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Abstract. We present a study of the influence of the prefactor in the Arrhenius

equation for the long time scale motion of defects in α-Fe. It is shown that calculated

prefactors vary widely between different defect types and it is thus important to

determine these accurately when implementing on-the-fly kinetic Monte Carlo (otf-

KMC) simulations. The results were verified by reproducing many events using

Molecular Dynamics (MD) and Temperature-Accelerated Dynamics (TAD). The

calculated prefactor was shown to increase the relative interstitial-vacancy diffusion

rates by an order of magnitude compared to the assumption of a constant prefactor

value and the ordering of the rate table for the interstitial defect migration mechanisms

was also changed. In addition, low prefactor values were observed for the 4 interstitial

dumbbells configuration with low barrier transitions.
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1. Introduction

Transition state theory (TST) operates on the idea of having transition rates between

two states calculated considering only the equilibrium and saddle states of the transition

by using the Arrhenius equation:

r = τ exp (−∆E/kBT ) , (1)

where ∆E is the activation energy, kB - Boltzmann’s constant, T - temperature and τ

is the pre-exponential coefficient also known as the prefactor.

The Arrhenius equation is widely used in KMC simulations, but whereas techniques

such as the nudged elastic band (NEB) or the Dimer method [1, 2] have been used

accurately to determine ∆E, the calculation of the prefactor τ has come under less

scrutiny. One of the first methods to carry out long time scale dynamics simulations

within harmonic transition state theory (hTST) approximation was suggested by

Henkelman and Jónsson [3]. They suggested to characterise systems by local energy

minima, do multiple saddle searches and calculate rates for each individual transition

using hTST and to select an event and advance the simulation clock according to the

KMC algorithm. It has become widespread practise to use fixed τ values, usually ranging
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from 1012 to 1013 s−1, in such KMC simulations [4, 5, 6, 7], with the assumption that

the attempt frequency does not vary greatly. This is because an accurate determination

is computationally expensive and ‘small’ variations in the energy barrier ∆E affect the

transition rates much more than ‘small’ variations in τ . However recent work has found

that an accurate calculation of the prefactor is necessary in order to include important

defect diffusion mechanisms that would not be accessible if a constant value would be

used. Examples of variations in prefactor values were also reported in other materials,

such as, unusually high prefactors, up to 1019 s−1 for the surface changes on InAs(001)

[8], the formation of a stacking fault tetrahedron in Cu [9] with the prefactor value of

1022 s−1 and the disassociation of O2 in TiO2 with the prefactor of 1.6×1016 s−1 during

the growth process [10].

In this paper we show that relative transition rates of the small defect clusters

depend crucially on τ , where τ for small defect clusters in α-Fe, is determined using the

Vineyard equation [11]:

τ =

∏N
j=1 υj

∏N−1

j=1 υ∗

j

, (2)

here υ and υ∗ are the normal frequencies for vibrations at the initial (local minimum)

and saddle states respectively.

The Vineyard formula is only applicable at rank 1 saddle points. In all the cases

considered in this paper, the saddle points were rank 1. When searching for saddle points

sometimes the chosen pathway is a rank 2 saddle. These must be treated separately

either using the approach given in [12] or by determining the nearby rank 1 saddle by

following the path of the second lowest eigenvalue of the Hessian which is the approach

that we normally apply in our simulations [13].

The motivation for the study was an examination of the long term evolution

of radiation damage in α-Fe. It is well known that a collision cascade introduces

point defects and small interstitial and vacancy clusters into a perfect lattice but

here we isolate typical defects seen in collision cascade studies and examine their

transitions in isolation. Thus defects, such as dumbbell interstitials (DB), di-interstitials,

vancancies and di-vacancies were artificially introduced into the system to investigate

their transition rate dependency on the prefactor value independently of their local

environment. The defects’ configurations and migration pathways are compared those

determined in previous works by [14, 15, 16].

2. Methodology

2.1. System

For our simulations we use an α-Fe system described by the well known Ackland 2004

potential [17] containing up to 54,000 atoms with a system size of 30a0 × 30a0 ×
30a0, where a0 is the lattice parameter. We calculate the diffusion rates between local
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minimum states at 450 K. In some cases, the Mendelev 2003 [18], potential is also used

for comparison, but if not stated the Ackland 2004 potential is used by default.

2.2. Method

To determine the various transition pathways a combination of the Dimer [2] and

the minimum mode following [19] methods have been implemented into an otf-KMC

technique [6] in order to achieve the best mixture of low computational costs and

accuracy for finding the various saddle states surrounding a local minimum. The switch

from the Dimer to the minimum mode method occurs when the Dimer’s curvature value

becomes negative and there is at least one negative eigenvalue in the system by which the

minimum mode method can converge to a saddle. In some cases the calculated energy

barriers were also determined by the NEB method when the final transition state was

known.

As mentioned before, we use eq. 2 to calculate the prefactor for each transition we

find during a KMC step. The normal frequencies used in the formula, at the initial and

saddle states, are derived from the eigenvalues using e.q. 3. Eigenvalues are calculated

by numerically constructing the Hessian H (e.q. 4) and then applying the DSYEV

routine from the Linear Algebra Package (LAPACK).

υ =

√
λ

2π
, (3)

here, λ is the eigenvalue from which the normal frequency υ is derived.

Hi,j =
1

2
√
mimj

(

F j+
i − F j−

i

2δ
+

F i+
j − F i−

j

2δ

)

, (4)

where F j+
i is the force acting on i-th component due to the positive (‘-’ - negative)

displacement in the j-th components position, δ is the displacement (0.001Å) and mi

is atomic mass of the i-th atom. The value of δ was chosen to be small enough so that

the finite differencing approximates as accurately as possible the true derivative but big

enough to avoid numerical instability due to computer rounding. Also, due to minor

differences between the symmetric elements of H , the element Hi,j is calculated as an

average of Hi,j and Hj,i.

2.3. Performance

In order to understand the relationship between the scaling of the computational time

and the convergence of the prefactor value, a series of tests has been performed. To

show the tendencies observed, a single vacancy defect system is given as an example.

By changing the radius of the volume of atoms around the defect that are included into

the calculation, we track the convergence of the prefactor value and the time taken to

calculate the eigenvalues of the Hessian. The data is summarised in table 1.

In table 1 the first column represents the radius around the region of the vacancy

defect, which determines how many atoms will be included in to the calculation; the
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Table 1: Calculated prefactor values as a function of the inclusion radius of the atoms

around a vacancy defect, for the isolated vacancy diffusion process at 450 K.

Radius Atoms Prefactor Eigenvalues

(Å) s−1 calc. time (s)

2.0 14 1.42× 1013 6.48

3.0 64 6.14× 1013 9.34

5.0 160 8.10× 1013 37.85

6.0 174 9.09× 1013 45.52

7.0 306 1.00× 1014 112.05

8.0 362 1.01× 1014 151.63

10.0 640 1.04× 1014 404.86

12.0 1042 1.06× 1014 1,004.60

14.0 1530 1.06× 1014 2,011.03

16.0 2204 1.07× 1014 4,063.14

18.0 3034 1.07× 1014 7,555.33

20.0 4020 1.07× 1014 13,309.30

prefactor values are calculated using eq. 2 and the time given is only for calculating

eigenvalues at the initial state since it takes approximately the same amount of time to

calculate eigenvalues at the initial state.

As can be seen from the results in table 1, to determine the prefactor to 3 figure

accuracy requires over 2000 atoms, but in order to reach one, at least 306 atoms must

be included and the calculation of one set of eigenvalues takes around 1/40 of the time.

Therefore all the given data in the paper is calculated using a 7 Å radius if it is not

stated otherwise. This was regarded as the best compromise between accuracy and

computational speed.

Even though it was reported by calculating point-defect entropy [20] that the

embedded cluster method (which is equivalent to our approach of determining the size

of the Hessian) is less accurate compared to the supercell method, the verification of

the results, as we show in section 3.4, indicates that it works well in our cases.

2.4. Vibrational contributions

From the phonon density of states, vibrational contributions to the activation energy at

finite temperature can be written as [11, 21]

∆Fvib = ∆Uvib − T∆Svib, (5)

where Uvib represents the vibrational internal energy and Svib - the vibrational entropy.

When the prefactor is calculated using eq. 2, it incorporates only the vibrational

entropy. In order to see whether the internal energy has an effect on the activation
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barrier, we used the expressions of these contributions as sum of single-oscillation

contributions written as follows [21]:

Uvib =
3N
∑

i=1





h̄λi

e
h̄λi

kBT − 1
+

1

2
h̄λi



 , (6)

and

Svib = kB
3N
∑

i=1

[

h̄λi

kBT

(

e
h̄λi

kBT − 1
)

−1

− ln
(

1− e
−h̄λi

kBT

)

]

. (7)

where h̄ is the Planck’s constant, λi - the eigenvalue of i-th coordinate of the system

and T is the temperature.

We have calculated these contributions for the most common defects and their

main migration transitions to check whether the vibrational internal energy has an

effect on the activation barrier height. The summarised data is given in table 2. For

these calculations we used a 23.0 Å inclusion radius of atoms around the defect studied is

taken to achieve good accuracy when calculating the normal frequencies. The vibrational

internal energy’s contribution does not change much, even when a smaller inclusion

radius is used, such as 9.9 Å.

Table 2: Vibrational contributions to the barrier heights of the most common defects

and their prime migration mechanisms at 450 K. The last two entries represent di-

interstitials with the same notation as introduced by Marinica et al. [16]. The DB

transitions are defined in §3.1.

Defect Migration
Initial state (eV) Saddle state (eV) ∆ (eV)

Uvib TSvib Uvib (eV) TSvib Uvib TSvib

〈110〉 DB rot.-trans. 481.6656 1574.0375 481.6655 1574.1324 -0.0001 0.0949

〈110〉 DB on-site rot. 481.6656 1574.0375 481.6653 1574.3079 -0.0004 0.2704

VAC 1-NN 468.1563 1529.9442 486.1561 1530.0729 -0.0002 0.1287

I1102 I2a2 519.1650 1696.7286 519.1649 1696.8321 -0.0001 0.1035

I1102 I1102 519.1650 1696.7286 519.1649 1696.8321 -0.0001 0.1035

As can be seen in table 2, the biggest contribution to the barrier height is due to

the vibrational entropy which is included when the prefactor is calculated by using the

Vineyard equation. The vibrational internal energy’s contribution is negligible compared

to the barrier heights for all the transitions investigated. Therefore, we conclude,

that for the vibrational contributions, the Vineyard formula is accurate enough for

our calculations.

3. Results

3.1. Interstitials

The case of interstitial defects and migration pathways are well studied, therefore we will

only present the summarised data. In our simulations the 〈110〉 DB is the most common
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configuration occurring in collision cascade simulations, but the 〈111〉 can appear for

a short period during the collisional phase of a cascade. This is also confirmed by

experimental findings [22] and the ab initio studies [15] on the stability and mobility of

interstitials in α-Fe, where studies predict a rapid change from the 〈111〉 to 〈110〉 DB.

Therefore, we concentrate on studying the 〈110〉 DB’s migration rates rather than 〈111〉.
The data is summarised in table 3. Here and in subsequent calculations the constant

prefactor value is taken as 1× 1013 s−1.

Table 3: The 〈110〉 DB migration rates at 450 K.

Mechanism Barrier Prefactor Rate (s−1) Rate (s−1)

(eV) (s−1) (const. prefactor) (calc. prefactor)

Translation-rotation 0.31 1.8× 1013 3.0× 109 5.5× 109

〈110〉 rotation 0.43 7.5× 1014 1.5× 108 1.1× 1010

〈110〉 to octahedral 0.69 3.4× 1013 1.7× 105 5.9× 105

The first and the most common migration mechanism, is the one proposed by

Johnson [14], a combination of translation and rotation. The migration barrier of 0.31

eV is in a very good agreement with the experimental value of ≈ 0.3 eV by [22]. The

calculated value of the prefactor 1.8× 1013 s−1 is close to the constant value, normally

used in KMC simulations and therefore the rate calculated by using this constant

prefactor is approximately the same order of magnitude as when calculated by using

the Vineyard method.

A quite different situation can be seen for the 〈110〉 DB on-site rotation between

the 〈110〉 directions represented by the second row in table 3. Here rotation-transition

has a barrier of 0.43 eV with a prefactor value almost two orders of magnitude higher

than the constant value.

The third case in the table represents the first nearest neighbour (NN) jump with

a saddle point near the octahedral configuration with the migration barrier of 0.69 eV.

It has very similar constant and calculated prefactor values as for the translation and

rotation mechanism.

Both migration energy values for the 〈110〉 DB on-site rotation and the 1st NN jump

through the tetrahedral configuration are almost equal to those that were calculated by

Marinica et al. [16] by using the ARTn method to explore the energy landscape.

The two migration pathways from the most stable 〈110〉 DB configuration are

the main mechanisms for mono interstitial migration. Also, implementation of a

slightly different potential energy function [18] in our KMC technique did not have

any significant change in barrier heights, rate values or set of possible transitions for the

〈110〉 DB.

By using the constant prefactor value, the migration of the 〈110〉 DB is dominated

by the translation-rotation mechanism, where the calculated prefactor value moves the

on-site rotation transition to the top in the rate table and is thus more likely to be

chosen in a KMC simulation.
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3.2. Di-interstitials

The lowest-energy configurations of di-interstitials reported by Marinica et al. [16]

are studied in order to have a better understanding of migration mechanisms of these

common defects in ballistically affected systems. The Mendelev 2003 and Ackland 2004

potentials give almost the same formation energies where the configuration of two nearest

neighbour parallel 〈110〉 DBs has the lowest energy. Later, we will use the same notation

for the lowest di-interstitial configurations as introduced by Marinica et al. The data

for the migration mechanisms of one of the most common di-interstitial configuration

I<110>
2 is summarised in table 4.

Table 4: Migration rates of the I<110>
2 di-interstitial at 450 K.

Config. Barrier Prefactor Rate (s−1) Rate (s−1)

(eV) (s−1) (const. prefactor) (calc. prefactor)

I2a2 0.33 1.2× 1013 2.0× 109 2.4× 109

I<110>
2 0.36 1.4× 1013 9.3× 108 1.3× 109

I<110>
2 0.49 9.4× 1012 3.3× 107 3.1× 107

I52 0.48 5.8× 1013 4.2× 107 2.4× 108

I6a2 0.50 3.0× 1013 2.5× 107 7.2× 107

In table 4 we present only those migration mechanisms from the I<110>
2 configu-

ration that have highest rate (constant and calculated) values, since for di-interstitials

there is usually more than one migration pathway between configurations. In all the

cases we can see that calculated prefactor value is close to the constant value and has a

minor effect on the rate table. Only migration to the I52 configuration was found to have

a prefactor that differed appreciably, at 5.8 × 1013 which is five times greater than the

constant one and brings this migration closer to the the migrations to I2a2 and I<110>
2

with barrier heights of 0.33 eV and 0.36 eV in terms of the rate values.

We also examined the most stable di-interstitial configurations that were found

by our KMC technique from other configurations, such as I<110>
2 , I52 , I

6a
2 . As in the

previous example the calculated prefactor does not vary greatly and in most of the

cases fluctuates between 0.5−5.0×1013 s−1. One of the more interesting cases was seen

for I2a2 diffusion to I<110>
2 by two possible pathways with barriers of 0.09 eV and 0.25

eV. Both pathways have very similar rate values (1.1× 1012 s−1, 1.3× 1012 s−1) due to

the estimated prefactors of 1.1× 1013 s−1 and 8.0× 1014 s−1, thus making the diffusion

even more favourable.

To sum up the behaviour of the di-interstitial migration, it is clear that the I<110>
2

configuration dominates with an occasional jump to other configurations, but it is not

likely for the atoms to stay in these configurations for a long time and by couple of

intermediate configurations can return to I<110>
2 .
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3.3. Vacancies

The second most common defect after a radiation event is a vacancy. Its migration

energy is 0.64 eV and has a minor dip at the midpoint, therefore the migration

mechanism has two saddle points as was shown by Johnson [14]. The configuration at the

midstate is metastable due to very low energy difference of 0.04 eV. Vacancy migration

gives a prefactor of 1.0 × 1014 s−1, an order of magnitude greater than the constant

value, as is shown in table 5. The higher rate value with the calculated prefactor makes

the vacancy - interstitial diffusion ratio change by an order of magnitude compared to

the assumption of a fixed prefactor, thus making the vacancy migration more attainable

by the KMC algorithm when there are other type of defects with lower barriers and/or

higher rate migrations in the simulation box.

Table 5: The migration rates of a vacancy defect at 450 K.

Mig. type Barrier Prefactor Rate (s−1) Rate (s−1)

(eV) (s−1) (const. prefactor) (calc. prefactor)

1-NN jump 0.64 1.0× 1014 6.42× 105 6.43× 106

2-NN jump 2.61 1.8× 1014 5.8× 10−17 1.0× 10−15

The di-vacancy migration process is a step-wise process whereby one of the two

vacancies first moves, by jumping to one of its 1st NN neighbours. The migration has a

slight depression at the midpoint as in the previous example. All the observed processes

for the di-vacancy defect greatly depend on the initial configuration of two vacancies.

In this work we have studied four different di-vacancy configurations where two

vacancies are situated by separating them from the first to the fourth NN positions.

As can be seen in table 6, the calculated prefactor does not change the ordering

of the rate table and the migration transitions with the lowest barriers, whether the

prefactor is calculated or the constant value is used, have the highest rate. However

in all the cases the calculated prefactor is higher than the constant value and in most

of the cases by at least one order of magnitude. Table 6 also shows that di-vacancy

migration is mainly carried out through 1, 2, 4 NN configurations due to the highest

rate values.

3.4. Verifying rate values

In order to check the estimated rates with the calculated prefactor, we have carried

out a series of tests. We have reproduced the same migration mechanisms we saw in

KMC simulations by evolving the systems with MD as follows: we begin with a system

that has only one defect at its centre, whose migration rates are being studied. Then

the system is thermalised up 450 K (the same temperature as used in the KMC) by

applying the Berendsen thermostat [23] for 10 ps of simulation time. After that we

evolve the system with regular MD until it crosses a saddle point separating two local
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Table 6: The calculated rates of the most common migration mechanisms of di-vacancy

defects at 450 K.

Initial Final Barrier Prefactor Rate (s−1) Rate (s−1)

config. config. (eV) (s−1) (const. prefactor) (calc. prefactor)

1NN 2NN 0.62 1.5× 1014 1.1× 106 1.7× 107

1NN 3NN 0.71 3.9× 1013 1.1× 105 4.4× 105

1NN 5NN 0.66 1.0× 1014 4.1× 105 4.1× 106

2NN 1NN 0.57 3.1× 1013 1.1× 106 1.3× 107

2NN 4NN 0.63 1.2× 1014 8.8× 105 1.1× 107

3NN 1NN 0.67 6.1× 1013 3.1× 105 1.9× 106

3NN 4NN 0.63 1.3× 1014 8.8× 105 1.1× 107

3NN 7NN 0.66 1.0× 1014 4.1× 105 4.1× 106

4NN 2NN 0.43 1.0× 1014 1.5× 108 1.5× 109

4NN 3NN 0.64 8.7× 1013 6.8× 105 5.9× 106

4NN 5NN 0.59 1.2× 1014 2.5× 106 3.0× 107

4NN 6NN 0.67 7.3× 1013 3.1× 105 2.3× 106

4NN 8NN 0.61 1.2× 1014 1.5× 106 1.8× 107

4NN 9NN 0.64 1.0× 1014 6.8× 105 6.8× 106

energy minima. We capture this moment by checking the dot product of the force vector

of the system and the atom separation vector between the current and the initial (just

after thermalisation) states. If the dot product is positive it means that both vectors

are pointing to the same direction and we have crossed the saddle. The time taken for

the system to migrate is measured and the new minimum state is found by relaxing the

system by the Conjugate Gradient method. We have carried out a set of 1,000 such

transitions for the DB interstitial and the single vacancy, 10,000 test simulations for

di-interstitial defects and analysed the results according to migration mechanisms seen

in the KMC simulations.

For the vacancy defect we had to increase the temperature to 750 K in order to find

transitions using the MD technique due to the time scales of the migration mechanisms

and then recalculate simulation times at 450 K by using eq. 8 as in the TAD method

[24]:

tlow = thigh exp (∆E (βlow − βhigh)), (8)

where thigh is actual simulation times at the higher (750 K) temperature and tlow is

the estimated simulation time at the lower (450 K) temperature, ∆E is the migration

energy barrier, and β is equal to 1/(kBT ).

The results are compared with KMC results in terms of the prefactor value. The

prefactor value is calculated as follows: first we calculate the rate R of the specific

migration mechanism by inverting the estimated the average simulation time tavg for it



Influence of the prefactor to defect motion in α-Iron during long time scale simulations10

to happen multiplied by a number possible pathways Npaths and converting the results

into seconds:

r =
1

tavg ∗Npaths

∗ 1015. (9)

Then, using this rate value in eq. 1 with an appropriate ∆E value, calculated by using

the climbing image NEB technique [1]), we estimate the prefactor value τ . The results

for the interstitial, di-interstitial and vacancy defects are given in table 7.

Table 7: Comparison of the rates and prefactor values for the common defects and their

main migration pathways between MD and KMC simulations at 450 K. In column %

we show the percentage occurrence of the particular mechanism with respect to the

total number of simulations and in the column %rsd we measure the percentage of the

relative standard error of the estimated value.

Migration
Barrier MD KMC

(eV) % τ (s−1) r (s−1) %rsd τ (s−1) r (s−1)

< 110 > DB

rot.-trans. 0.31 56% 3.0× 1013 1.1× 1010 4.1 1.8× 1013 6.5× 109

reorient. 0.43 12% 1.0× 1015 1.8× 1010 8.2 7.5× 1014 1.3× 1010

I
<110>

2

I2a
2

0.32 47% 2.6× 1013 7.2× 109 1.3 1.2× 1013 3.2× 109

I
<110>

2
0.32 16% 3.5× 1013 9.8× 109 2.9 1.4× 1013 3.9× 109

VAC

1-NN 0.62 66% 2.9× 1013 3.4× 106 6.3 1.0× 1014 1.2× 107

Results show that there is a reasonable agreement between the MD and KMC

techniques and the estimated prefactor from using Vineyard method is a good

approximation for the one that was determined from the MD simulations. For the

< 110 > DB and I<110>
2 defects we see a difference in the prefactor values for all the

migration mechanisms. This may occur because it is sometimes possible for the system

to return to the same local energy minimum, even if the saddle state was crossed, where

in our simulations it is not allowed. In this way the average simulation time maybe

slightly shorter, thus giving a higher prefactor value for the migration mechanism. The

same conclusion can be applied to the vacancy 1-NN jump migration only partially. The

difference between the prefactor values is also caused by the higher (750 K) temperature

at which simulations were carried out where the harmonic approximation breaks down.

To estimate the level of the error we additionally carried out simulations for the [110]DB

at 550 and 650 K temperatures (see table 8) and checked the prefactor values for both

most common migrations recalculated at 450 K. We can clearly see that for higher

temperature the prefactor value at lower temperature is underestimated, thus the MD

results for the vacancy defect are also likely to be underestimated.
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Table 8: [110] The DB migration prefactor values calculated at Tlow = 450 K.

Thigh (K)
Prefactor value (s−1) at Tlow for

rot.-trans. reorrient.

450 3.0× 1013 1.0× 1015

550 2.5× 1013 5.1× 1014

650 1.8× 1013 2.3× 1014

3.5. Influence of the prefactor during long-time scale simulations of collision cascade

evolution

In order to investigate, how an accurate determination of the prefactor may influence

otf-KMC simulations, we have carried out simulations on defect configurations that

were initially produced by a radiation event. 66, 1 keV cascades were carried out in

the same way as described in [25]. Of these, 10 representative cases were chosen and

further evolved by otf-KMC using the constant and calculated prefactors. The cases

were chosen in such a manner, that they would represent different defect configurations

and distributions in the system in order to provide a good insight of the processes.

Usually, the outcome of a collision cascade simulation consists of a vacancy rich

region close to the initial PKA site surrounded by outlying interstitials. Therefore, we

start by comparing the behaviour of the defects and then the effects on the whole system

in terms of energetics and defect numbers.

Due to the low barrier of the migration processes of the 〈110〉 DB, it dominates

the initial phase of the simulations, but the migration mechanism is different between

the constant and calculated cases. Simulations with the constant prefactor are driven

by the rotation-translation of the 〈110〉 DB, where the calculated case switches between

reorientation, which has a higher rate value and the rotation-translation mechanisms.

Therefore, in the simulation with the constant prefactor, 〈110〉 DBs tend to explore the

system more, whereas in the other case the 〈110〉 is not so mobile. In the first case, it is

more likely that 〈110〉 DB will find another defect to recombine or to cluster faster by

the exploring the system, whereas in the second case, if there are other defects in the

vicinity of the 〈110〉 DB, through reorientation, the DB is more likely to position itself

in a direction towards the defects before migration towards them.

A clear effect of the accurately determined prefactor can also be seen for the vacancy

type defects. With the constant prefactor used in the simulations, vacancy defect

migrations are observed quite rarely, only several in couple of thousand KMC steps,

if mobile interstitials are present in the system as well. With the calculated prefactor,

we can see vacancy defect jumps more often, due to the higher rate values. Thus, we are

able to see that vacancies tend to cluster and rearrange in to highly symmetrical (Fig.

1) configurations compared to using a constant value. On average the simulation time

for a vacancy type defect to migrate with calculated prefactor is ≈ 3 × 10−9s, where

the time with a constant value is almost an order of magnitude, longer ≈ 4 × 10−8s.
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These values were calculated from the evolution of 8 systems, evolved for more than

1,000 KMC steps with calculated and constant prefactors.

(a) Initial (b) Cluster

Figure 1: Clustering of 5 vacancies. a) Initial distribution of vacancies, post-cascade

configuration, b) High symmetry 5 vacancy cluster after 75 KMC steps

By counting the number of chosen transitions with a prefactor value that is ≤ 1012

s−1 or ≥ 1014 s−1 against the total number of KMC steps within a simulation we can

check if the processes that drive the KMC simulation depend on the calculation of the

prefactor. We checked nine simulations that were carried out for at least 1,000 KMC

steps and on average over 50% of the migration jumps had a prefactor value which is

≤ 1012 s−1 or ≥ 1014 s−1. In the cases where systems contain widely separated 〈110〉
DBs and vacancies, the percentage of chosen migrations affected by the calculation of

prefactors is quite high ≈ 70%, where in the cases with di-, tri-interstitials, it is the

opposite with the percentage ≈ 30%.

It was observed that accurate prefactor calculations also slightly influence the

recombination of defects. If an interstitial type defect lies a few NN away from a vacancy

type defect, these two are more likely to recombine with the calculated prefactor. To

investigate this situation further, a vacancy and 〈110〉DB defects were initially created in

defect-free system by changing the separation between them and evolving these system

by using otf-KMC. The cases of 1NN and 2NN separation are quite straightforward

where recombination transitions have the lowest barriers and highest rates. The 3NN

separation case is where the calculated prefactor does have an effect on the rate table.

The lowest barrier (∼ 0.29 eV) transitions are jumps to 4NN separation configurations

with a 1.9 × 1010 s−1 rate value, whereas a recombination transition with a slightly

higher barrier of 0.36 eV has an order of magnitude higher rate value 2.7 × 1011 s−1

with a prefactor of 3.1 × 1015 s−1, thus making this recombination more favourable.

When a vacancy and a 〈110〉 DB defect are initially separated by the 4NN distance,

recombination occurs as quickly as in the 1NN and 2NN cases, due to a low barrier (0.22

eV) transition. The 5NN case is vary similar to the 3 NN case; the lowest transitions
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with a barrier of 0.25 eV and a rate value of 2.2 × 1010 s−1, are jumps to the 4NN

configuration and a slightly higher barrier (0.33 eV) recombination transition has an

order of magnitude higher rate value of 1.5 × 1011 s−1 and is thus preferred. In the

bigger separation cases, 6NN and more, the prefactor influence was not sufficient to

influence the recombination processes.

Calculation of the prefactor has an influence on the bigger defect clusters too. One

of the cases observed is the four interstitial cluster (Fig. 2 (a)). In this case a few

different transitions were found for this cluster to re-configure with barriers ranging

between 0.1-0.2 eV. The calculated prefactors are at least one order of magnitude lower

than a constant value, e.g. to reconfigure from 2 (a) to 2 (b), a barrier of 0.1 eV must

be crossed with 1.8×1011 s−1 prefactor which leads to a rate value of 1.2×1010 s−1. The

calculated prefactor puts this transition on the same time scale with smaller interstitial

defects, and will not dominate the rate table, as it would, if the constant value was to

be used.

(a) Initial (b) Reconfigured

Figure 2: The interstitial cluster formed of 4 DBs. a) Initial, post-cascade configuration,

b) The reconfigured structure after crossing a 0.1 eV barrier.

Another configuration of the four interstitial cluster demonstrates an example of

the prefactor influencing defect recombination. In this case four split interstitials are

located in 1st NN positions and aligned in a slightly tilted 〈111〉 configuration (Fig.

3 (a)). In this case, the defect cluster’s centre of mass (com) is approximately 15 Å

away from a four vacancy cluster’s com (Fig. 3 (b)). The migration transitions for this

interstitial cluster along the 〈111〉 direction have barrier heights ranging from 0.20 to

0.30 eV with the prefactor values varying from 1.0 × 1014 s−1 to 5.0 × 1018 s−1. The

higher prefactor values are estimated when migration is happening towards the vacancies

cluster, making this migration process more accessible by the KMC technique and after

a couple hundreds of KMC steps these two clusters recombine.

4. Conclusions

We have applied the Vineyard equation to determine the influence of an accurately

calculated prefactor on the diffusion of small defect clusters in α-Fe. The contribution of

the vibrational internal energy, which is not incorporated within the Vineyard equation,
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(a) 4 DB cluster (b) DBs and Vacs clusters

Figure 3: A highly mobile split interstitial cluster, (a) containing four slightly tilted

〈111〉 DBs in 1st NN positions, (b) the DBs cluster in the vicinity of four vacancies

cluster.

showed only a minute contribution to the barrier height for the main defects types and

their key migration mechanisms. In order to achieve one significant figure accuracy for

the prefactor, it is necessary to include atoms at least within 7 Å radius around the

defect, which results in computations that are not excessive in terms of computing time.

Results for the 〈110〉 DB showed an almost two orders of magnitude greater prefactor

value for the 〈111〉 DB on-site rotation, compared to a constant value, making it the

fastest transition and more likely to be chosen than the translation-rotation mechanism

that has a lower barrier height. For most of the transitions of the vacancy type defects,

single and di-vacancy, the prefactor value is a least an order magnitude greater than the

constant value, thus reducing the difference between the diffusion rates of interstitial and

vacancy type defects. The results show that an accurate determination of the prefactor,

in addition to the transition energy barriers, is necessary for accurate prediction of defect

motion in KMC simulations.
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