Supplement to "Optimal exercise of American options under stock pinning"

Abstract
This supplement is structured as follows. Section A contains all the proofs omitted in the paper. Section B states technical lemmas required by these proofs.

Keywords: American option; Brownian bridge; free-boundary problem; optimal stopping; option pricing; put-call parity; stock pinning.

A Main proofs

Proof of Proposition 1. Take an admissible pair (t, x) satisfying $x \geq S$ and $t<T$, and consider the stopping time $\tau_{\varepsilon}:=\inf \left\{0 \leq s \leq T-t: X_{t+s} \leq S-\varepsilon \mid X_{t}=x\right\}$ (assume for convenience that $\inf \{\emptyset\}=T-t)$, for $\varepsilon>0$. Notice that $\mathbb{P}_{t, x}\left[\tau_{\varepsilon}<T-t\right]>0$, which implies that $V(t, x) \geq \mathbb{E}_{t, x}\left[e^{-\lambda \tau_{\varepsilon}} G\left(X_{t+\tau_{\varepsilon}}\right)\right]>0=G(x)$, from where it comes that $(t, x) \in C$.

Define $b(t):=\sup \{x \in \mathbb{R}:(t, x) \in D\}$. The above arguments guarantee that $b(t)<S$ for all $t \in[0, T)$, and we get from (1) that $b(T)=S$. Furthermore, from (1) it can be easily noticed that as λ increases $V(t, x)$ decreases and therefore $b(t)$ increases, and since $b(t)$ is known to be finite for all t when $\lambda=0$ (see Subsection 3.2), then we can guarantee that $b(t)>-\infty$ for all values of λ.

Notice that, since D is a closed set, $b(t) \in D$ for all $t \in[0, T]$. In order to prove that D has the form claimed in Proposition 1, let us take $x<b(t)$ and consider the OST $\tau^{*}=\tau^{*}(t, x)$. Then, relying on (1), (3) and (5), we get

$$
\begin{align*}
V(t, x)-V(t, b(t)) & \leq \mathbb{E}_{t, x}\left[e^{-\lambda \tau^{*}} G\left(X_{t+\tau^{*}}\right)\right]-\mathbb{E}_{t, b(t)}\left[e^{-\lambda \tau^{*}} G\left(X_{t+\tau^{*}}\right)\right] \tag{27}\\
& \leq \mathbb{E}_{t, 0}\left[\left(X_{t+\tau^{*}}+b(t) \frac{T-t-\tau^{*}}{T-t}-X_{t+\tau^{*}}-x \frac{T-t-\tau^{*}}{T-t}\right)^{+}\right] \\
& =(b(t)-x) \mathbb{E}\left[\frac{T-t-\tau^{*}}{T-t}\right] \\
& \leq b(t)-x
\end{align*}
$$

where we used the relation

$$
\begin{equation*}
G(a)-G(b) \leq(b-a)^{+}, \tag{28}
\end{equation*}
$$

for all $a, b \in \mathbb{R}$, for the second inequality. Since $V(t, b(t))=S-b(t)$, we get from the above relation that $V(t, x) \leq S-x=G(x)$, which means that $(t, x) \in D$ and therefore $\{(t, x) \in[0, T] \times \mathbb{R}: x \leq b(t)\} \subset D$. On the other hand, if $(t, x) \in D$, then $x \geq b(t)$, which proves the reverse inclusion.

Take now $t, t^{\prime} \in[0, T]$ and $x \in \mathbb{R}$ such that $t^{\prime}<t$ and $(t, x) \in C$, then, since the function $t \mapsto V(t, x)$ is non-increasing for all $x \in \mathbb{R}$ (see (iv) from Proposition 2), $V\left(t^{\prime}, x\right) \geq V(t, x)>$ $G(x)$, i.e., $\left(t^{\prime}, x\right) \in C$. Hence, b is non-decreasing.

Finally, in order to prove the right-continuity of b, let us fix $t \in(0, T)$ and notice that, since b is non-decreasing, then $b\left(t^{+}\right) \geq b(t)$. On the other hand, as D is a closed set and $(t+h, b(t+h)) \in D$ for all $0<h \leq T-t$, then $\left(t^{+}, b\left(t^{+}\right)\right) \in D$ or, equivalently, $b\left(t^{+}\right) \leq b(t)$.

Proof of Proposition 2. (i) Half of the statement relies on the result obtained in Peskir and Shiryaev (2006, Section 7.1) relative to the Dirichlet problem. Specifically, it states that V is $\mathcal{C}^{1,2}$ on C and $\partial_{t} V+\mathbb{L}_{X} V=\lambda V$ on C. On the other hand, since $V(t, x)=G(x)=S-x$ for all $(t, x) \in D, V$ is $\mathcal{C}^{1,2}$ also on D.
(ii) We easily get the convexity of $x \mapsto V(t, x)$ by plugging-in (3) into (1). To prove (13) let us fix an arbitrary point $(t, x) \in[0, T] \times \mathbb{R}$, consider $\tau^{*}=\tau^{*}(t, x)$ and $\tau_{\varepsilon}=\tau^{*}(t, x+\varepsilon)$ for some $\varepsilon \in \mathbb{R}$. Since $\tau_{\varepsilon} \rightarrow \tau$ a.s., by arguing similarly to (27), we get

$$
\begin{align*}
\varepsilon^{-1}(V(t, x+\varepsilon)-V(t, x)) & \leq-\mathbb{E}\left[e^{-\lambda \tau_{\varepsilon}} \frac{T-t-\tau_{\varepsilon}}{T-t}\right] \tag{29}\\
& \xrightarrow{\varepsilon \rightarrow 0}-\mathbb{E}\left[e^{-\lambda \tau^{*}} \frac{T-t-\tau^{*}}{T-t}\right]
\end{align*}
$$

where the limit is valid due to the dominated convergence theorem. For $\varepsilon<0$ the reverse inequality emerges, giving us, after making $\varepsilon \rightarrow 0$, the relation $\partial_{x}^{-} V(t, x) \leq$ $-\mathbb{E}\left[e^{-\lambda \tau^{*} \frac{T-t-\tau^{*}}{T-t}}\right] \leq \partial_{x}^{+} V(t, x)$, which, due to the continuity of $x \mapsto \partial_{x} V(t, x)$ on $(-\infty, b(t))$ and on $(b(t), \infty)$ for all $t \in[0, T]\left(V\right.$ is $\mathcal{C}^{1,2}$ on C and on $\left.D\right)$, turns into $\partial_{x} V(t, x)=$ $-\mathbb{E}\left[e^{-\lambda \tau^{*}} \frac{T-t-\tau^{*}}{T-t}\right]$ for all (t, x) where $t \in[0, T]$ and $x \neq b(t)$. For $x=b(t)$ the equation (13) also holds true and it turns into the smooth fit condition (iii) proved later on.

Furthermore, since $\mathbb{P}_{t, x}\left[\tau^{*}<T-t\right]>0$ (see Lemma 1), the expression (13) shows that $\partial_{x} V<0$ and therefore $x \mapsto V(t, x)$ is strictly decreasing for all $t \in[0, T]$.
(iii) Take a pair $(t, x) \in[0, T) \times \mathbb{R}$ lying on the OSB, i.e., $x=b(t)$, and consider $\varepsilon>0$. Since $(t, x) \in D$ and $(t, x+\varepsilon) \in C$, we have that $V(t, x)=G(x)$ and $V(t, x+\varepsilon)>G(x+\varepsilon)$. Thus, taking into account the inequality (28), we get $\varepsilon^{-1}(V(t, x+\varepsilon)-V(t, x))>\varepsilon^{-1}(G(x+$ $\varepsilon)-G(x)) \geq-1$, which, after making $\varepsilon \rightarrow 0$ turns into $\partial_{x}^{+} V(t, x) \geq-1$. On the other hand, by considering the optimal stopping time $\tau_{\varepsilon}:=\tau^{*}(t, x+\varepsilon)$ and following the same
arguments showed at (29), we get that $\partial_{x}^{+} V(t, x) \leq-1$. Therefore $\partial_{x}^{+} V(t, b(t))=-1$ for all $t \in[0, T)$. Since $V=G$ in D, it follows straightforwardly that $\partial_{x}^{-} V(t, b(t))=-1$ and hence the smooth fit condition holds.
(iv) Notice that, due to (i), alongside to (4), (3), (13), and recalling that $x \mapsto V(t, x)$ is convex (and therefore $\partial_{x^{2}} V \geq 0$), we get that

$$
\begin{aligned}
\partial_{t} V(t, x) & \leq \lambda V(t, x)-\frac{T-t-x}{T-t} \partial_{x} V(t, x) \\
& =-\mathbb{E}\left[e^{-\lambda \tau^{*}}(x-S) \frac{1-t-\tau^{*}}{1-t}\left(\lambda+\frac{x-S}{1-t}\right)\right] .
\end{aligned}
$$

Therefore $\partial_{t} V \leq 0$ on the set $C_{S}:=[0, T) \times[S, \infty) \subset C$.
For some small $\varepsilon>0$, denote by $\left(X_{s}^{[t, T]}\right)_{s \geq 0}^{T-t+\varepsilon}$ a process such that, for $s \in[0, T-t]$ it behaves as the Brownian bridge $X^{[t, T]}$, and the remaining part stays constant at the value S, i.e., $X_{s}^{[t, T]}=S$ for $s \in[T-t, T-t+\varepsilon]$. Let $\mu^{[t, T]}$ be its drift, and define the process $\left(X_{s}^{[t-\varepsilon, T]}\right)_{s \geq 0}^{T-t+\varepsilon}=X^{[t-\varepsilon, T]}$ with drift $\mu^{[t-\varepsilon, T]}$. Since $\mu^{[t, T]}(t, x) \geq \mu^{[t-\varepsilon, T]}$ whenever $x \leq S$, Theorem 1.1 from Ikeda and Watanabe (1977) guarantees that $X_{s}^{[t, T]} \geq X_{s}^{[t-\varepsilon, T]} \mathbb{P}_{t, x^{-}}$a.s., for all (t, x) and for all $s \leq \tau^{S}$, where $\tau^{S}:=\inf \left\{s \in[0, T-t]: X_{s}^{[t, T]}>S\right\}$.

Assume now that both processes start at $x \leq S$, and consider the stopping time $\tau^{*}=$ $\tau^{*}(t, x)$. Therefore, since $V\left(t+s \wedge \tau^{*}, X_{s \wedge \tau^{*}}^{[t, T]}\right)$ and $V\left(t+s, X_{s}^{[t-\varepsilon, T]}\right)$ are a martingale and a supermartingale (see Section 2.2 from Peskir and Shiryaev (2006)), respectively, we have

$$
\begin{aligned}
V(t, x)-V(t-\varepsilon, x) & \leq \mathbb{E}\left[V\left(t+\tau^{S} \wedge \tau^{*}, X_{\tau^{S} \wedge \tau^{*}}^{[t, T]}\right)-V\left(t-\varepsilon+\tau^{S} \wedge \tau^{*}, X_{\tau^{s} \wedge \tau^{*}}^{[t-\varepsilon, T]}\right)\right] \\
& \leq \mathbb{E}\left[\mathbb{I}\left(\tau^{*} \leq \tau^{S}, \tau^{*}<T-t\right) e^{-\lambda \tau^{*}}\left(X_{\tau^{*}}^{[t-\varepsilon, T]}-X_{\tau^{*}}^{[t, T]}\right)^{+}\right] \\
& +\mathbb{E}\left[\mathbb{I}\left(\tau^{*} \wedge \tau^{S}=T-t\right) e^{-\lambda \tau^{*}}\left(X_{T-t}^{[t-\varepsilon, T]}-X_{T-t}^{[t, T]}\right)^{+}\right] \\
& +\mathbb{E}\left[\mathbb{I}\left(\tau^{S} \leq \tau^{*}, \tau^{S}<T-t\right) V\left(t+\tau^{S}, X_{\tau^{S}}^{[t, T]}\right)-V\left(t-\varepsilon+\tau^{S}, X_{\tau^{S}}^{[t-\varepsilon, T]}\right)\right] \\
& \leq \mathbb{E}\left[\mathbb{I}\left(\tau^{S} \leq \tau^{*}, \tau^{S}<T-t\right) V\left(t-\varepsilon+\tau^{S}, S\right)-V\left(t-\varepsilon+\tau^{S}, X_{\tau^{S}}^{[t-\varepsilon, T]}\right)\right] \\
& \leq 0,
\end{aligned}
$$

where the second inequality comes after noticing that τ^{*} is not optimal for $X^{[t-\varepsilon, T]}$ and using (28); the third inequality holds since $X_{\tau^{*}}^{[t-\varepsilon, T]} \leq X_{\tau^{*}}^{[t, T]}$ for $\tau^{*} \leq \tau^{S}, X_{T-t}^{[t-\varepsilon, T]} \leq X_{T-t}^{[t, T]}$ whenever $\tau^{*} \wedge \tau^{S}=T-t$, and the fact that $\partial_{t} V \leq 0$ on the set C_{S}; and the last inequality
relies on the increasing behavior of $x \mapsto V(t, x)$. Finally, after dividing by ε and taking $\varepsilon \rightarrow 0$, we get the claimed result. Note that a similar argument for a different gain function has recently appeared in Tiziano and Milazzo (2019).
(v) Let $\left(X_{t_{i}+s}^{[t i, T]}\right)_{s \geq 0}^{\left[0, T-t_{i}\right]}$ be a Brownian bridge going from $X_{t_{i}}=x$ to $X_{T}=S$ for any $x \in \mathbb{R}$, with $i=1,2$. Notice that, according to (3), the following holds:

$$
\begin{equation*}
X_{t_{2}+s^{\prime}}^{\left[t_{2}, T\right]} \stackrel{d}{=} r^{1 / 2} X_{t_{1}+s}^{\left[t_{1}, T\right]}+\left(1-r^{1 / 2}\right)(S-x) \frac{s}{T-t_{1}}, \tag{30}
\end{equation*}
$$

where $r=\frac{T-t_{2}}{T-t_{1}}, s \in\left[0, T-t_{1}\right]$, and $s^{\prime}=s r \in\left[0, T-t_{2}\right]$.
Take $0 \leq t_{1}<t_{2}<T$, consider $\tau_{1}:=\tau^{*}\left(t_{1}, x\right)$, and set $\tau_{2}:=\tau_{1} r$. Since $t \mapsto V(t, x)$ is decreasing for every $x \in \mathbb{R}$, then

$$
\begin{aligned}
0 & \leq V\left(t_{1}, x\right)-V\left(t_{2}, x\right) \\
& \leq \mathbb{E}_{t_{1}, x}\left[e^{-\lambda \tau_{1}} G\left(X_{t_{1}+\tau_{1}}^{\left[t_{1}, T\right]}\right)\right]-\mathbb{E}_{t_{2}, x}\left[e^{-\lambda \tau_{2}} G\left(X_{t_{2}+\tau_{2}}^{\left[t_{2}, T\right]}\right)\right] \\
& \leq \mathbb{E}\left[e^{-\lambda \tau_{2}}\left(G\left(X_{t_{1}+\tau_{1}}^{\left[t_{1}, T\right]}\right)-G\left(X_{t_{2}+\tau_{2}}^{\left[t_{2}, T\right]}\right)\right)\right] \\
& \leq \mathbb{E}\left[\left(X_{t_{2}+\tau_{2}}^{\left[t_{2}, T\right]}-X_{t_{1}+\tau_{1}}^{\left[t_{1}, T\right]}\right)^{+}\right] \\
& =\mathbb{E}\left[\left(\left(r^{1 / 2}-1\right)\left(X_{t_{1}+\tau_{1}}^{\left[t_{1}, T\right]}+(S-x) \frac{\tau_{1}}{T-t_{1}}\right)\right)^{+}\right] \\
& \leq\left(\left(r^{1 / 2}-1\right)(S+\mathbb{I}(x \leq S)(S-x))\right)^{+}
\end{aligned}
$$

where the first equality comes after applying (30) and the last inequality takes place since $r<1$ and $X_{t_{1}+\tau_{1}}^{\left[t_{1}, T\right]} \leq S$.

Hence, $V\left(t_{1}, x\right)-V\left(t_{2}, x\right) \rightarrow 0$ as $t_{1} \rightarrow t_{2}$, i.e., $t \mapsto V(t, x)$ is continuous for every $x \in \mathbb{R}$, and thus, to address the continuity of V is sufficient to prove that, for a fixed t, $x \mapsto V(t, x)$ is uniformly continuous within a neighborhood of t. The latter comes after the following inequality, which comes right after applying similar arguments to those used in (27):

$$
\begin{aligned}
0 \leq V\left(t, x_{1}\right)-V\left(t, x_{2}\right) & \leq\left(x_{2}-x_{1}\right) \mathbb{E}\left[e^{-\lambda \tau^{*}} \frac{T-t-\tau^{*}}{T-t}\right] \\
& \leq x_{2}-x_{1}
\end{aligned}
$$

where $x_{1}, x_{2} \in \mathbb{R}$ are such that $x_{1} \leq x_{2}$ and $\tau^{*}=\tau^{*}\left(t, x_{1}\right)$.

Proof of Proposition 3. We already proved the right-continuity of b in Proposition 1 , so this proof is devoted to prove its left-continuity.

Let us assume that b is not left-continuous. Therefore, as b is non-decreasing, we can ensure the existence of a point $t_{*} \in(0, T)$ such that $b\left(t_{*}^{-}\right)<b\left(t_{*}\right)$, which allows us to take x^{\prime} in the interval $\left(b\left(t_{*}^{-}\right), b\left(t_{*}\right)\right)$ and consider the right-open rectangle $\mathcal{R}=\left[t^{\prime}, t_{*}\right) \times\left[b\left(t_{*}^{-}\right), x^{\prime}\right] \subset$ C (see illustration of Figure 10), with $t^{\prime} \in\left(0, t_{*}\right)$.

Figure 10: Graphical sketch of the proof of left continuity of b.

Applying twice the fundamental theorem of calculus, using that $(t, b(t)) \in D$ for all $t \in[0, T]$, the smooth fit condition (iii), and the fact that $x \mapsto V(t, x)$ is \mathcal{C}^{2} on C, we obtain

$$
\begin{equation*}
V(t, x)-G(x)=\int_{b(t)}^{x} \int_{b(t)}^{u}\left(\partial_{x^{2}} V(t, v)-\partial_{x^{2}} G(v)\right) \mathrm{d} v \mathrm{~d} u \tag{31}
\end{equation*}
$$

for all $(t, x) \in \mathcal{R}$.
On the other hand, if we set $m:=-\sup _{(t, x) \in \mathcal{R}} \partial_{x} V(t, x)$, then we readily obtain from (13) that $m>0$ (see Lemma 1), which, combined with $\partial_{t} V+\mathbb{L}_{X} V=\lambda V$ on C and $\partial_{t} V \leq 0$ on $C((i)$ and (iv) from Proposition 2), along with the fact that $V(t, x) \geq 0$ for
all admissible pairs (t, x), gives

$$
\begin{align*}
\partial_{x^{2}} V(t, x) & =\frac{2}{\sigma^{2}}\left(\lambda V(t, x)-\frac{S-x}{T-t} \partial_{x} V(t, x)-\partial_{t} V(t, x)\right) \\
& \geq \frac{2 m}{\sigma^{2}} \frac{S-x}{T-t}>0 \tag{32}
\end{align*}
$$

for all $(t, x) \in \mathcal{R}$. Therefore, by noticing that $\partial_{x^{2}} G(x)=0$ for all $x \in\left(b\left(t_{*}^{-}\right), x^{\prime}\right)$ and plugging-in (32) into (31), we get

$$
\begin{aligned}
V(t, x)-G(x) & \geq \int_{b(t)}^{x} \int_{b(t)}^{u} \frac{2 m}{\sigma^{2}} \frac{S-x}{T-t} \mathrm{~d} v \mathrm{~d} u \\
& \geq \frac{2 m}{\sigma^{2}} \frac{S-x}{T-t} \int_{b\left(t_{*}^{-}\right)}^{x} \int_{b\left(t_{*}^{-}\right)}^{u} \mathrm{~d} v \mathrm{~d} u \\
& =\frac{2 m}{\sigma^{2}} \frac{S-x}{T-t}\left(x-b\left(t_{*}^{-}\right)\right)^{2} .
\end{aligned}
$$

Finally, after taking $t \rightarrow t_{*}$ on both sides of the above equation, we obtain $V\left(t_{*}, x\right)-G(x)>$ 0 for all $x \in\left(b\left(t_{*}^{-}\right), b\left(t_{*}\right)\right)$, which contradicts the fact that $\left(t_{*}, x\right) \in D$.

Proof of Theorem 1.

Assume we have a function $c:[0, T] \rightarrow \mathbb{R}$ that solves the integral equation (20) and define the function

$$
\begin{align*}
V^{c}(t, x) & =\int_{t}^{T} e^{-\lambda(u-t)}\left(\frac{1}{T-u}+\lambda\right) \mathbb{E}_{t, x}\left[\left(S-X_{u}\right) \mathbb{1}\left(X_{u} \leq c(u)\right)\right] \mathrm{d} u \tag{33}\\
& =\int_{t}^{T} K_{\sigma, \lambda}(t, x, u, c(u)) \mathrm{d} u
\end{align*}
$$

where $X=\left(X_{s}\right)_{s=0}^{T}$ is a Brownian bridge with σ volatility that ends at $X_{T}=S$, and $K_{\sigma, \lambda}$ is defined at (19). It turns out that $x \mapsto K_{\sigma, \lambda}(t, x, u, c(u))$ is twice continuously differentiable and therefore differentiating inside the integral symbol at (33) yields $\partial_{x} V^{c}(t, x)$ and $\partial_{x^{2}} V^{c}(t, x)$, and furthermore ensures their continuity on $[0, T) \times \mathbb{R}$.

Let us compute the operator $\partial_{t}+\mathbb{L}_{X}$ acting on the function V^{c},

$$
\partial_{t} V^{c}+\mathbb{L}_{X} V^{c}(t, x)=\lim _{h \downarrow 0} \frac{\mathbb{E}_{t, x}\left[V^{c}\left(t+h, X_{t+h}\right)\right]-V^{c}(t, x)}{h}
$$

Define the function

$$
\begin{equation*}
I\left(t, u, x_{1}, x_{2}\right):=e^{-\lambda(u-t)}\left(\frac{1}{T-u}+\lambda\right)\left(S-x_{1}\right) \mathbb{1}\left(x_{1} \leq x_{2}\right) \tag{34}
\end{equation*}
$$

and notice that

$$
\begin{aligned}
\mathbb{E}_{t, x}\left[V^{c}\left(t+h, X_{t+h}\right)\right] & =\mathbb{E}_{t, x}\left[\mathbb{E}_{t+h, X_{t+h}}\left[\int_{t+h}^{T} I\left(t+h, u, X_{u}, c(u)\right) \mathrm{d} u\right]\right] \\
& =\mathbb{E}_{t, x}\left[\mathbb{E}_{t, x}\left[\int_{t+h}^{T} I\left(t+h, u, X_{u}, c(u)\right) \mathrm{d} u \mid \mathcal{F}_{t+h}\right]\right] \\
& =\mathbb{E}_{t, x}\left[\int_{t+h}^{T} I\left(t+h, u, X_{u}, c(u)\right) \mathrm{d} u\right]
\end{aligned}
$$

where $\left(\mathcal{F}_{s}\right)_{s=0}^{T}$ is the natural filtration of X. Therefore,

$$
\begin{aligned}
\partial_{t} V^{c}+\mathbb{L}_{X} & V^{c}(t, x) \\
& =\lim _{h \downarrow 0} \frac{\mathbb{E}_{t, x}\left[\int_{t+h}^{T} I\left(t+h, u, X_{u}, c(u)\right) \mathrm{d} u\right]-\mathbb{E}_{t, x}\left[\int_{t}^{T} I\left(t, u, X_{u}, c(u)\right) \mathrm{d} u\right]}{h} \\
& =\lim _{h \downarrow 0} \frac{1}{h} \mathbb{E}_{t, x}\left[\int_{t+h}^{T}\left(e^{\lambda h}-1\right) I\left(t, u, X_{u}, c(u)\right) \mathrm{d} u\right]-\lim _{h \downarrow 0} \frac{1}{h} \mathbb{E}_{t, x}\left[\int_{t}^{t+h} I\left(t, u, X_{u}, c(u)\right) \mathrm{d} u\right] \\
& =\lambda V(t, x)-(S-x)\left(\frac{1}{T-t}+\lambda\right) \mathbb{1}(x \leq c(t)) .
\end{aligned}
$$

From this result, alongside with (4) and the fact that $V^{c}, \partial_{x} V^{c}$, and $\partial_{x^{2}} V^{c}$ are continuous on $[0, T) \times \mathbb{R}$, we get the continuity of $\partial_{t} V^{c}$ on $C_{1} \cup C_{2}$, where

$$
\begin{aligned}
& C_{1}:=\{(t, x) \in[0, T) \times \mathbb{R}: x>c(t)\}, \\
& C_{2}:=\{(t, x) \in[0, T) \times \mathbb{R}: x<c(t)\}
\end{aligned}
$$

Now define the function $F^{(t)}(s, x):=e^{-\lambda s} V^{c}(t+s, x)$ with $s \in[0, T-t), x \in \mathbb{R}$, and consider the sets

$$
\begin{aligned}
C_{1}^{t} & :=\left\{(s, x) \in C_{1}: t \leq s<T\right\}, \\
C_{2}^{t} & :=\left\{(s, x) \in C_{2}: t \leq s<T\right\} .
\end{aligned}
$$

We claim that $F^{(t)}$ satisfies the (iii-b) version of the hypothesis of Lemma 2 taking $C=C_{1}^{t}$ and $D^{\circ}=C_{2}^{t}$. Indeed: $F^{(t)}, \partial_{x} F^{(t)}$, and $\partial_{x^{2}} F^{(t)}$ are continuous on $[0, T) \times \mathbb{R}$; it has been proved that $F^{(t)}$ is $\mathcal{C}^{1,2}$ on C_{1}^{t} and C_{2}^{t}; we are assuming that c is a continuous function of bounded variation; and $\left(\partial_{t} F^{(t)}+\mathbb{L}_{X} F^{(t)}\right)(s, x)=-e^{-\lambda s}(S-x)\left(\frac{1}{T-t-s}+\lambda\right) \mathbb{1}(x \leq c(t+s))$ is locally bounded on $C_{1}^{t} \cup C_{2}^{t}$.

Thereby, we can use the (iii-b) version of Lemma 2 to obtain the following change of variable formula, which is missing the local time term because of the continuity of F_{x} on $[0, T) \times \mathbb{R}:$

$$
\begin{align*}
& e^{-\lambda s} V^{c}\left(t+s, X_{t+s}\right) \\
& \quad=V^{c}(t, x)-\int_{t}^{t+s} e^{-\lambda(u-t)}\left(S-X_{u}\right)\left(\frac{1}{T-u}+\lambda\right) \mathbb{1}\left(X_{u} \leq c(u)\right) \mathrm{d} u+M_{s}^{(1)}, \tag{35}
\end{align*}
$$

with $M_{s}^{(1)}=\int_{t}^{t+s} e^{-\lambda(u-t)} \sigma \partial_{x} V^{c}\left(u, X_{u}\right) \mathrm{d} B_{u}$. Notice that $\left(M_{s}^{(1)}\right)_{s=0}^{T-t}$ is a martingale under $\mathbb{P}_{t, x}$.

In the same way, we can apply the (iii-b) version of Lemma 2 this time using the function $F(s, x)=e^{-\lambda s} G\left(X_{t+s}\right)$, and taking $C=\{(s, x) \in[0, T-t) \times \mathbb{R}: x>S\}$ and $D^{\circ}=\{(s, x) \in[0, T-t) \times \mathbb{R}: x<S\}$, thereby getting

$$
\begin{align*}
e^{-\lambda s} G\left(X_{t+s}\right)= & G(x)-\int_{t}^{t+s} e^{-\lambda(u-t)}\left(S-X_{u}\right)\left(\frac{1}{T-u}+\lambda\right) \mathbb{1}\left(X_{u}<S\right) \mathrm{d} u \tag{36}\\
& -M_{s}^{(2)}+\frac{1}{2} \int_{t}^{t+s} e^{-\lambda(u-t)} \mathbb{1}\left(X_{u}=S\right) \mathrm{d} l_{s}^{S}(X)
\end{align*}
$$

where $M_{s}^{(2)}=\sigma \int_{t}^{t+s} e^{-\lambda(u-t)} \mathbb{1}\left(X_{u}<S\right) \mathrm{d} B_{u}$, with $0 \leq s \leq T-t$, is a martingale under $\mathbb{P}_{t, x}$.

Consider the following stopping time for (t, x) such that $x \leq c(t)$:

$$
\begin{equation*}
\rho_{c}:=\inf \left\{0 \leq s \leq T-t: X_{t+s} \geq c(t+s) \mid X_{t}=x\right\} . \tag{37}
\end{equation*}
$$

In this way, along with assumption $c(t)<S$ for all $t \in(0, T)$, we can ensure that $\mathbb{1}\left(X_{t+s} \leq\right.$ $c(t+s))=\mathbb{1}\left(X_{t+s} \leq S\right)=1$ for all $s \in\left[0, \rho_{c}\right)$, as well as $\int_{t}^{t+s} e^{-\lambda(u-t)} \mathbb{1}\left(X_{u}=S\right) \mathrm{d} l_{s}^{S}(X)=0$. Recall that $V^{c}(t, c(t))=G(c(t))$ for all $t \in[c, T)$ since c solves the integral equation (20). Moreover, $V^{c}(T, S)=0=G(S)$. Hence, $V^{c}\left(t+\rho_{c}, X_{t+\rho_{c}}\right)=G\left(X_{t+\rho_{c}}\right)$. Therefore, we are
able now to derive the following relation from equations (35) and (36):

$$
\begin{aligned}
V^{c}(t, x)= & \mathbb{E}_{t, x}\left[e^{-\lambda \rho_{c}} V^{c}\left(t+\rho_{c}, X_{t+\rho_{c}}\right)\right] \\
& +\mathbb{E}_{t, x}\left[\int_{t}^{t+\rho_{c}} e^{-\lambda(u-t)}\left(S-X_{u}\right)\left(\frac{1}{T-u}+\lambda\right) \mathbb{1}\left(X_{u} \leq c(u)\right) \mathrm{d} u\right] \\
= & \mathbb{E}_{t, x}\left[e^{-\lambda \rho_{c}} G\left(X_{t+\rho_{c}}\right)\right] \\
& +\mathbb{E}_{t, x}\left[\int_{t}^{t+\rho_{c}} e^{-\lambda(u-t)}\left(S-X_{u}\right)\left(\frac{1}{T-u}+\lambda\right) \mathbb{1}\left(X_{u} \leq S\right) \mathrm{d} u\right] \\
= & G(x) .
\end{aligned}
$$

The vanishing of the martingales $M_{\rho_{c}}^{(1)}$ and $M_{\rho_{c}}^{(2)}$ comes after using the optional stopping theorem (see, e.g., Section 3.2 from Peskir and Shiryaev (2006)). Therefore, we have just proved that $V^{c}=G$ on C_{2}.

Now define the stopping time

$$
\tau_{c}:=\inf \left\{0 \leq u \leq T-t: X_{t+u} \leq c(t+u) \mid X_{t}=x\right\}
$$

and plug-in it into equation (35) to obtain the expression

$$
\begin{aligned}
V^{c}(t, x)= & e^{-\lambda \tau_{c}} V^{c}\left(t+\tau_{c}, X_{t+\tau_{c}}\right) \\
& +\int_{t}^{t+\tau_{c}} e^{-\lambda(u-t)}\left(S-X_{u}\right)\left(\frac{1}{T-u}+\lambda\right) \mathbb{1}\left(X_{u} \leq c(u)\right) \mathrm{d} u-M_{\tau_{c}}^{(1)} .
\end{aligned}
$$

Notice that, due to the definition of $\tau_{c}, \mathbb{1}\left(X_{t+u} \leq c(t+u)\right)=0$ for all $0 \leq u<\tau_{c}$ whenever $\tau_{c}>0$ (the case $\tau_{c}=0$ is trivial). In addition, the optional sampling theorem ensures that $\mathbb{E}_{t, x}\left[M_{\tau_{c}}^{(1)}\right]=0$. Therefore, the following formula comes after taking $\mathbb{P}_{t, x}$-expectation in the above equation and considering that $V^{c}=G$ on C_{2} :

$$
V^{c}(t, x)=\mathbb{E}_{t, x}\left[e^{-\lambda \tau_{c}} V^{c}\left(t+\tau_{c}, X_{t+\tau_{c}}\right)\right]=\mathbb{E}_{t, x}\left[e^{-\lambda \tau_{c}} G\left(X_{t+\tau_{c}}\right)\right]
$$

for all $(t, x) \in[0, T) \times \mathbb{R}$. Recalling the definition of V from (1), we realize that the above equality leads to

$$
\begin{equation*}
V^{c}(t, x) \leq V(t, x) \tag{38}
\end{equation*}
$$

for all $(t, x) \in[0, T) \times \mathbb{R}$.

Take $(t, x) \in C_{2}$ satisfying $x<\min \{b(t), c(t)\}$, where b is the OSB for (1), and consider the stopping time ρ_{c} defined as

$$
\rho_{b}:=\inf \left\{0 \leq s \leq T-t: X_{t+s} \geq b(t+s) \mid X_{t}=x\right\} .
$$

Since $V=G$ on D, the following equality holds true due to (14) and from noticing that $\mathbb{1}\left(X_{t+u} \leq b(t+u)\right)=1$ for all $0 \leq u<\rho_{b}:$

$$
\mathbb{E}_{t, x}\left[e^{-\lambda \rho_{b}} V\left(t+\rho_{b}, X_{t+\rho_{b}}\right)\right]=G(x)-\mathbb{E}_{t, x}\left[\int_{t}^{t+\rho_{b}} e^{-\lambda(u-t)}\left(S-X_{u}\right)\left(\frac{1}{T-u}+\lambda\right) \mathrm{d} u\right]
$$

On the other hand, we get the next equation after substituting s for ρ_{b} at (35) and recalling that $V=G$ on C_{2} :

$$
\begin{aligned}
\mathbb{E}_{t, x} & {\left[e^{-\lambda \rho_{b}} V\left(t+\rho_{b}, X_{t+\rho_{b}}\right)\right] } \\
& =G(x)-\mathbb{E}_{t, x}\left[\int_{t}^{t+\rho_{c}} e^{-\lambda(u-t)}\left(S-X_{u}\right)\left(\frac{1}{T-u}+\lambda\right) \mathbb{1}\left(X_{u} \leq c(u)\right) \mathrm{d} u\right] .
\end{aligned}
$$

Therefore, we can use (38) to merge the two previous equalities into

$$
\begin{gathered}
\mathbb{E}_{t, x}\left[\int_{t}^{t+\rho_{b}} e^{-\lambda(u-t)}\left(S-X_{u}\right)\left(\frac{1}{T-u}-\lambda\right) \mathbb{1}\left(X_{u} \leq c(u)\right) \mathrm{d} u\right] \\
\quad \geq \mathbb{E}_{t, x}\left[\int_{t}^{t+\rho_{b}} e^{-\lambda(u-t)}\left(S-X_{u}\right)\left(\frac{1}{T-u}-\lambda\right) \mathrm{d} u\right]
\end{gathered}
$$

meaning that $b(t) \leq c(t)$ for all $t \in[0, T]$ since c is continuous.

Suppose there exists a point $t \in(0, T)$ such that $b(t)<c(t)$ and fix $x \in(b(t), c(t))$. Consider the stopping time

$$
\tau_{b}:=\inf \left\{0 \leq u \leq T-t: X_{t+u} \leq b(t+u) \mid X_{t}=x\right\}
$$

and plug-in it both into (14) and (35) replacing s before taking the $\mathbb{P}_{t, x}$-expectation. We obtain

$$
\begin{aligned}
\mathbb{E}_{t, x} & {\left[e^{-\lambda \tau_{b}} V^{c}\left(t+\tau_{b}, X_{t+\tau_{b}}\right)\right] } \\
& =\mathbb{E}_{t, x}\left[e^{-\lambda \tau_{b}} G\left(X_{t+\tau_{b}}\right)\right] \\
& =V^{c}(t, x)-\mathbb{E}_{t, x}\left[\int_{t}^{t+\tau_{b}} e^{-\lambda(u-t)}\left(S-X_{u}\right)\left(\frac{1}{T-u}+\lambda\right) \mathbb{1}\left(X_{u} \leq c(u)\right) \mathrm{d} u\right]
\end{aligned}
$$

and

$$
\mathbb{E}_{t, x}\left[e^{-\lambda \tau_{b}} V\left(t+\tau_{b}, X_{t+\tau_{b}}\right)\right]=\mathbb{E}_{t, x}\left[e^{-\lambda \tau_{b}} G\left(X_{t+\tau_{b}}\right)\right]=V(t, x) .
$$

Thus, from (38) we get

$$
\mathbb{E}_{t, x}\left[\int_{t}^{t+\tau_{b}} e^{-\lambda(u-t)}\left(S-X_{u}\right)\left(\frac{1}{T-u}+\lambda\right) \mathbb{1}\left(X_{u} \leq c(u)\right) \mathrm{d} u\right] \leq 0
$$

Using the fact that $x>b(t)$ and the time-continuity of the process X, we can state that $\tau_{b}>0$. Therefore, the previous inequality can only happen if $\mathbb{1}\left(X_{s} \leq c(s)\right)=0$ for all $t \leq s \leq t+\tau_{b}$, meaning that $b(s) \geq c(s)$ for all $t \leq s \leq t+\tau_{b}$, which contradicts the assumption $b(t)<c(t)$.

Proof of Proposition 4. Since the OSP (21) satisfies the hypothesis stated in Corollary 2.9 from Peskir and Shiryaev (2006) (V_{i} lower semi-continuous and G_{i} upper semi-continuous), we can ensure the existence of the OSP $\tau_{i}^{*}(t, x)$ defined at (6) for the pair (t, x), where $i=1,2$. Moreover, Theorem 2.4 from Peskir and Shiryaev (2006) guarantees that $\mathbb{P}_{t, x}^{(i)}\left[\tau_{i}^{*}(t, x) \leq \tau_{*}\right]=1$ for any other OST τ_{*} of the OSP (21), where $\mathbb{P}_{t, x}^{(i)}$ denotes the law such that $\mathbb{P}_{t, x}^{(i)}\left[X_{t}^{(i)}=x\right]=1$.
(i) Define the sets $D_{i}^{\alpha, A}:=\left\{(t, x) \in[0, T] \times \mathbb{R}:\left(t, \alpha^{-1}(x-A)\right) \in D_{i}\right\}$ for $i=1,2$, and notice that $\tau_{1}^{*}(t, x) \stackrel{\text { d }}{=} \inf \left\{0 \leq s \leq T-t: X_{t+s}^{(2)} \in D_{1}^{\alpha, A} \mid X_{t}^{(2)}=\alpha x+A\right\}$ as well as $\tau_{2}^{*}(t, \alpha x+A) \stackrel{\mathrm{d}}{=} \inf \left\{0 \leq s \leq T-t: X_{t+s}^{(1)} \in D_{2}^{\alpha^{-1},-\alpha^{-1} A} \mid X_{t}^{(1)}=x\right\}$, for $(t, x) \in[0, T] \times \mathbb{R}$.
Suppose that

$$
\mathbb{E}_{t, \alpha x+A}\left[e^{-\lambda \tau_{2}^{*}(t, \alpha x+A)} G_{2}\left(X_{t+\tau_{2}^{*}(t, x+A)}^{(2)}\right)\right]>\mathbb{E}_{t, \alpha x+A}\left[e^{-\lambda \tau_{1}^{*}(t, x)} G_{2}\left(X_{t+\tau_{1}^{*}(t, x)}^{(2)}\right)\right] .
$$

Then,

$$
\begin{aligned}
\mathbb{E}_{t, x}\left[e^{-\lambda \tau_{2}^{*}(t, \alpha x+A)} G_{1}\left(X_{t+\tau_{2}^{*}(t, \alpha x+A)}^{(1)}\right)\right] & =\mathbb{E}_{t, \alpha x+A}\left[e^{-\lambda \tau_{2}^{*}(t, \alpha x+A)} G_{2}\left(X_{t+\tau_{2}^{*}(t, \alpha x+A)}^{(2)}\right)\right] \\
& >\mathbb{E}_{t, \alpha x+A}\left[e^{-\lambda \tau_{1}^{*}(t, x)} G_{2}\left(X_{t+\tau_{1}^{*}(t, x)}^{(2)}\right)\right] \\
& =\mathbb{E}_{t, x}\left[e^{-\lambda \tau_{1}^{*}(t, x)} G_{1}\left(X_{t+\tau_{1}^{*}(t, x)}^{(1)}\right)\right]
\end{aligned}
$$

which is a contradiction. Therefore, our original assumption has to be wrong, meaning that $\tau_{2}^{*}(t, \alpha x+A) \leq \tau_{1}^{*}(t, x) \mathbb{P}_{t, x^{-}}^{(1)}$ a.s. as well as $\mathbb{P}_{t, \alpha x+A^{-}}^{(2)}$ a.s. (notice that $\left.\mathbb{P}_{t, x}^{(1)}=\mathbb{P}_{t, \alpha x+A}^{(2)}\right)$.

Interchanging the roles of $t_{1}^{*}(t, x)$ and $t_{2}^{*}(t, \alpha x+A)$ along the argumentation given above, and making the corresponding rearrangements, we get the opposite inequality. Thus, since both D_{1} and D_{2} are closed sets, then $D_{2}=D_{1}^{\alpha, A}$ or, reciprocally, $D_{1}=D_{2}^{\alpha^{-1},-\alpha^{-1} A}$.
(ii) $\operatorname{Fix}(t, x) \in[0, T] \times \mathbb{R}$ and let $\tau_{1}^{*}=\tau_{1}^{*}(t, x)$ as well as $\tau_{2}^{*}=\tau_{2}^{*}(t, x)$. Notice that $\tau_{1}^{*} \stackrel{\mathrm{~d}}{=} \inf \left\{0 \leq s \leq T-t: X_{t+s}^{(2)} \in D_{1} \mid X_{t}^{(2)}=x\right\}$ and $\tau_{2}^{*} \stackrel{\mathrm{~d}}{=} \inf \left\{0 \leq s \leq T-t: X_{t+s}^{(1)} \in D_{2} \mid\right.$ $\left.X_{t}^{(1)}=x\right\}$. Suppose that

$$
\mathbb{E}_{t, x}\left[e^{-\lambda \tau_{2}^{*}} G_{2}\left(X_{t+\tau_{2}^{*}}^{(2)}\right)\right]>\mathbb{E}_{t, x}\left[e^{-\lambda \tau_{1}^{*}} G_{2}\left(X_{t+\tau_{1}^{*}}^{(2)}\right)\right]
$$

Since $G_{1}=G_{2}$ on $D_{1} \cup D_{2}$, then

$$
\begin{aligned}
\mathbb{E}_{t, x}\left[e^{-\lambda \tau_{2}^{*}} G_{1}\left(X_{t+\tau_{2}^{*}}^{(1)}\right)\right] & =\mathbb{E}_{t, x}\left[e^{-\lambda \tau_{2}^{*}} G_{2}\left(X_{t+\tau_{2}^{*}}^{(2)}\right)\right] \\
& >\mathbb{E}_{t, x}\left[e^{-\lambda \tau_{1}^{*}} G_{2}\left(X_{t+\tau_{1}^{*}}^{(2)}\right)\right] \\
& =\mathbb{E}_{t, x}\left[e^{-\lambda \tau_{1}^{*}} G_{1}\left(X_{t+\tau_{1}^{*}}^{(1)}\right)\right],
\end{aligned}
$$

which is an absurd and hence our assumption is wrong, this is, $\tau_{2}^{*} \leq \tau_{1}^{*} \mathbb{P}_{t, x^{-}}^{(1)}$-a.s. as well as $\mathbb{P}_{t, x}^{(2)}$-a.s. (notice that $\mathbb{P}_{t, x}^{(1)}=\mathbb{P}_{t, x}^{(2)}$).

Swapping the roles of t_{1}^{*} and t_{2}^{*} throughout the argumentation given above, and making the correspondent rearrangements, we get the opposite inequality. Therefore, since both D_{1} and D_{2} are closed sets, then $D_{2}=D_{1}$.

Proof of Corollary 1. First, notice that in both scenarios, (i) and (ii), the conditions G_{i} being upper semi-continuous and V_{i} lower semi-continuous from Proposition 4 are fulfilled due to the continuity of G_{i} (see Remark 2.10 from Peskir and Shiryaev (2006)).
(i) Since $G_{1}(2 S-x)=G_{2}(x)$ and $\left[2 S-X_{t+s}^{(1)} \mid X_{t}^{(1)}=x\right] \stackrel{\mathrm{d}}{=}\left[X_{t+s}^{(2)} \mid X_{t}^{(2)}=2 S-x\right]$ for all $s \in[0, T-t]$, then we can apply (i) from Proposition 4 to show that $D_{1}=\{(t, x)$: $\left.(t, 2 S-x) \in D_{2}\right\}$, and therefore $b_{1}=2 S-b_{2}$.
(ii) Introduce the function $G(x)=S_{2}-x$ and the Brownian bridge $\left(X_{t+s}\right)_{s=0}^{T-t}$ such that $X_{T}=S_{2}$. Since $G\left(S_{2}-x\right)=G_{1}(x)$ and $\left[X_{t+s} \mid X_{t}=S_{2}-x\right] \stackrel{d}{=}\left[X_{t+s}^{(1)} \mid X_{t}^{(1)}=x\right]$
for $(t, x) \in[0, T] \times \mathbb{R}$, we get that $D_{1}=\left\{(t, x) \in[0, T] \times \mathbb{R}: S_{2}-x \in D\right\}$, and hence $b(t)=S_{2}-b_{1}$, where D and b are, respectively, the stopping set and the OSB of the non-discounted OSP with gain function G and process $\left(X_{t+s}\right)_{s=0}^{T-t}$.

Let us fix $t \in[0, T)$ and take x^{\prime} satisfying $x^{\prime}>S_{2}$. Consider $\varepsilon>0$ such that $\varepsilon<x^{\prime}-S_{2}$, as well as the stopping time $\tau_{\varepsilon}:=\inf \left\{0 \leq s \leq T-t: X_{t+s} \leq S+\varepsilon \mid X_{t}=x^{\prime}\right\}$. Since our underlying Brownian bridge process $X^{(1)}$ is continuous and it takes the value S_{2} at the expiration date T, then $\mathbb{P}_{t, x^{\prime}}^{(1)}\left[\tau_{\varepsilon}<T-t\right]=1$ and thus $V\left(t, x^{\prime}\right) \geq \mathbb{E}_{t, x^{\prime}}\left[G\left(X_{t+\tau_{\varepsilon}}\right)\right]=-\varepsilon>$ $S_{2}-x^{\prime}=G\left(x^{\prime}\right)$, i.e., $\left(t, x^{\prime}\right) \notin D$. Therefore, $D \subset D_{S_{2}}:=\left\{(t, x) \in[0, T] \times \mathbb{R}: x \leq S_{2}\right\}$.

On the other hand, recall from Proposition 1 that $D_{2} \subset D_{S_{2}}$. Therefore, since $G(x)=$ $G_{2}(x)$ for all x such that $(t, x) \in D_{S_{2}}$ for some $t \in[0, T]$, and $\left[X_{t+s} \mid X_{t}=x\right] \stackrel{\mathrm{d}}{=}\left[X_{t+s}^{(2)} \mid X_{t}^{(2)}=x\right]$ for all $s \in[0, T-t]$, then we can use (ii) from Proposition 4 in order to get the relation $b_{2}=b=S_{2}-b_{1}$.

B Auxiliary lemmas

Lemma 1 Let $\left(X_{t+s}\right)_{s=0}^{T-t}$ be a Brownian bridge from X_{t} to $X_{T}=S$ with volatility σ, where $t \in[0, T)$. Let b be the optimal stopping boundary associated to the OSP

$$
V(t, x)=\sup _{0 \leq \tau \leq T-t} \mathbb{E}_{t, x}\left[e^{-\lambda \tau} G\left(X_{t+\tau}\right)\right],
$$

with $G(x)=(G-x)^{+}$, and $\lambda \geq 0$. Then, $\sup _{(t, x) \in \mathcal{R}} \partial_{x} V(t, x)<0$, where \mathcal{R} is the set defined in the proof of Proposition 3.

Proof. Take $0<\varepsilon<1$, let $\tau^{*}=\tau^{*}(t, x)$, and define

$$
p(t, x):=\mathbb{P}\left[\tau^{*} \leq(T-t)(1-\varepsilon)\right] .
$$

Notice that

$$
\begin{aligned}
p(t, x) & =\mathbb{P}_{t, x}\left[\min _{0 \leq s \leq(T-t)(1-\varepsilon)}\left\{X_{t+s}-b(s)\right\}<0\right] \\
& \geq \mathbb{P}_{t, x}\left[\min _{0 \leq s \leq(T-t)(1-\varepsilon)} X_{t+s}<b(t)\right] \\
& =\mathbb{P}\left[\min _{0 \leq s \leq(T-t)(1-\varepsilon)}\left\{(S-x) \frac{s}{T-t}+\sigma \sqrt{\frac{T-t-s}{T-t}} W_{s}\right\}<b(t)-x\right] \\
& \geq \mathbb{P}\left[\min _{0 \leq s \leq(T-t)(1-\varepsilon)}\left\{\sqrt{\frac{T-t-s}{T-t}} W_{s}\right\}<\sigma^{-1}(b(t)-\max \{x, S\})\right] \\
& =\mathbb{P}\left[\min _{0 \leq s \leq(T-t)(1-\varepsilon)}\left\{W_{s}\right\}<\varepsilon^{-1 / 2} \sigma^{-1}(b(t)-\max \{x, S\})\right] \\
& =2 \mathbb{P}\left[W_{(T-t)(1-\varepsilon)}<\varepsilon^{-1 / 2} \sigma^{-1}(b(t)-\max \{x, S\}],\right.
\end{aligned}
$$

where the first inequality is justified since b is non-decreasing (see Proposition 1), while the last equality comes after applying the reflection principle. Therefore,

$$
M:=\inf _{(t, x) \in \mathcal{R}} p(t, x)>0
$$

Finally, by using (13) we obtain the following relation for all $(t, x) \in \mathcal{R}$:

$$
\begin{aligned}
\partial_{x} V(t, x) & \leq-e^{-\lambda(T-t)} \mathbb{E}\left[\frac{T-t-\tau^{*}}{T-t} \mathbb{1}\left(\tau^{*} \leq(T-t)(1-\varepsilon)\right)\right] \\
& \leq-e^{-\lambda(T-t)} \varepsilon p(t, x) \\
& \leq-e^{-\lambda(T-t)} \varepsilon M<0 .
\end{aligned}
$$

For the sake of completeness, we formulate the following change-of-variable result by taking Theorem 3.1 from Peskir (2005a) and changing some of its hypothesis according to Remark 3.2 from Peskir (2005a). Specifically, the (iii-a) version of Lemma 2 comes after changing, in Peskir (2005a), (3.27) and (3.28) for the joint action of (3.26), (3.35), and (3.36). The (iii-b) version relaxes condition (3.35) into (3.37) in ibid.

Lemma 2 Let $X=\left(X_{t}\right)_{t=0}^{T}$ be a diffusion process solving the $S D E$

$$
\mathrm{d} X_{t}=\mu\left(t, X_{t}\right) \mathrm{d} t+\sigma\left(t, X_{t}\right) \mathrm{d} B_{t}, \quad 0 \leq t \leq T
$$

in the Itô's sense. Let $b:[0, T] \rightarrow \mathbb{R}$ be a continuous function of bounded variation, and let $F:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying

$$
\begin{aligned}
& F \text { is } \mathcal{C}^{1,2} \text { on } C, \\
& F \text { is } \mathcal{C}^{1,2} \text { on } D^{\circ},
\end{aligned}
$$

where $C=\{(t, x) \in[0, T] \times \mathbb{R}: x>b(t)\}$ and $D^{\circ}=\{(t, x) \in[0, T] \times \mathbb{R}: x<b(t)\}$.
Assume there exists $t \in[0, T]$ such that the following conditions are satisfied:
(i) $\partial_{t} F+\mu \partial_{x} F+\left(\sigma^{2} / 2\right) \partial_{x^{2}} F$ is locally bounded on $C \cup D^{\circ}$;
(ii) the functions $s \mapsto \partial_{x} F\left(s, b(s)^{ \pm}\right):=\partial_{x} F\left(s, \lim _{h \rightarrow 0+} b(s) \pm h\right)$ are continuous on $[0, t]$;
(iii) and either
(iii-a) $x \mapsto F(s, x)$ is convex on $[b(s)-\delta, b(s)]$ and convex on $[b(s), b(s)+\delta]$ for each $s \in[0, t]$, with some $\delta>0$, or,
(iii-b) $\partial_{x^{2}} F=G_{1}+G_{2}$ on $C \cup D^{\circ}$, where G_{1} is non-negative (or non-positive) and G_{2} is continuous on \bar{C} and \bar{D}.

Then, the following change-of-variable formula holds

$$
\begin{aligned}
F\left(t, X_{t}\right) & =F\left(0, X_{0}\right)+\int_{0}^{t}\left(\partial_{t} F+\mu \partial_{x} F+\left(\sigma^{2} / 2\right) \partial_{x^{2}} F\right)\left(s, X_{s}\right) \mathbb{1}\left(X_{s} \neq b(s)\right) \mathrm{d} s \\
& +\int_{0}^{t}\left(\sigma \partial_{x} F\right)\left(s, X_{s}\right) \mathbb{1}\left(X_{s} \neq b(s)\right) \mathrm{d} B_{s} \\
& +\frac{1}{2} \int_{0}^{t}\left(\partial_{x} F\left(s, X_{s}^{+}\right)-\partial_{x} F\left(s, X_{s}^{-}\right)\right) \mathbb{1}\left(X_{s}=b(s)\right) \mathrm{d} l_{s}^{b}(X),
\end{aligned}
$$

where $\mathrm{d} l_{s}^{b}(X)$ is the local time of X at the curve b up to time t, i.e.,

$$
\begin{equation*}
l_{s}^{b}(X)=\lim _{\varepsilon \rightarrow 0} \int_{0}^{t} \mathbb{1}\left(b(s)-\varepsilon \leq X_{s} \leq b(s)+\varepsilon\right) \mathrm{d}\langle X, X\rangle_{s} \tag{39}
\end{equation*}
$$

where $\langle X, X\rangle$ is the predictable quadratic variation of X, and the limit above is meant in probability.

References

Peskir, G. (2005a). A change-of-variable formula with local time on curves. Journal of Theoretical Probability, 18(3):499-535.

Peskir, G. and Shiryaev, A. (2006). Optimal Stopping and Free-Boundary Problems. Lectures in Mathematics. ETH Zürich. Birkhäuser.

