performance due to the logistic map noise and various

stochastic processes. The externally generated noise with adjustable amplitude is

added to the internal state of the neurons. TSP's with 10 and 20 cities were solved,

and the optimization performance was measured as the percentage of runs, out of 100

random starts, that hit the optimum solution at least once within 1000 iterations. Note

that this measure is different from some of the other approaches mentioned above.

For both the 10 and 20-city TSP, the logistic map noise (2.19) with a = 3.95

(i.e. chaotic, see Section 1.3) gives high solving abilities of 300% and 94%

respectively. Both the uniformly distributed random noise and Gaussian distributed

random noise score similarly, yielding ~ 88% for the 10-city problem and a low 1%

for 20-cities. This shows the superior scalability of the chaotic noise in delivering

high solving ability when compared to stochastic noise. The use of l / / a stochastic

noise with 0 < a < 2.5 on the 10-city problem also reveals that the logistic map yields

consistently higher performance. Surrogate time series [97] preserving different

statistics of the logistic map noise such as power spectrum, empirical histogram, etc.

were used to seek out the statistical properties responsible for high solving abilities.

Among the surrogate noises used to solve the TSP's, those preserving autocorrelation
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exactly or approximately perform similarly to the original logistic map noise. It was

concluded that temporal structures in the form of autocorrelation within a chaotic

noise are the crucial elements responsible for high solving abilities.

2.5 Concluding remarks

In this chapter we have reviewed the developments of Hopfield-type neural networks

for solving COP's. From a dynamical system perspective, it is the local convergence

property of the Hopfield network that gives rise to its energy minimization behavior,

and consequently underlies the H-T approach as a new tool for combinatorial

optimization. However, its poor performance in solving nontrivial problems as

revealed by Wilson and Pawley [111] has rendered the H-T approach an impractical

tool for real-world applications. This has prompted various improvements and

modifications to both the H-T approach and the Hopfield network, targeting the

problem of penalty parameter selection and convergence toward local minima

solutions. A new direction has emerged recently to overcome these limitations by

generalizing the dynamics of the Hopfield network. The development of

Hopfield-type neural networks with chaotic dynamics alleviates the problem of strict

convergence to the nearest local minima, and provides a global search dynamics that

can escape from local minima.

Various HCNN's have been reviewed in this chapter, and all of them use chaos as a

dynamical enhancement for the optimization process. Three approaches to chaotic

neural networks have been discussed: using chaotic neurons with strong self-feedback
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(Chen-Aihara model); adding a negative self-feedback term to the Euler-discretized

Hopfield model (Nozawa model); and using a sufficiently large time-step to the

Euler-discretized Hopfield model (Wang-Smith model). The HCNN models obtained

from these approaches are all inter-related, and it is expected that the same global

attractor scenario underlies the search mechanism of these models. The development

of chaotic simulated annealing schemes has allowed the networks to combine chaotic

search with convergence property, thus making HCNN a more practical tool for

optimization applications. The introduction of externally generated chaotic noise into

the Hopfield network has also yielded improvements in solution quality, with

autocorrelation in the chaotic noise playing an important part.

From this chapter, we can see there are currently two major classes of HCNN's: one

is the internal approach, where chaos is generated within the network controlled by

some bifurcation parameters; the other is the external approach, where an externally

generated chaotic signal is added to the network as perturbation. In the next chapter,

we propose a theoretical framework that unifies these two approaches, thereby

providing a more systematic and insightful treatment of HCNN's.



Chapter 3

A Unified Framework for
Hopfield-type Chaotic Neural
Networks

3.1 Introduction

In this chapter, we provide an organized way to study the chaotic structures and their

effects in solving COP's with HCNN's. A unifying framework is proposed to serve as

a basis where the existing HCNN models can be placed and compared. From the last

chapter, it can be seen that most researchers are concerned with investigating how

chaos can benefit neural network performance, and how the performance is affected

by problem size and complexity. The purpose of this chapter is to introduce a well-

defined framework as a theoretical foundation for comparing different chaotic

47
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approaches. Only when we establish a common framework can the chaotic structures

and their role in the optimization of each approach be understood.

The key of the proposed framework is the introduction of an extra energy term into

the computational energy of the Hopfield model, which takes on different forms for

different HCNN models, and modifies the original Hopfield energy landscape in

various manners. Three HCNN models, namely the Chen-Aihara model with self-

feedback chaotic simulated annealing (CSA) [24], the Wang-Smith model with

time-step CSA [107], and the chaotic noise model [47,15,48], are chosen as

examples to show how they can be classified and compared within the proposed

framework.

3.2 The Hopfield network and the modified energy

In this section, a unified framework for HCNN's is described. Since all HCNN

models for solving COP's being studied so far are related to the Hopfield network, the

Hopfield computational energy formulation [54] thus serves as a relevant starting

point for constructing a framework for these models. To illustrate the methodology of

the framework, we first outline how the Hopfield network's equation of motion can be

obtained from the energy landscape. From (2.4), the Hopfield computational energy

associated with the network state x is restated here as

N N N 1 N

1=1 T 1=1
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To simplify notations, xt - xt(t) and yt = y,{t), with *,- = g(yi), where g is the sigmoidal

function (2.8). The ability of the Hopfield network to solve COP's relies on its

steepest descent dynamics and guaranteed convergence to local minima of the energy

landscape. If W is symmetric and g~\xi) is monotonously increasing, then the

relationship that guarantees dE/dt < 0, and dE/dt = 0 <=> dv,/df = 0, V/ is given by [54]

dyi/dt = -dE/dxi. (3.2)

The equation of motion of the Hopfield model can then be obtained by applying (3.2)

to (3.1):

dv v N

In order to view existing HCNN models under a unified framework, the Hopfield

energy landscape is now modified to include nonlinear dynamics in the resulting

equation of motion, and its general form is given by

1=1

= EHop+H (3.4)

where the function H is an additional term that modifies the energy landscape. Clearly

H = 0 for the Hopfield network. To obtain the equation of motion for any particular

HCNN, we can apply the steepest descent relationship (3.2) onto (3.4). Both types of

HCNN's, with internal or external chaos, can be reproduced from this formulation by

choosing a different H. In the following sections, three HCNN models are described

and derived from this framework, namely, Chen & Aihara's decaying self-coupling

CSA, Wang & Smith's decaying time-step CSA, and the chaotic noise model.



Chapter 3: A Unified Framework for Hopfield-type Chaotic Neural Networks 50

3.3 CSA with decaying self-coupling

In this section, we show how the Chen-Aihara model of CSA with decaying self-

coupling can be obtained from the unified framework approach described above.

Suppose H = He A is chosen as the energy modifier in (3.4), where

The positive parameter Mf) decays monotonically in time. By (3.2), (3.4) & (3.5), we

have

(3.6)
dt x Jml

Assume W is symmetric, and by using Euler discretization,

) ( t ) + A t \ £ w ( t ) + I ) A t X ( t ) ( ( t ) - ± - ) (3.7)

If we assume the following relationships,

l - - = k , Ar=a, AfA(r) = z(t), IQ = I (3.8)
T 2

then it follows that

y, (f +1) = kyi (0 + a\jyijxj it) + /,. - z(t)(Xi (t) - Io). (3.9)
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Moreover, if the following decaying scheme is chosen,

z(f + l) = (l-j3)z(O (3.10)

then (3.9) and (3.10) (or other decaying schemes) together with xt = g(yi) form the

Chen-Aihara model of CSA with decaying self-coupling [24], where z(t) > 0 is the

self-feedback connection weight (or self-coupling), /J (0 < ft < 1) is the damping

factor, and /o is a positive parameter, as defined in Chapter 2. Comparing (3.9) to

(2.11), it should be noted that the corresponding stability conditions of the Chen-

Aihara model in the form of (3.9) are:

1. 1/3 > k ;> 0,4(1 - k)e > - min £, {aWu - z(i)}, or

2. 1 > k > 1/3, Sks > - min £, {aWa - z&t)}, or

3. k > 1, 8e > - min £, {aWu - z>(t)} (3.11)

with asynchronous updating, (c.f. (2.13)).

Although the particular expression of HQA chosen here is by no means unique, its

required form solely depends on the given HCNN model. In later sections, we show

that different means of chaos generation require different forms of H. For the Chen-

Aihara CSA model, it takes on a quadratic form as expressed in (3.5). HQA is convex,

and hence drives x towards the interior of the hypercube. This driving force is

diminished as HQA -> 0 when A(f) —> 0. This process is in fact the hysteretic annealing

studied by Eberhardt et al [31] and Gee [39], which is aimed at improving 0-1

solution qualities. Here, HQA modifies the original Hopfield energy landscape to

accommodate transient chaos via A(f), which is proportional to z(t) from (3.8). This
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correspondence between Mf) and z(i) implies that the size of the energy modifier

determines the dynamical stability of the Chen-Aihara model, since A(f) determines

the size of //CA, and z(t) is the main parameter for chaos as discussed in Chapter 2.

Also, it can be seen from (3.5) that HCA represents the addition of many logistic maps

to the Hopfield energy function, suggesting chaotic properties of the maps as outlined

in Section 1.3. Thus the chaotic behaviors of the Chen-Aihara CSA model can be

understood in terms of an energy landscape deformation with specific form and sizes.

3.4 CSA with decaying time-step

In this section, we turn to the Wang-Smith model of CSA with decaying tfme-step

[107]. Instead of the self-feedback strength zif) that induces chaos in the Chen-Aihara

model, the time-step At is used as the bifurcation parameter here. Such a time-step is a

result of the Euler discretization applied to the continuous Hopfield network. We

again use the unified framework to obtain the model, followed by insights obtained

from such an approach.

Assuming the form of the energy modifier H = i/ws is chosen as follows:

tt
,=1 7=1 .=1 T i=l

where 0 < y< 1, and 7 ' is / to the power of t. By (3.2), (3.4) and (3.12),

;=i
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Using Euler discretization,

y,(t+i)-yt(t) = y'

53

At

or

y'At

Let 7= 1 - /J and assume a monotonically decreasing time-step, we put

It follows that

(3.14)

(3.15)

(3.16)

(3.17)

The equations (3.16) and (3.17) together with *,- = g(yi) form the Wang-Smith model

of CSA with decaying time-step, which is originally derived from the Euler

discretized continuous Hopfield network [107] as discussed in Chapter 2. According

to the original formulation, the network becomes chaotic when a large initial time-

step At(O) is chosen, which starts the chaotic searching phase. When A? gradually

becomes smaller, a reverse bifurcation process occurs, which is followed by

convergence toward a stable fixed point.

In fact, the energy modifier as expressed in (3.12) can be written as

Hws=(P'-l)EHop (3.18)

and ~ E Hop
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or 'Hop (3.19)

The net effect of (3.19) is a time-dependent flattening of the energy landscape. As

t —> oo, the energy landscape becomes almost flat and the steepest descent updating

rule (3.2) suggests the network state vector would remain almost at the same position.

This agrees with the difference equation (3.15) when At becomes very small. This is

different from the Chen-Aihara CSA model where the energy modifier HCA is the only

decaying element of the annealing process. In comparison, //ws has a scaling effect to

Enop without changing its shape, while HCA contributes to £HOP and causes an additive

deformation to the energy landscape. However, the specification of the combinatorial

problem is unchanged, as the asymptotic shape of the energy landscape is the same as

3.5 Models with chaotic noise

In this section we consider HCNN models with chaotic noise, where chaotic

properties are generated externally and then added into the network. By using the

unified framework, we can derive the difference equation of the network dynamics.

The energy modifier H - Hn is chosen for this model as

Nc
1=1

(3.20)

where 77,(0 is a normalized chaotic time series added to neuron i, with the amplitude

factor An. For example, the iterative logistic map with bifurcation parameter a as in

(2.19) can be used:
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77, (f+l) = 077,(0(1-^(0) (3.21)

which can be normalized by setting

fntrt — tn^}
(3.22)

where <77,-> is the mean of 77,(0 over all t in the data set, a^ is the corresponding

standard deviation. Other kinds of chaotic time series have been used in a similar

manner [15,47,48]. By using (3.2), (3.4) and (3.20) with Euler discretization, we

obtain the difference equation for the noise model:

y,{t+ l) = \l~]y,.(0 + At\Y,WvXj(0 +1, + AjVi(0 I (3-23)

where *,• — g(yd. This is basically the original Hopfield model but with the external

noise term An77.(0 added.

From (3.20), Hn represents a chaotic, time-varying perturbation to the Hopfield

energy landscape £HOP- Compared to the two internal models described previously

which have quadratic forms of H, namely HQA and Hws, this external model has a

linear form of H. Thus the form of the modifier can determine whether chaos is

generated within or outside the networks (or no chaos when H = 0). This represents a

new way for classifying HCNN models with respect to their dynamics by inspecting

the form of the energy modifiers. Furthermore, this relationship between form and

dynamics can be used to identify new models of HCNN. For example, by constructing

an energy modifier with both quadratic and linear terms, a new type of neural

networks encompassing both internal and external chaotic dynamics can be devised.
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Indeed, a new type of neural network combining both internal chao* and external
i

noise has been recently proposed [108,109].

In terms of improving optimization performance, the usefulness of chaotic

perturbations could be due to the fact that a chaotic time series has the peculiar

property of never repeating itself exactly, thus H^ acts as a dynamically rich

perturbation function that invokes chaotic undulations to the energy landscape. As

long as the perturbation is small compared to £HOP> we can make sure the problem

specification is unchanged, and at the same time providing a means to avoid the

trappings of local minima.

3.6 Concluding remarks

There are many existing approaches to incorporating chaos into Hopfield networks.

While some studies have compared the different approaches as seen in Chapter 2, a

true comparison is difficult when the underlying chaotic mechanism is different. In

this chapter we have proposed a unified framework in which these chaotic models can

be placed and compared. An energy modifier is added to the original Hopfield energy

to form a new energy landscape that admits various chaotic dynamics. The

significance of this is the provision of a means to classify existing HCNN models and

study the network dynamics in a new perspective. Two models with internal

approaches to chaos are used as examples. One employs self-feedback connections to

facilitate CSA, with a hysteretic annealing approach to the energy modifier. The other

one uses a variable time-step for CSA, with an energy modifier that performs a time
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dependent scaling to the Hopfield energy landscape. Both energy modifiers are found

to be quadratic, which can be a common feature for all internal approaches to chaos.

The CSA process is described as a temporary deformation to the energy landscape but

asymptotically preserving its shape. A model with external chaotic noise is also

studied and its energy modifier is shown to cause chaotic energy perturbations that

allow the network dynamics to avoid local minima. The energy modifier for this noise

approach is linear in form, which we suggest may be the reason for its lesser

optimization ability when compared to models with internal approaches. Using the

proposed framework, different HCNN models are all studied with a global perspective

with the introduction of the energy modifier to the original Hopfield energy. Already

this framework has allowed observations that the Chen-Aihara method is equivalent

to adding logistic maps to the Hopfield energy function, and operates like hysteretic

annealing. It is anticipated that this framework approach can serve as a potential

starting point for identifying new models of HCNN, as well as helping to provide

additional insights into the existing models. ,



Chapter 4

Computational Performance of
Hopfield-type Chaotic Neural
Networks

4.1 Introduction

In this chapter, we present the computational results of applying Hopfield-type

chaotic neural networks (HCNN's) to solve a COP. The three main types of HCNN

models as described by the unified framework in the last chapter are included in this

investigation: the Chen-Aihara model of chaotic simulated annealing (CSA) with

decaying self-coupling, the Wang-Smith model of CSA with decaying time-step, and

the model with chaotic noise. These models are implemented to solve the N-queen

problem via computer simulation, and their optimization performance is then

measured and compared.

58
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The Af-queen problem is chosen to be the test problem for our computational

investigations in this thesis. It belongs to the class of NP-hard constraint satisfaction

problems and captures many characteristics of other similar problems found in

business and engineering applications. Its simplicity in mathematical representation

makes theoretical and computational investigations more effective in our study of

HCNN's. The //-queen problem is introduced in Section 4.2.

In order to study computationally the optimization performance and dynamics of the

three HCNN models discussed previously, they are implemented to solve the TV-queen

problem by using the Hopfield-Tank approach [54]. An energy function is constructed

such that it acts as a penalty function of the COP. Since the three chaotic neural

network models are Hopfield based and share the same basic Hopfield energy

function (£HOP) discussed in the last chapter, they have the same //-queen

implementation, but different dynamics. Details of the Af-queen implementation are

given in Section 4.3.

In our computational investigation, we focus on theoretical aspects of the HCNN

models as to how their dynamics lead to improved optimization performance. For

each model, the Af-queen problem of various sizes are solved computationally, and

their optimization performance measured on respective parameter spaces. The chaotic

dynamics of the models are also investigated by examining the time evolution of their

neuron states and energy functions. All these analyses allow us to discover and

discuss the relationships betv/een chaotic dynamics and optimization performance of

HCNN's. The computer simulations and results are presented in Section 4.4, with

.
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specific results for the Chen-Aihara model, the Wang-Smith model, and the chaotic

noise model in Section 4.4.1, 4.4.2 and 4.4.3 respectively. The discussions of the

results are concluded in Section 4.5.

4.2 The iV-queen problem

The Af-queen problem is concerned with placing N queens on an N x N chessboard in

such a way that no queen is under attack. It belongs to the class of NP-hard constraint

satisfaction problems, and the constraints are:

• only one queen in each row;

• only one queen in each column;

• only one queen in each diagonal (there are more than two diagonals); and

• exactly N queens on the chessboard.

To solve this COP, we formulate it as a 0-1 programming problem. A neuron output

matrix X of dimension N x N is used to represent the chessboard, where Xy = 1

corresponds to a queen placed in row i and column j , and Xy - 0 means no queen is

placed. Figure 4.1 shows a feasible 5-queen solution using both the chessboard and

matrix representations. Mathematically, the Af-queen constraints are expressed as

follows:

Integrality: Xi} e {0,1}

N

Row constraint: £ XtJ, = 1 for / = 1, 2,..., N

.
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N

Column constraint: J^Xtj = 1 forj=l,2,...,N

Diagonal constraints: V y =1
ISi-pZN

fori,j=l,2,...,N

N

Totality constraint: £X 9 = N for i,j= 1,2,..., N

(4.1)

The 8-queen problem was first proposed in 1848, and has been traditionally

investigated by mathematicians, including C. F. Gauss in 1850 [112] and more

recently by Yaglom and Yaglom [113]. The AT-queen problem has become a research

subject for various fields like algorithmic design [77,56], artificial intelligence

[46, 92], and parallel/distributed computing [3, 55]. It has also been examined under

the phase transition theory in search problems [86]. The Af-queen problem has been

solved with a variety of artificial neural networks previously, e.g. Hopfield network

[95], Cauchy machines [96], Gaussian machines [8] and the hysteretic Hopfield

network [18].

Apart from being a challenging problem in its own right, Af-queen has implications for

many practical applications in business and industry, such as air traffic control, data

routing and load balancing in computer clusters, scheduling, etc. All these problems

share the common goal of satisfying a set of global constraints. Feasible solutions to

these problems mean satisfying all the specified constraints, and this makes the

solution process a difficult one. This is best illustrated by the //-queen example, where
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the placing of any queen affects the "following moves" and the final solution. In

neural network implementations of solving the AT-queen problem, this inter-

dependence of queen positions is translated into the interaction among neurons and

their associated attractors in the state space. Thus in order to study the optimization

performance of HCNN models and their chaotic dynamics, we choose iV-queen as our

test problem for its simplicity and representative characteristics. One of the reasons

for choosing the Af-queen problem over the TSP as our test problem is that almost all

existing studies of HCNN models in the literature use the TSP

[114,76, 99,24,48, 15,47,97], therefore it would be a contribution to the field by

solving a different, but equally hard COP such as the Af-queen. One may argue that

constraint satisfaction problems are easier to solve due to the lack of cost terms in the

penalty function, and the difficult trade-off issue between solution quality and

constraint satisfaction is non-existent. But in fact this does not make the Af-queen

problem any easier to solve, as the trade-off issue still exists among the various terms

in the penalty function, only that they all represent constraints.

4.3 Formulation

In this section, we implement the HCNN models by using the Hopfield-Tank method

of constructing a cost from the COP, which is then mapped to the Hopfield

energy [54]. Since all three HCNN models examined in previous chapters share the

same Af-queen implementation, they have the same weight matrix W and external

input I. In order to satisfy the constraints in (4.1), a cost function (or penalty function)

is constructed such that its value increases if a constraint is violated:

t
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Z) I
12-pSN
ISj-pSN

i.y'=l p*0
l (4.2)

where A, B, C and D are positive parameters. Each term in (4.2) is associated with a

constraint described above: the first and second terms corresponds to the constraints

of having only one queen in each row and each column respectively; the third term

corresponds to having exactly Af queens; and the last term corresponds to the diagonal

constraint. Expanding (4.2), neglecting the constant term CN2/2 and comparing (4.2)

to the energy function of Hopfield's discrete model [54]:

1 N N

(4.3)

gives

A A B A

(4.4)

where fa = 1 (0) if i = k (i ^ k). Moreover

Wijkl=-A8ik(l-8,)-B8jl(l-dik)-C
(4.5)

which are the coefficients of the quadratic terms in (4.3). For the remaining linear

term,

(4.6)
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Through (4.5) and (4.6), the Af-queen problem is fully specified for our HCNN

models, and the difference equations (3.9), (3.17) and (3.23) of the three

corresponding models all carry the same values of Wyia and Iy given here.

4.4 Computer simulations and results

In this section, computational experiments for investigating the dynamics and

properties of the HCNN models are described. The Af-queen problem is solved by

computer simulations of the three HCNN models described in this paper, focusing on

the aspects of optimization dynamics, performance, and comparisons among models.

In contrast to the original Hopfield network with steepest descent dynamics only,

HCNN's can give high quality solution without any adjustment of the penalty

parameters A, B, C, D in (4.5) and (4.6). Hence, A=B = C = D=lis applied for all

experiments. In these experiments, only asynchronous updating of neuron states is

considered.

4.4.1 CSA with decaying self-coupling

In this section, the Chen-Aihara CSA model is used to solve the N-queen problem via

computer simulation, with N=5, 10 and 20. The updating equation (3.9) is used with

the sigmoidal activation function (2.8) and the annealing schedule (3.10). A round

consists of 100 runs of the algorithm, each with a different set of initial states with Xy

values randomly centered around 0.5. The system is said to be convergent and hence
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terminated if the criterion max.{\x v(t + \) - X yit^i, j=1,2,..., N) <5xlO~5 is met. Note

that this is a strict implementation of the theoretical convergence criterion, and in

general a more efficient alternative for heuristicaliy checking the convergence is to

inspect the discrete neuron states [75,24]. First, we investigate the optimization

performance of the model in terms of feasibility, efficiency, robustness and scalability

in a two-parameter space. Feasibility is measured by the proportion of optimal

solutions obtained in a round; efficiency is the average number of iterations for

convergence; robustness is concerned with the distribution of high feasibility regions;

and scalability is about the dependency of these measures on problem size.

The parameters used are: £ = 0.004, j3 = 0.001 and Io = 0.65, as used by Chen and

Aihara [24], k = 1 - a is used according to (3.8). The parameter space is defined by a

and z(0), which are the main parameters concerned with the balance of steepest

descent and nonlinear feedback terms. Figure 4.2(a)-(c) shows the feasibility obtained

for N = 5, 10 and 20 respectively. A grey-scale is used where a darker region means a

higher feasibility. It can be observed that a high feasibility of over 90% is obtained for

the best cases, and the high feasibility region spans a large portion of the parameter

space, showing its good robustness in terms of choosing parameters giving high

quality solutions. Moreover, the high feasibility region does not shrink significantly

when the problem size increases, thus suggesting good scalability. Figure 4.3(a)-(c)

shows the average number of iterations for convergence, with the grey-scale

measuring efficiency. Lighter shade means fewer iterations to reach convergence, or

higher efficiency. By inspecting both Figure 4.2 and 4.3, we can observe *hvJ regions

with higher feasibility generally correspond to fewer iterations for convergence,

which is generally not true for other optimization algorithms e.g. simulated annealing.
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This relationship is particularly observable as the problem size increases. Another

feature found in the feasibility diagrams is the gradual transition in feasibility from

the dark region to the light region, which suggests a gradual change of optimization

dynamics.

In order to look more closely into the neurodynamics corresponding to different

feasibility regions, the time evolution of neuron states and the energy E& of a typical

run with N = 10, a = 0.4 and z(0) = 1.0 is shown in Figure 4.4. Figure 4.4(a) shows

the instability of a typical internal state with the chosen parameters. Before t = 550, its

value is mostly negative, but afterwards it becomes mostly positive and also less

scattered. This change of dynamics can be more easily observed in the neuron output

state shown in Figure 4.4(b), where the output value of 1 is much more frequently

attained after t = 550. We can have a glimpse of the overall neurodynamics by looking

at Figure 4.4(c), which shows the time evolution of the computational energy Zs<j. The

instability of the overall system is illustrated by the ch,aotic motion in E&. In spite of

the instability, there is a gradual lowering of the value of E& as time increases, and it

appears that a two-cycle is reached when t > 600. A global minimum of Ed = -50 is

achieved in this run and due to our convergence criterion, the system is halted before

it can settle to a stable fixed point. Strictly speaking, the whole process of CSA is not

completed in this run, but the main purpose of optimization is fulfilled. Since the

choice of a - 0.4 and z(0) = 1.0 in this particular experiment corresponds to a point on

the right side of the two-parameter space in Figure 4.2(b) and 4.3(b), the observed

instabilities are caused by the strong initial self-coupling. Experiments show that

similar dynamics as shown in Figure 4.4(c) are obtained for many initial conditions
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X(0). In other words, the optimization neurodynamics in this parameter regime is

insensitive to initial conditions, and this property is a major contribution to the high

feasibility shown in Figure 4.2(b).

One feature of nonlinear systems is their diverse structural dynamics obtainable by

changes in parameter values. In Figure 4.5, we show how the structure of the

neurodynamics varies when we move across the two-parameter space in Figure 4.2(b)

or 4.3(b), which enables us to extract nonlinear features that are relevant to improved

optimization performance. Figure 4.5 shows various time evolutions of E& with

a = 0.4 and decreasing values of z(0). The same set of initial neuron states is used for

all cases unless otherwise stated. Figure 4.5 (a) shows similar unstable neurodynamics

as in Figure 4.4(c) but the number of iterations to obtain the optimal solution is

halved. According to Figure 4.2(b) and 4.3(b), this parameter set offers both high

feasibility and high efficiency. Because of the annealing schedule used, this high

efficiency is a result of the choice of z(0) just large enough to sustain an effective but

brief period of instability before convergence. The dynamics here are also insensitive

to initial neuron states, thus contributing to the high feasibility observed.

If a smaller value of z(0) = 0.4 is used as shown in Figure 4.5(b) and (c), the network

dynamics becomes less chaotic but more sensitive to initial conditions. In

Figure 4.5(b), the systems start with a two-cycle, which appears to bifurcate and

becomes chaotic around t - 500, and then back to a two-cycle. The optimal solution is

not reached in this case, but it shows that transient chaos due to bifurcation exists

even when z(t) is monotonically decreasing, where only reverse bifurcation is
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expected. An entirely different behaviour is observed if another set of initial neuron

states is used as shown in Figure 4.5(c). The system starts with a simple descent and

then locks into a two-cycle, which becomes stable at a global minimum (fixed point)

around t = 60. These two kinds of dynamics are typical for this parameter regime

when other initial states are used, with the optimal solution mostly obtained from the

dynamics as in Figure 4.5(c). Note that the window of chaotic behaviour in

Figure 4.5(b) does not in general improve optimization. The lack of instability in the

early stage of neurodynamics and its dependency on initial conditions accounts for the

low feasibility and low efficiency for this parameter regime.

Figure 4.5(d) corresponds to the case with z(0) = 0.05, which means the initial self-

coupling is very weak. The dynamics observed are far from unstable, but a small

uphill movement is still present around t = 8. However, the system is trapped at a

local minimum, which is typical for almost all initial conditions. Chaos is nonexistent

in this parameter regime, and as shown in Figure 4.2(b) and 4.3(b), low feasibility is

coupled with fast convergence. In other words, this parameter regime represents fast

convergence to a poor solution.

By relating optimization performance in the two-parameter space and the

corresponding neurodynamics given above, we have identified adequate instability to

be the functional feature in the decaying self-coupling CSA scheme, which serves as a

computational element to the HCNN in solving the //-queen problems with both high

feasibility and efficiency.
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4.4.2 CSA with decaying time-step

In this section, the Wang-Smith CSA model is implemented as a computer simulation

to solve the Af-queen problem with N = 5,10 and 20. The difference equation (3.17) is

used with the same sigmoidal activation function (2.8) as in the last section, together

with the annealing schedule (3.16). The same 100 sets of initial neuron states and

convergence tolerance are used, as for the previous experiments with the decaying

self-coupling model. The four measures of optimization performance, namely

feasibility, efficiency, robustness and scalability are likewise investigated in a two-

parameter space.

The constant parameters used are: £ = 0.01 and (3 = 0.001. The parameter space is

defined by T and A?(0), which are the main parameters controlling the stability of the

neurodynamics. Figure 4.6(a)-(c) shows the feasibility obtained for N = 5, 10 and 20

respectively, and Figure 4.7(a)-(c) shows the corresponding efficiency plots.

From Figure 4.6(a)-(c), there exists a wedge-shaped dark region where high feasibility

can be obtained, with the best cases ranging from 80 - 90% depending on N. The

scalability of this model is marginally worse than the previous CSA model because of

this slight deterioration in feasibility as problem size increases. However, the drop in

feasibility inside the dark region is less than the drop in the light region on the top-left

half of the parameter space, suggesting a difference in scalability for the

neurodynamics in the two regions. Robustness is good for this model in the sense that

the high feasibility region is distinctly well defined in the parameter space, in contrast
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to the diffuse boundary between high and low feasibility regions found in

Figure 4.2(a)-(c). For optimization efficiency, Figure 4.7(a)-(c) shows the average

number of iterations for convergence for the corresponding problem sizes. High

efficiency is obtained within around 300 iterations to achieve high feasibility inside

the wedge-shaped region. This represents a region ideal for optimization where both

high feasibility and high efficiency co-exist, which is also found in the previous CSA

model. As observed in Figure 4.6, there are in general three regions where feasibility

differs. The lower right half of the parameter space corresponds to divergent network

dynamics which are irrelevant for optimization. The dark wedge-shaped region is on

the right half of the parameter space, which corresponds to network instability due to

the violation of the first stability condition in (2.17).

We again look more closely into the neurodynamics for the other parts of the

parameter space by observing the time evolution of neuron states and the energy Ed.

Figure 4.8 shows the network dynamics with parameters T = 0.5 and Af(0) = 1.0,

which corresponds to a point on the right edge of the high feasibility region.

Figure 4.8(a) shows the time evolution of the internal state of a typical neuron in the

chosen parameter regime. Instability dominates the early part of the dynamics, with

mostly negative values. After around t = 600, a two-cycle appears and later converges

to a stable fixed point. This reverse bifurcation process appears as a switching

scenario as shown in Figure 4.8(b), which shows the neuron output switching

intermittently between 0 and 1 before t = 600, and then converges to the final output

of 1. Figure 4.8(c) shows the time evolution of Ed, which summarizes the overall

dynamics. The instability in the neuron states causes the instability in Ed, but a trend
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of gradually decreasing energy can be observed before the network stabilizes at the

global minimum. This phenomenon of optimization by reverse bifurcation has been

observed in Figure 4.4 for the decaying self-coupling model, and is a characteristic

feature for effective optimization for both models. Also, the neurodynamics shown

here (Figure 4.8) are insensitive to initial conditions, as in the previous model. To

move across the two-parameter space as shown in Figure 4.6(b) or 4.7(b), we fix the

value of T = 0.5 and use successively smaller values of At(0) to investigate different

neurodynamics in various parameter regimes. Figure 4.9 shows various time

evolutions of Ea with different initial time-step At(0). Exactly the same set of initial

neuron states as used previously for the decaying self-coupling model is used here,

unless otherwise stated. In Figure 4.9(a), the use of a smaller At(O) = 0.7 than in

Figure 4.8(c) means the period for unstable dynamics and the resultant CSA process is

shortened. However, the initial instability is still strong enough for solution searching

and consequently arriving at a global minimum, with much fewer iterations than in

Figure 4.8(c). The characteristic neurodynamics and fast convergence to the global

minimum shown here are also insensitive to initial states of the network. With high

feasibility and efficiency, together with low dependency on initial network states, the

model is at its optimal configuration. To look at the neurodynamics of the model with

parameters lying on the boundary of low and high feasibility regions of Figure 4.6(b),

a smaller initial time-step of At(O) - 0.5 is used. Figure 4.9(b) shows the dynamics of

such a case. Weak instability is observed at the beginning, which soon becomes a

two-cycle that leads to a fixed point. This is an example of inadequate chaotic search

and hence poor optimization dynamics that leads to local minima. If an even smaller

value of Ar(O) = 0.35 is used, as shown in Figure 4.9(c), CSA is nonexistent and only
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weak uphill movement is possible. Optimization performance in this parameter

regime is very low (see Figure 4.6(b) and 4.7(b)), and the network is often trapped in

local minima.

By associating regions of various optimization performance in the two-parameter

space with the spectrum of neurodynamics given above, the decaying time-step CSA

model can be seen to share the same characteristics with the decaying self-coupling

model of having network instability as a functional element for effective optimization.

Parameter regimes that give rise to adequate instability, thus high optimization

performance, are also found for this model. Although the two CSA models generate

internal chaos in different ways, the neurodynamics as perceived by the evolution of

the computational energy (c.f. Figure 4.4 and 4.8) show that they behave similarly and

hence have comparable optimization performance.

4.4.3 HCNN with chaotic noise

In this section, chaotic time series, or chaotic noise, is fed into the Hopfield network.

Since the chaotic feature is not generated from within the neural network, the

resulting neurodynamics are significantly different from the two HCNN models

previously described. To illustrate the optimization ability of this model, the Af-queen

problem with N = 5, 10 and 20 is solved computationally using the difference

equation (3.23), the sigmoidal activation function (2.8), and the logistic map time

series given by (3.21) and (3.22).
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Because of the added noise, the network does not converge to a stable fixed point,

thus we set t = 2000 as the maximum number of iterations allov ed. For each network

configuration, 100 sets of initial neuron states are used for 100 runs, and the

feasibility measure is now the proportion of runs which encounter the optimal solution

at least once. For example, say in a particular run the optimal solution is attained once

or more times at any t < 2000, we count this run as successful in producing an optimal

solution, no matter how many times the optimal solution is encountered in the non-

convergent process (c.f. Section 4.4.1 and 4.4.2 in which the models are convergent).

The parameters used are: £ = 0.1, At = 0.1, T = 1 and a = 4. Figure 4.10 shows a

typical logistic map time series with a = 4 and A^ = 1. Each neuron has its unique

logistic map time series generated with a different initial condition. To investigate the

effect of noise amplitude on optimization performance and neurodynamics, the noise

amplitude factor An is varied from 0.0 to 0.68, which corresponds to the actual noise

amplitude of 0.0 to 1.02. The feasibility obtained for each case is shown in Figure

4.11. For the case of N = 5 (Figure 4.11 (a)), feasibility increases with chaotic noise

amplitude for small amplitudes. 100% feasibility is obtained as the noise amplitude

reaches around 0.1, which is maintained until the amplitude becomes too large (-1.5)

to be beneficial. Therefore, chaotic noise of medium amplitude yields ideal feasibility

for this problem size. Figure 4.1 l(b) shows the case ofN= 10. It can also be observed

that medium noise amplitude gives high feasibility, although the range of appropriate

noise amplitude is narrower. The best performance is achieved with a noise amplitude

of slightly less than 0.4, giving a feasibility of over 90%, which is comparable to the

two CSA models discussed. Note that when the noise amplitude is 0, i.e. no chaotic

noise added, feasibility is only about 10%. For an even larger problem size of N = 20

(Figure 4.11(c)), an increase in feasibility due to chaotic noise is also observed for

small amplitudes of around 0.15, which peaks at around 40%, but deteriorates as the
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amplitude further increases, i.e. an even narrower band of usable noise amplitudes.

This lesser performance is most likely due to the dramatic increase of local minima as

the problem size increases, and the clear inability of external noise to assist the

dynamics to escape local minima. In general, high feasibility which peaks at some

amplitude values can be achieved with this HCNN, with good robustness for small

problem sizes. Scalability is poor for its rapid shrinkage of desirable range of noise

amplitudes as problem size increases.

To look more closely into the effect of chaotic noise amplitude on the neurodynamics,

we show in Figure 4.12 the time evolution of E& and a typical internal state Y23 for

noise amplitudes of 0.36 and 0.15 (i.e. An = 0.24 and 0.1 respectively), with TV = 10.

Figure 4.12(a) and (b) correspond to the energy Ed and internal state y3>3 respectively

when the optimal noise amplitude is used (see Figure 4.1 l(b)). Figure 4.12(a) shows a

noisy neurodynamics with both downhill and uphill trends, with global minima

obtained at around t = 400 and 1950. This noisy behaviour is caused by the chaotic

noise injected into the internal states. Figure 4.12(b) shows the internal state dynamics

of a typical neuron. If a smaller noise amplitude is used, we obtain a different picture

of the neurodynamics as shown in Figure 4.12(c) and (d). From Figure 4.12(c), only a

downhill trend can be observed, and the noise reflected in E& is much smaller

compared to Figure 4.12(a). This can be explained by the inability of small

perturbations in Y to "kick" the network state to another local minima, as shown in

Figure 4.12(d) where a less noisy dynamics in 3̂,3 is observed when compared to

Figure 4.12(b). Note that a change in noise amplitude can change not merely the

noisiness in the internal state dynamics, but the overall trend as well (compare

Figure 4.12(b) and (d)). Hence, the existence of an optimal noise amplitude for

effective optimization maybe a consequence of the specific chaotic perturbations of
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the internal state resonating with the specific energy landscape of the problem. As

such, the detailed interaction between the perturbations and the energy landscape

should be further investigated as a stochastic resonance phenomenon [110].

4.5 Concluding remarks

In this chapter, we have investigated the dynamical behaviors and optimization

performance of the three HCNN models described by the unified framework in

Chapter 3. The Chen-Aihara and Wang-Smith CSA models, together with the chaotic

noise model, are included. Evidence of improved optimization as a result of chaos is

obtained by solving the TV-queen problem as an example. By means of computer

simulation, the two CSA models, which belong to the same class of having internal

chaos, are found to be capable of strong optimization performance by having high

feasibility, efficiency, robustness and scalability. The spectrum of neurodynamics

obtained from computations illustrates the flexibility of HCNN models to behave as

different attractors in the dynamical sense, where the steepest descent dynamics of the

Hopfield network and the chaotic dynamics of the HCNN occupy opposite ends of the

spectrum. By measuring the optimization performance in a two-parameter space, we

have experimentally illustrated the link between this spectrum of attractors and

optimization performance: chaotic neurodynamics are beneficial to optimization. Our

results show that an adequately strong chaotic dynamics at the early stage is crucial

for effective optimization, which also serves as a guide to choosing model parameters.

On the other hand, the chaotic noise model belongs to the class with external chaotic

dynamics, and the logistic map time series is used as chaotic noise in our experiments.

The essential difference between external and internal chaotic sources in HCNN
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models can be highlighted by contrasting the ways in which logistic maps are

involved in the energy modifiers of the Hopfield network with chaotic noise model

and the decaying self-coupling model. For the former, the logistic map time series is

independent of neuron states; but for the latter, each "iteration" of the logistic map

involves the collective response of all neurons. Although the chaotic noise structure is

entirely independent of the network states in the chaotic noise model, its ability to

improve feasibilities comparable to CSA models is demonstrated via computer

simulations. It is found that the feasibility achieved by this model is related to the

amplitude of the chaotic noise used, with peak values obtainable for certain

amplitudes depending on problem size. However, robustness deteriorates rapidly with

problem size, and results in poor scalability.

Since both the form of the energy modifier and the neurodynamics obtained for the

chaotic noise model are different to the two CSA models, it is likely that there is a

different mechanism to explain the enhanced optimization performance due to chaotic

noise. From the energy framework perspective, one possible candidate is the

phenomenon of stochastic resonance [110] commonly found in nonlinear systems

with multi-stable states, where added noise is beneficial in certain aspects.

Possible future research should involve computational investigations of new HCNN

models suggested by the unified energy framework, and the application of HCNN's to

other COP's. These would further our theoretical understanding of HCNN's as well as

their implementation as an effective optimization tool.
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Figure 4.1: Chessboard and matrix representations of a 5-queen feasible solution
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Chapter 5

Self-Organizing Approaches to
Combinatorial Optimization

5.1 Introduction

In this chapter, we discuss self-organizing approaches to solving COP's. The principle

of self-organization in Kohonen's self-organizing feature map (SOFM) [62] lies at the

heart of these approaches for the solution process. Being a feed-forward neural

network, the SOFM relies on the presentation of input patterns as well as a

competition based learning mechanism. It is thus clear that any optimization approach

incorporating self-organizing or SOFM related principles would be quite different

from the Hopfield-type neural network approaches. In Section 5.2.1, an introductory

account of the SOFM is given to outline its major characteristics.

89
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As in the case of Hopfield-type approaches, the TSP has been a major benchmark

problem in the literature of self-organizing techniques for combinatorial optimization.

But for the more traditional self-organizing approaches, the TSP or other problems

defined in the Euclidean plane are the only problems they can solve. This is mainly

due to the fact that these methods derive from the elastic net method [30]. This

method was the pioneering work of Durbin and Willshaw, and was one of the very

first self-organizing approaches designed to solve the TSP in the Euclidean plane. The

method relies on an imaginary riixg of nodes defined in the Euclidean plane. The ring

can be "stretched" or deformed in the solution process such that each node matches

with exactly one city, thus forming a valid tour. Since the existence and operation of

such an elastic net are only meaningful in the Euclidean plane, it cannot be used to

solve other non-Euclidean or general "0-1" COP's. The details of the method are

given in Section 5.2.2.

Since the elastic net method, there have been other self-organizing approaches

developed to solve the TSP. Many of these approaches employ the same idea of

matching nodes to cities geometrically. Instead of a deformable ring, Fort [37] apply

Kohonen's SOFM onto a circular array of nodes. The topographical ordering property

of the SOFM is used to form a valid tour. It was found that the solution quality is

affected by the problem of nodes being associated with more than one city at some

stage of the solution process. Discussed in Section 5.2.3 are many techniques

proposed by various researchers to tackle this problem, such as the creation/deletion

of nodes [11], a conscience mechanism to penalize greedy nodes [22,21], or by

including explicit statistics into the learning [13]. However, the fundamental
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geometrical limitations of these methods prohibit their application to more general

COP's.

Based on the SOFM, Smith [87] proposed a generalized self-organizing neural

network (SONN) for solving a broad class of 0-1 optimization problems. Since it is

not based on the elastic net method or other geometrical techniques, it is purely

combinatorial in nature. A hybrid neural network incorporating both the generalized

SONN and the Hopfield network was also proposed [90,91]. These general

approaches are reviewed in Section 5.3.1.

It has been observed in the generalized SONN that the solution quality is affected by

the convergence process, in which unwanted oscillations sometimes occur [91]. In

order to suppress the oscillations, various methods have been employed, such as

explicit penalization of cheaper nodes [90, 91] and the conscience mechanism [45].

Of particular importance is the weight normalization procedure for constraint

satisfaction [45], in which a process similar to simulated annealing is used. An

overview of these techniques is presented in Section 5.3.2.

hi subsequent chapters of this thesis, we will examine the SONN with weight

normalization (SONN-WN) from a dynamical systems perspective, and reveal the

role of nonlinear system dynamics (NSD) in optimization improvements. Thus, this

chapter serves as a review of the relevant literature for subsequent chapters.
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5.2 Traditional self-organizing approaches

In this section, we present an overview of traditional self-organizing approaches to

combinatorial optimization. As the foundation of these approaches, Kohonen's SOFM

[62] is first introduced. We then examine the elastic net method by Durbin and

Willshaw [30] for solving the TSP, which is a geometrical approach derived from

mechanisms of topographically ordered neural mappings. This is followed by a

discussion on related efforts from various researchers to combine this method with

SOFM and other approaches.

5.2.1 Self-organizing feature maps

Kohonen's SOFM belongs to a class of neural networks based on competitive

learning, in which the neurons compete with each other to facilitate the learning

process. As in other unsupervised learning algorithms such as the adaptive resonance

theory model of Grossberg and Carpenter [43], the neural network can learn features

from the input data without guidance. The main characteristics of SOFM is its ability

to create globally ordered maps in the layered network by extracting important

features from the inputs. The correspondence between the input features and their

relative positions mapped onto the network is a result of the self-organizing process

prescribed by the SOFM algorithm. Such a feature map also shares many similarities

with the topographic feature maps found in the brain, suggesting its functional role in

biological information processing [14]. The SOFM can be regarded as a nonlinear

Iv ji
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generalization of the principal component analysis, with the main application of

visualization and clustering of high-dimensional data in a low dimensional space

[63, 83].

Figure 5.1 shows a schematic diagram of a feature map. A sheet of nodes (neurons)

forms the low dimensional space where the response of the SOFM is registered. When

a typically high dimensional input pattern (represented by vector x) is presented to the

SOFM, a local response belonging to a node / is triggered. The topographic or

distance relations between different input patterns are reflected, or mapped, onto the

local responses registered by the nodes, with responses from neighboring nodes

preserving the topographic relations. This is how the features of high-dimensional

inputs are topographically mapped onto a low-dimensional space. Although the

interconnections between the nodes and the inputs are not shown in Figure 5.1, such a

mapping is facilitated by weights connecting the inputs and the nodes. A

self-organizing process in the SOFM algorithm measures the similarity of an input

pattern to the weight vector Wi of each node i with some metric, and then modifies the

strength of association between the input and the nodes by adjusting the weights. Such

a process is performed in parallel among nodes, and can be implemented on parallel

computational devices. As will be seen later in this thesis, such a weight adjusting

self-organizing process is rich in nonlinear system dynamics, which have important

implications to the functionality of the SOFM.

Mathematically speaking, the SOFM depicted in Figure 5.1 exists on an array of

nodes. All nodes are connected to the input in parallel, and each node i is connected to
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the input vectorx = (xu x2,..., XN)T with weight WyJ = 1, 2,..., N. It is convenient to

view Wi = (Wiu W#,..., W/^)T as a reference vector associated with each node i. To

determine the mapping between a particular input pattern and a node, input patterns

are randomly selected and then presented to the network. Each reference vector is

compared to the input vector to determine the winning node *o of the best match

according to

(5.1)

where ||..| is the Euclidean distance (the dot product of x and W,- is sometimes used

instead). Learning then takes place when the weight vectors for all neurons are

updated according to the feature map update rule [62]

W, (t +1) = W; (0 + a(i0, i, t)[x(t) - W, (r)] (5.2)

where a(io,i,t) is the neighborhood function, with <x(io,i,t)-> 0 as t —> °o. The

neighborhood function controls the magnitude of updating to W/*s, with weaker

updates for nodes further away from the winning node *o- Upon repeated input

presentations and weight updates, the neighborhood function allows the formation of

a feature map, in which nodes responding to similar input patterns lie topographically

close to each other in the array. A common choice for the neighborhood function is

the Gaussian function

(5.3)
2a2it)

where 0 < /?(?) < 1 is the learning rate, rio and /*,. are the position vectors of the

winning node i"o and i respectively, and o(t) is the parameter controlling the width of
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the Gaussian function. Figure 5.2 illustrates the relationship between the winning

neighborhood and node positions. A hexagonal array of nodes is chosen [62] around

the winning node I'O. The neighborhood of the winning node consists of nodes within

the index set Nk (t). Initially a relatively large N^ (t) is chosen. As time increases

(t\ <t2< h), the neighborhood is decreased in order to sharpen the feature map. If the

initial A^ (t) is chosen to be too small, discontinuously ordered subgroups are formed

instead of a topographically ordered feature map.

The learning rate /J(f) should be chosen close to 1 at the start of the iterations, and

then gradually decreased for the fine adjustment of the map [63]. It should remain

small after the ordering phase. The actual rule for decreasing /3(r) is not crucial, unless

for very large maps. Similarly, a relatively large c{t) is usually chosen during the

initial ordering phase for a more effective ordering process, and then gradually

reduced. It is important that o(t) is large enough such that the neighborhood function

cc(io» i, 0 is convex for nodes within A^(0- Otherwise, metastable states due to

"topological defects" (or conflicts between locally ordered groups) may result [32].

It is well known that rigorous mathematical proofs of convergence for the SOFM

algorithm are hard to establish [63]. For the one-dimensional case, Cottrell and Fort

[26] proved the convergence for uniformly distributed stimuli, which was later

extended to general distributions by Bouton and Pages [19]. A dynamical system

approach using the ODE method was used by Fort and Pages [38] to prove the

uniqueness of an equilibrium point after self-organization, together with convergence
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results with a general class of stimuli distributions and neighborhood functions. By

using the Fokker-Planck equation to describe the SOFM learning process, Ritter and

Schulten [84] studied the stability and fluctuations of the equilibrium map, and

provided a criterion of convergence to the equilibrium map in terms of the time

dependent learning step size. For the two-dimensional case, a restricted proof of

convergence is given by Erwin et al [33]. They also proved that although the SOFM

algorithm cannot be derived from energy functions (in contrast to Hopfield-type

networks), a set of potential functions (one for each neuron) can be constructed,

which are independently minimized with stochastic gradient descent.

Apart from the SOFM, there are other similar models related to the formation of

topographical mappings between different dimensions. Derived from one of those

models is the elastic net method for solving the TSP, which represents a major step in

solving COP's with self-organizing approaches.

5.2.2 The elastic net method

In 1987, Durbin and Willshaw [30] proposed an optimization technique called the

elastic net method to solve the TSP. It is a parallel analogue algorithm derived from a

model of topographically ordered projections in the brain. Being a geometrical

method, a TSP tour is viewed as a mapping between the cities on the plane and the

same number of nodes on a circle. Such a circle resembles an elastic band in the sense

that it is initially situated in the middle of the plane, but is gradually stretched non-
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uniformly to pass through all cities and become a path (see Figure 5.3). An energy

function can be defined as follows,

N M

2K2
7=1

(5.4)

where x, represents the position of city i (i = 1,2,..., N), yj represents the position of

node j (j = 1,2,..., M) on the elastic band, and a and /? are constants. Since the length

parameter K is gradually reduced, the first term of E means that the path must pass

through all cities for E to remain bounded. As E reaches a minimum, so does its

second term which represents the length of the path. For each iteration of the

algorithm, the positions of the nodes are updated by

AFy = - « X X f o -*;)+0ff(yy+i +yM ~2yj) (5.5)
1=1

where

(5.7)

J t = l

From (5.6) it can be seen that the updating in (5.5) represents a gradient descent on

the energy landscape. As K —> 0, the algorithm converges to a stable local minimum

as Ay,- —> 0.

The elastic method was applied to solve the 30-city TSP by Durbin and Willshaw

[30], and obtained the shortest known tour in 1000 iterations. This was better than
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Hopfield and Tank's result on the same set of cities [54], whose shortest tour was

19% longer. A 100-city problem was also solved with their best tour within 1% of the

best tour obtained by any method. The method has the advantages of having high

quality feasible solutions, parallel computation, good scalability, and is not too

sensitive to parameter values. A recent efficiency improvement using hierarchical

strategies has also been proposed [102]. However, the elastic net method is limited to

solving general TSP's in the Euclidean plane only, and cannot solve the random TSP

(whose distance matrix is non-symmetric and contains randomly generated elements)

or other problems not defined in the Euclidean plane.

5.2.3 Self-organizing approaches to the TSP

In 1988, Fort [37] proposed a self-organizing approach based on Kohonen's SOFM to

solve the TSP. It is similar to the elastic net method in the use of topographically

ordered mappings for the formation of tours. A circular array of neurons is used in

this approach in order to map the cities of the TSP, such that a tour is represented by

the ordering of the mapping. In contrast to the deterministic nature of the elastic net

method, stochasticity is used in this approach for weight updates during the learning

process. Experimental results obtained with this method using Hopfield and Tank's

TSP data set are not as good as those obtained by the elastic net method in general,

with many local minima solutions.

By incorporating the elastic net concept into Kohonen's SOFM implementation,

Angeniol et al [11] were able to obtain improved results on the TSP over the elastic
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net method. In this method, nodes are linked together by a ring and are assigned

coordinates in the Euclidean plane. Coordinates of the cities are presented as input

vectors in the SOFM algorithm. A competition among the nodes is held to decide the

winning node, which is the one closest to the city being presented as input. The

coordinates of the nodes within the winning neighborhood are then updated, pulling

them toward the particular city. The iterative process continues until the total number

of nodes is equal to the number of cities, with the resulting tour given by the ring of

nodes. One important feature of this method is that the total number of nodes can be

changed via a node creation/deletion process. Initially there is only one node located

at the origin of the plane. A node is duplicated when it has become the winner oi two

cities, and the new node is assigned as a neighbor of the original. Both these nodes are

not to be updated for the next competition. A node is deleted when it has not been a

winner for three complete presentations of all cities.

Using this method, Angeniol et al first solved the 30-ciiy problem with Hopfield and

Tank's data set [54]. A good result of less than 3% greater than the optimum was

obtained on average. The authors also solved the same 50-city problems from Durbin

and Willshaw [30]. Comparable results to the elastic net method were obtained, but

with improved efficiency. A feasible solution was also obtained for a 1000-city

problem in 20 minutes on a workstation computer (the best solution took much longer

however).

Favata and Walker [34] also proposed a similar approach of implementing the SOFM

principle to solve the TSP. The mapping between a ring of nodes and the cities on the
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Euclidean plane is also adopted, but without the node creation/deletion process as

employed by Angeniol et al [11]. Although ^orne nodes as a result may claim more

than one city and some cannot claim any, their solutions using Hopfield and Tank's

30-city TSP data set [54] were only around 5% more costly on average than those by

using simulated annealing [61]. Good scalability and efficiency were also

acknowledged by the authors.

The guilty net proposed by Burke and Damany [22] is another SOFM based approach

to solve the TSP without node creation/deletion processes. As mentioned above, such

processes are designed for the purpose of node separation when a node claims more or

fewer than one city at the end of the training. Since the number of nodes is fixed in

the guilty net, a conscience mechanism introduced by DeSieno [29] was employed to

achieve feasible tours efficiently, thus in effect replacing the node creation/deletion

process. A bias term is defined such that nodes winning too often are restrained for

further excessive wins (hence the name guilty):

win:
bias .=——>— (5.8)

1 + > , , wirwink

where win,- is the number of accumulated wins for node j . Such a bias term is added to

the calculation of the Euclidean distance between the input vector and the weight

vector of node j . Clearly a large bias term would lower the chance of a node to win

the competition for the minimum distance. Experimental results obtained by the

authors in solving the TSP of 10, 30, 50 and 100 cities show that they are on average

9.5% poorer than the elastic net method, and 2.2% poorer than simulated annealing.

However, this method is more efficient because of its ability to obtain approximate
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tours before complete node separations (each node distinctively claiming only one

city).

More recently Burke [21] proposed the vigilant net as an extension of the guilty net.

This development aims to alleviate the trial-and-error tuning of the effective bias term

weight in the guilty net, which affects the solution quality. The aim was to devise an

automated mechanism for tackling the node separation issue without time-consuming

parameter tuning. The vigilance parameter concept borrowed from adaptive resonance

theory [43] was used to resolve this issue. The vigilance parameter determines the

maximum number of wins for a node before it is reset, and the competition restarted

with other uncommitted nodes. Computational comparisons between the guilty net

and the vigilant net show encouraging results for the latter. For nonuniformly

distributed TSP's, tours obtained with the vigilant net are as good or sometimes better

than the guilty net. Although the performance of the vigilant net on uniformly

distributed TSP's is not as good as the guilty net, the author acknowledged that the

difference appears to become smaller as problem size increases. A performance

comparison with the space-filling curve heuristic by Platzman and Bartholdi [80]

showed the vigilant net can achieve comparable solution quality on average.

In 3999, Aras et al [13] proposed the Kohonen Network Incorporating Explicit

Statistics (KNIES), so called because of its ability to preserve and utilize statistical

information of the data points. The motivation was to include global information

(statistics) from the data points at every iteration of the learning process, in contrast

with the SOFM where the nodes can only learn such information asymptotically. Just
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like other approaches to the TSP, a ring of nodes is used to gradually move toward the

cities on the Euclidean plane. In the KNIES, the mean of the positions of the cities is

the statistical quantity being captured and assimilated into the node positions. This is

done by moving the nodes outside the winning neighborhood in such a way that the

mean of all the nodes matches the mean of the cities. According to the authors, the

usefulness of such a scheme is due to the dependence of the final solution quality on

the transient stochastic distribution of the nodes on the ring. The method was used to

solve the TSP of various sizes from 51 to 532 cities. By comparing the tour lengths

obtained by KNIES and other self-organizing approaches mentioned above, it was

found that KNIES gives the best result for most of the problem instances. The method

was also implemented by the same authors to solve the Hamiltonian path problem

[10].

All the self-organizing approaches described so far are limited to solving the TSP in

the Euclidean plane only, and there are other similar approaches as reviewed by

Potvin [81]. The limitation is due to the common adoption of the elastic net idea of

matching a ring of nodes to the cities in the Euclidean plane. In order to generalise the

self-organizing approaches for broader problems like non-Euclidean TSP or other

general COP's, a more general way to implement the SOFM principle is needed.

5.3 Self-organizing neural networks for general COP's

In this section, we review self-organizing neural networks (SONN's) that solve

general 0-1 optimization problems. The main feature of these SONN's is that their
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computations do not rely on nodes confined to the Euclidean plane, but on weights

which lie in multi-dimensional space. These weights linking the inputs and the nodes

now represent the variables of the optimization problems. Within this class of

SONN's, we outline various developments which differ in their ways of enforcing

solution feasibility and improving solution quality.

5.3.1 The generalized self-organizing neural network

The original form of the generalized SONN that is capable of solving general 0-1

COP's was proposed by an Australian researcher Kate A. Smith [87] in 1995. The

generalized quadratic assignment problem was used as an example for illustration:

N M N M

minimize / W = 2* 2w iL 2*^<* ̂  ux */
;=l y=i *=i /=i

subject to M,
L * < / = 1 Vi = l,...,N

N

2^ Xjj = dj Vy = 1,...,M

X, € {0,1} (5-9)

where X is the solution matrix. For the case of dj - 1 for all j , any X satisfying the

constraints in (5.9) can be regarded as a permutation matrix whose rows are

permutation of the row vectors: (1,0,0,...,0), (0,1,0,... , 0),..., (0,0,0,..., 1), etc.

The basic structure of the SONN consists of an input layer and an output layer, where

lie the input nodes and the output nodes respectively, as shown in Figure 5.4.

Connecting the two layers are the weights denoted by Wy, which is a continuous
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variable representing the probability that the variable in the ith row andyth column of

the solution matrix X is 'on'. For the learning process of the SOFM, row vectors

described above are presented to the input layer. A cost is then calculated for each

node at the output layer according to the COP being solved. For the example in (5.9),

the cost (or potential) of node k for input vector x (such that Xj* - 1) is given by

L

where pv is a parameter for controlling oscillations in the learning process. The

winning node denoted by index I'O is defined as the node having the lowest cost for a

particular input presentation:

V: lt < V, .. for all other nodes k.
'0 <J 'k >J

A winning neighborhood is also defined:

where r\ is the size of the neighborhood. So unlike other self-organizing approaches

based on the elastic net where the winning neighborhood is defined spatially, this

approach operates in the cost potential space. Because of this, the SONN can solve

generalized 0-1 COP's and is not limited to Euclidean problems. Once the winning

neighborhood has been determined, the weights are updated according to Kohonen's

SOFM updating rule. In order to retain the weights on the constraint plane after

updating, the weight matrix's projection on the constraint plane is taken as the new

weight matrix for the next round of learning. In an illustrative numerical example of

solving the quadratic assignment problem (QAP), the author showed that reasonably

.
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good results were obtained by the SONN. The global minimum was obtained in 3 out

of 10 random starts of the algorithm, with good local minima for the remaining.

More recently, Smith et al [90, 91] extended the generalized SONN described above,

and proposed a hybrid neural approach to combinatorial optimization. It combines the

generalized SONN and the Hopfield network into a design that eliminates infeasible

solutions, in addition to its capability of solving a broad class of 0-1 optimization

problems. There are two stages in the algorithm, in which the generalized SONN

described above is the first stage. The role of the first stage is to minimize the

objective function, while the second stage is to ensure the solution remains feasible

and is directed toward a vertex. A Hopfield network is used in the second stage to

enforce solution feasibility. An energy function consisting of only a single constraint

term and a 0-1 enforcement term is minimized with the Hopfield network. Without

any term in the energy function representing the objective function, the trade-off

problem between constraint terms and the objective function term was alleviated. A

set of theoretical remarks was also proposed to address the convergence of the

scheme [91].

The hybrid neural network was applied to solve the car sequencing problem, a postal

delivery problem (a p-hub location-allocation problem) [90,91], the static and

dynamic channel assignment problems [89], etc. Comparative results with simulated

annealing and a commercial integer programming package (GAMS/MINOS-5)

showed that the hybrid network can match, and sometimes outperform the other two

methods in solution quality. The authors also anticipated the accelerated processing
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speed of the neural approach brought about by recent developments in parallel

hardware, which makes the network an effective alternative to heuristics in many

practical applications.

In both the generalized SONN and the hybrid neural network, the parameter f5v in the

cost potential as given in (5.10) needs to be adjusted. Such a parameter is used to

encourage constraint satisfactions, and a suitable choice of its value is problem

dependent. It was found that the parameter affects convergence of the network, in the

sense that oscillations may occur with an unsuitable value [91]. Such an oscillation is

analogous to the problem associated with self-organizing approaches for the TSP

discussed in Section 5.2.3, where a particular node wins too often and results in

claiming more than one city. Although the COP's being tackled by the generalized

SONN and the hybrid network are not Euclidean in general, the same phenomenon of

a node winning too often still occurs, resulting in oscillations in an otherwise

well-behaved convergence toward the vertex of the hypercube. The value of fly was

chosen by Smith et al [90, 91] with a problem-dependent expression in such a way

that a greedy node (a node whose cost potential is inherently lower than others

because of the problem specification) is not allowed to win unless its cost potential is

significantly cheaper than others. Since such a method of parameter tuning is problem

dependent and may hinder the deployment of the networks as a readily applicable

optimization tool, a more general approach is needed.
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5.3.2 SONN with weight normalization

In order to control oscillations in the convergence process of the generalized SONN

and the hybrid network, Guerrero et al [45] incorporated the conscience mechanism in

the determination of the cost potential constraint parameter (pV). Such a mechanism as

discussed in Section 5.2.3 has been proposed to solve the problem of greedy nodes

among self-organizing approaches for solving the TSP [22, 21]. In their paper, the

quadratic assignment problem is solved as an example (same as (5.9) except dj = 1

and TV = M), in which the cost potential of node / is given by

V* = L I > , ^ / + &(0 XX- (5.11)

where pV(/) is the pV value of node i. According to the generalized SONN algorithm,

the winning node is the one having the lowest V/** when an input is presented to the

network. Instead of using trial-and-error or an ad hoc formula to work out the suitable

value of pV, a scheme based on the conscience mechanism was introduced by the

authors:

Pv(i)=jfWin(i) (5.12)

where/is the objective function to be optimized, N is the number of output nodes in

the network, and win(i) is the number of wins for node i in the current epoch of input

presentations. The function of (5.12) is to penalize nodes that win more times than the

others, so as to encourage the claiming of only one input pattern by each node, thus

suppressing oscillations.
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In the same paper, the authors also introduced another method for constraint

satisfaction. In order to explicitly enforce the constraints

N

Y,xu=l v ' and *(,e{0,l} (5.13)
/='

a normalization procedure for the weights is used:

W,ij " N (5.14)

where T is a parameter akin to the temperature parameter in simulated annealing,

which is gradually lowered as the learning process proceeds. Since the weight Wij

represents the continuous relaxation of the decision variable Xij, the constraints in

(5.13) are satisfied when T becomes asymptotically small. It should be noted that a

very similar normalization procedure was proposed by Van den Bout and Miller

[103, 104] for constraint satisfaction in their Hopfield network approach to the TSP.

By controlling oscillations and enforcing constraint satisfactions with the respective

methods described above, Guerrero et al applied the generalized SONN to solve the

facilities location problem [45] and a cellular manufacturing problem [44]. It was

shown that the introduced methods of improvements were effective to obtain feasible

and reasonably good quality solutions. However, there are questions still to be

answered as to how the annealing scheme of the normalization procedure affects the

solution process, and its ultimate consequence on the feasibility and solution quality.
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5.4 Concluding remarks

In this chapter we have reviewed the development of self-organizing approaches for

solving the TSP and more general COP's. From the Euclidean based approaches for

solving the TSP to the generalized SONN, we have seen the effectiveness of the

SOFM principle in combinatorial optimization. Throughout the literature it has been

suggested that the solution quality of self-organizing approaches rely on the quality of

the corresponding competition-based learning process. For this a variety of techniques

have been discussed to regulate the competition for input patterns (or cities) among

nodes, or in other words, to control oscillations in the convergence process. For the

SONN to be a versatile and flexible optimization tool, we find the weight

normalization procedure employed by Guerrero et al [45] a promising approach for

further development. The normalization process achieves constraint satisfaction via an

annealing scheme such that "decision making" becomes a gradual process. Since the

relationship between annealing schedules (initial T and its cooling rate) and solution

quality remains an important open question, a detailed investigation is needed. In the

next chapter, we study such a relationship by solving the N-queen problem via

computer simulation, which also reveals the intricate roles played by nonlinear system

dynamics and noise in the self-organization scenario.



Chapter 5: Self-Orsanizins Approaches to Combinatorial Optimization 110

Figure 5.1: Schematic diagram of a feature map showing a two-dimensional array of

neurons (nodes) with weight W and input vector*.

Ni0(h)

Figure 5.2: A Hexagonal array of nodes showing the time-dependent sets of nodes

included in the winning neighborhood.
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(a)

(b)

(c)

Figure 5.3: An example of the progress of the elastic net method for a

7-city TSP over time: (a) —> (b) —» (c). Nodes are represented by •,

and cities are denoted by • .
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NM

Figure 5.4: Architecture of the SONN.



Chapter 6

Computational Performance of
the Self-Organizing Neural
Network with Weight
Normalization

6.1 Introduction !

In this chapter, we present the computational results of applying the self-organizing

neural network with weight normalization (SONN-WN) to solve a COP. Our aim is to

investigate the theoretical basis behind the effective optimization ability of the

SONN-WN. We achieve this by implementing the neural network model to solve the

Af-queen problem via computer simulation, and then study its optimization

performance from the perspective of characteristic network dynamics. The

113
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SONN-WN algorithm together with its implementation for the N-queen problem is

presented in Section 6.2.

Since the weight normalization procedure within the SONN-WN is the focus in our

study for improved convergence toward effective optimization, we seek to gain a

deeper understanding on how solution qualities are affected by its various annealing

schedules. For this we plot the obtained feasibilities in the normalization parameter

space, and study the distribution of high feasibility regions. An important facet of this

investigation is the effect of improved feasibilities and robustness due to random

noise added to the cost potentials, which reveals interesting band patterns in the

normalization parameter space. The influence of other important parameters in the

self-organization process is also studied. These results are presented in Section 6.3.1

with detailed discussions.

In order to study the complex relationship between the weight normalization process,

noise, and the resultant optimization quality, we present in Section 6.3.2 some

experiments detailing the time evolution dynamics of the cost potentials (Vy) and the

weights (Wy). By studying how unwanted oscillation during convergence can be

controlled by random noise added to the cost potentials, we explain the improved

feasibilities obtained in Section 6.3.1. The interaction between noise and weight

normalization is also investigated, which highlights the importance of the temperature

parameter Tin the convergence process.
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By combining all the major observations and findings in Section 6.3.1 and 6.3.2, we

present in Section 6.3,3 a guide for choosing the most effective annealing schedules

for optimization results. A detailed account on the structure of feasibility patterns

obtained in Section 6.3.1 in terms of convergence dynamics is also given. Finally, we

close this chapter with the concluding remarks in Section 6.4.

6.2 A SONN-WN approach to the iV-queen problem

hi this section, we present the SONN-WN formulation and its implementation to

solve the //-queen problem. As in Section 4.2, the chessboard is represented by the

JVxiV matrix X, with the decision variable Xy e {0, 1} denoting the position of

queens. The overall cost (/) of violating the Af-queen constraints (4.1) remains the

same as in (4.2):

N N r(N

2

N N

i,j=l p*0 i,j=l p*Q
lS-pSW iSi-pSN
IZj-pZN lij+piN (6.1)

To solve the Af-queen problem of minimizing (6.1), we formulate a SONN-WN based

on that used in [45] where a quadratic programming problem has been solved. The

architecture of the SONN-WN for this problem is shown in Figure 6.1. It is a feed-

forward neural network with an input layer of N nodes, and an output layer of N

nodes, representing the N columns and N rows of the chessboard respectively. The

weight between an input node/" and an output node / is given by Wy and represents the
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continuous relaxation of the decision variable Xy in (6.1). Thus, /y- is the probability

of placing a queen in row i, column j . For any X that represents a feasible solution of

the N-queen problem, it can be treated as a permutation matrix whose rows belong to

a permutation of the following row vectors, each of dimension N:

(0 , l ,0 , . . . ,0) for;* = 2

(0 ,0 ,0 , . . . , l ) for j*=N

where;* denotes the column having an element of 1. For the learning process, these

row vectors are used as the input vectors that are presented at the input layer of the

SONN-WN (Figure 6.1). The task for the SONN-WN is to find the cheapest

permutation of these N rows. For each input pattern presented to the network, a cost

potential V is calculated for each node i in the output layer:

Vp = £ (1 - Sik )(8w+l + £,._.,,_, )WU + * £ (1 - 8ik )Wkj. (6.2)

where

ri if« = *

[y otherwise.

The cost potential Vy* in (6.2) is the diagonal and column contribution to the objective

function / of placing a queen on column ;* of row i, and is related to the partial

derivative of/. From the viewpoint of a permutation matrix, Vy* can be thought of as

the potential cost to the objective function (6.1) if the input pattern ;* is placed in

row /. B is a penalty parameter which is arbitrarily chosen to be 1 in this investigation,

and determines the balance between violation of diagonal constraints and column
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constraints. If all Wy's are roughly the same, which is a typical initial condition of the

network before any updating, the cost potential as evaluated from (6.2) reflects an

inherent symmetry in the TV-queen problem definition. Figure 6.2 illustrates this cost

symmetry, with higher expected costs around the central region of the chessboard.

This also means there are more expected clashes when placing a queen around the

center. While the column and diagonal constraints are handled by the cost potential

(or objective) function (6.2), the row constraints are treated separately, and are

enforced by the normalization procedure described below during the weight updates.

The competition between the output nodes gives the winning node io corresponding to

the row with minimum potential

iQ = arg min K.» . (6.3)

For self-organization to develop we define a neighborhood of the winning node

containing those nodes with the least potential

'o , j * ) = Oo. »i > *2. - , in } (6-4)

where

\r *V ^w *•••* V *~* v w (6'5)

and r\ > 0 is the neighborhood size. Thus the neighborhood is defined according to

relative cost, rather than spatially as in Kohonen's SOFM [62].

Once both the winning node and its neighborhood have been determined, the weights

are updated according to a modification of Kohonen's weight adaptation rule. In order
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to explicitly enforce the constraint of one queen in each row, the weight normalization

for each output node as described in [45] is used:

exp

where T is a parameter (called temperature), which is lowered as the learning process

proceeds. The normalization operation guarantees that when convergence is

completed, only one queen is assigned to each row. To obtain a good quality solution

(or feasible solution for //-queen) within an effective number of iterations, an

adequately controlled solution process is needed. It is crucial to choose an appropriate

annealing schedule, which comprises an initial temperature T(0) and a "cooling rate"

r, such that high quality solutions are obtained efficiently. As pointed out in the last

chapter, the weight normalization procedure provides the basic mechanism for

suppressing oscillations during convergence via its role in constraint enforcement.

During the learning process, the neighborhood size, the magnitude of the weight

adaptations, and the temperature are gradually decreased. The complete algorithm

follows:

1. Randomly initialize the weights around 0.5.

2. From the permutation matrix, randomly choose a row as the input vector and

present it to the input layer. The/*-th element of the input vector is 1, which

means column,/* of the chessboard is being computed.

3. Compute the potential Vy* for each output node i according to (6.2).
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4. Determine the winning node, io, as well as its neighboring nodes according to

(6.3M6.5).

5. Update weights, Wy*, connecting input node,/* with every output node i based on

Kohonen learning:

AWy.it) = a{i,t)(l-WiJt) VieN(io,j*) (6.7)

AWijt(t)=0 Vi£N(io,j*) (6.8)

where

V —V
a(i,t)= / ? ( O e x p | - , ' ' 0 J . . w , (6.9)

The updated weights are:

j j j (6.10)

6. Normalize Wj/'s to enforce the one-queen-per-row constraint using (6.6).

7. Repeat from Step 2 until all columns have been selected as input patterns. This is

one training epoch. Repeat from Step 2-6 for L; epochs, then anneal T to

encourage 0-1 solutions and decrease /?(f), according to the following:

T(t + Lx) = rT{t) (6.11)

where T(t) represents the temperature at epoch t, and 0 < r < 1 is the cooling rate.

($(t) also decays in a similar manner with rp.

8. Repeat Step 7 L2 times, each time subtract 7} by 1. Halt when 77 < 0. Wy's are

then rounded to 0 or 1 as follows to obtain the final solution:

, . [\ Wn > 0.5
V' =\0 'f <^<0.5 *'<> ( f U 2 )

As the normalization procedure almost always ensures the final weight are near 0

or 1, this rounding only serves to obtain strict 0-1 solutions.
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6.3 Optimization performance of the SONN-WN -
computational results

In this section, we present the computational results of implementing the SONN-WN

algorithm to solve the N-queen problem with N = 5. In order to show how solution

qualities are affected by the choice of annealing schedules that characterize the weight

normalization process, we present in Section 6.3.1 the measured feasibilities in the

normalization parameter space. We also introduce the use of external noise in the

competition-based learning process, which acts as an aid to our parametric study of

weight normalization, as well as being a technique to enhance solution quality in its

own right. The feasibility results are then supplemented by a detailed examination of

the corresponding network dynamics in Section 6.3.2, from which we investigate the

combined effects of noise and weight normalization on controlling oscillations during

convergence. We then present in Section 6.3.3 a practical guide on choosing

normalization parameters for effective optimization, together with a detailed account

on the structure of feasibility patterns observed in the normalization parameter space.

6.3.1 Improving feasibilities: A parametric study

In this section, we examine results on improved feasibilities by means of a parametric

study. A feasibility measure is used to quantify the optimization ability of the

network, which is defined as the proportion of globally optimal solutions obtained

with 100 different initial W's. For example, a fea3ibility of 0.8 means 80 solutions out

of 100 random starts are globally optimal. A global minimum solution satisfies all the
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TV-queen constraints, and a local minimum is a solution with at least one constraint

violated. For each parameter setting of the network, feasibility is measured in the two

dimensional parameter space (r, T(0)). Each point in the plane represents a particular

annealing scheme for the weight normalization. Another main parameter to be

adjusted in our study is the neighborhood size rj, which strongly affects the extent of

weight updating for each node. Because of this effect and the tendency of the winner

to oscillate between two equally attractive (and symmetric) nodes according to the

expected cost distribution (Figure 6.2), random noise of various amplitudes is added

to the cost potential Vy* according to

Vpt-Vr+AUt), Vi (6.13)

where £,-(0 represents normalized random noise varying between 0 and 1, and A is the

amplitude. This noisy measure is employed here as a general (problem independent)

and effective way to enhance solution quality. Values for other parameters were

chosen as follows: j3(0) = 0.95, rp = 0.95, Lj = 6, and L2 = 5, unless specified

otherwise.

Figure 6.3 shows the typical feasibility plots in the normalization parameter space,

where the annealing rate r varies along the horizontal axis and initial temperature 7(0)

along the vertical axis. As an illustration, annealing schedules close to the lower left

corner of the parameter space correspond to fast convergence to 0-1 solutions, while

those close to the upper right corner correspond to slow ones. The shading represents

the feasibility measured, with darker shades for higher feasibilities. Noise as

described above (with A = 0.05) is used in Figure 6.3(b) but not in Figure 6.3(a). It
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N-queen constraints, and a local minimum is a solution with at least one constraint

violated. For each parameter setting of the network, feasibility is measured in the two

dimensional parameter space (r, T(0)). Each point in the plane represents a particular

annealing scheme for the weight normalization. Another main parameter to be

adjusted in our study is the neighborhood size 77, which strongly affects the extent of

weight updating for each node. Because of this effect and the tendency of the winner

to oscillate between two equally attractive (and symmetric) nodes according to the

expected cost distribution (Figure 6.2), random noise of various amplitudes is added

to the cost potential Vy* according to

V(r<-Vr
fl. + A£(0, Vi (6.13)

where £,-(*) represents normalized random noise varying between 0 and 1, and A is the

amplitude. This noisy measure is employed here as a general (problem independent)

and effective way to enhance solution quality. Values for other parameters were

chosen as follows: /J(0) = 0.95, rp - 0.95, Lj - 6, and L2 - 5, unless specified

otherwise.

Figure 6.3 shows the typical feasibility plots in the normalization parameter space,

where the annealing rate r varies along the horizontal axis and initial temperature T(0)

along the vertical axis. As an illustration, annealing schedules close to the lower left

corner of the parameter space correspond to fast convergence to 0-1 solutions, while

those close to the upper right corner correspond to slow ones. The shading represents

the feasibility measured, with darker shades for higher feasibilities. Noise as

described above (with A - 0.05) is used in Figure 6.3(b) but not in Figure 6.3(a). It
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can be observed that extra dark bands of good feasibility appear in Figure 6.3(b),

which are caused by the introduction of noise. Thus the simple measure of adding

random noise to the cost potentials leads to a drastically improved feasibility over

large regions of the parameter space. This expands the choice of faster annealing

schedules associated with good feasibility, which translates into higher efficiencies

and robustness (coverage of high feasibility regions in the parameter space).

In order to examine the effect of noise amplitudes on feasibility, we choose a typical

parameter pair (r, T(0)) = (0.38, 0.5) which lies around midway on the first curved

dark band from the left of Figure 6.3(b), and solve the 5-queen problem with the

SONN-WN using different values of A. The result is plotted in Figure 6.4, which

shows the dependence of feasibility on noise amplitudes. Without noise (A = 0), a low

feasibility of 0.06 is obtained; with the presence of noise, feasibility rises sharply with

increasing noise amplitudes, and peaks at around A = 0.075 with a high feasibility of

around 0.8, before it gradually tails off with larger noise amplitudes. While the ways

in which weak external noise can enhance solution quality is to be illustrated later in

Section 6.3.2 with further experimental results, the detrimental effect associated with

large amplitude noise can be readily explained. With the addition of large amplitude

noise, the true cost potentials of the nodes are disguised, thereby disrupting the

competition-based convergence process toward feasible solutions.

In Figure 6.5, two different /3(0) values are used, jS(O) = 0.5 for Figure 6.5(a) and

j8(0) = 0.95 for Figure 6.5(b). These two values are not decreased according to the

SONN algorithm, but fixed throughout each run, i.e. rp = 1. Moreover, noise is used
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for both figures. The results show that annealing P (or the lack of it) does not alter the

primary structure of the band patterns. It can also be observed in Figure 6.5(a) that a

smaller P decreases feasibility, which causes the bands to be lighter and thinner. Also,

the increased feasibility due to a constant p = 0.95 in Figure 6.5(b) causes the bands to

appear darker and wider, especially when compared to Figure 6.3(b). The fact that a

larger value of P favors higher feasibility may be explained as follows: since j8 is the

updating step size of WMJ*, small values of P may not be sufficient to cause a

significant update of Wioj* after the normalization process, where W-,ojS of smaller

values are suppressed (especially when Tis small).

Since the neighborhood size r\ affects the quality of topographical mappings in

Kohonen's SOFM [63], we investigate its effect on our optimization problem. In

Figure 6.6, the neighborhood size r\ is kept constant at 7] = 4, in contrast to the

linearly decreasing t] in the typical case, p is fixed to 0.95 as a control for simple

comparisons. It can be seen that in Figure 6.6(a) where noise is absent, most of the

high feasibility bands disappear; while in Figure 6.6(b) where noise is present, an

identical result to Figure 6.5(b) is obtained. Since the case of 7] = 4 (fixed) retains

most of the symmetry of the cost potential distribution (Figure 6.2), this case

illustrates dramatically the beneficial effect of noise toward solution quality.

By the same argument, other means of symmetry breaking toward the cost potential

distribution could improve feasibilities as well, as long as the cost potentials are not

too disrupted. One way to achieve this is to use a neighborhood size such that the
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updating of nodes retain as little as possible the symmetry property of the cost

distribution. In Figure 6.7, a fixed 77 = 0 is used (i.e. only the weights of the winning

node are updated), with no noise in Figure 6.7(a) and noise applied in Figure 6.7(b). It

can be observed that both feasibility and robustness are good, and the improvement

due to noise is minimal. Since only the winning node's weights are updated when

77 = 0, the other node having a symmetric cost potential cannot be updated at the same

time, thus breaking the unwanted symmetry that leads to oscillation as shown later in

the next section. The use of any constant 77 < (N - 1) leads to similar results (see

Figure 6.8 with a constant 77 = 3). In fact, the result of using a linearly decreasing 77 as

shown in Figure 6.3 and 6.5 reflects the same phenomenon. As 77 is decreased in the

convergence process, updating involves fewer and fewer nodes, so less cost symmetry

is retained. This explains why Figure 6.3(a) (77 decreasing from 4 to 0) lies between

Figure 6.6(a) (77 = 4) and 6.7(a) (77 = 0) in terms of robustness without the use of

noise. As to be discussed in Section 6.3.3, some annealing schedules are less affected

by this symmetry issue than others, as revealed by some parameter regions invariant

to all the 77 manipulations as shown in Figure 6.3, 6.6 and 6.7.

From the results given here, it is thus illustrated that a decreasing neighborhood size is

not necessarily an effective method to obtain good feasibility and robustness when

using the SONN-WN for our problem, and more emphasis should be directed to the

choice of certain neighborhood sizes to avoid the oscillation problem. Similar

outcomes are expected when the SONN-WN is applied to other COP's with some

kinds of inherent cost potential symmetry.
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6.3.2 Controlling oscillations: A dynamical study

In order to investigate how the added noise actually affects the convergence of the

network and the resulting solution quality, we plot in Figure 6.9 the node potentials Vy

for i = 1...5 against each input presentation. Since the weights are updated following

each input presentation, this kind of plot can be viewed as a time evolution of the

system dynamics. As the competitive learning is based on the ranking of cost

potentials, plots of Vy's are most useful for monitoring the nodes' competitiveness

upon each input presentation. The five colored lines represent Vy's of the five nodes,

for i= 1...5. The black line represents T(t), and is used to visualize the annealing

schedule. In Figure 6.9, the annealing schedule (r, T(0)) = (0.26, 0.7) and a fixed

t] = 4 are used. It should be noted that the only difference in configuration between

Figure 6.9(a) and 6.9(b) is the absence of noise in Figure 6.9(a), while noise of

A = 0,05 is used in Figure 6.9(b). Figure 6.9(a) corresponds to a low feasibility point

in Figure 6.6(a), while Figure 6.9(b) corresponds to a high feasibility point in

Figure 6.6(b).

The main observation from Figure 6.9(a) is that after two drops in temperature T,

nodes form pairs of the same potentials whenever possible, e.g. V ĵ = V4j and

VJJ = VSJ. Such a specific pairing of Vs is caused by the symmetric distribution of

expected cost discussed previously (see Figure 6.2). Since the winning node is the one

having the lowest V for each input presentation, it can be observed that no clear

winner results for most presentations. The situation remains unchanged for the

remaining iterations (750 input presentations in total). Such a pairing phenomenon
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translates into having more than one queen for each column on the chessboard, so the

solution obtained in Figure 6.9(a) is a local minimum. When noise is present as in

Figure 6.9(b), a "fairer" competition results, where each node takes turn to attain the

lowest V as each input is presented. This can be observed as five distinct colors being

clearly visible in the second half of the picture. This means for each column on the

chessboard, there is only one queen. The actual solution obtained (not shown) that

corresponds to Figure 6.9(b) is indeed a global minimum, which implies that diagonal

constraints are also satisfied. The corresponding weight values WJJ forj = 1...5 of the

two scenarios are plotted as Figure 6.10(a) (no noise) and Figure 6.10(b) (with noise).

Witfs are the weights of node 1, whose behaviors described here are found to be

typical among other nodes. A phase transition-like behaviour can be observed in both

Figure 6.10(a) and (b) when Tis first decreased at presentation 30, where the values

of Ws are sharply redistributed towards 0 and 1 due to the normalization function

(6.6) (a manifestation of this can also be observed in Figure 6.9). This phenomenon is

caused by the bifurcation dynamics of the weights to be explained by the equilibrium

model in the next chapter. Comparing Figure 6.10(a) and (b), the weight values differ

only slightly for the first half of the pictures. After the second T drop however,

oscillatory behaviors in Wij and Wy.j are clearly visible in Figure 6.10(a), but not in

Figure 6.10(b) where noise is present. These oscillations in the weights are the direct

results of an undesirable oscillatory weight updating cycle caused by the pair-wise

competitions observed in Figure 6.9(a). On the other hand, Figure 6.10(b) shows

clearly that with the addition of weak noise, convergence becomes well behaved or

oscillation free (which may sound counter-intuitive if without the evidence and

reasoning provided herein). Since the network dynamics in Figure 6.9(a) and 6.10(a)
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are associated with the point (0.26, 0.7) in Figure 6.6(a) (low feasibility), and those in

Figure 6.9(b) and 6.10(b) are associated with the same point in Figure 6.6(b) (high

feasibility), it is demonstrated that small amplitude noise added to the cost potentials

acts as a stochastic device to break up unwanted dynamics, resulting in an improved

competition among nodes that leads to higher solution quality. Moreover, the obtained

high feasibility means that the likelihood of obtaining a global minimum solution is

very high for any particular set of initial network states. This is a much desirable

property for practical deployments of the SONN-WN when time or other resources

limit the number of runs with different initial states.
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Upon close inspection, it can be observed that differences between Figure 6.10(a)

and (b) arise at around the 42nd presentation, where T is around 0.2. This suggests that

with a certain noise amplitude, the SONN-WN dynamics are noise sensitive only at a

specific temperature range. As shown in Figure 6.10, this particular range of T also

causes the weight values to have a stronger tendency toward 0-1 values because of the

normalization function (6.6). This means that even though the beneficial effect of

noise is mainly concerned with the competition of nodes, such an improvement only

occurs when the normalization temperature is favorable. A detailed investigation is to

be given in Chapter 7 for the meaning of this favorable temperature range in terms of

nonlinear system dynamics (NSD). However, here we can say that the normalization

function encourages a moderately strong tendency of 0-1 behavior in this temperature

range, which is required for the convergence of Wy's toward 0 or 1 decision values.

The important point is that if the tendency for 0-1 convergence is either too weak

(resulting in Wy values around l/N after each normalization) or too strong (Wy values
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too close to 0 or 1 after each normalization), the effect of noise would be washed out

by the weight normalization effect. Because of this noise sensitive 0-1 convergence

property, we call this temperature range (he flexible decision temperature interval, or

FDT interval for short.

6.3.3 From the structure of feasibility bands to effective annealing

In this section, we illustrate how to choose an effective annealing schedule for the

weight normalization by studying the structure of feasibility bands observed in

Section 6.3.1. It should be noted that the existence of the FDT interval described

above is crucial in understanding the band patterns of the feasibility plots. For this

reason, the actual FDT interval should be determined first. Although we are

presenting a theoretical model in Chapter 7 in which the FDT interval is deduced from

NSD, here we seek the FDT interval in the reverse direction of the cause-effect

relationship between dynamics and feasibility.

We begin by inspecting the feasibility plots. From Figure 6.6(a), a dark horizontal

band can be observed in the lower part of the plot. This band represents annealing

schedules having a low starting temperature T(0) roughly in the range of 0.12 ~ 0.22.

It can be seen from Figure 6.6(a) and 6.6(b) that the feasibility improvements on this

band due to noise is not as dramatic as some other regions. To look into the network

dynamics typical of this horizontal band, we present in Figure 6.11 the time evolution

of Vi's, with the noise free configuration of Figure 6.6(a). Figure 6.11 (a) corresponds

to the annealing schedule of (r, T(0)) = (0.26,0.18), representing a fast annealing rate
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with low initial temperature; Figure 6.11(b) corresponds to (r, T(0)) = (1,0.18),

representing no annealing with the same T(Q). Since the initial network states are

equivalent, both figures have identical behaviors for the first 30 input presentations.

After that, T is lowered in Figure 6.11 (a), and a uniform, converged state results

because of the very low temperature in the normalization function (6.6). If T is not

lowered at all, i.e. no annealing, the long-term evolution would be different, and such

a case is shown in Figure 6.11(b). It can be observed from Figure 6.11(b) that a kind

of unsettled behavior remains, with ever fluctuating V,- values, but nonetheless

sustaining an oscillation free competition (judged by the absence of paired winners).

Although both kinds of annealing schedules yield high feasibility as shown in

Figure 6.6(a), the no annealing scenario of Figure 6.11(b) corresponds to an even

higher feasibility. This means that for 100 runs of the algorithm with different initial

network states, oscillations occur more often for the annealed case than the one with

constant T. Thus the particular temperature 7=0.18 is a preferred temperature for

yielding very high feasibilities, and should be maintained as long as possible for the

highest feasibility. But for practical applications, 0-1 values of Wy's converged within

a limited number of iterations are required, which is not satisfied by the slow

convergence of the no annealing case. To satisfy this need, points of various shades

on the horizontal dark band (Figure 6.6) serve as a guide for choosing the suitable

annealing rate r according to the user's time and feasibility requirements.

It should be noted that the use of T= 0.18 for effective optimization described above

is for illustration purpose only. In fact all temperatures roughly in the range

0.12-0.22 would yield similar results. Since the horizontal dark band in
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Figure 6.6(a) and 6.6(b) corresponds to this temperature range as described in the last

paragraph, we conclude that the temperature range of 0.12 ~ 0.22 is the FDT interval

for the network configuration of Figure 6.6 (/? = 0.95, r\ = 4 (fixed)). For a different

updating step size /? and neighborhood size r], the FDT interval would be different.

This is expected because of the central roles played by these two parameters in the

competitive self-organization process. As the horizontal dark band is a visible

representation of the FDT interval in the (r, T(0)) space, any change of the FDT

interval due to changes in /? and rj would result in a visible change in the horizontal

dark band as well. This is confirmed by the thinning of the band with a reduced ft

(discussed in Section 6.3.1, also see Figure 6.5), as well as an upward widening of the

band with a reduced rj = 0 (fixed) (see Figure 6.7).
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Now that the horizontal dark band has been associated with the FDT interval, other

dark bands of feasibility in the (r, 7(0)) space can be readily explained. The key point

for the existence of dark bands is this: a (r, T(0)) point becomes dark whenever T(t)

falls into the FDT interval anytime within the prescribed annealing schedule. It would

be helpful to understand the same fact by looking at the white regions (very low

feasibility). For example, let us look at Figure 6.3(b) in which the bands are clearly

visible and well separated. All the white points in the figure represent annealing

schedules whose stepwise decreasing T(t) skips the FDT interval. If T(t) never falls

into the FDT interval in a particular run, 0-1 convergence for the weight values

(whose converged state represents the solution matrix) is described here as either

under-converged or over-converged with respect to an effective solution process.

Weights are under-converged when the Wy values lie around UN instead of 0 or 1,
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which happens when T(t) is too high during convergence (above FDT interval);

Weights are over-converged when the Wy- values approach 0 or 1 values too readily,

which happens when T(t) is too low during convergence (below FDT interval).

Figure 6.12(a) is a typical example of under-convergence with (r, 7(0)) = (1,0.26).

Since the weight values never converge to either 0 or 1 throughout the solution

process, we call the parameter regime with this behavior an under-decision region. On

the other hand, Figure 6.12(b) is a typical example of over-convergence with

(r, T(0)) = (0.26,0.06), where the weights lock into 0-1 values too readily before

undergoing a proper solution process. We call such a parameter regime the

over-decision region. There is also a situation where an under-converged phase is

immediately followed by an over-converged phase. This happens when the annealing

schedule starts with a T(0) above the FDT interval, then followed by Tm = /"r(0) that

is lower than the FDT interval after the m01 temperature drop, for m = 1, 2, 3,..., etc.

Thus the FDT interval is skipped. This case corresponds to white regions between the

dark bands.

Using a similar reasoning based around the FDT interval, we can explain the curved

dark bands that appear in some of the feasibility plots. Let us take Figure 6.3(b) as a

typical example. The first curved dark band (or the left most) in the (r, T(0)) space

corresponds to annealing schedules that fall into the FDT interval after the first T

drop. Similarly, the m* curved dark band (counting from left to right of the plot)

corresponds to annealing schedules having a Tm = rmT(0) that falls into the FDT

interval, for m = 1, 2, 3...etc. In fact, the horizontal dark band belongs to the case of
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m = 0. Again, this confirms our theory that the FDT interval is essential for good

feasibility.

Almost all the major phenomena concerning the band structure in the feasibility plots

have now been accounted for, with one question remaining: by comparing

Figure 6.6(a) and (b), why is noise necessary for the curved bands to achieve high

feasibilities, but unnecessary for the horizontal band? The answer is that the network

dynamics associated with annealing schedules on the horizontal band start with T

within the FDT interval, which means every run can start under the favorable

condition of noise sensitive 0-1 convergence that we have discussed in Section 6.3.2.

But for the curved bands, the starting temperature T(0) is always too high (above FDT

interval). Since 7(0) persists for the first 30 input presentations, the early dynamics

suffer from under-convergence as discussed previously. In fact, this is the case for

Figure 6.10 whose annealing schedule lies on the first dark band. The weight matrix

after the first 30 iterations for the run in Figure 6.10(b) is given by

TO. 105 0.082 0.083 0.090 0.640^1

0.022 0.020 0.020 0.020 0.918

W = 0.020 0.014 0.014 0.014 0.939

0.012 0.011 0.011 0.011 0.954

0.102 0.081 0.083 0.090 0.644

which is severely imbalanced, with the fifth column having almost all the updating

due to the expected cost distribution (Figure 6.2). This W is clearly not in a proper

"state-of-mind" leading to a feasible 5-queen solution. This is the reason why even

when T is lowered to within the FDT interval after the first temperature drop, extra
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help in the form of external noise is needed to revert W into a potentially feasible

solution matrix.

From the above results and observations, we conclude for this section that the most

effective annealing schedules are found on the horizontal dark band that appears on

the feasibility plots in (r, T(0)) space, i.e. annealing schemes having T(0) within the

FDT interval. Furthermore, the slower the annealing rate is within this category, the

higher the feasibilities obtained. Lastly, Figure 6.13 is presented as a diagrammatic

summary of all the major findings concerning the structure of feasibility bands in

terms of characteristic convergence dynamics.

6.4 Concluding remarks

In this chapter, we have experimentally investigated the optimization performance of

the SONN-WN, with a primary focus on its weight normalization effects.

Fundamentally the weight normalization process is used for constraint satisfaction,

and in our N-queen implementation, it is used to enforce both the row constraint and

the 0-1 integrality constraint. In the dynamically rich self-organizing environment of

the SONN-WN, such a constraint enforcement procedure is transformed into a

decision-making process facilitated by convergence behaviors of a complex system.

Based on this dynamical scenario of decision-making, we have investigated the role

of weight normalization in the convergence dynamics of the network, and its

subsequent effect on feasibilities.
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By plotting feasibilities in the normalization parameter space, we have revealed that

only certain annealing schedules can result in high feasibilities, and that a slower

annealing rate does not correspond to better solution quality or higher feasibilities in

general, as in the case of simulated annealing [1]. With the addition of random noise

to the cost potential, we have been able to improve feasibilities and robustness

dramatically, which are revealed in the (r, 7"(0)) space in the form of dark bands. We

have also demonstrated the use of small neighborhood sizes (r\ < N- 1) for improving

feasibilities and robustness. These results also serve to emphasize the importance of

symmetry issues in the cost function to be minimized.

To explain the noise sensitive improvements on feasibilities depending on the

annealing schedules, we have proposed a theory on controlling oscillatory

convergence behaviors via a special condition of the weight normalization process:

within a special temperature range called the flexible decision temperature (FDT)

interval, the weight normalization process becomes sensitive to noise of certain

amplitudes, resulting in a particular mode of 0-1 convergence that can alleviate the

cost symmetry problem that causes unwanted oscillations. Various plots on the

dynamics of the cost potentials and weights have provided a detailed picture of the

convergence dynamics of the SONN-WN, and have been the indispensable tools in

our investigation.

By applying our proposed theory on the effective optimization within the FDT

interval, we have accounted for the structure of feasibility band patterns in terms of

convergence dynamics. Different annealing schedules lead to different phases of
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convergence depending on the sequence of temperature reductions. An annealing

schedule with good feasibility corresponds to a sequence of phase transitions that

include the FDT as the normalization temperature. On the other hand, FDT is never

attained in annealing schedules yielding poor feasibilities. Based on this anatomy of

the feasibility plots, we conclude that an effective annealing schedule for good

solution quality and feasibility should start with an initial temperature within the FDT

interval, together v,ith a slow annealing rate determined by the user's feasibility

requirement and time limitations.

The purpose of this chapter has been to examine the effect of annealing schedules,

noise and other parameters on the optimization performance of the SONN-WN. We

have demonstrated and explained some interesting phenomena for the 5-queen

problem. Similar phenomena exist for larger problem sizes, but a comprehensive

examination of the SONN-WN's performance on larger problems is beyond the

purpose of this research. Lacking in this chapter though is the origin of the FDT

interval in relation to the normalization function (6.6), which is the focus of

investigation for Chapter 7.
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Figure 6.1: Architecture of the SONN-WN.

Figure 6.2: Expected distribution of cost Vy on the chessboard.
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Figure 6.3: Feasibility with /?(O) = 0.95, rp = 0.95, and (a) A = 0; (b) A = 0.05.
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Figure 6.4: Feasibility variation with noise amplitude A.
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Figure 6.5: Feasibility with rp=l,A = 0.05, and (a) /J(0) = 0.5; (b) /5(0) = 0.95.
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Figure 6.6: Feasibility with /J(O) = 0.95, rp = 1, x\ = 4 (fixed), and (a) A = 0;

(b) A = 0.05.
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Figure 6.7: Feasibility with /3(0) = 0 - \ rp = 1, rj = 0 (fixed), and (a) A = 0;

(b) A =0.05.



Chapter 6: Computational Performance of the SONN-WN 141

(a)

2X0)

en
CD

0.059
0.118
0.176
0.235
0.294
0.353
0.412
0.471
0.529
0.588
0.647
0.706
0.765
0.824
0.882
0.941

(b)

2X0)

CD
CD
CD

ooooooooooooooc

0.059
0.118
0.176
0.235
0.294
0.353
0.412
0.471
0.529
0.588
0.647
0.706
0.765
0.824
0.882
0.941

Figure 6.8: Feasibility with /J(0) = 0.95, rp = 1, r\ = 3 (fixed), and (a) A = 0;

(b) A = 0.05.
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Figure 6.9: Time evolution of cost potentials Vtj* for / = 1...5, with T(0) = 0.7,

r = 0.26, # 0 ) = 0.95, rp=l,T} = 4 (fixed), and (a) A = 0; (b) A = 0.05.
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Figure 6.10: Time evolution of weights W}J forj - 1. ..5, with T(0) = 0.7, r = 0.26,

1X0) = 0.95, rp = 1, r\ = 4 (fixed), and (a) A = 0; (b) A = 0.05.
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Figure 6.11: Time evolution of cost potentials Vy*for / = 1...5, with T(0) = 0.18,

# 0 ) = 0.95, rp = 1, J] = 4 (fixed), A = 0, and (a) r = 0.26; (b) r = 1.
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Figure 6.12: Time evolution of weights WJJ for; = 1...5, with # 0 ) = 0.95, rp = 1,

7] = 4 (fixed), A = 0, and (a) (r, 7(0)) = (1,0.26); (b) (r, 7X0)) = (0.26,0.06).
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Figure 6.13: A diagrammatic representation of characteristic convergence dynamics

for each normalization parameter regime. A typical pattern of high feasibility bands

is used for reference. Time sequential phases of convergence dynamics for each

parameter regime are represented by strings of symbols. Circled numbers are pointers

referring to corresponding figures detailing specific Vor W dynamics.



Chapter 7

Understanding the SONN-WN
Dynamics through an Equilibrium
Model

7.1 Introduction

We have seen in the last chapter the influence of the SONN-WN's weight

normalization temperature on its convergence dynamics, and the importance of

choosing the right annealing schedules for effective optimization. In this chapter, we

present a dynamical systems view of the SONN-WN with a theoretical approach.

It has been shown in the last chapter that only certain annealing schedules of the

weight normalization process yield good quality solutions with a high feasibility, and

that the choice exclusively depends on whether the annealing temperature at any point

147
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in time falls into the flexible decision temperature (FDT) interval. According to our

computational results, we have seen that if the normalization temperature is too high

(above FDT interval), under-convergence results, leading to under-decision; if the

temperature is too low (below FDT interval), over-convergence occurs, resulting in

over-decision. These two situations are both undesirable for an effective convergence

process. The most favorable condition occurs when the temperature is just right

(within the FDT interval), which gives rise to a convergence phase with moderately

strong 0-1 tendency that is amenable to noise enhancements. Up till now we have not

shown much about the origin and modus operandi of the FDT interval, except that it

varies with different updating step sizes j5 and neighborhood sizes rj. Thus it is our

main objective in this chapter to investigate how the FDT interval arises, and through

what mechanisms it achieves such an attractive convergence behavior.

Our investigation starts from the derivation of a theoretical model called the

equilibrium model, which captures the essential aspects of the SONN-WN's weight

updating and normalization dynamics. The use of a model allows us to focus on the

elements crucial to the SONN-WN's long-term convergence dynamics without being

overly complicated. The derivation of the equilibrium model is given in Section 7.2.

Because of the nonlinear nature of the equilibrium model, a numerical investigation is

carried out to solve for the corresponding equilibrium states. The dynamics of these

equilibrium states represent the convergence behavior resulting from the mutual

interactions among the weights, and we reveal their sensitive dependence on the

normalization temperature, thereby giving a detailed account on the FDT interval
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from a dynamical perspective. We also reveal a rich collection of nonlinear

phenomena from the equilibrium model, which are previously unknown to be

connected to the SONN-WN. This numerical investigation is presented in Section 7.3.

A discussion combining the theoretical outcomes of this chapter with the optimization

results from the last chapter is presented in Section 7.4, followed by the concluding

remarks in Section 7.5.

7.2 Derivation of the equilibrium model

In this section, we construct a theoretical model to approximate the weight updating

and normalization dynamics of the SONN-WN. For simplicity, the model only

describes the weight dynamics of the winning node, and we seek the equilibrium

states of its weights under repeated updating and normalization. Note that the process

of nodes competing to be the winner, together with the associated effects of non-zero

neighborhood sizes (77), are not included in this model. The advantage of making

these assumptions is that complex spatio-temporal transient dynamics occurring in the

full network, especially after each decrease in T, {$, and 77, can now be excluded from

our study. This allows us to focus on the SONN-WN's characteristic long-term

dynamics due to weight updating and normalization.

Figure 7.1 is a schematic diagram showing how the weights of a given neuron are

updated and normalized as a two-stage process. For convenience, wj denotes the

weight in this analysis, withy = 1...N. In Figure 7.1, wi is updated at stage t + Vz, and
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is "normalized" using an approximation of (6.6) at stage t+1. To express

mathematically the first stage using (6.7) and (6.9),

150

j . (f + X) = Wj. (0 + P(l ~ Wj. (0)

with other vv/s being unchanged from ttot + V%. For the second stage,

(7.1)

\ avn

(7.2)

which can be simplified to

exj

k=l

7=1...TV. (7.3)

The difference between (7.2) and (7.3) is that the former is more suitable for

computational purpose tr. prevent overflow problems, and the latter is a theoretically

equivalent version to be used in this analysis for its algebraic simplicity. Note that

both (7.2) and (7.3) are approximations to the exact normalization procedure in (6.6),

but the deviation tends to zero as /? —> 0. This is because when /5 vanishes, w*(0 in the

denominator of (7.2) and (7.3) would be equal to wk(t + Vi) by using (7.1), then (7.2)

and (7.3) would become the exact normalization in (6.6). The two-stage process

described by (7.1) - (7.3) is repeated for,/* = 1.. JV (an epoch), withy* chosen in the

order: 1, 2, 3,..., N, until all the weights at stage t + 1 are "normalized". It should be

noticed that (7.1) is used whenever • changes into •>, and (7.3) is used whenever •
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changes into ©. For asynchronous updating, wk(t+ 1) is used whenever available in

the denominator of (7.3), while for synchronous updating, w*(f) is used for all &'s.

Although this is a one-neuron model, the fact that the neuron belongs to a population

of N neurons of the SONN-WN is also incorporated. Let P be the probability that a

given neuron becomes the winner, and is hence updated. If the probability of being a

winner is the same for every neuron, then

N
(7.4)

This greatly simplifies the analysis and is justified for a one-neuron, equilibrium

scenario. However, when the full SONN-WN is used to solve COP's, each neuron has

a different winning probability depending on the expected cost potential distribution

(sec. Figure 6.2 for example) or even time-varying. For each neuron in the population,

the average change to each Wj after each epoch is given by (using (7.3))

(7.5)

*=1

where A v[..J denotes the average of the argument, and

(7.6)

Using (7.1) and (7.4) - (7.6), it follows that

Av[Wj (t)] = £ (7.7)

*=1
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where Av[wj (t)] is the average rate of change of Wj at any time t. For equilibrium

states, we set AV[M>J (r)] = 0 in (7.7). Let p = Pfi, it follows that

(7.8)

k=\

where Wj(t) denotes weights at equilibrium states, and is time dependent for unstable

equilibria. The expression of equilibrium states by (7.8) is the main result of this

section. It describes the behavior of the equilibrium model of a one-neuron system

capturing the long-term weight updating and normalization characteristics of the full

SONN-WN described in Chapter 6. This allows us to explain the temperature

dependent convergence dynamics presented in the last chapter, which have been

shown to play a decisive role in affecting solution qualities. Because of the model's

nonlinearity, equilibrium states in (7.8) are investigated computationally in the

following section.

7.3 A numerical investigation of equilibrium dynamics

We present here the equilibrium states obtained computationally by solving (7.8).

Note that any use of AT < 4 here is for illustrating the equilibrium model only, since for

such N the Af-queen problem has no feasible solution. In Figures 7.2 to 7.6 we plot the

weight values solved numerically by an iterative method given by the procedure

depicted in Figure 7.1, with asynchronous updating. After 30,000 iterations, the last

.
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50 values were plotted to show the equilibrium states, with the normalization

parameter T being varied along the horizontal axis.

Figure 7.2 shows the attained equilibrium states for the case of N - 1. In Figure 7.2(a),

P = 0.5 is chosen, and a bifurcation point can be observed at T= 0.5, where the system

becomes unstable and switches into a two-cycle. If /5 = 0.95 is used as in

Figure 7.2(b), the bifurcation now occurs at T=0.95. Theoretical analysis of (7.8)

shows that bifurcation occurs at T = /? for the case ofN=l.

Figures 7.3 to 7.5 correspond to the case of N = 2, with increasing /J. In Figure 7.3 a

small P = 0.05 is used. The two weights w\ and W2 have the same equilibrium value of

around 0.5 (i.e. 1/N for N=2). A symmetry-breaking bifurcation occurs at T* = 0.5,

where W\ tends to 0 and W2 tends to 1 for T< T*. Note that for T< T*, the equilibrium

state (wj, wi) is still a fixed point in two-dimensional space. Since the system of

equations in the equilibrium model (7.8) is symmetrical between w\ and w2, the

apparent "decision" of which Wj tends to 1 (or 0) is a symmetry-breaking phenomenon

in which tiny fluctuations in the convergence process or in the initial conditions can

alter the outcome. In general, the parameter T plays the role of a bifurcation

parameter that determines the structural stability of the equilibrium states, which

illustrates how the overall behavior of the system can be changed abruptly by a slight

change of a single parameter. Since a small /? = 0.05 is used in Figure 7.3, the

equilibrium model (7.8) approaches the actual weight normalization process (6.6) to a

certain extent. Indeed, two observations from Figure 7.3 reaffirm this point: (1) the

sum of the weights is maintained to be almost exactly 1 across all T values; (2) the
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weights tend toward 0-1 values for low temperatures. Note that it is for these two

characteristics that the weight normalization process (6.6) is used in the SONN-WN

for constraint enforcement.

Since the equilibrium model also captures the weight updating process of the

SONN-WN, we investigate the effects of the learning rate (3 on the overall dynamics.

For N = 2, we use a larger /? = 0.5, and the result is shown in Figure 7.4. A tree-like

bifurcation structure can be observed in Figure 7.4(a), with successive bifurcations as

T decreases. The two weights have the same value before a symmetry-breaking

bifurcation at around 7=0.47. This is followed by successive period-doubling

bifurcations for each of w\ and w>2, with the first one occurring at around T- 0.23. Let

Tb\ be the temperature at which the first period-doubling bifurcations occur, with

successive period-doubling bifurcations at Tbi, 7M, etc. At Tb\ the stable fixed point of

(wi, w2) becomes unstable, and a two-cycle sets in. This means between Tb\ and Tbi,

the system oscillates between two states (w\(ri), W2(ri)) and (wi(n + 1), wi(n +1)) in

successive iterations n and n + 1. It can be observed that the condition of w\ + w% = 1

no longer holds for T<Tb\, which is caused by the use of a large ft value. This

violation only occurs in the equilibrium model, as V Wj = 1 is always ensured in

the normalization function (6.6) used for the SONN-WN. In the equilibrium model,

the approximated normalization (7.2) (or (7.3)) is used, which makes ]T._, Wj * 1

when f3 is non-zero. Such a discrepancy between the equilibrium model and the actual

SONN-WN should not be regarded as a mere inability of the former to fully represent

the latter. Rather, the richer dynamics exhibited by the equilibrium model suggest that
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it should be viewed as a more general dynamical construct than the SONN-WN

processes being modeled. In other words, the model not only encompasses the major

aspects of the SONN-WN, but also opens up unknown dynamical possibilities.

In order to look more closely into the bifurcation structure, the low temperature region

of Figure 7.4(a) is presented with a higher resolution in Figure 7.4(b). The details of

successive period-doubling bifurcations can be observed, with intermingled chaotic

regimes and windows of periodicities. Such a cascade of period-doubling bifurcations

leading to chaos is a universal phenomenon that occurs in nonlinear systems of

diverse origins (see Section 1.3). One interesting phenomenon can be observed in

Figure 7.4(b): for T> 0.171 (approx.) each Wj has its own attractor that does not fully

merge into the other, which can be judged by the well-separated "trees" of distinct

colors. But for T< 0.171 each attractor suddenly increases its size, and they merge

into a single global attractor, which can be judged by the mixing of the two colors

representing w\ and wi. This phenomenon shows that the extent of interactions

between the weights is also T dependent, as evident from the separation and merging

of the component attractors.

A different result as shown in Figure 7.5 is obtained when an even larger P = 0.95 is

used. The overall bifurcation structure is presented in Figure 7.5(a) for comparison

with previous plots. Apart from the apparent horizontal compression in the overall

structure, there are significantly new features previously not found with smaller /5's.

Figure 7.5(b) is a high-resolution close-up of Figure 7.5(a) for 0.245 < T< 0.26. Extra

bifurcation trees that are smaller in size and "detached" from the periodic branches
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can be observed around T= 0.257 and 0.2515. The full cascade of period-doubling

bifurcations is expected to be found inside each of these smaller trees, which is an

example of the self-similarity feature commonly found in chaotic attractors. A crisis

can also be seen at around T= 0.249 where the attractor suddenly increases in size.

These two nonlinear phenomena are common to two-dimensional chaotic

attractors [78].

For N = 5, the model becomes more relevant to our optimization results of the

5-queen problem in the last chapter, and the equilibrium states are plotted in

Figure 7.6. First, a small value of /? = 0.05 is used in Figure 7.6(a). A symmetry-

breaking bifurcation can be observed at around T* - 0.26, with a much more step-like

transition than the case for N=2 with the same (5(Figure 7.3). For T>T*, all the

weights have exactly the same value very close to 0.2 (i.e. 1/N for N = 5), forming a

stable fixed point. As T becomes slightly smaller than 7*, the symmetry of the

weights is broken, with W4 tending toward 1 and the rest toward 0. As in the case for

N=2, no cascades leading to chaos exist when a small f3 is used. However, the

normalization condition of ^T ._x Wj =1 is met almost exactly throughout all

temperatures.

For /? = 0.95, cascades of bifurcations leading to chaos appear in Figure 7.6(b), with 5

individual bifurcation trees coexisting. The symmetry-breaking bifurcation now

occurs at around T* = 0.295, with the first period-doubling bifurcations at around

Tb\ = 0.175. As in the case for N = 2 with a large j8, the normalization condition of
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. j Wj = 1 is violated for T < Tb\. The merging of individual attractors into a global

attractor can also be observed at around r=0.12, where the colored points

representing the five components are mixed into each other.

Finally, we present in Figure 7.7 a strange attractor corresponding to the case of

N=2, with /3=0.95 and T=0.23, where wi and w>2 are plotted against each other.

Such a two-dimensional strange attractor resembles the Henon map, where repeated

stretching and folding of the state space gives rise to its peculiar form [78], Such a

resemblance may suggest a stretching and folding of the state space happening in our

case due to repeated updating and normalization described by the equilibrium model.

In summary, we have obtained the equilibrium states by numerically solving the

equilibrium model in (7.8) with N= 1,2 and 5. The solution states exhibit various

nonlinear dynamical phenomena such as fixed points, symmetry-breaking bifurcation,

cascades of period-doubling bifurcations to chaos, and other attractor properties of

multi-dimensional nonlinear systems. The nature of these phenomena is found to be

heavily dependent on the parameters T and /?, with T acting as the bifurcation

parameter and /J determining the existence of various phenomena. A two-dimensional

strange attractor is also revealed, suggesting a dynamical metaphor of stretching and

folding of state space that corresponds to the SONN-WN's updating and

normalization processes. From these results, it is clear that under certain conditions,

the SONN-WN can be seen as a dynamical system with self-organizing properties.

This enables us to understand the SONN-WN's performance characteristics from an

NSD perspective.
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7.4 Discussions

In this section, we discuss the dynamics of the equilibrium model in relation to the

optimization performance results presented in Chapter 6. It has been shown in the last

chapter that when applying the SONN-WN to solve the //-queen problem, there are

certain annealing schedules that yield good quality solutions with a high feasibility

measure. More importantly, for these annealing schedules there exists a convergence

phase in which the annealing temperature lies within the flexible decision temperature

(FDT) interval. It is the purpose of this discussion to seek an explanation for such a

temperature dependent response in terms of nonlinear systems dynamics (NSD)

revealed by the equilibrium model.

In order to draw on the equilibrium dynamics presented above for discussions of our

5-queen optimization results, we refer to Figure 7.6 where the equilibrium states

obtained correspond to N=5. First of all, we use the feasibility plot of Figure 6.7

((a) or (b)) from the last chapter for illustration. The figure is chosen here because of

its parameter setting of 77 = 0 (fixed) and /J=0.95 (fixed), which is the closest

SONN-WN configuration to the equilibrium model in Figure 7.6 for T> Tb\. It can be

observed in Figure 6.7 ((a) or (b)) that the horizontal dark band of high feasibilities

(> 0.9) spans roughly between 0.24 < T(0) < 0.3. Thus for the case of Figure 6.7, the

FDT interval is around 0.24<T<0.3, which are the normalization temperatures

included in the annealing schedules associated with the horizontal band. Now if we

look at the equilibrium states as shown in Figure 7.6(b), this temperature range lies

within a dynamical regime associated with near 0-1 fixed point convergence, or
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equivalentiy Tb\ < T < T*. Since the equilibrium model approximates the dynamics of

the SONN-WN, we claim that the interval Tbx <T<T* of the equilibrium model

gives rise to the FDT interval cf the SONN-WN.

Our claim above can be justified both experimentally and theoretically. For the case

of /? = 0.95 as shown in Figure 7.6(b), we need to show that, at least for T> Ttu the

obtained equilibrium dynamics realistically reflect the convergence behaviors of the

SONN-WN. From the feasibility plot of Figure 6.7 ((a) or (b)), it can be seen that the

feasibility drops sharply for T(0) > 0.3. Using our equilibrium dynamics in

Figure 6.7(b), this corresponds to the symmetry-bifurcation at around T* = 0.295, at

which there is a sudden transition of the fixed point configurations from perfect

symmetry (all w/s identical) to broken-symmetry (w>4 tends to 1, others tend to 0). For

our arguments to hold, we now need to show that the symmetrically configured fixed

point gives rise to poor solution quality of the SONN-WN, and that the one with 0-1

configuration leads to good solution quality. Theoretically speaking, it is clear that the

weights of the SONN-WN must converge toward 0-1 values in order to yield good

quality solutions leading to high feasibilities, thus proving our case. Experimentally,

the supporting evidence can be found in Figure 6.10 and Figure 6.13, which show that

under-convergence phases are detrimental to effective convergence toward good

quality solutions. Moreover, the sharp contrast in the distribution of weight values

before and after T* in the equilibrium model (Figure 7.6(b)) is visually reflected in

Figure 6.10, where the weights start with an under-convergence phase when T is

above the FDT interval, then suddenly transit into an effective optimization phase

when T falls within the FDT interval. It is due to such evidence and justifications that
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we conclude the following: the FDT interval observed in Chapter 6 is a consequence

of nonlinear system dynamics of the SONN-WN, and has its origin from the interval

Tb\ < T < T* in the equilibrium model with the associated 0-1 fixed point

convergence. An interesting analogy exists in mean field annealing models where a

similar normalization procedure was used to improve optimization [104]. An

analogous phenomenon of effective optimization happening at a so-called critical

temperature (Tc) was observed, and Tc was evaluated using mean field theory. Despite

the many differences between our model and the mean field annealing models, it is

interesting to see that the similar normalization procedures used in two different

approaches give similar results. Once again, this illustrates the intricate relationship

between the two approaches in the study of neural networks for combinatorial

optimization, namely, the dynamical systems view and the statistical mechanics view.

7.5 Concluding remarks

By focusing on the essential aspects of the SONN-WN's weight updating and

normalization process, we have theoretically constructed an equilibrium model of the

SONN-WN to describe its long-term convergence dynamics. The equilibrium states

obtained from the model reveal a rich collection of nonlinear phenomena controlled

by the SONN-WN parameters T and p. In particular, the symmetry-breaking

bifurcation of equilibrium states with bifurcation parameter 2" has been found to be the

key mechanism underlying the convergence characteristics of the SONN-WN. By

combining evidence from the optimization results in the last chapter and the

theoretical model in this chapter, we have deduced that the flexible decision
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temperature interval, which characterizes effective convergence during optimization,

has its dynamical origin of Tb\ < T < T*. It has been shown that such a temperature

range corresponds to the regime of fixed points with 0-1 broken-symmetry, which

acts as an attracting force toward 0-1 convergence for the most effective annealing

temperatures of the SONN-WN. Thus the equilibrium model has opened up a

dynamical perspective for understanding and enhancing the optimization performance

of the SONN-WN.

For certain parameter regimes, the equilibrium model extends its dynamical

possibilities beyond fixed points and into the realms of more general nonlinear

phenomena, such as cascades of period-doubling bifurcations to chaos, crisis, and

merging of local attractors into a global attractor. Surprisingly, these phenomena have

been previously found to be the underlying dynamics behind the chaotic search

mechanism in Hopfield-type chaotic neural networks [99]. This may suggest a

possible chaotic search mechanism to be devised for the SONN-WN, with the

nonlinear phenomena revealed herein as functional elements. Indeed, some other

evidence already exists to further support such a possibility. For example, the weight

dynamics of Kohonen's SOFM have been examined in the light of self-organized

criticality, which is a class of noise sensitive dynamical systems whose critical states

feature power law and fractal characteristics [36, 27,16]. A SONN-WN with attractor

nodes has also been proposed [64], in which the iterative logistic map, well known for

its nonlinear properties, is utilized for enhancing solution qualities of COP's. It is thus

anticipated that a dynamical systems or complex systems viewpoint of the general

self-organizing approach to COP's would lead to important developments in the

future.
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Chapter 8

Conclusions

8.1 Outcomes of the thesis

This thesis has been concerned with neural networks featuring nonlinear system

dynamics (NSD) for solving combinatorial optimization problems (COP's). We have

investigated the roles of NSD in enhancing the optimization performance of two

major neural approaches, namely the Hopfield-based and the self-organizing neural

networks. As outlined in Chapter 1, there is a current need to fine-tune neural network

algorithms for improved convergence toward optimal solutions, so that they can be

more effective tools for practical combinatorial optimization. Thus a theoretical point

of view has been adopted in our study, focusing on how nonlinear phenomena arise in

the networks, their properties, and their functional roles in the solution process. In

other words, our investigation can be seen as an attempt to extend current neural

169
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approaches to include more general dynamics for the purpose of solving COP's more

effectively. To support our theoretical study, the N-queen problem has been used

throughout the thesis to produce experimental results that expose various differences

in optimization capabilities and the associated network dynamics. Once these

behaviors have been exposed, they can be explained by the theoretical insights

provided by the thesis. Thus the computational results presented are not intended to be

exhaustive, and merely serve to expose phenomena worthy of explanation.

For the traditional Hopfield-type approaches to combinatorial optimization, the main

limitation lies in the Hopfield network's steepest descent dynamics, which causes the

Hopfield-Tank (H-T) method to result in local minimum solutions. The optimization

performance is further affected by the sensitive dependence of solution feasibility on

the choice of penalty parameters in the H-T formulation. Over the years, a number of

measures have been devised to improve the optimization performance by targeting

these two shortcomings of the Hopfield-type approaches. In Chapter 2, a new breed of

neural networks called the Hopfield-type chaotic neural networks (HCNN's) were

discussed. These Hopfield-based networks also use the H-T approach for

optimization, but the associated limitations are overcome by the introduction of

chaotic dynamics in the networks. In this new direction, the HCNN models employ

global search dynamics with chaotic properties to escape local minima during the

convergence process, as well as to alleviate the sensitivity problem of the penalty

parameters.
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We have broadly classified the HCNN models into two major classes: one is the

internal approach, where chaos is generated within the network; the other is the

external approach, where an externally generated chaotic signal is added to the

network as perturbation. Three models belonging to the internal approach have been

discussed: using chaotic neurons with strong feedback (Chen-Aihara model); adding a

negative self-feedback term to the Euler-discretized Hopfield model (Nozawa model);

and using a sufficiently large time-step to the Euler-discretized Hopfield model

(Wang-Smith model). The close relationships between these models suggest that they

share a common chaotic search mechanism proposed by Tokuda et al [99]. Moreover,

the Chen-Aihara model and the Wang-Smith model both incorporate chaotic

simulated annealing (CSA) for effective convergence. On the other hand, HCNN

models belonging to the external approach have a very different way of escaping local

minima, which is based on the autocorrelation property in the chaotic noise.

In order to study systematically the various HCNN models having different means of

generating a-\d utilizing chaos, we have proposed in Chapter 3 a theoretical

framework that unifies the two classes of HCNN models. The framework is based on

the addition of an energy modifier term to the original Hopfield energy function, thus

forming a new energy landscape that characterizes various chaotic dynamics. By

inspecting the form of the energy modifier, we have been able to gain insights into the

relationships between the structure of the energy landscapes and the corresponding

optimization dynamics. This global perspective on the classification of the HCNN

models has allowed us to account for the various differences between the internal and

external approaches of HCNN models in terms of the different energy modifiers. New
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insights concerning the convergence properties of the CSA models have also been

obtained from the energy landscape perspective.

In Chapter 4, the dynamical behaviors and optimization performance of the HCNN

models were investigated. We have implemented the three models described by the

unified framework to solve the Af-queen problem via computer simulation. The two

CSA models have been found to have strong optimization performance by having

good feasibility, efficiency, robustness and scalability. By combining parametric

studies of these measurements with observations of the dynamical behaviors during

the solution process, we have concluded that the characteristic chaotic dynamics of

the CSA models are beneficial to optimization. Similar experiments with the chaotic

noise model have also shown an improved performance, but with lesser robustness

and scalability. Important insights concerning the specific properties of the HCNN

models have also been obtained by examining the experimental results in the light of

the unified framework.

Apart from the Hopfield-based networks, we have also included the self-organizing

approaches for combinatorial optimization in our study. Although algorithms

employing the self-organizing feature map principle of Kohonen have been shown by

various researchers to be capable of solving COP's, most of them are limited to

solving Euclidean problems. We have discussed in Chapter 5 a collection of these

approaches, together with a more recent development of the self-organizing neural

network (SONN) which is capable of solving general 0-1 problems. Common among

these self-organizing approaches is the solution quality problem caused by unwanted
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oscillations during the competition-based solution process. For this we have focused

on the SONN with weight normalization (SONN-WN), whose intricate interactions

between the Kohonen's updating and normalization processes have prompted our

investigations into the role of NSD in improving the solution quality.

We began our investigation into the relationship between the SONN-WN's dynamics

and its optimization performance in Chapter 6 by implementing the algorithm to solve

the /V-queen problem computationally. Through the parametric study of annealing

schedules and feasibilities, we have highlighted the importance of symmetry issues in

cost potentials, from which we have demonstrated the effectiveness of using noise and

small neighborhoods for improvements in feasibility and robustness. By combining

the feasibility patterns revealed in the parametric study with a detailed investigation of

the convergence dynamics, we have discovered the normalization conditions for

ensuring effective convergence to high quality solutions. The discovery has also

allowed us to explain the noise-induced mechanism of oscillation control during

convergence, as well as providing a guide for choosing annealing schedules of the

normalization process.

By capturing the essential aspects of the SONN-WN's weight updating and

normalization process, we have derived an equilibrium model of the SONN-WN in

Chapter 7, such that the network's long-term convergence dynamics can be described

theoretically. From a NSD perspective of the SONN-WN, we have been able to show

the key role of bifurcation dynamics in characterizing the convergence behaviors

shown in our experimental results. Together with other nonlinear phenomena
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obtained, the equilibrium model has opened up a dynamical perspective for

understanding and enhancing the optimization performance of the SONN-WN.

8.2 Suggestions for future research

In this thesis, we have investigated the respective ways in which NSD are used to

improve the optimization performance of the two major neural approaches. One of the

advantages of neural networks over other methods for solving COP's, like heuristics,

is their parallel architecture of simple elements, which makes them suitable for

hardware implementation. As can be seen from this thesis, neural networks using

NSD for performance improvements require only simple modifications to existing

neural architectures, thus future research in hardware deployments should study the

incorporation of NSD for enhanced performance.

On the other hand, further testing of the models described in this thesis should be

performed by applications to larger problem sizes as well as to other COP's, so that

the models can be made more robust and flexible for practical use. This is particularly

needed for the SONN-WN, where larger problem instances should see a benefit from

our proposed guide to annealing schedules for effective convergence.

On theoretical fronts, the unified framework of HCNN's may be used as a starting

point for the development of new models, or as a unifying theme when examining

further experimental results. Obviously, the framework itself relies on further research

for refinement. For the SONN-WN, more research should be directed into the
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potential exploitation of the general nonlinear phenomena revealed by the equilibrium

model for improving optimization, much as the chaotic search scenario has been used

among HCNN's. Also, it would be worthwhile to investigate if the interesting

dynamics of the equilibrium model could be found in a simple gradient descent

technique by incorporating a similar normalization process. In general, for HCNN's

and SONN's alike, further research into the properties of solution state attractors and

their perturbation by noise should lead to a better understanding of the fundamental

role of NSD in solving difficult COP's.

8.3 Concluding remarks

In conclusion, this thesis has studied the theoretical foundations of neural networks

with nonlinear system dynamics for combinatorial optimization. The generation,

characterization, and exploitation of nonlinear system dynamics for improving

optimization performance have been investigated for both the Hopfield-type and self-

organizing neural approaches. Under the proposed unifying framework, we have

computationally demonstrated the effectiveness of chaotic dynamics in enhancing the

performance of Hopfield-type neural networks. Through a deeper understanding of

the SONN-WN convergence process via the proposed equilibrium model, the

capability of bifurcation dynamics in improving solution quality has been proven both

theoretically and experimentally. Based on these results, neural approaches with

nonlinear system dynamics should see a promising future in practical combinatorial

optimization.
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