Appendix

Let $\hat{\alpha}_{2p}$ denotes $\hat{\alpha}_2$ at percentile p.

$$\hat{\alpha}_{2p} = \tilde{\alpha}_{2p,L} + \tilde{\alpha}_{2p,S} \tag{A.1}$$

where $E(\tilde{\alpha}_{2p,L}) = \alpha_{2p,L}$ and $E(\tilde{\alpha}_{2p,S}) = \alpha_{2p,S}$, with $\alpha_{2p,L}$ and $\alpha_{2p,S}$ denote the true parameter of agglomeration and the natural-selection-induced bias, respectively, and assume that

$$\tilde{\alpha}_{2p,L} \ge 0$$
, and (A.2)

$$\tilde{\alpha}_{2p,S} \ge \mathbf{0}^{.1} \tag{A.3}$$

While $\tilde{\alpha}_{2p,L}$ and $\tilde{\alpha}_{2p,S}$ are unobservable, $\hat{\alpha}_{2p}$ can be estimated from equation (1). Thus, we try to bound $\tilde{\alpha}_{2p,L}$ and $\tilde{\alpha}_{2p,S}$ with $\hat{\alpha}_{2p}$.

According to the prediction of the theory, we have

$$\tilde{\alpha}_{2p,L} \le \tilde{\alpha}_{2p',L}$$
 and (A.4)

$$\tilde{\alpha}_{2p,S} \ge \tilde{\alpha}_{2p',S}, \text{ for } p < p' \tag{A.5}$$

Let $\hat{\alpha}_{2p*}$ denotes the minimum nonzero² $\hat{\alpha}_{2p}$ across all p's. By (A.1) and (A.3),

$$\hat{\alpha}_{2p*} = \tilde{\alpha}_{2p*,L} + \tilde{\alpha}_{2p*,S} \tag{A.6}$$

¹ This is not a restrictive assumption for this paper per se, as I find almost none significantly negative effect of agglomeration on innovation at any percentile in any specification, but it does impose a restriction on data when applied elsewhere.

 $[\]hat{a}_{2p}$ may be zero at the left-tail percentiles, as the least innovative establishments in or out of agglomerations may be non-innovators. These estimates are uninformative and therefore dismissed throughout this paper.

$\tilde{\alpha}_{2p*,S} \ge 0$	(A.7)
By (A.6) and (A.7),	
$\tilde{\alpha}_{2p*,L} \leq \hat{\alpha}_{2p*}$	(A.8)
By (A.8) and (A.2),	
$0 \leq \tilde{\alpha}_{2p*,L} \leq \hat{\alpha}_{2p*}$	(A.9)
By (A.4) and (A.9),	
$\tilde{\alpha}_{2p,L} \leq \tilde{\alpha}_{2p*,L} \leq \hat{\alpha}_{2p*} \text{ for } p < p^*$	(A.10)
By (A.1) and (A.10),	
$\tilde{\alpha}_{2p,S} \geq \hat{\alpha}_{2p} - \hat{\alpha}_{2p*}$ for $p < p^*$	(A.11)
Also, by (A.1)-(A.3), (A.10) and (A.11), we obtain	
$0 \leq \tilde{\alpha}_{2nL} \leq \hat{\alpha}_{2n*}$, and	(A.12)

$$0 \le \alpha_{2p,L} \le \alpha_{2p*} \text{, and} \tag{A.12}$$

$$\hat{\alpha}_{2p} - \hat{\alpha}_{2p*} \le \tilde{\alpha}_{2p,S} \le \hat{\alpha}_{2p} \text{ for } p < p^*$$
(A.13)

These two equations bound the natural-selection-induced bias and the effect of agglomeration at percentiles smaller than p*.

By (A.2),
$$\tilde{\alpha}_{2p*,L} \ge 0$$
 (A.14)

By (A.6) and (A.14),

$$\tilde{\alpha}_{2p*,s} \le \hat{\alpha}_{2p*} \tag{A.15}$$

By (A.5) and (A.15),
$$0 \le \tilde{\alpha}_{2p*,s} \le \hat{\alpha}_{2p*}$$
 (A.16)

By (A.5),

$$\tilde{\alpha}_{2p,S} \le \tilde{\alpha}_{2p*,S} \le \hat{\alpha}_{2p*} \text{ for } p > p^*$$
(A.17)

By (A.1) and (A.17),

$$\tilde{\alpha}_{2p,L} \ge \hat{\alpha}_{2p} - \hat{\alpha}_{2p*} \text{ for } p > p^*$$
(A.18)

Also, by (A.1)-(A.3), (A.17) and (A.18), we obtain

$$0 \le \tilde{\alpha}_{2p,S} \le \hat{\alpha}_{2p*}, \text{ and} \tag{A.19}$$

$$\hat{\alpha}_{2p} - \hat{\alpha}_{2p*} \le \tilde{\alpha}_{2p,L} \le \hat{\alpha}_{2p} \text{ for } p > p^* \tag{A.20}$$

These two equations bound the selection-induced bias and the agglomeration effect at percentiles greater than p*.

Summarizing (A.9), (A.12), (A.13), (A.16), (A.19) and (A.20), we obtain

$$\begin{cases} p = p^* \begin{cases} 0 \le \tilde{\alpha}_{2p,L} \le \hat{\alpha}_{2p*} \\ 0 \le \tilde{\alpha}_{2p,S} \le \hat{\alpha}_{2p*} \\ 0 \le \tilde{\alpha}_{2p,L} \le \hat{\alpha}_{2p*} \\ p < p^* \{ \begin{array}{c} 0 \le \tilde{\alpha}_{2p,L} \le \hat{\alpha}_{2p*} \\ \hat{\alpha}_{2p} - \hat{\alpha}_{2p*} \le \tilde{\alpha}_{2p,S} \le \hat{\alpha}_{2p} \\ p > p^* \{ \begin{array}{c} \hat{\alpha}_{2p} - \hat{\alpha}_{2p*} \le \tilde{\alpha}_{2p,L} \le \hat{\alpha}_{2p} \\ 0 \le \tilde{\alpha}_{2p,S} \le \hat{\alpha}_{2p*} \end{cases} \end{cases} \end{cases} \end{cases}$$

These inequalities finally bound the natural-selection-induced biases and the true effect of agglomeration at every percentile with estimated coefficients.