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ABSTRACT

Cubic stabilized zirconia (CSZ) is a material with many diverse technological

applications due to its high oxygen ion transport property at elevated temperatures.

A great deal of study has gone into understanding the structure/function mechanism in

CSZ, but many discrepancies and misunderstandings remain. In this thesis, the

microstmcture of CSZ has been investigated from a viewpoint of the orientational

glass.

CSZ was treated as an orientational glass (OG) with reorientable quadrupoles

consisting of microdomains embedded in an elastic matrix. In many ways, it exhibits

the properties of structural glasses, as most orientational glasses do.

XRD studies on 12 mole % Y-CSZ revealed that 220 and 111 reflection peaks are

broadened at temperatures below 65O°C, and that reflection peaks under Mo radiation

are split into doublets or triplets at temperature below 1000°C. The results can be

explained very well using the microdomain-orientational glass model. The

microdomains in Y-CSZ are conceived with probable structures of /?or y phases like

those in Sc-CSZ. Cation ordering in those microdomains accounts for the splitting of

the reflection peaks under Mo radiation.

Electron diffraction studies have been conducted in concentration series and

temperature series on single-crystal, ion-beam thinned samples of Y-CSZ . The

diffuse scattering features of the "bow-ties", "mushrooms" and "smoke-rings" were

attributed to the microdomains from our concentration series (9.5 to 24 mole% Y2O3).

The "cross-shaped" diffuse scatter was shown to arise from the antiferroelastic pairing

of the reorientable elastic defects on {lOO} planes. Probably the most important result

is that an increase in dopant causes a decrease in the brightness of the "forbidden"

112-type tetragonal diffuse spots. This suggests that they arise from the distorted

cubic material between the domains, with the superposed stresses from the adjacent

domains (considered as reconstructively reorientable defects) imparting a net local

tetragonal distortion to the cubic matrix at low temperature, with small regions of

-oriented planes diffracting randomly and independently, resulting in no net

distortion overall.
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Limiting our experiments to one concentration value, considered to reside solely in

the "equilibrium" cubic phase (12 mole % Y2O3), we demonstrated that above about

1000°C, the 112 spots vanish, indicating the arrest of the cubic region by the

microdomains has ceased, with a low value for the Edwards-Anderson order

parameter for the reorientable defects (domains).

Neutron diffraction data recorded from various reflecting positions in reciprocal space

as a function of temperature showed that the diffuse scattering originated from

microdomains or "defect aggregates". One set of neutron diffraction data recorded in

the present series was internally consistent with the mode-coupling hypothesis that the

reorientable rotating species (microdomains) undergo a phase transition near our

proposed Leutheusser temperature TL of ~650°C, which triggers a partial structure

arrest of the tetragonally distorted cubic matrix material.

The structural arrest above, signalled by the "square-root" cusp behavior of the quasi-

elastic intensity near 1.2,1.2,1.8 is symptomatic of non-ergodicity in the material,

which ultimately causes the arrest of the mobile "single (oxygen) vacancy" defect as

signalled by the similarity of the corresponding diffraction behavior at 1.6,1.6,1.0 to

that of the cubic matrix. As the temperature falls toward Tg, the correlation length

grows and the arrest becomes stronger. This scenario appears to support our

suggestion that the data furnishes consistent, independent evidence for a glassy on-off

ion conductivity mechanism in stabilized zirconia.
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CHAPTER 1

INTRODUCTION

I
| | Pure bulk zirconia (ZrO2) possesses three polymorphs at ordinary pressures—

£f| monoclinic, tetragonal and cubic. The cubic variety is stable from~2370°C to the

fi melting point at ~ 2680°C. When cooled to room temperature, pure zirconia is

11 shattered to powder by the tetragonal-to-monoclinic phase transformation, which
'• Sri

fi involves a large volume change and which makes zirconia unsuitable as a structural

11 engineering material. Stabilized zirconia, however, can be retained metastably for long

i 1 periods in the high-temperature cubic phase at room temperature by addition of

[I approximately 15 (cation) mole % of the oxide of several metals with valency lower

\i than four. Those include CaO, MgO, Y2O3 and all the rare-earth oxides.

f£ Cubic stabilized zirconia (CSZ) is a well-known ceramic structural engineering material
j. ''j

; i with widespread use as a high-temperature solid electrolyte with applications in the

lx sensor or fuel cell fields. Because of its commercial importance, a great deal of study

I I has gone into understanding the structureAunction mechanism in CSZ, but many

H discrepancies and misunderstandings remain. Many contradictions arise between the

I i various published studies of its mechanical and transport properties and reports persist

I•'-< of subtle irreproducibilities during individual investigations. Some idea of the present
[ • I

!\| state of confusion regarding CSZ is conveyed in the review by Yashima et al. (1996).

[) An attempt is made in this thesis to link the microstructure of CSZ with its engineering

\i performance, but only recently has some agreement begun to appear on what the

[,| microstructure actually is. A survey of structural investigations undertaken into CSZ

I1 (stabilized by various dopants) using X-rays, neutrons and electrons reveals widely

; I differing opinions and these are canvassed in the literature review (chapter 2).

1X In essence, the aim of this thesis is to show that cubic stabilized zirconia may be

considered structurally to be an orientational glass, which is the elastic analogue of a

magnetic spin glass, and , by extension, that it displays many of the familiar properties

of ordinary structural glasses, even though CSZ does not appear amorphous at first

sight. The point here is that crystallographically CSZ may be cubic on average, but

that ordering of cation and/or oxygen vacancies produces a random array of interacting

elastic defects on a mesoscopic scale (i.e., on a scale of tens of Angstroms) with
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emergent glassy properties. This thesis represents an attempt to interpret theoretically

the existing data on CSZ and use the results of several recently published papers on

orientational glasses to guide and interpret further diffraction experiments conducted

using electrons, X-rays and neutrons.

Each of these techniques delivers slightly different diffraction information on the

material. Of the commercially available zirconias, the predicted critical behavior occurs

in CSZ at accessible temperatures if the dopant is yttrium sesquioxide (Y2O3).

Electron diffraction, however, will not differentiate between Zr and Y on the cation

lattice because of the similarity of their electron scattering factors, but symmetry

breaking due to the ordering of the associated oxygen ion vacancies is sensitively

detected (chapter 5). X-ray diffraction from powder samples will not detect any

difference between Y and Zr atoms using Cu radiation, but strong contrast becomes

available if a molybdenum (Mo) X-ray target is used since the anomalous absorption

which results allows differentiation of the Y and Zr ions (chapter 6). Oxygen ions have

a low scattering cross-section for X-rays and electrons, but are a large fraction of the

scatter for neutrons; about 70% of that for Y and Zr, which are of similar strength

(chapter 7). Hence some insight is afforded into the oxygen lattice as well as that of

the metal ions, but the diffraction phenomena are complicated, principally because the

microstructure of CSZ is also complicated, as the structure background reported in

chapter 2 suggests.

What is novel about the experiments undertaken in this thesis is that most of the

different diffraction patterns reported are part of a concentration series, usually with

Y2O3 molar concentrations of 9.6%, 12%, 15%, 18% and 24% in order to detect

trends among the patterns with increase in dopant and that many of the patterns are

also part of a temperature series, with patterns recorded at relatively closely-spaced

intervals in temperature, in the region where the critical phenomena are predicted to

occur. For yttria-doped zirconia, a consistent set of diffraction effects was obtained at

the temperatures required by the theory. We concluded that appearance of the

diffraction patterns at the predicted temperatures is evidence for a "glassy sequence" of

phase transformations and that these events are what control the conductivity of

oxygen ions through CSZ considered as an electrolyte.

As chapter 2 demonstrates, all the phase diagrams and diffraction patterns of the

variously doped zirconias are rather similar, and should be attributable to the same
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physical phenomena. This indicates that much of the confusion in the literature arises

from the onset of these hitherto-unrecognized transitions in CSZ and to glassy

irreversibility.

Although the temperature of the predicted sequence ol transitions found in yttria-

doped zirconia turns out to be accessible in an electron-microscope heating stage,

modern thermodynamics has little to say about the prediction of absolute values of

temperature for spin-glass-like theories. The differing glass temperatures Tg for

zirconia alloys with different dopants, therefore, has only served to add to the

confusion. To say that a stabilized zirconia glassy "melt" gradually freezes into a rigid

glass over some range of temperature between about 900°C and 400°C appears to

contradict the idea of a melting point for pure zirconia of about 2680°C and that for

the stabilized alloys only a few hundred degrees lower. What is meant here, of course,

is that a certain part of the CSZ microstructure freezes and melts at various

temperatures, at least enough to permit conductivity of oxygen ions by a vacancy

process. In chapter 3 the theory is developed which predicts the sequence of events to

be expected in such a glassy ion conduction process and a relationship suggested

between the temperatures of this sequence . Familiar non-diffraction experiments

suggesting that CSZ is a glass are reported in chapter 4. The experimental work

report d in this thesis is interpreted in terms of the results of two modern theories of

the glass transition and these are outlined in chapter 3. One is a static equilibrium

transition, which is used chiefly to interpret the appearance of certain "forbidden" spots

in electron diffraction patterns. These patterns are displayed at the end of chapter 5.

Tlie other is a dynamical theory in which a sudden qualitative change in the transport

properties of a glassy material is detected at a temperature well above that of the

familiar calorimetric glass transition Tg, due to the arrest of certain density fluctuations

in the conducting "liquid" portion of the microstructure. The central analytical

quantity calculated in this density-fluctuation mode-coupling theory (MCT) is a

reciprocal (Fourier) space correlation function F(k,t) which is a measure of the

correlation between the instantaneous value of the Ath Fourier component of the

microscopic density and its initial value. The long-time value for this correlation

function is proportional to the Edwards-Anderson (EA) order parameter, whose non-

zero value signals a spin-glass-type state. In glassy materials below the transition

temperature the EA order parameter appears as a kind of static Debye-Waller function
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which grows with fall in temperature. Its characteristic insensitivity to wavenumber in

the mode-coupling regime is displayed experimentally in chapter 6, where a simple

calculation is carried out to compare its experimental behaviour with that expected if

the effective Debye-Waller factor were due solely to thermal vibrations. The neutron

diffraction results given in chapter 7, where diffraction effects from differing

micro structural features are identified and correlated with the sequence of events to be

expected in a real glass, not merely a spin glass analogue. Throughout the

experimental chapters and (especially) in chapter 5 where the most relevant results of

the applicable new theories are presented, reference is often made to rnore-or-less

ordered crystalline regions a few tens of Angstroms across which Allpress and Rossell

(1975) originally called microdomains, coherently intergrown with the fee. lattice.

They will also be referred to interchangeably in the thesis as "interacting mesoscopic

rotors" or "reorientable elastic defects".

Notationally, Y-CSZ and YSZ mean the same thing and (e.g.) YSZ-12 means cubic

zirconia stabilized by the addition of 12 mole % Y2O3. Throughout the thesis the

words "low" or "lower" temperature will mean a temperature range below some phase

transformation, rather than ultra-low temperature.

1-4
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CHAPTER 2

LITERATURE REVIEW OF DIFFRACTION STUDIES IN ZIRCONIA

2.1 Zirconia Polymorphs, Stabilization, and Phase Transformation

Pure zirconia, ZrC>2, has three temperature dependent polymorphs cubic c, tetragonal t,

and monoclinic m.

The cubic phase assumes the fluorite structure and is stable from 2370°C to the

melting point, ~ 2680 °C (Carter and Roth, 1968). In this structure (space group

Fm3m, see Fig.2.1) each cation is in eight-fold coordination with the anions, while

the anions are in four-fold coordination with cations. The structure can be thought to

be made up of cubes where the anion is located at the corners of each cube and the

cation occupies the centre of alternate cubes.

Cubic
Fm3m

O

Zr

Fig. 2.1. The cubic zirconia fluorite structure.

The tetragonal form of pure ZrO2 is stable between 1170°C and 2370°C. Teufer

(1962) indexed the high temperature XRD pattern of the tetragonal form on a body
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centred tetragonal cell with space group P42/nmc. However it has been convenient to

also index the t zirconia on a face-centred tetragonal (fct) cell (see Fig.2.2). This

allows comparison between the face-centred cubic fluorite structure and the tetragonal

form of zirconia. The /-phase is related to the fluorite structure by a tetragonal

distortion of the oxygen sublattice. This distortion takes the form of slight

displacements of alternate rows of O-atoms along (001) . This displacement produces

a rumpling effect as compared to the fluorite lattice, producing two sets of Zr-0 bonds

(Howard et al., 1988). As a result of this distortion the O-atom occupies the 2mm site,

with one variable positional parameter z (the Zr-atom is fixed in relation to the c

structure). The displacement is a shear-type displacement with a 110 shear plane.

Negita (1989) reported that the cubic to tetragonal transition is of ferroelastic type.

tffttn

Tetragonal
P AJnmc

Fig. 2.2 Tetragonal Zirconia structure, shown here on the f.c.t. cell for comparison

with the c-ZrO2 structure (Fig. 2.1). The f. c. t. cell is related to the b.c.t. cell by a 45°

rotation of the a-axis, about the c-axis.

The monoclinic form of ZK>2 (space group P2i/c) exists below 1170°C. In the

monoclinic structure (see Fig. 2.3a) the Zr-0 distances range from 2.05 to 2.28A,

putting the Zr in a seven-fold coordination as opposed to an eight fold coordination in

the c- and t- structures (Smith and Newkirk, 1965). The next nearest oxygen gives a

Zr-0 bond-length of 3.58 A and it can not be considered in the coordination sphere of

2-2



the Zr atom. Fig. 2.3b shows the ZrO7 polyhedron. It can be seen that Zr-atom is in a

four-fold coordination with the 02 oxygen atoms while in a three fold coordination

with 01 oxygen atoms. The average Zr-Oland Zr-02 distances are 0.207 nm and

0.221 nm respectively (Smith and Newkirk, 1965). The transformation of tetragonal

to monoclinic zirconia is believed to be martensitic in nature. Crystallographically, the

lattice correspondence which occurs between /- and m-ZiOz is for the c axis of /-ZrO2

to be parallel to the c axis of m-ZrO2. For pure zirconia the non-vanishing components

of the symmetrical unconstrained transformation strain tensors, eT, defined with respect

to the tetragonal lattice are (Riihle et al., 1984):

e
T = ^L-COS/? - 1 = -0.00149

a,

eT
22 = ^ - - 1 = 0.02442

4 = ^ - - 1 = 0.02386

en =ei\ = tan/? = 0.08188

The data clearly show that the shear component is the dominant term in the strain

tensors, and that the volume increase at room temperature from /-phase to /w-phase is

about 4.7%. It is well established that high temperature c- and /-phases of ZrO2 can be

stabilized to room temperature by the incorporation of trivalent or divalent oxides

(CaO, SC2O3, Y2O3, etc.). For divalent oxides, the minimum dopant amount to

stabilize cubic structure to room temperature is variable, depending on the sample

preparation and the thermal history. A reported lower boundary of single cubic phase

region in thr ZrO2 - CaO phase diagram at 1325°C is 15 mole% (Hellmann and

Stubican, 1983). For trivalent oxides, the most commonly reported minimum dopant

amount to stabilize cubic structure to room temperature is about 8 mole % (Scott,

1975;Ruhetal., 1977, 1984).
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Monoclinic
P2,/c

Fig.2.3. a) the monoclinic Zirconia structure, shown here on a face centred cell, for

comparison with the c-ZrC>2 structure (Fig.2.1), b) the ZrC>7 group as it occurs in the

monoclinic structure. Note the 3-fold coordination of Zr with the 01 oxygen atoms

and the 4-fold coordination with the 02 oxygen atoms.

The nature of stabilization in the c-phase is still uncertain. As is well known, Pauling

(1960) provided a set of semiempirical "rules" based on radius ratio rcation/ranion

considerations for predicting crystal structures of inorganic materials. For AX2

compounds, those solids with large cations and radius ratios approaching 1 should

have the fluorite structure, whereas those with small cations and radius ratios <0.4

should have tetrahedral coordination and crystallize with one of the silica structures;

intermediate-sized cations should form AX2 compounds with the rutile structure.

Although exceptions are known, Pauling's rules do derive from fiindamental aspects of

chemical bonding and are widely applicable. For ZrO2, however, the compilation of

Shannon and Prewitt (1969) shows that the radius ratio for ZK>2 in eight-fold

coordination is 0.59, much lower than for other stable oxides and fluorides with the

fluorite structure (CeO2 0.68, UO2 0.70, ThO2 0.75, CaF2 0.84, etc.) but larger than

for compounds with the rutile structure. (In sixfold coordination, ZK>2 would have a

radius ratio of 0.51, compared with that for TiO2 itself of 0.43.) Pauling's "rules"

predicted the instability of c-form of pure ZK>2. Based on Pauling's "rules", Etsell and

Flengas (1970) proposed that dopant cations with radii larger than that of Zr4+ will
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increase the average cation radii so such dopant cations should be considered effective

to stabilize the c-form of ZrO2- However, stabilisation of c-ZrO2 with scandia does not

follow this argument strictly since the radius of Sc3+ in eight-fold coordination is very

close to that of Zr4+.

The incorporation of aliovalent oxides into the lattice inevitably introduces oxygen

vacancies to maintain charge balance, which can range in concentration from ~4% to

~10% depending on the concentration and valence of the dopant cation. Ruh and

Garrett (1967) reported that when ZrCb is heated in reducing environments and loses

oxygen, the c-phase in the resulting nonstoichiometric ZrO2-x has a larger stability field.

It was assumed that the alloying effect on the stabilization, of c-forms depends

primarily on the number of oxygen vacancies and is independent of what has caused

the vacancies (Hillert, 1991). Heuer and Riihle (1984) attributed the stabilization of c-

ZrO2 by oxygen vacancies in doped or oxygen-deficient ZrC>2 to the formation of

stronger covalent bonds by local structural relaxation around oxygen vacancies. It is

well recognized that the c-forms of doped ZrO2 are metastable at lower temperature

and likely a stabilization by kinetics rather than by thermodynamics beomes possible

(Yashima et al., 1996). It seems to us that vacancies alone are not able to offer the

kinetic stabilizing effect since they are highly mobile. It is the dopant cations that

delivered the kinetic stabilization owing to their extremely slow diffusion in the lattice

at lower temperatures. The effect of different radii of host cation and dopant cation on

the stabilization of c-ZrCb will be brought into discussion later in this thesis.

Phase diagrams of zirconia systems have been investigated extensively by numerous

researchers, however; there are many contradictions and discrepancies. In addition to

those contradictions and discrepancies, there existed common misunderstandings on

the metastable phase boundaries. Yashima et al. (1996) reported that the variety of

metastable states accounts for all the contradictions and discrepancies , and that the

sluggish kinetics, mainly slow diffusion of cations, and diffusionless phase

transformation are the two major factors to lead to difficulties in the study of the

zirconia systems and the intricacy of metastable phases. There are two kinds of phase

transformations recognized in zirconia-containing systems; one is diffusional

transformation and the other is the cation-diffusionless transformation according to
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Yashima et al. (1996). The former is applicable to precipitation of /-phase,

precipitation of intermediate- or ordered-phases, such as CaZr4O9 {(f>i), Zr3Y4Oi2 (&),

and the eutectoid decomposition. The latter is mainly applicable to the occurrence of

"non-transformable" tetragonal phases, /' (Heuer and Riihle, 1984). In cation-

diffiisionless transformation, the parent and the transformed phases have the same

composition (dopant concentration). A good example demonstrating the contradictions

and discrepancies occurring in zirconia-containing system is the controversial phase

which was labelled the /"-phase, tetragonal without tetragonality, by Yashima et al.

(1993).

2.2 Long-Range Order: The Fluorite-Related Superstructures in Stabilised

Zirconia Alloys

Superstructure phases of narrow homogeneity range often appear at relatively low

temperatures within a defect fluorite phase field. Large numbers of these are known

in many systems, and there are many structural forms. Superstructure phases are

particularly numerous in the systems PrC -̂x, TbO2.x, CeO2-x, and their conformity to the

"homologous series" formula MnO2n-2 is clearly demonstrated (Rossell, 1984).

Like other fluorite-related systems, zirconia-containing systems exhibit long-range

ordered phases, e.g., CaZr4O9 (Allpress et al., 1975), Zr3Sc4Oi2, Zr5Sc20i3 (Thornber

et al., 1968) Zr3Y4Oi2 (Scott, 1977). The ordering processes in defect fluorite

zirconia alloys have been t Sieved to be the cause of the deterioration of the ionic

conductivity with time (Tien et al., 1963; Carter and Roth, 1968).

As mentioned before, most of the ordering processes are involved with slow cation

diffusion. The sizes of dopant cations play a decisive role in the ordering process.

Yttria and Scandia are both trivalent oxides, and the radius of Sc3+ in eightfold

coordination is 0.095nm, while the radius of Y3+ is O.llOnm (Shannon and Prewitt,

1969). Later in the survey it will be disclosed that ordering processes in the Sc2O3-

ZrO2 system are much quicker and there are more ordered phases in the Sc2O3-ZrC>2

system in comparison with the Y2O3-ZrO2 system. Calcia is a divalent oxide and the

radius of Ca2+ in eightfold coordination is 0.12nm. The ordering process in CaO-ZrO2
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has long been an interest to many researchers (Tien et al., 1963; Carter and Roth,

1968; Allpress and Rossell, 1975; Rossell et al., 1991). To set the stage for later

discussion, ordered phases reported in CaO-ZrO2, Sc2O3-Zr02, Y2O3-ZrO2 systems are

reviewed next.

2.2.1 The CaO-ZrO2 System

In the ZrO2-rich region (ZrO2 mole percentage more than 50%), there are two fluorite-

related superstructure phases CaZr4O9 (</>j) and Ca6Zri9O44 (fa) known to exist in this

system (Michel, 1973; Hudson and Moseley, 1976; Duran et al., 1987; Hellman and

Stubican, 1984). It is believed that they have the same structures as those of CaHfA*

and Ca6Hfi9O44 (Allpress, Rossell and Scott, 1975). fa is monoclinic, space group

C2/c, z = 16, and fa is rhombohedral, space group R 3c, z =2 (Allpress, Rossell, and

Scott, 1975). Marxreiter et al. (1990) and Lin and Sellar (1994) reported the lattice

parameters of CaZr4O9: a = 1.7793(7)nm, b = 1.4557(7)nm, c = 1.2072(5)nm and J3 =

119.42(3)°, which are slightly different from those reported by Duran et al.(1987) and

Hellmann et al. (1983) in "a" value. The lattice parameters of Ca<5Zri9O44 have been

reported by Duran et al.(1987) to be aH = 1.8274nm and cH = 1.7742nm.

The relations between the fluorite structure and the ordered phases are (Allpress,

Rossell, and Scott, 1975),

for fa:

a = [222]f,,b=[220]f,c=km]f

for fa:

w= -[233] / 9 v= -[323],, w = -[332],. (Rhombohedral cell).
2* <L /*

In both fa and fa phases, oxygen vacancies appear to be a — (111)/ pair, with a cation

in the middle. These pairs form finite groups in fa, four vacancies separated by three

different — <111>/ vectors, and the vacancy groups are not chained together. In fa, the
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oxygen pairs form helical chains in which vacancies and the hafnium ions alternate

along the chain (Allpress, Rossell, and Scott, 1975). Cations in fa are completely

ordered in such a way that calcium ions form helical chains which extend along the

hexagonal c axis and successive ions are related by — (110)/ vectors, and that all the

calcium ions (the larger cation) have the eightfold coordination of the ideal fluorite

structure, while hafnium ions are six-, seven-, or eightfold coordinated. Cations in fa

are less ordered than those in fa in such a way that calcium ions occur in chains, with

neighbours separated by —(110)/ vectors, but the chains have a much more irregular

structure than those in fa in that they change direction more frequently and tend to

''wander" through the structure (Allpress, Rossell, and Scott, 1975). Oxygen vacancies

in both fa and fa are not the next neighbour of calcium ions, according to Allpress,

Rossell, and Scott (1975).

Hellmann and Stubican (1983) determined the upper limits of stability for fa and fa to

be 1235+ 15°C and 1355± 15°C, respectively. Duran et al. (1987) reported that the

two ordered phases fa and fa are unstable below 1100°C, but they can persist

metastably at lower temperatures. A ZrO2-CaO phase diagram of Duran et al. (1987) is

presented in Fig.2.4 for reference. Duran et al. (1987) synthesized the ordered phases

in the ZrCb-CaO using two different methods. Method one was to anneal quenched

samples with the correct composition (20 mole % CaO for fa and 24 mole % CaO for

fa soaked eight hours at 1780°C) for a long time between 950° and 1400°C. Method

two was to anneal reactive powder mixtures with the right compositions for a long

time in the same temperature range as in method one. They found that ordered phases

were formed much faster or at lower temperatures from the reactive powder mixtures

than from the quenched samples during annealing processes. They concluded that the

ordering of the cations is probably required in the process of ordering.

Although both ordered phases fa and fa will only be formed by long time annealing at

right temperatures, fa is less difficult to prepare than fa (Stubican and Ray, 1977). This

may be related to the high degree of cation-ordering in fa (Hellman and Stubican,

1983).
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Fig. 2.4. Phase equilibrium diagram for the ZrO2 -rich region of the system ZrO2 -

CaO, after Duran et al. (1987).

Discrepancies exist regarding the homogeneity, and the decomposition of fa phase.

Hellmann and Stubican (1983) reported that is a line phase in the phase diagram and

peritectoidally decomposes to fluorite solid solution and a <f>2 compound above 1235±

15°C. Duran et al. (1987) suggested that fa could not be a line phase in the system,

and that a very small homogeneity range must exist for this phase.

Reportedly fa has a homogeneity region around 20 mole % CaO," it can appear in a

ZrO2-CaO sample with much lower calcium content by nucleation, and microdomain

formation (Rossell, 1984; Rossell et al., 1991).

2.2.2 ZrO2 - Sc2O3 System

Three ordered phases /?, y, and 8 have been reported to exist in the ZrO2 rich region of

Sc2O3-ZrO2 System (Lefevre, 1963, Spiridonov et al., 1970; Thomber et al., 1970).

They are all rhombohedral with lattice parameters a=5.O85A, a=88°48' for p- phase, a

=5.068A, a =90°19' for y- phase a =7.949A, a =72°33' for S- phase (Lefevre, 1963).
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Spiridonov et al. (1970) studied the system in the region 0 to 40 mol% Sc2O3 using

high-temperature X-ray diffraction (XRD), dilatometry, differential thermal analysis

(DTA), and electrical conductivity measurements. Their results revealed the

rhombohedral Sc2Zr7Oi7 phase (JJ) in the region 11 to 13% Sc2O3, the rhombohedral

Sc2Zr5Oi3 phase (y) from 16 to 21% SC2O3, and the rhombohedral Sc4Zr30i2 phase (8)

from 30 to 40% Sc2O3. Ruh et al. (1977) reported similar results to those of

Spiridonov et al. (1970) but slightly different in stating that the ordered phases have

wider single phase regions, 9 to 13% Sc2O3 for J3 -phase, 15 to 23% SC2O3 for y -

phase, and 24 to 40% Sc2C>3 for 8 -phase. A phase diagram of ZrO2 - Sc2O3 proposed

by Ruh et al. (1977) is shown in Fig. 2.5.

The P -phase transfers to cubic at 600°C, the y -phase transfers to cubic at 1100°C,

and the 8 -phase exhibits no transformation. X-ray diffraction features peak

separations when the disordered mhic phase undergoes a transition to the ordered

phases of /?, ^(Lefevie, 1963).

2.S i I S 10 I2.S IS I I S 20 22.4 2S 21.5 10 32 5 )S

V M0N0CUNIC
D TETRAGONAL

CUBIC
RHOMBOKEDRAl
RH0MSOHCDRAI

O
• TOO PHASE

O 0 O O O

2.S S 7.S 10 12.S IS 17.1 20 ZI.5 2S 21.5 30 12.5

Fig. 2.5. Phase equilibrium diagram for the system ZrO2 - Sc2O3 . After Ruh et al.

(1977).

Using samples prepared by the coprecipitation of the hydrated oxides and heat

treatment at 1600°C, Thornber et al. (1970) observed /?, y, and 8 as line phases. By
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i contrast, these phases existed as monophase over composition ranges when they were

prepared by arc-melting techniques. They proposed that the latter states may be

metastable.

Thornber, Bevan and Graham (1968) determined the structures of y -phase (Sc2Zr5Oi3)

and £-phase (Sc4Zr30i2) with a Hagg-Guinier focusing X-ray powder camera and Cu

Kai radiation. The space group in both cases is R 3, and the lattice parameters of y -

phase and 8 -phase in hexagonal representation are a=9.53(2)A, c= 17.44(2) A and

a=9.37(8) A, c=8.71(0) A, respectively. It is noted that, the c-value of 8- phase

reported by Thornber et al. (1968) is half of that reported by Lefevre (1963). Both

these structures are derived from the fluorite-type parent MO2 by ordered omission of

oxygen atoms. The observed rhombohedral distortion is the result of lattice relaxation.

Fig. 2.6 shows the structural relationship among fluorite, /and 8.

Both are rhombohedral distortions of the fluorite lattice, one of the four [111]

directions becoming the unique inversion triad axis. Relative to the MO2 composition

of fluorite there are six oxygen positions in the hexagonal unit cell which are not

occupied. These 'vacancies' are distributed two to each threefold axis so that the

special metals lying on these are alternately 6- and 8- coordinated as shown in Fig.2.6.

For the 8 -phase these special metals are all 6-coordinated: no oxygen atoms occur in

the threefold axis, so that the ideal structure has half the c dimension of the ideal y -

phase shown in Fig.2.6, and its ideal composition is M7O12. In the fluorite stn'.crare all

oxygen positions in the threefold axis are occupied.

Phase transitions and the microstructure of the /?-phase (Sc2Zr7Oi7) were examined by

Sakuma and Suto (1986). In the two ZrO2-Sc2C>3 alloys with scandia content of 10.5

and 12.5 mole %, the /?-phase was found in both quenched and furnace-cooled

samples. Their x-ray diffraction patterns of the samples showed a feature of peak-

spliting for the 1 1 1 ,220 and 3 1 1 reflections in the cubic fluorite structure. TEM

examination on the microstructures of the samples with /?-phase revealed a herring-

bone appearance. They concluded that the transformation of fluorite solid solution to

P is induced during cooling from the high-temperature cubic phase region by

martensitic transformation, and that a herring-bone appearance is a characteristic

microstructure developed by martensitic transformation.
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They observed a higher upper limit temperature for the /?-phase, which was 800°C,

than both Ruh et al. (1977) and Spiridonov et al. (1970) did.

The detailed structure of the /?-phase has not been reported. Incomplete structural

stodies on the /?-phase made by Thornber et al. (1970) suggests that it is related to

fluorite structure by a disorder-order process in which one of the cubic [111]

directions becomes unique, resulting in a complex rhombohedral supercell.

All three ordered phases J3, y and 8 are formed by purely oxygen vacancy pair

ordering. Because of the similar ionic radii of scandium and zirconium, ordering

would only be expected on the basis of charge differences, and no evidence to suggest

metal ordering was obtained ( Thornber et al., 1968).
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Fig. 2.6. The stacking sequence of metal and oxygen layers, and the atoms in the

vicinity of a threefold rotation axis chosen to pass through A atom sites for the y -

phase, after Thornber et al. (1968). The c dimensions of the idealized ^-structure,

fluorite and £are also shown. In fluorite all oxygen sites in this axis are occupied; in 8

all are vacant.

Comparing with other zirconia based systems, ZrO2-Sc2O3 system has more ordered

phases; it has comparatively fast ordering processes. All of these are attributed to the

non-requirement of cation ordering, owing to similar radii of the host cation Zr4+ and

dopant cation Sc3+.

2.2.3 Y2O3-ZrO2 System

In the zirconia-rich region of ZrO2-Y2O3 system, only one fluorite-related ordered

phase, Zr3Y4Oi2 (8), has been reported (Scott, 1977; Stubican et al., 1978; Pascual

and Duran, 1983). A metastable rhombohedral phase developed in ZrO2- 3.1 and 4.0

mole % Y2O3 alloys with microscopic features like those of the rhombohedral /?-phase

in ZrO2-Sc2O3 was reported by Sakuma et al. (1985), but it was ignored by the other

investigators. The structure of 8 -phase has been determined by Thornber, Bevan and

Graham (1968). It is rhombohedral, space group R 3 . The structure of Zr3Y4Oi2 was

determined by Scott (1977) using X-ray powder diffraction technique. The lattice

parameters reported are: a = 0.97345(5) nm, c = 0.91092(6) nm, z = 3 (hexagonal

representation). Anion vacancies are ordered in Zr3Y4Oi2 (8), to give a rhombohedral

cell. Cations are only partially ordered in Zr3Y4Oi2 (8 ) with Zr in the octahedrally

coordinated cation sites and Zr + 2Y randomly in the sevenfold coordinated sites, in

other words, the smaller cation Zr4+ coordinates anions and larger dopant cation Y3+

preferentially coordinates the vacancy pair. The conclusion of partial- ordering of

cation and dopant cations in sevenfold coordination in Zr3Y4Oi2 (8), made by Scott is

conflicting with what Allpress, Rossell & Scott (1975), Thornber, Bevan and Graham

(1968) obtained from Zr3Yb40i2 (8), and CaZr4O9 in which they claimed that the
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rr
smaller Zr4+ cations tend to be six-, or sevenfold coordinated and the larger dopant

cations, such as Yb, Ca, tend to be eightfold coordinated.

Zr3Y4Oi2 (S) can be prepared by solid-state reaction of the component oxides 3ZrC>2 +

2Y2O3, at 1300°C for three months (Scott, 1977), or by annealing sintered or

quenched samples at 1150°C more than three months (Pascual and Duran, 1983).

Zr3Y4Oi2 {8 ) is stable below 1382±5°C (Stubican 1988). The equilibrium phase

diagram of ZrO2 -Y2O3, after Stubican (1988), is shown in Fig. 2.7.

Although no /?-phase is reported in ZrO2 -Y2O3 system, presence of the /?-phase in

HfO2 -Y2O3 system (Duclot et al., 1970) suggests that it may exist in ZrO2 -Y2O3, in a

way either it is difficult to be detected or it is difficult to be prepared. It seems to us

the former is most likely.
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Fig. 2.7. Phase diagram for the system ZrO2 -Y2O3, after Stubican (1988).

To end the literature survey on ordered phases in Zirconia based systems, we

summarize some important features of the ordering process in these systems in table

2.1. To assist a better understanding, systems involving Yb, Er, and Dy are included in

the table. Attention is drawn to the number of ordered phases, the radii of the dopant

cations, the requirements of cation ordering, and the kinetic process of ordering.
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Table 2.1 shows that the ordering process in the ZrO2-M2C>3 (MO) is considerably

influenced by the dopant cation size. For the same valency, the larger the dopant

cation radius is, the slower the ordering process, and the fewer ordered phases. In the

case of Dy3+, the ordered phase can only be able to be nucleated without growth

(Thornber, et al., 1970).

Table 2.1

Radius in
MO8 (7)
(nm)

Ordered
phases
reported

Cation
ordering

Anion
ordering

Disorder-
Order
transition

Ordering Phases in ZrO2 Rich Region of ZrO2-M2O3(MO)

Sc3+

0.087

P(l)

7(2)

8 (2),
(3)

Not found

Suggested

Fast

Yb 3 +

0.098

8(3)

Suggested

Suggested

Sluggish

Er3 +

0.100

8 (3),

Zr on
octahedral
sites,
2Zr+4Er
randomly in
7-
coordinated
sites (6)

Suggested

Sluggish

Y3+

0.102

8(4)

Zr on
octahedral
sites,
2Zr+4Y
randomly in
7-
coordinated
sites

Suggested

Very
sluggish

Dy3 +

0.103

(3)

Extremely
sluggish

Ca2 +

0.112

$1(5)

$2(5)

complete
order with
Ca on sites
of 8-fold
coordinatio
n and Zr
on sites of
6- and 7-
fotd
coordinatio
n(6)

Suggested

Very
sluggish

Zr4 +

0.084

(1) Sakuma & Suto, 1986. (2) Thornber et al., 1968. (3) Thornber et al., 1970. (4)

Scott, 1977. ( 5) Allpress, Rossell and Scott, 1975. (6) Rossell, 1984. (7)

Shannon & Prewitt, 1970.

2.3 Defect Fluorite Structure
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It has been widely accepted that doped c-ZrO2 does not take a perfect fluorite

structure, but structures with atoms displaced from their ideal fluorite positions (Heuer

et al., 1984; Rossell, 1984). Also given the dopant cation concentration (in MO,

M=divalent or MO1.5, M=trivalent) around 12 to 40%, and vacancy concentrations in

the range of 5 - 20%, interaction among the defects is inevitable. Probing into the

defect structure of doped c-ZrO2 has long been a great interest to many researchers

worldwide because it may help to understand the ionic conductivity in this group of

materials. X-ray, neutron, and electron scattering techniques are most commonly used

for this purpose. The following literature survey will proceed alternately following

these techniques.

2.3.1. Electron Diffraction

Using electron diffraction technique, Allpress and Rossell (1975) probed the defect

fluorite-type phases CaxMi.xO2-x(M = Zr, Hf; x = 0.1-0.2). They found that except for

strong reflections characteristic of a fluorite-type subcell there were weak diffuse

patterns, the arrangement of these diffuse maxima was relatively insensitive to

variations in lime content in the range x = 0.1-0.2, and that it was not affected by the

method of preparation (arc-melting, solar-melting, or sintering of the component

oxides). It was also reported that the effect of annealing the samples for a short period

at low temperatures (e.g., 1 week at 1000°C) was merely to sharpen the diffuse

maxima to some extent. However when samples containing 20 mole % lime (x = 0.2)

were annealed for relatively long period, 1000 hours in ZrC>2-20 mole % CaO case, the

diffuse scattering maxima were replaced by complex arrays of sharp spots, and

eventually the whole diffraction pattern was purely from the ordered structure of

monoclinic phase <f>i when the samples were annealed a long time, 3600 hours in Z1O2-

20 mole % CaO case. By comparing the features in diffraction patterns of defect

fluorite phases with those in patterns from annealed specimens, the authors suggested

that the defect fluorite-type solid solutions contain domains of ordered phase <f>i

embedded coherently in a number of specific orientations within the cubic matrix. The

dopant concentration influences the population of the domains but not the size of the
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domain and each domain is about 30 A in diameter. Their calculations based on this

model agree with the observed diffraction data.

How those microdomains are formed during a quench remains unknown if you

consider that cation ordering occurs in the <f>i phase and that the diffusion coefficient of

Ca in ZrO2-CaO is very small. One speculation is that the microdomain structures

could well exist (in a state of dynamic fluctuation) at high temperature (Rossell, 1984).

The same approach was used to study the diffuse patterns in ZrO2-Y2O3 by Rossell

(1984). Using the only superstructure phase reported in the ZrO2-Y2O3 system, the

author calculated the electron diffraction patterns for a material consisting of

microdomains of Zr3Y4Oi2 (<5) in all eight orientations coherent with a fluorite matrix.

Unfortunately, the geometric proportions of the diffuse features did not match those of

the observed patterns. Although /?-phase was not reported in the system, the author

believed that the /?-phase may be of significance in this case.

Suzuki, Tanaka, and Ishigame (1985, 1987) studied the yttria doped zirconia by

electron diffraction. The diffuse scattering patterns in 10, 20-30, and 40-50 mole %

Y2O3-ZrO2 alloys were interpreted in terms of the microdomains of the ordered

structures. However, such microdomains were defined in terms of modulated oxygen-

ion displacements in [001] directions. The modulation is expressed by a square

transverse wave whose wavenumber vector q = —(llO) , and with anti-phase

boundaries parallel to {112} planes at intervals of five times the 112 spacings. These

modulated structures result in micro-domains of several nm in diameter. No cation

ordering is reported to cause the domain structures.

Following Suzuki, Tanaka, and Ishigame (1987), Miida et al. (1994) extended the APS

model to one in which the antiphase boundaries consist of various planes belonging to

the [111] zone axis so that a diffuse scattering intensity distribution in reciprocal space

(shown in Fig.2.8. a) is formed and such a distribution can interpret the diffuse spot

and diffuse circular patterns obtained from CaO- and Tb2O3.s - stabilised zirconias

(shown in Fig.2.8. b & c).
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Fig. 2.8. a) Schematic intensity distribution in reciprocal space for the diffuse

scattering, b), c) Diffuse spot and diffuse circular patterns obtained from CSZ

containing 19 mole % CaO at [110]and [112] zone axes, respectively. The letter D

indicates the separation of the split spots. After Miida et al. (1994).

The split spots seen in Fig. 2.8 (b) and (c) were interpreted as a result of the right-

angle intersection of the Ewald sphere with the circular diffuse contour, and the diffuse

3 T 1
circle with two intensity maxima around —,—,— as a result of a skew (~ 18.5°)

y 2 2 2 V '
intersection of the Ewald sphere with the circular diffuse contour.

Recently, Dai et al. (1996a) proposed a diffuse scattering distribution model in

reciprocal space which is similar to the one suggested by Miida et al.(1994). Local

ordering (short-range ordering) was believed to the cause for the diffuse scattering.

The calculated correlation length of oxygen vacancy ordering was approximately 0.82
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nm, and oxygen vacancies were suggested to be linked by position vectors r<2oo>, and

r<3io> in the anion sublattice Dai et al. (1996b).

Withers et al., (1991, 1992) published electron diffraction patterns of ZrO2-Ln2O3 in a

wide dopant concentration range with Ln = Pr, Nd, Sm, Tb, Gd, Dy, and Ho. The

diffuse scattering patterns show C-type or pyrochlore-type solid solution features, and

vary with the dopant type. No rules were found in terms of the radii of the dopant

cations. The authors believed that the defect fluorite solid solutions are best regarded

a genuinely intermediate between the two-member structures (fluorite and

pyrochlore/C-type) and of commensurately modulated fluorite type.

It is well known that at the lower solubility limit of the fluorite-type solid solution

region, 112 reflection spots, which are not allowed in fee. lattice and are not the

result of double diffraction, always appear in electron diffraction patterns (Suzuki et

al., 1985; Zhou et al., 1991; Miida et al., 1994; McClellan et al., 1994).

To study the diffiisionless cubic-to-tetragonal phase transition and microstructural

evolution in sintered zirconia-yttria ceramics, Zhou et al. (1991) reported that the

displacement of oxygen ion along (001) directions is responsible for the appearance of

{112} reflections in the ZrO2-Y2O3 with Y2C>3 content ranging from 4 to 8 mole % or

more. When Y2O3 content was below 8 mole %, domain structure was able to be

observed in dark-field images. When Y2O3 was higher than 8 mole %, domain structure

was unable to be observed, but the {112} spots are still visible.

To interpret the {112} reflections in the 9.9 mole % Y2O3-stabilised ZrO2 single

crystals, McClellan et al. (1994) studied the structure of the cubic phase using

convergent-beam electron diffraction technique, and concluded that the forbidden

reflections were caused by distortion of the oxygen sublattice of the cubic structure

fromF3 m3 relative to the cation sublattice by displacements along (111) directions.

As a consequence of the distortion, the space group of the crystal is P 43 m rather than

F3 m3.

Yashima et al (1994) ascribed the {112} reflections at lower limit of the fluorite-type

solid solution region to a tetragonal phase / " without tetragonality. A space group

P42/nmc was assigned to the /" phase. A direct interpretation of those forbidden spots

will be given in chapter 5.
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2.3.2 X-ray Diffraction

Morinaga, Cohen, and Faber (1979, 1980) studied the defect fluorite structures of

Zr(Ca, Y)C>2-x single crystal using X-ray diffraction technique. They suggested that

there are displacements of oxygen ions from the ideal fluorite structure along <100)

directions similar to those that occur on the cubic to tetragonal transition in pure ZrC>2

below 1273 K, and that there are small displacements of the cations in (111) direction

in the yttria-stabilised zirconia. To interpret the diffuse scattering, the author

proposed that oxygen-ion displacements preferentially along (100) direction plus

short-range ordering with dopant cations as next neighbour to the oxygen vacancies

may account for the presence of diffuse diffraction maxima.

Welberry et al. (1992) used a position-sensitive detector (PSD) system to make

measurements of the diffuse X-ray scattering on a cubic Y2O3-stabilised zirconia,

Zr0.6iY0.39O1.s05- Tv,r- fezitures were observed. By the help of computer simulation

technique, the authors believed that one feature, in the form of sets of dark planes

normal to (110), occurs because of size-effect-like strains induced along (110)

intermetal vectors, and another feature, in the form of bow-tie-shaped regions of

scattering, originates from the same basic strains but the symmetry of these requires

that displacements in [110] direction are out of phase with those in the [110]. Later the

authors (Welberry et al., 1993) further explained that the size-effect-like strains are

caused by a mechanism in which cations move apart if one or other of the bridging

oxygen atoms is missing. In their model, the diffuse spots arise from short-range

ordering of the oxygen vacancies, and the short-range ordering is such as to avoid

nearest-neighbour — (100) pairs, next-nearest — <110> pairs, and third-nearest

— ( I l l ) pairs across empty cubes of oxygen atoms, but allows third-nearest — (111)

pairs across cubes of oxygen atoms containing the cations.

A computer model of the distribution of oxygen vacancies in cubic stabilized zirconia

has been directly synthesize*, by applying modulation waves to the fluorite-type
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average structure by Welberry, Withers and Mayo (1995). When the modulations

were applied to — (111} pairs of sites in each of four different orientations within the

cube surrounding each cation site, the authors found that the calculated diffraction

patterns showed good qualitative agreement with the form of the observed patterns.

It was suggested that vacancy pairs oriented along a given < 111 > direction produce a

strain field that extends to large distances in the plane normal to that direction so that

like-oriented vacancy pairs repel each other and that unlike-oriented vacancy pairs do

not interact strongly. It was claimed that rings of diffuse intensity of different radii and

different degrees of diffusion may be interpreted in terms of the amount of strain

induced by such vacancy-pair defects and concentration of defects demanded by the

composition.

Proffen et al. (1996a) studied the neutron and X-ray diffuse scattering of calcium-

stabilized zirconia, and reported that the defect structure consists of two types of

defects: microdomains based on a single oxygen vacancy with relaxed neighbouring

ions and microdomains based on a pair of oxygen vacancies separated by (V3) - along

<111>. All the microdomains are oriented in (111) directions and within the cubic

matrix of CSZ. It was concluded that all observed diffuse data can be explained by the

superposition of diffuse maxima located in symmetrically equivalent [110] zones

corresponding to satellite vectors of ± (0.4 0.4 ±0.8) (Proffen et al., 1996b).

Li et al. (1993a, b, c) studied the defect structures of zirconia polymorphs using X-

ray-absorption spectroscopy (XAS) technique. They reported that charge-

compensating oxygen vacancies caused by Y doping are preferentially located next to

Zr ions, leaving eightfold oxygen coordination for the Y ions, and that the distortion of

cation lattice in cubic solid solutions is very severe in the local atomic environment.

2.3.3 Neutron Scattering

Carter and Roth (1968) proposed , in a neutron investigation of Zr(Ca)O2.x, that

oxygen atoms are relaxed around oxygen vacancies and ;placed along the (111)
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directions by about 0.02 nm. They found a strong modub'vi. > ackground and diifuse

satellites for the samples that had been annealed at 1370.

Steele and Fender (1974) examined the yttria-stabilized zirconia by Bragg neutron

diffraction and the diffuse scattering of long wavelength (0.7 nm) neutrons. To

interpret the high values of temperature factors (#Cation, -#anion) obtained from the

refinement of the structure using a least square method, the authors proposed a model

in which six nearest-neighbour oxygen ions surrounding an anion vacancy are relaxed

and displaced toward the vacancy in (100) direction by 0.036 nm, and four nearest

cations are displaced toward the vacancy in (111) direction by 0.018 nm, among which

two of the four cations are Y ions.

Faber, Muller and Cooper (1978) studied the defect structures of single crystals of

Zro.85Cao.15O185 and Zro.s2Yo.i8O1.91 using neutron diffraction technique. Reflections

forbidden by f ee were observed and local tetragonal distortions in oxygen sublattice

were suggested to cause the forbidden reflections.

Andersen et al. (1986) and Osborn et al. (1986) found that there are two principal

contributions to the observed neutron diffuse scattering intensity in YSZ, which

consists of forbidden (odd, odd, even) reflections and diffuse peaks located at /nuorite±

(0.4, 0.4, ±0.8). The first arises from tetrahedral distortions in small vacancy free

regions of the crystal which decrease in volume as the dopant level increases. The

second arises from correlated vacancies and their associated relaxed ions in the

remainder of the crystal. A defect cluster consisting of a vacancy pair plus relaxation

of nearest-neighbour oxygen atoms towards the vacancy along (100) direction: and

relaxation of the cations away from vacancy along (111) directions was proposed by

Andersen et al. (19S6). With this model the authors obtained reasonable agreement

between the calculated and observed intensity distributions. Hull et al. (1988)

extended the work of Andersen et al (1986) and Osborn et al. (1986) to high

temperatures. They found a dynamic behaviour of the defect clusters with

temperature.

Hackett (1987) detailed his studies on the defect structure of yttria-stt:bilii^d zirconia

using neutron scattering technique. Extending the observation reported in Andersen et
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al. (1986) and Osborn et al. (1986), he also suggested that dynamic single oxygen

vacancies with relaxed neighbour ions exist along with the vacancy clusters, and that

the single vacancies are responsible for the high ionic conductivity found in the

stabilised zirconia alloys.

Neder, Frey and Schulz (1990), based on their investigation results on the CaO-

stabilised zirconia using neutron scattering technique, shared the same view of the

defect structure of stabilised zirconia alloys as that of Andersen et al. (1986), Osborn

et al. (1986). But they thought that the dopant cation Ca is the next neighbour of the

vacancy. Later, Proffen, Neder, and Frey (1996) modified the previously published

structure by saying that all cations next to the oxygen vacancy are most likely

zirconium.

To summarise, a pronounced feature in diffraction studies of the defect c-ZrO2 is the

ubiquitous appearance of diffuse intensity in addition to the sharp Bragg reflections

expected from an ideal fluorite structure. The diffuse intensity appears in X-ray and

neutron diffraction from single crystals but is more obvious in electron diffraction.

This is because the amplitude of scattered radiation in the electron case is typically 103-

104 times that for X-rays or neutrons, giving an enormous gain in intensity (Rossell,

1984). There are several common points regarding the diffraction patterns from

differing defect fluorite phases revealed in the literature.

(a) When the composition of the stabilized zirconia is at the lower concentration limit

of the single cubic phase region, there are forbidden spots indexed odd, odd,

even. These spots gradually disappear when the composition moves towards the

upper limit of the region.

(b) For a given diffraction technique, the patterns from a given orientation exhibit

remarkably similar diffuse features, which differ mainly in size relative to fluorite

reflections in different materials.

(c) In any given system, the diffuse pattern does not vary if the composition is

changed within broad limits.

(d) Most reported diffuse scattering patterns are presented in (110) zone projection

or the zeroth layer of (110) zone.
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(e) There are several models for the defect structure of stabilised cubic zirconia.

They can be divided into two types, one is related to microdomains in f.c.c

matrix. The other is related to short range ordering consisting of single vacancy

or vacancy clusters, and displacements of ions around oxygen vacancies.

Several of these authors, however, have been confronted recently with criticism of

their description of the differing varieties of CSZ. Withers et al (1999) have suggested

that the complex ordering scheme described by Dai et al. (1996 a, b) is unlikely to be

correct since the zirconia alloy systems involve more than one sublattice. Similarly the

"doubly-disordered" model for CSZ given by Morinaga et al. (1979, 1980), with

random occupation of the (zirconium) cation sites by the dopant cation and

corresponding random occupation of the anion sites by oxygen vacancies and short-

range order (SRO) describable by Cowley-Warren SRO parameters has come under

criticism by Welberry and Butler (1994). They showed how Morinaga et al's X-ray

data may be reinterpreted in favour of microdomain-type long-range order in the light

of strong chemical evidence for cationic order evident in high-resolution electron

micrographs of Ca-CSZ (Rossell et al., 1991). So, if a crystallographically coherent

but inhomogeneous model like those of Hull et al. (1988) and Allpress and Rossell

(1975) is accepted as the more likely candidate for the microstructure of CSZ, then

deductions from single-crystal interpretations of diffraction data (e.g., McClellan et al's

1994 convergent beam electron diffraction determination of the space group) cannot

be correct.

In this thesis, the static microstructural working model adopted is that of Allpress and

Rossell (1975), where, as stated earlier, microdomains in the mesoscopic size range (a

few tens of Angstroms) containing all (or most) of the dopant and accompanying

immobile vacancies are embedded in a distorted cubic ZrO2 matrix containing little (or

no) dopant cations. The microdomains are composed of one or more "neighbouring"

line phases (or recognizable versions of them) which, being of lower symmetry, can fit

coherently onto the average cubic lattice in a certain number of equivalent

cystallographic directions in a random distribution. This Allpress-Rossell picture for

CSZ is the basis of our theoretical justification for glassy behaviour, to be described in

the next chapter. Conduction of oxygen ions is considered to take place through the
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ZrO2 matrix by means of a small "equilibrium" number of mobile vacancies in the

matrix. This description of Ca-CSZ is also very similar to that of Proffen et al. (1996).

The dynamic model we consider operative for CSZ in this thesis is that of Hull et al.

(1988), where a distribution of coherently intergrown "aggregates" containing the

dopant ions and the immobile vacancies plays the role of Allpress-Rossell's (1975)

microdomains, a relatively vacancy-free distorted cubic region plays the role of the

matrix and a single vacancy mobile at high temperatures is considered responsible for

the ionic conduction. Although applied to Y-CSZ in Hull et al's case, this description

is also very similar to the models of Allpress-Rossell (1975) and of Proffen et al (1996)

for Ca-CSZ. The high-temperature neutron diffraction experiments described in

chapter 7 are based on Hull et al's (1988) model.
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CHAPTER 3

GLASS THEORY AND MODEL

3.1 Temperature Ranges of Glassy Phenomena

The theory of glass formation and. behavior has been an extremely busy field in the last

fifteen years, with new viewpoints, experiments and glassy substances appearing in the

literature at an enormous rate. It is extremely difficult to keep abreast of all the reported

developments wldch currently are presented dealing with spin glasses, structural glasses

(or window glasses; real glasses), orientational glasses and other grossly disordered

materials both organic and inorganic. It is far from obvious that any of them offers a

uniquely clear view of the behavior of glasses at or below Tg, the glass transition

temperature, although some aspects of the rapidly-g; owing literature appear to support

growing agreement between theory and experiment, but only over a limited range of

temperatures. For this reason, the present discussion will be limited to developments with

some degree of experimental foundation, and which bear most immediately on the

experimental results presented in this thesis.

One of the difficulties apparent in developing theories to describe glassy behavior is the

wide temperature range of the phenomena, even for one well-characterized glassy

substance. I:; a structural ?.lass it is generally established that a glass transition can be

detected experimentally at a low temperature (Tg) by calorimetric or dilatometric means

and that at a higher temperature, Ttn> the glass will melt. In between, the glass is said to

undergo supercooling, a mctastable condition in which the glass begins to display

recognizably glassy attributes on cooling above Tr. Probably the most remarkable of

these is a rapid increase in the glass viscosity of approximately twelve orders of

magnitude while being cooled between Tm and Tg. The detectable event at Tg is widely

considered to be a dynamical phenomenon rather than an equilibrium phase

transformation, since the numerical value of Tg usually varies logarithmically with the

speed of cooling in the super-cooling regime. The glass is considered in this dynamical

interpretation to "fall out of equilibrium" at Tg and that the transition reflects the inability

of the glass to adjust lo c ;_.ilibrium as Tg approaches since its capacity to adjust

structurally has been frozen. It if, also sometimes claimed that a "hidden" equilibrium
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phase transition exists at some temperature below Tg which can never be reached due to

the enormous increase in the glass viscosity experienced by the melt, so that such a glass

can be considered to be a non-equilibrium material forever suspended above its critical

point. If such an equilibrium transition could be reached however, it has been conjectured

that it would provide a resolution of "Kauzmann's Paradox", in which the residual

entropy of the glass would suddenly drop to zero, thereby avoiding a contravention of the

third law of thermodynamics (Kauzmann, 1948). At present, the existence of this

transition is an open question. Certain simple approximate " scaling relations" have been

known for a long time. For a wide variety of glasses both organic and inorganic, it is

2
approximately true that T (K) ~ — Tm (K), where both the glass temperature and the

melting temperature are expressed in degrees Kelvin (Kauzmann, 1948; Sakka and

McKenzie, 1971). This is known as the "two-thirds rule", so for a glass with Tg near

500°C, melting would appear near 900°C.

Another more controversial phase transformation is sometimes claimed to take place at a

temperature TL, which we will call the Leutheusser temperature (Leutheusser, 1984),

where a relatively sudden change takes place in the transport properties (i.e. diffusion and

viscosity) of a glass, which is believed to be due to coupling between density fluctuation

modes in the material. This "mode coupling" behavior is considered to begin at TL(K)

where

TL(K)*\.2-l.3Tg(K),

so that a material with Tg near 500°C will experience on cooling a sharp preliminary

increase in rigidity as the temperature falls below about 700°C.
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3.2 Mode Coupling and Fragile Liquids

The strength of the calorimetric signal at Tg in a glass-forming material is strongly

dependent on the type of glass to be formed on freezing. The signal is weakest in the

category of network-type glass formers such as SiC>2 or BeF2 and strongest (at least

among those at present under frequent investigation in the literature) in organic or ionic

glass formers such as potassium calcium nitrate (CKN) or O-terphenyl, neither of which is

an engineering material. This deduction correlates well with a distinction drawn between

glass-forming liquids into two types: strong and fragile. It is considered that strong

glass-formers possess a network structure even in the liquid state and undergo a gradual

increase in viscosity as the temperature falls resulting in Arrhenius-type behavior in the

viscosity as a function of temperature. The network structure is not considered to

undergo any sudden change near the glass transition. This is the reason for calling such a

glass former "strong". In fragile glass formers, however, Arrhenius plots of the viscosity

suggests a two-stage process in which the density fluctuations (accessible via neutron

diffraction), the viscosity and the diffusion process undergo relatively sudden qualitative

change at TL, SO that the viscosity-temperature graph displays a sharp change in curvature

near this temperature (see Fig. 3.1).
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Fig. 3.1 Viscosity temperature relation (aller Angell, 1988).
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Mode Coupling Theory

This characteristic two-step behaviour of fragile glasses is attributed to a coupling

between density fluctuation modes in the viscous liquid in the treatments of Leutheusser

(1984) and of Bengtzelius, Gotze and Sjogren (1985) which are now outlined.

The fundamental quantity in the mode coupling theory (MCT) is the normalized

correlation function, <D(/:, /)

<S>(k,t) = F(k,t)/S(k) (3.1)

Here, F(k, t) is the density autocorrelation function (which can be accessed via inelastic

neutron scattering) and S (k) is the equal-time autocorrelation function or static structure

factor, which is accessible using X-ray or electron diffraction. ( Chapter ])

The measured correlation functions (or their frequency spectra) display a "stretching"

feature characteristic of supercooled fragile glass formers in which the distribution of

relaxation times is described (approximately) in the following way

0(/)ocexp(-//r)^ (3.2)

where / k l and r is the characteristic relaxation time at temperature T. Such a stretched

exponential gives a reasonable account of the long-time decay of the correlation function,

sometimes known as the a-relaxation. This glassy relaxation process may be detected

experimentally as a peak in the corresponding dynamical susceptibility a>S(k, a>) and shifts

to lower frequencies as the temperature falls. For Y-CSZ, its appearance has been noted

as peak in s', the dielectric loss factor (Chen and Sellar, 1996).

In terms of the normalized autocorrelation function <P, the MCT in its simplest form may

be expressed as the solution $>(k,t) of the generalized Langevin equation

(3.3)

the first three terms of which may be considered to be those of an equation for a damped

simple harmonic oscillator (in this case the autocorrelation function) with a fourth term

added representing relaxational memory effects. The undamped oscillator frequency Q.

kBT
is given by Qr =o0k I S(k) and o] = —̂— , where u0 is the thermal velocity.

m
Taking the Laplace transform <b(k, z) of the autocorrelation function
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,z) = ijexp(izt)®(k,t)dt (3.4)

where Im Z >0,

a relatively simple expression for O is obtained

Q>(k,z) = -\/{z-Q.2(k)/[z+M(k,z)] (3.5)

For the ideal case, in which the couplings to currents and to fluctuations of the energy are

ignored, the memory kernel M(k, t) may be approximated as

l 0 + - (3.6)

The "vertex terms" vu) are expressible as function of S(k) and are therefore dependent

on temperature and density.

In the comparatively straightforward representation above, the theory in its simplest form

retains only pair products of the microscopic density and the memory function reduces to

a function quadratic in O(Ar, /), providing a non-linear feedback mechanism. When the

foregoing two equations above are solved simultaneously, it is found that the correlation

functions do not necessarily decay to zero in the limit of long times, tending instead

towards a positive value known as the Edwards-Anderson (EA) order parameter, to be

introduced in the next section. Such behavior in the correlation function for a glassy

material indicates that the material retains some memory of its earlier states and is

therefore "non-ergodic", whereas a zero value for the EA order parameter would indicate

that the dynamical system visits every available state equally, or "ergodically". The ideal

freezing process described above has therefore been described as an ergodic/non-ergodic

transition and is identified with the MCT, considered, as we have seen, to occur in some

materials at a temperature TL above the glass transition Tg. Considerable controversy still

surrounds the MCT and its predictions. It is generally considered, however, to offer a

reasonable qualitative description of the dynamical phenomena occurring in supercooled

liquids at temperatures about 25% higher than Tg (K). For a derivation of the equations

described above and recent reviews of the MCT see Gdtze and Sjogren (1992).

The "simplest" version of the MCT described above is incomplete, however, as we have

noted. It predicts the complete glassy freezing of the large-scale collective structure

rearrangements in the supercooled liquid and that the a-relaxations cease completely at

TL. In fact, the familiar calorimetric glass transition at Tg plays no role whatever in the
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simple form of the MCT as recently developed, which ignores the possibility of locally-

activated processes leading to jump diffusion of atoms between sites in the disordered

matrix, so that a-relaxation can continue below TL rather than halting altogether at TL as

predicted by the simple ("ideal") MCT theory outlined above. Some mechanism of this

kind must be in operation in real glasses, including fragile ones, since the experimentally

detected a-oscillations are not observed to undergo sudden and total structural arrest.

Two other key predictions should mentioned, however, which are deduced from the non-

linear feedback mechanism. These are that the structural arrest process is wave-number

independent and that all other two-point correlation functions between quantities related

to the density fluctuations will exhibit variations at TL due to the MCT, so that as well as

diffraction phenomena, dynamical critical behavior should be observable in such thermal

and mechanical properties as the specific heat and coefficient of expansion of a glassy

specimen. The application of the MCT to describe mode-coupling behavior in CSZ will

be given in later chapters.

3.3 Spin Glasses, Orientational Glasses and Structural Glasses

There is at present no established theory available to describe the behavior of structural

glasses or liquids cooled into the supercooling range. A great deal of theoretical effort in

the last twenty-five years has concentrated on an analogous topic whose connection with

"real" glasses may seem tenuous at first. This topic refers to the class of disordered

magnets known as spin glasses. It involves the theimodynamic and kinetic study of the

collective behavior of localized (atomic) electron spin dipoles belonging to certain

magnetic atoms randomly substituted on the lattice of a non-magnetic host metal, e.g., an

1 mole % random solid solution alloy Fe (which is magnetic) in a matrix of Au (which is

not). The net magnetization of such an alloy displays metastability and irreversibility

somewhat like that of structural glasses, and hence has been called a random magnet or

spin glass (SG). In the geometry of spin glasses, since the magnetic interactions of the

randomly-placed magnetic atoms is oscillatory as a function of distance in the lattice (e.g.

as in the RKKY Ruderman/Kittel/Kasuya/Yosida interaction), magnetic disorder arises

among the spins due to the fact that pairs of spins which are differing distances apart in

the non-magnetic matrix will be neither completely in a state of mutual ferro-magnetic
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exchange nor completely in a state of mutual antiferro-magnetic exchange when all their

disordered pairwise interactions are added. If we characterize them as disordered Ising-

type spins (i.e., as localized magnetic dipoles, each situated on a randomly-placed dopant

atom, modeled as small arrows with up-down, plus-minus reflection symmetry as in Fig.

3.2a ), then below some temperature, they will freeze into a glassy configuration like that

in Fig .3.2b. If a snapshot of a structural glass can be said to look like a snapshot of a

liquid then the snapshot of an SG can be said to resemble that of a paramagnetic i.e., a

ferromagnetic material held at high temperature, where thermal fluctuations have

overcome the ordering effect of the exchange energy, so that no long-range magnetic

order remains.

Ising - type exchange (Schematic)

A A A A A A A A A A A A A A A A

PAVYVYYYYVYVYVYVYYYVYVYVY\^^
W W w w w W w V » w w » w w w w v

Figure 3.2a Ising Antiferromagnetism

t
w w w V v v V T

Figure 3.2b Ising Spin Glass

Figure 3.2c Ising Ferromagnetism
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The Hamiltonian (total energy function) of a ferromagnetic in the Ising picture is given by

itsrsJ (3.7)

where s. is the (vector) magnetic dipole at lattice point / and J {j is the exchange coupling

term, positive for ferromagnetism and negative for antiferro-magnetism. Note that the

Ising model itself, though crude as a model for magnetic materials, is purely deterministic,

with no randomness of exchange, so that the metal described possesses only one type of

exchange coupling term J and that this J is uniform throughout the lattice, i.e.

H{Ising) = - / £ srsj (3.8)

In a spin glass, however, the Hamiltonian representing the sum of the potential energy due

to all pairs of magnetic spins at their random positions on the lattice of the non-magnetic

host includes random exchange couplings between all the pairs, due to the oscillatory

magnetic interaction potential. In 1975, Edwards and Anderson made the observation

that, regardless of chemical or physical source, the random character of the Hamiltonian

for all types of metal-alloy spin glasses (e.g., Fe-Au) could be usefully summarized by the

following expression

ijsi-sJ (3.9)

where Jy is now approximated by a normally-distributed random variable instead, as

before, of some oscillatory function gradually reducing in magnitude with distance in the

lattice. The new "effective coupling constant" Jtj becomes a phenomenological variable,

mathematically tractable but no longer specifically related to any real random magnetic

system. As we shall see, J.j remains, however, a very useful parameter in the

classification and discussion of glassy behavior in stabilized zirconia. An accessible and

up-to-date reference for spin glasses and related materials is the book by Fischer and

Hertz (1991).

Two further fundamental points regarding behavior seemingly common to all SG

materials should be mentioned in this introduction, to be referred >o later in discussions of

the observed behavior of stabilized zirconia. These are the related properties of

disordered ferro- and antiferro-magnetism and of frustration. In brief, if in a real

magnetic material the exchange interaction is oscillatory, then the individual randomly-

placed magnetic dipoles, while able to flip, may not be able to satisfy all their energy
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minimizing exchange requirements on account of the conflicting ferro and antiferro

"signals" from the oscillatory exchange interaction. The spin configurations become

metastable, spin-flipping for long periods in search of a unique minimum-energy

configuration. This situation is known as "frustration" of the spins. For the three-

dimensional Ising spin glass with ferro and antiferro interactions it is believed that an

equilibrium phase transformation takes place. An appreciation of the character of

frustration may be gained even in the non-random case by considering the simple

triangular array of antiferro-magnetically coupled spins situated in Fig. 3.3. The

implication is clear. To minimize the total potential energy of the array, it is not possible

to conclude whether the third Ising spin should point up or down. It is therefore

frustrated. See (e.g.) Toulouse (1977). Whereas the mode-coupling theory (MCT)

concentrated on the density-density autocorrelation function F{k,t), Edwards and

Anderson (1975) suggested the following expression as the most natural order parameter

for the breaking of ergodicity in spin glasses with Ising (up-down) symmetry

54 «-»«£->«L\ / o y o /4,v (3.10)

where the average is over an infinite set of reference times t0 and N is the total number of

spins, i.e. the relevant Edwards-Anderson order parameter for spin-glasses is the long-

time autocorrelation function for magnetic spins randomly arranged on a lattice, whereas

that for structural glasses is the long-time autocorrelation function for density fluctuation

in the cooling liquid (or melt). Similarly, whereas the spin-glass EA autocorrelation

function can be considered to be the local mean-square magnetization of the spin, in the

structural glass case the EA autocorrelation function is related to a local Debye-Waller

function.

I

Orientational Glasses

An important extension of Ising-type SG for the present experiments is that of the

orientational glass. In this case the number of components of the generalized spin can be

extended beyond the two (up and down) appearing in the Ising case. Instead the number

of spin components may now assume any integer value n, becoming (in the non-random

case) the "n-component Potts model". Of course, the simple up-and-down inversion

symmetry is now lost, however. In the glassy case, where disordered n-component
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"spins" may occupy the lattice sites at random, the array is called a Potts glass. Gross et

al (1985) have shown that an equilibrium phase transformation may be expected in this

type of material as well. For the number of components greater than four, this transition

is considered to be first order. In several papers published in 1987 and 1988, Kirkpatrick,

Thirumalai and Wolynes pointed out that, despite one model being formulated on a

lattice, many close formal similarities exist between dynamical (kinetic) prescriptions for

the Potts glass model without reflection symmetry and the MCT for the structural glass

i.e., that each of the models should display both the Leutheusser-type mode-coupling

transition and the Kauzmann-type "entropy crisis" transition. This is a remarkable result

since spin-glass-like systems such as the orientational glasses just discussed are considered

to have their structural disorder "quenched in", i.e., the positions of the impurity or

dopant atoms (and hence the spins) are fixed in time by some high-temperature

preparation, unaffected by "annealing" of the alloy in the supercooling region, which is

considered to be at a much lower temperature. Structural glasses, by contrast, are not

considered to contain any such quenched disorder. Since the aim of the present work is

to describe the properties of stabilized zirconia in terms of a generalized orientational

glass to be outlined in the next section, the point that needs to be made here is that we can

expect CSZ to behave in a way very similar to that of a "real" (structural) glass with both

Leutheusser and Kauzmann-type transition in principle observable. Even if the latter turns

out to be inaccessible, then the usual calorimetric or dilatometric dynamical transition to

be expected at Tg should still be detectable, as in other glasses.

Fig. 3.3 Illustration of frustration on triangle of antifcrromagnctic Ising spins.
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3.4 A Description of the Allpress-Rossell Model for CSZ in Terms of the VKZ

Orientational Glass Theory

All the spin-glass or orientation glass systems studied so far in this thesis have had their

dipolar "spins" placed randomly on an essentially rigid lattice. In order to compare

predictions from a realistic model with experimental diffraction results from CSZ, it is

necessary to find a formulation of the problem which tests the Allpress-Rossell

microdomain model. Gross, Kanter and Sompolinsky demonstrated that a glassy model

with n-component "elastic spins" could be found with properties very similar to those of

the n-component Potts orientational glass. This model is called the n-component

quadrupolar glass (QG) in which the "spins", here modeled by the principal axes of

uniaxial elastic quadrupoles, can point in a finite number of different directions on a rigid

lattice. It differs from the Potts glass chiefly in not attaining a completely frozen state.

The final step in linking lattice-based spin-glass-type theories to CSZ is taken by allowing

the lattice to become deformable. The consequences are clearly in evidence in the

experimental behavior of CSZ. Several theoretical papers were published early in this

decade on the topic of orientational glasses in deformable materials ("mesoscopic

elasticity") and we will later use their results in a very direct way to interpret our

experimental data.

Grannan, Randeria and Sethna (1988, 1990) (GRS) were able to show computationally

that two randomly-located uniaxial elastic quadrupolar defects embedded in a

homogeneous elastic medium will tend to order antiferro-elastically into a "tee" ("T")

configuration at low temperatures with the principal axis of one of the two quadrupoles

parallel to a line joining their centers and the principal axis of the other quadrupole

perpendicular to the line, as in Fig. 3.4b. They further showed that such a configuration

would lead to frustration if a large number of these elastically interacting defects were to

occupy the sites of a three-dimensional Bravais lattice. In a deformable medium with a

finite concentration of such randomly-placed defects on a Bravais lattice, a certain

fraction of defect pairs will, they showed, interact ferro-magnetically as well, with parallel

alignment of quadrupole orientations as in Fig. 3.4a. Thus, the systems considered by

GRS appear to possess all the essential properties of a spin-glass model i.e., randomly

mixed ferro- and antiferro- configurations and subsequent "spin" frustration. Strong
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evidence for the "tee" configuration in room temperature diffraction patterns from CSZ

will be presented in chapter 5.

Ferroelastic

"tee"

;

i

antiferroelastic

Fig. 3.4 Ferroelastic and antiferroelastic "exchange" between pairs of reorientable

defects in a plane.
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The VKZ theory (general)

The theoretical paper whose contents are to be described below ("Discrete-state models

of orientational glasses" by H. Vollmayr, R. Kree and A. Zippelius (VKZ), 1991) is

probably the most important single reference for the whole thesis, describing the phase

equilibria and elastic properties with structures like cubic zirconia where the

microdomains may be realistically modeled by elastic quadrupoles.

Extending the GRS theory, Vollmayr, Kree and Zippelius (VKZ) consider reorientable

quadrupolar elastic defects embedded in an elastic matrix, only this time the defects are no

longer point-like. Now they are considered to be coherently intergrown with a

crystallographically cubic, cieformable elastic matrix, just as in the Allpress-Rossell

model. As before, the defects may be modeled as uniaxial elastic quadrupoles, but, being

crystalline atom-vacancy complexes some tens of Angstroms across ("mesoscopic")

embedded in a cubic matrix, the orientation of the defects with respect to the axes of the

matrix are restricted by the host's lattice anisotropy.

VKZ considered three crystallographic possibilities for the lattice anisotropy with discrete

sets of allowed orientations only. Thus, the defect may be parallel to the host's four-fold

cubic axes (VKZ case A), parallel to the host's body diagonals (case B), or parallel to the

host's face diagonals (case C). With those restrictions, VKZ studied the elastic

interactions between randomly-located pairs of quadrupoles aligned as in case A, B, or C.

As we shall see, VKZ were able to demonstrate that both glassy and homogeneous elastic

phases could be generated by the three-state (case A), four-state (case B) and six-state

(case C) defect models at low temperature, depending on the model parameters.

The VKZ theory (model building and approximations)

Though most of the experimental results to be presented in this thesis involve Y-CSZ

(i.e., zirconia stabilized by yttria (Y2O3) at various dopant concentrations, an initial

description of the correlation between theory and experiment is most simply displayed by

considering the behaviour of Ca-CSZ (calcium-stabilized zirconia). In the Ca-CSZ case

the six possible orientations for the unique b-axes of the crystalline line phase
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03 (CaZr4O9) correspond closely to the six "orientation states" of VKZ case C. The <f>x

microdomains are now considered to be quadrupolar defects reorientable by means of a

locally reconstructive diffusion process.

As we have already noted, the VKZ theory introduces a class of model for systems of

rigid, immobile, reorientable defects randomly located on a deformable cubic lattice, to be

described only at a semi-microscopic level. The defects are considered to possess uniaxial

symmetry, so that the orientational configurations may be characterized by a unit vector

d. The computational method of VKZ involves the calculation of the partition function

from an effective Hamiltonian. At this point it is appropriate to discuss several of the

approximations made in the VKZ derivation of the long-wavelength elastic properties of

the model because in a real material the disorder quenched in leads to large fluctuations

on microscopic length scales and the reorientation of defects near transition leads to

anharmonicity, neither of which is treated within the theory. A concept used in

constructing the VKZ theory and crucial for the interpretation of some of the present

experimental work is the connection linking phase transformations with universality and

the renormalization group. Briefly, the main aspect of universality is that as the

temperature is lowered to correspond to that of an approaching phase transition and the

paramagnetic spin-flip process slows down, the correlation length (i.e. the maximum

distance between spins with highly-correlated spin-flip fluctuations) will grow, in principle

to infinite size at a second-order transition, but to large finite values in general. In such a

"critical" state there are correlations between spins on all scales a^d the susceptibility of

the spin system to external fields becomes large. The correlation length is now the most

important scale in the system, much larger than the unit cell length and larger than any

phenomenological "coarse-graining" length corresponding approximately to the size of

the Allpress-Rossell microdomains. Two parameters now govern the phase

transformation: the dimensionality of the order parameter and the dimensionality of the

space in which the order parameter transforms. What this means for transitions in

zirconia is that the apparent discrete set of microscopic orientations (e.g., VKZ's A, B or

C anisotropies) may not turn out to determine the resultant low-temperature structure,

due to changes in the anisotropy potential while the correlation grows as the transition is

approached. For a clear introduction to universality and the renormalization group

including phenomenological "coarse-graining" and effective Hamiltonians see the book by
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Pfeuty and Toulouse (1977). Such a phenomenological approach is necessary so that

long-wavelength terms due to elasticity may emerge relatively simply in the effective

Hamiltonian. So, with the remarks above in mind, we assume that near an equilibrium

spin glass the correlation length of thermal orientional fluctuations is large enough so that

a relatively simple effective Hamiltonian is operative and that the following

approximations hold. This discussion follows closely that of the original VKZ paper,

(i) The ranges of all inter-atomic forces are small compared with that of the coarse-

graining length, which is in turn small in comparison with correlation length of the

long-wavelength critical fluctuations

(ii) On mesoscopic length scales the effective Hamiltonian will be a quadratic function

of the displacements, displaying essentially harmonic behavior throughout

(iii) Under universality, near a phase transition the Hamiltonian contains a term

describing the local anisotropy, restricting orientational fluctuation to a discrete

set of states, corresponding to the absolute minima of the anisotropy potential on

the coarse-graining scale. For the purpose of interpreting the results of Chapter 5

it is important to note that, as VKZ point out, under the operation of the

renormalization group, the absolute minima of the anisotropy potential may

change when approaching the transition, and that at criticality the resulting

anisotropy is not necessarily the one to be expected from microscopic

considerations.

The simplest effective Hamiltonian studied by VKZ takes the form

(3.11)

where x is a position coordinate on a cubic lattice. The terms under the first summation

represent the elastic parts of the Hamiltonian involving the states of stress and strain in the

matrix and of the interaction between the defects with the matrix. The term under the

second summation represents the interactions of the randomly-located defects with each

other, i.e., it is the spin-glass part of the Hamiltonian.

In detail the coarse-grain terms in the effective Hamiltonian are:

£ij is the local strain tensor.

<Jtj is the local stress arising from a defect in the orientational state d(x).
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C°w are the bare elastic constants (i.e. not renormalized by the long-range interactions at

criticality) on the mesoscopic coarse-graining scale. Here, bare means the elastic

constants operating before the spin-glass-type interactions are switched on in the

low-temperature phase.

u(d(x)) denotes the local anisotropy energy.

The spin-glass-type coupling term J^ (d(x), d(x')) between the defects is considered to

be random due to the random placement of the defects. As mentioned before, GRS

determined that quadrupolar interactions between two defects in a homogeneous elastic

medium would tend to order the defect orientation in a "tee" configuration.

VKZ considered anisotropy potentials with absolute minima in the directions of three

equivalent sets of cubic symmetry axes, i.e., the (lOO) directions, the (l 11) directions and,

in the case of interest here, the set of six two-fold axes parallel to the face diagonals of the

cube, i.e., the (HO) directions.

The effective Hamiltonian then becomes

1 1
+-*

where the superscripts ju,v each range from I to 3, 4 or 6, depending on whether the

VKZ crystal anisotropy A, B, or C is under consideration. The occupation or dilution

variables nM(x) are equal to unity if the defect at position coordinate x is in the

orientational state ju and is zero otherwise. The extra stresses introduced by the uniaxial

defects are denoted by C .

In the anisotropy case A, with defect axes parallel to one of the four-fold directions, e.g.,

[100], the "extra stress" tensor is of the form (model A)

2
<J0+-a

3
0

0

0

]_

3

0

0

0

(3.13)

where (TQ is a (diagonal) isotropic stress term.
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If the defect axis is body-diagonal, with d parallel to [1 1 1] as in case B, the extra stress

tensor takes the form (model B)

a =

an -a -a
- O " <J« (3.14)

For face-diagonal defects, VKZ computes the extra stress tensor for a defect with unique

axis parallel to d =[011] (model C) as

'cr0+2o-L 0

0 cr0 -aL

0 crT

0

Note that the factorization of the term

(3.15)

), </(*')) to J % n1'{x)nv {x') makes the

VKZ calculation essentially an Edwards-Anderson-type treatment of the interactions.

Results from the VKZ model

The Vollmayr-Kree-Zippelius (VKZ) theory for discrete-state models is lengthy and

notationally complex, but essential for our discussion of the Allpress-Rossell model of

CSZ. Having established the relevant notation for important quantities and surveyed the

main approximations of the theory, we now quote the results of importance for

comparison with the experimental results to be reported later.

The main results of the VKZ paper are in the form of the elastic stiffness constants of the

models and various phase diagrams corresponding to the models. Depending on the

strength of the interactions between the quadrupolar "spins", i.e., on the magnitude of

J^., the crystal can transform either to another homogeneous crystalline phase of lower

symmetry, or it can transform to a glassy state with zero net distortion. For the face-

diagonal six-state glass case there are two possibilities for the local distortion, depending

on two Edwards-Anderson order parameters, #+and q~, corresponding to local

tetragonal order and local orthorhombic order respectively. In the literature survey, as we

have seen, it appears that only the order parameter q* is non-zero in CSZ at ordinary

pressures.
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VKZ demonstrate that when the equilibrium phase transition temperature is approached

from above, the elastic stiffness constants soften, but restiffen below the transition

temperature. We will see that mode-coupling sets in experimentally at a te/nperature

some 20-25% higher than VKZ's equilibrium temperature, in line with the predictions of

sections 3.2 and 3.3 of this thesis, which makes the restiffening more gradual. The effect

is brought out clearly in the x-ray and neutron diffraction experiments in chapter 6 and 7.

3.5 Further Orientational Glass Theories with Results Relevant to the Present

Experiments

C.C.Yu (1992) has also published a theory relating to phase transitions among interacting

elastic defects. Using an approach somewhat like that of GRS, where the important

interactions are those between the "spins", mediated by short-wavelength lattice

distortions, Yu finds that two equilibrium spin-glass-like phase transitions occur: one for

the diagonal components of the defect stress tensor and the other for the off-diagonal

components. The quenched ground state of the off-diagonal components exhibits

antiferro-elasticity wliile the diagonal components do not. The temperatures at which

those transitions occur are widely separated on the temperature scale (Yu, 1992). Under

the approximations made, the two transitions take place at

Tr_ « 0.32 J

T c + « 0.42 J

where Tc_ represents the off-diagonal antiferroelastic phase transition, which would

results in "tees" on the places in Ca-CSZ. Tc. is the transition temperature for the

normal strain terms. J, of course, is a phenomenological Edwards-Anderson-type

coupling strength term, which serves to fix the overall temperature scale. At their

respective temperatures, the fourth-order elastic susceptibilities associated with the

defects can be considered to diverge.

A mode-coupling description of the dynamics which would correspond adequately to

coupled components (i.e., the reorientable defects and the distorted zirconia matrix) in

CSZ has been provided by Franosch and Gotze (1994).
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Briefly, the Franosch-Gotze theory states that in a structural situation such as that

believed to occur in the Allpress-Rossell model of CaSZ (calcia-stabilized zirconia),

where interacting quadrupolar defects can "rotate" between the six equivalent (HO)

directions as described by the VKZ theory, it is considered that a MCT-type structural

arrest appears in the cc-oscillations of the tetragonally-distorted cubic pure zirconia

between the microdomain "rotors", which is initiated by an equilibrium phase transition

among the (<f>x) rotors. As the <j)x rotors (i.e., the reconstructively reorientable

microdomain defects) become more antiferro-elastically correlated on the {100} planes of

the cubic lattice as T falls below Tm, the rotors increasingly form a rigid "cage" around the

distorted cubic material so that its tetragonality (and hence its Edwards-Anderson order

parameter) increases until an equilibrium orientational glass transition occurs at TOG- In

the Franosch-Gotze model A (for two-component glasses and ionic conductors like

CaSZ), the EA order parameter immediately takes a sharp upward turn at a temperature

corresponding to the equilibrium transition TOG, which then is also identifiable as the

Leutheusser temperature TL i.e., the onset of mode-coupling regime. The modes involved

in this case are density fluctuation modes; the gradually tightening antiferro-elastically-

locked rotors of the cage arrest the ferro-elastically oscillating ct-wave in the tetragonally-

distorted cubic matrix. The source and precise oscillatory character of the glassy ct-wave

is not known, but Chen and Sellar (1996) have associated it with the distorted matrix in

the YSZ case as well, in electrical experiments to be described in the next chapter.

Franosch and Gotze have given a plot of the EA order parameter/Debye-Waller

factor/non-ergodicity parameter as a function of MCT control parameters in their 1994

paper which we reproduce in Fig. 3.5.

1.0

0.5
The

q=1

non-ergodicity

— -??~~~

parameter/,, ^ ^

-1.0 -0.5 0.0 0.5 1.0
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Fig. 3.5 Edwards-Anderson order parameter as a function of temperature for the cage

rotors (q=l) and the distorted matrix (q=2).

The non-ergodicity parameters represent the long-time values of the correlation functions

for the rotors and for the matrix. In the plot shown, the temperature decreases to the

T
right. The abscissa of their plot can be considered to be 1 . The upper curves (q=l)

represents the non-ergodicity parameter of the cage rotors and the lower curves that of

the distorted matrix (q=2). Note that as the temperature falls below TL (their zero

coordinate) the non-ergodicity parameter curve flattens out; this shape is called the

"square-root cusp". The continuous curves (q=l,2) correspond to the "ideal" MCT glass

transition, where no a-wave motion persists below TL. The dashed curves represent the

refinement mentioned earlier in chapter 3, where hopping motion is allowed, which partly

restores ergodicity and permits oc-oscillations to persist below TL. We will make direct

comparisons with the dashed (q=2, matrix) square-root-cusp "hopping-smeared" curves

shown here and quasi-elastic neutron diffraction data to be presented in chapter 7.

We have attempted in this section to link the orientational glass temperature TOG of the

rotors with TL, the Leutheusser transition temperature corresponding to the structural

arrest of the matrix, by means of the mode-coupling theory (MCT). It is tempting to seek

some "scaling regularities" in some of the phenomena that have been discussed: in

particular, the non-rigorous "scaling" of the two temperatures corresponding to diverging

fourth-order elastic susceptibilities described be Yu (1992). Using the approximate

identity of TL and TOG (here, Yu's 1992 lower planar-antiferro-elastically ordering TQ.),

suggests that

T t * — T *-.-T *16T «Tc 0.32 c" 3 4 * 8 m

where %Tg is the approximate empirical value for TL, as mentioned earlier in this

chapter although without rigorous foundation. This simple observation prompts

consideration of the idea that the temperature associated with the onset of the paraelastic

regime for the rotors and strong ionic conduction of oxygen ions and vacancies through
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the matrix may be in some way connected with the divergence of the fourth-order elastic

susceptibilities of the rotors themselves, corresponding to the upper transition Tc.

identified by Yu (1992) for the diagonal elements of the defect (rotor) stress tensors, at

least in fragile glasses.

3.6 Summary

We summarize briefly here the results from this chapter most likely to undergo test in the

forthcoming experimental chapters.

If the Allpress-Rossell model of Ca-CSZ, cubic zirconia stabilized by calcia, is well-

described by the VKZ six-state model and extensible to Y-CSZ, then several hitherto

unrecognized phase transitions should become apparent in experiments conducted using

thermal or mechanical probes, or in diffraction experiments which capture the long-term

behaviour of the density-density autocorrelation functions. It should therefore be possible

to detect the "forbidden" tetragonal diffraction spots in electron diffraction experiments

on thin, well-oriented single crystals of CSZ, and to observe the vanishing of these spots

at high temperatures above that of the orientational six-state glass transition (chapter 5).

For powder experiments using X-rays, where usually only scatter due to the metals is

detectable, it should be possible to detect changes in the intensity of the diffraction lines

due to diffuse X-ray scatter out of the Bragg beams (attributable to effective Debye-

Waller functions) as a function of temperature to obtain information on the extent to

which the Debye-Waller function is wavenumber-dependent. The mode-coupling (MCT)

theory would predict it is substantially insensitive to wavenumber. Anomalously

dispersive X-ray diffraction could raise the scattering contrast between yttrium and

zirconium atoms in the YSZ matrix and supply metal-ordering data on the "rotating

species" in Y-CSZ. Whereas the VKZ interpretation of the Allpress-Rossell model as a

six-state glass with anisotropy corresponding to VKZ model C fits the known diffraction

data, it is not known for the present what exactly is rotating in the Y-CSZ case. This

question is answered in part in chapter 6.

The picture presented in this chapter of the microstructure of CSZ i.e., as temperature

falls, an increasingly rigid cage of antiferro-elastically-coupled defects causing structural
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arrest in the ion-conducting, ferro-elastically-oscillating matrix material (Franosch and

Gotze, 1994) is put to the test in chapter 7.

We finish this chapter with a review of the temperature ranges where critical phenomena

related to the glassy phenomena surveyed might be expected. To establish such a

framework we look ahead slightly to the results in the next chapter, where evidence is

presented for a glass transition near 400°C and a Leutheusser (MCT) transition near

650°C. This suggests that Yu's (1992) lower antiferroelastic transition between the

rotators at TQ_ will occur near 65O°C and that 7"c+, the upper phase transition involving

the diagonal terms of the extra defect stress tensor, will occur between 900 and 1000°C,

near Tm, the "melting" temperature of the distorted -tetragonal ion-conducting part of the

material, no longer "caged" by the quadrupolar defects which are now in a paraelastic

state. The supercooling regime is hence 500 -600°C in extent.
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CHAPTER 4

INDEPENDENT EVIDENCE FOR GLASSINESS IN YTTRIA-STABILIZED

ZIRCONIA

4.1 Introduction

The experiments to be described in the present work all involve diffraction of

neutrons, electrons, and X-rays. In the previous chapter, we have described the theory

to be used in interpreting such experiments and how it might support the assertion that

CSZ is a glassy material: in particular that diluted six-state orientational glasses are

likely to behave in a way similar to structural glasses.

There is no way to prove the connection between the diffraction data and glassy

behaviour except via the theory, which, as we have seen, combines several

approximations and assumptions. This is in part the reason why the alloy's glassy

character has not been identified earlier despite intense experimental probing over the

past twenty-five years. In this chapter evidence is presented of glassiness more

immedately recognizable to the materials engineer, some already published in the

literature. By "independent" in this context, we mean independent of the theory in

chapter 3 and independent of specific interpretations of diffraction data.

4.2 Early experiments

In 1976, Garvie noted that the thermal conductivity of CaSZ was low and nearly

independent of temperature, like that of a glass, identifying the random distribution of

oxygen-lattice vacancies as cause (Garvie, 1976), but did not refer to any mesoscopic

mechanism of glass transition. Walker and Anderson (1984) examined the thermal

conductivity, specific heat, thermal expansion and dielectric response of a

concentration series of ZrCVYaCb alloys in the cubic range, at temperature below

10°K. They found that in each case the results were consistent with zirconia's

harboring glassy low-temperature excitations attributable to the existence of

disordered two-level "tunneling" states in the material, but were not able to associate
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these states with any defects likely to arise form the "doubly disordered" random solid

solution model for CSZ. See also Ackerman et al (1986) and Lawless (1980).

All these observations were considered to support the idea that zirconia was extremely

disordered, but the authors did not connect the glassy behaviour at the time with

mesoscopic reorientable defects which might give rise to a spin-glass-type phase

transition of the type discussed in the previous chapter.

4.3 Recent Experiments

In 1996, using standard electrical measurements, Chen and Sellar conducted a

systematic yttria concentration series of experiments into the dielectric and

conductivity relaxations of single crystals of yttria-stabilized zirconia alloys, to study

the behaviour of dielectric properties and whether YSZ possesses the same

microstructure as CaSZ, for which direct high-resolution imaging had been possible

(chapter 2). The question to be answered in these experiments was whether the

structure of YSZ could also be partitioned into two parts:- a distorted cubic matrix

through which the oxygen vacancies move and reorientable mesoscopic defects whose

disordered collective interaction could cause an OG transition. In these electrical

experiments (Chen and Sellar, 1996) it was found that the dielectric properties of YSZ

decreased with increase of dopant, consistent with Allpress-Rossell idea that

essentially all the dopant cations went into the structure of the non-conducting defect

rather than the matrix, gradually choking off the ionic conduction pathways. It was

also found that a simple analysis of the measured dielectric loss factor appeared to

indicate that for 12 mole % Y2O3 dopant sample (in the stabilized cubic range, but of

relatively low dopant concentration), a loss peak corresponding to the a-wave would

be detected at temperatures below that considered to be the calorimetric glass

transition temperature Tg for YSZ (see next section). Hence a structural similarity

with CaSZ was established and evidence for glassy behaviour adduced.

Evidence from thermal experiments
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For the verification of a glass transition, most materials engineers would require

evidence from "simple" thermal experiments, i.e., the familiar calorimetric or

dilatometric experiments. These have been carried our and are described below.

(i) Specific heat at TE

In structural glasses a rise in the specific heat Cp of charactieristic shape is well

known to occur on heating through Tg, the "calorimetric" glass transition temperature.

An example of this dynamic phase transition is seen in Fig. 4.1 where an experimental

plot is displayed for freshly-prepared YSZ-18 powder.

g
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1.875 -

320 420

Fig. 4.1 Specific heat of YSZ-18

The Cp experiment was performed on a Perkin-Elmer DSC7 Differential Scanning

Calorimeter with a charge of 48 milligram and a (heating) scan speed of 5°C/min.

The transition begins somewhere above 320°C and finishes at approximately 1

Kcal/mole, typical of a structural glass transition. We takes this result as a

considerable vindication of the idea that fragile diluted quadrupolar glasses on

deformable lattices of the kind described in chapter 3 are thermodynamically very

similar to window glasses and that a phenomenon closely resembling a structural

glass transition occurs in YSZ-18 near 400°C.

Dilatometer traces
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These deductions may be sharpened somewhat by examining the results of a

dilatometer experiment conducted in a single crystal of ZKV12 mole % Y2O3 (YSZ-

12) cut so as to have the dilatometer axis (Adamel Lhomargy D124) coincide with the

[310] direction of the crystal. The scan rate is 0.5°C per minute.

THERMAL EXPANSION
of CUBIC STABILIZED
ZIRCONIA
(~12mole%Y203)

PARAELASTIC
MOBILE STATE

SUPERCOOLING REGION
(420°C - 885°C)

FROZEN
STATE

800 885 1200

Fig. 4.2 Dilatometer trace displaying the frozen, supercooling and liquid states for

YSZ-12.

We have attempted to demonstrate the alloys' glass-like behaviour over a temperature

range corresponding to the duty regime of Y-CSZ-based solid oxide fuel cells where

(if it were a glass) Y-CSZ should produce two breakpoints in the slope of a

dilatometer trance, delineating the frozen glassy state, the supercooling state and the

liquid state (here the paraelastic state of the rotors). Representative results are shown

in Fig.4.2. We identify the glass transition region to be above 400°C, with Tg

approximately 420°C, where the average slope of the dilatometer slope experiences a

sharp change and where Barkhausen-like noise phenomena commence during the

heating cycle. This noise, which persists throughout the supercooling region,
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possesses an apparent average period of the order of a few hours, which is six or

seven orders of magnitude slower than Y-CSZ's measured dielectric relaxation (Chen

and Sellar, 1996). The amplitude of the noise is roughly 5 microns. These

characteristics are very similar to those observed by Patkowski et al (1993) in the

supercooling range on heating a low-molecular-weight organic glass, which they

interpreted as the ultraslow relaxation of excess volume frozen in their as-received

glass specimen during cooling.

A considerable amount of dilatometric hysteresis exists between the heating and

cooling cycles even with heating and cooling scan rates the same. Beyond the

supercooling region above approximately 885°C, both curves converge somewhat. In

Fig. 4.2 this range corresponds to the paraelastic state of the rotors where unique-axis

orientation is rapid, corresponding to the liquid state in structural glasses. We identify

Tm here as approximately 885°C, where a small but sharp first-order phase transition

is observed during the cooling cycle in Fig. 4.2. the dilatometer trace slope changes

more abruptly at Tm than in the glass transition region. Under a wide variety of scan

rates and yttria concentrations, the ratio Tm/Tg for our samples approximates the value

1.6 cf. Kauzmann's average value of 1.5.

(Hi) Location of mode-coupling onset temperature

It was suggested in chapter 3 that certain empirical "scaling relations" appeared to

hold in the thermal behaviour of glasses, in particular the onset of the mode-coupling

regime, where orientational fluctuations among the elastic quadrupolar microdomains

are postulated to control the structural relaxation of the distorted cubic matirx. These

approximate relationships placed the mode-coupling temperature regime in the lower

half of the supercooling region, so that any sudden onset of structural arrest in the

matrix would be near 650°C. Manning et al (1997) have recently discovered that the

transport properteis of ZrO2-9.5 mole % Y2O3 undergo a relatively sharp change at

650°C of a kind that correlates well with an abrupt MCT-type structural arrest. A first

order phase transformation has been found in as-received single crystal of YSZ-15

when a small [110] oriented slab of this material is examined in a dilatometer. Fig.

4.3 demonstrates that on cooling such a specimen at 0.3°C per minute a sharp

transformation is observed near 650°C.
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Fig. 4.3 Detection of sharp phase transition in YSZ-15 near 650°C. Specimen size

reduction on cooling through the transition ~ 5u..

4.4. Conclusion

The need to conduct non-diffraction experiments, not requiring a complicated theory

for their explanation, has been satisfied in this chapter using calorimetric and

dilatometric experiments. Results of familiar type were presented in support of the

idea that the (usual) kinetic glass transition occurs near 400°C for yttria-doped

zirconia alloys of various concentrations and that mode-coupling behaviour appears

near 650°C as predicted by the crude scaling relations. Since the coefficient of linear

expansion depends inversely on the bulk modulus (see e.g., Walker and Anderson,

1984), the increase in slope of the dilatometer trace in Fig. 4.2 near 900°C suggests at

least a partial softening of the lattice, which we attribute to the liquid-like high-

conductance state of the cubic inter-domain matrix. Diffraction evidence in the next

three chapters offers considerable support for these conclusions.
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CHAPTER 5

ELECTRON DIFFRACTION FROM A SERIES OF STABILISED ZIRCONIA

ALLOYS

5.1 Introduction

As discussed in Chapter 2, Literature Review, a great deal of experimental evidence has

accrued regarding the diffraction patterns from different types of stabilized zirconia, and

the review contains references to articles with widely-varying interpretations of the

contrast. In this chapter we examine the diffraction patterns from major crystallographic

zones of CSZ as a function of dopant concentration, an approach apparently seldom taken

elsewhere in the literature, where almost every paper tends instead to concentrate on a

single dopant concentration, so that a concentration-series test of the Allpress-Rossell

model is not possible. Although a seemingly simple idea, the employment of a dopant -

concentration series in an earlier set of dielectric measurements (Chen and Sellar, 1996)

afforded a considerable insight into the dspc.ar character of cubic zirconia, as we saw in

Chapter 4. Our diffraction experiments as a function of dopant concentration will carry

out a similarly systematic search for the crystallographic character and microstructure.

5.2 Theory

In this section we attempt to explain the electron diffraction behaviour of cubic stabilized

zirconia (CSZ) as that of an orientational glass, with randomly-arranged (but

crystallographically reorientable) microdomains playing the role of Potts-glass-like

quadrupoles as explained in Chapter 3. The microdomains are embedded coherently in the

cubic matrix (as described in the Allpress-Rossell model), interacting via random elastic

"exchange'" (Gross et al., 1985). A few nanometers across, these reorientable "defect"

species are so strongly coupled elastically to the cubic matrix as to display collective

behaviour characteristic of structural (conventional) glasses. In Chapter 4 we
5-1
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demonstrated the typical frozen, supercooling and mobile regimes of a glassy CSZ

specimen in simple dilatometer experiments We link observed "critical points" to

recent published observations on the mechanical (Morscher et al., 1991; Baufeld et al.,

1995), diffraction (Martin et al., 1993; Proffen et al., 1993; Welberry et al., 1994; Hull et

al., 1988; Rossell et al., 1991) and transport (Badwal and Swain, 1985; Fischer, 1993)

properties of CSZ and structural glasses.

The microdomains (in Ca-CSZ, al least, where correspondence between structure and

diffraction is most clear-cut) are reconstructively reorientable Potts-like mesoscopic

rotors, able to orient their crystallographically unique monoclinic axis in any of the six

distinct (110) directions of the strained cubic host. The static version of our model for

Ca-CSZ then, is that of a dilute, deformable, six-state orientational glass (Vollmayr et al.,

1991) as explained in Chapter 3. Except for this crystallographically-constrained

orientability facilitated by short-range diffusion of dopant cations in the microdomains, the

model bears some resemblance to several other domain or cluster models of structural

glasses and glassy ionic conductors (Goodman, 1975; Ingram et al., 1988; Stillinger, 1988;

Kirkpatrick, 1989). Although the rotor's crystallographically unique axes may rotate

through large angles, the displacement of individual atoms in the microdomains is small.

The energy difference between a <|)i microdomain and an equivalent volume of disordered

"parent" phase through which it may transform ferroelastically during axis reorientation is

very low (Dwivedi and Cormack, 1990). We expect other zirconias to behave similarly

and not to depend too greatly on the details of rotor interaction near phase

transformations (Grannan et al., 1990): i.e., to belong to the same universality class.

As outlined in Chapter 3, in the Ca-CSZ case, the interaction between the <j>i rotors may

be modeled on a random array of frustrated elastic quadrupoles interacting via elastic

exchange, in which pair-wise configurations in the form of antiferroelastic "tees" are found

to predominate at low temperatures (Grannan et al., 1990): i.e., the unique axis of one of
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a pair of (j)i rotors will tend to align itself parallel to a line joining their centres, while

another will align perpendicular to the line, with the unique axes of both pointing along

<110> -type cubic directions. The pair-wise configuration of the rotors results in a

disordered locally tetragonal strain in the cubic matrix (Vollmayr et al., 1991), which ,

when the system is in the supercooling or completely glassy frozen state, v/ill produce the

"forbidden" 112 -type diffuse diffraction spots characteristic of CSZ at low temperatures.

These extra diffuse spots are the source of the "tetragonal" reflections in powder neutron

diffraction patterns of Ca-CSZ (Martin et al., 1993; Proffen et al., 1993) and the source

of the t" phase described recently as being "tetragonal without tetragonality" (Yashima et

al., 1994) in Y-CSZ and the cause of considerable confusion in the diffraction

characterization of many zirconia alloys, since other modifications (e.g., rhombohedral,

orthorhombic) are also possible, depending on the thermomechanical preparation of the

specimen (Martin et al., 1993; Hull et al., 1988; Vollmayr et al., 1991). In large Ca-CSZ

single crystals the diffuse tetragonal spots often go undetected due to random local strain

fields arising from matrix-microdomain unit cell mismatch (Grannan et al, 1990). The

strain is released in Ca-CSZ powders and the effect is anyway small in the Y-CSZ case,

for both powders and single crystals.

5.3 Experimental Details

The experiments were carried out in a Philips CM20 electron microscope operating at 200

kV and equipped with a GATAN double-tilt heating stage borrowed from the CSIRO.

The YSZ specimens examined are all single crystals of supplied by ZIRMAT

(Massachusetts USA) prepared by the skull-melting method. Similarly, the CaSZ

specimens were all prepared by Hrand Djevahirdjian (Monthey, Switzerland). The EM

specimens were cut by a diamond saw and thinned in a GATAN ion-beam thinner to

thickness suitable for EM examination. The nominal dopant concentrations are 9.5, 12,

15, 18, 24 mole% for YSZ, and calcium-doped samples with molar CaO concentrations of

12.0% and 14.6%.
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Most of the diffraction experiments were conducted at room temperature, although a

small number were conducted at higher temperatures up to 1000°C, in order to test the

predictions of the theory, which we sketch below.

5.4 Experimental Results

The electron micrographs in the following pages represent the experimental results of this

chapter. They are of three types.

(i) Room-temperature concentration series of Y-CSZ.

(ii) High-temperature micrographs of Y-CSZ

(iii) Room-temperature patterns of Ca-CSZ.

Our aim is to describe the various types of contrast visible in the patterns and examine

how the contrast changes with concentration, and in some cases with temperature. In line

with the Allpress-Rossell model, we consider that an increase in dopant corresponds to an

increase in 4>i-like rotor concentration and a corresponding decrease in the

cubic/tetragonal ZrO2 matrix material.

The main types of contrast are:

(i) Bragg spots: strong scatter from the average lattice.

(ii) The extra 112 tetragonal superlattice reflections visible in [110] and [111] axis-

oriented diffraction patterns,

(iii) Characteristic circular diffraction rings in [112] projections.
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(iv) Bow-tie-shaped diffuse scatter visible in [110] projections.

(v) Hexagonally arrayed mushroom-shaped diffuse scatter radiating from the 220

Bragg diffraction spots in <111> projections,

(vi) Broad diffuse streaks between 002 and 020 diffraction spots and the reciprocal

space origin 000 spot in (100) projections,

(vii) Fine streaks of diffuse contrast of circular or lemniscate shape, visible in several

projections.

The origins of several of these different types of contrast are already reasonably well

understood and have been referred to in the literature review (Chapter 2), and as outlined

below.

Comments

(a) The strong f.c.c.-type Bragg spots are what are expected from an alloy whose

average structure is the fluorite structure. We do not expect the appearance of

these spots to change much with yttria concentration and to change little with the

temperatures available in our experiments.

(b) The striking characteristic rings of diffuse scatter in the (112) projections of CSZ

alloys with various dopants: Miida et al (1994), Withers et al (1991) have

described the ring contrast in terms of the microdomains found in CSZ. Hence, if

the microdomains indeed contain the dopant cations as suggested by Allpress-

Rossell model, the relative intensity of the rings should increase with dopant

concentration.

(c) The mushroom-shaped diffuse scatter in (11 i> projection diffraction patterns and

the bow-tie-shaped diffuse scatter are attributable to the microdomains and

therefore should grow brighter and clearer as the concentration of dopant

increases.
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(d) The fine complex patterns (circles, lemniscates, ellipses, etc.) found in several

projections have been attributed to Huang-type scatter by Chaim and Brandon

(1984) and attributed to defects with trigonal symmetry, which may be considered

as part of the complex structure (but not the whole of the structure) of

microdomain constituents like fa. Their appearance is indicative of cation

disorder.

(e) Perhaps the most puzzling aspects of the diffraction patterns of CSZ is the

appearance (at low dopant levels) of a "superlattice" of small diffuse spots

corresponding to tetragonal symmetry. Miida et al (1994) have conducted tilting

experiments of Y-CSZ specimens in the electron microscope, revealing that most

of the tetragonal spots are due to double diffraction from a small set of essential

tetragonal spots with index 112 and its five equivalents. We shall pay particular

attention to those spots in what follows.

(f) Finally, it should be remarked that few commentators have deduced definite

attribution to any particular lattice defect for the case (vi) of the broad, cross-

shaped diffuse scatter, found in (100) projections. This contrast emerges with

relative clarity in electron diffraction because of the great sensitivity to symmetry

breaking that its strongly dynamical character allows. It will prove to be of crucial

importance in our interpretation of the diffraction patterns in terms of the

microdomains and is intimately linked to the interpretation of the 112 -type

tetragonal diffraction spots.

Each of the following sets of micrographs consists of diffraction patterns form single-

crystal Y-CSZ specimens in the [111], [110], [112], and [100] projections, with the Y2O3

dopant concentration constant for each set: the set of four shots is usually taken from the

same ion-beam-thinned crystal. The temperature is room temperature unless otherwise

stated. We now follow the changes observed in the different types of diffuse scatter,
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paying particular attention to which types grow ( and which fade) with change in dopant

concentration.

9.5 mole% Y2O3 doping level (YCZ-9.5)

This is the least-heavily doped of our commercially available crystals. We consider

(following Allpress and Rossell, 1975) that as dopant is added , the microdomains grow in

number but not in size, i.e., that diffuse diffraction due to the microdomains intensifies but

need not become any narrower in reciprocal space. Hence, the [112] projection rings are

very faint at this concentration, which is near the lower limit of cubic stabilization (8 mole

% Y2O3).

The [111] "mushrooms" and [110] "bow-ties" do not emerge clearly at this concentration,

but there is clear evidence for the 112 family of "tetragonal superlattice" spots in the [111]

and [110] projection diffraction patterns. As we shall see this is evidence that the 112-

type spots do not originate directly form the microdomains themselves V*ut from the

background of tetragonally distorted cubic material. The [100] projection diffraction

pattern reveals little complicated diffuse scatter and no trace of 112 -type tetragonal spots.

It does, however, show a faint but discernible cross-shaped pattern of broad diffuse scatter

which does not extend very far past the 020 or 002 spots.

12 mole% Y2O3 doping level (YSZ-12)

The [112] projection "rings" become much more pronounced and the [110] bow-ties now

appear: the [111] projection diffraction pattern appears to have developed diffuse streak

contrast between the 220 -type diffraction spots but this is due to the development of the

hexagonal streaks emerging from the spots.
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In between the hexagonal streaks ( the precursors, as we shall see, of mushroom-shaped

contrast at higher dopant concentrations) faint 112-family spots are still visible in the

[111]projection at this concentration, evidence for the fact these "superlattice spots" are

not due to remnant tetragonal precipitates as is sometimes suggested, since at 12 mole%

Y2O3 we are now completely in the single-phase cubic region, well clear of the

cubic/tetragonal two-phase region according to any reliable phase diagram. Our high-

temperature experiments will be conducted on 12 % specimens for this reason.

The 112-type superlattice spots formerly plainly visible at 9.5 mole% Y2O3 which sat at

the intersection of the very faint "bow-ties" in [110] patterns at that concentration are now

very faint and diffuse, whereas the "bow-ties" are much clearer. This appears to indicate

that the "superlattice" vanishes as dopant concentration increases, again identifying the

cubic/tetragonal matrix as the source of the "superlattice" scatter and that the "bow-ties"

contrast originates from the microdomains, since it increases with dopant concentration.

The cross-shaped diffuse contrast visibk in the 9.5 mole% Y2O3 specimen is seen to

increase in intensity in the 12 mole% diffraction pattern, suggesting its origin as scatter

from the microdomains. It should be pointed out that due to the dynamical (multiple-

scattering) character of electron diffraction, direct comparison of contrast levels in

diffraction patters from specimens of differing thickness is difficult. In a given projection,

similarity in brightness of the Bragg spots might be a guide to the direct comparability of

diffuse contrast between concentrations or temperatures, but features can be lost from the

micrograph if the exposure is not long enough. In the [111] projection diffraction pattern

for 12 mole% Y2O3, for example, the Bragg spots are very bright due to a long electron

microscope exposure for the purpose of demonstrating the persistence of the 211 family

of superlattice spots.

As seen in the [111] projection diffraction pattern of the 12 mole% Y2O3 CSZ set, this

long exposure has also revealed the otherwise very weak ring-shaped features, now visible

in the center of triangular regions between spots. In [111] projections at specimens of the
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other concentrations, these ring features are vestigially visible in the pattern, but may be

brought out only by optical over-exposure.

15 mole% Y2O3 doping level (YSZ-15)

The 211-type superlattice spots have now vanished from the [111] and [110] projection

diffraction patterns. The [112] "smoke-rings" persist. The hexagonal "mushroom" shape

is now clearly radiating from the 220-type spots in the [111] projection and the "bow-

ties" have brightened, sharpening up to some extent as well. In the [100] projection, the

cross-shaped diffuse streaks appear to have brightened and broadened again, with streaks

now visible on rows parallel to [010] and [001] directions.

18 mole% Y2O3 doping level (YSZ-18)

The hexagonal-arrayed "mushroom" diffuse contrasts in the [111] projection persists at 18

mole% Y2O3, as does the "smoke-ring" contrast in the [112] projection, in which some

continuous diffuse scatter has condensed into spots. The now almost continuous "bow-

ties" are similar in appearance to the 15 mole% case and there is no sign ot any

"superlattice" spots. The cross-shaped pattern is similar to that at 15 mole %.

24 mole% Y2O3 doping level (YSZ-24)

The [112] patterns appear sharp: "radial" diffuse scattering similar to the "mushroom"

now appears around other spots further out in the [ i l l ] diffraction pattern. The [110]

projection diffuse scatter has broken up into an almost continuous chain-link structure

along the [111] direction. With comparable tilt and brightness of Bragg spots, the [100]
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pattern now seems to have diffuse brightness diminished in comparison with the 18 mole%

case.

Summaries (Yttria dopant series)

(i) The 211-type superlattice is associated with the essentially dopant-free

cubic/tetragonal matrix regions,

(ii) The "bow-ties" increase in brightness and definition with dopant additive and are

therefore associated with the microdomains, which are considered to contain all

the dopant,

(iii) The "mushrooms" appear to brighten and sharpen with added dopant and therefore

arise from the microdomains.

(iv) In a similar way to (ii) and (iii) above, the "smoke-rings" are attributable to the

microdomains.

Doping with Calcia

Similar investigations to the yttria-doped series above have been undertaken using ion-

beam thinned single crystals of Ca-CSZ. Since 20 mole% CaO corresponds to the line

phase (J>i in the calcia-zirconia system, the two compositions 12 mole% CaO and 14.6

mole% CaO of the presjnt study represent stabilized zirconia with relatively low dopant.

The amount of (})i should only be slightly greater than half the total volume with a large

amouiu of matrix cubic/tetragonal distorted ZK>2 present. A correspondingly large

amount of 211 -type superlattice diffraction is expected.

12 mole% CaO doping level (CaSZ-12)
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Examining the set of four room-temperature micrographs from 12 mole% CaO, it is clear

that all the diffraction phenomena found in the yttria dopant series are also found in the

calcia series. The "bow-ties", "mushrooms" and "smoke rings" are all present and in the

same relative positions as before. The 211 family of superlattice diffraction spots are

brighter and sharper than in the yttria dopant series and could no longer be mistaken for

the central part of a "bow-ties" structure although the "bow-ties" diffuse scatter is also

sharper than before. Quite generally, many of the diffuse scattering features for Ca-CSZ

series are sharper than those of the Y-CSZ series. This is likely to attributable to the fact

that Ca-CSZ domains (<j>i) are larger (-28A, Rossell, Sellar and Wilson, 1991) than those

of Y-CSZ (~ 10A, according to Welberry et al., 1993). The [112] "smoke-rings"

however are sharper, clearer, and larger than those from Y-CSZ. The [100] cross-shaped

pattern is similar in brightness and structure to several of the yttria series.

14.6 mole% CaO doping level (CaSZ-14.6)

The "mushrooms", "bow-ties" and "smoke-rings" are all similar in this case to the

previous 12 mole% CaO case. The 112-type "superlattice" spots are still visible

especially in the [110] projection, but the small very slim circles of contrast are no longer

visible in the [111] projection. The [100] cross-shaped pattern is similar to the 12 mole%

CaO case but may be slightly narrower. Some Huang scattering of the kind described by

Chaim and Brandon (1984) are slightly more visible in this projection than for yttria or

calcia-doped specimens of other concentrations.

Summaries (Calcia dopant series)

The overwhelming conclusion from both concentration series is that, with minor

variations, the diffraction patterns of all concentrations of both dopants are the same, with

an increase of dopant corresponding to an increase of rotor-microdomain (as evidenced by
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the "mushrooms", "bow-ties" and "smoke-rings") and a decrease of dopant corresponding

to an increase in volume of cubic/tetragonal pure ZrQi structural, giving rise to the 112

family of superlattice reflections.

Importantly, the similarity between the diffuse scattering features of Y-CSZ and Ca-CSZ

manifests that the microdomains in Ca-CSZ and Y-CSZ have similar orientations

mesoscopically.

In the next section we interpret these observations in terms of the glassy model.

5.5 Discussion

In detail, we consider pair-wise stress-strain interactions between the microdomains, here

modeled on (J)i which possesses six distinct unique axes and, according to VKZ, conform

to the requirements of a random array of reorientable, discrete six-state quadrupoles (As

shown by similar diffuse scattering features of both Y-CSZ and Ca-CSZ above, §\ -like

defects exist in Y-CSZ. And in chapter 6, we attempt to discern the possible

microdomains in Y-CSZ and their orientations). Cubic symmetry restricts the form of all

the couplings between quadrupoles. There are only three independent elastic constants.

The tensors corresponding to the extra stresses due to the uniaxial microdomains are

denoted by &1. Since in a cubic lattice, the principal tensor axes for <j>i correspond to the

(110) directions, the tensor must be invariant against residual symmetry operations, i.e.,

rotations around the defect axis which leave the cube invariant (Vollmayr et al., 1991).

Thus symmetry requirements reduce the extra stress tensor due to a 4>i-like microdomain

to following form, as reported in chapter 3.

(I) Defect axes parallel to [001]
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0

0

0

<Tr

0

where CT0 is the isotropic hydrostatic pressure component: subtracting this term,

assumes the form

2a,

(II) Defect axes parallel to [Oil]

For a defect axis parallel to [Oil], with isotropic term removed, the local stress tensor

takes the form

-a

~aT -oL

\

Tf two neighboring domains are of axis orientation [Oil] and [Oil] (mutually orthogonal

as in the Sethna-type "tee" configuration, ), the resultant stress in the "domain walls",

consisting of disordered cubic ZrCh will be proportional to the sum of the superimposed

stresses due to the two neighboring microdomains, to within a certain approximation.

That is, it will be of the form

2a
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i.e. the resultant stress in the "cubic" walls is of the form of a (100) type stress: this is the

source of the local tetragonality, which yields no bulk tetragonallity if averaged randomly

over interacting pairs of domains. Local cubic symmetry is randomly broken by the

resultant normal stresses in the regions between pairs of domains. Small regions of

orthogonal atomic {100} planes are hence shifted randomly away from the atomic planes

of the average (cubic) lattice with displacements in the ratio 2:1:1, so diffuse diffraction

spots are found in the forbidden 211-type Bragg reflecting positions when the CSZ

sample is below the glass transition temperature and the pairs of domains are frozen into

"tee" configurations. This then, is an approximate derivation of the "tetragonal without

tetragonality" found near room temperature in CSZ samples with low stabilizer doping.

The frozen-in tees also explain another hitherto-unexplained diffraction phenomenon

reported in this electron diffraction experimental scci.ion. As the concentration of dopant

increases up to around 18 mole % Y2O3, cross-shaped diffuse streaks appear between

diffraction spots of electron diffraction in each of the <100> family of projections. As the

dopant increases, so does the intensity of the streaks relative to the Bragg spots from

average lattice. As pointed out earlier, this appears to indicate that the diffuse streaks

correlate strongly with the presence of dopant. In the light of Sethna's planar tee-shaped

configuration concept in the frozen state, we take our interpretation of the cross-shaped

diffuse streaks one step further: since ail the dopant is considered to reside in the

microdomains, it seems reasonable \o claim that the (100) streaks are due chiefly to planar

arrays of mutually orthogonal domains, the size of which is limited by frustration effects.

Judging by the width of the diffuse streaks in the diffraction pattern their spatial extent is

typically 50 A, the size of two microdomains of average size and separation. Their effect

on the diffraction pattern then is somewhat like that of Guinier-Preston zones but of much

smaller size. The effect of these te^-domains on the mechanical properties of zirconia

alloys lias recently been described by Baufeld et al. (1995), without reference to the

structure or paired character of the defect.
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Temperature dependence of the 112 -type diffraction spots

In the final montage of three separate electron micrographs, we present evidence for the

disappearance of the 112 -type electron diffraction spots at temperatures above Tm, the

glassy "melting point" for the material. The microdomains are considered to be

sufficiently uncoupled at these temperatures that the tetragonal matrix 112 reflections no

longer suggest a non-zero value for the Edwards-Anderson order parameter.

The specimen is an ion-beam-thinned 3 mm sample of single crystal 12 mole% Y2O3-ZrO2,

so as to be clear of the "equilibrium" cubic-tetragonal two-phase region of the phase

diagram. The montage represent a* before (room temperature) - 1000°C -vafter'(room

temperature) sequence of diffraction patterns taken of the same specimen in the [111]

projection. The intensities of the main 022 -type Bragg beams between which the 112-

type diffuse spots appear are roughly comparable in such of the three shots, so that valid

comparisons of 112 spot intensities can be drawn. The specimen is tilted slightly away

from the axis.

The initial room temperature micrograph exhibits small, dim 112 -type reflections between

pairs of the 022 -type Bragg spots and between the hexagonally-radiating broad diffuse

lines emanating from each of the 022 -type spots which become mushroom-like at higher

concentrations. The second micrograph of the montage shows the apparent lack of any

112-type spots between the 022-type Bragg peaks at a temperature near 1000°C,

signaling a zero-value for the Edwards-Anderson order parameter. The hexagonally

arrayed linear diffuse scatter has also vanished almost entirely, which may suggest a link

between the two types of scatter; one scatter attributable to the domains themselves and

the other due to the matrix cubic zirconia between the domains (see next chapter).

The third micrograph shows the contrast from the specimen after returning to room

temperature. Although relative intensities are often difficult to compare in electron

micrographs and despite the somewhat more "ragged" overall appearance of the third

diffraction pattern, it is reasonably clear that the 112 -type spots have returned as well as

5-15



the hexagonally radiating linear diffuse contrast, demonstrating a certain degree of

reversibility.

5.6 Conclusion

We have conducted concentration series and temperature series on single-crystal,

beam thinned samples of Y-CSZ. The concentration series serves to identify which di

diffraction features are attributable to the microdomains and which to the tetragonally-

distorted cubic regions between the microdomains. Under the Allpress-Rossell m(?clel5

where essentially all the dopant goes into the microdomain, an intensification of the

brightness of a given diffuse diffraction feature with concentration would appeal to

indicate that the feature arises due to scatter from the microdomains.

Thus, the "bow-ties", "mushrooms" and "smoke-rings" can be attributed to the

microdomains from our concentration series (9.5 to 24 mole% Y2O3). The "cr<>ss-

shaped" diffuse scatter was shown to arise from the antiferroelastic pairing of the

reorientable elastic defects on {lOO}planes, making it seem as if the planes

disordered by these random pair-wise couplings at low temperature. Probably the

important result is that an increase in dopant causes a decrease in the brightness of the

"forbidden" 112-type tetragonal diffuse spots. This suggests that they arise from the

distorted cubic material between the domains, with the superposed stresses from the

adjacent domains (considered as reconstructively reorientable defects) imparting a riet

local tetragonal distortion to the cubic matrix at low temperature, with small regions of

U12y -oriented planes diffracting randomly and independently, resulting in no iiet

distortion overall.

Limiting our experiments to one concentration value, considered to reside solely iff- the

"equilibrium" cubic phase (12 mole% Y2O3), we demonstrated that above about

in excess of the temperature Tm, the 112 spots vanish, indicating the arrest of the

region by the microdomains has ceased, with a low value for the Edwards-Anderson c^der

parameter for the reorientable defects (domains).
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CHAPTER 6

X-RAY DIFFRACTION INVESTIGATIONS OF YTTRIA-STABILISED

ZIRCONIAS

6.1 Introduction

Among CSZ components stabilized by various aliovalent cations, yttria-stabilised

zirconia has been used most as the oxygen ion conductors in applications such as

oxygen sensors, fuel cells, etc. because of its higher ionic conductivity, good

mechanical strength, and relatively high resistance to aging effect. The defect structure

in yttria-stabilised zirconia has long been a very interesting research topic. As we

mentioned in the previous chapters, a great deal of research work has convinced

people that the defect structure in stabilised zirconia alloys mainly consists of

relaxations around oxygen vacancies and short-range order of oxygen

vacancies/oxygen ions or vacancy clusters (Andersen et al., 1986; Osborn et al., 1986;

Hackett, 1987; Neder et al., 1990; Welberry et al., 1993, Dai et al., 1996)). It is

believed in general that anion ordering does not necessarily imply cation ordering, but

cation order implies anion order (Rossell, 1984). A question arises. Is there any

dopant cation ordering involved in the defect structure scene in yttria stabilised

zirconia alloy? An answer to this question is quite rare or controversial. For example,

among the researchers who attempted to answer the question, some believe that

dopant cations are the next neighbour of oxygen vacancies (Steele and Fender, 1974;

Tuller et al., 1987), some believe that the host cations are the next neighbour of the

vacancies (Li et al., 1993), while others ignore any ordering in cation lattice (Dai et al.,

1996; Welberry et al., 1993). It seems that more knowledge has been gained about the

anion lattice than that about the cation lattice. One of the main reasons is that it is very

difficult to distinguish the host cations from the dopant cations by electron, neutron,

and x-ray diffraction, because Y (Z=39) and Zr (Z=40) have indistinguishable

scattering factors (Welberry et al., 1992; Dai et al, 1996).

When the absorption edge of an atom in a material is close to the wavelength of the

incident x-rays, the scattering factor of the atom changes drastically. The K-absorption
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edges and characteristic radiations for Y, Zr, Cu, and Mo extracted from International

Tables for Crystallography are listed in table 6.1.

Table 6

Z

26

39

40

42

.1 Wavelength of K-emission series and absorption edges in A

Element

Cu

Y

Zr

Mo

Kai

1.54090

0.82879

0.78588

0.70926

Kct2

1.54474

0.83300

0.7901

0.713543

KP,

1.39242

0.74068

0.70170

0.632253

Kp2

0.72874

0.68989

0.62099

K-absorption

edge

0.72762

0.68877

0.61977

It can be seen that the wavelengths corresponding to the K-absorption edges for Y

and Zr are far from Cu Ka radiation, but c-ose to the Ka radiation of Mo.

Specifically, the K-absorption edge of Y is greater than the Ka radiation of Mo, and

the K-absorption edge wavelength value for Zr is lower than that for the Ka radiation

of Mo. This means that Y has higher absorption ability on the Ka radiation of Mo

than Zr does. Using Ka radiation of Mo may therefore differentiate between the

scattering factors of Y and Zr, so that ordering of the cation lattice may be observed

(more in Section 6.2).

It was also reported that freezing of quadrupolar glass can be studied by x-ray

diffraction (Hochli et al., 1990; Knorr and Loidl, 1985).

In this chapter, we are going to approach the defect structure of yttria-stabilised

zirconia alloys and search for the evidence of quadrupolar glass behavior with high

temperature x-ray diffraction technique using both Cu and Mo Ka radiation. Before

we go to the details of the experiments, a brief introduction about the relationship

between the absorption and the atomic scattering factor is presented next.

6.2 Theoretical Background

6.2.1 Structure Factor of the Crystal with Anomalously Scattering Atoms
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For x-ray diffraction, assuming that the frequency of the incident radiation is much

greater than the frequency corresponding to any energy for excitation of the atom, the

atomic scattering factor is (Cowley, 1981)

iriQrJdr (6.1)

where p(r)=Zpn(r) is the time averaged electron density function. It is a function of

scattering vector Q. With increasing scattering angle 0, that is, with larger distance

(|Q|=(27C/^) sinG ) from the origin of the reciprocal space, the atomic scattering factor

in form (6.1) decreases rapidly and becomes almost constant at a high value of\Q\.

If the atom has an absorption edge close to the incident x-ray frequency, the scattering

factor of the atom is modified by anomalous dispersion. An imaginary part and a small

real part are added to J{Q) as defined by (6.1). Thus the atomic scattering factor is

given by (Chung et al, 1993)

/= /o ( lg l )+ / ' ( * )+ ' /"(*) (6-2)

and the atom is called an anomalously scattering atom.

The structure factor of a cation sublattice with anomalously scattering atoms is

, + ky, + fe,)
1=1

(6.3)

where n is the number of cations in the unit cell. The complex phase function can be

written as

At + / Bf --= exp{27T/(/ut, + kyf + /z,)} (6.4)

In this notation, the structure factor is given by

(6.5)

In a general case the measured intensity of a reflection hkl is proportional to
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«, X/,,o

(6.6)

where ^(F) = ^2] ( / l 0 +fl'+if,')(Al +iBi){fjQ+f'j-if^Aj-iBj)
1=1 y*/

(6.7)

The second part in the right-hand side of form (6.6) contains the phase-sensitive terms;

it will depend on the degree of order between the different types of atoms. The first

part in the right-hand side of (6.6) contains all the square terms which are all positive

and real. Equation (6.6) shows that the imaginary part of atomic scattering factor of

cation / due to absorption cannot be ignored in determination of the reflection

intensity for hkl net planes. The significance of (6.6) can be further analysed in four

different situations, for simplicity assuming that only two different cations are present.

i), ii) There is no cation ordering, fi0, f. , and / . for the two types of cations

may or may not the same. In both cases / . 0 , /,. , and / . for the two types of

cations can be replaced by averaged figures and put outside the summation, yielding

Bragg scattering from the average lattice and a uniform background scatter, depending

on whether the effective scattering from the different atoms is sufficiently similar or

not. No ordering will be detected in a powder x-ray diffraction pattern.

iii) There is cation ordering, but /,.„, /,. , a n d / . of the two different cations are

close enough that they can be treated as equal and be put outside the summation. No

ordering can be detected.

iv) There is cation ordering; f.o , / . , or / , of one type of cation are substantially

different from those of the other type of cation. Cation ordering can then be detected.
i n

Values of fi0 , / , , and /,. of Y and Zr at Ka-radiations of Cu and Mo are listed in

table 6.2 and 6.3.

Table 6.2 f0 of Y and Zr at different scattering vectors
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Scattering

Factor

fo

fo

Element

Y

Zr

0.0

39

4C

0.1

35.0

36.3

0.2

29.9

30.8

sinGA

0.4

21.5

22.1

(A"1)

0.6

17.0

17.5

0.8

13.4

13.8

1.0

10.9

11.2

1.2

9.0

9.3

Extracted from Cullity, 1978.

Table 6.3 / ' a n d / " of Y and Zr at Ka-radiations of Cu and Mo.

Scattering Factor

/ '

f"

Element

Y

Zr

Y

Zr

Cu-Kai

-0.2670

-0.1862

2.0244

2.2449

Mo-Kai

-2.7962

-2.9673

3.5667

0.5597

Extracted from International Tables for Crystallography, Vol. C, edited by Hahn, T.

It can be seen that at Cu-Koti radiation, the values of fi0 , f. , and/, for both Y

and Zr are very close so even if there is cation ordering, situation iii) will apply; no

cation ordering can be detected. However at Mo-Kcti radiation, the values of/" for Y

aiid 2r are substantially different. According to form (6.6), situation iv) is applicable,

and cation ordering could be detected if, indeed, there is a cation ordering.

6.2.2 Freezing of Orientational Glasses Indicated by X-ray Diffraction

It is well blown that elastic strain in a crystal can be detected by the x-ray diffraction

because local strain fields cause broadening of Bragg scattering peaks (Klug and

Alexander, 1974; Wilson, 1963). Different from the local static distortions which

cause diffuse scattering, elastic strain is a distortion with large correlation length. The

interplanar spacing for a set of parallel planes h k I subject to elastic strain is not a

single value, rather a variable following a Gaussian distribution with the mode at the

interplanar spacing when there is no elastic strain. It is straightforward to understand

the broadening of the Bragg diffraction caused by elastic strains based on the fact

briefed above. The most difficult problem in reality is how to separate the broadening
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caused by elastic strains from the broadenings caused by other factors, such as small

particle size, instrumental aberrations, etc.

When a quadrupolar glass material undergoes a transition from a supercooled liquid to

a glass, all quadrupoles (local strain ellipsoids, see Nowick and Heller, 1963) are

frozen. Elastic strain fields are formed as a consequence of the freezing. Therefore the

transition from a supercooled liquid to a glass could be detected by monitoring the

breadths of Bragg reflections as a function of temperature.

Knorr et al. (1985) studied the glass transition of the quadrupolar glass (KBr)i.x(KCN)

x with x = 0.2, 0.5, ..., 0.9 in the temperature range from 15 to 300K using x-ray

powder diffraction technique. They found that in the glass compositions, x = 0.53,

0.5, 0.2, there were plateaus in the low temperature range on the curves representing

the width of the cubic lines versus temperature. The deflection points were reported to

correspond to the glass transition temperatures for those quadrupolar glasses.

6.3 Experimental Details

6.3.1 Sample Preparation

Yttria-stabilised zirconia single crystals with yttria content from 9.5 mole% to 24

mole% made by Ceres Corporation, Waltham, Mass, were crushed and ground into

powder form using agate mortar and pest!e. The powdered crystals were sieved

through a 325 mesh screen.

Silicon metal powder and K2SO4 powder of analytical grade were used to calibrate the

accuracy of the goniometer and temperature.

6.3.2 Instrumentation

All the measurements were made using the Diffractometer Rigaku D/max-A at

Materials Engineering Department, Monash University. The goniometer of the

diffractometer is of a vertical type. The original high temperature attachment of x-ray
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diffractometer from Rigaku was used to perform x-ray diffraction at different

temperatures. Its central core configuration is sketched in Fig. 6.1.

One of the

Rotation Axes

Pt sample holder with thermocouple at left

Heating element skeleton

Translation movement direction

One of the Rotation Axes
coaxial with the goniometer

Fig. 6.1 The central core configuration of the high temperature x-ray diffractometer

attachment.

Outside the central core there are inner and outer shielding drums and a water cooling

case. Each of them has a x-ray window covered by aluminium foil or beryllium foil.

When Cu radiation was used, one window was covered with nickel foil, which replaces

the filter in front of the detector to remove Kp radiation. The filter material for Kp~

radiation of Mo is Zr. Because the sample is made of zirconia, no extra Zr filter was

used.

The heating of the high temperature attachment was controlled independently using an

Eurotherm controller (Model 904).

The goniometer was calibrated by running a diffraction pattern on a standard Si metal

powder sample. The alignment of the high temperature attachment was carried out

following the Instruction Manual For High Temperature X-Ray Diffractometer

Attachment For Vertical Goniometer (Rigaku).

6.3.3 Temperature calibration

6-7



The difference between the reading of the thermometer connected to the temperature

controller and the temperature on the surface of the specimen was calibrated using

K2SO4, which has a phase transformation from oithorhombic to hexagonal at 588°C,

and CaSO4, which has a phase transformation at 1210°C. The sample was brought

close to its transformation temperature, thereafter scanned by x-rays at temperatures in

steps of 10°C according to the thermometer. The phase transformation temperature of

K2SO4 recorded by the reading of the temperature controller was as at 590-600°C, and

for CaSO4 was at 1220-1230°C. So it was noted that the temperature difference

between the surface of the sample and controller reading is about 10°C. This

difference is not crucial for the interpretation of our experiments.

6.3.4 Measurement and data processing

Operation parameters of the diffractometer are summarised in table 6.4. For

measurements at high temperatures, the heating rate was 5°C/min, and the sample was

soaked for 30 minutes before measuring.

The measured data were downloaded from the on-line control computer as ASCII

documents and were processed on a separate computer using the Trace software

version 3.0 developed by Diffraction Technology Pty Ltd., ACT, Australia. Kct2

radiation in all the diffraction patterns was stripped off according to the intensity ratio

Kot2 /Kcti = 0.51 during data processing.

Table 6.4 Operation parameters of the diffractometer

Operation

parameter

Voltage (kv)

Current (mA)

Divergence slit

Receiving slit

Scan speed (20)

Room

Cu radiation

40

22.5

1°

0.3 mm

l°/min

temperature

Mo radiation

50

17.5

1/2°

0.15mm

0.57min

High Temperature

Cu radiation

50

30

1°

0.3mm

I7min

Mo radiation

50

20

1/2°

0.15mm

0.5°/min
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Scan range (29)

Time constant

20-80°

2 sec

10-40°

2 sec

20-80°

2 sec

12-40°

2 sec

6.4 Experimental Results

6.4.1 Cu Radiation

Diffraction patterns around the 111 peak of Y-CSZ with various yttria contents at

room temperature are shown in Fig. 6.2. The peaks are typical f.c.c and well shaped.

The variation of intensity with composition was not expected, and it might be caused

by sample preparation, since, as we have warned earlier, if our claim for a glass

transition with Tg near 400°C is correct, Y-CSZ at room temperature is nearly 400°C

below the transition and likely to be out of equilibrium.

Fig. 6.3 shows typical diffraction patterns of 12 mole% Y-CSZ as a function of

temperature. The striking feature in Fig. 6.3 is that the X-ray diffraction intensity drops

dramatically after 1000° regardless of the index of the reflecting net planes. The

intensity for 111 diffraction drops at 500°C and undergoes another dramatic drop after

1000°C. Scatter from the 311 plane has an intensity maximum at about 400°C and a

minimum at 1200°C. For 220 diffraction the intensity stays roughly the same until

about 1000°C.

Fig. 6.2.

c
o
u
n
t
5

4011-

12YSZ

in

2011-

28.5 29 29.5
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Fig. 6.2 Diffraction patterns around the 111 peak of Y-CSZ with various yttria

contents at room temperature, Cu radiation.

The behavior of the three Bragg diffraction peaks as a function of temperature

suggests strongly the operation of the mode-coupling structure arrest feedback

mechanism referred to in chapter 3. Despite the fact that the measured peaks are

truncated, and that the room-temperature measurement may reflect a non-equilibrium

state, it seems clear that for a given reflection, the heights of all the peaks are roughly

comparable for temperature between 400-1000°C, which we have claimed corresponds'

to the supercooling range and fall abruptly above this value. Looked at as the effect of

a Debye-Waller factor, the fact thai the intensities of individual reflections behave so

similarly as a function of temperature (at least in the high-temperature region) for

reflections so far apart in reciprocal space suggests a relative wavelength (or

wavenumber) insensitivity, one of the chief symptoms of the MCT.

Using a simple equipartition argument, which should be valid at high temperatures,

where Debye-Waller type reduction in intensity is greatest, the reduction function

which multiplies the Bragg intensities is approximated by

exp{-ATu2}

where A is a constant, u is a reciprocal space coordinate and Tis in Kelvins (K). It is

more familiar as a function of u for constant T. Each of our experimental intensity

plots in Fig. 6.3, however, can be considered to be an intensity reduction function of

temperature, for constant u. The remarkable fact emerging from these plots is that

around 1000°C, the fall-off in intensity (about 50% for 1200°C) is the same for each

reflection, regardless of v. value. Given that the value of «2 for the 220 reflection is

approximately three times larger than that for the 111 and approximately six times

larger in the case of 331, the details near 1000°C barely change at all, rather than being

damped out completely at the higher values of w2. Very roughly, if 7R is the

temperature at which the Debye-Waller-type reduction of 1/e in intensity occurs, then

according to our approximations above (TRu2)lu = (TRu°)220 for such a 1/e reduction.

If the arrest mechanism were highly wavenumber dependent, TR for the 220 reflection

would then be about 450K if that for the 111 reflection were about 1200K. Fig.6.3

appears to indicate that this is not the case.
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The full widths at half maximum (FWHMs) of 111, 220, 311 at different temperatures

are shown in Fig. 6.4. Corresponding to the low intensity at temperatures higher than

1000°C shown in Fig. 6.3, FWHMs for all three reflection net planes increase

dramatically after 1000°C. We believe that after 1000°C defects are "unlocked" from

their "tees", thermal excitation plays an important role, and the drop in peak intensity

and increase in FWHM are caused by Debye-Waller effects associated with thermal

vibrations, paraelasticity and ionic transport. For the 111 reflection, the FWHM

becomes slightly broadened when the temperature is below 600°C and for the 220

reflection the FWHM is broadened substantially at temperature below 500°C: these

effects may be due to critical behaviour in the mode-coupling and freezing range.

There is no systematic broadening of FWHM for the 311 reflection at lower

temperatures, except for a gradual broadening as the temperature rises.
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gOOOn

6000-

4000-

2000-

29.6 30.1 30.6 31.1 31.6 32.1

58.5 59 59.5

Fig. 6.3 Diffraction patterns of YSZ-12 as a function of temperature. The graphs in

(b) and (c) have the same temperature sequence as indicated in (a).
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(a ) i l l Reflection
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on

p. 2

on

0.18

0.14

0.12

01

0.1T

Oil

CIS
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013

0 1 !

0.11

0 I

(b) 220 Reflection

200 4 go

(c) 3II Reflection

1200

H O HO 1000 1XX)

JOO 400 tOO W O 1000 1200

Fig. 6.4 The full width at half maximum (FWHM) of 111, 220, and 311 reflection

peak as a function of temperature.

6.4.2. Mo Radiation
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Fig. 6.5 shows diffraction patterns of 12 mole% Y-CSZ under Mo radiation at

different temperatures. In comparison with diffraction patterns of the same materials

under Cu radiation, peaks in Fig. 6.5 are split into doublets or triplets. This is more

obvious at lll/cc reflections. Fig. 6.6 shows the magnified 111 fXX reflection

positions. It can be seen that at and below 800°C, the 111 fXX reflections are split

into a well formed doublet. Fig. 6.7 and 6.8 show the magnified 220 fXX and 31 l/xx

reflections respectively. For 220 fxx and 311 fxx reflections, the splitting of peaks

begins at temperature 1000°C, and the doublets or triplets are not as well formed as

those of 111 reflections.

As an example, d-spacing and 20 angles of the separated peaks near positions of 111,

220 and 311 reflections of fluorite structure at 500°C are listed in table 6.5. The

differences in cf-spacings for each group (difference between the largest d-spacing and

smallest ^/-spacing in the same group) are 0.036A for 111, O.OlA for 220 and 0.007A

for311.

Table 6.5.

No.

1

2

3

4

5

6

7

8

9

2G Angle (°)

13.736

13.768

13.904

22.432

22.484

22.56

26.368

26.388

26.492

D-spacing (A)

2.966

2.959

2.93

1.823

1.819

1.813

1.555

1.554

1.548

Relative

Intensity(%)

97

89

100

67

76

68

56

53

58

/c .c group

111

111

111

220

220

220

311

311

311
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Fig. 6.5 Diffraction patterns of YSZ-12 under Mo radiation at different temperatures,

continued to next page.
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Fig. 6.5 Diffraction patterns of YSZ-12 under Mo radiation at different temperatures.
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Fig. 6.6 111 reflections of YSZ-12 under Mo radiation at different temperatures.
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Fig. 6.7 220 reflections of YSZ-12 under Mo radiation at different temperatures.
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Fig. 6.8 311 rejections of YSZ-12 under Mo radiation at different temperatures.

6.5 Discussion

The striking features of results presented in section 6.4 can be summarized as follows:

(a). Under Cu radiation, all reflection net planes yield single peaks; there is no peak

splitting.

(b) 111 peak is broadened slightly at temperatures below 650°C, and 220 peak is

broadened substantially at temperature below 600°C, no systematic broadening for

other peaks.

(c). The plots of intensity versus temperature for each Bragg reflection appear to

support the wavelength independence criterion of the MCT.

(d) Under Mo radiation, f.c.c peaks are split into doublets, or triplets at

temperature about or below 1000°C.

The results can be well explained with the model of microdomains embedded in a

distorted cubic matrix similar to the Allpress-Rossell model as mentioned in chapter

3. To facilitate the discussion, the microdomain model is briefly recapped below.
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Through our diffraction smdy, we believe that in a mesoscopic range the microdomains

could have a structure similar to one of the three ordered phases found in ZrO2-Sc2O3

y, J3, £(Thornber et al., 1968); evidences discussed in this chapter suggest that more

likely they are y, or /? (see later). Cations are ordered in these microdomains and the

unique axis of the microdomains is along one of the four (111) directions in the cubic

matrix, since these ordered phases are fluorite-related by ordering of vacancies and/or

cations along <111>/CC directions (Thornber et al., 1968). Microdomains of this type,

however, are the "bare" reorientable defects of VKZ mGdel B, and hence

crystallographically unable to form a right-angle "tee" configuration in pairs, which

VKZ (Vollmayr et al, 1991) calculate is not describable as a six-state glass with

tetragonal local symmetry at low temperatures. We have seen, nonetheless, from the

electron diffraction patterns scattered from low-dopant Y-CSZ in chapter 5, that the

"forbidden" tetragonal diffraction spots are present in the YSZ case as well as in the

CaSZ case. This difficulty may be overcome by reference to VKZ's remarks

(mentioned in chapter 3) that the anisotropy of the lattice near criticality may not

necessarily reflect the apparent microscopic anisotropy, that of the four-state model in

the present case, i.e., at the phase transition, the detailed microscopic interactions are

not necessarily a good guide to the low-temperature anisotropy.

How can the emergence of a six-state glass state in Y-CSZ at low temperature be

reconciled crystallographically with a defect with a unique three-fold axis along (111>

direction? One possible solution is that four near-neighbor VKZ model-B defects

combine to form an effective "tee" configuration on {lOÔ  planes as in the six-state

case. This might be achieved in the following way. Two model B defects "pair up" on

(e.g.) the (Dll)plane to give a compound defect which in turn is further compounded by

"pairing up" with a similar linked pair on the (Oil) plane to give a "tee"-like

configuration on the(100)plane made up of four microdomains. Though approximate

and highly speculative, some evidence for complex partial ordering of this type has

been presented in chapter 5. There, both CaSZ and YSZ diffraction patterns exhibit

the cross-shaped diffuse scatter in the (100) projections, due, as we have already

proposed, to onentational ordering into "tees" on {lOOJ # It is at least equally arguable

that the "mushroom-shaped" diffraction radiating hexagonally from 220-type spots in

(111) projections of Y-CSZ is evidence for similar orientational order of pairs of
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Model B defects in {llOJplanes, in part confirmation of the "compound tees"

hypothesis advanced in this chapter

In such a model as the one described above, the ordering of cations in a mesoscopic

range is not be able to be detected by X-ray diffraction using Cu radiation, or electron

or neutron diffraction because yttrium and zirconium have similar atomic scattering

factors or nuclear scattering factors under these circumstances, where as we discussed

at section 6.2.1, situation iii) applies. Hence, it is not surprising that the diffraction

patterns of 12 mols% Y-CSZ consist of well defined peaks of fee lattice under Cu

radiation, as shown in Fig. 6.2.

The broadening of 111 and 220 reflections at temperatures below 650°C are believed

to be related to the freezing of the rotors at the mode-coupling transition, which results

in the formation of local elastic strain fields. As we mentioned before, in our

microdomain model, the compound rotors order in {110} and {111} planes. The

result that broadening of the 220 peak below 650°C shown in figure 6.4 is more

substantial than that of the other peaks suggests large elastic strain fields in (110)

directions. This observation then, appears to support what we proposed in our

microdomain model; that 650°C would be the mode-coupling transition temperature

or the temperature for the sharp onset on structural arrest for the orientational glass 12

mole% Y-CSZ.

The separation of cubic fluorite structure reflections into doublets or triplets under Mo

radiation proves that there is a cation ordering in the Y-CSZ. The situation iv)

discussed at section 6.2.1 applies in this case. Unfortunately it is impossible to further

identify the details of cation ordering structurally, which should be closely related to

the microdomain structure, since the separations of peaks are not completely isolated.

However reports about the intermediate phases found in ZrO2-Sc2C>3 (Lefevre, 1963;

Ruh et al., 1977; Sakuma and .Suto,1986) may give some hint on the microdomain

structures in ZrO2-Y2O3. In ZrO2-Sc2O3 there is a /?-phase in the region of 9 to 13

mole% Sc2O3 , a ^-phase in the region of 15 to 23 mole% SC2O3 and a £-phase in the

region of 24 to 40 mole% Sc2O3 (Ruh et al., 1977). All the three intermediate phases

are rhombohedral (Lefevre, 1963; Thornber et al., 1970). XRD results of these

intermediate phases obtained by Lefevre (1963) showed that separation of cubic

fluorite reflections into doublets or triplets is the feature of f3- and y- phase formations.
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It seems very likely that the separation of cubic fluorite structure reflections into

doublets or triplets under Mo radiation in ZrO2-Y2C>3 reported in this thesis are

attributable to ft- or y- phases as well.

Our sample composition is 12 mole% Y2O3, which is in the region of/?- phase; from

this viewpoint, the microdomains may share the f$- phase structure. On the other

hand, when the comparison is made between the span of peak splittings found in our

experiments and the span of peak splittings reported by Lefevre (1963) (table 6.6), it

seems that the spans of peak splittings observed in this thesis are closer to those of y-

phase reported by Lefevre (1963).

Jd- and /-phases in ZrO2-Sc2O3 were reported to be stable below 600°C and 1100°C

respectively (Ruh et al., 1977). Sakuma et al. (1986) found that /?-phase in ZrO2-

Sc2O3 is stable up to 800°C. The separations of cubic fluorite reflections under Mo

radiation observed in our experiments occur at temperature at 1000°C or higher. This

observation supports the possibility of the presence of the /-phase in our sample. If

the extra reflections are caused by the presents of the /?-phase it means that the upper

temperature limit for /?-phase in ZrO2-Y2O3 may be as high as 1000°C. So far no

reports in the literature about J3- and y- phases in ZrO2-Y2O3 have been found, to our

knowledge.

Table 6.6.

f.c.c group position

(111)

(220)

(311)

d-spacing spans of peak splittings (A)

12 mole% Y-CSZ

0.036

0.01

0.007

p- phase in Sc-CSZ*

0.089

0.039

0.035

y-phase in Sc-CSZ*

0.016

0.011

0.007

* Lefevre (1963)

6.6 Conclusion

XRD studies on 12 mole% Y-CSZ revealed that 220 and 111 reflection peaks are

broadened at temperatures below 650°C, and that reflection peaks under Mo radiation
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are split into doublets or triplets at temperature below 1000°C. The results can be

explained very well using the microdomain-orientational glass model. The broadening

is caused by the freezing of the rotors in a cubic matrix, which signals the formation of

orientational glass of Y-CSZ. The rotors consist of microdomains with probable

structures of /? or y. Cation ordering in those microdomains accounts for the splitting

of the reflection peaks under Mo radiation. Unfortunately it was impossible to

identify the particular ordered phase from current results, although 7-phase is possibly

more likely.

All three phases (a,/3.y ) are of VKZ Model B type, and a mechanism has been

suggested how Model B defects might combine to give a six-state glass with local

random tetragonal distortions. Plots of intensity versus temperature suggest that the

structural arrest mechanism is wavenumber insensitive, which is a symptom of the

mode-coupling transition.
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CHAPTER 7

NEUTRON DIFFUSE SCATTERING INVESTIGATION OF YTTRIA-

STABILISED ZIRCONIA

7.1 Introduction

In this chapter, the measurement of neutron diffuse scattering from single crystals of a

15 mole% Y2O3-stabilised ZrO2 will be reported. With regard to the defect structure,

as mentioned before, there is a considerable body of literature devoted to a description

of the defect structure of CSZ. As we put forward in Chapter 3, a rrriel of

microdomains of ordered phases coherently embedded in the tetragonally distorted

cubic matrix is more favored. To achieve the aim of the project, which is to understand

more the difftjse scattering caused by the defects and the relation between the diffuse

scattering patterns and the glass concept of CSZ, neutron diffuse scattering from

CSZ has been undertaken. The aim of this chapter is twofold: a) to justify the

microdomain model of defect structure through neutron diffuse scattering

measurements and b) to attempt to find the glass transition temperature of the 15 mole

% Y2O3-stabilised ZrO2 and further evidence for the mode-coupling mechanism. Prior

to the experimental details and any discussion on diffuse scattering from CSZ, the

theoretical aspects of the scattering will be briefly discussed in the following section.

7.2 Theoretical Background

Scattering from a crystal due to deviation from either the average composition, or the

mean location of atoms is described as diffuse. The word diffuse is used as the

magnitude of the cross section of these effects is much smaller than that for Bragg

scattering and is smeared out in reciprocal space. The effects of deviation from the

mean composition and the average structure have been described in detail by a number

of workers (Lovesey, 1987; Cowley, 1975). In principle, diffuse scattering can result

from either chemical ordering of atoms in the lattice, or local distortion, away from

atomic mean positions. Here an intentionally brief description will be given with the
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aim of discussing the main features of diffuse scattering, and to give a grounding for

the measurements which will be reported in this chapter.

7.2.1 Chemical Effects: Laue Monotonic Scattering

The discussion of diffuse scattering for simplicity will be centered on a simple binary

alloy which forms a rigid Bravais lattice, with lattice vector /. The elastic (coherent)

cross section is given as (Lovesey, 1987),

V ,r\'coh
all

, exp(/g- /) (7.1)

where bi is the mean scattering length of atom / averaged over all spin states and

isotope distributions, and Q is scattering vector. The horizontal bar in the expression

denotes an average over the spatial configurations of the two components of the alloy.

We label the components 1 and 2. Let c be the fractional concentration of atoms of

type-2. The configurational average of the scattering length is then,

(b) = (\-c)b,+cb2 =b (7.2)

In order to perform the configurational average over the elastic coherent cross section

it is useful to introduce a site occupancy function p, which is defined by,

p, - \, if/ labels an atom of type 2

p, =0, if/ labels an atom of type 1.

By definition,

and

(7.3)

(7.4)

(7.5)

where N is the total number of atoms in the alloy. From the definition of p, we can

write the mean scattering length

From equation 7.1 to 7.6, it can be shown (Lovesey, 1984) that the coherent cross

section can be written as
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~ c )
(7.7)

where Bragg scattering cross section is

'Bragg

(7.8)

and the second term is known as Laue monotonic diffuse scattering. Equation (7.7)

shows that the total elastic cross section for this perfect alloy crystal consists of Bragg

scattering and Laue monotonic diffuse scattering. While Bragg scattering is localised

in reciprocal space and occurs only for specific values of Q, diffuse scattering in this

case is independent of Q. Laue monotonic scattering is derived from purely

compositional effects and vanishes if c =1 or c =0. The term (b2 -bx)
2 in this case

acts as a contrast factor.

This result can also be applied to an arbitrary lattice if we interpret b as the

configurationally averaged unit-cell structure factor.

7.2.2 The Effect of Static Distortion

To derive the Laue monotonic diffuse scattering, the atoms are assumed in the ideal

positions of a crystal. To see the effect of static lattice distortion in the coherent

elastic cross-section, a vector h, describing the deviation of an atom from its ideal

atomic position is introduced. Assuming a dilute alloy with rigid lattice and weak

distortion (by rigid lattice we mean no thermal vibration, otherwise a Debye-Waller

factor due to thermal motion, exp(-w), needs to be introduced) the atom position is

determined by the vector h,+[, where / is a lattice vector for the average lattice and

satisfies exp(r • /) = 1 for all /, and h, satisfies

I > = 0 (7.9)

indicating no macroscopic deformations. The coherent elastic cross-section in this

case is
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I _ K

)coh = 2-f / e X P f ^ ' ^ + - ' ) i (710)

In the dilute case the concentration of type-2 atoms is very small and the correlation

between the distribution of the scattering lengths and the distortion vector is negligible.

Therefore the average scattering amplitude (7.10) can be written as

^ ~ (7.H)

where the equality defines a static Debye-Waller factor with an exponent H(Q). If

the distortions follow a Gaussian distribution with A = 0 so that equation (7.9) is

satisfied, on average

1 7 1 , - T

— 2 — 6

where h2 is the mean-square distortion. The Bragg cross section follows directly from

(7.11),

)Bragg
(7.13)

The diffuse cross section can be obtained by subtracting the Bragg cross section from

(7.10). To achieve this, the approximation

exp(iQ •}li)K^JriQ-h.1 (7.14)

is used, in the limit of weak distortions, and it follows that (Lovesey, 1984)

dQ. )coh ) Bragg

(7.15)

IV

The second contribution on the right-hand side is the diffuse scattering cross section

caused by local static distortion. Unlike Laue monotonic scattering, it is localized in

reciprocal space, and the precise form of (7.15) depends on the details of local

distortions or short-range ordering.

7.2.3 Quasi-elastic Scattering
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The term quasi-elastic is usually applied to that part of the inelastic scattering spectrum

which arises from random, or stochastic, processes that occur over a relatively long

time scale. Rotational jumps of a molecule and diffusion of a particle in a liquid or

hot solid are examples of the types of motion which contribute to the quasi-elastic

component of the spectrum (Lovesey, 1984).

When a system changes from a supercooled liquid to a glass state us the temperature

decreases, both the self-diffusion constant Ds and the Maxwell relaxation time x vary

dramatically at the cross-over region. Here x = r|/G, where r\ is the shear viscosity

which changes by many orders of magnitude at cross-over region, G is rigidity

modulus, which is comparatively insensitive to temperature.

Consider a model for scattering from a particle executing harmonic oscillations about a

center which is diffusing freely in space. If there is no dynamic correlation between the

two types of motion, then the neutron scattering response function is approximately

5;(G^)=—£^exp(-/dy/-Q2Z)J/|)p/:exp^-/:)Gifc0 (7.16)

where A is the self diffusion constant, and Gs(r, t) describes the oscillatory motion.

The response function (7.16) comprises a quasi-elastic contribution and a sum uf

inelastic terms centered about ±OJQ , ±2coo - . Each contribution has an energy spread ~

(fiQ2Ds). The quasi-elastic contribution to the response of this model is

Q2DS exp{-2JV(Q)}lo(y)
(7.17)

o)2+(Q2Ds)
2

where the exp(-2ff(0) is Debye-Waller factor and 70(y) is a Bessel function of the first

kind of order zero with an argument

y = fiQ 2 /} 2Mo)0 sinh( — fia)0/3) > (7.18)

The co0 in form (7.18) is the frequency of vibration. Equation (7.17) is Lorentz

function, and it has a peak at co= 0 with the peak height proportional to l/(Q2Ds), and

the width at half peak height proportional to Q2DS. From a supercooled liquid to glass

state, the diffusion constant D, will drop dramatically for a given a scattering vector.
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The quasi-elastic scattering profile will show an increase of the peak height and a

decrease in the width of the peak.

It must be pointed out that the quasi-elastic contribution (7.17) is distinct from the

inelastic components of the spectrum centered at ±OJQ only if (Q2DS) « &b, and this

condition imposes a limitation on the value of the scattering vector. In other words,

only if Q is very small and close to zero is the quasi-elastic contribution recognizable.

Experimentally, the observation of the quasi-elastic contribution also depends on the

experimental resolution, because there is always a Gaussian peak at zero energy

transfer {co = 0) predominantly determined by elastic incoherent scattering, whose

width is completely determined by the experimental resolution.

It can be proved (Lovesey, 1984) that when the particle is not diffusing freely in space

but jumping stochastically, the quasi-elastic scattering contribution is still taking

Lorentz form with a term of

r(Q)it

where y(Q) = Q2l, 1 is the length of jump when Q ~>0, and t is the residence time at a

given site.

7.3 Experimental Details

The neutron diffuse scattering measurements were made using the triple axis neutron

spectrometer (TAS) at the HIFAR research reactor, Lucas heights, Sydney, Australia

Nuclear Science and Technology Organization (ANSTO).

The same neutron diffuse scattering measurements were repeated three times in a time

span of two years, covering 1994, 1995, 1996 in an attempt to overcome the

irreproducibility which is found very commonly in stabilized zirconia alloys (Yashima

et al., 1994; Kandil et al, 1984). Each time, the measurement was lasting 2 to 4

weeks.

7.3.1 The triple axis spectrometer

A layout of a TAS is sketched in figure 7.1

i
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(1) The actual instrument

(2) The terminal box

(3) The counting electronics

(4) The interface

(5) The control computer (PDP-8)

(6) The teletypewriter.

Fig. 7.1 Connection logic of major components of Triple Axis Spectrometer.

There are three components in the actual instrument (refer to figure 7.2)

( I ) The first axis (monochromator) - selects neutrons of one energy from the thermal

neutron flux from the reactor.

( ii) The ser >nd axis (sample) - interaction point of the neutron with the sample.

(iii) The third axis (analyser) - measures the energy of the scattered neutrons.

Sample

Soller slits

M onochrom ator
crystal

Analyser
crystal
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Fig. 7.2 A sketch of a Triple Axis Spectrometer.

The monochromator is a Cu crystal 5 cm x 8 cm x 1 cm thick with an [110] axis

vertical. It is set up so that a (111) plane scatters the neutron onto the sample. The

neutron wavelength is given by Bragg's law X = 2£4sin0m where 28m is the

monochromator scattering angle. The neutron energy is given by E = h^/^m,,) where

k - 2n/X. To vary the incident energy we can change 20m or we can change dm. The

angle 20m has well defined limits, 10-45° in range 1 and 45-80° in range 2. For our

elastic diffuse scattering, the incident and scattering wave length is 1.7952 A, which

has an energy of 6.126 TFIz. For inelastic scattering, the scattering wave length is

fixed at 1.7952 A, but incident wave length, or the incident neutron energy was

changed through the change of angle 20m from 54.2° to 48.9°, which corresponds to a

wave length from 1.89 A to 1. 73 A, or energy from 5.53 THz to 6.63 THz.

As in the monochromator section, the analyzer uses the Bragg reflection from a crystal

plane to select neutrons of a particular energy from the beam scattered by the sample.

The analyzer is of pyrolitic graphite 2 inch x 3 inch x 1/16 '^ch thick using the 0002,

0004 or 0006 plane in reflection.

The sample is mounted on a large goniometer attached to the driven table. The sample

can be mounted in a furnace or cryostat.

7.3.2 The Sample and sample mounting

Crystals of 15 mole % Y2O3-stabilised ZTO2 were obtained from Ceres Corporation,

Waltham, Mass.. The size of the crystal is about 2 cm x 2 cm x 3 cm with one face cut

parallel to one of {110} planes. The angle between the normal of the face and [110]

direction is less than 1°, and the cutting was done in the Division of Manufacturing

Science & Technology, CSIRO, Clayton.

The sample was mounted in a vertical tube furnace which sits on the goniometer. The

construction is shown in Fig. 7.3. The crystal was glued to the high temperature

stainless steel mounter using high temperature cement with the [110] zone axis vertical.
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7.3.3 Furnace and temperature control

The furnace is a vertical tube type made by Ceramic Engineering, Sydney, with coiled

kanthal heating elements around an alumina tube (Fig. 7.3). The internal diameter of

the alumina tube is about 60 mm. A K-type thermocouple was inserted into the

chamber from the top, and the sample was glued to its tip. We expect little

temperature difference between the sample position and the thermal couple tube tip in

this configuration. Temperature was controlled by an OXFORD ITC 503 controller

with +0.5°C of variation in isothermal treatment. The ramping rate in this experiment

was about 4.5 °C /minute.

High temperature
alloy mounter

K-type thermocouple

Heating element

Alumina tube

Scattered neutron

Sample table

Fig. 7.3 Sketch of sample mounting and the furnace.

7.3.4 Measurements and data processing

The wavelength and energy selection for this experiment is mentioned in 7.3.1.

Measurements were conducted at different temperatures, the heating rate between two

temperatures is referred to in 7.3.3. At each selected temperature, both elastic diffuse
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and inelastic diffuse scatterings were measured. Lattice parameter changes caused by

thermal expansion at each temperature were properly incorporated so that all

scattering calculations related the right lattice parameters were pursued.

Due to the limited two-circle geometry of the sample holder, we were restricted to

measuring planes which pass through the origin. The zero layer of [110] zone was

chosen because it provides a large number of reciprocal space points, with a variety of

reflection types (mixed and unmixed indices), than other planes available with this

geometry. Elastic diffuse intensity was measured in the zero layer of the [110] zone at

intervals of Ah = A/ = 0.1. Elastic diffuse intensities along specific lines were

measured at intervals of Ah = A/ = 0.01. For the sake of time and our interest, most

of the scan is limited in the area of 0.5< h < 2.1 and 0.7 < / < 2.5. Inelastic diffuse

intensity was measured at selected points in the zero layer of the [110] zone at energy

increment of 0.05 THz (0.21 meV).

The resolution of a triple axis spectrometer is related to the angular widths of the

collimators found throughout the instrument as well as the mosaicity of the

monochromator, analyser and sample crystals. The resolution function R (Qx, Qy, Q2,

GO) gives the probability of detecting a scattered neutron with wavevector Q and

frequency GO. The observed intensity is given by:

(7.19)

where S(Q, co) is the scattering function, A is a constant incorporating the incident

neutron flux and sample volume, R is the spectrometer resolution function, which is a

four dimensional ellipsoid in (Q,a>) space (Hackett, 1987). The resolution function

can be calculated with the help of a computer. In this experiment, given the scattering

conditions, the energy resolution is about 0.35 THz ( 1.45 meV).

During the measurements powder reflections from the alumina furnace tube were

recorded together with scattering from the sample. These reflections were singled out

according to the known scattering angles for alumina, and removed from elastic

scattering contour maps. For those quasi-elastic scattering measurements at specific

points where alumina contamination are present, the intensity (neutron counts) are
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presented in arbitrary units under the assumption that the contribution from alumina

varies slowly with temperature.

Elastic diffuse scattering data were processed using computer program Winsurf

Version 5.01 promoted by Golden Software. They are presented in the form of

contours. Quasi-elastic scattering data were processed using a computer program

written by Dr. Margaret. M. Elcombe of ANSTO. They were fitted with a Gaussian

and a Lorentz function. Due to the limitation of the energy resolution of thermal

neutrons, it was not possible to divide the quasi-elastic scattering into separate

Gaussian and Lorentz components. The quasi-elastic scattering data were fitted very

well by a single Gaussian function.

7.4 Experimental results

The contour maps of neutron diffuse scattering from 15 mole % Y2O3-stabilised

zirconia crystal at different temperatures are shown in Fig. 7.4. Note that in

subsequent graphical plots versus temperature, the straight lines are only meant as

guides to the eye.

All diffuse scattering patterns show one diffuse scattering band from 1.6, 1.6, 0.7 to

1.4, 1.4, 1.7 There are three diffuse maxima. One is at 1.4, 1.4, 1.7, the others are

at approximately 1.6, 1.6, 1.3 and 1.6, 1.6, 0.7. Expressing the diffuse maxima as

satellite vectors in the reciprocal space in terms of reciprocal lattice , they can be

described as + (0.4, 0.4, ± 0.7). These vectors are nearly the same as + (0.4, 0.4, ±

0.8) suggested by Hull et al. (1988), and Neder et al. (1990). One feature of the

diffuse scattering patterns presented here is that the location of diffuse maxima at 1.4,

1.4, 1.7 does not move with temperature, however the position of diffuse maxima

close to 1.6, 1.6, 0.7 and 1.6, 1.6, 1.3 change with temperature. The maximum close

to 1.6, 1.6, 0.7 jumps between 1.6, 1.6, 0.7 and 1.7, 1.7, 0.7 at different

temperatures while the maximum close to 1.6, 1.6, 1.3 moves along 1.6, 1.6, 1.3 to

1.7, 1.7, 1.2. When temperature is below 650°C, the maximum is at 1.7, 1.7, 1.2,

when temperature is higher than 650°C the maximum is at 1.6, 1.6, 1.3. Fig. 7.5
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Figure 7.4 a - 7.4 b: Neutron diffuse scattering from the zero layer of the (1-10)

plane a) at room temperature, b) at 450°C. The Bragg reflections have been

masked out.
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Figure 7.4 c - 7.4 d: Neutron diffuse scattering from the zero layer of the (1-10)

plane c) at 550°C, d) at 600°C. The Bragg reflections have been masked out.
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Figure 7.4 e - 7.4 f: Neutron diffuse scattering from the zero layer of the (1-10)

plane e) at 650°C, f) at 700°C. The Bragg reflections have been masked out.
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Figure 7.4 g - 7.4 h: Neutron diffuse scattering from the zero layer of the (1-10)

plane g) at 750°C, h) at 800°C. The Bragg reflections have been masked out.
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Figure 7.4 i - 7.4 j : Neutron dilTuse scattering from the zero layer of the (1-10)

plane i) at 85O°C, j) at 900°C. The Bragg reflections have been masked out.
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shows the scattering intensity at 1.6, 1.6, 0.7 and 1.7, 1.7, 0.7 as a function of

temperature. It can be found that the diffuse intensities at these two points cross each

other several times as temperature increases. Fig. 7.6 shows the scattering intensity at

1.6, 1.6, 1.3 and 1.7, 1.7, 1.2 as a function of temperature. The diffuse intensity

curves cross once at a temperature around 630°C.

Fig.7.7 shows the neutron diffuse scattering intensities at 1.4, 1.4, 1.7, and 1.6, 1.6,

1.3, and the intensity average over 1.6, 1.6, 0.7 and 1.7, 1.7, 0.7 as a function of

temperature. It can be seen that all diffuse scattering intensities are low in the

temperature range of 600°C to 750°C.

There is a significant amount of second-order contamination at the 112 Bragg

position, so no forbidden reflection from tetragonal distortion could be claimed.

Considering that the composition of our sample is not near the c-t phase boundary, any

tetragonal reflection from tetragonal zirconia precipitates will be insignificant.

Diffuse scattering intensities of line scan in Q-space crossing over the diffuse maxima

at 1.7,1.7,1.0, 1.4,1.4,1.7 and 0.6,0.6,3.7 were fitted with a Gaussian function. The

FWHMs of the Gaussian fittings are taken as an indication of the microdomain sizes

(Hackett, 1987). They are about 0.3 to 0.7 rlu (reciprocal lattice unit) corresponding

to microdomain sizes of 2 to 3 lattice units in direct space (10 to 18 A).

Results of quasi-elastic diffuse scattering are presented in the next section together

with discussion.

7.5 Discussion

The data from several different types of neutron diffraction experiments conducted at

various times will now be presented in graphical form.

7.5.1 Elastic diffuse scatter
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As mentioned in section 7.2, Laue monotonic diffuse scattering is an average scattering

independent of Q. Apparently the diffuse scattering maxima shown in Fig.7.4 are

localized. From the general theory mentioned in section 7.2, the diffuse scattering

shown in Fig.7.4 must originate from static distortion.

As we discussed in chapter 6 that the defect structures in Y-CSZ could be described in

terms of microdomains or nuclei of ordered y -phase. These microdomains

account for the neutron diffuse scattering maxima at vectors +(0.4,0.4,±0.7) . The

Q-widths at 1.4, 1.4, 1.7 and 0.6, 0.6, 3.7 suggest that the microdomain sizes are

about 2 to 3 lattice units (10 - 18 A). We will briefly revisit the results reported by

Hackett (1987), Hull et al (1988) and Proffen et al (1996) to show that Allpress-

Rossell model is applicable and the microdomains are likely of y -phase structure.

The elastic neutron diffuse scattering patterns reported by Hackett (1987), Hull et al.

(1988), Proffen et al. (1996) are very similar to those in this thesis although they

reported diffuse scattering maxima at 0 = Xf ± (0.4, 0.4, + 0.8) rather than Q = Xf ±

(0.4, 0.4, ± 0.7) in some reason (Hackett, 1987). Hackett and Hull et al. attributed

the "satellite" peaks to those aggregates embedded in the distorted cubic fluorite

matrix. The size of the aggregates was estimated about three fluorite unit cells (-16

A). They suggested that the structure of aggregates comprise "Bevan Clusters" in

J ^ 1 1 1 , •which vacancy pairs are separated by — , - , - lattice vector across a cation.

"Bevan Cluster" is a feature of the ordered £-phase, such as Z^SojOn and y -phase

ZrsSc2Oi3 (Thornber, Bevan & Summerville, 1970). But stoichiometrically, see Ruh

et al. (1977), the /-phase (in the Sc-CSZ, 15 to 23 mole % Sc2O3) has a phase region

closer to the composition range of YSZ samples in our experiments than the <5-phase

(24 to 40 mole %).

ProfFen et al. (1996) described the defect structure of Ca-CSZ in terms of two types of

microdomains within the cubic matrix of CSZ, microdomains based on a single

vacancy with relaxed neighbouring ions and microdomains based on oxygen vacancy

J L 1 1 1 , ,pairs separated by —,—,—. lattice vector.
J-* ±4 Z*

Cations are ordered in the
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microdomains in a way that all cations next to oxygen vacancy are zirconium,

according to ProfFen et al. (1996)

There is no radical difference between the defect structures proposed by ProfFen et

al.(1996) and Hackett (1987) except that the former used the name "defect

aggregates" and the later took the name of "microdomains".

As we summarized in chapter 2, Literature Review, that for a given cation valence, say

trivalent, the larger the radius difference between the dopant cation and the host cation

is, the more difficult the formation of ordered intermediate phases in that system will

be. We believe that such a difficulty results in smaller size of microdomains formed in

the Y2O3-ZrO2 system. For the Y2O3-ZrO2, the ionic radius of Y is relatively larger

than that of Zr, in comparison with Sc.

In Fig. 7.5 the diffuse scatter at reciprocal space positions 1.6,1.6,0.7 (=1.62, 0.7) and

1.7,1.7,0.7 (=1.72, 0.7) are displayed as a function of temperature. Diffuse scatter in this

region is believed to be due to the "single-vacancy" defect identified by Hull et al (1988).

The overall intensity of the diffuse elastic scatter for both reflecting positions (1.62, 0.7)

and (1.72, 0.7) is similar over our supercooling range between Tg and Tm . The two

intensity curves, however, appear to be out of phase, crossing each other several times.

This may mean that the oxygen lattice in which the vacancy defect resides may relax as a

modulated structure whose wave vector changes with temperature. This is a somewhat

speculative conclusion and has no direct consequences for the remainder of the work in

this thesis.

The elastic diffuse scatter at the closely-spaced positions 1.6,1.6,1.3 and 1.7,1.7,1.2

are considered to arise from the microdomains or reorientable species (called

"aggregates" by Hull et al (1988)). They are roughly the same shape and amplitude,

with a strong dip it ^ intensity centered on a temperature value of «650°C. Though

crossing twice in Fig. 7.6 this appears to suggest that the aggregates themselves soften

when approaching the orientational glass transition from above and stiffen when in the

mode-coupling regime below 650°C.

In Fig. 7.7, the elastically diffracted neutron intensities from two different "sources"

are displayed. Diffuse peaks 1.4, 1.4,1.7 and 1.6, 1.6, 1.3 are believed by Hull et al to

arise from the "aggregates". The third plot in Fig. 7.7 is an intensity average over 1.6,
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1.6, 0.7 and 1.7, 1.7, 0.7, which are believed to arise from the single oxygen vacancy

defect, though with alternating intensity, as shown in Fig. 7.5. Although from two

different sources, these four reflections have similar wave vectors and so would not

furnish a test for the wave number (or wave length) independence hypothesis. It is

clear however that above 450°C, they all behave similarly in the mode-coupling and Tm

regions.

7.5.2 Quasi-elastic diffuse scattering

Examples of quasi-elastic diffuse scattering at 200°C are displayed in Fig. 7.8. Due to

the limitation of resolution, the data can only be fitted with a Gaussian function. No

energy-broadened Lorentzian scattering can be resolved. Results of intensity and full

width at half maximum (FWHM) obtained in 1994 are shown in Fig. 7.9 and 7.10 as a

function of temperature. Nonetheless, we have plotted Gaussian functions as

approximations to the intensity and energy broadening as functions of temperature.

In Fig. 7.9 are plotted the quasi-elastic scattering intensity from diffuse diffraction

corresponding to the three distinct sources identified by Hull et al (1988). Although

the region of reciprocal space near the reflecting position 1.2, 1.2, 1.8 due to the

tetragonally-distorted cubic matrix is contaminated by scatter from the alumina

components of the furnace, on the assumption that alumina does not also exhibit sharp

changes in quasi-elastic diffuse scatter due to phase transitions at the same

temperatures as those we are studying in Y-CSZ, we take any sharp change observed

to be due to the Y-CSZ.

With this proviso, Fig. 7.9 (a) appears to indicate that a "square root cusp" quasi-

elastic intensity curve is visible in the region 700°C-450°C which is, as we claim, the

mode-coupling region for Y-CSZ, i.e., the "bottom half or so of the supercooling

region. The quasi-elastic intensity peaks at a value near Tg (~420°C) in this material;

although measurements are sparse in this range we take this behaviour to indicate that

the intensity-temperature curve plotted in Fig. 7.9(a) from quasi-elastic scattering near

1.2, 1.2, 1.8 represents the Edwards-Anderson order parameter in the supercooling

range of the MCT regime.
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In Fig. 7.9 (b), the diffuse scatter which Hull et al (1988) associated with the

"aggregates" (and which we associate with the reorientable rotating species, e.g.,

CaZr4O9 in the Ca-CSZ case) exhibits a peak in the range of the mode-coupling but no

peak in the vicinity of Tg, in line with the idea that the calorimetric or dilatometric glass

transition is a kinetic phenomenon in the "liquid" (rather than among the rotating

species). Here, the "liquid" is taken to be the tetragonally-distorted cubic matrix (as

outlined m chapter 3) or "domain wall" region, through which the vacancies and

oxygen ions are considered to flow in support of ionic conduction.

Fig. 7.9(c ) is quasi-elastic intensity at 1.6,1.6,1.0. It displays good evidence for the

structural concept that the "single-vacancy" region of Hull et al (1988) and the

tetragonally-distorted cubic regions between the rotator microdomains (i.e., the

"domain wall" areas) are intimately related, or indeed that the "single-vacancy" region

is actually contained in the tetragonally-distorted region, and that the two ars

essentially parts of the same entity. The 1.6,1.6,1.0 quasi-elastic intensity plot follow >

closely that of the "tetragonal" 1.2,1.2,1.8 Edwards-Anderson order parameter shown

in Fig. 7.9(a), except that the vestiges of the square-root cusp in Fig. 7.9 (c) do not

appear until about 600°C, about 50°C below the region of the Leutheusser

temperature TL, where the "aggregates" freeze into antiferroelastic "tees".

The full-widths at half maxima (FWHM) of the quasi-elastic scatter from Hull et al's

(1988) three distinct regions are displayed in Fig. 7.10. As remarked earlier, we will

use the same interpretation for the widths of the fitted Gauss inn peaks as for

Lorentzian peaks, i.e., that a widening of the distribution in energy corresponds to an

increase in the self-diffusion coefficient and hence to a softening of the material.

Fig. 7.10(a) demonstrates that for the "single-vacancy" defect, the material softens

between 800°C to about 600°C as the orientational glass (OG) transformation nears

among the "aggregates", then re-hardens as the temperature falls b Jtvveen 600°C and

500°C.

Fig. 7.10(b), corresponding to the "aggregates" 1.4, 1.4, 1.7, shows their FWHM

appearing to behave in the opposite way from Fig. 7.10(a). As in Fig. 7.9, such

behavior is believed to be due principally to the various stages of structural arrest

occurring at slightly different temperatures. The aggregates begin to stiffen from about

600°C. The orientational glass (OG) transition, it should be recalled, is the triggering
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step (on cooling) for all the later events occurring at lower temperatures, recorded

from the diffuse peaks corresponding to the structural arrest of the inter-microdomain

tetragonally-distorted cubic zirconia matrix and of the "single-vacancy" conducting

defect in its turn.

Within the error bars as shown, in Fig. 7.10 (c), the FWHM of the quasi-elastic scatter

at 1.2, 1.2, 1.8 attributable to the tetragonally-distorted cubic matrix follows closely

that of the "single-vacancy" defect shown in Fig. 7.10(a) in line with our earlier

discussion of their interrelation. The re-stiffening on cooling occurs from about 700°C

in the tetragonally-distorted cubic zirconia at the approximate temperature of the OG

transition, while the arrest of the single-vacancy defect occurs about 50°C lower.

7.6 Conclusion

From the neutron diffraction experiments reported on in this chapter, it seems

reasonable to make the following claims:

1. That neutron diffraction data was recorded from various reflecting positions in

reciprocal space as a function of temperature, giving results which are in agreement

with the high-temperature results of Hull et al (1988), i.e., the subdivision of the

scattering into three separate types.

2. That one set of neutron diffraction data recorded in the present series was

internally consistent with the mode-coupling hypothesis that the reorientable

rotating species (Hull et al's "aggregates") undergo a phase transition near our

proposed Leutheusser temperature TL of ~650°C, which triggers a partial structure

arrest of the tetragonally distorted cubic matrix material.

3. The structural arrest above, signalled by the "square-root" cusp behavior of the

quasi-elastic intensity near 1.2,1.2,1.8 is symptomatic of non-ergodicity in the

material, which ultimately causes the arrest of the mobile "single (oxygen)

vacancy" defect as signalled by the similarity of the corresponding diffraction

behavior at 1.6,1.6,1.0 to that of the cubic matrix. As the temperature falls toward

Tg, the correlation length grows and the arrest becomes stronger. This scenario,
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first put forward in chapter 3, appears to support our suggestion that the data

furnishes a consistent, independent evidence for a glassy on-off ion conductivity

mechanism.

It should be noted, however, that a self-consistent set of neutron diffraction data like

the set described above in support of the MCT interpretation was not obtained from a

similar large single crystal in experiments conducted one year later. Since each

experiment is expensive and takes a long time, it was not possible in the time available

to investigate the effect on the transition of long-range elastic fields due to the differing

sizes and shapes of single crystals. For the present we have no explanation for the

apparent irreproducibility.
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CHAPTER 8

SUMMARY AND CONCLUSION

Since each of the preceding chapter has contained its own conclusions, a brief summary of

the experimental results and their significance for the thesis that cubic stabilized zirconia

can be looked upon as a glass is given here.

In chapter 4 we saw that simple dilatometric and calorimetric experiments conducted on

CSZ indicate that a glass transition sets in at about 400°C and that near 650°C a hitherto

undetected phase transition occurs, which accompanies sharp changes in transport

properties. This was interpreted as the Leutheusser or mode-coupling onset temperature.

Of the diffraction experiments, one of tlie main results of chapter 5 is that, if the Allpress-

Rossell model is valid for CaSZ and something similar is true for YSZ, then a simple

concentration series of electron diffraction patterns should be able to identify with

reasonable accuracy which diffraction features are due to dopant-rich and dopant-poor

defects. It was found that the 112 -type diffraction spots no longer appear beyond a Y2O3

molar doping of 12%; hence, they arise from the tetragonally-distorted cubic matrix

between the microdomains which is likely to shrink in volume (relatively) on addition of

dopant. As we have seen, these spots are not attributable to double diffraction effects but

are directly related to the elastic stress due to the orientational glass-type coupling among

the reorientable domains. Their disappearance at temperatures above Tm (~1000°C),

when Bragg spots with wavenumber of similar magnitude are still strong, is evidence for a

decoupling of the microdomains under an Edwards-Anderson interpretation of the elastic

"spin" interactions: i.e., a highly mobile state for the oxygen ion vacancies since the rotors

are now paraelastic.

The main powder X-ray diffraction results were of two kinds: one temperature series

conducted using Cu radiation and another using Mo radiation. The Cu diffraction results

demonstrated that if the Debye-Waller function for 12-YSZ were due to thermal effects

only, it would appear to have the unusual property of not being a sensitive function of
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temperaiure and wavevector since, considered experimentally as a function of temperature

at constant wavevector, it appears to change little over a wide range of temperature and

for three Bragg reflections. Under the mode-coupling hypothesis, this is the behaviour of a

Debye-Waller factor due to static disorder which grows with the Edwards-Anderson order

parameter as temperature falls, as outlined in chapter 3. The Mo radiation results

demonstrate that symmetry breaking can be detected as the temperature falls below Tm

and that the line phase identified by this method appeared to be similar to the y -phase of

the Sc-CSZ system. (Recall that for an OG-type theor, to have any chance of working it

was necessary that the line phase be able (in principle) to orient coherently in several

equivalent directions on the average cubic lattice.)

The neutron diffraction results appeared to confirm that the diffuse diffraction features

could be accounted for by the subdivision of defects into three separate types due to Hull

et al. (1988), corresponding to the microdomains, the tetragonally-distorted matrix regions

and the oxygen ion vacancy. A consistent set of experimental results was found which

lend strong support to the mode-coupling hypothesis, i.e., that an antiferroelastic phase

transformation occurs among the rotatable microdomain "cages" near 650°C, which then

initiates the structural arrest or "locking" of the tetragonal matrix and, under the Allpress-

Rossell scheme, the subsequent arrest of the mobile oxygen vacancies. This sequence of

events is our picture for ionic conduction in CSZ. The key observation in these

experiments is the appearance of the "square-root-cusp" in the Edwards-Anderson order

parameter, here proportional to the intensity of the 1.22 1.8 diffuse scatter from the

tetragonally distorted cubic matrix.

While this thesis was being prepared for binding, an updated and extended version of Hull

et al.'s 1988 paper on neutron diffraction from cubic stabilized zirconia appeared in print

(Goff et al., Phys. Rev. B, June 1999). This extremely informative new paper, while

making no mention of spin glasses etc., studies essentially the same range of Y2O3-doped

single crystals as the ones described here in chapter 5, i.e. nominal dopant concentrations

of 9, 12, 15, 18, 21 and 24 mole% Y2O3, with neutron and X-ray diffraction patterns

recorded at room temperature, 900°C, 1280°C and 1530°C, i.e., far from the temperature

ranges we considered to include the glass (Tg) and mode-coupling transitions. The new
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results confirm Hull et al.'s 1988 deductions regarding the origin of the three different

types of defect, i.e., the "aggregates", the tetragonally distorted regions and the single

oxygen ion vacancies, upon which we have based our discussions in chapter 7.

Several new points are made as well. Goff et al agree that the vacancies "trapped" within

the aggregates/microdomains contribute little to the oxygen ion conduction in agreement

with the Allpress-Rossell model. It is also claimed that vacancy pairs may contribute to

the conductivity as well as the single vacancies and that the diffuse scatter from the

aggregates does not broaden in energy transfer at high temperatures, limiting the average

measured period of paraelastic "spin-flip" for the aggregates to a period longer than 10"10

sec. It is stated in Goff et al that the aggregates/microdomains grow in size slightly as the

amount of dopant rises, with a value of approximately 10 A for a 15-YSZ specimen, in

agreement with the Q-width measured for the microdomains in our neutron diffraction

experiments, as judged by Gaussian fits to the elastic diffuse scatter. Goff et al also find

that the amount of "aggregate" scattering increases and that from the tetragonal regions

falls as the yttrium doping level increases, in agreement with the Allpress-Rossell model.

More interestingly, they claim that the aggregates/microdomains may be closely modelled

by the structure of the Sc-CSZ line phase 8 (Zr3Sc40i2, S.G. R3), rather than the y -phase

(Zr5Sc2Oi3) determined from anomalous X-ray diffraction in chapter 6. Since both these

phases (and the /? -phase) are rhombohedral and hence reorientable type-B defects in the

VKZ scheme, there is no conceptual difficulty here about "what is rotating" as long as the

effective anisotropy in the CSZ is such as to yield a six-state orientational glass of VKZ-

type C at criticality i.e. at the phase transition.

In any case, it may well be that any one of (or all of) the Sc-CSZ line phase analogues will

be found coherently precipitated in YSZ at low temperature, depending metastably on the

thermomechanical history of the sample.

Finally, Goff et al (1999) remark that the conduction mechanisms for Y-CSZ and Ca-CSZ

must be very different, since the diffuse scatter from Ca-CSZ does not change significantly

with temperature compared with Y-CSZ and shows no evidence for quasi-elastic

broadening. In line with our assertion that the Allpress-Rossell model describes the

structure of both systems well, we claim that the apparent discrepancy is due to the fact
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that Tg for Ca-CSZ is approximately 900-1000°C (as remarked in several references

mentioned in chapter 5) nearly 500°C above that for Y-CSZ, and that there is

essentially no difference in conduction mechanism, only a difference in glass transition

temperature.
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APPENDIX: RESPONSES TO REFEREE'S QUESTIONS

QUESTION 1

What is the source of the narrow extra powder diffraction peak observed near 13.7
degrees at an angle slightly higher than the Bragg 111 reflection under Molybdenum X-
radiation, as seen in Figures 6.5 and 6.6? Why is it so narrow? Why does it vanish at
1000°C? Why is it not detected in diffraction patterns from 12-YSZ taken using
electrons, neutrons or Copper X-radiation?

QUESTION 2
i

High-temperature X-ray diffraction is a difficult technique. Is the behaviour displayed in
Figures 6.5 and 6.6 of the thesis reproducible?



Answer to - QUESTION 1

Based on the Allpress - Rossell model, a consistent picture of the X - ray
diffraction from 12 - YSZ and how it differs from electron and neutron diffraction can
be developed.

In brief, the solution to the difficulty regarding the apparently anomalous appearance of
the narrow extra peak above the 111 reflection is essentially this: that while the atomic
scattering factors for Zr (zirconium) and Y(yttrium) are very similar for the cases of
electrons , neutrons and Cu kal X - radiation , the anomalous absorption of Mo kal X
- radiation Bragg - scattered from yttrium atoms yields a very low value for the
yttrium contribution to the f.c.c. - type Bragg reflections (111, 220 etc). The "lost"
intensity is radiated isotropically as fluorescence radiation. In this (Mo) case, the
absorption remedies the former occlusion of the sharper intensity contribution diffracted
from large ( ~ 1000 A - sized) Fischer - type domains by diffuse intensity at a slightly
lower angle due to small ( ~ 15 A ) Allpress - Rossell microdomains.These larger
domains were described by Fischer (1993) and by Patkowski et al (1993) and are
believed to control the ultraslow relaxation of free volume in fragile glasses. These
remarks are explained more fully below.

Throughout the thesis it has been emphasized that the microstructure of stabilized
zirconia is based on the Allpress - Rossell model of coherently - intergrown superlattice
microdomains in a matrix of pure distorted zirconia (ZrO2). The model was initially
suggested for Ca - CSZ , but a similar pattern emerges for other cubic stabilized
varieties eg YSZ. The thesis reports a microdomain size of for YSZ of ~15 A (Ch 7.5) ,
the same as that deduced by Goff et al (1999): These results were determined in both sets
of experiments by reference to diffuse scatter near 1.4,1.4,1.8 etc. It has also been
stressed that due to universality near critical points (Ch 8) , a six - state orientational
glass would result at low temperature regardless of whether the local defect VKZ
symmetry was of Type A , B or C and that at criticality it mattered little which analogue
of the delta, gamma or beta phases played the role of the rotatable Allpress - Rossell
microdomain species, since all were rhombohedral and the precise details of the phase
assembly depend on thermomechanical history. On the basis of their extensive
experiments Goff et al considered the delta phase to be the rotating species. Assuming for
a moment that the delta phase is in fact the majority Ailpress- Rossell microdomain
constituent for 12 - YSZ (apart from pure ZrO 2 ) , the chief structural difference between
the average fluorite subcell of delta and that of cubic zirconia is that its 111 planes are
slightly further apart than those of pure ZrO2 fluorite (the rhombohedral distortion). This
means that its 111 powder X - ray line will be situated at a lower angle than that of the
ZrO2 matrix, while the other Bragg lines will overlap to a good approximation. Thus the
higher 2 - theta line is attributable to the ZrO2 matrix alone, which percolates throughout
the 12 - YSZ grains. Since the delta phase is approximately 50:50 Zr:Y and occupies
roughly one - half the cation sublattice , we assume that for radiation which does not
distinguish between Zr and Y atoms (eg Cu Ka\), the total scattered intensity into Bragg



reflections is roughly equally shared between the upper and lower 111 powder lines.We
also assume that the "tetragonal without tetragonality" oxygen ions contribute little
scattered intensity into the powder lines compared to the much heavier metal ions.

Examining Fig 6.6 of the thesis, which shows the variation of the 111 reflection intensity
of the 12YSZ sample under Mo radiation as a function of temperature, it seems clear that
the broadened Bragg linewidth of the lower peak is due principally to the correlated delta
microdomains, but also possibly contaminated by other fluorite - like phases with 111
reflections (baddeleyite and Y2O3 ha\c been suggested, depending on specimen
preparation eg Ishizawa et al Acta.Cryst, 1999, B55, 726 ).The lower (inner) peak is
approximately as wide as the difference between its reflecting position and that of the
narrower, outer peak, and would tend to occlude this higher-angle peak were it not for the
operation of the anomalous absorption which reduces the total scattering of Mo radiation
from the lower peak, roughly half of whose intensity is due to yttrium. The higher peak,
as we have seen, contains no scattering contribution from yttrium atoms. For Cu
radiation, though the room- temperature peak shape may be dependent to some extent on
the cooling regime of the as-received large single crystals and their subsequent grinding
to powder form, the diffraction patterns taken as a function of temperature reveal some
small asymmetries unobscured by the truncation of the peak tops (Fig 6.3). More
significant is the approximate halving of intensity above 1000°C corresponding to the
uncoupling of the antiferroelastic "tees" and the consequent softening of the cubic matrix.
This is near our Tm (the "glass melting" temperature) and signals the onset of high ionic
conductivity in 12-YSZ. Thus the contribution to the closely-spaced and mutually
overlapping 111 reflections from the partly melted ZrC>2 matrix is now approximately
zero, and above 1000°C the formerly combined intensity is now roughly halved, as noted.
This halving occurs for all three reflections and in the same temperature range( Fig 6.3).

To judge from the neutron scatter near 1.4,1.4,1.8 etc. the size of the rotating
microdomains in 12YSZ is about 15 A and that of the correlation length of the cations
about 150 A on average in the supercooling range. As A/Professor Drennan states, the
width of the outer 111 reflection appears to be considerably narrow, indicating a
correlation length of the order of several hundreds of Angstroms. The solution to this
difficulty lies in the noisy free-volume fluctuations of the order of a micron in size, which
have been noticed in fragile glass-formers by Patkowski et al and others, and mentioned
in Chapter 4 of the thesis. These reorganizations of the free volume are held to be due to
the cooperative ordering of "clusters" in the glass former(Fischer, (1993). These clusters
(sometimes called Fischer clusters) are poorly characterized so far in such low-
molecular-weight glasses as l,l-di(4'-methoxy-5'-methyl-phenyl)-cyclohexane
(BMMPC), but because of the large amounts of data already gathered on zirconia over
the last 30 years yet not fully interpreted, we can identify a case where the corresponding
clusters may be found (and, we believe, have already been found).

The relevant experiments carried out by Patkowski et al (1993) were conducted using
static light scattering to probe the correlation length of the BMMPC clusters. For the data
presented, the glass transition temperature Tg and the glass melting temperature Tm of
BMMPC can be shown to be respectively near room temperature (where the correlation



length would be large) and near 130°C (where the correlation length would be small), as
shown in Fig.3 of Patkowski et al (1993).. In the temperature range they examined, it is
clear that the correlation length'is of the order of approximately 600A. At a temperature
near Tm (~130°C) little correlation would be detected. In a similar way, in Fig 6.6 of the
thesis, where the two 111 peaks are relatively clearly distinguished, the outer peak
(corresponding to inter-microdomain ZrO2 matrix material where the conducting
vacancies travel), corresponds to an average "particle size" of about 600 A, a value very
similar to the measurements of Patkowski et al (1993), and, more importantly, in good
agreement with the estimates of Carter and Roth (1968) of order-disorder "syntactic
zones" of size 600 A, which they describe as an interlocking network of coherently
intergrown phases with differing ionic conductivities. This is a clear early description of
the Allpress-Rossell model for cubic zirconia, now organized into regions of size
approximately 600 A. Carter and Roth were able to detect these "zones" in electron
micrographs because of the different scattering power between the matrix and the
calcium-rich microdomains.

To repeat, because of the anomalous absorption of Mo Ka\ radiation by yttrium
atoms,the x-ray diffraction of Mo radiation is able to distinguish the Fischer-type
domains in yttria-stabilized zirconia while electrons, neutrons and Cu X-ray radiation are
not. The Fischer-type domains are of size -600 to 1000 A, and give rise to sharp
reflections under Mo Ka\ radiation.

Answer to - QUESTION 2

The Mo radiation results are repeatable and genuine.

The justification is as follows:

A) The experiment was repeated and a similar effect appeared. The enclosed plots 1, 2
were taken on separate runs and it can be seen that the peak splitting appears on both
plots although the peak shapes and 20 positions are slightly different.

B) They are not likely to be due to contamination of the high temperature stage, such as
the platinum sample holder and alumina shelter, since same experimental set-up was
used with Cu X-radiation and no extra effects appeared in that case.

C) They are not due to Ka2 radiation. From 2^sin# = /l we can have

6(20) = SA • — . For Mo radiation, Xal =0.70926A, Xa2 =0.71354 A, which
dcos& K

gives 6X = 0.00428A. Take </m=2.9553A and 26= 13.81° based on our x-ray



diffraction results (the accuracy of d\\\ and 29 is not important io our argument);
A.a| and %ai will cause 111 peak splitting of 0.084°. On plot 1, there are 3 peaks/peak
clusters corresponding tol3.70°, 13.81°, and 13.89°. The 2#difference between the
two outer peaks is 0.19°, which is much greater than 0.084°. Using Trace software,
the K^ contribution was stripped off and the treated trace is presented in plot 3.

D) They are not due to ATp radiation. Using the same approach as in point C, e.g., given
fyi =0.632253 A, the peak shift in 20 caused by Xpi is 1.59°, which is out of the
range.




