Supplement to “Optimal exercise of
American options under stock pinning”

Abstract

This supplement is structured as follows. Section A contains all the proofs omitted

in the paper. Section B states technical lemmas required by these proofs.
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A Main proofs

Proof of Proposition 1. Take an admissible pair (¢, z) satisfying x > S and ¢t < T, and
consider the stopping time 7. := inf{0 <s<T —t: X1, < S —¢| Xy, =2z} (assume for
convenience that inf{()} = T'—t), for ¢ > 0. Notice that P; , [7. < T —t] > 0, which implies
that V(t,2) > By, [e ™G (Xi4r.)] > 0= G(x), from where it comes that (¢,2) € C.

Define b(t) := sup{z € R: (t,z) € D}. The above arguments guarantee that b(t) < S
forall t € [0,T), and we get from (1) that b(7") = S. Furthermore, from (1) it can be easily
noticed that as A increases V (¢, x) decreases and therefore b(t) increases, and since b(t) is
known to be finite for all £ when A = 0 (see Subsection 3.2), then we can guarantee that
b(t) > —oo for all values of A.

Notice that, since D is a closed set, b(t) € D for all t € [0,7]. In order to prove
that D has the form claimed in Proposition 1, let us take # < b(t) and consider the OST
7" = 7*(t,x). Then, relying on (1), (3) and (5), we get

V(t,x) = V(b)) < By [ G(Xer)] — Erpry [ G(Xpgre)] (27)
<mi | (Xm0 5T - LT
— (b(t) — 2)E [%}
< b(t) -,
where we used the relation
G(a) = G() < (b—a)", (28)

for all a,b € R, for the second inequality. Since V(¢,b(t)) = S — b(t), we get from the
above relation that V(t,z) < S —x = G(z), which means that (t,2) € D and therefore
{(t,z) € [0,T] x R:2 <b(t)} C D. On the other hand, if (¢,x) € D, then x > b(t), which
proves the reverse inclusion.

Take now ¢, € [0,7] and = € R such that ' < t and (¢, 2) € C, then, since the function
t — V(t,x) is non-increasing for all x € R (see (iv) from Proposition 2), V(t',z) > V(¢t,z) >

G(z), i.e., (t',x) € C. Hence, b is non-decreasing.



Finally, in order to prove the right-continuity of b, let us fix ¢t € (0,7") and notice that,
since b is non-decreasing, then b(t*) > b(¢). On the other hand, as D is a closed set and
(t+h,b(t+h)) € Dforall0 < h <T—t, then (t7,b(t")) € D or, equivalently, b(t") < b(¢).

Proof of Proposition 2. (i) Half of the statement relies on the result obtained
in Peskir and Shiryaev (2006, Section 7.1) relative to the Dirichlet problem. Specifically,
it states that V is C'? on C and 9,V + LxV = AV on C. On the other hand, since
V(t,z) = G(x) =S —x for all (t,z) € D, V is C*? also on D.

(71) We easily get the convexity of z — V (¢, z) by plugging-in (3) into (1). To prove (13)
let us fix an arbitrary point (¢,z) € [0,7] x R, consider 7* = 7*(¢,z) and 7. = 7*(t,x + ¢)
for some € € R. Since 7. — 7 a.s., by arguing similarly to (27), we get

T—t—Ta] (20)

e (V(t,o+¢e)—V(tz)) < -E {e’\“ i

e sl =t =T

N _E [e AT —r ],
where the limit is valid due to the dominated convergence theorem. For ¢ < 0 the
reverse inequality emerges, giving us, after making ¢ — 0, the relation 9,V (t,z) <
—E [e™»" I2=2] < 97V (¢, 2), which, due to the continuity of z — 8,V (¢, z) on (—o0, b(t))
and on (b(t),00) for all ¢ € [0,7] (V is C* on C and on D), turns into 9,V (t,z) =
—E [e7*" L= for all (¢, ) where t € [0,T] and x # b(t). For x = b(t) the equation (13)
also holds true and it turns into the smooth fit condition (i) proved later on.

Furthermore, since P, , [7* < T —t] > 0 (see Lemma 1), the expression (13) shows that

0,V < 0 and therefore x — V (¢, x) is strictly decreasing for all ¢ € [0, T7.

(73i) Take a pair (t,z) € [0,7) x R lying on the OSB, i.e., x = b(t), and consider ¢ > 0.
Since (t,z) € D and (t,z+¢) € C, we have that V(t,x2) = G(x) and V(t,x+¢) > G(x +¢).
Thus, taking into account the inequality (28), we get e 1 (V (t,z+¢) =V (t,2)) > e H(G(z+
e) — G(z)) > —1, which, after making ¢ — 0 turns into 9V (¢,2) > —1. On the other

hand, by considering the optimal stopping time 7. := 7*(¢,x + ¢) and following the same



arguments showed at (29), we get that 9V (¢,x) < —1. Therefore 9V (¢,b(t)) = —1 for
all t € [0,T). Since V = G in D, it follows straightforwardly that 0,V (¢,b(t)) = —1 and

hence the smooth fit condition holds.

(iv) Notice that, due to (i), alongside to (4), (3), (13), and recalling that = — V (¢, z)
is convex (and therefore 0,2V > 0), we get that

T—1

atv(tv 33) S )‘V(ta .23) - T—__txax‘/(t,l')

=-FE e”\T*(:r;—S)l_t—_T ()\+ - S)} .

1—-1 1-—1
Therefore 0,V < 0 on the set Cs :=[0,7T) x [S,00) C C.

For some small € > 0, denote by (Xs[t’T])STZ’OHE a process such that, for s € [0,7 — ¢t] it
behaves as the Brownian bridge X1, and the remaining part stays constant at the value
S, i.e., X = S for s € [T —t, T —t+¢]. Let u»"] be its drift, and define the process
(nys’ﬂ)fz_o”a = X[==T) with drift pf==7). Since p®7(t,2) > pl==T1 whenever z < S,
Theorem 1.1 from Ikeda and Watanabe (1977) guarantees that x> xli=eT] P; ,-a.s.,
for all (¢,2) and for all s < 75, where 75 = inf{s € [0, — ] : XI*"' > 5}.

Assume now that both processes start at x < S, and consider the stopping time 7% =

[t.T]

7*(t,x). Therefore, since V(t + s A 7%, XY and V(¢ + s, XI~="1) are a martingale and a

supermartingale (see Section 2.2 from Peskir and Shiryaev (2006)), respectively, we have

V(t,z) = V(t—e,a) < [V(t +rIAT X ) vt — e+ S AT X[t*&ﬂ)}

TSAT* TSAT*

E
E

E I Ars =T = 0)e " (XJ5 - xPT)]
E IS <775 < T V(e + 75, X = V(e -2+ 75, XI5
E

where the second inequality comes after noticing that 7* is not optimal for X==7) and
using (28); the third inequality holds since xl=T < Xit*’T] for 7 < 79 Xj[f:f’T] < Xg_Tt]

T*

whenever 7* A% = T'—t, and the fact that 9,V < 0 on the set Cg; and the last inequality
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relies on the increasing behavior of x — V/(¢,x). Finally, after dividing by ¢ and taking
e — 0, we get the claimed result. Note that a similar argument for a different gain function

has recently appeared in Tiziano and Milazzo (2019).

(v) Let (X}fi;f])[s"z’ﬂ‘“] be a Brownian bridge going from X, = z to Xy = S for any

x € R, with 7 = 1,2. Notice that, according to (3), the following holds:

X{ L X (1= (S - )

(30)

where r = ;:E, s€[0,T —t1],and s’ = sr € [0, T — to].

Take 0 < t; <ty < T, consider 7y := 7*(t1, ), and set 75 := 7yr. Since t — V (¢, ) is

decreasing for every z € R, then
0 < V(ty,z) = V(ts, )
<Epo [e 6 (X00)] = B [ (X030
<E|e (6 (xiT) - e (xi))]

[ [ lta,T] t. 1\ "
<E <Xt22+7'2 B Xt11+7'1> 1 :

+
~ (00 (st sz )|
T—t

< ((r?=1) (S+ 1z < 8)(S )",

where the first equality comes after applying (30) and the last inequality takes place since
r <1 and Xt[flgl] <S.

Hence, V(t1,2) — V(te,x) — 0 as t; — to, i.e., t — V(t,x) is continuous for every
r € R, and thus, to address the continuity of V' is sufficient to prove that, for a fixed t,
x +— V(t,x) is uniformly continuous within a neighborhood of ¢. The latter comes after
the following inequality, which comes right after applying similar arguments to those used
in (27):

A=t =T
0<V(t,z1) — V(t,as) < (w5 — 21)E [e—M —T}

T—1

< To — @y,



where z1, 25 € R are such that 7y < x5 and 7 = 7*(¢t,21). =

Proof of Proposition 3. We already proved the right-continuity of b in Proposition
1, so this proof is devoted to prove its left-continuity.

Let us assume that b is not left-continuous. Therefore, as b is non-decreasing, we can
ensure the existence of a point ¢, € (0,7) such that b(t,) < b(t.), which allows us to take 2’
in the interval (b(t; ), b(t.)) and consider the right-open rectangle R = [t',t.) x [b(t, ), 2'] C

C' (see illustration of Figure 10), with ¢’ € (0, t,).

Figure 10: Graphical sketch of the proof of left continuity of b.

Applying twice the fundamental theorem of calculus, using that (¢,b(t)) € D for all
t € [0,7], the smooth fit condition (7), and the fact that x +— V(t,z) is C? on C, we

obtain
V(t,z) — G(x) = / / (0.2V (t,v) — 0,2G(v)) dv du, (31)
b(t) (1)
for all (t,z) € R.
On the other hand, if we set m := —sup, ,yer 9.V (¢, ), then we readily obtain from

(13) that m > 0 (see Lemma 1), which, combined with 9,V + LxV = AV on C and
0,V <0on C ((i) and (i) from Proposition 2), along with the fact that V'(¢,z) > 0 for



all admissible pairs (¢, ), gives

812V(t,x):% (/\V(t,x) i__f . (t,x)—@tV(t,m))

>0, (32)

for all (t,z) € R. Therefore, by noticing that 0,2G(xz) = 0 for all z € (b(t,),2’) and
plugging-in (32) into (31), we get

2m S —x
V(t,x)— // Ty
2mS—:E
_02T—t/(t/ dvdu
2mS —x B
(z —b(t,))*.

T Tt
Finally, after taking ¢ — ¢, on both sides of the above equation, we obtain V (., z) —G(x) >

0 for all = € (b(t;),b(t.)), which contradicts the fact that (t,,z) € D. m

Proof of Theorem 1.
Assume we have a function ¢ : [0,7] — R that solves the integral equation (20) and

define the function

Vel o) = /T A=) (T i — A) E.. [(S — X)L (X, < c(w))] du (33)

/Kﬂtxuc( }) du,

where X = (XS)ST:() is a Brownian bridge with o volatility that ends at X7 = S, and K,
is defined at (19). It turns out that x — K, \(t,z,u,c(u)) is twice continuously differen-
tiable and therefore differentiating inside the integral symbol at (33) yields 0,V (¢, z) and

0,.2VE(t, ), and furthermore ensures their continuity on [0,7") x R.

Let us compute the operator 9, + Ly acting on the function V¢,

Epo[V(t+ h, Xown)] = VE(t,
OV* + Ly Ve(tz) = lim ral VAT h”h)] o)

Define the function

1
T—u

I(t,u, 21, 25) = e A=Y ( + )\) (S —x1) L (21 < 1) (34)



and notice that

T
Ei o[Vt +h, Xitn)] = Ero |Eenx,,, [/ I(t+ h,u, Xy, c(u)) du”
t+h

T
—E,, |E.. U I(t + hyu, X, c(u)) du ‘ thH
L t+h

r T

=E;, / I(t 4+ hyu, Xy, c(u)) du} ,
LJt+h

where (F,)T_, is the natural filtration of X. Therefore,

o Ve+LxVe(t,x)
E; . [fih I(t + h,u, X,,c(u)) du} — K. [ftT I(t,u, Xy, c(u)) du}

= lim

hl0 h
1 T N 1 t+h
= 1’%1 E]Et’x [/t+h (M = 1) I(t, u, Xy, c(u)) du} - 1}%1 EEt’x [/t I(t,u, Xy, c(u)) du]

V() — (S — ) (ﬁ + )\) 1(z < e(t)).

From this result, alongside with (4) and the fact that V¢, 9,V ¢, and 0,2V ¢ are continuous
on [0,7) x R, we get the continuity of 9,V on C; U Cy, where

Cr:={(t,z) €[0,T) xR :x > c(t)},
Cy:={(t,x) € [0,T) x R:x <c(t)}.

Now define the function F)(s,z) := e *V¢(t + s,z) with s € [0,7 —t), z € R, and

consider the sets

Cl:={(s,m) € Cy:t<s<T},
Chi={(s,7) € Cy: t<s<T}

We claim that F® satisfies the (7ii-b) version of the hypothesis of Lemma 2 taking C' = C?
and D° = C%. Indeed: F®, 9,F® and 0, F® are continuous on [0,7) x R; it has been
proved that F® is C'? on C? and C%; we are assuming that ¢ is a continuous function of

bounded variation; and (0,F" + LxF")(s,z) = —e (S — 2) (== + ) L(z < c(t +5))

is locally bounded on C} U C%.



Thereby, we can use the (4ii-b) version of Lemma 2 to obtain the following change of
variable formula, which is missing the local time term because of the continuity of F} on

0,7) x R:

eVt + 5, Xigs)
t+s

= Vit - [0 - x) (42

t —Uu

+ /\) 1(X, < c(u))du+ MY, (35)

with MY = ftt+s e M 50,Ve(u, X,)dB,. Notice that (M§1))§;(f is a martingale under
P,,.

In the same way, we can apply the (ui-b) version of Lemma 2 this time using the
function F(s,z) = e *G(X;,,), and taking C = {(s,z) € [0,T —t) x R : 2 > S} and
D° ={(s,z) €[0,T —t) x R:xz < S}, thereby getting

e MG (Xips) = G(x) — /t ” e M8 — X,) (%w + )\) 1(X, <S)du  (36)

t+s
— M 4 3 / e AI(X, = S)dIS(X),
t

where M{? = & ftt+8 e Mu1(X, < S)dB,, with 0 < s < T —t, is a martingale under IP; ..

Consider the following stopping time for (¢, x) such that z < ¢(t):
pe =f{0<s<T—t: Xy s >clt+s)| Xy =x}. (37)

In this way, along with assumption ¢(t) < S for all t € (0,7"), we can ensure that 1(X;;s <
c(t+s)) = 1(Xps < S) = Lforall s € [0, p.), as well as [[ 7" e 2@ D1(X, = S)dIS(X) = 0.
Recall that V¢(t,c(t)) = G(c(t)) for all t € [¢,T') since ¢ solves the integral equation (20).
Moreover, V¢(T,S) = 0 = G(S). Hence, V(t + pe, Xitp,) = G(Xi4p.). Therefore, we are



able now to derive the following relation from equations (35) and (36):

Vc(tv ZL‘) = Et,x[e_/\pcvc(t + Pe; Xt-h%)]

B t+pe 1
+ Et,a} / e—A(u—t) (S - Xu) ( + )\> ]].(Xu S C(U,)) du:|
LJ ¢t

T—u
= Et,x [B_APCG(X,H_,OC)}

r rt+pe 1
+E,, / e NS — X,) ( + )\) 1(X, <9) du}
s T—u

= G(x).

)

The vanishing of the martingales M,gi) and M,g? comes after using the optional stopping

theorem (see, e.g., Section 3.2 from Peskir and Shiryaev (2006)). Therefore, we have just
proved that V¢ = G on Cj.

Now define the stopping time
To=nf{l0 <u<T—t: Xppo <c(t+u) | Xy =x}
and plug-in it into equation (35) to obtain the expression

Vet x) = e*)‘TCVC(t + 7, Xiyr,)

t+7c 1
+/ e Ne0(5 - X)) (T - + )\) 1(X, < ec(u))du — MT(Cl)
) —

Notice that, due to the definition of 7., 1(Xy, < ¢(t+u)) =0 for all 0 < u < 7, whenever
7. > 0 (the case 7. = 0 is trivial). In addition, the optional sampling theorem ensures that
Em[MT(cl )] = 0. Therefore, the following formula comes after taking P; ,-expectation in the

above equation and considering that V¢ = G on Cs:
Vet z) = Erule MVt + 7, Xowr)] = By [e VG (X)) ]

for all (t,2) € [0,7) x R. Recalling the definition of V' from (1), we realize that the above

equality leads to

Ve(t,z) < V(t,x), (38)

10



for all (t,z) € [0,T) x R.

Take (t,z) € Cy satisfying x < min{b(t), c(t)}, where b is the OSB for (1), and consider
the stopping time p. defined as

pp=nf{0<s<T—t: Xy s >bt+5s)| Xy =uz}.

Since V' = G on D, the following equality holds true due to (14) and from noticing that
1( Xy <O(t+u))=1forall 0 <u < py:

t+pp 1
]Etyx[e”\p”V(t + o, Xigp,) = G(z) —E; [/ e’A(“’t)(S — X)) (T " + )\) du} )
] _

On the other hand, we get the next equation after substituting s for p;, at (35) and recalling
that V = G on Cs:

Eiole MV (t + po, Xisp,)]
t+pc 1
= G(z) — Epy {/ e DS — X)) (T—u + A) 1(X, < c(u)) du] :
] _

Therefore, we can use (38) to merge the two previous equalities into

E,, { /t M (g - x) < . ! - )\> 1(X, < c(u)) du]

t+pp u—t) 1
>E,, A=t (g X, —\) dul,
2| [ - (7 -0 0

meaning that b(t) < ¢(t) for all t € [0,T] since ¢ is continuous.

Suppose there exists a point ¢ € (0,7") such that b(t) < c(t) and fix x € (b(t), c(t)).
Consider the stopping time

T o=inf{0 <u<T—t: Xy, <bt+u)| X, =2z}

and plug-in it both into (14) and (35) replacing s before taking the P, ,-expectation. We

obtain

Eio[e ™ VE(t + 7y, Xiyn,)]
=E..[e "G (Xitr,)]

t+Tb
_Ve(t,2) — B [ [ s - x) (
t

T—u

11



and
Eiole ™V (t + 7, Xiyr,)] = Ernle M G(Xyyr,)] = V(7).

Thus, from (38) we get

t+71p 1
E,, {/ e A5 — X)) <T " + A) 1(X, <c(u))du| <0.
] —

Using the fact that x > b(¢) and the time-continuity of the process X, we can state that
7, > 0. Therefore, the previous inequality can only happen if 1(X, < ¢(s)) = 0 for all
t < s < t+ 7, meaning that b(s) > c(s) for all t < s < t + 7,, which contradicts the

assumption b(t) < c¢(t). m

Proof of Proposition 4.  Since the OSP (21) satisfies the hypothesis stated in
Corollary 2.9 from Peskir and Shiryaev (2006) (V; lower semi-continuous and G; upper
semi-continuous), we can ensure the existence of the OSP 7/(¢,x) defined at (6) for the
pair (¢, z), where i = 1,2. Moreover, Theorem 2.4 from Peskir and Shiryaev (2006) guaran-
tees that IPEZ)C [77(t,x) < 7] = 1 for any other OST 7, of the OSP (21), where IP’E?C denotes
the law such that IP’EZ; [Xt(i) = x] = 1.

(i) Define the sets D®* := {(t,z) € [0,T] x R : (t,a ' (z — A)) € D;} for i = 1,2,
and notice that 7 (t, z) 4 inf{0 <s<T—t: Xt(i)s e DY | Xt(Q) = ax + A} as well as
mtar+A)Sinf{l0<s<T—t: X eps A x =2} for (t,z) € [0,T] x R.

Suppose that
Et et [G_M‘;(t’aﬁA)G? <Xt(i)r§(t,z+A)>] > B acta [e_ATT(M)G? <Xt(<2k)7'f(t,m)>] )
Then,

E, ., [e—)\@*(t,aaﬁ-ﬁ-A)Gl (X(l)

= — AT Ko A (2)
t+T§(t,ax+A)>:| = Kt azta [e 5 (taz+ )G2 <X

t+75 (t,a:}c+A)> }
> Bzt a [6‘”1*('5’@@2 (Xt(i)-r{“(t @ﬂ

b [, (X

which is a contradiction. Therefore, our original assumption has to be wrong, meaning

that 75 (t, ax + A) < 7/(t, x) Pﬁg-a.s. as well as Pg?;x+A—a.s. (notice that }P)Elx) = ]PS;HA).
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Interchanging the roles of ¢} (¢, z) and t5(¢, ax+ A) along the argumentation given above,

and making the corresponding rearrangements, we get the opposite inequality. Thus, since

both Dy and D, are closed sets, then Dy = D& or, reciprocally, Dy = D;_l’fa_lA.

(i) Fix (t,x2) € [0,T] x R and let 7/ = 7{(¢t,z) as well as 75 = 75(¢,z). Notice that
iinf{l0<s<T—t: X2 eD | XP =z}and 3 STinf{l0<s<T—t: X, €D,
Xt(l) = z}. Suppose that

s (52, > B (2]
Since G = G5 on Dy U D5, then

E., [e_M; G, (Xt%ﬂ =E,. e G, (Xﬁ)g)_

> Et7$ G_ATfGQ (Xt(«zk)‘rf>

:Et,x e_/\Tl*Gl (Xt(Jlr)Tik> ’

1)

2-a.s. as well as

which is an absurd and hence our assumption is wrong, this is, 75 < 7/ }P’g
]P’Eig—a.s. (notice that IP’EQ = IP’EQQZ)

Swapping the roles of ¢] and ¢; throughout the argumentation given above, and making
the correspondent rearrangements, we get the opposite inequality. Therefore, since both

Dy and D are closed sets, then Dy = D;. =

Proof of Corollary 1. First, notice that in both scenarios, (i) and (4), the condi-
tions G; being upper semi-continuous and V; lower semi-continuous from Proposition 4 are
fulfilled due to the continuity of G; (see Remark 2.10 from Peskir and Shiryaev (2006)).

(7) Since G1(2S —z) = Go(z) and |25 — Xt(}r)s | xV = x] 4 [Xt(i)s | X =25 — | for
all s € [0,T — t], then we can apply (i) from Proposition 4 to show that D; = {(¢,z) :
(t,2S — x) € Dy}, and therefore by = 25 — bs.

ii) Introduce the function G(z) = S, — = and the Brownian bridge (X,4,)’-! such
( ) +s5/5=0

that Xp = S5. Since G(Sy — z) = Gi(x) and [Xyys | Xy = So — 7] < [XSF)S | xV = ]

13



for (t,z) € [0,7] x R, we get that D; = {(t,z) € [0,7] x R : Sy — 2z € D}, and hence
b(t) = Sy — by, where D and b are, respectively, the stopping set and the OSB of the
non-discounted OSP with gain function G and process (X, ).

Let us fix t € [0,T) and take z’ satisfying 2’ > S5. Consider ¢ > 0 such that ¢ < 2’ —Ss,
as well as the stopping time 7. := inf{0 < s < T —t: Xy, < S+¢| Xy = 2'}. Since
our underlying Brownian bridge process XV is continuous and it takes the value S, at the
expiration date T', then IP’EB, [7. < T —t] =1 and thus V(t,2') > E; v [G(Xt4r)] = — >
Sy —x' = G(2), ie., (t,2') ¢ D. Therefore, D C Dg, := {(t,z) € [0,T] x R: 2 < S,}.

On the other hand, recall from Proposition 1 that Dy C Dg,. Therefore, since G(z) =
Go(x) for all z such that (¢, ) € Dg, for somet € [0,T], and [X;,5 | X = 2] < Xt(i)s | x® = a:]
for all s € [0,T — t], then we can use (77) from Proposition 4 in order to get the relation

bgzb:SQ—bl. |

B Auxiliary lemmas

Lemma 1 Let (XHS);FZ_J be a Brownian bridge from X; to X = S with volatility o, where
t €[0,T). Let b be the optimal stopping boundary associated to the OSP
Vit,z)= sup Ei, e VG(Xipr)],

0<7<T—t

with G(z) = (G — )", and A > 0. Then, sup ,)er 0V (t,7) < 0, where R is the set
defined in the proof of Proposition 3.

Proof. Take 0 < e < 1, let 7" = 7*(¢, z), and define

p(t,z) =P < (T —t)(1—e)].

14



Notice that

0<s<(T—t)(1—¢)

plto) =Feo | min (X = b} <0]

Z ]P)t,a: |: min Xt+5 < b(t):|

0<s<(T—t)(1—¢)

=P min {(S—x) S mWs}<b(t)—x]

0<s<(T—t)(1—¢)

>P min { mWs} < o (b(t) — max{z, S})]

0<s<(T—t)(1—¢) T—1

P min (W} < e V2671 (b(t) — max{z, 5})]

| 0<s<(T—t)(1—¢)

= 2P [W(T—t)(l—e) < 871/20'71(1)@) - max{x, S}] ,

where the first inequality is justified since b is non-decreasing (see Proposition 1), while the

last equality comes after applying the reflection principle. Therefore,

M := inf p(t,z) > 0.
(DL P )

Finally, by using (13) we obtain the following relation for all (¢,z) € R:

T—t—71"
T—1

—e_)‘(T_t)Ep(t, x)

0, V(t,z) < —e MNTVR L(r" < (T—-t)(1—¢))

IN

< —e M=) < 0.

For the sake of completeness, we formulate the following change-of-variable result by
taking Theorem 3.1 from Peskir (2005a) and changing some of its hypothesis according to
Remark 3.2 from Peskir (2005a). Specifically, the (iii-a) version of Lemma 2 comes after
changing, in Peskir (2005a), (3.27) and (3.28) for the joint action of (3.26), (3.35), and
(3.36). The (74-b) version relaxes condition (3.35) into (3.37) in ibid.

Lemma 2 Let X = (X;)L, be a diffusion process solving the SDE

dXt = M(t, Xt) dt + U(t, Xt) dBt, 0 S t S T,

15



in the Ité’s sense. Let b : [0,T] — R be a continuous function of bounded variation, and

let F:[0,7] x R — R be a continuous function satisfying

F isC"* on C,
F is CY? on D°,

where C' = {(t,z) € [0,T] xR : x> b(t)} and D° = {(t,z) € [0,T] x R:x < b(t)}.

Assume there exists t € [0,T] such that the following conditions are satisfied:
(i) OF + po,F + (0%/2)0,2 F is locally bounded on C' U D°;

(ii) the functions s — 0,F(s,b(s)%) := 0, F (s, hlilrgl+ b(s) £ h) are continuous on [0,1];
—}

(11i) and either
(iti-a) x — F(s,x) is convex on [b(s) — d,b(s)] and convex on [b(s),b(s) + 0] for each
s € [0,t], with some 6 > 0, or,
(11i-b) 0.2 F = Gy + Gy on C'U D°, where Gy is non-negative (or non-positive) and G

18 continuous on C' and D°.

Then, the following change-of-variable formula holds
t
F(t,X;) = F(0,Xo) +/ (OF + 0, F + (6%/2)0,2F) (s, X,)1(X, # b(s)) ds
0

+ / (00, F)(s, X.)L(X, # b(s)) dB,

+ % /Ot(axp(s,xj) — 0, F (s, X, ))1(X, = b(s)) dI2(X),

where dI®(X) is the local time of X at the curve b up to time t, i.e.,
t

B(X)=1lim [ 1(b(s) —e < X, < b(s) + &) d(X, X)s, (39)

e—0 0

where (X, X) is the predictable quadratic variation of X, and the limit above is meant in

probability.
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