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Background
Automated microscopy imaging is one of the most powerful tools to investigate 
complex biological processes. Rapidly developing high-throughput techniques, 
capable of generating data at an unprecedented rate, are placing the 
biomedical sciences on the verge of a digital explosion. Transformative 
approaches for the analysis of these massive spatio-temporal image datasets 
are urgently needed.

Figure 1: Frames from time-lapse data at the start (t=1), middle (t=36) and end (t=72) of an experiment 
for one well. The circular objects, detected by the bright field, show the cells; the orange parts show the 
LNPs; and the green the successfully expressed GFPs. Each image is 2554 x 2154 pixels.

Dataset
AstraZeneca (AZ) R&D use image based screening systems to study a variety 
of processes. Current assays tend to focus on single time points and do not 
interrogate biological systems over time. AZ are currently exploring RNA-based 
therapeutics. Although such therapies have shown significant promise, more 
research into RNA delivery is needed before it can transform healthcare. One 
promising methods of delivery is through Lipid Nano-Particles (LNPs) (Sahin et 
al., 2014) which can be tracked over time using automated microscope 
systems. Example LNP-based time-lapse data for our project is shown in 
Figure 1. In our modelling we are exploring to what extent successful drug 
delivery can be predicted in advance from temporal changes in cell morphology 
- via bright field and cell stain image channels (a counterstain and an 
LNPs/mRNA cargo stain).

Modelling
Our modelling - at the cell-level at 40x magnification - is based on 192 x 192 
pixel cut-outs around the center point of the cell at each time point. Nuclei 
center points are manually annotated in the first time point. As the cells do not 
move significantly between time points a seeded watershed segmentation 
(Figure 2) around the center point, followed by re-centering - providing the 
seed for the following time point - was sufficient to pre-process the data for the 
models. GFP expression through time for an example well is shown in Figure 
3. As GFP expression does not begin until around t=22, we ask: can we predict 
the final GFP expression (at t=72) from the other imaging channels using only 
data from t=1 to t=22?  The modelling framework, combining convolutional 
and recurrent neural networks, is shown in Figure 4.

Preliminary results
Using an initial exploratory dataset (3 x 3 wells), convolutional autoencoders for 
learning latent feature vectors (see Figure 5) and a bidirectional LSTM, we 
obtained significantly better GFP predictions using LNP input images as opposed to 
cell counterstain images (mean squared error (MSE) on validation data: 0.43 for 
LNP images and 0.89 for counterstain images). A selection of trajectories of the 
feature vectors fed into the LSTM are shown in Figure 6. It is difficult to see 
patterns in these trajectories by eye, hence the need for machine learning!

Next steps
We are presently collecting a larger dataset (16 x 16 wells), with a nuclear stain at 
t=1, to remove the need for an initial manual annotation, to explore:
● using various combinations of the three input channels;
● autoencoders reconstructing future images -> more relevant feature vectors?;
● unfreezing the encoder weights and training end-to-end;
● pre-trained CNNs for the encoder part of the network.

Also to investigate: models composed of more traditional (i.e. non-deep learning) 
components, and hybrid models with both deep learning and traditional elements. 
E.g., the feature vectors encoded via the encoder can be replaced with features 
measured via CellProfiler (Carpenter et al., 2006). As an alternative to using 
LSTMs, time-series features can be extracted via tsfresh (Christ et al., 2018). These 
features can then be fed into other machine learning algorithms (such as random 
forests) to make predictions. These more traditionally learnt features have the benefit 
of easier interpretability for uncovering the biological drivers behind the predictions.

Figure 4: Cell time-series modelling framework combining convolutional and recurrent neural 
networks. Inputs are 2D (multiple channeled) images which are passed through a set of 
convolutional and pooling operations. The representations are flattened and fed through a set of 
fully connected layers to encode feature vectors in each time point. These vectors are provided as 
input into a recurrent neural network (an LSTM) in which hidden states, h - which evolve through 
time - are trained to retain a memory of events relevant for the predictive purposes of the model. 
The output from the LSTM, after going through some final fully connected layers, is the predicted 
GFP expression at the final time point. Figure inspiration from Kimmel et al. (2019).

Figure 5: Convolutional autoencoder reconstructions (bottom row) from a random selection of cell 
cutouts (192 x 192 pixels, counterstain images, top row) after going through a bottleneck vector of 
size 32 (producing the feature vectors as shown in Figures 4 and 6).

Figure 6: Trajectories of latent feature vectors (from t=1 to t=22, based on counterstain images) learnt 
from the convolutional autoencoder and fed into the LSTM in Figure 4 to make predictions (of final GFP 
expression at t=72). The trajectories are for the cells in Figure 3(a), with the top row for the five lowest 
GFP expressors and the bottom row for the five highest.

Figure 3: a) GFP expression for cells within one well; b) 
snapshots of one cell at the start, middle and end of the 
experiment with high GFP expression. Dashed horizontal 
line in (a) shows the cutoff for successful GFP expression.

Figure 2:  a) the internal (seed) and 
external markers used and b) an 
example segmentation - using the 
counterstain channel - for a cell based on 
the seeded watershed algorithm.
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