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This supplement is structured as follows. Section A contains all the proofs omitted

in the paper. Section B states technical lemmas required by these proofs.
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A Main proofs

Proof of Proposition 1. Take an admissible pair (t, x) satisfying x ≥ S and t < T , and

consider the stopping time τε := inf {0 ≤ s ≤ T − t : Xt+s ≤ S − ε | Xt = x} (assume for

convenience that inf{∅} = T −t), for ε > 0. Notice that Pt,x [τε < T − t] > 0, which implies

that V (t, x) ≥ Et,x
[
e−λτεG(Xt+τε)

]
> 0 = G(x), from where it comes that (t, x) ∈ C.

Define b(t) := sup {x ∈ R : (t, x) ∈ D}. The above arguments guarantee that b(t) < S

for all t ∈ [0, T ), and we get from (1) that b(T ) = S. Furthermore, from (1) it can be easily

noticed that as λ increases V (t, x) decreases and therefore b(t) increases, and since b(t) is

known to be finite for all t when λ = 0 (see Subsection 3.2), then we can guarantee that

b(t) > −∞ for all values of λ.

Notice that, since D is a closed set, b(t) ∈ D for all t ∈ [0, T ]. In order to prove

that D has the form claimed in Proposition 1, let us take x < b(t) and consider the OST

τ ∗ = τ ∗(t, x). Then, relying on (1), (3) and (5), we get

V (t, x)− V (t, b(t)) ≤ Et,x
[
e−λτ

∗
G(Xt+τ∗)

]
− Et,b(t)

[
e−λτ

∗
G(Xt+τ∗)

]
(27)

≤ Et,0

[(
Xt+τ∗ + b(t)

T − t− τ ∗
T − t −Xt+τ∗ − x

T − t− τ ∗
T − t

)+
]

= (b(t)− x)E
[
T − t− τ ∗
T − t

]
≤ b(t)− x,

where we used the relation

G(a)−G(b) ≤ (b− a)+, (28)

for all a, b ∈ R, for the second inequality. Since V (t, b(t)) = S − b(t), we get from the

above relation that V (t, x) ≤ S − x = G(x), which means that (t, x) ∈ D and therefore

{(t, x) ∈ [0, T ]× R : x ≤ b(t)} ⊂ D. On the other hand, if (t, x) ∈ D, then x ≥ b(t), which

proves the reverse inclusion.

Take now t, t′ ∈ [0, T ] and x ∈ R such that t′ < t and (t, x) ∈ C, then, since the function

t 7→ V (t, x) is non-increasing for all x ∈ R (see (iv) from Proposition 2), V (t′, x) ≥ V (t, x) >

G(x), i.e., (t′, x) ∈ C. Hence, b is non-decreasing.
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Finally, in order to prove the right-continuity of b, let us fix t ∈ (0, T ) and notice that,

since b is non-decreasing, then b(t+) ≥ b(t). On the other hand, as D is a closed set and

(t+h, b(t+h)) ∈ D for all 0 < h ≤ T −t, then (t+, b(t+)) ∈ D or, equivalently, b(t+) ≤ b(t).

Proof of Proposition 2. (i) Half of the statement relies on the result obtained

in Peskir and Shiryaev (2006, Section 7.1) relative to the Dirichlet problem. Specifically,

it states that V is C1,2 on C and ∂tV + LXV = λV on C. On the other hand, since

V (t, x) = G(x) = S − x for all (t, x) ∈ D, V is C1,2 also on D.

(ii) We easily get the convexity of x 7→ V (t, x) by plugging-in (3) into (1). To prove (13)

let us fix an arbitrary point (t, x) ∈ [0, T ]× R, consider τ ∗ = τ ∗(t, x) and τε = τ ∗(t, x+ ε)

for some ε ∈ R. Since τε → τ a.s., by arguing similarly to (27), we get

ε−1(V (t, x+ ε)− V (t, x)) ≤ −E
[
e−λτε

T − t− τε
T − t

]
(29)

ε→0−→ −E
[
e−λτ

∗ T − t− τ ∗
T − t

]
,

where the limit is valid due to the dominated convergence theorem. For ε < 0 the

reverse inequality emerges, giving us, after making ε → 0, the relation ∂−x V (t, x) ≤
−E

[
e−λτ

∗ T−t−τ∗
T−t

]
≤ ∂+

x V (t, x), which, due to the continuity of x 7→ ∂xV (t, x) on (−∞, b(t))
and on (b(t),∞) for all t ∈ [0, T ] (V is C1,2 on C and on D), turns into ∂xV (t, x) =

−E
[
e−λτ

∗ T−t−τ∗
T−t

]
for all (t, x) where t ∈ [0, T ] and x 6= b(t). For x = b(t) the equation (13)

also holds true and it turns into the smooth fit condition (iii) proved later on.

Furthermore, since Pt,x [τ ∗ < T − t] > 0 (see Lemma 1), the expression (13) shows that

∂xV < 0 and therefore x 7→ V (t, x) is strictly decreasing for all t ∈ [0, T ].

(iii) Take a pair (t, x) ∈ [0, T )×R lying on the OSB, i.e., x = b(t), and consider ε > 0.

Since (t, x) ∈ D and (t, x+ε) ∈ C, we have that V (t, x) = G(x) and V (t, x+ε) > G(x+ε).

Thus, taking into account the inequality (28), we get ε−1(V (t, x+ε)−V (t, x)) > ε−1(G(x+

ε) − G(x)) ≥ −1, which, after making ε → 0 turns into ∂+
x V (t, x) ≥ −1. On the other

hand, by considering the optimal stopping time τε := τ ∗(t, x + ε) and following the same
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arguments showed at (29), we get that ∂+
x V (t, x) ≤ −1. Therefore ∂+

x V (t, b(t)) = −1 for

all t ∈ [0, T ). Since V = G in D, it follows straightforwardly that ∂−x V (t, b(t)) = −1 and

hence the smooth fit condition holds.

(iv) Notice that, due to (i), alongside to (4), (3), (13), and recalling that x 7→ V (t, x)

is convex (and therefore ∂x2V ≥ 0), we get that

∂tV (t, x) ≤ λV (t, x)− T − t− x
T − t ∂xV (t, x)

= −E
[
e−λτ

∗
(x− S)

1− t− τ ∗
1− t

(
λ+

x− S
1− t

)]
.

Therefore ∂tV ≤ 0 on the set CS := [0, T )× [S,∞) ⊂ C.

For some small ε > 0, denote by (X
[t,T ]
s )T−t+εs≥0 a process such that, for s ∈ [0, T − t] it

behaves as the Brownian bridge X [t,T ], and the remaining part stays constant at the value

S, i.e., X
[t,T ]
s = S for s ∈ [T − t, T − t + ε]. Let µ[t,T ] be its drift, and define the process

(X
[t−ε,T ]
s )T−t+εs≥0 = X [t−ε,T ] with drift µ[t−ε,T ]. Since µ[t,T ](t, x) ≥ µ[t−ε,T ] whenever x ≤ S,

Theorem 1.1 from Ikeda and Watanabe (1977) guarantees that X
[t,T ]
s ≥ X

[t−ε,T ]
s Pt,x-a.s.,

for all (t, x) and for all s ≤ τS, where τS := inf{s ∈ [0, T − t] : X
[t,T ]
s > S}.

Assume now that both processes start at x ≤ S, and consider the stopping time τ ∗ =

τ ∗(t, x). Therefore, since V (t+ s∧ τ ∗, X [t,T ]
s∧τ∗) and V (t+ s,X

[t−ε,T ]
s ) are a martingale and a

supermartingale (see Section 2.2 from Peskir and Shiryaev (2006)), respectively, we have

V (t, x)− V (t− ε, x) ≤ E
[
V (t+ τS ∧ τ ∗, X [t,T ]

τS∧τ∗)− V (t− ε+ τS ∧ τ ∗, X [t−ε,T ]

τS∧τ∗ )
]

≤ E
[
I(τ ∗ ≤ τS, τ ∗ < T − t)e−λτ∗(X [t−ε,T ]

τ∗ −X [t,T ]
τ∗ )+

]
+ E

[
I(τ ∗ ∧ τS = T − t)e−λτ∗(X [t−ε,T ]

T−t −X [t,T ]
T−t )

+
]

+ E
[
I(τS ≤ τ ∗, τS < T − t)V (t+ τS, X

[t,T ]

τS
)− V (t− ε+ τS, X

[t−ε,T ]

τS
)
]

≤ E
[
I(τS ≤ τ ∗, τS < T − t)V (t− ε+ τS, S)− V (t− ε+ τS, X

[t−ε,T ]

τS
)
]

≤ 0,

where the second inequality comes after noticing that τ ∗ is not optimal for X [t−ε,T ] and

using (28); the third inequality holds since X
[t−ε,T ]
τ∗ ≤ X

[t,T ]
τ∗ for τ ∗ ≤ τS, X

[t−ε,T ]
T−t ≤ X

[t,T ]
T−t

whenever τ ∗ ∧ τS = T − t, and the fact that ∂tV ≤ 0 on the set CS; and the last inequality
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relies on the increasing behavior of x 7→ V (t, x). Finally, after dividing by ε and taking

ε→ 0, we get the claimed result. Note that a similar argument for a different gain function

has recently appeared in Tiziano and Milazzo (2019).

(v) Let (X
[ti,T ]
ti+s )

[0,T−ti]
s≥0 be a Brownian bridge going from Xti = x to XT = S for any

x ∈ R, with i = 1, 2. Notice that, according to (3), the following holds:

X
[t2,T ]
t2+s′

d
= r1/2X

[t1,T ]
t1+s + (1− r1/2)(S − x)

s

T − t1
, (30)

where r = T−t2
T−t1 , s ∈ [0, T − t1], and s′ = sr ∈ [0, T − t2].

Take 0 ≤ t1 < t2 < T , consider τ1 := τ ∗(t1, x), and set τ2 := τ1r. Since t 7→ V (t, x) is

decreasing for every x ∈ R, then

0 ≤ V (t1, x)− V (t2, x)

≤ Et1,x
[
e−λτ1G

(
X

[t1,T ]
t1+τ1

)]
− Et2,x

[
e−λτ2G

(
X

[t2,T ]
t2+τ2

)]
≤ E

[
e−λτ2

(
G
(
X

[t1,T ]
t1+τ1

)
−G

(
X

[t2,T ]
t2+τ2

))]
≤ E

[(
X

[t2,T ]
t2+τ2 −X

[t1,T ]
t1+τ1

)+
]
.

= E

[((
r1/2 − 1

)(
X

[t1,T ]
t1+τ1 + (S − x)

τ1

T − t1

))+
]

≤
((
r1/2 − 1

)
(S + I(x ≤ S)(S − x))

)+
,

where the first equality comes after applying (30) and the last inequality takes place since

r < 1 and X
[t1,T ]
t1+τ1 ≤ S.

Hence, V (t1, x) − V (t2, x) → 0 as t1 → t2, i.e., t 7→ V (t, x) is continuous for every

x ∈ R, and thus, to address the continuity of V is sufficient to prove that, for a fixed t,

x 7→ V (t, x) is uniformly continuous within a neighborhood of t. The latter comes after

the following inequality, which comes right after applying similar arguments to those used

in (27):

0 ≤ V (t, x1)− V (t, x2) ≤ (x2 − x1)E
[
e−λτ

∗ T − t− τ ∗
T − t

]
≤ x2 − x1,
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where x1, x2 ∈ R are such that x1 ≤ x2 and τ ∗ = τ ∗(t, x1).

Proof of Proposition 3. We already proved the right-continuity of b in Proposition

1, so this proof is devoted to prove its left-continuity.

Let us assume that b is not left-continuous. Therefore, as b is non-decreasing, we can

ensure the existence of a point t∗ ∈ (0, T ) such that b(t−∗ ) < b(t∗), which allows us to take x′

in the interval (b(t−∗ ), b(t∗)) and consider the right-open rectangle R = [t′, t∗)× [b(t−∗ ), x′] ⊂
C (see illustration of Figure 10), with t′ ∈ (0, t∗).

t

x

o

•

t∗t
′

b(t−∗ )

b(t∗)

x
′

y

R

D

C

Figure 10: Graphical sketch of the proof of left continuity of b.

Applying twice the fundamental theorem of calculus, using that (t, b(t)) ∈ D for all

t ∈ [0, T ], the smooth fit condition (iii), and the fact that x 7→ V (t, x) is C2 on C, we

obtain

V (t, x)−G(x) =

∫ x

b(t)

∫ u

b(t)

(∂x2V (t, v)− ∂x2G(v)) dv du, (31)

for all (t, x) ∈ R.

On the other hand, if we set m := − sup(t,x)∈R ∂xV (t, x), then we readily obtain from

(13) that m > 0 (see Lemma 1), which, combined with ∂tV + LXV = λV on C and

∂tV ≤ 0 on C ((i) and (iv) from Proposition 2), along with the fact that V (t, x) ≥ 0 for
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all admissible pairs (t, x), gives

∂x2V (t, x) =
2

σ2

(
λV (t, x)− S − x

T − t ∂xV (t, x)− ∂tV (t, x)

)
≥ 2m

σ2

S − x
T − t > 0, (32)

for all (t, x) ∈ R. Therefore, by noticing that ∂x2G(x) = 0 for all x ∈ (b(t−∗ ), x′) and

plugging-in (32) into (31), we get

V (t, x)−G(x) ≥
∫ x

b(t)

∫ u

b(t)

2m

σ2

S − x
T − t dv du

≥ 2m

σ2

S − x
T − t

∫ x

b(t−∗ )

∫ u

b(t−∗ )

dv du

=
2m

σ2

S − x
T − t (x− b(t−∗ ))2.

Finally, after taking t→ t∗ on both sides of the above equation, we obtain V (t∗, x)−G(x) >

0 for all x ∈ (b(t−∗ ), b(t∗)), which contradicts the fact that (t∗, x) ∈ D.

Proof of Theorem 1.

Assume we have a function c : [0, T ] → R that solves the integral equation (20) and

define the function

V c(t, x) =

∫ T

t

e−λ(u−t)
(

1

T − u + λ

)
Et,x [(S −Xu)1 (Xu ≤ c(u))] du (33)

=

∫ T

t

Kσ,λ(t, x, u, c(u)) du,

where X = (Xs)
T
s=0 is a Brownian bridge with σ volatility that ends at XT = S, and Kσ,λ

is defined at (19). It turns out that x 7→ Kσ,λ(t, x, u, c(u)) is twice continuously differen-

tiable and therefore differentiating inside the integral symbol at (33) yields ∂xV
c(t, x) and

∂x2V
c(t, x), and furthermore ensures their continuity on [0, T )× R.

Let us compute the operator ∂t + LX acting on the function V c,

∂tV
c + LXV c(t, x) = lim

h↓0

Et,x[V c(t+ h,Xt+h)]− V c(t, x)

h
.

Define the function

I(t, u, x1, x2) := e−λ(u−t)
(

1

T − u + λ

)
(S − x1)1 (x1 ≤ x2) (34)
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and notice that

Et,x[V c(t+ h,Xt+h)] = Et,x
[
Et+h,Xt+h

[∫ T

t+h

I(t+ h, u,Xu, c(u)) du

]]
= Et,x

[
Et,x

[∫ T

t+h

I(t+ h, u,Xu, c(u)) du
∣∣∣ Ft+h]]

= Et,x
[∫ T

t+h

I(t+ h, u,Xu, c(u)) du

]
,

where (Fs)Ts=0 is the natural filtration of X. Therefore,

∂tV
c + LXV c(t, x)

= lim
h↓0

Et,x
[∫ T

t+h
I(t+ h, u,Xu, c(u)) du

]
− Et,x

[∫ T
t
I(t, u,Xu, c(u)) du

]
h

= lim
h↓0

1

h
Et,x

[∫ T

t+h

(
eλh − 1

)
I(t, u,Xu, c(u)) du

]
− lim

h↓0

1

h
Et,x

[∫ t+h

t

I(t, u,Xu, c(u)) du

]
= λV (t, x)− (S − x)

(
1

T − t + λ

)
1(x ≤ c(t)).

From this result, alongside with (4) and the fact that V c, ∂xV
c, and ∂x2V

c are continuous

on [0, T )× R, we get the continuity of ∂tV
c on C1 ∪ C2, where

C1 := {(t, x) ∈ [0, T )× R : x > c(t)},

C2 := {(t, x) ∈ [0, T )× R : x < c(t)}.

Now define the function F (t)(s, x) := e−λsV c(t + s, x) with s ∈ [0, T − t), x ∈ R, and

consider the sets

Ct
1 := {(s, x) ∈ C1 : t ≤ s < T},

Ct
2 := {(s, x) ∈ C2 : t ≤ s < T}.

We claim that F (t) satisfies the (iii-b) version of the hypothesis of Lemma 2 taking C = Ct
1

and D◦ = Ct
2. Indeed: F (t), ∂xF

(t), and ∂x2F
(t) are continuous on [0, T ) × R; it has been

proved that F (t) is C1,2 on Ct
1 and Ct

2; we are assuming that c is a continuous function of

bounded variation; and (∂tF
(t) +LXF (t))(s, x) = −e−λs(S − x)

(
1

T−t−s + λ
)
1(x ≤ c(t+ s))

is locally bounded on Ct
1 ∪ Ct

2.
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Thereby, we can use the (iii-b) version of Lemma 2 to obtain the following change of

variable formula, which is missing the local time term because of the continuity of Fx on

[0, T )× R:

e−λsV c(t+ s, Xt+s)

= V c(t, x)−
∫ t+s

t

e−λ(u−t)(S −Xu)

(
1

T − u + λ

)
1(Xu ≤ c(u)) du+M (1)

s , (35)

with M
(1)
s =

∫ t+s
t

e−λ(u−t)σ∂xV
c(u,Xu) dBu. Notice that (M

(1)
s )T−ts=0 is a martingale under

Pt,x.

In the same way, we can apply the (iii-b) version of Lemma 2 this time using the

function F (s, x) = e−λsG(Xt+s), and taking C = {(s, x) ∈ [0, T − t) × R : x > S} and

D◦ = {(s, x) ∈ [0, T − t)× R : x < S}, thereby getting

e−λsG(Xt+s) = G(x)−
∫ t+s

t

e−λ(u−t)(S −Xu)

(
1

T − u + λ

)
1(Xu < S) du (36)

−M (2)
s +

1

2

∫ t+s

t

e−λ(u−t)
1(Xu = S) dlSs (X),

where M
(2)
s = σ

∫ t+s
t

e−λ(u−t)
1(Xu < S) dBu, with 0 ≤ s ≤ T −t, is a martingale under Pt,x.

Consider the following stopping time for (t, x) such that x ≤ c(t):

ρc := inf {0 ≤ s ≤ T − t : Xt+s ≥ c(t+ s) | Xt = x} . (37)

In this way, along with assumption c(t) < S for all t ∈ (0, T ), we can ensure that 1(Xt+s ≤
c(t+s)) = 1(Xt+s ≤ S) = 1 for all s ∈ [0, ρc), as well as

∫ t+s
t

e−λ(u−t)
1(Xu = S) dlSs (X) = 0.

Recall that V c(t, c(t)) = G(c(t)) for all t ∈ [c, T ) since c solves the integral equation (20).

Moreover, V c(T, S) = 0 = G(S). Hence, V c(t + ρc, Xt+ρc) = G(Xt+ρc). Therefore, we are
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able now to derive the following relation from equations (35) and (36):

V c(t, x) = Et,x[e−λρcV c(t+ ρc, Xt+ρc)]

+ Et,x
[∫ t+ρc

t

e−λ(u−t)(S −Xu)

(
1

T − u + λ

)
1(Xu ≤ c(u)) du

]
= Et,x

[
e−λρcG(Xt+ρc)

]
+ Et,x

[∫ t+ρc

t

e−λ(u−t)(S −Xu)

(
1

T − u + λ

)
1(Xu ≤ S) du

]
= G(x).

The vanishing of the martingales M
(1)
ρc and M

(2)
ρc comes after using the optional stopping

theorem (see, e.g., Section 3.2 from Peskir and Shiryaev (2006)). Therefore, we have just

proved that V c = G on C2.

Now define the stopping time

τc := inf{0 ≤ u ≤ T − t : Xt+u ≤ c(t+ u) | Xt = x}

and plug-in it into equation (35) to obtain the expression

V c(t, x) = e−λτcV c(t+ τc, Xt+τc)

+

∫ t+τc

t

e−λ(u−t)(S −Xu)

(
1

T − u + λ

)
1(Xu ≤ c(u)) du−M (1)

τc .

Notice that, due to the definition of τc, 1(Xt+u ≤ c(t+ u)) = 0 for all 0 ≤ u < τc whenever

τc > 0 (the case τc = 0 is trivial). In addition, the optional sampling theorem ensures that

Et,x[M (1)
τc ] = 0. Therefore, the following formula comes after taking Pt,x-expectation in the

above equation and considering that V c = G on C2:

V c(t, x) = Et,x[e−λτcV c(t+ τc, Xt+τc)] = Et,x
[
e−λτcG(Xt+τc)

]
,

for all (t, x) ∈ [0, T )× R. Recalling the definition of V from (1), we realize that the above

equality leads to

V c(t, x) ≤ V (t, x), (38)
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for all (t, x) ∈ [0, T )× R.

Take (t, x) ∈ C2 satisfying x < min{b(t), c(t)}, where b is the OSB for (1), and consider

the stopping time ρc defined as

ρb := inf {0 ≤ s ≤ T − t : Xt+s ≥ b(t+ s) | Xt = x} .

Since V = G on D, the following equality holds true due to (14) and from noticing that

1(Xt+u ≤ b(t+ u)) = 1 for all 0 ≤ u < ρb:

Et,x[e−λρbV (t+ ρb, Xt+ρb)] = G(x)− Et,x
[∫ t+ρb

t

e−λ(u−t)(S −Xu)

(
1

T − u + λ

)
du

]
.

On the other hand, we get the next equation after substituting s for ρb at (35) and recalling

that V = G on C2:

Et,x[e−λρbV (t+ ρb, Xt+ρb)]

= G(x)− Et,x
[∫ t+ρc

t

e−λ(u−t)(S −Xu)

(
1

T − u + λ

)
1(Xu ≤ c(u)) du

]
.

Therefore, we can use (38) to merge the two previous equalities into

Et,x
[∫ t+ρb

t

e−λ(u−t)(S −Xu)

(
1

T − u − λ
)
1(Xu ≤ c(u)) du

]
≥ Et,x

[∫ t+ρb

t

e−λ(u−t)(S −Xu)

(
1

T − u − λ
)

du

]
,

meaning that b(t) ≤ c(t) for all t ∈ [0, T ] since c is continuous.

Suppose there exists a point t ∈ (0, T ) such that b(t) < c(t) and fix x ∈ (b(t), c(t)).

Consider the stopping time

τb := inf{0 ≤ u ≤ T − t : Xt+u ≤ b(t+ u) | Xt = x}

and plug-in it both into (14) and (35) replacing s before taking the Pt,x-expectation. We

obtain

Et,x[e−λτbV c(t+ τb, Xt+τb)]

= Et,x[e−λτbG(Xt+τb)]

= V c(t, x)− Et,x
[∫ t+τb

t

e−λ(u−t)(S −Xu)

(
1

T − u + λ

)
1(Xu ≤ c(u)) du

]
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and

Et,x[e−λτbV (t+ τb, Xt+τb)] = Et,x[e−λτbG(Xt+τb)] = V (t, x).

Thus, from (38) we get

Et,x
[∫ t+τb

t

e−λ(u−t)(S −Xu)

(
1

T − u + λ

)
1(Xu ≤ c(u)) du

]
≤ 0.

Using the fact that x > b(t) and the time-continuity of the process X, we can state that

τb > 0. Therefore, the previous inequality can only happen if 1(Xs ≤ c(s)) = 0 for all

t ≤ s ≤ t + τb, meaning that b(s) ≥ c(s) for all t ≤ s ≤ t + τb, which contradicts the

assumption b(t) < c(t).

Proof of Proposition 4. Since the OSP (21) satisfies the hypothesis stated in

Corollary 2.9 from Peskir and Shiryaev (2006) (Vi lower semi-continuous and Gi upper

semi-continuous), we can ensure the existence of the OSP τ ∗i (t, x) defined at (6) for the

pair (t, x), where i = 1, 2. Moreover, Theorem 2.4 from Peskir and Shiryaev (2006) guaran-

tees that P(i)
t,x [τ ∗i (t, x) ≤ τ∗] = 1 for any other OST τ∗ of the OSP (21), where P(i)

t,x denotes

the law such that P(i)
t,x

[
X

(i)
t = x

]
= 1.

(i) Define the sets Dα,A
i := {(t, x) ∈ [0, T ] × R : (t, α−1(x − A)) ∈ Di} for i = 1, 2,

and notice that τ ∗1 (t, x)
d
= inf{0 ≤ s ≤ T − t : X

(2)
t+s ∈ Dα,A

1 | X(2)
t = αx + A} as well as

τ ∗2 (t, αx + A)
d
= inf{0 ≤ s ≤ T − t : X

(1)
t+s ∈ Dα−1,−α−1A

2 | X(1)
t = x}, for (t, x) ∈ [0, T ]× R.

Suppose that

Et,αx+A

[
e−λτ

∗
2 (t,αx+A)G2

(
X

(2)
t+τ∗2 (t,x+A)

)]
> Et,αx+A

[
e−λτ

∗
1 (t,x)G2

(
X

(2)
t+τ∗1 (t,x)

)]
.

Then,

Et,x
[
e−λτ

∗
2 (t,αx+A)G1

(
X

(1)
t+τ∗2 (t,αx+A)

)]
= Et,αx+A

[
e−λτ

∗
2 (t,αx+A)G2

(
X

(2)
t+τ∗2 (t,αx+A)

)]
> Et,αx+A

[
e−λτ

∗
1 (t,x)G2

(
X

(2)
t+τ∗1 (t,x)

)]
= Et,x

[
e−λτ

∗
1 (t,x)G1

(
X

(1)
t+τ∗1 (t,x)

)]
which is a contradiction. Therefore, our original assumption has to be wrong, meaning

that τ ∗2 (t, αx+ A) ≤ τ ∗1 (t, x) P(1)
t,x-a.s. as well as P(2)

t,αx+A-a.s. (notice that P(1)
t,x = P(2)

t,αx+A).

12



Interchanging the roles of t∗1(t, x) and t∗2(t, αx+A) along the argumentation given above,

and making the corresponding rearrangements, we get the opposite inequality. Thus, since

both D1 and D2 are closed sets, then D2 = Dα,A
1 or, reciprocally, D1 = Dα−1,−α−1A

2 .

(ii) Fix (t, x) ∈ [0, T ] × R and let τ ∗1 = τ ∗1 (t, x) as well as τ ∗2 = τ ∗2 (t, x). Notice that

τ ∗1
d
= inf{0 ≤ s ≤ T − t : X

(2)
t+s ∈ D1 | X(2)

t = x} and τ ∗2
d
= inf{0 ≤ s ≤ T − t : X

(1)
t+s ∈ D2 |

X
(1)
t = x}. Suppose that

Et,x
[
e−λτ

∗
2G2

(
X

(2)
t+τ∗2

)]
> Et,x

[
e−λτ

∗
1G2

(
X

(2)
t+τ∗1

)]
.

Since G1 = G2 on D1 ∪D2, then

Et,x
[
e−λτ

∗
2G1

(
X

(1)
t+τ∗2

)]
= Et,x

[
e−λτ

∗
2G2

(
X

(2)
t+τ∗2

)]
> Et,x

[
e−λτ

∗
1G2

(
X

(2)
t+τ∗1

)]
= Et,x

[
e−λτ

∗
1G1

(
X

(1)
t+τ∗1

)]
,

which is an absurd and hence our assumption is wrong, this is, τ ∗2 ≤ τ ∗1 P(1)
t,x-a.s. as well as

P(2)
t,x-a.s. (notice that P(1)

t,x = P(2)
t,x).

Swapping the roles of t∗1 and t∗2 throughout the argumentation given above, and making

the correspondent rearrangements, we get the opposite inequality. Therefore, since both

D1 and D2 are closed sets, then D2 = D1.

Proof of Corollary 1. First, notice that in both scenarios, (i) and (ii), the condi-

tions Gi being upper semi-continuous and Vi lower semi-continuous from Proposition 4 are

fulfilled due to the continuity of Gi (see Remark 2.10 from Peskir and Shiryaev (2006)).

(i) Since G1(2S−x) = G2(x) and
[
2S −X(1)

t+s | X(1)
t = x

]
d
=
[
X

(2)
t+s | X(2)

t = 2S − x
]

for

all s ∈ [0, T − t], then we can apply (i) from Proposition 4 to show that D1 = {(t, x) :

(t, 2S − x) ∈ D2}, and therefore b1 = 2S − b2.

(ii) Introduce the function G(x) = S2 − x and the Brownian bridge (Xt+s)
T−t
s=0 such

that XT = S2. Since G(S2 − x) = G1(x) and [Xt+s | Xt = S2 − x]
d
= [X

(1)
t+s | X(1)

t = x]
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for (t, x) ∈ [0, T ] × R, we get that D1 = {(t, x) ∈ [0, T ] × R : S2 − x ∈ D}, and hence

b(t) = S2 − b1, where D and b are, respectively, the stopping set and the OSB of the

non-discounted OSP with gain function G and process (Xt+s)
T−t
s=0 .

Let us fix t ∈ [0, T ) and take x′ satisfying x′ > S2. Consider ε > 0 such that ε < x′−S2,

as well as the stopping time τε := inf{0 ≤ s ≤ T − t : Xt+s ≤ S + ε | Xt = x′}. Since

our underlying Brownian bridge process X(1) is continuous and it takes the value S2 at the

expiration date T , then P(1)
t,x′ [τε < T − t] = 1 and thus V (t, x′) ≥ Et,x′ [G(Xt+τε)] = −ε >

S2 − x′ = G(x′), i.e., (t, x′) /∈ D. Therefore, D ⊂ DS2 := {(t, x) ∈ [0, T ]× R : x ≤ S2}.
On the other hand, recall from Proposition 1 that D2 ⊂ DS2 . Therefore, since G(x) =

G2(x) for all x such that (t, x) ∈ DS2 for some t ∈ [0, T ], and [Xt+s | Xt = x]
d
=
[
X

(2)
t+s | X(2)

t = x
]

for all s ∈ [0, T − t], then we can use (ii) from Proposition 4 in order to get the relation

b2 = b = S2 − b1.

B Auxiliary lemmas

Lemma 1 Let (Xt+s)
T−t
s=0 be a Brownian bridge from Xt to XT = S with volatility σ, where

t ∈ [0, T ). Let b be the optimal stopping boundary associated to the OSP

V (t, x) = sup
0≤τ≤T−t

Et,x
[
e−λτG(Xt+τ )

]
,

with G(x) = (G − x)+, and λ ≥ 0. Then, sup(t,x)∈R ∂xV (t, x) < 0, where R is the set

defined in the proof of Proposition 3.

Proof. Take 0 < ε < 1, let τ ∗ = τ ∗(t, x), and define

p(t, x) := P [τ ∗ ≤ (T − t)(1− ε)] .

14



Notice that

p(t, x) = Pt,x
[

min
0≤s≤(T−t)(1−ε)

{Xt+s − b(s)} < 0

]
≥ Pt,x

[
min

0≤s≤(T−t)(1−ε)
Xt+s < b(t)

]
= P

[
min

0≤s≤(T−t)(1−ε)

{
(S − x)

s

T − t + σ

√
T − t− s
T − t Ws

}
< b(t)− x

]

≥ P

[
min

0≤s≤(T−t)(1−ε)

{√
T − t− s
T − t Ws

}
< σ−1(b(t)−max{x, S})

]

= P
[

min
0≤s≤(T−t)(1−ε)

{Ws} < ε−1/2σ−1(b(t)−max{x, S})
]

= 2P
[
W(T−t)(1−ε) < ε−1/2σ−1(b(t)−max{x, S}

]
,

where the first inequality is justified since b is non-decreasing (see Proposition 1), while the

last equality comes after applying the reflection principle. Therefore,

M := inf
(t,x)∈R

p(t, x) > 0.

Finally, by using (13) we obtain the following relation for all (t, x) ∈ R:

∂xV (t, x) ≤ −e−λ(T−t)E
[
T − t− τ ∗
T − t 1 (τ ∗ ≤ (T − t)(1− ε))

]
≤ −e−λ(T−t)εp(t, x)

≤ −e−λ(T−t)εM < 0.

For the sake of completeness, we formulate the following change-of-variable result by

taking Theorem 3.1 from Peskir (2005a) and changing some of its hypothesis according to

Remark 3.2 from Peskir (2005a). Specifically, the (iii-a) version of Lemma 2 comes after

changing, in Peskir (2005a), (3.27) and (3.28) for the joint action of (3.26), (3.35), and

(3.36). The (iii-b) version relaxes condition (3.35) into (3.37) in ibid.

Lemma 2 Let X = (Xt)
T
t=0 be a diffusion process solving the SDE

dXt = µ(t,Xt) dt+ σ(t,Xt) dBt, 0 ≤ t ≤ T,
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in the Itô’s sense. Let b : [0, T ] → R be a continuous function of bounded variation, and

let F : [0, T ]× R→ R be a continuous function satisfying

F is C1,2 on C,

F is C1,2 on D◦,

where C = {(t, x) ∈ [0, T ]× R : x > b(t)} and D◦ = {(t, x) ∈ [0, T ]× R : x < b(t)}.
Assume there exists t ∈ [0, T ] such that the following conditions are satisfied:

(i) ∂tF + µ∂xF + (σ2/2)∂x2F is locally bounded on C ∪D◦;

(ii) the functions s 7→ ∂xF (s, b(s)±) := ∂xF (s, lim
h→0+

b(s)± h) are continuous on [0, t];

(iii) and either

(iii-a) x 7→ F (s, x) is convex on [b(s) − δ, b(s)] and convex on [b(s), b(s) + δ] for each

s ∈ [0, t], with some δ > 0, or,

(iii-b) ∂x2F = G1 +G2 on C ∪D◦, where G1 is non-negative (or non-positive) and G2

is continuous on C̄ and D̄◦.

Then, the following change-of-variable formula holds

F (t,Xt) = F (0, X0) +

∫ t

0

(∂tF + µ∂xF + (σ2/2)∂x2F )(s,Xs)1(Xs 6= b(s)) ds

+

∫ t

0

(σ∂xF )(s,Xs)1(Xs 6= b(s)) dBs

+
1

2

∫ t

0

(∂xF (s,X+
s )− ∂xF (s,X−s ))1(Xs = b(s)) dlbs(X),

where dlbs(X) is the local time of X at the curve b up to time t, i.e.,

lbs(X) = lim
ε→0

∫ t

0

1(b(s)− ε ≤ Xs ≤ b(s) + ε) d〈X,X〉s, (39)

where 〈X,X〉 is the predictable quadratic variation of X, and the limit above is meant in

probability.
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