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S-1 Light measurement and estimation 
 

 
Figure S1. Schematic showing the top view of the photobioreactor setup (𝑧1 = 0.039624 m,  𝑧2 = 0.08255 m). 

 
To quantify the light attenuation due to background absorbing material, we measured the light 
intensities 𝐼4,1 at different locations (𝑙) inside the reactor at different light source positions (𝑑). 
The reactor was filled with culture media and deionized water (DI water). Figure S2 shows the 
observed relationship between the local background light intensity inside the reactor and the 
corresponding distance from the light source. We can thus obtain Eqn (8) 𝐼4,1 =
1.7324(𝑙 + 𝑑)AB.CCD. This relationship closely followed the inverse square law, suggesting that 
the algae media and DI water in our photobioreactor setup may have minor impacts on the light 
intensity. 
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Figure S2. Regression curve obtained by fitting the background light measurements at different distances from the 

light source. 

 
We then used the Eqn (7) 𝐼1 = 𝐼4,1 ∙ exp(−𝐴 ∙ 𝑙) to estimate the actual light intensity experienced 
by algae cells inside the reactor. We monitored the variation of light intensity during the entire 
algae cultivation period at location 𝑙 = 𝑧1 to help us decide the values of parameter 𝑎 and 𝑏, 
which were used to quantify the light absorbance 𝐴 due to Chl-a and non Chl-a biomass. The 
calibrated values of 𝑎 and 𝑏 were 80.5 m2 (mol 𝑋NO1-C)-1 and 1.4718 m2 (mol C)-1, respectively. 
Five experiments were used for the light calibration. We compared the estimated light intensities 
to the measured data in Figure S3. 

 
Figure S3. Light measurements and light estimations at location 𝑙 = 𝑧𝑙. The red squares denote the light intensities 

measured by the light sensor located at 𝑙 = 𝑧𝑙. Blue dashed lines represent light intensities calculated from the 
experimental data of the 𝑋NO1 and 𝑋P  and the fitted values of 𝑎 and 𝑏. The light and nitrogen conditions correspond 

to the experiments in the calibration group. 
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S-2 Model calibration methods 
S-2.1 Use of data in model calibration and validation 
 

Table S1. Experimental data divided into two subsets for model calibration and validation 

Experiments Light level Light intensity 
(PPFD) N level NO3

- concentration 
(mM) 

Calibration group 
(6 experiments) 

Low 100 
High N 

4.95 
Moderate 400 4.89 

High 600 4.88 
Low 100 

Low N 
0.62 

Moderate 300 0.66 
High 600 0.71 

Validation group 
(5 experiments) Moderate 

300 
High N 

4.90 
300 3.80 
300 

Low N 
0.67 

300 0.43 
400 0.43 

 
S-2.2 Ranges of parameters 
 

Table S2. Ranges of parameters 

Parameter Min Max 
𝑃R 0.1 10 
𝑌T  0.01 1 
𝑘VW 0.001 0.1 
𝑞Y 0.001 0.1 
𝜈YR  0.05 2 
𝑚 0.001 10 
𝛽 0.01 0.5 
𝑘Y1  0.001 0.1 
𝜙 0.001 0.5 
𝑚N^ 0.001 10 
𝑚N 0.001 15 
𝑘RN 0.0001 0.2 
𝜃 0.01 1 
𝑘NO1 0.001 0.1 
𝑘` 0.0001 0.1 
𝑘^ 0.01 20 
𝑄YR 0.16 100 
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The proposed model initially involved 17 parameters. We determined the parameter ranges based 
on the underlying biological mechanisms and the reported values from prior literature. The upper 
and lower bounds were further modified during the preliminary optimization process and the 
identifiability analysis to ensure a reasonably wide range for each parameter. Table S2 lists the 
final range of each parameter used during the calibration process. 
 
S-2.3 Identifiability analysis 
Based on the profile likelihood method,1 we started with collecting the baseline values of model 
parameters from the optimization via the MATLAB MultiStart fmincon routine. The 
optimization was performed by minimizing the weighted sum of squared error (SSE) between 
the model predictions and the experimental data.  

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑆𝑆𝐸 = 	∑ ∑ ∑ (lmno
(p)AVmno
qmno
rst )u𝑁𝑖

wxB
𝑁𝑗
zxB

𝑁𝑘
{xB  (1) 

𝑁{ is the number of experiments used in calibration, 𝑁{ = 6; 
𝑁z is the number of state variables, 𝑁z = 5; 
𝑁w is the number of time points, 𝑁w = 11; 

 Θ is the parameter vector; 
 𝑓wz{(Θ) are the model responses of state variable 𝑗 at time 𝑖 for the experiment 𝑘; 
 𝑦wz{  are the experimental measurements associated with measurement error 𝜎wz{

W��. 

We used the minimal value of weighted SSE to approximate the parameter likelihood 𝜒u(Θ). We 
then estimated the likelihood profile of each parameter by reoptimizing the model with the 
parameter of interest Θ� fixed at different values. These values were chosen by increasing or 
decreasing the baseline value of Θ� until the increment of the likelihood met the threshold, which 
was determined by the 95% quantile of the 𝜒u- distribution with the degree of freedom set to the 
number of parameters. The shape of the resulted likelihood profile could then indicate the 
identifiability of the parameter. Specifically, (i) a parameter is identifiable if its likelihood profile 
exceeds the threshold region in both the positive and negative directions, (ii) a parameter is 
structurally non-identifiable if its likelihood profile is flat in both directions, and (iii) a parameter 
is practically non-identifiable if its likelihood profile extends infinitely in either direction. 
 
S-2.4 Parameter estimation and uncertainty quantification 
According to the theory of Bayesian inference, the parameter posterior density is inferred from 
the prior knowledge of the parameter density 𝜋(Θ) and the likelihood 𝜋(y|Θ).2 We used the 
uniform priors bounded by the parameter ranges (Table S2) due to no prior knowledge of the 
parameter distributions. The likelihood 𝜋(y|Θ) was established using the DRAM algorithm3 by 
specifying the statistical model for the observed data y. We employed the statistical model (Eqn. 
2) to relate the experimental data 𝑦wz{  to the model responses 𝑓wz{(Θ) by introducing the 
observation errors 𝜖wz{  in an additive manner. The observation errors were assumed to be 
independent and identically distributed (IID) and follow 𝜖wz{	~	𝒩(0, 𝜎zu), where 𝜎z are 
independent of the observational time and the experimental conditions. The error variances 𝜎zu 
were estimated by the DRAM algorithm and updated for each iteration. 

𝑦wz{ = 𝑓wz{(Θ) + 𝜖wz{  (2) 
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To run the DRAM algorithm, we used the best fit from the MultiStart fmincon optimization 
generated during the identifiability analysis as the starting point. We also estimated the initial 
error variance and covariance matrix as the input to initialize the algorithm. Haario et al.3 
suggested that the value of the non-adaptive period 𝑛� was a few thousand for models with 
parameter dimensions larger than 15, but they provided no exact value recommendation. Thus, 
we selected 𝑛� = 1000 and 𝑛� = 5000, running 250000 iterations each to evaluate the 
convergence. Geweke's method4 was used to check the convergence. The posterior density of 
each parameter including the mean and standard deviation was estimated from samples that 
reached a steady range. Parameter uncertainties and the observation errors could propagate to the 
model output, enabling the estimation of the credible and prediction intervals for the model 
predictions.2 In this work, we randomly selected 2000 parameter sets from the posterior samples 
to generate the model outputs. The 2.5% and 97.5% quantiles of the model outputs were used to 
calculate the 95% credible intervals. Based on the statistical model defined previously (Eqn. 2), 
we determined the 95% prediction intervals by adding observation errors to the model 
predictions. The observation errors were randomly generated from normal distributions 
𝒩(0, 𝜎zu) based on the variance chain estimated by the DRAM algorithm. The credible intervals 
measured the limits of the model fit due to parameter uncertainties, and the prediction intervals 
estimated the limits of the model observations after considering the measurement noises2,5. 
 
S-2.5 Sensitivity analysis 
eFAST6 estimates the model output variance by varying the input parameters in the form of 
sinusoidal functions with different set frequencies for different parameters. The output variance 
is then decomposed by Fourier analysis to quantify the variances due to the particular parameter 
of interest (Θw), the complementary set of parameters, or the higher-order interactions between 
the parameters of interest and other parameters. As a result, the first-order sensitivity index (𝑆w) 
and the total-order sensitivity index (𝑆�w) of each parameter can be determined. Note in this 
approach the term 𝑆�w also includes the effects of higher-order interactions between parameters 
other than (Θw). 

Table S3. Experimental data used in sensitivity analysis 

  Light level N Level 

Stress 
conditions 

No stress Moderate High 

Single light stress High High 

Single N stress Moderate Low 

Dual stress High Low 

Time points Day 2, Day 4, Day 10 

State variables 𝑋N�, 𝑋N��� , 𝑋Y1, 𝑋NO1, 𝑆^�D 

 
We systematically performed the sensitivity analysis for each parameter under four conditions 
(Table S3) corresponding to the effects of different stress types and levels. For each condition, 
we evaluated five state variables at three representative time points (Table S3). Day 2, Day 4 and 
Day 10 were chosen to represent the entire time course. Day 2 and Day 4 also corresponded to 
the transient states of nitrogen depletion under low nitrogen conditions. Details of the eFAST 
settings are listed in Table S4. We used two sample sizes to check the accuracy of the sensitivity 
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results. Also note that after resolving the non-identifiability associated with a certain parameter, 
a total of 17 parameters including one dummy parameter were evaluated in the sensitivity 
analysis. 

Table S4. Settings for the eFAST algorithm 

eFAST Settings Values 

Number of samples per curve 𝑁� 2000, 3000 
Number of parameters 𝑁� 17 

Number of repeated times 𝑁4 5 
 

S-3 Model calibration results 
S-3.1 Identifiability analysis results 
𝑄YR appeared to be the only non-identifiable parameter as indicated by the flatness of its profile 
likelihood extending to the upper bound of the search range (Figure S4). The ratio ���A��

���A��
 would 

approach one, if the value of 𝑄YR becomes very large. As a result, ���A��
���A��

 could be removed 
from the nitrate uptake rate equation. We further compared the changes in profile likelihood by 
reoptimizing the model via either increasing the value of 𝑄YR or eliminating the term ���A��

���A��
 

(Figure S5). As 𝑄YR increases, the profile likelihood decreases and approaches the yellow line, 
indicating that the removal of  ���A��

���A��
 improved the model performance by reducing the 

discrepancy between the model prediction and the experimental data. 
 

 
Figure S4. Profile likelihood plots for parameter identifiability assessment. Solid lines represent profile likelihood 

versus parameter value. The baseline parameter values optimized from the MultiStart fmincon are indicated by 
asterisks. The dashed lines denote the threshold of the likelihood confidence region. 
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Figure S5. Demonstration of the asymptotic behavior of the profile likelihood with increasing 𝑄YR. The yellow solid 

line denotes the minimum weighted SSE value obtained by removing the term ���A��
���A��

 from the nitrate uptake 
equation. 

 
S-3.2 Parameter estimation and uncertainty quantification results  
After removing 𝑄YR, our model had 16 parameters remaining to be calibrated. Parameters were 
estimated to simultaneously fit the model under different experimental conditions. We obtained 
two sample chains by running the DRAM algorithm with 𝑛� = 1000 and 𝑛� = 5000. The 
corresponding MCMC sample chains and the steady ranges are illustrated in Figure S6. After 
250,000 iterations, parameter values in both chains converged to similar steady ranges. We then 
compared the p-values of these two chains using the Geweke's method.4 For most parameters, we 
noticed that the p-values calculated from the chain of 𝑛� = 1000 were closer to 1 than the p-
values calculated from the chain of 𝑛� = 5000, indicating that the chain of 𝑛� = 1000 was more 
stable over the iterations (Table S5). We thus chose the chain of 𝑛� = 1000 to generate the 
posterior parameter densities (Figure S7) and the pairwise parameter correlations (Figure S8). 
 
Figure S9 further compares the experimental data with the model predictions by using two sets 
of best-fit parameter values. Parameters with maximum likelihood function could have a slightly 
better fit to the lipid production, but we could not find a significant difference between the two 
best fits. This small difference could reflect certain arbitrariness in choosing a single best fit, 
especially for models with a high-dimensional parameter space. Moreover, defining a “best fit” 
could be difficult due to measurement noises. The MCMC method, by accounting for the 
observation errors and searching for all the potential good fits, allowed us to quantify the 
uncertainties of fitting parameters and model predictions. Thus, we could evaluate the model 
performance in a non-arbitrary way. 
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Figure S6. Parameter chain plots (a) MCMC chain with 𝑛� = 1000, (b) MCMC chain with 𝑛� = 5000. Dashed 

lines indicate the location at which the chain settled to the steady range. 
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Table S5. Geweke’s p-value of each parameter calculated by MCMC chains with 𝑛� = 1000 and 𝑛� = 5000 

Parameter p-value (𝑛� = 1000) p-value (𝑛� = 5000) 

𝑃R 0.9906 0.9273 
𝑌T  0.9886 0.9020 
𝑘VW 0.9999 0.9920 
𝑞Y 0.9605 0.8552 
𝜈YR  0.9998 0.9929 
𝑚 0.9913 0.8804 
𝛽 0.9981 0.9878 
𝑘Y1  0.9939 0.9667 
𝜙 0.9061 0.9759 
𝑚N^ 0.9268 0.9617 
𝑚N 0.9550 0.9930 
𝑘RN 0.9819 0.9945 
𝜃 0.9967 0.9909 
𝑘NO1 0.9923 0.9591 
𝑘` 0.9402 0.7753 
𝑘^ 0.9911 0.9816 

 
 

 
Figure S7. Parameter posterior density plots. Red dashed lines indicate the parameter values of the best fit with 

maximum likelihood 𝜋(𝑦|Θ). Cross signs denote the parameter values with minimum SSE. 
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Figure S8. Parameter pairwise correlation plots 
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Figure S9. Calibration results of the best fit a based on maximum 𝜋(𝑦|Θ) and the best fit b based on minimum SSE. 

Solid lines denote the model predictions. Symbols with error bars represent experimental data and measurement 
noises. 

 
S-3.3 Sensitivity analysis results  
We first used 2000 samples per search curve to analyze the parameter sensitivities. Increasing to 
3000 samples per search curve did not change the sensitivity ranks much but slightly increased 
the number of parameters whose sensitivity indices were significantly different from the dummy 
parameter. Therefore, we used the results from 𝑁� = 3000 to report the parameter sensitivity 
ranks for both 𝑆w (Table S6 ) and 𝑆�w (Table S7). The sensitivity plots for 𝑁� = 2000 and 𝑁� =
3000 are shown in Figure S10 and Figure S11, respectively. 
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Potential model reduction. Some parameters were mainly sensitive to certain variables or under 
certain conditions. For example, 𝜙 was mainly sensitive to the neutral lipid production; 𝑘^ and 
𝑘` became more sensitive under light and nitrogen stress; 𝑘RN, 𝑚N^, and 𝑚N were primarily 
sensitive to carbohydrate production. 𝜙 could not be reduced as it represented the major carbon 
flux for lipid production under nitrogen depletion. As tuning parameters, 𝑘^ and 𝑘` were used to 
adjust carbon redirection to lipid accumulation and to regulate Chl-a degradation when the low-
nitrogen and high-light stresses would affect the corresponding processes. We could potentially 
set these two parameters at certain nominal values, such as the mean values of their posterior 
distributions, to improve the estimation of other parameters. Among the parameters related to 
carbohydrate maintenance, we noticed that 𝑚N was less sensitive to carbohydrate, however, 𝑘RN 
was more sensitive. Since 𝑚N and 𝑘RN were coupled in the process R4, further tests would be 
needed to see if the process R4 could be reduced. Simplifying the carbohydrate maintenance 
equation may help reduce the parameter uncertainties associated with the carbohydrate 
prediction. 
 
Maintenance and respiration. Different stress conditions may affect the maintenance and 
respiration process in complex ways. Comparing to the no-stress condition, single low-nitrogen 
stress increased the sensitivities of the parameter 𝑚 for 𝑋N� and the parameters 𝑚N, 𝑘RN, and 
𝑚N^ for 𝑋N��� as shown in Table S6. Such increases may indicate that the functional biomass 
and carbohydrate were more prone to maintenance processes under nitrogen deficiency. In 
contrast, high-light stress seemed to decrease the sensitivities of these parameters (Table S6), 
potentially indicating a relatively lower activity of respiration caused by photoinhibition.7 It is 
also interesting to notice that the sensitivities of these parameters decreased under the dual-stress 
condition, which may suggest that the effect of high-light stress outweighed the low-nitrogen 
stress in our case. In addition, parameters such as 𝑚, 𝑚N, and 𝑘RN were formulated based on a 
first-order maintenance relationship and they had a slightly higher sensitivity on later time 
periods, indicating an accumulative effect over time. In contrast, the sensitivity of 𝑚N^ seemed 
to decrease with time, which was reasonable because 𝑚N^ was related to the nitrate uptake rate. 
Once the nitrate was depleted, 𝑚N^ would no longer affect the model output. 
 
Neutral lipid accumulation. The sensitivity variations of parameters related to lipid production 
further verified the effects of light and nitrogen stresses on the activities of R6 and R7. 
Specifically, the low-nitrogen stress decreased the sensitivities of R6-related parameters 𝛽 and 
𝑘Y1 but increased the sensitivity of R7-related parameter 𝜙. This variation was in line with our 
model formulation, as R6 was active under nitrogen-available conditions whereas R7 was active 
under nitrogen depletion. In addition, the sensitivity rank of 𝜙 was lower than 𝛽 and 𝑘Y1 under 
dual-stress conditions, potentially indicating the reduced activity of R7 when photoinhibition 
affected the carbon fixation. 
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Table S6. Table series (a-e) of parameter sensitivity (𝑆w) rankings for different state variables (𝑁� = 3000). 
Parameters are listed from the most sensitive (rank 1) to least sensitive (rank 17). Related parameters are grouped by 
colors based on their functions: 𝑃R, 𝑌T , 𝑘VW , 𝑞Y, 𝑣YR, and 𝑚 are highlighted in yellow; 𝑘Y1 and 𝛽 in red; 𝑘NO1 and 𝜃 

in green; 𝑘RN , 𝑚N^, and 𝑚N in purple; 𝑘` and 𝑘^ in blue; 𝜙 in pink; and the dummy parameter in gray. 
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Table S7. Table series (a-e) of parameter sensitivity (𝑆�w) rankings for different state variables (𝑁� = 3000). 
Parameters are listed from the most sensitive (rank 1) to least sensitive (rank 17). Related parameters are grouped by 
colors based on their functions: 𝑃R, 𝑌T , 𝑘VW , 𝑞Y, 𝑣YR, and 𝑚 are highlighted in yellow; 𝑘Y1 and 𝛽 in red; 𝑘NO1 and 𝜃 

in green; 𝑘RN , 𝑚N^, and 𝑚N in purple; 𝑘` and 𝑘^ in blue; 𝜙 in pink; and the dummy parameter in gray. 
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Figure S10. Sensitivity index plots under different conditions (Ns = 2000). 
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Figure S11. Sensitivity index plots under different conditions (Ns = 3000). 
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S-3.4 Light estimation performance  
The light estimations of 𝐼��� and 𝐼�1 were predicted by using the best-fit parameter set with the 
maximum likelihood 𝜋(𝑦|Θ). 
 

 
Figure S12. Comparison of 𝐼��� estimations using the experimental data (squares) and the model-simulated data 

(solid lines) of 𝑋NO1 and 𝑋P . 

 

 
Figure S13. Comparison of model-predicted light profiles at location 𝑙 = 𝑧𝑙 (solid lines) with both experimental 

estimation (dashed lines) and light sensor measurements (squares).  

 

S-4 Model validation results 
We simulated five more experiments that were not used for calibration to validate the model. 
Similarly, we sampled 2000 parameter sets from the parameter posterior distributions and 
established the prediction intervals based on the corresponding error distributions. These 
experiments contained data for two light intensities (300 PPFD, 400 PPFD) and four nitrate 



 S22 

concentrations (4.90 N, 3.80 N, 0.67 N, 0.43 N) as summarized in Table S1. Figure S14 
compares the model predictions with the experimental data. Figure S15 and Figure S16 further 
demonstrate the model performance of light estimation using the best-fit parameter set with the 
maximum likelihood 𝜋(𝑦|Θ). 
 
Note that some experiments were not predicted from day zero due to either the lack of the initial 
data or the initial culture being too diluted. Thus, we tested the model with data starting from day 
one for the experiments without a complete set of the initial values. For the diluted culture with 
longer lag phase, the model had to start from the day when the culture biomass achieved a level 
comparable to the first-day biomass concentrations in other experiments. As such, the 
assumption that the initial intracellular nitrogen 𝑋^_� = 0.2𝑋N�_� may not hold true for these 
experiments due to the variations of the initial states, which can thus contribute to the bias in 
model predictions. 
 

 
Figure S14. Model validation by predicting the new data. Solid lines correspond to the medians of model predictions 

bounded by 95% prediction intervals (shades). Symbols with error bars represent experimental data and 
measurement noises. 

 



 S23 

 
Figure S15. Model validation of 𝐼��� predictions. Comparison of 𝐼��� estimations using the experimental data 

(squares) and the model-simulated data (solid lines) of 𝑋NO1 and 𝑋P . 

 

 
Figure S16. Model validation of 𝐼�1 predictions. Comparison of model-predicted light profiles at location 𝑙 = 𝑧𝑙 

(solid lines) with both experimental estimation (dashed lines) and light sensor measurements (squares). 
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