¹ Supplemental Information for:

- ² Standardization of a UV LED Peak Wavelength,
- ³ Emission Spectrum, and Irradiance Measurement
- ⁴ and Comparison Protocol
- 5 Kari Sholtes, Ryan Keliher, and Karl G. Linden*
- 6 **Corresponding author: Karl.Linden@colorado.edu*
- 7 Department of Civil, Environmental, and Architectural Engineering, University of Colorado
- 8 Boulder, Boulder CO 80309 USA
- 9

10 Introduction

11 This supplemental information (SI) contains the standardized protocol for both spectrometric 12 and radiometric measurements of UV LEDs. In an effort to make the protocol more practical, it 13 contains quality control and quality assurance steps which serve as a checklist to ensure all steps 14 and comparisons were completed. The standard protocol provides guidelines to ensure that 15 measurements are valid, particularly determining the distances for measuring the emission spectra 16 and irradiance. For example, the 15 and 20 cm distances used in the study informing the protocol 17 were determined by ensuring the peak wavelength as measured with a spectrometer was less than 18 85% of the saturation value for all UV LEDs. These values initially corresponded with the 19 conventional wisdom regarding irradiance measured at a distance, but the 15 cm distance was not 20 sufficient to meet new standards for irradiance measurements. The protocol details that all 21 irradiance measurement need to be taken at >7x the largest dimension of the UV LED array, but it 22 is not prescriptive about what the numeric distances should be. Also contained in this SI are general 23 instructions for how to use the protocol and suggested documentation.

24

Quality Assurance and Quality Control (QA/QC) Spectrometer and Radiometer
 Measurements

In order to establish QA/QC for radiometer and spectrometer measurements, the following steps
are recommended for each type of equipment and associated measurement:

29 Spectrometer QA/QC

Verify that the spectrometer (with either spectrometric or spectroradiometric calibration) has
 been calibrated over the applicable range by a qualified or accredited third party or using a
 standard method within one year

33	2) Test a UV plasma source with a well-defined wavelength emission profile (i.e., 253.7 nm low
34	pressure mercury arc) near the range of the target UV LED wavelengths to be tested
35	a) Verify ±1 nm difference from NIST atomic spectra database ("NIST: Atomic Spectra
36	Database Lines Form" n.d.) expected value
37	3) Follow the protocol found in the SI, Emission Spectrum and Irradiance Measurement Protocol
38	for UV LEDs
39	4) Take all measurements in duplicate
40	a) Ensure measurements are within the reported uncertainty due to the calibration range as
41	indicated on the calibration certificate
42	5) Repeat all measurements at a minimum of two different heights
43	a) Ensure repeated measurements are within the reported uncertainty based on the calibration
44	range
45	6a) Compare spectrometer results to UV LED manufacturer or device developer's source spectrum
46	data
47	a) Calculate the mean wavelength of the replicate samples and the manufacturer's data
48	b) Verify all measurements are ± 1 nm difference from the mean
49	OR
50	6b) Test with secondary spectrometer and compare with primary results (annual)
51	a) Calculate the mean wavelength of the replicate samples from both spectrometers

52

b) Verify all measurements are ± 1 nm difference from the mean calculated above

53 Radiometer QA/QC

- 54 1) Ensure that the radiometer is calibrated over the ultraviolet range of interest (typically every 2 55 nm) to accurately characterize the target UV LED spectrum (as opposed to calibration at a 56 single wavelength) and verify that the sensor has a linear response (meaning that the error is 57 uniform) across the applicable wavelength range 58 2) Verify that the radiometer and detector have been calibrated over the applicable range by an 59 accredited third party using standards traceable to a national laboratory such as the National 60 Institute of Standards and Technology (NIST) within one year 61 3) Follow the protocol found in SI, Emission Spectrum and Irradiance Measurement Protocol for 62 UV LEDs 4) Take all measurements in duplicate 63 a) Ensure repeat measurements are within the reported error or uncertainty as published on 64 65 the calibration certificate by the radiometer manufacturer 66 5) Repeat all measurements at a minimum of two different distances between the emission source and the sensor plane of calibration 67 a) Compare the radiometric data for various heights using the calculated radiant intensity 68 69 from the inverse square law:
- 70 Equation S1: $E_1 d_1^2 = E_2 d_2^2 = I$

where E is the irradiance (Watts/cm²), d is the distance (cm), and I is the radiant intensity
(Watts/sr).

- b) Calculate the mean of the radiant intensity, I, for all matched radiometric samples (various
 heights and duplicates)
- c) Calculate the percent error from the mean for each measurement

76 Equation S2: Percent error from the mean =
$$\frac{(\lambda_{experimental} - \lambda_{expected})}{\lambda_{expected}} * 100$$

d) All radiant intensities should vary by the less than the error as reported on the calibration certificate or $\pm 5\%$ error from the mean (whichever is larger) across various heights and duplicates using the same equipment operated under the same electrical conditions

- 80 6a) If possible, compare radiometer results to UV LED manufacturer or device developer's
 81 irradiance data (when new or otherwise comparable)
- a) Calculate the mean of the radiant intensity, I, for all radiometric samples (various heights
 and duplicates)
- b) Verify that radiant intensities vary by $\pm 10\%$ error from the mean
- 85 OR
- 86 6b) Test with secondary radiometer and compare with primary results (when new or otherwise87 comparable)
- a) Calculate the mean of the radiant intensity, I, for all radiometric samples (various heights
 and duplicates)

90 b) Verify that radiant intensities vary by $\pm 10\%$ error from the mean

91

92	UV LED Source Emission Spectrum and Irradiance Measurement Protocol
93	General Instructions
94	1) Perform protocol testing in an area where stray light < 400 nm can be minimized
95	2) Take photos of the setup for reporting purposes
96	3) Use proper Personal Protective Equipment
97	a) Properly fitted UV protective glasses and gloves
98	b) Avoid unprotected skin
99	c) No access to work area for those not protected by goggles and proper clothing
100	4) Verify that all equipment is in good condition prior to starting the protocol
101	a) Tampering with measurement equipment can void calibrations and negate a
102	measurements
103	5) Verify that all equipment has been calibrated over the applicable range within one year
104	a) Spectrometers need to be calibrated by a qualified or accredited third party or using
105	standard method
106	b) Radiometers with a detector traceable to a national laboratory such as NIST needs to b
107	calibrated over the applicable range by an accredited third party
108	6) Identify the UV-C LED emission plane

109	a) The emission plane is the chip itself if no lens is present
110	b) The emission plan is the face of the lens if a lens is present
111	c) Mark the UV-C LED emission plane for repeatable measurements (if applicable)
112	7) Measure and document the largest dimension of the UV LED source
113	a) If one UV LED, measure the largest diagonal dimension of the chip
114	b) If multiple UV LEDs or chips in an array, measure the largest diagonal distance across all
115	UV LEDs
116	c) Calculate 7x this largest dimension of the UV LED (s), this distance will mark the closest
117	measurement distances allowable for the radiometric measurements
118	Spectrometer Protocol Initial Documentation
119	1) Document the spectrometer manufacturer, name/type of spectrometer and sensor
120	a) Document the size and type of integrating sphere (if applicable)
121	2) Document the temperature in the facility and time/location of testing
122	3) Ensure spectrometer is calibrated to the proper wavelength range
123	a) UV: 200-400 nm is recommended to minimize uncertainty error associated with the
124	calibration range
125	-OR-
126	UV/Vis: 200-1000 nm if required, but the larger wavelength range has a larger uncertainty
127	associated with it

128		b) Document the calibration type (spectroradiometric or spectrometric), date, and range
129		c) Document the error associated with the calibration range (per manufacturer)
130	4)	If a lens was present during calibration, verify that the lens is present, intact, and the calibration
131		is valid
132		a) Document the surface area of your sensor and the type of lens if applicable
133	5)	Ensure usage of proper settings for integration time, nonlinearity correction, scans to average,
134		etc., depending on the operation of your UV LEDs and your data collection and
135		experimentation goals
136		a) Read the spectrometer manual to understand operation and proper settings
137		b) Call the spectrometer manufacturer to discuss testing goals and suggested input values for
138		the integration time, corrections, etc., if needed
139		c) Integration time can be increased to improve the signal to noise ratio by the square root of
140		the integration time, but this will increase the total acquisition time
141		i) Ensure no pixels are saturated (limit maximum saturation to 85% of saturation)
142		d) Spatial averaging is not recommended for UV LED spectra due to the flattening of the peak
143		i) Applicable with a spectrum that is relatively flat
144		e) Scans to average can be increased to increase the signal to noise ratio
145		i) Total acquisition time is a product of the scans to average times the integration time

146	f) Boxcars (0-5) can be increased to increase the signal to noise ratio but it will also flatten
147	the peaks
148	g) Nonlinearity correction should be used to correct for the non-linear response to sensor or
149	cosine correctors
150	h) Signal to noise ratio simply refers to the true signal of a spectrum relative to the unwanted
151	signal (from numerous sources) in a spectrum
152	i) Document all settings with an explanation/justification of their use
153	6) Ensure access to current and valid digital calibration data if using a spectrometer with
154	radiometric calibration before testing
155	Spectrometer Protocol Experimental Set-up and Measurements
156	1) Locate the sensor plane on the spectrometer sensor from which to take measurements
157	a) Mark the sensor plane if necessary for repeatable measurements
158	2) Adjust distance from the UV-C LED emission plane and the sensor plane to the experimental
159	distance (s)
160	a) If using a spectrometer with a radiometric calibration, ensure that the following conditions
161	are met:
162	i) the sensor is normal to the beam of light emitted from the UV source
163	ii) the sensor is located at the centerline of the UV source

164	iii) the sensor is located at a distance of greater than 7x the largest dimension of the UV
165	LED light source
166	b) If using a spectrometer with only a spectrometric calibration, simply ensure that you are
167	capturing your light source without saturating the spectrometer
168	c) If using an integrating sphere, follow integrating sphere instructions for set-up
169	3) Plug in and turn on the spectrometer and any associated equipment (i.e. laptops, etc.)
170	4) Store dark spectrum data according to manufacturer's instructions
171	a) Typically, the cap will be kept on for this reading then can be removed for UV
172	measurements
173	5) Ensure that minimal measurable light < 400 nm is present in the vicinity (with the UV source
174	OFF)
175	6) Take one ambient/background reading with the UV source OFF in the experimental set-up
176	a) Save these data
177	7) Ensure PPE are adjusted properly
178	a) UV protective goggles fit properly
179	b) Skin which could be in contact with UV light is covered
180	c) No access to work area for those not protected by goggles and proper clothing

181 8) Turn UV source ON

182	a) Collect UV spectrum at 5 and 10 minutes
183	b) Save data
184	9) Turn UV source OFF
185	10) Analyze the spectral data for the 5 and 10 minute time points:
186	a) Visualize the data and remove any negative values or anomalous data
187	b) Identify and document the maximum value of the spectrum
188	i) If data are noisy near the peak, a data smoothing technique may be required (i.e.,
189	splining)
190	c) Normalize all values to the peak value
191	d) Identify the thresholds on either tail where the curve nears approximately 0.5% of the value
192	of the peak; this will serve as the data analysis cut off point (see Figure SI 1).
193	i) If the curve does not approach zero on both sides of the peak, first analyze the
194	ambient/background light.
195	(1) Subtract the ambient/background light from the raw curve data to see if the curve
196	approaches zero
197	(2) Try zeroing the device again or call the spectrometer manufacturer for
198	troubleshooting
199	e) Find the area under the curve between the two 0.5% peak value thresholds of each tail
200	f) Document the wavelength range of curve between the 0.5% peak value thresholds

S11

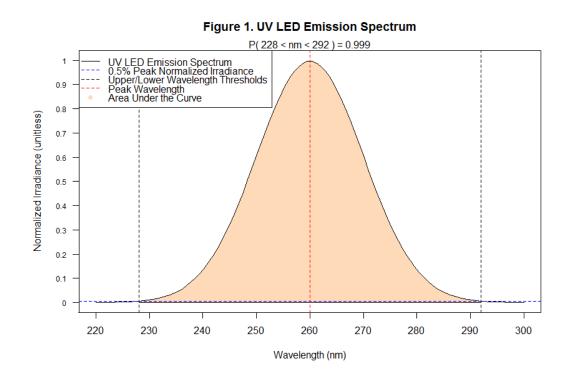


Figure Error! No sequence specified.: Normalized Emission Spectrum Area under the Curve
 (AUC) Quantification with Thresholds

g) Compare the visualized data, the peak, the range, and the area under the curve between the

205		5 and 10 min time points.
206		i) Calculate the mean of the peak wavelength and the area under the curve
207		ii) Calculate the percent error from the mean for the peak and the area under the curve for
208		each measurement (Equation S2)
209	h)	Verify the peak wavelengths vary by less than the reported spectrometer uncertainty (this
210		is a function of the calibration range)
211	i)	If radiometrically calibrated: verify that the areas under the curve at the same height are
212		within $\pm 5\%$ error from the mean, if applicable

213	j) If radiometrically calibrated: verify that the normalized areas under the curve are within
214	$\pm 1\%$ error from the mean
215	11) Adjust the UV emission plane and the spectrometer sensor plane to the second experimental
216	distance
217	a) If there is no second experimental distance planned, simply develop an arbitrary one for
218	QA/QC purposes
219	b) If using an integrating sphere, simply run the experiment again after removing all sources
220	from the integrating sphere for duplication purposes
221	c) If using a spectrometer with a radiometric calibration, ensure that the following conditions
222	are met:
223	i) the sensor is normal to the beam of light emitted from the UV source
224	ii) the sensor is located at the centerline of the UV source
225	iii) the sensor is located at a distance of greater than 7x the largest dimension of the UV
226	LED light source
227	d) If using a spectrometer with only a spectrometric calibration, simply ensure that you are
228	capturing your light source without saturating the spectrometer
229	12) Ensure that minimal measurable light < 400 nm is present in the vicinity (with the UV source
230	OFF)
231	13) Take one ambient/background reading with the UV source OFF in the experimental set-up

232	a) Save these data
233	14) Ensure PPE are adjusted properly
234	a) UV protective goggles fit properly
235	b) Skin is covered which could be in contact with UV light
236	c) No access to work area for those not protected by goggles and proper clothing
237	15) Turn UV source ON
238	a) Collect UV spectrum at 5 or 10 minutes
239	b) Save data
240	16) Turn UV source OFF
241	17) Replace the cap to protect the sensor on the spectrometer
242	18) Repeat all of the above steps again
243	a) Save files as Trial 2 of each test
244	19) Analyze and compare the spectral data as described in Step 10 above
245	20) Verify that the peak wavelengths vary by less than the reported spectrometer uncertainty
246	21) If radiometrically calibrated: verify that the areas under the curve at the same height are within
247	$\pm 5\%$ error from the mean, if applicable
248	22) If radiometrically calibrated: verify the normalized areas under the curve at all heights are within $\pm 10^{\circ}$ error from the mean if applies he
249	within $\pm 1\%$ error from the mean, if applicable

250	23)	Compare these data to either the manufacturer's data or to the same analysis using a different
251		spectrometer
252		a) Verify all peak wavelength data are within ± 1 nm of the mean (even when produced by
253		different spectrometers at different heights)
254		b) If radiometrically calibrated: verify that the area under the curve for each height are within
255		10% error from the mean and from radiometer irradiance data at the same height, if
256		applicable
257) If radiometrically calibrated: verify all normalized areas under the curve are within $\pm 5\%$ error
258		from the mean, if applicable
259		
260	Ra	liometer Protocol Initial Documentation
260 261		liometer Protocol Initial Documentation Document the radiometer manufacturer, name/type of radiometer and sensor
	1)	
261	1) 2)	Document the radiometer manufacturer, name/type of radiometer and sensor
261 262	1) 2) 3)	Document the radiometer manufacturer, name/type of radiometer and sensor Document the temperature in the facility and time/location of testing
261 262 263	1) 2) 3)	Document the radiometer manufacturer, name/type of radiometer and sensor Document the temperature in the facility and time/location of testing Ensure radiometer and sensor is calibrated to the proper wavelength range and within
261 262 263 264	1) 2) 3)	Document the radiometer manufacturer, name/type of radiometer and sensor Document the temperature in the facility and time/location of testing Ensure radiometer and sensor is calibrated to the proper wavelength range and within calibration date by an accredited third party
261 262 263 264 265	1) 2) 3)	Document the radiometer manufacturer, name/type of radiometer and sensor Document the temperature in the facility and time/location of testing Ensure radiometer and sensor is calibrated to the proper wavelength range and within calibration date by an accredited third party a) Document the calibration date and range

269	5)	Ensure integrating sphere or diffuser lens is present (if applicable), intact, and the calibration
270		is valid (i.e., that the sensor lens has not been removed or damaged)
271		a) Document the surface area of sensor and the type of lens/diffusor (if applicable)
272		b) Document the size and type of integrating sphere (if applicable)
273	6)	Ensure usage of proper radiometer and sensor depending on the operation of your UV LEDs
274		and your data collection and experimentation goals
275		a) Call the radiometer manufacturer to discuss testing goals if needed
276	7)	Ensure access to current and valid digital calibration data before testing
277	Ra	adiometer Protocol Experimental Set-up and Measurements
278	1)	Locate the sensor plane on the radiometer sensor from which to take your measurements
279		a) This information is likely available in the manual
280		b) Mark the sensor plane if necessary for repeatable measurements
281	2)	Adjust and document the distance from the UV-C LED emission plane and the sensor plane to
282		the experimental distance (s)
283		a) Ensure that the sensor is normal to the beam of light emitted from the UV source
284		b) Ensure that the radiometer sensor is located at the centerline of the UV source
285		c) Ensure that the sensor plane is located at a distance of greater than 7x the largest dimension
286		of the UV LED light source
287		d) Or follow the integrating sphere instructions (as applicable)

288	3)	Plug in and turn on the radiometer and any associated equipment (i.e. laptops, etc.)
289	4)	Ensure that minimal measurable light < 400 nm is present in the vicinity (with the UV source
290		OFF)
291		a) Measurable light < 400 nm ideally should be less than 0.1% of the irradiance measurement
292		at the peak wavelength
293	5)	Use the average peak wavelength for the applicable UV-C LED (s) from the spectrometer
294		analysis for all radiometric analysis
295		a) Determine the calibration factor associated with the peak wavelength
296		b) Apply that calibration factor to all applicable radiometric measurements - refer to the
297		radiometer manual
298	6)	Zero the device with a cover over the detector once the calibration factor is set
299	7)	Take one ambient/background reading with the UV source OFF in the experimental set-up
300		a) Save these data
301	8)	Ensure PPE are adjusted properly
302		a) UV protective goggles fit properly
303		b) Skin which could be in contact with UV light is covered
304		c) No access to work area for those not protected by goggles and proper clothing
305	9)	Turn the radiometer data logger on (if applicable)

306 10) Turn UV source ON

307	a) Collect radiometric data continually with a data logger or every 30 seconds until steady
308	state has been achieved or the irradiance is changing by less than 1% over the time horizon
309	of the planned experiments (if applicable)
310	b) Record the time frame to achieve steady state
311	c) Continue to take readings for another 5 minutes (in the case of a data logger) or take another
312	reading in 5 minutes
313	d) Save or record data
314	11) Turn UV source OFF
315	12) Calculate the error from the mean for the steady state experiments
316	a) Verify that the steady state measurements are all within the radiometer uncertainty (if
317	published) or $\pm 1\%$ error from the mean
318	13) Adjust and document the second experimental distance from the UV emission plane to the
319	radiometer sensor plane
320	a) If there is no second experimental distance, simply develop an arbitrary one for QA/QC
321	purposes
322	b) If using an integrating sphere, simply run the experiment again after removing and
323	replacing the UV source
324	c) Ensure that the sensor is normal to the beam of light emitted from the UV source

325	d)	Ensure that the radiometer sensor is located at the centerline of the UV source
326	e)	Ensure that the sensor plane is located at a distance of greater than 7x the largest dimension
327		of the UV LED light source
328	14) En	sure PPE are adjusted properly
329	a)	UV protective goggles fit properly
330	b)	Skin which could be in contact with UV light is covered
331	c)	No access to work area for those not protected by goggles and proper clothing
332	15) Tu	rn the radiometer data logger on (if applicable)
333	16) Tu	rn UV source ON
334	a)	Collect radiometric data until steady state has been achieved or the irradiance is changing
335		by less than 1% over the time horizon the planned experiments (if applicable)
336	b)	Record the time frame to achieve steady state
337	c)	Continue to take readings for another 5 minutes (in the case of a data logger) or take another
338		reading in 5 minutes
339	d)	Save or record data
340	17) Tu	rn UV source OFF

341 18) Replace the cap to protect the diffuser lens on the radiometer

342 19) Compare the radiometric data for various heights using the calculated radiant intensity from343 the inverse square law:

a) The inverse square law of electromagnetic radiation explains the relationship between a source and measurement distance. Irradiance is proportional to the inverse of the squared distance (d in cm): $E = \frac{1}{d^2}$ where E is the irradiance (Watts/cm²) and I is the radiant intensity (Watts/sr). In measuring the irradiance at two distances, the equation can be manipulated to Equation S1

b) Calculate the mean of the radiant intensity, I, for all radiometric samples for each UV LED

c) Calculate the percent error from the mean for each measurement

- d) The radiant intensity should vary by ±5% error from the mean across various heights and
 duplicates
- e) If data are not comparable
- i) Ensure no ambient/background irradiance
- 355 ii) Retest with enhanced attention to the time required to achieve steady-state emission,
 356 measurement distances, testing along the centerlines of the UV LEDs and sensor, and
 357 ensuring that the sensor face is parallel to the face of the UV LEDs
- 358 iii) Consider irregular angular emission and perhaps increase the distance between
 359 emission and sensor planes

360 20) Determine the average time to achieve steady state for these UV-C LEDs, and use this for

361 future radiometric and/or spectrometric experiments

362	a)	If this time to achieve steady state is significantly different from the time-frames tested in
363		the spectrometer measurement section, go back to re-test the spectrometer to ensure that
364		the emission spectrum does not change over time (especially if using a spectrometer with
365		a radiometric calibration)
366	21) Re	peat all of the above steps again for the pre-determined steady-state times only
367	a)	Save files as Trial 2 of each test
368	22) An	alyze and compare the irradiance data as described above
369	a)	Ensure the steady-state irradiance of all duplicate UV-C LED data (same heights, same
370		UV-C LEDs, same radiometer) are within the reported radiometer uncertainty or within
371		$\pm 1\%$ distance from the mean
372	b)	Ensure the steady-state irradiance of the same UV-C LEDs over various heights (but the
373		same radiometer) are comparable: the radiant intensity (irradiance times the squared
374		distance from the source emission face to the sensor plane) should vary by $\pm 5\%$ error from
375		the mean across various heights and duplicates
376	23) Co	mpare these data to either the manufacturer's data or to the same analysis using different
377	rac	liometric or spectroradiometric data
378	a)	Find the radiant intensity for all irradiance data
379	b)	Average the radiant intensity for each UV-C LED at both (all) experimental heights and
380		ensure that all measurements are within $\pm 10\%$ error from the mean

381 QA/QC Verification Summary

382 Spectrometer

383	• Data for one spectrometer, various heights and UV LED operation times
384	o Verify that the average peak wavelengths vary by less than the reported
385	spectrometer uncertainty
386	• If radiometrically calibrated: verify that the areas under the curve at the same height
387	are within $\pm 5\%$ error from the mean, if applicable
388	o If radiometrically calibrated, verify that all normalized emission spectrum area
389	under the curve varies by $\pm 1\%$ error from the mean
390	• Data for more than one spectrometer, various heights and UV LED operation times
391	\circ Verify that the average peak wavelengths vary by ± 1 nm from the average peak
392	wavelength
393	• If radiometrically calibrated: verify that the areas under the curve at the same height
394	are within $\pm 10\%$ error from the mean, if applicable
395	o If radiometrically calibrated: verify that the normalized emission spectrum area
396	under the curves vary by $\pm 5\%$ error from the mean (can compare different heights
397	together with normalized AUC)
398	Radiometer
399	• Data for one radiometer, one height, two steady-state UV LED operation times

400	• Verify that the steady state irradiances vary by less than the reported radiometer
401	uncertainty or $\pm 1\%$ error from the mean if no uncertainty or error is reported by the
402	manufacturer
403	• Data for one radiometer, various heights and steady-state UV LED operation times
404	\circ Verify that the radiant intensities vary by ±5% error from the mean
405	• Data for more than one radiometer (or spectrometer with radiometric calibration), various
406	heights and steady-state UV LED operation times
407	• Verify that the radiant intensities for all heights vary by $\pm 10\%$ error from the mean