Supplement to "Optimal exercise of American options under stock pinning"

Abstract

This supplement is structured as follows. Section A contains all the proofs omitted in the paper. Section B states technical lemmas required by these proofs.

Keywords: American option; Brownian bridge; free-boundary problem; optimal stopping; option pricing; put-call parity; stock pinning.

A Main proofs

Proof of Proposition 1. Take an admissible pair (t, x) satisfying $x \ge S$ and t < T, and consider the stopping time $\tau_{\varepsilon} := \inf \{ 0 \le s \le T - t : X_{t+s} \le S - \varepsilon \mid X_t = x \}$ (assume for convenience that $\inf \{ \emptyset \} = T - t$), for $\varepsilon > 0$. Notice that $\mathbb{P}_{t,x} [\tau_{\varepsilon} < T - t] > 0$, which implies that $V(t, x) \ge \mathbb{E}_{t,x} [e^{-\lambda \tau_{\varepsilon}} G(X_{t+\tau_{\varepsilon}})] > 0 = G(x)$, from where it comes that $(t, x) \in C$.

Define $b(t) := \sup \{x \in \mathbb{R} : (t, x) \in D\}$. The above arguments guarantee that b(t) < Sfor all $t \in [0, T)$, and we get from (1) that b(T) = S. Furthermore, from (1) it can be easily noticed that as λ increases V(t, x) decreases and therefore b(t) increases, and since b(t) is known to be finite for all t when $\lambda = 0$ (see Subsection 3.2), then we can guarantee that $b(t) > -\infty$ for all values of λ .

Notice that, since D is a closed set, $b(t) \in D$ for all $t \in [0, T]$. In order to prove that D has the form claimed in Proposition 1, let us take x < b(t) and consider the OST $\tau^* = \tau^*(t, x)$. Then, relying on (1), (3) and (5), we get

$$V(t,x) - V(t,b(t)) \leq \mathbb{E}_{t,x} \left[e^{-\lambda \tau^*} G(X_{t+\tau^*}) \right] - \mathbb{E}_{t,b(t)} \left[e^{-\lambda \tau^*} G(X_{t+\tau^*}) \right]$$
(27)
$$\leq \mathbb{E}_{t,0} \left[\left(X_{t+\tau^*} + b(t) \frac{T - t - \tau^*}{T - t} - X_{t+\tau^*} - x \frac{T - t - \tau^*}{T - t} \right)^+ \right]$$
$$= (b(t) - x) \mathbb{E} \left[\frac{T - t - \tau^*}{T - t} \right]$$
$$\leq b(t) - x,$$

where we used the relation

$$G(a) - G(b) \le (b - a)^+,$$
 (28)

for all $a, b \in \mathbb{R}$, for the second inequality. Since V(t, b(t)) = S - b(t), we get from the above relation that $V(t, x) \leq S - x = G(x)$, which means that $(t, x) \in D$ and therefore $\{(t, x) \in [0, T] \times \mathbb{R} : x \leq b(t)\} \subset D$. On the other hand, if $(t, x) \in D$, then $x \geq b(t)$, which proves the reverse inclusion.

Take now $t, t' \in [0, T]$ and $x \in \mathbb{R}$ such that t' < t and $(t, x) \in C$, then, since the function $t \mapsto V(t, x)$ is non-increasing for all $x \in \mathbb{R}$ (see (*iv*) from Proposition 2), $V(t', x) \ge V(t, x) > G(x)$, i.e., $(t', x) \in C$. Hence, b is non-decreasing.

Finally, in order to prove the right-continuity of b, let us fix $t \in (0, T)$ and notice that, since b is non-decreasing, then $b(t^+) \ge b(t)$. On the other hand, as D is a closed set and $(t+h, b(t+h)) \in D$ for all $0 < h \le T-t$, then $(t^+, b(t^+)) \in D$ or, equivalently, $b(t^+) \le b(t)$.

Proof of Proposition 2. (i) Half of the statement relies on the result obtained in Peskir and Shiryaev (2006, Section 7.1) relative to the Dirichlet problem. Specifically, it states that V is $\mathcal{C}^{1,2}$ on C and $\partial_t V + \mathbb{L}_X V = \lambda V$ on C. On the other hand, since V(t,x) = G(x) = S - x for all $(t,x) \in D$, V is $\mathcal{C}^{1,2}$ also on D.

(*ii*) We easily get the convexity of $x \mapsto V(t, x)$ by plugging-in (3) into (1). To prove (13) let us fix an arbitrary point $(t, x) \in [0, T] \times \mathbb{R}$, consider $\tau^* = \tau^*(t, x)$ and $\tau_{\varepsilon} = \tau^*(t, x + \varepsilon)$ for some $\varepsilon \in \mathbb{R}$. Since $\tau_{\varepsilon} \to \tau$ a.s., by arguing similarly to (27), we get

$$\varepsilon^{-1}(V(t, x + \varepsilon) - V(t, x)) \leq -\mathbb{E}\left[e^{-\lambda\tau_{\varepsilon}}\frac{T - t - \tau_{\varepsilon}}{T - t}\right]$$

$$\xrightarrow{\varepsilon \to 0} -\mathbb{E}\left[e^{-\lambda\tau^{*}}\frac{T - t - \tau^{*}}{T - t}\right],$$
(29)

where the limit is valid due to the dominated convergence theorem. For $\varepsilon < 0$ the reverse inequality emerges, giving us, after making $\varepsilon \to 0$, the relation $\partial_x^- V(t,x) \leq -\mathbb{E}\left[e^{-\lambda\tau^*}\frac{T-t-\tau^*}{T-t}\right] \leq \partial_x^+ V(t,x)$, which, due to the continuity of $x \mapsto \partial_x V(t,x)$ on $(-\infty, b(t))$ and on $(b(t),\infty)$ for all $t \in [0,T]$ (V is $\mathcal{C}^{1,2}$ on C and on D), turns into $\partial_x V(t,x) = -\mathbb{E}\left[e^{-\lambda\tau^*}\frac{T-t-\tau^*}{T-t}\right]$ for all (t,x) where $t \in [0,T]$ and $x \neq b(t)$. For x = b(t) the equation (13) also holds true and it turns into the smooth fit condition (*iii*) proved later on.

Furthermore, since $\mathbb{P}_{t,x}[\tau^* < T - t] > 0$ (see Lemma 1), the expression (13) shows that $\partial_x V < 0$ and therefore $x \mapsto V(t, x)$ is strictly decreasing for all $t \in [0, T]$.

(*iii*) Take a pair $(t, x) \in [0, T) \times \mathbb{R}$ lying on the OSB, i.e., x = b(t), and consider $\varepsilon > 0$. Since $(t, x) \in D$ and $(t, x + \varepsilon) \in C$, we have that V(t, x) = G(x) and $V(t, x + \varepsilon) > G(x + \varepsilon)$. Thus, taking into account the inequality (28), we get $\varepsilon^{-1}(V(t, x + \varepsilon) - V(t, x)) > \varepsilon^{-1}(G(x + \varepsilon) - G(x)) \geq -1$, which, after making $\varepsilon \to 0$ turns into $\partial_x^+ V(t, x) \geq -1$. On the other hand, by considering the optimal stopping time $\tau_{\varepsilon} := \tau^*(t, x + \varepsilon)$ and following the same arguments showed at (29), we get that $\partial_x^+ V(t,x) \leq -1$. Therefore $\partial_x^+ V(t,b(t)) = -1$ for all $t \in [0,T)$. Since V = G in D, it follows straightforwardly that $\partial_x^- V(t,b(t)) = -1$ and hence the smooth fit condition holds.

(*iv*) Notice that, due to (*i*), alongside to (4), (3), (13), and recalling that $x \mapsto V(t, x)$ is convex (and therefore $\partial_{x^2} V \ge 0$), we get that

$$\partial_t V(t,x) \le \lambda V(t,x) - \frac{T-t-x}{T-t} \partial_x V(t,x)$$
$$= -\mathbb{E}\left[e^{-\lambda \tau^*} (x-S) \frac{1-t-\tau^*}{1-t} \left(\lambda + \frac{x-S}{1-t}\right)\right].$$

Therefore $\partial_t V \leq 0$ on the set $C_S := [0, T) \times [S, \infty) \subset C$.

For some small $\varepsilon > 0$, denote by $(X_s^{[t,T]})_{s\geq 0}^{T-t+\varepsilon}$ a process such that, for $s \in [0, T-t]$ it behaves as the Brownian bridge $X^{[t,T]}$, and the remaining part stays constant at the value $S, i.e., X_s^{[t,T]} = S$ for $s \in [T-t, T-t+\varepsilon]$. Let $\mu^{[t,T]}$ be its drift, and define the process $(X_s^{[t-\varepsilon,T]})_{s\geq 0}^{T-t+\varepsilon} = X^{[t-\varepsilon,T]}$ with drift $\mu^{[t-\varepsilon,T]}$. Since $\mu^{[t,T]}(t,x) \geq \mu^{[t-\varepsilon,T]}$ whenever $x \leq S$, Theorem 1.1 from Ikeda and Watanabe (1977) guarantees that $X_s^{[t,T]} \geq X_s^{[t-\varepsilon,T]} \mathbb{P}_{t,x}$ -a.s., for all (t,x) and for all $s \leq \tau^S$, where $\tau^S := \inf\{s \in [0, T-t] : X_s^{[t,T]} > S\}$.

Assume now that both processes start at $x \leq S$, and consider the stopping time $\tau^* = \tau^*(t, x)$. Therefore, since $V(t + s \wedge \tau^*, X_{s \wedge \tau^*}^{[t,T]})$ and $V(t + s, X_s^{[t-\varepsilon,T]})$ are a martingale and a supermartingale (see Section 2.2 from Peskir and Shiryaev (2006)), respectively, we have

$$\begin{split} V(t,x) - V(t-\varepsilon,x) &\leq \mathbb{E} \left[V(t+\tau^S \wedge \tau^*, X_{\tau^S \wedge \tau^*}^{[t,T]}) - V(t-\varepsilon+\tau^S \wedge \tau^*, X_{\tau^S \wedge \tau^*}^{[t-\varepsilon,T]}) \right] \\ &\leq \mathbb{E} \left[\mathbb{I}(\tau^* \leq \tau^S, \tau^* < T-t) e^{-\lambda \tau^*} (X_{\tau^*}^{[t-\varepsilon,T]} - X_{\tau^*}^{[t,T]})^+ \right] \\ &+ \mathbb{E} \left[\mathbb{I}(\tau^* \wedge \tau^S = T-t) e^{-\lambda \tau^*} (X_{T-t}^{[t-\varepsilon,T]} - X_{T-t}^{[t,T]})^+ \right] \\ &+ \mathbb{E} \left[\mathbb{I}(\tau^S \leq \tau^*, \tau^S < T-t) V(t+\tau^S, X_{\tau^S}^{[t,T]}) - V(t-\varepsilon+\tau^S, X_{\tau^S}^{[t-\varepsilon,T]}) \right] \\ &\leq \mathbb{E} \left[\mathbb{I}(\tau^S \leq \tau^*, \tau^S < T-t) V(t-\varepsilon+\tau^S, S) - V(t-\varepsilon+\tau^S, X_{\tau^S}^{[t-\varepsilon,T]}) \right] \\ &\leq 0, \end{split}$$

where the second inequality comes after noticing that τ^* is not optimal for $X^{[t-\varepsilon,T]}$ and using (28); the third inequality holds since $X_{\tau^*}^{[t-\varepsilon,T]} \leq X_{\tau^*}^{[t,T]}$ for $\tau^* \leq \tau^S$, $X_{T-t}^{[t-\varepsilon,T]} \leq X_{T-t}^{[t,T]}$ whenever $\tau^* \wedge \tau^S = T - t$, and the fact that $\partial_t V \leq 0$ on the set C_S ; and the last inequality relies on the increasing behavior of $x \mapsto V(t, x)$. Finally, after dividing by ε and taking $\varepsilon \to 0$, we get the claimed result. Note that a similar argument for a different gain function has recently appeared in Tiziano and Milazzo (2019).

(v) Let $(X_{t_i+s}^{[t_i,T]})_{s\geq 0}^{[0,T-t_i]}$ be a Brownian bridge going from $X_{t_i} = x$ to $X_T = S$ for any $x \in \mathbb{R}$, with i = 1, 2. Notice that, according to (3), the following holds:

$$X_{t_2+s'}^{[t_2,T]} \stackrel{d}{=} r^{1/2} X_{t_1+s}^{[t_1,T]} + (1-r^{1/2})(S-x) \frac{s}{T-t_1},$$
(30)

where $r = \frac{T-t_2}{T-t_1}$, $s \in [0, T-t_1]$, and $s' = sr \in [0, T-t_2]$.

Take $0 \le t_1 < t_2 < T$, consider $\tau_1 := \tau^*(t_1, x)$, and set $\tau_2 := \tau_1 r$. Since $t \mapsto V(t, x)$ is decreasing for every $x \in \mathbb{R}$, then

$$0 \leq V(t_{1}, x) - V(t_{2}, x)$$

$$\leq \mathbb{E}_{t_{1}, x} \left[e^{-\lambda \tau_{1}} G\left(X_{t_{1} + \tau_{1}}^{[t_{1}, T]} \right) \right] - \mathbb{E}_{t_{2}, x} \left[e^{-\lambda \tau_{2}} G\left(X_{t_{2} + \tau_{2}}^{[t_{2}, T]} \right) \right]$$

$$\leq \mathbb{E} \left[e^{-\lambda \tau_{2}} \left(G\left(X_{t_{1} + \tau_{1}}^{[t_{1}, T]} \right) - G\left(X_{t_{2} + \tau_{2}}^{[t_{2}, T]} \right) \right) \right]$$

$$\leq \mathbb{E} \left[\left(X_{t_{2} + \tau_{2}}^{[t_{2}, T]} - X_{t_{1} + \tau_{1}}^{[t_{1}, T]} \right)^{+} \right].$$

$$= \mathbb{E} \left[\left(\left(r^{1/2} - 1 \right) \left(X_{t_{1} + \tau_{1}}^{[t_{1}, T]} + (S - x) \frac{\tau_{1}}{T - t_{1}} \right) \right)^{+} \right]$$

$$\leq \left(\left(r^{1/2} - 1 \right) \left(S + \mathbb{I} (x \leq S) (S - x) \right) \right)^{+},$$

where the first equality comes after applying (30) and the last inequality takes place since r < 1 and $X_{t_1+\tau_1}^{[t_1,T]} \leq S$.

Hence, $V(t_1, x) - V(t_2, x) \to 0$ as $t_1 \to t_2$, i.e., $t \mapsto V(t, x)$ is continuous for every $x \in \mathbb{R}$, and thus, to address the continuity of V is sufficient to prove that, for a fixed t, $x \mapsto V(t, x)$ is uniformly continuous within a neighborhood of t. The latter comes after the following inequality, which comes right after applying similar arguments to those used in (27):

$$0 \le V(t, x_1) - V(t, x_2) \le (x_2 - x_1) \mathbb{E} \left[e^{-\lambda \tau^*} \frac{T - t - \tau^*}{T - t} \right]$$

$$\le x_2 - x_1,$$

where $x_1, x_2 \in \mathbb{R}$ are such that $x_1 \leq x_2$ and $\tau^* = \tau^*(t, x_1)$.

Proof of Proposition 3. We already proved the right-continuity of b in Proposition1, so this proof is devoted to prove its left-continuity.

Let us assume that b is not left-continuous. Therefore, as b is non-decreasing, we can ensure the existence of a point $t_* \in (0, T)$ such that $b(t_*^-) < b(t_*)$, which allows us to take x'in the interval $(b(t_*^-), b(t_*))$ and consider the right-open rectangle $\mathcal{R} = [t', t_*) \times [b(t_*^-), x'] \subset$ C (see illustration of Figure 10), with $t' \in (0, t_*)$.

Figure 10: Graphical sketch of the proof of left continuity of b.

Applying twice the fundamental theorem of calculus, using that $(t, b(t)) \in D$ for all $t \in [0, T]$, the smooth fit condition *(iii)*, and the fact that $x \mapsto V(t, x)$ is \mathcal{C}^2 on C, we obtain

$$V(t,x) - G(x) = \int_{b(t)}^{x} \int_{b(t)}^{u} (\partial_{x^2} V(t,v) - \partial_{x^2} G(v)) \, \mathrm{d}v \, \mathrm{d}u,$$
(31)

for all $(t, x) \in \mathcal{R}$.

On the other hand, if we set $m := -\sup_{(t,x)\in\mathcal{R}} \partial_x V(t,x)$, then we readily obtain from (13) that m > 0 (see Lemma 1), which, combined with $\partial_t V + \mathbb{L}_X V = \lambda V$ on C and $\partial_t V \leq 0$ on C ((*i*) and (*iv*) from Proposition 2), along with the fact that $V(t,x) \geq 0$ for all admissible pairs (t, x), gives

$$\partial_{x^2} V(t,x) = \frac{2}{\sigma^2} \left(\lambda V(t,x) - \frac{S-x}{T-t} \partial_x V(t,x) - \partial_t V(t,x) \right)$$

$$\geq \frac{2m}{\sigma^2} \frac{S-x}{T-t} > 0, \qquad (32)$$

for all $(t, x) \in \mathcal{R}$. Therefore, by noticing that $\partial_{x^2} G(x) = 0$ for all $x \in (b(t_*^-), x')$ and plugging-in (32) into (31), we get

$$V(t,x) - G(x) \ge \int_{b(t)}^{x} \int_{b(t)}^{u} \frac{2m}{\sigma^2} \frac{S-x}{T-t} \, \mathrm{d}v \, \mathrm{d}u$$
$$\ge \frac{2m}{\sigma^2} \frac{S-x}{T-t} \int_{b(t_*^-)}^{x} \int_{b(t_*^-)}^{u} \, \mathrm{d}v \, \mathrm{d}u$$
$$= \frac{2m}{\sigma^2} \frac{S-x}{T-t} (x - b(t_*^-))^2.$$

Finally, after taking $t \to t_*$ on both sides of the above equation, we obtain $V(t_*, x) - G(x) > 0$ for all $x \in (b(t_*^-), b(t_*))$, which contradicts the fact that $(t_*, x) \in D$.

Proof of Theorem 1.

Assume we have a function $c: [0,T] \to \mathbb{R}$ that solves the integral equation (20) and define the function

$$V^{c}(t,x) = \int_{t}^{T} e^{-\lambda(u-t)} \left(\frac{1}{T-u} + \lambda\right) \mathbb{E}_{t,x} \left[(S-X_{u}) \mathbb{1} \left(X_{u} \le c(u) \right) \right] du$$
(33)
$$= \int_{t}^{T} K_{\sigma,\lambda}(t,x,u,c(u)) du,$$

where $X = (X_s)_{s=0}^T$ is a Brownian bridge with σ volatility that ends at $X_T = S$, and $K_{\sigma,\lambda}$ is defined at (19). It turns out that $x \mapsto K_{\sigma,\lambda}(t, x, u, c(u))$ is twice continuously differentiable and therefore differentiating inside the integral symbol at (33) yields $\partial_x V^c(t, x)$ and $\partial_{x^2} V^c(t, x)$, and furthermore ensures their continuity on $[0, T) \times \mathbb{R}$.

Let us compute the operator $\partial_t + \mathbb{L}_X$ acting on the function V^c ,

$$\partial_t V^c + \mathbb{L}_X V^c(t, x) = \lim_{h \downarrow 0} \frac{\mathbb{E}_{t,x} [V^c(t+h, X_{t+h})] - V^c(t, x)}{h}.$$

Define the function

$$I(t, u, x_1, x_2) := e^{-\lambda(u-t)} \left(\frac{1}{T-u} + \lambda\right) (S - x_1) \mathbb{1} (x_1 \le x_2)$$
(34)

and notice that

$$\mathbb{E}_{t,x}[V^{c}(t+h, X_{t+h})] = \mathbb{E}_{t,x}\left[\mathbb{E}_{t+h, X_{t+h}}\left[\int_{t+h}^{T}I(t+h, u, X_{u}, c(u))\,\mathrm{d}u\right]\right]$$
$$= \mathbb{E}_{t,x}\left[\mathbb{E}_{t,x}\left[\int_{t+h}^{T}I(t+h, u, X_{u}, c(u))\,\mathrm{d}u\mid \mathcal{F}_{t+h}\right]\right]$$
$$= \mathbb{E}_{t,x}\left[\int_{t+h}^{T}I(t+h, u, X_{u}, c(u))\,\mathrm{d}u\mid \mathcal{F}_{t+h}\right]$$

where $(\mathcal{F}_s)_{s=0}^T$ is the natural filtration of X. Therefore,

$$\begin{aligned} \partial_t V^c + \mathbb{L}_X V^c(t, x) \\ &= \lim_{h \downarrow 0} \frac{\mathbb{E}_{t,x} \left[\int_{t+h}^T I(t+h, u, X_u, c(u)) \, \mathrm{d}u \right] - \mathbb{E}_{t,x} \left[\int_t^T I(t, u, X_u, c(u)) \, \mathrm{d}u \right]}{h} \\ &= \lim_{h \downarrow 0} \frac{1}{h} \mathbb{E}_{t,x} \left[\int_{t+h}^T \left(e^{\lambda h} - 1 \right) I(t, u, X_u, c(u)) \, \mathrm{d}u \right] - \lim_{h \downarrow 0} \frac{1}{h} \mathbb{E}_{t,x} \left[\int_t^{t+h} I(t, u, X_u, c(u)) \, \mathrm{d}u \right] \\ &= \lambda V(t, x) - (S - x) \left(\frac{1}{T - t} + \lambda \right) \mathbb{1}(x \le c(t)). \end{aligned}$$

From this result, alongside with (4) and the fact that V^c , $\partial_x V^c$, and $\partial_{x^2} V^c$ are continuous on $[0,T) \times \mathbb{R}$, we get the continuity of $\partial_t V^c$ on $C_1 \cup C_2$, where

$$C_1 := \{ (t, x) \in [0, T) \times \mathbb{R} : x > c(t) \},\$$
$$C_2 := \{ (t, x) \in [0, T) \times \mathbb{R} : x < c(t) \}.$$

Now define the function $F^{(t)}(s,x) := e^{-\lambda s} V^c(t+s,x)$ with $s \in [0, T-t), x \in \mathbb{R}$, and consider the sets

$$C_1^t := \{ (s, x) \in C_1 : t \le s < T \},\$$

$$C_2^t := \{ (s, x) \in C_2 : t \le s < T \}.$$

We claim that $F^{(t)}$ satisfies the *(iii-b)* version of the hypothesis of Lemma 2 taking $C = C_1^t$ and $D^\circ = C_2^t$. Indeed: $F^{(t)}$, $\partial_x F^{(t)}$, and $\partial_{x^2} F^{(t)}$ are continuous on $[0, T) \times \mathbb{R}$; it has been proved that $F^{(t)}$ is $\mathcal{C}^{1,2}$ on C_1^t and C_2^t ; we are assuming that c is a continuous function of bounded variation; and $(\partial_t F^{(t)} + \mathbb{L}_X F^{(t)})(s, x) = -e^{-\lambda s}(S-x)\left(\frac{1}{T-t-s} + \lambda\right)\mathbb{1}(x \le c(t+s))$ is locally bounded on $C_1^t \cup C_2^t$. Thereby, we can use the (iii-b) version of Lemma 2 to obtain the following change of variable formula, which is missing the local time term because of the continuity of F_x on $[0,T) \times \mathbb{R}$:

$$e^{-\lambda s} V^{c}(t+s, X_{t+s}) = V^{c}(t,x) - \int_{t}^{t+s} e^{-\lambda(u-t)} (S-X_{u}) \left(\frac{1}{T-u} + \lambda\right) \mathbb{1}(X_{u} \le c(u)) \,\mathrm{d}u + M_{s}^{(1)}, \quad (35)$$

with $M_s^{(1)} = \int_t^{t+s} e^{-\lambda(u-t)} \sigma \partial_x V^c(u, X_u) dB_u$. Notice that $(M_s^{(1)})_{s=0}^{T-t}$ is a martingale under $\mathbb{P}_{t,x}$.

In the same way, we can apply the *(iii-b)* version of Lemma 2 this time using the function $F(s, x) = e^{-\lambda s} G(X_{t+s})$, and taking $C = \{(s, x) \in [0, T-t) \times \mathbb{R} : x > S\}$ and $D^{\circ} = \{(s, x) \in [0, T-t) \times \mathbb{R} : x < S\}$, thereby getting

$$e^{-\lambda s}G(X_{t+s}) = G(x) - \int_{t}^{t+s} e^{-\lambda(u-t)} (S - X_u) \left(\frac{1}{T-u} + \lambda\right) \mathbb{1}(X_u < S) \,\mathrm{d}u \qquad (36)$$
$$- M_s^{(2)} + \frac{1}{2} \int_{t}^{t+s} e^{-\lambda(u-t)} \mathbb{1}(X_u = S) \,\mathrm{d}l_s^S(X),$$

where $M_s^{(2)} = \sigma \int_t^{t+s} e^{-\lambda(u-t)} \mathbb{1}(X_u < S) dB_u$, with $0 \le s \le T-t$, is a martingale under $\mathbb{P}_{t,x}$.

Consider the following stopping time for (t, x) such that $x \leq c(t)$:

$$\rho_c := \inf \left\{ 0 \le s \le T - t : X_{t+s} \ge c(t+s) \mid X_t = x \right\}.$$
(37)

In this way, along with assumption c(t) < S for all $t \in (0, T)$, we can ensure that $\mathbb{1}(X_{t+s} \le c(t+s)) = \mathbb{1}(X_{t+s} \le S) = 1$ for all $s \in [0, \rho_c)$, as well as $\int_t^{t+s} e^{-\lambda(u-t)} \mathbb{1}(X_u = S) dl_s^S(X) = 0$. Recall that $V^c(t, c(t)) = G(c(t))$ for all $t \in [c, T)$ since c solves the integral equation (20). Moreover, $V^c(T, S) = 0 = G(S)$. Hence, $V^c(t + \rho_c, X_{t+\rho_c}) = G(X_{t+\rho_c})$. Therefore, we are able now to derive the following relation from equations (35) and (36):

$$\begin{aligned} V^{c}(t,x) &= \mathbb{E}_{t,x} \left[e^{-\lambda \rho_{c}} V^{c}(t+\rho_{c}, X_{t+\rho_{c}}) \right] \\ &+ \mathbb{E}_{t,x} \left[\int_{t}^{t+\rho_{c}} e^{-\lambda(u-t)} (S-X_{u}) \left(\frac{1}{T-u} + \lambda \right) \mathbb{1}(X_{u} \leq c(u)) \, \mathrm{d}u \right] \\ &= \mathbb{E}_{t,x} \left[e^{-\lambda \rho_{c}} G(X_{t+\rho_{c}}) \right] \\ &+ \mathbb{E}_{t,x} \left[\int_{t}^{t+\rho_{c}} e^{-\lambda(u-t)} (S-X_{u}) \left(\frac{1}{T-u} + \lambda \right) \mathbb{1}(X_{u} \leq S) \, \mathrm{d}u \right] \\ &= G(x). \end{aligned}$$

The vanishing of the martingales $M_{\rho_c}^{(1)}$ and $M_{\rho_c}^{(2)}$ comes after using the optional stopping theorem (see, e.g., Section 3.2 from Peskir and Shiryaev (2006)). Therefore, we have just proved that $V^c = G$ on C_2 .

Now define the stopping time

$$\tau_c := \inf\{0 \le u \le T - t : X_{t+u} \le c(t+u) \mid X_t = x\}$$

and plug-in it into equation (35) to obtain the expression

$$V^{c}(t,x) = e^{-\lambda\tau_{c}}V^{c}(t+\tau_{c}, X_{t+\tau_{c}}) + \int_{t}^{t+\tau_{c}} e^{-\lambda(u-t)}(S-X_{u})\left(\frac{1}{T-u}+\lambda\right)\mathbb{1}(X_{u} \le c(u))\,\mathrm{d}u - M^{(1)}_{\tau_{c}}.$$

Notice that, due to the definition of τ_c , $\mathbb{1}(X_{t+u} \leq c(t+u)) = 0$ for all $0 \leq u < \tau_c$ whenever $\tau_c > 0$ (the case $\tau_c = 0$ is trivial). In addition, the optional sampling theorem ensures that $\mathbb{E}_{t,x}[M_{\tau_c}^{(1)}] = 0$. Therefore, the following formula comes after taking $\mathbb{P}_{t,x}$ -expectation in the above equation and considering that $V^c = G$ on C_2 :

$$V^{c}(t,x) = \mathbb{E}_{t,x}[e^{-\lambda\tau_{c}}V^{c}(t+\tau_{c},X_{t+\tau_{c}})] = \mathbb{E}_{t,x}\left[e^{-\lambda\tau_{c}}G(X_{t+\tau_{c}})\right],$$

for all $(t, x) \in [0, T) \times \mathbb{R}$. Recalling the definition of V from (1), we realize that the above equality leads to

$$V^{c}(t,x) \le V(t,x), \tag{38}$$

for all $(t, x) \in [0, T) \times \mathbb{R}$.

Take $(t, x) \in C_2$ satisfying $x < \min\{b(t), c(t)\}$, where b is the OSB for (1), and consider the stopping time ρ_c defined as

$$\rho_b := \inf \{ 0 \le s \le T - t : X_{t+s} \ge b(t+s) \mid X_t = x \}.$$

Since V = G on D, the following equality holds true due to (14) and from noticing that $\mathbb{1}(X_{t+u} \leq b(t+u)) = 1$ for all $0 \leq u < \rho_b$:

$$\mathbb{E}_{t,x}[e^{-\lambda\rho_b}V(t+\rho_b, X_{t+\rho_b})] = G(x) - \mathbb{E}_{t,x}\left[\int_t^{t+\rho_b} e^{-\lambda(u-t)}(S-X_u)\left(\frac{1}{T-u}+\lambda\right) \,\mathrm{d}u\right].$$

On the other hand, we get the next equation after substituting s for ρ_b at (35) and recalling that V = G on C_2 :

$$\mathbb{E}_{t,x}[e^{-\lambda\rho_b}V(t+\rho_b, X_{t+\rho_b})]$$

= $G(x) - \mathbb{E}_{t,x}\left[\int_t^{t+\rho_c} e^{-\lambda(u-t)}(S-X_u)\left(\frac{1}{T-u}+\lambda\right)\mathbb{1}(X_u \le c(u))\,\mathrm{d}u\right].$

Therefore, we can use (38) to merge the two previous equalities into

$$\mathbb{E}_{t,x} \left[\int_{t}^{t+\rho_{b}} e^{-\lambda(u-t)} (S - X_{u}) \left(\frac{1}{T-u} - \lambda \right) \mathbb{1}(X_{u} \le c(u)) \, \mathrm{d}u \right]$$
$$\ge \mathbb{E}_{t,x} \left[\int_{t}^{t+\rho_{b}} e^{-\lambda(u-t)} (S - X_{u}) \left(\frac{1}{T-u} - \lambda \right) \, \mathrm{d}u \right],$$

meaning that $b(t) \leq c(t)$ for all $t \in [0, T]$ since c is continuous.

Suppose there exists a point $t \in (0,T)$ such that b(t) < c(t) and fix $x \in (b(t), c(t))$. Consider the stopping time

$$\tau_b := \inf \{ 0 \le u \le T - t : X_{t+u} \le b(t+u) \mid X_t = x \}$$

and plug-in it both into (14) and (35) replacing s before taking the $\mathbb{P}_{t,x}$ -expectation. We obtain

$$\mathbb{E}_{t,x}[e^{-\lambda\tau_b}V^c(t+\tau_b, X_{t+\tau_b})]$$

= $\mathbb{E}_{t,x}[e^{-\lambda\tau_b}G(X_{t+\tau_b})]$
= $V^c(t,x) - \mathbb{E}_{t,x}\left[\int_t^{t+\tau_b} e^{-\lambda(u-t)}(S-X_u)\left(\frac{1}{T-u}+\lambda\right)\mathbb{1}(X_u \le c(u))\,\mathrm{d}u\right]$

and

$$\mathbb{E}_{t,x}[e^{-\lambda\tau_b}V(t+\tau_b, X_{t+\tau_b})] = \mathbb{E}_{t,x}[e^{-\lambda\tau_b}G(X_{t+\tau_b})] = V(t,x).$$

Thus, from (38) we get

$$\mathbb{E}_{t,x}\left[\int_t^{t+\tau_b} e^{-\lambda(u-t)}(S-X_u)\left(\frac{1}{T-u}+\lambda\right)\mathbb{1}(X_u \le c(u))\,\mathrm{d}u\right] \le 0.$$

Using the fact that x > b(t) and the time-continuity of the process X, we can state that $\tau_b > 0$. Therefore, the previous inequality can only happen if $\mathbb{1}(X_s \leq c(s)) = 0$ for all $t \leq s \leq t + \tau_b$, meaning that $b(s) \geq c(s)$ for all $t \leq s \leq t + \tau_b$, which contradicts the assumption b(t) < c(t).

Proof of Proposition 4. Since the OSP (21) satisfies the hypothesis stated in Corollary 2.9 from Peskir and Shiryaev (2006) (V_i lower semi-continuous and G_i upper semi-continuous), we can ensure the existence of the OSP $\tau_i^*(t, x)$ defined at (6) for the pair (t, x), where i = 1, 2. Moreover, Theorem 2.4 from Peskir and Shiryaev (2006) guarantees that $\mathbb{P}_{t,x}^{(i)}[\tau_i^*(t, x) \leq \tau_*] = 1$ for any other OST τ_* of the OSP (21), where $\mathbb{P}_{t,x}^{(i)}$ denotes the law such that $\mathbb{P}_{t,x}^{(i)}[X_t^{(i)} = x] = 1$.

(*i*) Define the sets $D_i^{\alpha,A} := \{(t,x) \in [0,T] \times \mathbb{R} : (t,\alpha^{-1}(x-A)) \in D_i\}$ for i = 1,2, and notice that $\tau_1^*(t,x) \stackrel{d}{=} \inf\{0 \le s \le T - t : X_{t+s}^{(2)} \in D_1^{\alpha,A} \mid X_t^{(2)} = \alpha x + A\}$ as well as $\tau_2^*(t,\alpha x + A) \stackrel{d}{=} \inf\{0 \le s \le T - t : X_{t+s}^{(1)} \in D_2^{\alpha^{-1},-\alpha^{-1}A} \mid X_t^{(1)} = x\}$, for $(t,x) \in [0,T] \times \mathbb{R}$. Suppose that

$$\mathbb{E}_{t,\alpha x+A}\left[e^{-\lambda \tau_2^*(t,\alpha x+A)}G_2\left(X_{t+\tau_2^*(t,x+A)}^{(2)}\right)\right] > \mathbb{E}_{t,\alpha x+A}\left[e^{-\lambda \tau_1^*(t,x)}G_2\left(X_{t+\tau_1^*(t,x)}^{(2)}\right)\right]$$

Then,

$$\mathbb{E}_{t,x} \left[e^{-\lambda \tau_2^*(t,\alpha x+A)} G_1 \left(X_{t+\tau_2^*(t,\alpha x+A)}^{(1)} \right) \right] = \mathbb{E}_{t,\alpha x+A} \left[e^{-\lambda \tau_2^*(t,\alpha x+A)} G_2 \left(X_{t+\tau_2^*(t,\alpha x+A)}^{(2)} \right) \right] \\> \mathbb{E}_{t,\alpha x+A} \left[e^{-\lambda \tau_1^*(t,x)} G_2 \left(X_{t+\tau_1^*(t,x)}^{(2)} \right) \right] \\= \mathbb{E}_{t,x} \left[e^{-\lambda \tau_1^*(t,x)} G_1 \left(X_{t+\tau_1^*(t,x)}^{(1)} \right) \right]$$

which is a contradiction. Therefore, our original assumption has to be wrong, meaning that $\tau_2^*(t, \alpha x + A) \leq \tau_1^*(t, x) \mathbb{P}_{t,x}^{(1)}$ -a.s. as well as $\mathbb{P}_{t,\alpha x+A}^{(2)}$ -a.s. (notice that $\mathbb{P}_{t,x}^{(1)} = \mathbb{P}_{t,\alpha x+A}^{(2)}$).

Interchanging the roles of $t_1^*(t, x)$ and $t_2^*(t, \alpha x + A)$ along the argumentation given above, and making the corresponding rearrangements, we get the opposite inequality. Thus, since both D_1 and D_2 are closed sets, then $D_2 = D_1^{\alpha,A}$ or, reciprocally, $D_1 = D_2^{\alpha^{-1},-\alpha^{-1}A}$.

(*ii*) Fix $(t, x) \in [0, T] \times \mathbb{R}$ and let $\tau_1^* = \tau_1^*(t, x)$ as well as $\tau_2^* = \tau_2^*(t, x)$. Notice that $\tau_1^* \stackrel{d}{=} \inf\{0 \le s \le T - t : X_{t+s}^{(2)} \in D_1 \mid X_t^{(2)} = x\}$ and $\tau_2^* \stackrel{d}{=} \inf\{0 \le s \le T - t : X_{t+s}^{(1)} \in D_2 \mid X_t^{(1)} = x\}$. Suppose that

$$\mathbb{E}_{t,x}\left[e^{-\lambda\tau_{2}^{*}}G_{2}\left(X_{t+\tau_{2}^{*}}^{(2)}\right)\right] > \mathbb{E}_{t,x}\left[e^{-\lambda\tau_{1}^{*}}G_{2}\left(X_{t+\tau_{1}^{*}}^{(2)}\right)\right].$$

Since $G_1 = G_2$ on $D_1 \cup D_2$, then

$$\mathbb{E}_{t,x} \left[e^{-\lambda \tau_2^*} G_1 \left(X_{t+\tau_2^*}^{(1)} \right) \right] = \mathbb{E}_{t,x} \left[e^{-\lambda \tau_2^*} G_2 \left(X_{t+\tau_2^*}^{(2)} \right) \right] \\> \mathbb{E}_{t,x} \left[e^{-\lambda \tau_1^*} G_2 \left(X_{t+\tau_1^*}^{(2)} \right) \right] \\= \mathbb{E}_{t,x} \left[e^{-\lambda \tau_1^*} G_1 \left(X_{t+\tau_1^*}^{(1)} \right) \right],$$

which is an absurd and hence our assumption is wrong, this is, $\tau_2^* \leq \tau_1^* \mathbb{P}_{t,x}^{(1)}$ -a.s. as well as $\mathbb{P}_{t,x}^{(2)}$ -a.s. (notice that $\mathbb{P}_{t,x}^{(1)} = \mathbb{P}_{t,x}^{(2)}$).

Swapping the roles of t_1^* and t_2^* throughout the argumentation given above, and making the correspondent rearrangements, we get the opposite inequality. Therefore, since both D_1 and D_2 are closed sets, then $D_2 = D_1$.

Proof of Corollary 1. First, notice that in both scenarios, (i) and (ii), the conditions G_i being upper semi-continuous and V_i lower semi-continuous from Proposition 4 are fulfilled due to the continuity of G_i (see Remark 2.10 from Peskir and Shiryaev (2006)).

(*i*) Since $G_1(2S - x) = G_2(x)$ and $\left[2S - X_{t+s}^{(1)} \mid X_t^{(1)} = x\right] \stackrel{d}{=} \left[X_{t+s}^{(2)} \mid X_t^{(2)} = 2S - x\right]$ for all $s \in [0, T - t]$, then we can apply (*i*) from Proposition 4 to show that $D_1 = \{(t, x) : (t, 2S - x) \in D_2\}$, and therefore $b_1 = 2S - b_2$.

(*ii*) Introduce the function $G(x) = S_2 - x$ and the Brownian bridge $(X_{t+s})_{s=0}^{T-t}$ such that $X_T = S_2$. Since $G(S_2 - x) = G_1(x)$ and $[X_{t+s} \mid X_t = S_2 - x] \stackrel{d}{=} [X_{t+s}^{(1)} \mid X_t^{(1)} = x]$

for $(t,x) \in [0,T] \times \mathbb{R}$, we get that $D_1 = \{(t,x) \in [0,T] \times \mathbb{R} : S_2 - x \in D\}$, and hence $b(t) = S_2 - b_1$, where D and b are, respectively, the stopping set and the OSB of the non-discounted OSP with gain function G and process $(X_{t+s})_{s=0}^{T-t}$.

Let us fix $t \in [0, T)$ and take x' satisfying $x' > S_2$. Consider $\varepsilon > 0$ such that $\varepsilon < x' - S_2$, as well as the stopping time $\tau_{\varepsilon} := \inf\{0 \le s \le T - t : X_{t+s} \le S + \varepsilon \mid X_t = x'\}$. Since our underlying Brownian bridge process $X^{(1)}$ is continuous and it takes the value S_2 at the expiration date T, then $\mathbb{P}_{t,x'}^{(1)}[\tau_{\varepsilon} < T - t] = 1$ and thus $V(t, x') \ge \mathbb{E}_{t,x'}[G(X_{t+\tau_{\varepsilon}})] = -\varepsilon >$ $S_2 - x' = G(x')$, i.e., $(t, x') \notin D$. Therefore, $D \subset D_{S_2} := \{(t, x) \in [0, T] \times \mathbb{R} : x \le S_2\}$.

On the other hand, recall from Proposition 1 that $D_2 \subset D_{S_2}$. Therefore, since $G(x) = G_2(x)$ for all x such that $(t, x) \in D_{S_2}$ for some $t \in [0, T]$, and $[X_{t+s} \mid X_t = x] \stackrel{d}{=} \left[X_{t+s}^{(2)} \mid X_t^{(2)} = x \right]$ for all $s \in [0, T - t]$, then we can use *(ii)* from Proposition 4 in order to get the relation $b_2 = b = S_2 - b_1$.

B Auxiliary lemmas

Lemma 1 Let $(X_{t+s})_{s=0}^{T-t}$ be a Brownian bridge from X_t to $X_T = S$ with volatility σ , where $t \in [0,T)$. Let b be the optimal stopping boundary associated to the OSP

$$V(t,x) = \sup_{0 \le \tau \le T-t} \mathbb{E}_{t,x} \left[e^{-\lambda \tau} G(X_{t+\tau}) \right],$$

with $G(x) = (G - x)^+$, and $\lambda \ge 0$. Then, $\sup_{(t,x)\in\mathcal{R}} \partial_x V(t,x) < 0$, where \mathcal{R} is the set defined in the proof of Proposition 3.

Proof. Take $0 < \varepsilon < 1$, let $\tau^* = \tau^*(t, x)$, and define

$$p(t,x) := \mathbb{P}\left[\tau^* \le (T-t)(1-\varepsilon)\right].$$

Notice that

$$p(t,x) = \mathbb{P}_{t,x} \left[\min_{0 \le s \le (T-t)(1-\varepsilon)} \{X_{t+s} - b(s)\} < 0 \right]$$

$$\geq \mathbb{P}_{t,x} \left[\min_{0 \le s \le (T-t)(1-\varepsilon)} X_{t+s} < b(t) \right]$$

$$= \mathbb{P} \left[\min_{0 \le s \le (T-t)(1-\varepsilon)} \left\{ (S-x) \frac{s}{T-t} + \sigma \sqrt{\frac{T-t-s}{T-t}} W_s \right\} < b(t) - x \right]$$

$$\geq \mathbb{P} \left[\min_{0 \le s \le (T-t)(1-\varepsilon)} \left\{ \sqrt{\frac{T-t-s}{T-t}} W_s \right\} < \sigma^{-1}(b(t) - \max\{x, S\}) \right]$$

$$= \mathbb{P} \left[\min_{0 \le s \le (T-t)(1-\varepsilon)} \{W_s\} < \varepsilon^{-1/2} \sigma^{-1}(b(t) - \max\{x, S\}) \right]$$

$$= 2\mathbb{P} \left[W_{(T-t)(1-\varepsilon)} < \varepsilon^{-1/2} \sigma^{-1}(b(t) - \max\{x, S\}) \right]$$

where the first inequality is justified since b is non-decreasing (see Proposition 1), while the last equality comes after applying the *reflection principle*. Therefore,

$$M := \inf_{(t,x)\in\mathcal{R}} p(t,x) > 0.$$

Finally, by using (13) we obtain the following relation for all $(t, x) \in \mathcal{R}$:

$$\partial_x V(t,x) \le -e^{-\lambda(T-t)} \mathbb{E}\left[\frac{T-t-\tau^*}{T-t}\mathbb{1}\left(\tau^* \le (T-t)(1-\varepsilon)\right)\right]$$
$$\le -e^{-\lambda(T-t)}\varepsilon p(t,x)$$
$$\le -e^{-\lambda(T-t)}\varepsilon M < 0.$$

For the sake of completeness, we formulate the following change-of-variable result by taking Theorem 3.1 from Peskir (2005a) and changing some of its hypothesis according to Remark 3.2 from Peskir (2005a). Specifically, the (*iii-a*) version of Lemma 2 comes after changing, in Peskir (2005a), (3.27) and (3.28) for the joint action of (3.26), (3.35), and (3.36). The (*iii-b*) version relaxes condition (3.35) into (3.37) in *ibid*.

Lemma 2 Let $X = (X_t)_{t=0}^T$ be a diffusion process solving the SDE

$$dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dB_t, \quad 0 \le t \le T,$$

in the Itô's sense. Let $b : [0,T] \to \mathbb{R}$ be a continuous function of bounded variation, and let $F : [0,T] \times \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying

$$F \text{ is } \mathcal{C}^{1,2} \text{ on } C,$$

$$F \text{ is } \mathcal{C}^{1,2} \text{ on } D^{\circ},$$

where $C = \{(t, x) \in [0, T] \times \mathbb{R} : x > b(t)\}$ and $D^{\circ} = \{(t, x) \in [0, T] \times \mathbb{R} : x < b(t)\}.$

Assume there exists $t \in [0, T]$ such that the following conditions are satisfied:

- (i) $\partial_t F + \mu \partial_x F + (\sigma^2/2) \partial_{x^2} F$ is locally bounded on $C \cup D^\circ$;
- (ii) the functions $s \mapsto \partial_x F(s, b(s)^{\pm}) := \partial_x F(s, \lim_{h \to 0^+} b(s) \pm h)$ are continuous on [0, t];

(iii) and either

- (iii-a) $x \mapsto F(s,x)$ is convex on $[b(s) \delta, b(s)]$ and convex on $[b(s), b(s) + \delta]$ for each $s \in [0,t]$, with some $\delta > 0$, or,
- (iii-b) $\partial_{x^2}F = G_1 + G_2$ on $C \cup D^\circ$, where G_1 is non-negative (or non-positive) and G_2 is continuous on \overline{C} and $\overline{D^\circ}$.

Then, the following change-of-variable formula holds

$$F(t, X_t) = F(0, X_0) + \int_0^t (\partial_t F + \mu \partial_x F + (\sigma^2/2) \partial_{x^2} F)(s, X_s) \mathbb{1}(X_s \neq b(s)) \,\mathrm{d}s$$

+
$$\int_0^t (\sigma \partial_x F)(s, X_s) \mathbb{1}(X_s \neq b(s)) \,\mathrm{d}B_s$$

+
$$\frac{1}{2} \int_0^t (\partial_x F(s, X_s^+) - \partial_x F(s, X_s^-)) \mathbb{1}(X_s = b(s)) \,\mathrm{d}l_s^b(X),$$

where $dl_s^b(X)$ is the local time of X at the curve b up to time t, i.e.,

$$l_s^b(X) = \lim_{\varepsilon \to 0} \int_0^t \mathbb{1}(b(s) - \varepsilon \le X_s \le b(s) + \varepsilon) \, \mathrm{d}\langle X, X \rangle_s, \tag{39}$$

where $\langle X, X \rangle$ is the predictable quadratic variation of X, and the limit above is meant in probability.

References

- Peskir, G. (2005a). A change-of-variable formula with local time on curves. Journal of Theoretical Probability, 18(3):499–535.
- Peskir, G. and Shiryaev, A. (2006). *Optimal Stopping and Free-Boundary Problems*. Lectures in Mathematics. ETH Zürich. Birkhäuser.