Appendix

Let $\hat{\alpha}_{2 p}$ denotes $\hat{\alpha}_{2}$ at percentile p .
$\hat{\alpha}_{2 p}=\tilde{\alpha}_{2 p, L}+\tilde{\alpha}_{2 p, S}$
where $E\left(\tilde{\alpha}_{2 p, L}\right)=\alpha_{2 p, L}$ and $E\left(\tilde{\alpha}_{2 p, S}\right)=\alpha_{2 p, S}$, with $\alpha_{2 p, L}$ and $\alpha_{2 p, S}$ denote the true parameter of agglomeration and the natural-selection-induced bias, respectively, and assume that
$\tilde{\alpha}_{2 p, L} \geq 0$, and
$\tilde{\alpha}_{2 p, S} \geq 0 .{ }^{1}$

While $\tilde{\alpha}_{2 p, L}$ and $\tilde{\alpha}_{2 p, S}$ are unobservable, $\hat{\alpha}_{2 p}$ can be estimated from equation (1). Thus, we try to bound $\tilde{\alpha}_{2 p, L}$ and $\tilde{\alpha}_{2 p, S}$ with $\hat{\alpha}_{2 p}$.

According to the prediction of the theory, we have
$\tilde{\alpha}_{2 p, L} \leq \tilde{\alpha}_{2 p, L}$ and
$\tilde{\alpha}_{2 p, S} \geq \tilde{\alpha}_{2 p \prime, S}$, for $p<p^{\prime}$

Let $\hat{\alpha}_{2 p *}$ denotes the minimum nonzero ${ }^{2} \hat{\alpha}_{2 p}$ across all p's. By (A.1) and (A.3),
$\hat{\alpha}_{2 p *}=\tilde{\alpha}_{2 p *, L}+\tilde{\alpha}_{2 p *, S}$

[^0]\[

$$
\begin{equation*}
\tilde{\alpha}_{2 p *, S} \geq 0 \tag{A.7}
\end{equation*}
$$

\]

By (A.6) and (A.7),
$\tilde{\alpha}_{2 p *, L} \leq \hat{\alpha}_{2 p *}$

By (A.8) and (A.2),
$0 \leq \tilde{\alpha}_{2 p *, L} \leq \hat{\alpha}_{2 p *}$

By (A.4) and (A.9),
$\tilde{\alpha}_{2 p, L} \leq \tilde{\alpha}_{2 p *, L} \leq \hat{\alpha}_{2 p *}$ for $p<p^{*}$

By (A.1) and (A.10),
$\tilde{\alpha}_{2 p, S} \geq \hat{\alpha}_{2 p}-\hat{\alpha}_{2 p *}$ for $p<p^{*}$

Also, by (A.1)-(A.3), (A.10) and (A.11), we obtain
$0 \leq \tilde{\alpha}_{2 p, L} \leq \hat{\alpha}_{2 p *}$, and
$\hat{\alpha}_{2 p}-\hat{\alpha}_{2 p *} \leq \tilde{\alpha}_{2 p, S} \leq \hat{\alpha}_{2 p}$ for $p<p^{*}$

These two equations bound the natural-selection-induced bias and the effect of agglomeration at percentiles smaller than p^{*}.

By (A.2), $\tilde{\alpha}_{2 p *, L} \geq 0$

By (A.6) and (A.14),
$\tilde{\alpha}_{2 p *, s} \leq \hat{\alpha}_{2 p *}$

By (A.5) and (A.15), $0 \leq \tilde{\alpha}_{2 p *, s} \leq \hat{\alpha}_{2 p *}$

By (A.5),
$\tilde{\alpha}_{2 p, S} \leq \tilde{\alpha}_{2 p *, S} \leq \hat{\alpha}_{2 p *}$ for $p>p^{*}$

By (A.1) and (A.17),
$\tilde{\alpha}_{2 p, L} \geq \hat{\alpha}_{2 p}-\hat{\alpha}_{2 p *}$ for $p>p^{*}$

Also, by (A.1)-(A.3), (A.17) and (A.18), we obtain
$0 \leq \tilde{\alpha}_{2 p, S} \leq \hat{\alpha}_{2 p *}$, and
$\hat{\alpha}_{2 p}-\hat{\alpha}_{2 p *} \leq \tilde{\alpha}_{2 p, L} \leq \hat{\alpha}_{2 p}$ for $p>p^{*}$

These two equations bound the selection-induced bias and the agglomeration effect at percentiles greater than p^{*}.

Summarizing (A.9), (A.12), (A.13), (A.16), (A.19) and (A.20), we obtain

$$
\left\{\begin{array}{c}
p=p^{*}\left\{\begin{array}{l}
0 \leq \tilde{\alpha}_{2 p, L} \leq \hat{\alpha}_{2 p *} \\
0 \leq \tilde{\alpha}_{2 p, s} \leq \hat{\alpha}_{2 p *}
\end{array}\right. \\
p<p^{*}\left\{\begin{array}{c}
0 \leq \tilde{\alpha}_{2 p, L} \leq \hat{\alpha}_{2 p *} \\
\hat{\alpha}_{2 p}-\hat{\alpha}_{2 p *} \leq \tilde{\alpha}_{2 p, S} \leq \hat{\alpha}_{2 p}
\end{array}\right. \\
p>p^{*}\left\{\begin{array}{c}
\hat{\alpha}_{2 p}-\hat{\alpha}_{2 p *} \leq \tilde{\alpha}_{2 p, L} \leq \hat{\alpha}_{2 p} \\
0 \leq \tilde{\alpha}_{2 p, S} \leq \hat{\alpha}_{2 p *}
\end{array}\right.
\end{array}\right.
$$

These inequalities finally bound the natural-selection-induced biases and the true effect of agglomeration at every percentile with estimated coefficients.

[^0]: ${ }^{1}$ This is not a restrictive assumption for this paper per se, as I find almost none significantly negative effect of agglomeration on innovation at any percentile in any specification, but it does impose a restriction on data when applied elsewhere.
 ${ }^{2} \hat{\alpha}_{2 p}$ may be zero at the left-tail percentiles, as the least innovative establishments in or out of agglomerations may be non-innovators. These estimates are uninformative and therefore dismissed throughout this paper.

