## SUPPORTING INFORMATION

# Mono- and Dinuclear Coinage Metal Complexes Supported by an Imino-Pyridine NHC Ligand: Structural and Photophysical Studies

Thomas Simler,<sup>\*,†</sup> Karen Möbius,<sup>†</sup> Kerstin Müller,<sup>†</sup> Thomas J. Feuerstein,<sup>†</sup> Michael T. Gamer,<sup>†</sup> Sergei Lebedkin,<sup>‡</sup> Manfred M. Kappes<sup>‡,§</sup> and Peter W. Roesky<sup>\*,†</sup>

<sup>‡</sup> Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

<sup>§</sup> Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131 Karlsruhe, Germany

## Content

| ١.                   | Synt      | thesis | and Characterization                                                 | S3  |
|----------------------|-----------|--------|----------------------------------------------------------------------|-----|
|                      | I.1.      | Synt   | hesis of 2-acetyl-6-bromopyridine (1)                                | S3  |
|                      | 1.2.      | Synt   | hesis of 2-bromo-6-(2-methyl-1,3-dioxolan-2-yl)pyridine ( <b>2</b> ) | S3  |
|                      | I.3. Synt |        | hesis of (6-(2-methyl-1,3-dioxolan-2-yl)pyridin-2-yl)methanol (3)    | S3  |
| II.                  | X-ra      | y Cry  | stallography                                                         | S5  |
|                      | II.1.     | Spec   | ial comments                                                         | S5  |
|                      | II.2.     | Sum    | mary of crystal data                                                 | S6  |
|                      | II.3.     | Cryst  | tal structures                                                       | S8  |
|                      | II.3.     | 1.     | The molecular structure of <b>8</b> in the solid state               | S8  |
|                      | II.3.     | 2.     | The molecular structure of <b>9</b> in the solid state               | S8  |
|                      | II.3.     | 3.     | The molecular structure of <b>10</b> in the solid state              | S9  |
|                      | II.3.     | 4.     | The molecular structure of <b>11</b> in the solid state              | S9  |
| II.3<br>II.3<br>II.3 |           | 5.     | The molecular structure of <b>12</b> in the solid state              | S10 |
|                      |           | 6.     | The molecular structure of <b>13</b> in the solid state              | S10 |
|                      |           | 7.     | The molecular structure of 14 in the solid state                     | S11 |
|                      | II.3.     | 8.     | The molecular structure of <b>15</b> in the solid state              | S11 |

<sup>&</sup>lt;sup>†</sup> Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany E-mail: <u>thomas.simler@kit.edu</u>, <u>roesky@kit.edu</u>

| 11.3    | .9.     | The molecular structure of 17 in the solid state                | S12 |
|---------|---------|-----------------------------------------------------------------|-----|
| II.3    | .10.    | The molecular structure of <b>18</b> in the solid state         | S12 |
| II.3    | .11.    | Preliminary molecular structure of <b>16</b> in the solid state | S13 |
| III. N  | NMR s   | pectra                                                          | S14 |
| III.1.  | Com     | pound <b>3</b>                                                  | S14 |
| III.2.  | Com     | pound <b>4</b>                                                  | S15 |
| III.3.  | Com     | pound <b>6</b>                                                  | S16 |
| III.4.  | Com     | pound <b>7</b>                                                  | S17 |
| III.5.  | Com     | pound <b>8</b> (L·HBr)                                          | S18 |
| III.6.  | Com     | plex <b>9</b>                                                   | S19 |
| III.7.  | Com     | plex <b>10</b>                                                  | S21 |
| III.8.  | Com     | plex <b>11</b>                                                  | S22 |
| III.9.  | Com     | plex <b>12</b>                                                  | S23 |
| III.10. | Com     | plex <b>13</b>                                                  | S24 |
| III.11. | Com     | plex <b>14</b>                                                  | S25 |
| III.12. | Com     | plex 15                                                         | S26 |
| III.13. | Com     | plex <b>16</b>                                                  | S27 |
| III.14. | Com     | plex 17                                                         | S29 |
| III.15. | Com     | plex <b>18</b>                                                  | S30 |
| IV. I   | R Spec  | ctra                                                            | S31 |
| IV.1.   | Com     | pound <b>8</b> (L·HBr)                                          | S31 |
| IV.2.   | Com     | plex <b>9</b>                                                   | S32 |
| IV.3.   | Com     | plex <b>10</b>                                                  | S32 |
| IV.4.   | Com     | plex <b>11</b>                                                  | S33 |
| IV.5.   | Com     | plex <b>12</b>                                                  | S33 |
| IV.6.   | Com     | plex <b>13</b>                                                  | S34 |
| IV.7.   | Com     | plex <b>14</b>                                                  | S34 |
| IV.8.   | Com     | plex 15                                                         | S35 |
| IV.9.   | Com     | plex <b>16</b>                                                  | S35 |
| IV.10.  | . Com   | plex 17                                                         | S36 |
| IV.11.  | . Com   | plex <b>18</b>                                                  | S36 |
| V. UV   | -Vis sp | ectra                                                           | S37 |
| VI. F   | Photol  | uminescence                                                     | S38 |
| VII. F  | Referei | nces                                                            | S38 |

### I. SYNTHESIS AND CHARACTERIZATION

## I.1. Synthesis of 2-acetyl-6-bromopyridine (1)



This compound was synthesized according to the literature procedure.<sup>1</sup> To a solution of 2,6-dibromopyridine (23.7 g, 100 mmol) in Et<sub>2</sub>O (300 mL), cooled at -78 °C, was added dropwise a solution of *n*BuLi in hexane (42 mL of a 2.5 M hexane

solution, 105 mmol) over 15 min. After stirring at -78 °C for 30 min, a solution of DMA (10.2 mL, 9.58 g, 110 mmol) in Et<sub>2</sub>O (50 mL) was slowly added. The resulting mixture was stirred at -78 °C for 20 min, let warm up to r.t., further stirred for 2 h and quenched by addition of 10% aqueous HCl until acidic. The resulting solution was made alkaline by addition of 10% aqueous K<sub>2</sub>CO<sub>3</sub> solution. The aqueous layer was separated and extracted with diethyl ether (3 x 50 mL). The combined organic extracts were washed with brine and dried over MgSO<sub>4</sub>. Evaporation of the volatiles under reduced pressure gave the crude product as a yellow oil slowly crystallizing under vacuum. Recrystallization from Et<sub>2</sub>O/hexane afforded the title compound as colorless crystals. Yield: 15.9 g (79.5 mmol), 80%.

<sup>1</sup>**H NMR** (400.30 MHz, CDCl<sub>3</sub>):  $\delta$  [ppm]: 7.98 (dd, <sup>3</sup>J<sub>HH</sub> = 7.1 Hz, <sup>4</sup>J<sub>HH</sub> = 1.0 Hz, 1H, CH<sub>pyr</sub>.), 7.72-7.63 (m, 2H, CH<sub>pyr</sub>.), 2.70 (s, 3H, CH<sub>3</sub>). These data are consistent with those described in the literature.<sup>1b</sup>

## I.2. Synthesis of 2-bromo-6-(2-methyl-1,3-dioxolan-2-yl)pyridine (2)



This compound was synthesized using a slightly modified literature procedure.<sup>1a,2</sup> A mixture of **1** (21.0 g, 105 mmol), ethylene glycol (6.5 mL, 7.20 g, 116 mmol), *p*-toluenesulfonic acid monohydrate (1.00 g, 5.25 mmol, 5 mol%) in cyclohexane was

heated to reflux under Dean-Stark conditions for 5 h. To the resulting solution, cooled to room temperature, was added aqueous K<sub>2</sub>CO<sub>3</sub> solution. The aqueous layer was separated and extracted with diethyl ether (3 x 100 mL). The combined organic extracts were washed with brine and dried over MgSO<sub>4</sub>. Evaporation of the solvent under reduced pressure gave the crude product as a light brown oil (crude yield: 24.6 g (101 mmol), 96%). A microcrystalline white product could be obtained by keeping a concentrated Et<sub>2</sub>O/pentane solution of the product at -40 °C for several days. Yield of the crystals: 15.9 g (65.1 mmol), 62%. <sup>1</sup>H NMR (400.30 MHz, CDCl<sub>3</sub>):  $\delta$ [ppm]: 7.54-7.43 (m, 2H, CH<sub>pyr</sub>.), 7.40 (dd, <sup>3</sup>J<sub>HH</sub> = 7.3 Hz, <sup>4</sup>J<sub>HH</sub> = 1.5 Hz, 1H, CH<sub>pyr</sub>.), 4.13-3.83 (m, 4H, OCH<sub>2</sub>), 1.71 (s, 3H, CH<sub>3</sub>). These data are consistent with those described in the literature.<sup>2</sup>

## I.3. Synthesis of (6-(2-methyl-1,3-dioxolan-2-yl)pyridin-2-yl)methanol (3)



The synthesis of **3** has already been reported in a WO Patent but no NMR characterization has been provided.<sup>3</sup>

To a solution of **2** (8.00 g, 32.8 mmol) in Et<sub>2</sub>O (100 mL), cooled at -78 °C, was added dropwise a solution of *n*BuLi in hexane (13.8 mL of a 2.5 M hexane solution, 34.5 mmol). After stirring at -78 °C for 30 min, a solution of DMF (2.8 mL, 2.65 g, 36.2 mmol) in Et<sub>2</sub>O (20 mL) was slowly added. The resulting mixture was allowed to warm up to 0 °C, stirred for 1.5 h and quenched by addition of methanol (10 mL). NaBH<sub>4</sub> (1.86 g, 49.2 mmol) was added and the reaction mixture was allowed to reach r.t. and further stirred for 1 h. The excess NaBH<sub>4</sub> was quenched by addition of 10% aqueous HCl until acidic and the resulting solution was made alkaline by addition of K<sub>2</sub>CO<sub>3</sub>. The reaction mixture was concentrated under reduced pressure and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 50 mL). The combined organic extracts were washed with brine and dried over MgSO<sub>4</sub>. Evaporation of the volatiles under reduced pressure gave the crude product as a yellow oil slowly crystallizing under vacuum. Recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O at -40 °C afforded the title compound as a pale yellow solid. Yield: 5.37 g (27.5 mmol), 84%.

<sup>1</sup>**H NMR** (300.13 MHz, CDCl<sub>3</sub>):  $\delta$  [ppm]: 7.70 (t, <sup>3</sup>J<sub>HH</sub> = 7.7 Hz, 1H, *p*-CH<sub>pyr</sub>.), 7.47 (dm, <sup>3</sup>J<sub>HH</sub> = 7.7 Hz, 1H, *m*-CH<sub>pyr</sub>.), 7.20 (dm, <sup>3</sup>J<sub>HH</sub> = 7.8 Hz, 1H, *m*-CH<sub>pyr</sub>.), 4.78 (s, 2H, CH<sub>2</sub>OH), 4.16-3.83 (m, 4H, OCH<sub>2</sub>), 3.51 (br s, 1H, OH), 1.74 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (75.47 MHz, CDCl<sub>3</sub>): δ [ppm]: 159.8 (*C*<sub>pyr</sub>), 159.0 (*C*<sub>pyr</sub>), 137.6 (*C*H<sub>pyr</sub>), 120.0 (*C*H<sub>pyr</sub>), 118.2 (*C*H<sub>pyr</sub>), 108.6 (*C*CH<sub>3</sub>), 65.2 (*O*CH<sub>2</sub>), 64.2 (*C*H<sub>2</sub>OH), 25.3 (*C*H<sub>3</sub>).

## II. X-RAY CRYSTALLOGRAPHY

## II.1. Special comments

The following special comments apply to the models of the structures:

- The asymmetric unit of 8·CH<sub>2</sub>Cl<sub>2</sub> contains one molecule of CH<sub>2</sub>Cl<sub>2</sub> disordered over two positions with an occupancy ratio of 0.6667/0.3333.
- For **11**, the  $C_6F_5$  moiety is disordered over two positions with an occupancy ratio of 0.5/0.5.
- The asymmetric unit of 12.0.25(CH<sub>2</sub>Cl<sub>2</sub>) contains one half molecule of the complex and 0.125 molecule of CH<sub>2</sub>Cl<sub>2</sub>. The two *i*Pr groups (C27-C29, C30-C32) and the mesityl group (N4, C12-C20) are disordered over two positions with an occupancy ratio of 0.5/0.5. The half BF<sub>4</sub> anion is disordered over two positions with an occupancy ratio of 0.25/0.25.
- The asymmetric unit of 13.0.5(CH<sub>2</sub>Cl<sub>2</sub>) contains one half molecule of the complex and 0.25 molecule of CH<sub>2</sub>Cl<sub>2</sub>. The mesityl group (N4, C12-C20) is disordered over two positions with an occupancy ratio of 0.5/0.5. The half BF<sub>4</sub> anion is disordered over two positions with an occupancy ratio of 0.25/0.25
- In the structure of 14, one BF<sub>4</sub> anion is disordered over two positions with an occupancy ratio of 0.75/0.25. One *i*Pr group (C27-C29) and one DiPP group (C53-C64) are disordered over two positions with an occupancy ratio of 0.5/0.5. An alert A (VERY LARGE Solvent Accessible VOID(S) in Structure) arises in the Checkcif but the voids look like flat, twisted tunnels through the unit cell and no electron density can be observed within. It seems that without a change of the molecule packing, none of the available solvent molecules (or BF<sub>4</sub><sup>-</sup>) will fit inside.
- The asymmetric unit of 15·MeCN contains two molecules of the complex and two molecules of MeCN. The crystals were twinned and an hklf5 was generated via STOE twin integration (BASF 0.345).
- The asymmetric unit of **17**·3(MeCN) contains half a molecule of the complex and 1.5 molecules of MeCN; the BF<sub>4</sub> anion is disordered over two positions with an occupancy ratio of 0.5/0.5.
- The asymmetric unit of 18·0.5(CH<sub>2</sub>Cl<sub>2</sub>) contains half a molecule of the complex and 0.25 disordered molecule of CH<sub>2</sub>Cl<sub>2</sub>. The BF<sub>4</sub> anion is disordered over two positions with an occupancy ratio of 0.75/0.25.

## II.2. Summary of crystal data

| Compounds                                                | 8-CH <sub>2</sub> Cl <sub>2</sub>                        | 9                     | 10                   | 11                     | <b>12·</b> 0.25 (CH <sub>2</sub> Cl <sub>2</sub> )                                                           |
|----------------------------------------------------------|----------------------------------------------------------|-----------------------|----------------------|------------------------|--------------------------------------------------------------------------------------------------------------|
| Chemical formula                                         | $C_{32}H_{39}BrN_4$ ·<br>CH <sub>2</sub> Cl <sub>2</sub> | $C_{32}H_{38}AgBrN_4$ | $C_{32}H_{38}AulN_4$ | $C_{38}H_{38}AuF_5N_4$ | C <sub>64</sub> H <sub>76</sub> AgBF <sub>4</sub> N <sub>8</sub> ·<br>0.25(CH <sub>2</sub> Cl <sub>2</sub> ) |
| CCDC Number                                              | 1935666                                                  | 1935667               | 1935668              | 1935670                | 1935669                                                                                                      |
| Formula Mass                                             | 644.51                                                   | 666.44                | 802.53               | 842.69                 | 1173.23                                                                                                      |
| Crystal system                                           | Monoclinic                                               | Monoclinic            | Triclinic            | Orthorhombic           | Tetragonal                                                                                                   |
| a/Å                                                      | 8.8560(4)                                                | 22.9267(10)           | 8.5375(3)            | 15.8416(5)             | 15.8586(8)                                                                                                   |
| b/Å                                                      | 30.4059(10)                                              | 8.9889(3)             | 9.2775(3)            | 25.5241(8)             | 15.8586(8)                                                                                                   |
| c/Å                                                      | 12.8631(6)                                               | 14.7832(6)            | 23.0315(12)          | 17.8219(8)             | 24.954(2)                                                                                                    |
| <i>α</i> /°                                              |                                                          |                       | 98.830(4)            |                        |                                                                                                              |
| β/°                                                      | 97.550(3)                                                | 95.304(3)             | 93.693(4)            |                        |                                                                                                              |
| γ/°                                                      |                                                          |                       | 110.788(3)           |                        |                                                                                                              |
| Unit cell<br>volume/ų                                    | 3433.7(3)                                                | 3033.6(2)             | 1671.26(12)          | 7206.2(5)              | 6275.8(8)                                                                                                    |
| Radiation type                                           | ΜοΚα                                                     | ΜοΚα                  | ΜοΚα                 | ΜοΚα                   | ΜοΚα                                                                                                         |
| Wavelength/Å                                             | 0.71073                                                  | 0.71073               | 0.71073              | 0.71073                | 0.71073                                                                                                      |
| Temperature/K                                            | 200                                                      | 100                   | 210                  | 150                    | 100                                                                                                          |
| Space group                                              | P21/n                                                    | P21/c                 | РĪ                   | Pbca                   | P4/n                                                                                                         |
| Ζ                                                        | 4                                                        | 4                     | 2                    | 8                      | 4                                                                                                            |
| Absorption coefficient, $\mu$ /mm                        | 1.379                                                    | 2.008                 | 5.349                | 4.141                  | 0.399                                                                                                        |
| No. of reflections measured                              | 21976                                                    | 16460                 | 18062                | 72523                  | 16632                                                                                                        |
| No. of<br>independent<br>reflections                     | 6414                                                     | 7496                  | 9266                 | 10053                  | 7896                                                                                                         |
| R <sub>int</sub>                                         | 0.0267                                                   | 0.0410                | 0.0611               | 0.0705                 | 0.0236                                                                                                       |
| Final <i>R</i> 1 values<br>( <i>I</i> > 2 σ( <i>I</i> )) | 0.0458                                                   | 0.0396                | 0.0588               | 0.0246                 | 0.0409                                                                                                       |
| Final <i>wR(F<sup>2</sup>)</i><br>values (I > 2 σ(I))    | 0.1056                                                   | 0.0937                | 0.1376               | 0.0454                 | 0.1085                                                                                                       |
| Final <i>R</i> 1 values (all<br>data)                    | 0.0733                                                   | 0.0644                | 0.1151               | 0.0801                 | 0.0751                                                                                                       |
| Final <i>wR(F<sup>2</sup>)</i><br>values (all data)      | 0.1224                                                   | 0.1026                | 0.1642               | 0.0534                 | 0.1230                                                                                                       |
| Goodness of fit<br>on <i>F</i> <sup>2</sup>              | 1.055                                                    | 0.956                 | 0.983                | 0.859                  | 1.037                                                                                                        |

## Table S1. Crystal data, data collection and refinement for compounds 8-12.

| Compounds                                             | <b>13</b> ·0.5(CH <sub>2</sub> Cl <sub>2</sub> )                     | 14                                                                              | 15·MeCN                                                                | <b>17·</b> 3(MeCN)                                                                                                      | <b>18·</b> 0.5(CH <sub>2</sub> Cl <sub>2</sub> )                                                                           |
|-------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Chemical formula                                      | C <sub>64</sub> H <sub>76</sub> AuBF₄N <sub>8</sub> ·<br>0.5(CH₂Cl₂) | C <sub>64</sub> H <sub>78</sub> B <sub>3</sub> CuF <sub>12</sub> N <sub>8</sub> | $\begin{array}{c} C_{64}H_{76}Ag_2B_2F_8N_8\cdot\\ C_2H_3N\end{array}$ | C <sub>64</sub> H <sub>76</sub> AgAuB <sub>2</sub> F <sub>8</sub><br>N <sub>8</sub> ·3(C <sub>2</sub> H <sub>3</sub> N) | C <sub>64</sub> H <sub>76</sub> AuB <sub>2</sub> CuF <sub>8</sub><br>N <sub>8</sub> ·0.5(CH <sub>2</sub> Cl <sub>2</sub> ) |
| CCDC Number                                           | 1935671                                                              | 1935672                                                                         | 1935673                                                                | 1935674                                                                                                                 | 1935675                                                                                                                    |
| Formula Mass                                          | 1283.56                                                              | 1283.31                                                                         | 1387.74                                                                | 1558.94                                                                                                                 | 1433.91                                                                                                                    |
| Crystal system                                        | Tetragonal                                                           | Monoclinic                                                                      | Monoclinic                                                             | Monoclinic                                                                                                              | Monoclinic                                                                                                                 |
| a/Å                                                   | 15.8559(5)                                                           | 14.2894(6)                                                                      | 28.7223(7)                                                             | 16.8577(5)                                                                                                              | 11.2005(5)                                                                                                                 |
| b/Å                                                   | 15.8559(5)                                                           | 29.2539(10)                                                                     | 14.6522(4)                                                             | 26.5165(7)                                                                                                              | 32.4978(10)                                                                                                                |
| <i>c</i> /Å                                           | 24.8751(9)                                                           | 18.1940(6)                                                                      | 34.0236(7)                                                             | 15.9894(3)                                                                                                              | 19.2893(7)                                                                                                                 |
| α/°                                                   |                                                                      |                                                                                 |                                                                        |                                                                                                                         |                                                                                                                            |
| β/°                                                   |                                                                      | 111.649(3)                                                                      | 112.457(2)                                                             | 98.631(2)                                                                                                               | 98.819(3)                                                                                                                  |
| γ/°                                                   |                                                                      |                                                                                 |                                                                        |                                                                                                                         |                                                                                                                            |
| Unit cell<br>volume/Å <sup>3</sup>                    | 6253.8(5)                                                            | 7069.0(5)                                                                       | 13232.8(6)                                                             | 7066.4(3)                                                                                                               | 6938.1(5)                                                                                                                  |
| Radiation type                                        | ΜοΚα                                                                 | GaKα                                                                            | ΜοΚα                                                                   | ΜοΚα                                                                                                                    | ΜοΚα                                                                                                                       |
| Wavelength/Å                                          | 0.71073                                                              | 1.34143                                                                         | 0.71073                                                                | 0.71073                                                                                                                 | 0.71073                                                                                                                    |
| Temperature/K                                         | 100                                                                  | 150                                                                             | 150                                                                    | 150                                                                                                                     | 150                                                                                                                        |
| Space group                                           | P4/n                                                                 | P21/n                                                                           | P21/n                                                                  | C2/c                                                                                                                    | C2/c                                                                                                                       |
| Ζ                                                     | 4                                                                    | 4                                                                               | 8                                                                      | 4                                                                                                                       | 4                                                                                                                          |
| Absorption coefficient, $\mu$ /mm                     | 2.452                                                                | 2.067                                                                           | 0.661                                                                  | 2.420                                                                                                                   | 2.521                                                                                                                      |
| No. of reflections<br>measured                        | 16277                                                                | 37374                                                                           | 138299                                                                 | 18696                                                                                                                   | 19360                                                                                                                      |
| No. of<br>independent<br>reflections                  | 7818                                                                 | 13156                                                                           | 138299                                                                 | 9722                                                                                                                    | 9623                                                                                                                       |
| R <sub>int</sub>                                      | 0.0356                                                               | 0.0917                                                                          | Refined as a 2-<br>component twin                                      | 0.0283                                                                                                                  | 0.0581                                                                                                                     |
| Final <i>R</i> 1 values ( <i>I</i> > 2 σ( <i>I</i> )) | 0.0373                                                               | 0.1123                                                                          | 0.0415                                                                 | 0.0402                                                                                                                  | 0.0575                                                                                                                     |
| Final <i>wR(F<sup>2</sup>)</i><br>values (I > 2 σ(I)) | 0.0946                                                               | 0.2855                                                                          | 0.1030                                                                 | 0.1025                                                                                                                  | 0.1408                                                                                                                     |
| Final <i>R₁</i> values (all<br>data)                  | 0.0610                                                               | 0.1980                                                                          | 0.0710                                                                 | 0.0514                                                                                                                  | 0.0834                                                                                                                     |
| Final <i>wR(F<sup>2</sup>)</i><br>values (all data)   | 0.1091                                                               | 0.3284                                                                          | 0.1176                                                                 | 0.1091                                                                                                                  | 0.1408                                                                                                                     |
| Goodness of fit<br>on F <sup>2</sup>                  | 1.025                                                                | 1.001                                                                           | 0.995                                                                  | 1.104                                                                                                                   | 0.996                                                                                                                      |

 Table S2. Crystal data, data collection and refinement for compounds 13-15, 17 and 18.

#### II.3. Crystal structures

II.3.1. The molecular structure of 8 in the solid state



**Figure S1**. Molecular structure of **8** in the solid state with thermal ellipsoids at the 40% probability level. H atoms, except for the imidazolium moiety, and non-coordinating solvent molecules are omitted for clarity. Selected bond distances (Å) and angles [°]: N1-C1 1.334(4), N2-C1 1.326(4), N4-C10 1.266(4); N2-C1-N1 108.4(2).

#### II.3.2. The molecular structure of 9 in the solid state



**Figure S2**. Molecular structure of **9** in the solid state with thermal ellipsoids at the 50% probability level. H atoms are omitted for clarity. Selected bond distances (Å) and angles [°]: Ag-Br 2.4332(4), Ag-C1 2.078(3), N1-C1 1.350(4), N2-C1 1.351(4), N4-C10 1.277(5); C1-Ag-Br 177.24(9), N1-C1-N2 104.4(3).

#### II.3.3. The molecular structure of 10 in the solid state



**Figure S3**. Molecular structure of **10** in the solid state with thermal ellipsoids at the 40% probability level. H atoms are omitted for clarity. Selected bond distances (Å) and angles [°]: Au-I 2.5437(7), Au-C1 1.999(9), N1-C1 1.349(10), N2-C1 1.333(10), C10-N4 1.295(14); C1-Au-I 177.7(2), N2-C1-N1 105.3(7).

#### II.3.4. The molecular structure of 11 in the solid state



**Figure S4**. Molecular structure of **11** in the solid state with thermal ellipsoids at the 50% probability level. H atoms are omitted for clarity. Only one disordered position of the  $C_6F_5$  group is depicted for clarity. Selected bond distances (Å) and angles [°]: Au-C1 2.011(3), Au-C33A 2.054(7), N1-C1 1.357(4), N2-C1 1.344(3), N4-C10 1.266(4); C1-Au-C33A 175.8(4), N2-C1-N1 104.3(2).

#### II.3.5. The molecular structure of 12 in the solid state



**Figure S5**. Molecular structure of the cation of **12** in the solid state with thermal ellipsoids at the 40% probability level. H atoms and non-coordinating solvent molecules are omitted and only one disordered position of the mesityl and *i*Pr groups is depicted for clarity. Selected bond distances (Å) and angles [°]: Ag-C1 2.066(2), N1-C1 1.357(3), N2-C1 1.344(3), N4A-C10 1.36(2); C1-Ag-C1' 179.38(12), N2-C1-N1 104.0(2). Atoms with the prime character in the atom labels (') are at equivalent positions (1/2-x, 3/2-y, z).



#### II.3.6. The molecular structure of 13 in the solid state

**Figure S6**. Molecular structure of the cation of **13** in the solid state with thermal ellipsoids at the 40% probability level. H atoms and non-coordinating solvent molecules are omitted and only one disordered position of the mesityl group is depicted for clarity. Selected bond distances (Å) and angles [°]: Au-C1 2.020(3), N1-C1 1.358(4), N2-C1 1.337(5), N4A-C10 1.297(11); C1-Au-C1' 179.4(2), N2-C1-N1 105.0(3). Atoms with the prime character in the atom labels (') are at equivalent positions (1/2-x, 3/2-y, z).

#### II.3.7. The molecular structure of 14 in the solid state



**Figure S7**. Molecular structure of the cation of **14** in the solid state with thermal ellipsoids at the 40% probability level. H atoms, except for the imidazolium moiety, are omitted for clarity. Only the imino-pyridine moiety of the upper ligand and one disordered position of the *i*Pr groups are depicted for clarity. Selected bond distances (Å) and angles [°]: Cu-N3 2.045(5), Cu-N4 2.012(5), Cu-N7 2.068(5), Cu-N8 2.010(5), N1-C1 1.320(8), N2-C1 1.327(7), N4-C10 1.278(8), N8-C42 1.309(7); N4-Cu-N3 80.5(2), N8-Cu-N7 81.1(2), N3-Cu-N7 112.9(2), N4-Cu-N7 133.5(2), N8-Cu-N3 134.5(2), N8-Cu-N4 122.2(2), N1-C1-N2 108.0(5).

#### II.3.8. The molecular structure of 15 in the solid state



**Figure S8**. Molecular structure of the cation of **15** in the solid state with thermal ellipsoids at the 40% probability level. H atoms and non-coordinating solvent molecules are omitted for clarity. Selected bond distances (Å) and angles [°]: Ag1-N7 2.385(4), Ag1-N8 2.260(4), Ag1-C1 2.090(5), Ag2-N3 2.383(4), Ag2-N4 2.251(4), Ag2-C33 2.083(5), N1-C1 1.356(6), N2-C1 1.360(6), N4-C10 1.288(6), N8-C42 1.284(6); N8-Ag1-N7 70.52(14), C1-Ag1-N7 141.2(2), C1-Ag1-N8 148.2(2), N4-Ag2-N3 71.53(14), C33-Ag2-N3 135.1(2), C33-Ag2-N4 153.1(2), N1-C1-N2 104.3(4), N6-C33-N5 104.5(4). The asymmetric unit of **15**-MeCN contains two molecules of **15** with very similar metrical data.

#### II.3.9. The molecular structure of 17 in the solid state



**Figure S9**. Molecular structure of the cation of **17** in the solid state with thermal ellipsoids at the 40% probability level. H atoms and non-coordinating solvent molecules are omitted for clarity. Selected bond distances (Å) and angles [°]: Au1-C1 2.014(3), Ag2-N3 2.360(3), Ag2-N4 2.278(3), N1-C1 1.343(5), N2-C1 1.352(5), N4-C10 1.287(5); C1-Au1-C1' 176.4(2), N3-Ag2-N3' 117.74(14), N4-Ag2-N3' 133.09(12), N4-Ag2-N3 71.96(11), N4-Ag2-N4' 137.7(2), N1-C1-N2 104.6(3). Atoms with the prime character in the atom labels (') are at equivalent positions (-x, y, 3/2-z).



II.3.10. The molecular structure of 18 in the solid state

**Figure S10**. Molecular structure of the cation of **18** in the solid state with thermal ellipsoids at the 40% probability level. H atoms and non-coordinating solvent molecules are omitted for clarity. Selected bond distances (Å) and angles [°]: Au-C1 2.031(5), Cu-N3 2.053(4), Cu-N4 2.009(4), N1-C1 1.335(6), N2-C1 1.334(6), N4-C10 1.289(6); C1-Au-C1' 176.7(3), N3-Cu-N3' 110.0(2), N4-Cu-N3' 133.35(15), N4-Cu-N3 81.31(15), N4-Cu-N4' 124.4(2), N2-C1-N1 106.1(4). Atoms with the prime character in the atom labels (') are at equivalent positions (1-x, y, 1/2-z).

#### II.3.11. Preliminary molecular structure of 16 in the solid state



**Figure S11**. Preliminary molecular structure of the cation of **16** in the solid state with thermal ellipsoids at the 40% probability level. H atoms and non-coordinating solvent molecules are omitted for clarity. The data set acquired did not allow the refinement of the structural model under acceptable *R* values but confirmed the connectivity of the atoms.

**Cell parameters**: a = 12.029(1), b = 17.707(2), c = 18.021(2) Å;  $\alpha = 88.327(6)$ ,  $\beta = 84.908(6)$ ,  $\gamma = 70.053(6)^{\circ}$ ; V = 3593.9(5) Å<sup>3</sup>.

### III. NMR SPECTRA



**Figure S12**. <sup>1</sup>H NMR spectrum of **3** in CDCl<sub>3</sub> (residual protio solvent from CDCl<sub>3</sub> at  $\delta$ 7.26 (\*)).



**Figure S13**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **3** in CDCl<sub>3</sub> (solvent signal at  $\delta$ 77.16).



**Figure S14**. <sup>1</sup>H NMR spectrum of **4** in CDCl<sub>3</sub> (residual protio solvent from CDCl<sub>3</sub> at  $\delta$ 7.26 (\*)).



**Figure S15**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **4** in CDCl<sub>3</sub> (solvent signal at  $\delta$ 77.16).

### III.3. Compound 6



**Figure S16**. <sup>1</sup>H NMR spectrum of **6** in CDCl<sub>3</sub> (residual protio solvent from CDCl<sub>3</sub> at  $\delta$ 7.26 (\*)).



**Figure S17**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **6** in CDCl<sub>3</sub> (solvent signal at  $\delta$ 77.15).



**Figure S18**. <sup>1</sup>H NMR spectrum of **7** in CDCl<sub>3</sub> (residual protio solvent from CDCl<sub>3</sub> at  $\delta$ 7.26 (\*)).



**Figure S19**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **7** in CDCl<sub>3</sub> (solvent signal at  $\delta$ 77.16).

## III.5. Compound 8 (L·HBr)



**Figure S20**. <sup>1</sup>H NMR spectrum of L·HBr (8) in CDCl<sub>3</sub> (residual protio solvent from CDCl<sub>3</sub> at  $\delta$  7.26 (\*)). Traces of an unidentified impurity can be detected at  $\delta$  1.62 (#).



**Figure S21**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of L·HBr (8) in CDCl<sub>3</sub> (solvent signal at  $\delta$  77.16). Traces of an unidentified impurity can be detected at  $\delta$  53.6 (#).

### III.6. Complex 9



**Figure S22**. <sup>1</sup>H NMR spectrum of **9** in CDCl<sub>3</sub> (residual protio solvent from CDCl<sub>3</sub> at  $\delta$ 7.26 (\*)).



**Figure S23**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **9** in CDCl<sub>3</sub> (solvent signal at  $\delta$ 77.16) at room temperature (298 K). Accumulation of 10 000 scans with a sample at high concentration (*ca*. 60 mg.mL<sup>-1</sup>).



**Figure S24**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **9** in CDCl<sub>3</sub> (solvent signal at  $\delta$ 77.14) at high temperature (323 K). Accumulation of *ca*. 11 500 scans with a sample at high concentration (*ca*. 120 mg.mL<sup>-1</sup>).



**Figure S25**. Detail of the  ${}^{1}H{}^{-13}C$  HMBC spectrum of **9** at room temperature (298 K) confirming the assignment of the  $C^{NHC}$  resonance.

## III.7. Complex 10



**Figure S26**. <sup>1</sup>H NMR spectrum of **10** in CDCl<sub>3</sub> (residual protio solvent from CDCl<sub>3</sub> at  $\delta$ 7.26 (\*)).



**Figure S27**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **10** in CDCl<sub>3</sub> (solvent signal at  $\delta$ 77.16).



**Figure S28**. <sup>1</sup>H NMR spectrum of **11** in CDCl<sub>3</sub> (residual protio solvent from CDCl<sub>3</sub> at  $\delta$  7.26 (\*)). Traces of water ( $\delta$ 1.56), Et<sub>2</sub>O ( $\delta$ 3.48 and 1.21) and an unidentified impurity (#,  $\delta$ 2.20) can be detected.



**Figure S29**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **11** in CDCl<sub>3</sub> (solvent signal at  $\delta$  77.16). Traces of an unidentified impurity (#) can be detected at  $\delta$  129.1, 29.9 and 18.5.



Figure S30. <sup>19</sup>F NMR spectrum of **11** in CDCl<sub>3</sub>.



**Figure S31**. <sup>1</sup>H NMR spectrum of **12** in CDCl<sub>3</sub> (residual protio solvent from CDCl<sub>3</sub> at  $\delta$ 7.26 (\*)).



**Figure S32**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **12** in CDCl<sub>3</sub> (solvent signal at  $\delta$ 77.16). Traces of silicon grease can be detected at  $\delta$ 2.0.



**Figure S33**. <sup>1</sup>H NMR spectrum of **13** in CDCl<sub>3</sub> (residual protio solvent from CDCl<sub>3</sub> at  $\delta$ 7.26 (\*)).



**Figure S34**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **13** in CDCl<sub>3</sub> (solvent signal at  $\delta$ 77.16). Traces of silicon grease can be detected at  $\delta$ 2.0.



**Figure S35**. <sup>1</sup>H NMR spectrum of **14** in CD<sub>3</sub>CN (residual protio solvent from CD<sub>3</sub>CN at  $\delta$ 1.94 (\*)). Traces of Et<sub>2</sub>O can be detected at  $\delta$ 3.42 and 1.12.



**Figure S36**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **14** in CD<sub>3</sub>CN (solvent signal at  $\delta$  118.32 and 1.31).



#### III.12. Complex 15

Figure S37. <sup>1</sup>H NMR spectrum of 15 in CD<sub>3</sub>CN (residual protio solvent from CD<sub>3</sub>CN at  $\delta$  1.94 (\*)).



**Figure S38**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **15** in CD<sub>3</sub>CN (solvent signal at  $\delta$  118.30 and 1.32).



III.13. Complex 16

**Figure S39**. <sup>1</sup>H NMR spectrum of **16** in CDCl<sub>3</sub> (residual protio solvent from CDCl<sub>3</sub> at  $\delta$ 7.26 (\*)).



**Figure S40**. Detail of the <sup>1</sup>H NMR spectrum of **16** in CDCl<sub>3</sub> in the region  $\delta$ 8.5–4.5 (residual protio solvent from CDCl<sub>3</sub> at  $\delta$ 7.26 (\*)) and assignment of the signals corresponding to the two isomers.



**Figure S41**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **16** in CDCl<sub>3</sub> (solvent signal at  $\delta$ 77.16). The label # corresponds to signals arising from the minor isomer.



**Figure S42**. <sup>1</sup>H NMR spectrum of **17** in CDCl<sub>3</sub> (residual protio solvent from CDCl<sub>3</sub> at  $\delta$  7.26 (\*)). Traces of silicon grease can be detected at  $\delta$  0.07.



**Figure S43**. <sup>1</sup>H NMR spectrum of **17** in CD<sub>3</sub>CN (residual protio solvent from CD<sub>3</sub>CN at  $\delta$  1.94 (\*)). Traces of Et<sub>2</sub>O can be detected at  $\delta$  3.42 and 1.12.



Figure S44. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **17** in CD<sub>3</sub>CN (solvent signal at  $\delta$  118.31 and 1.31).



III.15. Complex 18

**Figure S45**. <sup>1</sup>H NMR spectrum of **18** in CDCl<sub>3</sub> (residual protio solvent from CDCl<sub>3</sub> at  $\delta$  7.26 (\*)). Traces of silicon grease can be detected at  $\delta$  0.07.



**Figure S46**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **18** in CDCl<sub>3</sub> (solvent signal at  $\delta$ 77.16). Traces of silicon grease can be detected at  $\delta$ 1.1.



## IV. IR SPECTRA

IV.1. Compound 8 (L·HBr)

Figure S47. IR spectrum of L·HBr (8).

Wavenumber cm-1

## IV.2. Complex 9



Figure S48. IR spectrum of complex 9.



## IV.3. Complex 10

Figure S49. IR spectrum of complex 10.



Figure S50. IR spectrum of complex 11.



IV.5. Complex 12

Figure S51. IR spectrum of complex 12.



Figure S52. IR spectrum of complex 13.



IV.7. Complex 14

Figure S53. IR spectrum of complex 14.

IV.8. Complex 15



Figure S54. IR spectrum of complex 15.



IV.9. Complex 16

Figure S55. IR spectrum of complex 16.

IV.10. Complex 17



Figure S56. IR spectrum of complex 17.



IV.11. Complex 18

Figure S57. IR spectrum of complex 18.

#### V. UV-VIS SPECTRA



**Figure S58**. UV-vis absorption spectra of the dinuclear complexes **15-18** in the range 300-800 nm, recorded at a concentration of 0.10 mg mL<sup>-1</sup> in  $CH_2Cl_2$ .



**Figure S59**. UV-vis absorption spectra of the dinuclear complexes **15-18** in the range 280-740 nm, recorded at a concentration of 0.10 mg mL<sup>-1</sup> in  $CH_2Cl_2$ .

### VI. PHOTOLUMINESCENCE



**Figure S60**. PL decay of solid (polycrystalline) complex **17** excited with a nsec-pulsed nitrogen laser at 337 nm and recorded at 435 nm at low and ambient temperatures. The decay traces can be fitted with monoexponential curves with  $\tau$  = 154 and 69 µsec at 20 and 295 K, respectively.

#### VII. REFERENCES

(1) (a) Parks, J. E.; Wagner, B. E.; Holm, R. H. Syntheses Employing Pyridyllithium Reagents: New Routes to 2,6-Disubstituted Pyridines and 6,6'-Disubstituted 2,2'-Bipyridyls. *J. Organomet. Chem.* **1973**, *56*, 53-66. (b) Bolm, C.; Ewald, M.; Felder, M.; Schlingloff, G. Enantioselective Synthesis of Optically Active Pyridine Derivatives and C<sub>2</sub>-Symmetric 2,2'-Bipyridines. *Chem. Ber.* **1992**, *125*, 1169-1190.

(2) Bianchini, C.; Giambastiani, G.; Rios, I. G.; Meli, A.; Oberhauser, W.; Sorace, L.; Toti, A. Synthesis of a New Polydentate Ligand Obtained by Coupling 2,6-Bis(imino)pyridine and (Imino)pyridine Moieties and Its Use in Ethylene Oligomerization in Conjunction with Iron(II) and Cobalt(II) Bis-halides. *Organometallics* **2007**, *26*, 5066-5078.

(3) Bur, D.; Corminboeuf, O.; Cren, S.; Fretz, H.; Grisostomi, C.; Leroy, X.; Pothier, J.; Richard-Bildstein,S. Preparation of Aminopyrazole Derivatives as ALXR Receptor Agonists. WO2009077954, 2009.